1,357 research outputs found

    The effect of varying path properties in path steering tasks

    Get PDF
    Path steering is a primitive 3D interaction task that requires the user to navigate through a path of a given length and width. In a previous paper, we have conducted controlled experiments in which users operated a pen input device to steer a cursor through a 3D path subject to fixed path properties, such as path length, width, curvature and orientation. From the experimental data we have derived a model which describes the efficiency of the task. In this paper, we focus on studying the movement velocity of 3D manipulation path steering when one or more path properties vary during the task. We have performed a repeated measures design experiment of 8 scenarios, including a scenario in which all path properties were kept constant, 3 scenarios in which the path width, curvature and orientation varied, 3 scenarios of varying two path properties, and 1 scenario of varying all properties. The analysis of our experimental data indicates that a path of varying orientation or width results in a low average steering velocity. During a continuous steering, the joint where a change in path curvature or orientation takes place also significantly decreases the velocity. In addition, path width and curvature are highly-correlated to the average velocity of a segment, i.e. the wider a segment (or the smaller the path curvature), the larger the average steering velocity on that segment. The results of this work could serve as guidelines for designing higher level interaction techniques and better user interfaces for traditional HCI tasks, e.g. 2D or 3D nested-menu navigation

    Measuring user experience for virtual reality

    Get PDF
    In recent years, Virtual Reality (VR) and 3D User Interfaces (3DUI) have seen a drastic increase in popularity, especially in terms of consumer-ready hardware and software. These technologies have the potential to create new experiences that combine the advantages of reality and virtuality. While the technology for input as well as output devices is market ready, only a few solutions for everyday VR - online shopping, games, or movies - exist, and empirical knowledge about performance and user preferences is lacking. All this makes the development and design of human-centered user interfaces for VR a great challenge. This thesis investigates the evaluation and design of interactive VR experiences. We introduce the Virtual Reality User Experience (VRUX) model based on VR-specific external factors and evaluation metrics such as task performance and user preference. Based on our novel UX evaluation approach, we contribute by exploring the following directions: shopping in virtual environments, as well as text entry and menu control in the context of everyday VR. Along with this, we summarize our findings by design spaces and guidelines for choosing optimal interfaces and controls in VR.In den letzten Jahren haben Virtual Reality (VR) und 3D User Interfaces (3DUI) stark an PopularitĂ€t gewonnen, insbesondere bei Hard- und Software im Konsumerbereich. Diese Technologien haben das Potenzial, neue Erfahrungen zu schaffen, die die Vorteile von RealitĂ€t und VirtualitĂ€t kombinieren. WĂ€hrend die Technologie sowohl fĂŒr Eingabe- als auch fĂŒr AusgabegerĂ€te marktreif ist, existieren nur wenige Lösungen fĂŒr den Alltag in VR - wie Online-Shopping, Spiele oder Filme - und es fehlt an empirischem Wissen ĂŒber Leistung und BenutzerprĂ€ferenzen. Dies macht die Entwicklung und Gestaltung von benutzerzentrierten BenutzeroberflĂ€chen fĂŒr VR zu einer großen Herausforderung. Diese Arbeit beschĂ€ftigt sich mit der Evaluation und Gestaltung von interaktiven VR-Erfahrungen. Es wird das Virtual Reality User Experience (VRUX)- Modell eingefĂŒhrt, das auf VR-spezifischen externen Faktoren und Bewertungskennzahlen wie Leistung und BenutzerprĂ€ferenz basiert. Basierend auf unserem neuartigen UX-Evaluierungsansatz leisten wir einen Beitrag, indem wir folgende interaktive Anwendungsbereiche untersuchen: Einkaufen in virtuellen Umgebungen sowie Texteingabe und MenĂŒsteuerung im Kontext des tĂ€glichen VR. Die Ergebnisse werden außerdem mittels Richtlinien zur Auswahl optimaler Schnittstellen in VR zusammengefasst

    Assessing the Impact of Multi-variate Steering-rate Vehicle Control on Driver Performance in a Simulation Framework

    Get PDF
    When a driver turns a steering-wheel, he or she normally expects the vehicle\u27s steering system to communicate an equivalent amount of signal to the road-wheels. This relationship is linear and occurs regardless of the steering-wheel\u27s position within its rotational travel. The linear steering paradigm in passenger vehicles has gone largely unchanged since mass production of passenger vehicles began in 1901. However, as more electronically-controlled steering systems appear in conjunction with development of autonomous steering functions in vehicles, an opportunity to advance the existing steering paradigms arises. The following framework takes a human-factors approach toward examining and evaluating alternative steering systems by using Modeling and Simulation methods to track and score human performance. Present conventional steering systems apply a linear relationship between the steering-wheel and the road wheels of a vehicle. The rotational travel of the steering-wheel is 900° and requires two-and-a-half revolutions to travel from end-stop to opposite end-stop. The experimental steering system modeled and employed in this study applies a dynamic curve response to the steering input within a shorter, 225° rotational travel. Accommodation variances, based on vehicle speed and steering-wheel rotational position and acceleration, moderate the apparent steering input to augment a more-practical, effective steering rate. This novel model follows a paradigm supporting the full range of steering-wheel actuation without necessitating hand repositioning or the removal of the driver\u27s hands from the steering-wheel during steering maneuvers. In order to study human performance disparities between novel and conventional steering models, a custom simulator was constructed and programmed to render representative models in a test scenario. Twenty-seven males and twenty-seven females, ranging from the ages of eighteen to sixty-five were tested and scored using the driving simulator that presented two successive driving test vignettes: One vignette using conventional 900° steering with linear response and the other employing the augmented 225° multivariate, non-linear steering. The results from simulator testing suggest that both males and females perform better with the novel system, supporting the hypothesis that drivers of either gender perform better with a system augmented with 225° multivariate, non-linear steering than with a conventional steering system. Further analysis of the simulated-driving scores indicates performance parity between male and female participants, supporting the hypothesis positing no significant difference in driver performance between male and female drivers using the augmented steering system. Finally, composite data from written questionnaires support the hypothesis that drivers will prefer driving the augmented system over conventional steering. These collective findings support justification for testing and refining novel steering systems using Modeling and Simulation methods. As a product of this particular study, a tested and open-sourced simulation framework now exists such that researchers and automotive designers can develop, as well as evaluate their own steering-oriented products within a valid human-factors construct. The open-source nature of this framework implies a commonality by which otherwisedisparate research and development work can be associated. Extending this framework beyond basic investigation to reach applications requiring morespecialized parameters may even impact drivers having special needs. For example, steeringsystem functional characteristics could be comparatively optimized to accommodate individuals afflicted with upper-body deficits or limited use of either or both arms. Moreover, the combined human-factors and open-source approaches distinguish the products of this research as a common and extensible platform by which purposeful automotive-industry improvements can be realized—contrasted with arbitrary improvements that might be brought about predominantly to showcase technological advancements

    Holistic Approach for Authoring Immersive and Smart Environments for the Integration in Engineering Education

    Get PDF
    Die vierte industrielle Revolution und der rasante technologische Fortschritt stellen die etablierten Bildungsstrukturen und traditionellen Bildungspraktiken in Frage. Besonders in der Ingenieurausbildung erfordert das lebenslange Lernen, dass man sein Wissen und seine FĂ€higkeiten stĂ€ndig verbessern muss, um auf dem Arbeitsmarkt wettbewerbsfĂ€hig zu sein. Es besteht die Notwendigkeit eines Paradigmenwechsels in der Bildung und Ausbildung hin zu neuen Technologien wie virtueller RealitĂ€t und kĂŒnstlicher Intelligenz. Die Einbeziehung dieser Technologien in ein Bildungsprogramm ist jedoch nicht so einfach wie die Investition in neue GerĂ€te oder Software. Es mĂŒssen neue Bildungsprogramme geschaffen oder alte von Grund auf umgestaltet werden. Dabei handelt es sich um komplexe und umfangreiche Prozesse, die Entscheidungsfindung, Design und Entwicklung umfassen. Diese sind mit erheblichen Herausforderungen verbunden, die die Überwindung vieler Hindernisse erfordert. Diese Arbeit stellt eine Methodologie vor, die sich mit den Herausforderungen der Nutzung von Virtueller RealitĂ€t und KĂŒnstlicher Intelligenz als SchlĂŒsseltechnologien in der Ingenieurausbildung befasst. Die Methodologie hat zum Ziel, die Hauptakteure anzuleiten, um den Lernprozess zu verbessern, sowie neuartige und effiziente Lernerfahrungen zu ermöglichen. Da jedes Bildungsprogramm einzigartig ist, folgt die Methodik einem ganzheitlichen Ansatz, um die Erstellung maßgeschneiderter Kurse oder Ausbildungen zu unterstĂŒtzen. Zu diesem Zweck werden die Wechselwirkung zwischen verschiedenen Aspekten berĂŒcksichtigt. Diese werden in den drei Ebenen - Bildung, Technologie und Management zusammengefasst. Die Methodik betont den Einfluss der Technologien auf die Unterrichtsgestaltung und die Managementprozesse. Sie liefert Methoden zur Entscheidungsfindung auf der Grundlage einer umfassenden pĂ€dagogischen, technologischen und wirtschaftlichen Analyse. DarĂŒber hinaus unterstĂŒtzt sie den Prozess der didaktischen Gestaltung durch eine umfassende Kategorisierung der Vor- und Nachteile immersiver Lernumgebungen und zeigt auf, welche ihrer Eigenschaften den Lernprozess verbessern können. Ein besonderer Schwerpunkt liegt auf der systematischen Gestaltung immersiver Systeme und der effizienten Erstellung immersiver Anwendungen unter Verwendung von Methoden aus dem Bereich der kĂŒnstlichen Intelligenz. Es werden vier AnwendungsfĂ€lle mit verschiedenen Ausbildungsprogrammen vorgestellt, um die Methodik zu validieren. Jedes Bildungsprogramm hat seine eigenen Ziele und in Kombination decken sie die Validierung aller Ebenen der Methodik ab. Die Methodik wurde iterativ mit jedem Validierungsprojekt weiterentwickelt und verbessert. Die Ergebnisse zeigen, dass die Methodik zuverlĂ€ssig und auf viele Szenarien sowie auf die meisten Bildungsstufen und Bereiche ĂŒbertragbar ist. Durch die Anwendung der in dieser Arbeit vorgestellten Methoden können Interessengruppen immersiven Technologien effektiv und effizient in ihre Unterrichtspraxis integrieren. DarĂŒber hinaus können sie auf der Grundlage der vorgeschlagenen AnsĂ€tze Aufwand, Zeit und Kosten fĂŒr die Planung, Entwicklung und Wartung der immersiven Systeme sparen. Die Technologie verlagert die Rolle des Lehrenden in eine Moderatorrolle. Außerdem bekommen die LehrkrĂ€fte die Möglichkeit die Lernenden individuell zu unterstĂŒtzen und sich auf deren kognitive FĂ€higkeiten höherer Ordnung zu konzentrieren. Als Hauptergebnis erhalten die Lernenden eine angemessene, qualitativ hochwertige und zeitgemĂ€ĂŸe Ausbildung, die sie qualifizierter, erfolgreicher und zufriedener macht

    Design in the Age of Information: A Report to the National Science Foundation (NSF)

    Get PDF
    The Information Age is upon us - it has become a global force in our everyday lives. But the promise of significant benefits from this revolution, which has been driven largely by technologists, will not be realized without more careful planning and design of information systems that can be integral to the simultaneously emerging user-cultures. In cultural terms, information systems must be effective, reliable, affordable, intuitively meaningful, and available anytime and everywhere. In this phase of the information revolution, design will be essential

    The effect of haptic guidance, aging, and initial skill level on motor learning of a steering task

    Get PDF
    In a previous study, we found that haptic guidance from a robotic steering wheel can improve short-term learning of steering of a simulated vehicle, in contrast to several studies of other tasks that had found that the guidance either impairs or does not aid motor learning. In this study, we examined whether haptic guidance-as-needed can improve long-term retention (across 1 week) of the steering task, with age and initial skill level as independent variables. Training with guidance-as-needed allowed all participants to learn to steer without experiencing large errors. For young participants (age 18–30), training with guidance-as-needed produced better long-term retention of driving skill than did training without guidance. For older participants (age 65–92), training with guidance-as-needed improved long-term retention in tracking error, but not significantly. However, for a subset of less skilled, older subjects, training with guidance-as-needed significantly improved long-term retention. The benefits of guidance-based training were most evident as an improved ability to straighten the vehicle direction when coming out of turns. In general, older participants not only systematically performed worse at the task than younger subjects (errors ∌3 times greater), but also apparently learned more slowly, forgetting a greater percentage of the learned task during the 1 week layoffs between the experimental sessions. This study demonstrates that training with haptic guidance can benefit long-term retention of a driving skill for young and for some old drivers. Training with haptic guidance is more useful for people with less initial skill

    DEVELOPMENT AND VALIDATION OF SIMULATORS FOR POWER WHEELCHAIR DRIVING EVALUATIONS

    Get PDF
    Of all those people with severe physical and cognitive disabilities who are rated as unsafe to drive a power wheelchair and hence denied a wheelchair, a significant number can have positive outcomes by using advanced control interfaces and by getting adequate amount of driving training. This dissertation research presents development and user evaluations with a virtual reality based wheelchair driving simulator system. Using the software systems validated in these research studies clinicians can select and customize joystick interfaces that can optimally use their client’s physical and cognitive capabilities. When people with traumatic brain injury and cerebral palsy used the isometric joystick they committed equivalent or lesser driving errors than when they used the conventional movement sensing joystick to drive a wheelchair. Potential wheelchair users can benefit from such customizable control interfaces to reliably and safely control their power wheelchairs and improve their community participation. An immersive virtual reality simulator was further developed as a driving training and evaluation tool. People with various disabilities completed a clinically validated driving evaluation protocol in real and virtual environments. Their virtual driving performances in the simulator were predictive of their performances in real world. Experienced clinicians showed high inter and intra rater reliabilities in their driving evaluations. Research was also performed to understand the relative contribution of different system components of the simulator system to the overall mental and physical workload of users. This research may assist researchers in selecting simulator system components that best suit the clinical needs of potential users. Clinicians who were trained to evaluate wheelchair driving using this system and wheelchair users who used it gave a general positive feedback that that this simulator has good potential for use in clinical or community settings

    Understanding aesthetics in a virtual environment performance. A

    Get PDF
    The virtual performance is a form of art that simultaneously develops with information technology, as IT provides the flexibility to develop sophisticated design Systems for the artist. Moreover, the intrinsic relationship between art and technology is apparent from the concluding research results. This research aimed to investigate the aesthetical value of VEs performances. The purpose of the study was to confront the location of aesthe tics in VEs. The qualitative method was employed due to the attempt to control the investigated objective. Literature review was employed due to the necessity to understand the VEs aesthetic phenomena in their entirely for developing a complete picture of the research field. Case studies and observation were mainly used because of the type of research conducted. The resulting findings were taken into consideration or rejected through interviews with creators of virtual performances. The research took place in three stages. The first step was to determine the research aims and objectives. The second, was to design the research plan which was divided along three basic axes. The first refers to the historical review and development of visual arts in order to determine the characteristics of the investigated art form. The second axis was the comprehension of the aesthetics that are produced via the determined characteristics. More specifically, these are interactivity, the interrupted flow of information and the audience participation. The third stage was the attempt to identify the elements that characterise a virtual performance. How the artist can handle the interactive element and- create conditions of immersion for his audience. The manifesto of virtual performances was created through the course of research and the analysis of the findings that belong to the third stage, which also includes the data analysis. Another element that also emerged was of the audience's interaction with the performance's development. This element, is in itself a product of aesthetics that has a great influence on the progression pf the thought processes of the audiences that interact with a virtual performance. The creator requires a spectator that is an active participant in order to develop the performance's plot. This does not indicate that the creator can manipulate the audience as a tool because each spectator has his own thoughts and critical evaluations. The spectator simply handles and combines according to his choices the elements that the artist offers so that he can project and co-create the performance's plot. The more the spectator experiences virtual performances through his interaction, the more lie will gain knowledge and freedom which will result in virtual performances to offer a larger selection and more powerful experiences. Besides, this art form is still in its embryonic stage and its maturity promises even greater developments

    Applications of Virtual Reality

    Get PDF
    Information Technology is growing rapidly. With the birth of high-resolution graphics, high-speed computing and user interaction devices Virtual Reality has emerged as a major new technology in the mid 90es, last century. Virtual Reality technology is currently used in a broad range of applications. The best known are games, movies, simulations, therapy. From a manufacturing standpoint, there are some attractive applications including training, education, collaborative work and learning. This book provides an up-to-date discussion of the current research in Virtual Reality and its applications. It describes the current Virtual Reality state-of-the-art and points out many areas where there is still work to be done. We have chosen certain areas to cover in this book, which we believe will have potential significant impact on Virtual Reality and its applications. This book provides a definitive resource for wide variety of people including academicians, designers, developers, educators, engineers, practitioners, researchers, and graduate students

    Seventh Annual Workshop on Space Operations Applications and Research (SOAR 1993), volume 1

    Get PDF
    This document contains papers presented at the Space Operations, Applications and Research Symposium (SOAR) Symposium hosted by NASA/Johnson Space Center (JSC) on August 3-5, 1993, and held at JSC Gilruth Recreation Center. SOAR included NASA and USAF programmatic overview, plenary session, panel discussions, panel sessions, and exhibits. It invited technical papers in support of U.S. Army, U.S. Navy, Department of Energy, NASA, and USAF programs in the following areas: robotics and telepresence, automation and intelligent systems, human factors, life support, and space maintenance and servicing. SOAR was concerned with Government-sponsored research and development relevant to aerospace operations. More than 100 technical papers, 17 exhibits, a plenary session, several panel discussions, and several keynote speeches were included in SOAR '93
    • 

    corecore