615 research outputs found

    Human gait recognition with matrix representation

    Get PDF
    Human gait is an important biometric feature. It can be perceived from a great distance and has recently attracted greater attention in video-surveillance-related applications, such as closed-circuit television. We explore gait recognition based on a matrix representation in this paper. First, binary silhouettes over one gait cycle are averaged. As a result, each gait video sequence, containing a number of gait cycles, is represented by a series of gray-level averaged images. Then, a matrix-based unsupervised algorithm, namely coupled subspace analysis (CSA), is employed as a preprocessing step to remove noise and retain the most representative information. Finally, a supervised algorithm, namely discriminant analysis with tensor representation, is applied to further improve classification ability. This matrix-based scheme demonstrates a much better gait recognition performance than state-of-the-art algorithms on the standard USF HumanID Gait database

    Human gait recognition based on multiview gait sequences

    Get PDF
    Copyright © 2008 X. Huang and N. V. Boulgouris. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Most of the existing gait recognition methods rely on a single view, usually the side view, of the walking person. This paper investigates the case in which several views are available for gait recognition. It is shown that each view has unequal discrimination power and, therefore, should have unequal contribution in the recognition process. In order to exploit the availability of multiple views, several methods for the combination of the results that are obtained from the individual views are tested and evaluated. A novel approach for the combination of the results from several views is also proposed based on the relative importance of each view. The proposed approach generates superior results, compared to those obtained by using individual views or by using multiple views that are combined using other combination methods.European Commissio

    Human gait recognition using topological information

    Get PDF
    This paper shows an image/video application using topological invariants in human gait recognition. The 3D volume of a gait cycle is built stacking silhouettes extracted using a background substraction approach. Ideally, the border cell complex is obtained from the 3D volume with one connected component and one cavity. Then, it is necessary to apply a topological enrichment strategy in order to obtain a robust and discriminative representation for person recognition. Using a sliding cutter plane normal to some direction of view it is possible to divide the border cell complex in different parts. The incremental algorithm is used to compute the homology on each part. A vectorial representation is built ordering the number of connected components and tunnels obtained for each cut. In order to evaluate the robustness of this representation the silhouettes were diminished to a quarter of the original size. At the same time, this is considered a simulation of a human gait captured at long distance. Even, under these difficult conditions it was possible to get a 74% of correct classification rates on CASIA-B database

    Features Mapping Based Human Gait Recognition

    Get PDF
    Gait recognition is the term used for detection of Human based on the features. The Feature extraction and Feature Mapping is the main aspect to recognize the Gestures from the Database of features. Recognition of any individual is a task to identify people. Human recognition methods such as face, fingerprints, and iris generally require a cooperative subject, physical contact or close proximity. These methods are not able to recognize an individual at a distance therefore recognition using gait is relatively new biometric technique without these disadvantages. Human identification using Gait is method to identify an individual by the way he walk or manner of moving on foot. Gait recognition is a type of biometric recognition and related to the behavioral characteristics of biometric recognition. Gait offers ability of distance recognition or at low resolution. This project aims to recognize an individual using his gait features. However the majority of current approaches are model free which is simple and fast but we will use model based approach for feature extraction and for matching of parameters with database sequences. After matching of Features, the Images have been identified and show the dataset from it matched. The Results are accurate and shows efficiency. In this firstly binary silhouette of a walking person is detected from each frame of an image. Then secondly, the features from each frame are extracted using the image processing operation. In the end SVM, K-MEANS and LDA are used for training and testing purpose. Every experiment and test is done on CASIA database. The results in this paper are better and improved from previous results by using SVM , K MEANS. DOI: 10.17762/ijritcc2321-8169.15067

    Principal component analysis for human gait recognition system

    Get PDF
    This paper represents a method for Human Recognition system using Principal Component Analysis. Human Gait recognition works on the gait of walking subjects to identify people without them knowing or without their permission. The initial step in this kind of system is to generate silhouette frames of walking human. A number of features couldb be exytacted from these frames such as centriod ratio, heifht, width and orientation. The Principal Component Analysis (PCA) is used for the extracted features to condense the information and produces the main components that can represent the gait sequences for each waiking human. In the testing phase, the generated gait sequences are recognized by using a minimum distance classifier based on eluclidean distance matched with the one that already exist in the database used to identify walking subject

    Human gait recognition using preprocessing and classification techniques

    Get PDF
    Biometric recognition systems have been attracted numerous researchers since they attempt to overcome the problems and factors weakening these systems including problems of obtaining images indeed not appearing the resolution or the object completely. In this work, the object movement reliance was considered to distinguish the human through his/her gait. Some losing features probably weaken the system’s capability in recognizing the people, hence, we propose using all data recorded by the Kinect sensor with no employing the feature extraction methods based on the literature. In these studies, coordinates of 20 points are recorded for each person in various genders and ages, walking with various directions and speeds, creating 8404 constraints. Moreover, pre-processing methods are utilized to measure its influences on the system efficiency through testing on six types of classifiers. Within the proposed approach, a noteworthy recognition rate was obtained reaching 91% without examining the descriptors

    A Review of Chinese Academy of Sciences (CASIA) Gait Database As a Human Gait Recognition Dataset

    Get PDF
    Human Gait as the recognition object is the famous biometrics system recently. Many researchers had focused this subject to consider for a new recognition system. One of the important advantage in this recognition compare to other is it does not require observed subject’s attention and cooperation. There are many human gait datasets created within the last 10 years. Some databases that are widely used are University Of South Florida (USF) Gait Dataset, Chinese Academy of Sciences (CASIA) Gait Dataset, and Southampton University (SOTON) Gait Dataset. This paper will analyze the CASIA Gait Dataset in order to see their characteristics. There are 2 pre-processing subsystems; model based and model free approach. We will use 2D Discrete Wavelet Transform (DWT). We select Haar wavelets to reduce and extract the feature

    Human Gait Recognition from Motion Capture Data in Signature Poses

    Get PDF
    Most contribution to the field of structure-based human gait recognition has been done through design of extraordinary gait features. Many research groups that address this topic introduce a unique combination of gait features, select a couple of well-known object classiers, and test some variations of their methods on their custom Kinect databases. For a practical system, it is not necessary to invent an ideal gait feature -- there have been many good geometric features designed -- but to smartly process the data there are at our disposal. This work proposes a gait recognition method without design of novel gait features; instead, we suggest an effective and highly efficient way of processing known types of features. Our method extracts a couple of joint angles from two signature poses within a gait cycle to form a gait pattern descriptor, and classifies the query subject by the baseline 1-NN classier. Not only are these poses distinctive enough, they also rarely accommodate motion irregularities that would result in confusion of identities. We experimentally demonstrate that our gait recognition method outperforms other relevant methods in terms of recognition rate and computational complexity. Evaluations were performed on an experimental database that precisely simulates street-level video surveillance environment

    Human gait recognition: viewing angle effect on normal walking pattern

    Get PDF
    Gait recognition has recently gained interest of researchers as it performs identification of subjects at a distance from the camera. However, due to the changes in the viewing angles, it gets cumbersome for a system to perform recognition based on the walking pattern of an individual. In this work, the aim is to propose a simple baseline method for the purpose of human recognition based on the shape of its body and walking pattern when the subject is observed from different viewing angles. The recognition is also tested on the subjects in a scenario where the individual subjects are registered while walking in normal walking pattern followed by the testing in normal walking mode, apart from being observed at different viewing angles. Gait periodicity is estimated after extracting the silhouettes of an individual, followed by obtaining the total silhouette representation of an individual using Matlab. The total silhouette representations obtained from the probe gait data are compared to the gallery gait data representations for the purpose of similarity computation by calculating the RMS value between the said representations. Higher the value, lesser is the similarity & vice versa
    corecore