110,771 research outputs found

    Task analysis: the missing link in software development methodologies

    Get PDF
    Systems development methods or software methodologies have evolved considerably over the past few years. This development has tended to fall into two main areas: Software Engineering and Human Computer Interaction (HCI). The two main techniques proposed in Software Engineering were Structured Analysis, as proposed by Ross and DeMarco; and Semantic Modelling. These two different approaches were later combined to yield Modern Structured Analysis, in which Structured Analysis was augmented with data modelling techniques. Modern Structured Analysis was subsequently replaced by Object Oriented Analysis and Design (OOAD) which adopted a holistic approach to data and processes, encapsulating them into objects. In the HCI domain, design methods such as Hierarchical Task Analysis (HTA) and Task Analysis for Knowledge Descriptions (TAKD), have long been used to model the cognitive nature of the tasks performed by the users. Recent work by Walsh, Um, Long and Sutcliffe have proposed combining Task Analysis (TA) with Structured Analysis and Design methods, in order to improve system usability. Analysis for Task Object Modelling (ATOM), as proposed by Walsh, is an example of such a method which combines TA with object modelling in an integrated life cycle approach. This article will review the major Software Engineering methods, together with the principal HCI methods and motivate for the integration of the two areas on the basis of improved system usability. A taxonomy of software development methods as proposed by Blum will be reviewed and a proposal made to augment the framework to include the issue of user-centered design methods. The extended framework will then be used to classify several of the principal software design methodologies, together with the principal HCI methods. Each of these methodologies will be reviewed and conclusions drawn as to the efficacy of each in the context of the software life cycle. We will demonstrate that all of the traditional design methodologies fail to include Task Analysis (TA). An alternative methodology, Analysis for Task Object Modelling, as proposed by Walsh, will be discussed, which includes TA with object modelling. We will motivate that TA is an essential part of Requirements Analysis and HCI design. Furthermore, failure to include TA may result in serious usability problems. Methods like ATOM, which combine TA with OOAD, are thus the most applicable software methodologies for designing usable systems in the future. Further research, however, is needed to improve and integrate the conceptual modelling techniques in ATOM

    Reusable Knowledge-based Components for Building Software Applications: A Knowledge Modelling Approach

    Get PDF
    In computer science, different types of reusable components for building software applications were proposed as a direct consequence of the emergence of new software programming paradigms. The success of these components for building applications depends on factors such as the flexibility in their combination or the facility for their selection in centralised or distributed environments such as internet. In this article, we propose a general type of reusable component, called primitive of representation, inspired by a knowledge-based approach that can promote reusability. The proposal can be understood as a generalisation of existing partial solutions that is applicable to both software and knowledge engineering for the development of hybrid applications that integrate conventional and knowledge based techniques. The article presents the structure and use of the component and describes our recent experience in the development of real-world applications based on this approach

    Context Aware Computing for The Internet of Things: A Survey

    Get PDF
    As we are moving towards the Internet of Things (IoT), the number of sensors deployed around the world is growing at a rapid pace. Market research has shown a significant growth of sensor deployments over the past decade and has predicted a significant increment of the growth rate in the future. These sensors continuously generate enormous amounts of data. However, in order to add value to raw sensor data we need to understand it. Collection, modelling, reasoning, and distribution of context in relation to sensor data plays critical role in this challenge. Context-aware computing has proven to be successful in understanding sensor data. In this paper, we survey context awareness from an IoT perspective. We present the necessary background by introducing the IoT paradigm and context-aware fundamentals at the beginning. Then we provide an in-depth analysis of context life cycle. We evaluate a subset of projects (50) which represent the majority of research and commercial solutions proposed in the field of context-aware computing conducted over the last decade (2001-2011) based on our own taxonomy. Finally, based on our evaluation, we highlight the lessons to be learnt from the past and some possible directions for future research. The survey addresses a broad range of techniques, methods, models, functionalities, systems, applications, and middleware solutions related to context awareness and IoT. Our goal is not only to analyse, compare and consolidate past research work but also to appreciate their findings and discuss their applicability towards the IoT.Comment: IEEE Communications Surveys & Tutorials Journal, 201

    Past, present and future of information and knowledge sharing in the construction industry: Towards semantic service-based e-construction

    Get PDF
    The paper reviews product data technology initiatives in the construction sector and provides a synthesis of related ICT industry needs. A comparison between (a) the data centric characteristics of Product Data Technology (PDT) and (b) ontology with a focus on semantics, is given, highlighting the pros and cons of each approach. The paper advocates the migration from data-centric application integration to ontology-based business process support, and proposes inter-enterprise collaboration architectures and frameworks based on semantic services, underpinned by ontology-based knowledge structures. The paper discusses the main reasons behind the low industry take up of product data technology, and proposes a preliminary roadmap for the wide industry diffusion of the proposed approach. In this respect, the paper stresses the value of adopting alliance-based modes of operation

    Bridging the gap: building better tools for game development

    Get PDF
    The following thesis is about questioning how we design game making tools, and how developers may build easier tools to use. It is about the highlighting the inadequacies of current game making programs as well as introducing Goal-Oriented Design as a possible solution. It is also about the processes of digital product development, and reflecting on the necessity for both design and development methods to work cohesively for meaningful results. Interaction Design is in essence the abstracting of key relations that matter to the contextual environment. The result of attempting to tie the Interaction Design principles, Game Design issues together with Software Development practices has led to the production of the User-Centred game engine, PlayBoard

    Development of a client interface for a methodology independent object-oriented CASE tool : a thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Computer Science at Massey University

    Get PDF
    The overall aim of the research presented in this thesis is the development of a prototype CASE Tool user interface that supports the use of arbitrary methodology notations for the construction of small-scale diagrams. This research is part of the larger CASE Tool project, MOOT (Massey's Object Oriented Tool). MOOT is a meta-system with a client-server architecture that provides a framework within which the semantics and syntax of methodologies can be described. The CASE Tool user interface is implemented in Java so it is as portable as possible and has a consistent look and feel. It has been designed as a client to the rest of the MOOT system (which acts as a server). A communications protocol has been designed to support the interaction between the CASE Tool client and a MOOT server. The user interface design of MOOT must support all possible graphical notations. No assumptions about the types of notations that a software engineer may use can be made. MOOT therefore provides a specification language called NDL for the definition of a methodology's syntax. Hence, the MOOT CASE Tool client described in this thesis is a shell that is parameterised by NDL specifications. The flexibility provided by such a high level of abstraction presents significant challenges in terms of designing effective human-computer interaction mechanisms for the MOOT user interface. Functional and non-functional requirements of the client user interface have been identified and applied during the construction of the prototype. A notation specification that defines the syntax for Coad and Yourdon OOA/OOD has been written in NDL and used as a test case. The thesis includes the iterative evaluation and extension of NDL resulting from the prototype development. The prototype has shown that the current approach to NDL is efficacious, and that the syntax and semantics of a methodology description can successfully be separated. The developed prototype has shown that it is possible to build a simple, non-intrusive, and efficient, yet flexible, useable, and helpful interface for meta-CASE tools. The development of the CASE Tool client, through its generic, methodology independent design, has provided a pilot with which future ideas may be explored
    corecore