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Human Gait Recognition Based on Multiview Gait Sequences
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Most of the existing gait recognition methods rely on a single view, usually the side view, of the walking person. This paper investi-
gates the case in which several views are available for gait recognition. It is shown that each view has unequal discrimination power
and, therefore, should have unequal contribution in the recognition process. In order to exploit the availability of multiple views,
several methods for the combination of the results that are obtained from the individual views are tested and evaluated. A novel
approach for the combination of the results from several views is also proposed based on the relative importance of each view. The
proposed approach generates superior results, compared to those obtained by using individual views or by using multiple views
that are combined using other combination methods.
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1. INTRODUCTION

Gait recognition [1] aims at the identification of individuals
based on their walking style. Recognition based on human
gait has several advantages related to the unobtrusiveness and
the ease with which gait information can be captured. Unlike
other biometrics, gait can be captured from a distant camera,
without drawing the attention of the observed subject. One
of the earliest works studying human gait is that of Johans-
son [2], who showed that people are able to recognize human
locomotion and to identify familiar persons, by presenting a
series of video sequences of different patterns of motion to
a group of participants. Later, Cutting and Kozlowski in [3]
used movinglight displays (MLDs) to further show the hu-
man ability for person identification and gender classifica-
tion.

Although several approaches have been presented for the
recognition of human gait, most of them limit their attention
to the case in which only the side view is available since this
viewing angle is considered to provide the richest informa-
tion of the gait of the waking person [4–7]. In [8], an exper-
iment was carried out using two views, namely, the frontal-
parallel view and the side view, from which the silhouettes of
the subjects in two walking stances were extracted. This ap-
proach exhibited higher recognition accuracy for the frontal-
parallel view than that of the side view. The side view was

also examined in [9] together with another view from a dif-
ferent angle, and the static parameters, such as the height of
the walking person, as well as distances between body parts,
were used in the template matching. Apart from the recogni-
tion rate, results were also reported based on a small sample
set using a confusion metric which reflects the effectiveness
of the approach in the situation of a large population of sub-
jects. The authors in [10] synthesize the side view silhouettes
from those captured by multiple cameras employing visual
hull techniques. In [11], the perspective projection and op-
tical flow-based structure of motion approach was taken in-
stead. In [12], information from multiple cameras is gathered
to construct a 3D gait model.

Among recent works, the authors in [13] use improved
discriminant analysis for gait recognition, the authors in [14]
use information of gait shape and gait dynamics, while the
authors in [15] use a gait energy image (GEI). However, all
above approaches are based only on side view sequences.

In this paper, we use the motion of body (MoBo)
database from the Carnegie Mellon University (CMU) in or-
der to investigate the contribution of each viewing direction
to the recognition performance of a gait recognition system.
In general, we try to answer the fundamental question: if sev-
eral views are available to a gait recognition system, what is
the most appropriate way to combine them in order to enhance
the performance and the reliability of the system? We provide
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a detailed analysis of the role and the contribution of each
viewing direction by reporting recognition results of systems
based on each one of the available views. We also propose a
novel way to combine the results obtained from different sin-
gle views. In the proposed approach, we set a weight for each
view, based on its importance as it is calculated using statis-
tical processing of the differences between views. The exper-
imental results demonstrate the superior performance of the
proposed weighted combination approach in comparison to
the single-view approach and other combination methods
for multiple views.

The paper is organized as follows. Section 2 presents the
recognition performance of individual views in a multiview
system. The proposed method for the combination of dif-
ferent views is presented in Section 3. Section 4 reports the
detailed results using the proposed approach for the com-
bination of several views. Finally, conclusions are drawn in
Section 5.

2. GAIT RECOGNITION USING MULTIPLE VIEWS

The CMU MoBo database does not contain explicitly the ref-
erence set and the test sets as in [5]. In this work, we use
the “fast walk” sequences as the reference set, and the “slow
walk” sequences as the test set. As mentioned in the introduc-
tion, our goal is to find out which viewing directions have the
greatest contribution in a multiview gait recognition system.
To this end, we adopt a simple and straightforward way in or-
der to determine the similarity between gait sequences in the
reference and test databases. Specifically, from each gait se-
quence, taken from a specific viewpoint, we construct a sim-
ple template T by averaging all frames in the sequence

T = 1
NT

NT∑

a=1

ta, (1)

where ta, a = 1, . . . ,NT , are the silhouettes in a gait sequence
and NT is the number of silhouettes. This approach for tem-
plate construction was also taken in [15–17].

Let Ti, Rj denote the templates corresponding to the ith
and the jth subjects in the test database and the reference
database, respectively. Their distance is calculated using the
following distance metric:

d
(
Ti,Rj

) = ∥∥Ti − Rj

∥∥ =
∥∥∥∥∥

1
NTi

NTi∑

α=1

tiα − 1
NRj

NRj∑

β=1

r jβ

∥∥∥∥∥, (2)

where ‖ · ‖ is the l2-norm and tiα, r jβ are the silhouettes be-
longing to the ith test subject and jth reference subject, re-
spectively. The associated frame indices α and β run from
1 to the total number of silhouettes in a sequence (NTi and
NRj , resp.). Essentially, a template is produced for each sub-
ject by averaging all silhouettes in the gait sequence. Specifi-
cally, the Euclidean distance between two templates is taken
as a measure of their dissimilarity. In practice, this means that
a smaller template distance corresponds to a closer match be-
tween two compared subjects.

In order to evaluate the contribution of various viewing
directions in the human gait recognition, we choose MoBo
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Figure 1: Camera arrangement in the CMU MoBo database. Six
cameras are oriented clockwise in the east, southeast, south, south-
west, northwest, north, with the walking subject facing toward the
south.

Table 1: The recognition rates of the five viewing directions re-
ported at rank 1 and rank 5.

Camera location Rank 1(%) Rank 5(%)

East 84 92

Southeast 64 76

South 88 96

Northwest 76 92

Southwest 72 76

database [18] from the CMU which contains walking sub-
jects captured from six cameras located in positions as shown
in Figure 1. The database consists of walking sequences of
23 male and 2 female subjects, who were recorded perform-
ing four kinds of activities, that is, fast walk, slow walk, and
so on. Before the application of our methodologies, we use
bounding boxes of silhouettes, then align and normalize all
silhouettes so that they have uniform dimensions, that is, 128
pixels tall and 80 pixels wide, in order to eliminate height
differences of the walking subjects. We use five (see Figure 2)
out of the six available viewing directions, omitting the north
view, since it is practically identical to the south view (i.e., the
frontal view). The cumulative match scores for each of these
five viewing directions are shown in Figure 4, and the recog-
nition rates at rank 1 and rank 5 are reported in Table 1.

One can see clearly from Table 1 that the results obtained
using the south and the east viewing directions are the best,
especially at rank 1. Results achieved using the rest of the
viewing directions are worse. This is a clear indication that
the south and the east viewing directions capture most of the
gait information of the walking subjects and, therefore, are
the most discriminant viewing directions. In the next section,
we will show how to combine results from several viewing
directions in order to achieve improved recognition perfor-
mance.
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Figure 2: Available views for multiview gait recognition.
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Figure 3: Templates constructed using the five available views.
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Figure 4: Cumulative match scores for five viewing directions,
namely, the east, southeast, south, southwest, and the northwest.

3. COMBINATION OF DIFFERENT VIEWS USING
A SINGLE DISTANCE METRIC

In this section, we propose a novel method for the combina-
tion of results from different views in order to improve the
performance of a gait recognition system. In our approach,
we use weights in order to reflect the importance of each view
during the combination. This means that instead of using a
single distance for the evaluation of similarity between walk-
ing persons i and j, we use multiple distances between the

respective views and combine them in a total distance which
is given by

D
(
Ti,Rj

) =
V∑

v=1

wvdv
(
Ti,Rj

)
, (3)

where V is the total number of available views. Therefore,
our task is to determine the weights wv, which yield smaller
total distance when i = j, and larger when i /= j.

Suppose that d f v, v = 1, 2, . . . ,V , are random variables
representing the distances between a test subject and its cor-
responding reference subjects (i.e., “within class” distance),
and dbv, v = 1, 2, . . . ,V , are random variables representing
the distances between a test subject and a reference subject
other than its corresponding subject (i.e., “between class”
distance).

In order to maximize the efficiency of our system, we first
define the distance Df between corresponding subjects in the
reference and test databases:

Df =
V∑

v=1

wvd f v = wT · d f , (4)

and the weighed distance between noncorresponding sub-
jects:

Db =
V∑

v=1

wvdbv = wT · db. (5)

In an ideal gait recognition system, Df should always be
smaller than Db. In practice, a recognition error takes place
whenever Db < Df . Therefore, the probability of error is

Pe = P
(
Db < Df

)

= P
(

wT · db < wT · d f
)

= P
(

wT · (db − d f
)
< 0

)
.

(6)
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We define the random variable z as

z = wT · (db − d f
)

(7)

if we assume that db and d f are normal random vectors, then
z is a normal random variable with probability density dis-
tribution

P(z) = 1√
2πσz

e−(1/2)((z−mz)2/σ2
z ), (8)

where mz is the mean value of z, σz is the variance of z.
Therefore, using (7) and (8), the probability of error in

(6) is expressed as

Pe = P(z < 0) =
∫ 0

−∞
1√

2πσz
e−(1/2)((z−mz)2/σ2

z )dz. (9)

Furthermore, if q = (z −mz)/σz, then the above expres-
sion is equivalent to

Pe =
∫ −mz/σz

−∞
1√
2π

e−(1/2)q2
dq. (10)

The probability of error can therefore be minimized by
minimizing −mz/σz, or equivalently by maximizing mz/σz.
To this end, we have to calculate mz and σz. If E{·} denotes
statistical expectation, then the mean value of z is

mz = E{z}
= E

{
wT
(

db − d f
)}

= wT
(
E
{

db
}− E

{
d f
})

= wT
(

mdb −md f

)
,

(11)

where mdb and md f are the mean vectors of db and d f . The
variance of z is

σ2
z = E

{(
z −mz

)2
}

= E
{(

wT
(

db − d f
)−wT

(
mdb −md f

))2
}

= E
{(

wT
(

db −mdb

)−wT
(

d f −md f

))2
}

= E
{(

wT
(

db −mdb

)−wT
(

d f −md f

))

×
((

db −mdb

)T
w − (d f −md f

)T
w
)}

= E
{

wT
(

db −mdb

)(
db −mdb

)T
w

−wT
(

db −mdb

)(
d f −md f

)T
w

−wT
(

d f −md f

)(
db −mdb

)T
w

+ wT
(

d f −md f

)(
d f −md f

)T
w
}
.

(12)

If we assume that db and d f are independent, then

σ2
z = wT · E

{(
db −mdb

)(
db −mdb

)T} ·w

+ wT · E
{(

d f −md f

)(
d f −md f

)T} ·w

= wT · Σdb ·w + wT · Σd f ·w.

(13)

Therefore, the optimization problem becomes equivalent
to maximizing

m2
z

σ2
z
= wT · (mdb −md f

) · (mdb −md f

)T ·w

wT · Σdb ·w + wT · Σd f ·w

= wT · Σdc ·w
wT · (Σdb + Σd f

) ·w
,

(14)

where

Σdc =
(

mdb −md f

) · (mdb −md f

)T
. (15)

The maximization of the above quality is reminiscent of
the optimization problem that appears in two-class linear
discriminant analysis. Trivially, the ratio can be maximized
by determining a vector w that satisfies [19]

Σdc ·w = Λ
(
Σdb + Σd f

) ·w (16)

for some Λ. In the case that we are considering, the optimal
w is given by

w = (Σdb + Σd f

)−1 · (mdb −md f

)
. (17)

If we assume that the distances corresponding to different
views are independent, then

(
Σdb + Σd f

)−1=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
σ2
db1

+ σ2
d f 1

0 · · · 0

0
1

σ2
db2

+ σ2
d f 2

· · · 0

...
...

. . .
...

0 0 · · · 1
σ2
dbV

+ σ2
d f V

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(18)

where V is the total number of available views. Therefore, the
optimal weight vector is

w =
(
mdb1 −mdf 1

σ2
db1

+ σ2
d f 1

mdb2 −mdf 2

σ2
db2

+ σ2
d f 2

· · · mdbV −mdfV

σ2
dbV

+ σ2
d f V

)T

.

(19)

Of course, the practical application of the above theory
requires the availability of a database (other than the test
database) which will be used in conjunction with the refer-
ence database for the determination of mdb , mdf , σdb , σdf . In
our experiments, we used the CMU database of individuals
walking with a ball for this purpose.

In the ensuring section, we will use the weight vector in
(19) for the combination of views and the evaluation of the
resulting multiview gait recognition system.

4. EXPERIMENTAL RESULTS

For the experimental evaluation of our methods, we used the
MoBo database from the CMU. The CMU database has 25
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Figure 5: Cumulative match scores for the proposed and the other
five combination methods.

subjects walking on a treadmill. Although this is an artificial
setting that might affect the results, using this database was
essentially our only option since this is the only database that
provides five views. We used the “fast walk” sequences as ref-
erence and the “slow walk” as test sequences. We also used
the “with a ball” sequences in conjunction with the refer-
ence sequences for the determination of the weights in (19).
The comparisons of recognition performance are based on
cumulative match scores at rank 1 and rank 5. Rank 1 re-
sults report the percentage of subjects in a test set that were
identified exactly. Rank 5 results report the percentage of test
subjects whose actual match in the reference database was
in the top 5 matches. In this section, we present the results
generated by the proposed view combination method. These
results are compared to the results obtained using different
single views and other combination methods.

Initially, we tried several simple methods for the com-
bination of the results obtained using the available views.
Specifically, the total distance between two subjects was taken
to be equal to the mean, max, min, median, and product of
the distances corresponding to each of the five viewing di-
rections. Such combination approaches were originally ex-
plored in [20]. As shown in Figure 5 and Table 2, among all
the above combination methods, the most satisfactory results
were obtained by using the Product and Min rules.

In the sequel, we applied the proposed methodology for
the determination of the weights in (3). Based on (19), the
weights for the combination of the distances of the avail-
able views were calculated and are tabulated in Table 3. As
seen, the most suitable views seem to be the frontal (east) and
the side (south) views since these views are given the greater
weights.

The above conclusion is experimentally verified by study-
ing the recognition performance that corresponds to each of
the views independently. The cumulative match scores and
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Figure 6: Cumulative match scores for five viewing directions and
the proposed combination method.

Table 2: The recognition rates of the proposed and the other five
combination methods.

Combination method Rank 1(%) Rank 5(%)

Mean 80 92

Median 84 88

Product 88 96

Max 72 80

Min 88 96

Weighed (proposed) 92 96

Table 3: The weights calculated by the proposed method.

View East Southeast South Northwest Southwest

Weight 0.3332 0.0603 0.4036 0.1188 0.0842

Table 4: The recognition rates of the five viewing directions and the
proposed combination method.

View Rank 1(%) Rank 5(%)

East 84 92

Southeast 64 76

South 88 96

Northwest 76 92

Southwest 72 76

Weighed (proposed) 92 96

the recognition rates that are achieved using each view as
well as those achieved by the proposed method are shown in
Figure 6 and Table 4, respectively. As we can see, the south
and the east views have the highest recognition rates, as
well as the highest weights, which means that the weights
calculated by the proposed method correctly reflect the
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Table 5: The verification rates for the single-view and combined-views methods.

Viewing direction
Verification rate (%)

Combination method
Verification rate (%)

FAR 5% FAR 10% FAR 20% FAR 5% FAR 10% FAR 20%

East 88 96 96 Mean 88 92 96

Southeast 68 72 76 Median 92 94 96

South 92 96 100 Product 92 96 96

Northwest 80 92 92 Max 72 76 84

Southwest 76 76 84 Min 92 96 100

Weighed (proposed) 96 100 100 Weighed (proposed) 96 100 100

Side view

Frontal view

Figure 7: Frontal view and side view.

importance of the views. The results obtained by the pro-
posed combination method are superior to those obtained
from single views.

Since superior results are generally achieved using the
frontal (east) and side (south) views (see Figure 7), the pro-
posed method was also used to combine those two views.
Figure 8 shows that the combination of the east and the south
views using the proposed method has much better perfor-
mance than using the views individually. It is interesting to
note that, in theory, using two views should be sufficient for
capturing the 3D information in a sequence. Although here
we use silhouettes (so there is no texture that could be used
for the estimation of 3D correspondence), it appears that the
combination of these two views seems very efficient. By try-
ing other combinations of the two views, we discovered that
the optimal combination of the east and the south view is the
only one which outperforms all single views.

The proposed system was also evaluated in terms of ver-
ification performance. The most widely used method for
this task is to present receiver operating characteristic (ROC)
curves. In an access control scenario, this means calculat-
ing the probability of positive recognition of an authorized
subject versus the probability of granting access to an unau-
thorized subject. In order to calculate the above probabili-
ties, different thresholds were set for examining the distances
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Figure 8: Cumulative match scores for the east and the south view-
ing directions and the proposed combination method.

between the test and reference sequences. We calculated the
distances for the five intraviews, and combined them us-
ing weights and five other existing methods mentioned in
the previous section. Figure 9 shows the ROC curves of the
methods using single views and combined views. In Table 5,
verification results are presented at 5%, 10%, and 20% false
alarm rate for the proposed method and the existing meth-
ods. As seen, within the five viewing directions, the frontal
(east) and side (south) views have the best performances;
and among the five existing combination methods, the Min
method obtains the best results. As expected, the proposed
method has superior verification performance, in compari-
son to any of the single-view methods as well as in compari-
son to the other methods for multiview recognition.

5. CONCLUSION

In this paper, we investigated the exploitation of the avail-
ability of various views in a gait recognition system using the
MoBo database. We showed that each view has unequal dis-
crimination power and therefore has unequal contribution
to the task of gait recognition. A novel approach was pro-
posed for the combination of the results of different views
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Figure 9: The ROC curves: (a) single-view methods and the proposed method, (b) the proposed and five existing combination methods.

into a common distance metric for the evaluation of similar-
ity between gait sequences. By using the proposed method,
which uses different weights in order to exploit the different
importance of the views, improved recognition performance
was achieved in comparison to the results obtained from in-
dividual views or by using other combination methods.
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