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Human Gait Recognition With Matrix Representation
Dong Xu, Shuicheng Yan, Dacheng Tao, Lei Zhang, Xuelong Li, and Hong-Jiang Zhang

Abstract—Human gait is an important biometric feature. It
can be perceived from a great distance and has recently attracted
greater attention in video-surveillance-related applications, such
as closed-circuit television. We explore gait recognition based on a
matrix representation in this paper. First, binary silhouettes over
one gait cycle are averaged. As a result, each gait video sequence,
containing a number of gait cycles, is represented by a series of
gray-level averaged images. Then, a matrix-based unsupervised
algorithm, namely coupled subspace analysis (CSA), is employed
as a preprocessing step to remove noise and retain the most rep-
resentative information. Finally, a supervised algorithm, namely
discriminant analysis with tensor representation, is applied to
further improve classification ability. This matrix-based scheme
demonstrates a much better gait recognition performance than
state-of-the-art algorithms on the standard USF HumanID Gait
database.

Index Terms—Coupled subspaces analysis (CSA), dimension-
ality reduction, discriminant analysis with tensor representation
(DATER), human gait recognition, object representation.

I. INTRODUCTION

HUMAN gait recognition has attracted growing attention
in video-surveillance-based applications [13], such as

closed-circuit television (CCTV) surveillance, owing to its
great potential in the recognition of individuals from a distance.
Recent research [13], [20] has shown that individuals have
distinctive and special ways of walking and that human gait
recognition has many advantages. First, human gait is a bio-
metric feature that may be captured from a great distance, and,
unlike other traditional biometric features, such as fingerprints
and irises, gait has the advantage of being unobtrusive.

Numerous schemes [2]–[15], [17]–[21] have been proposed
for human gait recognition. They can be roughly divided into
two categories: model-based and motion-based approaches. In
model-based approaches [3], [5], [14], the human body struc-
ture is represented using model parameters fitted based on ex-
tracted image features. Motion-based approaches [4], [6]–[8],
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[10]–[13], [19], [20] employ a compact representation to char-
acterize the motion patterns of the human body without the con-
sideration of the underlying model structure. Our work is mo-
tion-based and motivated by the following observations.

• Subspace learning-based algorithms [1], [16] have been
successfully employed in face recognition for enhancing
recognition accuracy. However, only a few subspace
learning schemes [2], [6], [19]–[21] have been applied to
gait recognition. Moreover, subspace learning algorithms
used in previous research [2], [6], [19]–[21] have been
based on the classical principal component analysis (PCA)
[16] and linear discriminant analysis (LDA) [1], which
consider features only as vectors. It is desirable to investi-
gate recently proposed matrix-based learning algorithms
for the gait recognition problem.

• The work in [6] and [11] demonstrates that the gray-level
average silhouette over a gait cycle, namely the gait en-
ergy image (GEI), is an efficient and effective represen-
tation for gait recognition as compared with the time-se-
ries-based silhouette representation [13]. An average sil-
houette is directly in the form of a matrix, and recently
we have proposed several dimensionality reduction algo-
rithms [22]–[24] based on matrix representations for face
recognition. We also note that two similar works [25], [26]
were proposed by Ye et al. for face recognition. Better ex-
perimental results from matrix-based algorithms have been
reported over the traditional PCA [16] and LDA [1] algo-
rithms, especially when the training sets are small.

In this paper, we investigate two subspace analysis algorithms
based on matrix representations, namely coupled subspace anal-
ysis (CSA) [22], [23] and discriminant analysis with tensor rep-
resentation (DATER) [24], in the application of gait recognition.

In Section II, we briefly review the human gait database
and related gait recognition algorithms. Then, in Section III,
the matrix-representation-based learning algorithms CSA and
DATER are applied for gait recognition. Experimental results
on the standard USF HumanID Gait database [13] are reported
in Section IV. Section V states our conclusions.

II. BRIEF REVIEW OF GAIT DATABASE

AND RELATED ALGORITHMS

Recently, Sarkar et al. [13] constructed the reportedly largest
gait database: USF HumanID. This database consists of people
walking in elliptical paths while being filmed by two cameras.
There are up to five covariates for each individual, namely: 1)
viewpoints (left/right); 2) shoe types (A/B); 3) surface types
(grass/concrete); 4) carrying status (with/without a briefcase);
and 5) time of year (i.e., May/November, the time covariate
implicitly contains changes of shoes and clothing). Therefore,
there are up to 32 sequences for each person, and a full dataset
consists of 1870 sequences from 122 individuals. Sarkar et al.

1051-8215/$20.00 © 2006 IEEE



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 16, NO. 7, JULY 2006 897

TABLE I
USF HumanID GAIT RECOGNITION EXPERIMENTS (V—VIEW; S—SHOE; U—SURFACE; B—BRIEFCASE; T—TIME)

Fig. 1. Normalized and aligned binary silhouettes in the leftmost seven columns, where each row represents a different image sequence of the same person. The
rightmost column displays the corresponding gray-level average silhouettes.

fixed one gallery set and created 12 probe sets to test perfor-
mance under different conditions. Individuals are unique in the
gallery and probe sets, and there are no overlapping sequences
between the gallery set and probe sets. The differences between
the gallery and probe sets are listed in Table I, and more de-
tails about the database can be found in [13]. Binary silhouettes
are of size 128 by 88 pixels, and some samples are shown in
Fig. 1. In [13], a baseline approach is proposed to extract binary
human silhouettes and recognize people in the database. Their
subsequent work [11] conducted gait recognition based on a
similarity comparison of gray-level average silhouettes over dif-
ferent gait cycles. They demonstrated comparable performances
with much faster computational speeds.

With the same set of binary silhouettes and the gait periods
provided in [13], Han and Bhanu [6] developed a two-stage
PCA+LDA algorithm on the so-called GEI for gait recognition.
GEI is the gray-level average silhouettes as in [11]. The effi-
ciency of the PCA+LDA strategy has been demonstrated in face
recognition [1], in which PCA aims to retain the most represen-
tative information and suppress noise for object representation,
while LDA aims to pursue a set of features that can best distin-
guish different objects.

For ease of understanding, we denote the training samples,
such as the gray-level average silhouettes in [6] and [11], as

, , where is the total number of
samples. The class label of each sample is denoted as and
the total class number as . The samples are assumed to be
centered at zero, i.e., . In [6], each sample
is first converted into a one-dimensional (1-D) vector .
Let be the low-dimensional representation from
PCA and be the reconstructed representation;
PCA aims to provide the vector-based optimal reconstruction in
the least-squares sense according to

(1)

where is the projection matrix. With , each sample is
converted to its low-dimensional representation . Then, LDA

is applied to maximize the between-class scatter and, at the same
time, minimize the within-class scatter

(2)

where is the projection matrix, is the average vector of
the samples in class , is the total average vector for all the
samples, and is the sample number of the -th class. The
final projection matrix is obtained by . With , the
samples in the gallery and probe sets can be converted into the
low-dimensional representation, and then the nearest neighbor-
hood classifier is used for final classification. For further details,
readers are referred to [6].

III. MATRIX REPRESENTATION FOR GAIT RECOGNITION

Here, we first review our recently proposed matrix-based
schemes, CSA [22], [23] and DATER [24], and briefly analyze
their learnability and computational complexity. Then, we
propose a two-stage scheme, called CSA+DATER, for gait
recognition based on gray-level average silhouettes over a
gait cycle. In our notation, we define the inner product of two
matrices and as
and the Frobenius norm of the matrix as .

A. Brief Review of CSA and DATER

In the conventional PCA and LDA algorithms [1], [6], [16],
the image matrix is concatenated into a vector, thus the image
object is often represented in a very high-dimensional feature
space, whereas, in many recognition applications, the number
of available training samples is small, typically resulting in the
well-known curse of dimensionality and the small sample size
problem. Furthermore, in real applications, the extracted feature
of an object often has some specialized structure in the form of
a second-order or even higher order tensor. For example, the
gray-level average silhouette is a second-order tensor or matrix.
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Therefore, it would be highly desirable to uncover such under-
lying structure in gait recognition.

To utilize spatial structure information and overcome the
curse of dimensionality as well as small sample size problems,
we proposed an unsupervised algorithm, namely CSA [22],
[23], in our previous research. We also used a supervised
algorithm, namely DATER [24], to conduct dimensionality
reduction on the objects represented as matrices or higher
order tensors. In the following, we take the second-order tensor
(matrix) representation as an example to review the CSA and
DATER algorithms.

1) CSA: Denote and as two pro-
jection matrices to pursue, with as
the low-dimensional matrix representation for sample and

as the reconstructed matrix. In the dimen-
sionality reduction task, usually we have and .
As shown in [22] and [23], CSA aims at the optimal reconstruc-
tion directly based on the matrix representation

(3)

In general, no closed-form solution exists for this problem, so
we proposed an iterative algorithm in [22] and [23] to acquire
a local optimum. The main difference between [22] and [23]
is that the former is only for matrix representations while the
latter is for general tensors of arbitrary order. The solution to
the above formulation is obtained as follows. First, for a given

, the objective function (3) can be rewritten as

(4)

where . As demonstrated in [22], the solution of
(4) is the first leading eigenvectors of the eigenvalue decom-
position problem with

(5)

where is the th row vector of the image matrix
and is the concatenated matrix of all .

Similarly, for a given , the optimization problem
(3) becomes

(6)

where . As demonstrated in [22], the solution of
(6) is the first leading eigenvectors of the eigenvalue decom-
position problem with

(7)

where is the th column vector of image matrix .
By iteratively optimizing the objective function with respect to

and , respectively, we can obtain a local optimum. More
details on the above deduction and its optimization can be found
in [22] and [23].

2) DATER: DATER [24] is a supervised learning algorithm
directly based on a general tensor representation. Its objective
function with a matrix representation is

(8)

where is the average matrix of the samples belonging to the
th class, is the average matrix for all the samples, and

is the sample number of the th class. In (8), the between-class
scatter (numerator) is measured by the sum of the weighted dis-
tances between the dimensionality reduced class centers and the
total sample center, while the within-class scatter (denominator)
is measured by the sum of the distances between the dimension-
ality reduced samples and their corresponding class average ma-
trices.

Again, there is no closed-form solution for (8). Thus, in [24],
we proposed an iterative scheme. For a given , the
objective function of (8) is rewritten as

(9)

where denotes the trace of a matrix A, ,
, , and

(10)

The matrix with given is obtained by the generalized
eigenvalue decomposition [1] method by transforming the ob-
jective function to as

(11)

where are the largest eigenvalues;
is the eigenvector corresponding to eigenvalue , which con-

stitutes the th column of the solution .
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Similarly, for a given , the objective function of
(8) is changed to

(12)

where , , , and

(13)

Again, the matrix with a given is calculated using the
generalized eigenvalue decomposition method [1] by trans-
forming the objective function to as

(14)

where are the largest eigenvalues;
is the eigenvector corresponding to eigenvalue , which con-

stitutes the th column of the solution .
3) Analysis of Learnability and Computation Complexity of

Matrix-Based Representation: We take CSA as an example to
illustrate the learnability of matrix-based representations com-
pared with the vector-based algorithm PCA. In PCA, the feature
dimension of the object is and the total number of sam-
ples is . For example, the dimensionality of average silhou-
ettes in the USF HumanID database is above 10 000 (128 88)
and the available number of average silhouette images for model
training is fewer than 1000. Hence, it is quite difficult for PCA
to robustly acquire the real representative components. How-
ever, for CSA, as shown in (5), each row vector is considered
as an object to be analyzed. Hence, the dimension of the row
vector is the width of the image , and the total number of
objects is . Also, in (7), each column is used as the object
for eigenvalue decomposition, so the dimension of the object is
the height and the total number of objects is . With more
training data and a lower feature dimension, CSA can better
discover the representative information, and the typical small
sample size problem and the curse of dimensionality are allevi-
ated, which results in CSA’s superiority over traditional PCA.

The computational complexity of CSA is lower than that of
PCA when the total number of samples is comparable in mag-
nitude to the feature dimension . For ease of understanding,
we assume . Then, the complexity of PCA is ,1

while CSA’s complexity is for each substep. Although

1Although eigenvalue decomposition can be conducted on a covariance ma-
trix of size N �N , when N is much less thanmn, we can consider the com-
plexity of PCA as O(n ) in the case thatN is comparable in magnitude tomn.

CSA iteratively obtains the solution, it is still faster than PCA
owing to its simplicity in each substep optimization.

B. Gait Recognition With Matrix Representation

Here, we apply the previous matrix-representation-based al-
gorithms for gait recognition. In this study, we focus on the
learning algorithm for gait recognition applications, and thus we
start our analysis from the binary image sequences. As shown
in [6] and [11], the complete sequence is partitioned into several
subsequences according to the gait period length , which
is provided by Sarkar et al. [13] in the USF HumanID database.
For each sequence, the binary silhouette images within a single
gait cycle are averaged to acquire several gray-level average sil-
houette images by

(15)
where denotes the binary images for
one sequence, with as the total number of frames;
denotes the floor function, which is the largest integer that is not
larger than .

In the USF HumanID database, the training set
comprise all of the gray-level average

silhouette images from all of the sequences in the gallery set,
and the test set comprises the average silhouette images from
all of the sequences in the related probe set. We note that, in
the USF HumanID database, there are no overlapped sequences
between the Gallery and Probe sets.

We utilize average silhouettes for gait recognition because
of the following observations. First, they are more robust than
the time-series-based silhouette representation [13], especially
since binary images from the current object segmentation algo-
rithms are quite noisy. Second, the average silhouette images do
not depend on the choice of the starting stance of the gait cycle,
and thus gait alignment [13] is unnecessary. Fig. 1 shows some
original binary images and the average silhouettes of the first
person in the Gallery set and Probe Set A. The average silhou-
ettes are gray-level images, and darker regions are more likely
to be the pedestrian. From it, we can observe that a person may
have similar average silhouette images in varying instances.

Since the average silhouette images are in the form of ma-
trices, our previous algorithms CSA and DATER can be used
as the learning algorithms for model training. Inspired by the
classical two-stage PCA+LDA scheme [1], [6], we combine
CSA and DATER, namely CSA+DATER, as the learning al-
gorithm. As in PCA+LDA, in CSA+DATER, CSA is applied
to remove noise and retain the most representative information,
and DATER is used for extracting information to distinguish dif-
ferent persons. The only difference between CSA+DATER with
PCA+LDA is that CSA and DATER are both based on matrix
representations. The detailed algorithm is listed in Fig. 2.

In the testing stage, with and , each gray-level average
silhouette image in the gallery and probe sets are converted into
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Fig. 2. Training procedure of CSA+DATER.

a lower dimensional matrix. Considering that the median oper-
ation is more robust to noise effects than the traditional min-
imum operation, we use the same distance measure for gallery
sequences and probe sequences as in [11], [13]

(16)

where and
are the lower dimensional average silhouette

image matrices of one gallery sequence and one probe se-
quence, respectively, with and as the total number of
average silhouette images, and is the distance
between the two sequences. Based on the distance between the
two sequences, the nearest neighbor classifier is used to make
the final decision.

IV. EXPERIMENTS

Our experiments are carried out on the USF HumanID gait
database [13]. For real gait data, we list the results of the base-
line algorithm [13] and Han and Bhanu’s work [6] in Table II,
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TABLE II
RANK-1 AND RANK-5 RECOGNITION ACCURACY (%) OF BASELINE ALGORITHM [13], HAN AND BHANU’S WORK [6],

DATER [24], AND CSA+DATER ON THE USF HumanID GAIT DATABASE

Fig. 3. Illustration of the Rank-1 and Rank-5 performance variations with different iteration number T . Note that for computational simplicity, we set T =

T . From this, it is easy to see that recognition rates change slightly for Probe Sets B, F, and K if the iteration number is greater than 3. (a) Rank-1 and Rank–5
performance of B. (b) Rank-1 and Rank–5 performance of F. (c) Rank-1 and Rank–5 performance of K.

where Rank-1 indicates that the correct subject is ranked as
the top candidate and Rank-5 means that the correct subject is
ranked among the top five candidates. We also report the results
of DATER [24] for comparison. Note that, for a fair comparison,
we use the same binary silhouettes and gait period length for all
algorithms.

It can be observed that DATER [24] outperforms the state-of-
the-art algorithms [6], [13] in most cases, which highlights the
effectiveness of our matrix representation for gait recognition.
We also observe that generally, the CSA+DATER algorithm
outperforms DATER and achieves the best performance, which

2[Online]. Available: http://marathon.csee.usf.edu/GaitBaseline

demonstrates the contribution of CSA as the preprocessing step
before DATER.

In our study, like in several other gait recognitions algorithms
[6], [19], [20], several parameters need to be decided. In our pre-
vious research [23], [24], we have observed that and
have little effect on the final recognition performance in both
CSA and DATER, so we consider only one parameter of
the two and set . We observe that affects the
final recognition rate slightly if the iteration number is greater
than 3. We illustrate this for Probe Sets B, F, and K in Fig. 3.
Considering that the highest recognition rates are acquired with
larger iteration numbers in some probe sets, we have run the ex-
periments with ranging from 1 to 5 in this work and report
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Fig. 4. Illustration of the Rank-1 and Rank-5 performance variation with different configuration (m , n ). The horizontal axis is the product of m and n . In
this figure, we set the parameters (T , T ) as (3, 3), and (m , n ) as (70, 70), (45, 45), (100, 88), and (70, 70) for each figure. respectively. (a) Rank-1
performance of B. (b) Rank-5 performance of B. (c) Rank-1 performance of F. (d) Rank-5 performance of F.

the best results. However, as mentioned, we observe that even
with a larger fixed iteration number (e.g., 3), the performance
is slightly degraded. Considering the computational burden, we
set the lower dimension parameter configuration as follows.

1) By setting , we only need to consider one param-
eter . In this work, varies by intervals of five and a
starting dimension of 20. For the USF HumanID database,
the width (88) is less than the height (128), so, for the
case that is greater than , we fix as . Also, in this
study, we consider one special configuration with
and , i.e., we preserve 100% of the energy in CSA
stage. In this case, CSA+DATER is equal to DATER, so
CSA+DATER cannot be worse than DATER in theory

2) With , we run all possible configurations of ( , ).
In Fig. 4, we plot the Rank-1 and Rank-5 performance variation
with different configuration ( , ) for Probe Sets B and K.
It is unclear how to choose the optimal parameter configuration
for new test data in theory, and we still do not know how to
choose the optimal , even with the fixed ( , ). How
to determine these parameters is a potential direction for future
work.

V. CONCLUSION

We have applied the matrix-representation-based subspace
learning algorithms on a biometric problem that is of growing
research interest—human gait recognition. Each sequence was
represented as several gray-level average silhouette images,
which correspond to gait cycles. A two-stage scheme called
CSA+DATER has been employed for dimensionality reduction
directly based on the matrix representations. The experiments
on the standard USF HumanID Gait database demonstrate en-
couraging performance improvements over the state-of-the-art
algorithms [6], [13] for human gait recognition.
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