

Bridging the Gap
Building Better Tools for Game Development

Daryl Tay (30449294)

This thesis is submitted for the degree of Honours in Multimedia in Interaction Digital
Design in Murdoch University.

July 2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Repository

https://core.ac.uk/display/11233535?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Declaration

I declare that this thesis is my own account of my research and contains as its main content work which
has not been previously submitted for a degree at any tertiary educational institution.

Daryl Tay

COPYRIGHT ACKNOWLEDGEMENT

I acknowledge that a copy of this thesis will be held at the Murdoch University Library.

I understand that, under the provisions s51.2 of the Copyright Act 1968, all or part of this thesis
may be copied without infringement of copyright where such a reproduction is for the purposes of
study and research.

This statement does not signal any transfer of copyright away from the author.

 Signed:

Full Name of Degree: Honours in Multimedia in Interaction Digital Design...

Thesis Title: Bridging the Gap – Building better tools for Game Development

Author: Daryl Tay

Year: 2010

Abstract

The following thesis is about questioning how we design game making tools, and how developers may
build easier tools to use. It is about the highlighting the inadequacies of current game making programs
as well as introducing Goal-Oriented Design as a possible solution. It is also about the processes of
digital product development, and reflecting on the necessity for both design and development methods
to work cohesively for meaningful results. Interaction Design is in essence the abstracting of key
relations that matter to the contextual environment. The result of attempting to tie the Interaction
Design principles, Game Design issues together with Software Development practices has led to the
production of the User-Centred game engine, PlayBoard.

Acknowledgements

I would like to thank the following people, whom without their support, guidance and feedback would
have never made this project even remotely accomplishable.

• My supervisor and Program Chair of Digital Media, Mark Cypher, for seeing me through the
entire study and helping me refine, work and solidify the ideas throughout the course of study.
Also for exposing me to the broad field of visual design and interaction which has deeply
changed the way I perceive the world.

• My parents, for putting up with me, and allowing me to pursue this field of study, in being
overseas more than a year, and also for their heart-warming concerns and attempts to
communicate with me.

• My girlfriend, Nicole, for not only accepting me in my constant lack of time, but for always
bringing an optimistic view into our lives.

• Charlie, the single person whom I have shared the most ideas about games, game culture and
design with, for always listening to me and giving me the confidence to tackle any issue in
regards to design.

• For everyone who has helped to test my program, as well as the encouraging feedbacks and
useful criticisms that have helped to polish PlayBoard to the state it is now.

Contents

0. Introduction 9

1. The User Needs 12

2. The Evidence of Gaps in Current Interfaces 17

3. The Conflicted View of Design Ideals 22

4. A Tool for Designing 25

5. Applying Goal-Oriented Design 30

5a. Research of Users and Domains 30

5b. Modelling the Personas 31

5c. User Requirements and Contextual Scenarios 33

5d. Constructing the Framework 35

5e. Usability Testing 42

6. Conclusion 43

Appendix A. PlayBoard Introduction 46

Appendix B. Screenshots from Prototype 48

Appendix C. Consent Form 49

Appendix D. Questionnaire 50

Appendix E. Citations 53

9

Introduction

“The less time you spend trying to figure out an application, the more time you can spend
appreciating or using it. This is especially true in leisure applications where you are not in the
mood to learn and find rather than explore and discover.” Najib, IT Consultant.

Amateur game makers lead particularly distinct lives. They are individual artists who are able to
realise their fantasies by crafting worlds, deciding interactions and playing in them. My own encounters
with personal game making has given me the opportunity to witness the experience of playing my first
and very own game, make games about my friends, make games for them, share in a community and
receive many enthusiastic responses in return. Game making has allowed me to convey privatised
scenarios, emotions, internal jokes and relish in localised topics that professional game makers would
never even know about. It has allowed me to actually create my own deeply user-centred game
experience, rather than rely on external and disconnected usability tests to craft one for me. It is
through this appreciation of game making and its personal benefits that I wish to provide more
opportunities for others to do so.

Computer game making is often perceived to be a lot more complicated than it should be.
Professional game tools tend to project their functionalities, complexities and capabilities before
allowing users a chance to understand basic usage; thereby alienating common users from effectively
using them. After many conversations with game players it became clear that nearly everyone has game
ideas to share, and a great many are capable of designing good games. However, those who are
interested are often not able to digitally manifest their game ideas due to the lack of understandable
and easy to use tools.

The lack of practical and good resources for indie game makers became the user needs I wanted
to target. I wish to enable more user-centred game making tools to exist, and also to improve on their
communicational qualities. This led to the decision to apply professional methodologies of Interaction
Design to the non-professional field of game making through the production of a user-centred game
making tool, eventually entitled PlayBoard. In the course of my research and presentation, I aim firstly
to introduce the activity of game making to the basic user, secondly provide amateur game makers a
better experience in making games, and thirdly highlight to existing developers the need to better our
products through design.

Interaction design is in essence, a method of controlling products to distinctly target user
objectives. Interaction Design acknowledges that subjective concerns can, or must, be treated as the
professional goal in order to achieve any measurable form of success. My education in Interaction

10

Design has instilled in me the responsibilities of the producer and helped me to identify the needs of
users in their various forms. It has also taught me the science of product refinement, which when
applied appropriately according to desired contexts, makes things better.

I intend to use the knowledge of Interaction Design in the building of an amateur-targeted game
making tool. In particular, I will be using the methodology of Goal-Oriented Design. However, Bridging
the gap is by no means a goal-oriented project more than a pursuit-oriented statement. It recognises
that there is a gap between communication of user needs and program developers, but it also
understands that the magnitude of this gap is larger than one thesis, one man or a defined deadline.
Game creation tools by convention will be built within a collaborative team, and shared with
communities of contributors, artists, coders and designers who, in their own time, will bring a product to
life. Nevertheless, it is about taking steps back, revisiting our values and restarting a different journey
for the sake of realistic, substantial and relevant improvement.

As such, my first chapter will begin by describing the current game making and game playing
environments, as well as how the interactions between the two have ultimately formed a distinct model
of a community. This will be followed with the argument that having better tools will enable this
community to grow. This chapter will also identify the major issues with current interaction design
approaches that impede on game making and game playing cycle of interactions, and propose a design
approach that simply places beginner needs before professional needs.

The second chapter will look into current game making interfaces from a visual design
perspective. It will examine the two popular game products of usage, Unity 2 and Adobe Flash CS4,
which are both recognised as progressive identities rather than fixed products. (eg. Adobe Flash CS4 will
be replaced by Adobe Flash CS5 very soon) It will highlight some of the key areas in which interface
designs have negatively impacted usage, as well as demonstrate how certain specific approaches are
comparatively better. An analysis of interface details will highlight an underlying trend of design neglect
that is evident in professional interfaces.

The third chapter compares and contrasts Model-Based Design and Human-Centred Design as
approaches to design. Model-Based Design is about the efficiency, effectiveness and direct control of a
product whilst Human-Centred Design concentrates on the engagement of the product with the user.
Both approaches have to led to certain conflicts in the production process, but the examination of their
differences will lead us to the conclusion that neither can be excluded in a production process as they
are mutually dependent on each other to work.

Finally, we will look into Goal-Oriented Design, and how Goal-Oriented Design is an approach
that best embodies the ideals and practical needs of software development. It will be compared and
contrasted with a similar form of cognitive design, User-Centred Design, in terms of its practicalities,
approaches and difference in production value. The result of these comparisons concludes that Goal-
Oriented Design is a reliable methodology and was thus applied in the design and development of my
program, PlayBoard.

11

A note on terminology

I would like to clarify some of the terminology I have used throughout the thesis. To my knowledge,
there have been little official definitions of the product in which I call game tool. As such, the identity of
which I reference as game tool may also be interchangeably replaced with game engine, game making
platform, game making program, or game creational tool, all of which are used to describe a program
that supports a user in the creation of a game in any part of the constructional aspect.

Another class of terms I will refer to will be the casual game developers. I may also sometimes substitute
these references with independent game developers, indie game developers, casual game makers,
amateur game makers or any phrase which is similar in effect. These likewise refer to the same groups
of people who would involve themselves in the process of game making for the sake of personal interest
and non-commercial reasons.

This thesis has been referenced using the Chicago style.

12

Chapter 1. The User Needs

“However what we liked about Unity Indie was that it allowed many many people to get started
with Unity. These people are hobbyists, students, professional and amateur independent
developers, as well as teenagers and kids. And many of them are really valuable to the
community.” David Helgason on why Unity Indie was redistributed as a free product

User-centred interaction design philosophies begin with coming to terms with the user
environment. (Cooper, Reimann and Cronin 2007, 13) In relation to game development tools, this
environment not only refers to the virtual and physical spaces in which game producers and the players
meet but also the communities in which they interact. Recent sociological studies reveal that user-
centred ideals have not only contributed greatly in aligning the motivations, cultures and interests of
users with those of the developers, but also the games they make and in turn the tools they use. The
following chapter thus examines the game development scene and the impact the surrounding culture
has on the many aspects of game creation. This chapter begins by introducing the independent non-
professional game developer, as well as how they differ from conventional commercial game makers.
The thesis will then argue that there is a significant and largely unsatisfied demand for amateur-targeted
game development tools based on the relations and trends of these societal behaviours. Finally, the
chapter will end with a proposed production approach that could be used to better target these
community needs.

Game development has conventionally been regarded as an industry in which only specialised
programmers, designers and businessmen have access and control. However, the widespread
availability of game engines, middleware, and other content-creational tools has concurrently given the
common user a chance to build their own games without the same level of expertise, networks,
resource or even funding. (Fulp and Baez 2005, 28) The provision of developmental tools such as Adobe
Flash and Unity has attributed to the rise of a new kind of game maker, the non-professional but
nonetheless passionate amateur. Independent developers, though varying greatly in terms of skills and
knowledge, are able to make use of the simplified process of game creation, to create and distribute
personally-designed games. These game makers though largely unpaid are nonetheless valued for the
amount of ideas, experiences and expressions they bring into their respective communities.

Avenues such as Newgrounds.com, Kongregate.com, MochiMedia, forums and personal
websites amongst many others provide the virtual, social and environmental spaces in which
independent developers meet and showcase their works. This is done through a variety of methods such
as allowing developers to upload self-made products, connecting people of common interests together,
providing downloadable tools and sometimes even giving out rewards to outstanding productions.
Newgrounds is a web portal that hosts a large variety of Flash-based games and other assorted media,
with little or negligible restrictions over production content or quality. Of the many hosting sites
available, Newgrounds alone receives an estimated 50 user-submitted productions daily and has over

13

178,000 works to this date. (Newgrounds 2010b) Kongregate and MochiMedia, on the other hand, have
an active community of experts and marketers who provide services and tips for amateur game makers
who want to be published and advertised. Even game tool businesses such as Unity have begun to
recognise the significant interest in game making which has led to their decision of converting their
US$199 product, “Unity Indie”, to be redistributed as completely free. (Helgason 2009)

Directly linked to the game producer is the common gamer and viewer that form the bulk of the
community in game-hosting sites. Online gaming statistics indicate that there are about 134.5 million
gamers who play online games in 2007, 42% of whom are female. The highest ranked genres of games
were online card, puzzle arcade and words games (44%), family-oriented games (25%) and RPG/MMOGs
(19%). (GRABStats.com 2008) Whilst Newgrounds may receive an average of 50-user productions each
day, the people who play or view these productions total to an estimate of half a million daily. (Sheffield
2009, 21) These numbers represent the greater online society in which game developers contribute to
and develop reciprocal relationships, either through further distribution, commenting, reviewing,
responding or simply viewing. (Bruns 2006, 21) These numbers also serve as significant and profound
evidence for the wide variety of interests in the field of gaming content, even when there is no
differentiation between professional or amateur games. The most popular game on Newgrounds, is
Hentai~ SimGirls (beta), which has individually received close to 44.9 million views to date, and was
made by a singular author simply known as sim-man. (Newgrounds 2010a) For a figurative form of
reference, the number of people involved in online gaming exceeds the entire population of Oceania
and Australia combined, non-Internet users included, which stands at an estimate of 34.7 million in 2009.

The combined population of producers and game players make up an entire inter-dependent
community. Independent game developers produce and share their works, in which casual players play,
review and learn from; some of whom, in turn become independent game makers themselves and end
up contributing back to the cycle of production and consumption. (Figure 2) This chain of interactive
processes and interaction leads to a dynamic system of intercreativity, a fundamentally distinct model of
user behaviour known as produsage. (Bruns 2006, 16) According to Axel Bruns, the author of “Blogs,
Wikipedia, Second Life, and Beyond”, the empowerments of technologies and its surrounding cultural
environments has attributed to the rising trend of users turning into produsers. (Bruns 2006, 11) As
referenced from other widely known phenomena such as Youtube, Wikipedia and blogs, users are
evidently interested in playing active roles in communities as they participate in a range of activities.
These include uploading custom-made videos on Youtube, writing personal reviews in their own blogs,
and rating and commenting on current and new games. It is in this way that users contribute and sustain
the knowledge of online culture. These various contributions help to support a thriving open community
that provides both intrinsic rewards in production as well as external rewards of recognition.
Independent game production, like its produser-centred relatives, also benefits from a culture of
information sharing, collaboration and personal development within their own communities.

14

Figure 2.0 The self-sustaining system of intercreativity

As users evolve within a unique system of communal sharing to become produsers, their needs
and demands concurrently shift and change. In a produser-centred environment such as amateur game
development, the ideal function of a game tool should support the produser in the act of personalisation
and appreciation of creative work. However, developing such a tool is notably difficult as it requires a
substantial amount of technical knowledge, resources, time and understanding of usage. Game making
is a largely expert-dominated industry. Hence the kinds of tools which are accessible, such as
middleware, 3D modelling programs, physics engines and others, is in some ways still exclusive to
experts only. This differs from produser platforms such as Youtube, Wikipedia and blogs, which are
arguably made popular due to the easy-to-understand interfaces and low technical knowledge
requirements. Following Cooper, Reimann and Cronin’s graph (Figure3) of user proficiencies and given
the assumption that game engines are still largely expert dominated, we can deduce a probability that
there is a significant portion of people unable to cross the gap of difficulty. (Cooper, Reimann and Cronin
2007, 42)

Figure 3.0 Graph depicting the normal distribution of user proficiencies in digital tools.

15

Many software developers are aware of their products being difficult to use. But when faced
with the challenge of developing a game engine, they often choose to prioritise functionalities over
usage. In response to a question whether Pushbutton1

Focusing too early on advanced capabilities leads to a large component of the target users being
excluded from the development process. (Figure 4.1) It is perhaps better to consider the alternative, the
initialising of a project that covers fundamental interactions before progressing further. (Figure 4.2) In
doing so, advanced functions will have a better contextual placement, as they are built on top of
relevant interactions, effectively still enabling the product to cater to expert needs.

 Engine would ever be possible for beginners to
use, Jeff Tunnell, says, “We need to make sure PBE works for experienced coders first so we know the
foundation is solid. Once we have that we absolutely intend for it to work for beginners.” (Tunnell 2009)
This may be a reasonable response and it shows signs of good intentions, but rarely does this mentality
ever substantially benefit the common user. As referenced from other back-end focused communities
such as SourceForge.net, programs by nature frequently fail to reach a state of full maturity, and are
much less ever distributed or even heard of, or being used to such an extent that engages with general
users in a revolutionary way. (SourceForge.net 2010) Beginner needs, being placed secondary, are thus
highly unlikely to ever be satisfied, and has proven to rarely be met, especially when placed before the
obstacles of expert needs.

Figure 4.1 Conventional evolution of complex tools

takes a long time before engaging with users.

Figure 4.2 Suggested model of production. Involves
having a basic interactive framework before adding

advanced and possibly undesired functionality.

Independent game developers make up a large component of the intermediate and beginner
users in most game-based communities. They contribute, through their own self interest, to areas of
recognition such as online virtual spaces and in turn generate interest in other members of the
community as well. A high level of interest within a field increases the likeliness of more developers
being actively engaged and contributing to the growth of a community. This process of growth and
interaction, although common in many other online networks, is restrained in game making
communities due to the high levels of technical requirements involved. Judging from recent comments

1 Pushbutton is an open-sourced game making engine that is used to support the Flash/Flex game development. It
is built by veteran game engine developers, who have also been known to provide Torque, a 3D game engine. For
more information, refer to http://pushbuttonengine.com.

16

of some makers of game tools this state of restrained development is unlikely to change due to the
conventions instilled by linear development methodologies which place basic needs of users as
secondary. Therefore, a re-examination of the design process of game making tools most relevant to
independent game makers is necessary.

17

Chapter 2. The Evidence of Gaps in Current Interfaces

“If you ever think Flash is difficult to use, you should try drawing with a joystick on an Apple II
before the concept of undo was invented.” ~ Jonathan Gay, Creator of Flash

Visual interfaces are the primary and direct means by which a user encounters a product.
Virtually all use stems from the understanding of the interface, which makes it a critical aspect to look
into when designing beginner-targeted programs. Donald Norman, a cognitive psychologist, wrote about
the many ways in which users derive affordances (possible action) from the visual impression of an
artefact. (Norman 1988) The following chapter will reflect upon the various ways in which game-making
interfaces have insufficiently communicated their appropriate affordances through visual presentation.
In particular I will be looking at the interfaces of Adobe Flash CS4 and Unity 2 as they represent some of
the more commonly recognised and frequently used independent game making platforms of today.

Adobe Flash CS4, released in 2008, is an instance of a game making application which, like its
predecessors, provides a graphical interface for performing tasks like drawing vector images, positioning
objects, managing symbols, and controlling object properties. It also allows users to write their own
scripts through a scripting language known as ActionScript. Flash is not solely targeted for the
development of games, as it is used widely in areas such as advertising, animation and websites.
However, with 99% of current internet-enabled desktops supporting Adobe Flash Players and a plethora
of sites showcasing professional and amateur Flash games, Adobe’s Flash series is arguably the most
widely recognised platform to address in terms of casual game production. Flash is in many ways a
remarkable product in terms of its functionalities and its popularity, and it has undergone many
iterations of design and modification, but still, as we shall soon see, its problems are numerous.

Upon initial observation, Flash’s interface is notably congested. As seen in Figure 5.0, Adobe
Flash CS4’s interface features a considerably high number of buttons and windows compressed in a
single screen. Donald Norman writes about how the number of controls provided should be relevant to
usage, as the difficulty of performing a desired action exponentially increases with the number of
irrelevant options provided. (Norman 1988, 208-209) With over seventy buttons sprayed from left to
right and top to bottom within each panel (excluding the top bar and its timeline which are made up of
an infinite number of frame buttons) and many unlabelled relationships and groupings, the amount of
cognitive work required to use this product is exceptionally high. This design visibly tells the user that
there are many things to do and many things to figure out, even if he or she is only interested in
performing one task at a time. The presentation of Flash’s interface is not only inconsiderate of the
user’s sense of perceived affordance; it is also likely to be daunting to the unfamiliar and untrained eye.

18

Figure 5.0 A screenshot of the entire Adobe Flash CS4 screen in Classic Mode.

Moreover, key behaviours such as visibility of objects and relationships, current state of
program and access to scripting are either hidden on first viewing, reduced in visual emphasis or simply
given precedence to more temporal options. The accumulation of all these aspects makes the entire
program significantly harder than necessary. As a natural part of usage, relevant information pertaining
to actions should be made visible. (Norman 1988, 99-104) The Scene Editing stage area (bottom left) in
figure 5.0 contradicts this notion by its significantly small size. The entire Scene Editing stage only takes
up a quarter of the screen even though it is meant to reflect a full screen’s worth of content. Even basic
selection has many constraints applied to it such as being unable to select an object due to different
“layer” properties. (Top left) On the other hand, the properties panel on the extreme right is given
gratuitous space at its minimum width, thus reducing the emphasis on the main screen even more.

In addition, some items provided within the interface are of low practical significance, arguably
even adverse to usage. The ability to retract windows is one such instance where a seemingly good
intention can work conversely against the user. With a single click on the top bar, as represented in
figure 6.1, an abrupt change occurs without consideration of how surrounding objects are shifted and
affected. The top bar is a highly confusing behavioural object because firstly the icon does not resemble
a conventional image of a button, yet is easy to click on by being excessively wide. (figure 6.1) Norman
writes about the negativity of forcing functions, which describes designs that forces users to perform
actions they do not intend to do. (Norman 1988, 132 – 140) Donald Norman also states how users
should not be required to exercise high precision when using an object (Norman 1988, 58-59). Yet as
shown in figure 6.2, this is not practiced at all. Small content tabs are placed close to the wide forcing

19

button with no gap in between, increasing the risk of accidental clicking. In the instance where users
want to select tabs rather than close them, this is counter-productive.

 Figure 6.1 Button used for contracting
 and expanding panels

Figure 6.3
State of panel after accidental
clicking. Demonstrating little
visual relation with its expanded
form.

 Figure 6.2 Example state of expanded panel

Flash has numerous other problems in regards to its interface design but it is not my objective to
list them all. Rather, the purpose of highlighting the negative factors of the interface is not to debate
about whether Adobe Flash CS4 is a good or bad product but to show that gaps of understanding can
and frequently exist, even in professional interface design. The next example depicts an interface from
Unity 2 that has taken user needs into consideration, but even then contains several issues despite the
attempts to make things easier.

Unity 2 is a specialised game making program that is largely used by professionals and
independent game makers to build games for various platforms such as the web, Wii and standalone
applications. It features many utilities and functions such as 3D object handling, shading and lighting,
ease of access to external graphic programs and scripts. The functionalities of Unity are not targeted for
beginners, but in many ways it is easier to understand than Flash in terms of its interface.

In comparison to Flash, Unity’s interface is arguably easier to read. Although it features many
visual elements like Flash, it makes use of spatial management to create visual order, making it easier to
understand. Figure 7.0 illustrates Unity’s undistractedly clear groupings which decreases the cognitive
effort in finding and relating groups of objects. Furthermore, detailed objects are displayed in a
consistent manner, all flowing in a downwards direction, alleviating the burden of interpretation and
navigation. Words are also used more frequently to describe detailed properties and behavioural control
rather than depending on ambiguous icons. In the context of using an interface, words are less likely to
be misinterpreted, more able to represent unfamiliar behaviours and require no memorisation of
meaning.

20

 Fig 7.0 Screenshot of Unity 2. Illustrates the scene (main WYSIYYG working area) on the left, the object list in
 the middle and the object inspector on the right.

Unity is also significantly more directive simply because the options they provide relate visibly to
achievable actions. Objects that are meant to be clicked on are all presented in a form of a bright button,
slightly 3-dimensional, with a soft shadow on the edges to create contrast. The combination of these
properties provides visual emphasis and makes interactive elements ‘look more clickable’. In addition,
key options are generally given gratuitous space in all surrounding directions to create distinction and
thus demonstrate importance in comparison to the other elements. There are no toolbars for drawing,
colour panels or abstract timelines that impedes on the display as they are not directly related to the
game making process. This does not mean that such functionalities do not exist; they are simply hidden
away until relevant to usage, allowing appropriate control over the user’s desired actions. (Norman 1988,
208-209) Unity simply makes use of contextual placement and allows actions to be derived through
relationships rather than from direct presentation.

The few panels provided by Unity’s interface, though bearing some setbacks, generally support
the user in quickly getting used to the navigational environment. This is a result of good conceptual
modelling. (Norman 1988, 12) A good conceptual model is often a simplified representation of a
commonly known complex structure that bears some comparable characteristics as its familiar form.
Unity’s “Hierarchy” and “Project” (figure 8.1) panel serve straightforward and predictable purposes as
they behave like folders to provide lists of objects. However, the word “Hierarchy” could be more
appropriately named “Used Objects” or any relatable alternative as its current name does not seemingly
relate well with its function. The “Inspector” panel (figure 8.2), on the other hand, is well-named and

21

behaves as it suggests. It dynamically reacts to specific selected objects, revealing every intricate detail
upon inspection. As such users are then immediately able to control and edit their properties, as the
intent of inspecting ties in relationally well with the intent to edit.

 Figure 8.1 Unity 2’s Hierarchy Panel
 behaving like a folder.

Figure 8.2 Unity’s Inspector Panel which gives an

indepth explanation of selected objects

We have thus compared the different types of communicational issues between Adobe Flash
CS4 and Unity through their visual interfaces. Using Adobe Flash CS4 is firstly made difficult through the
overwhelming number of options in its presentational screen. This also impedes on understanding
through the lack of emphasis on key objects and behaviours whilst placing focus on unnecessary details.
In addition, Flash is inherently cumbersome because some buttons possess unexpected behaviours,
which are also prone to accidental clicking. Unity, on the other hand, is somewhat easier to use due to
the establishment and enforcement of visual order. It also makes use of visual emphasis and distinction
to highlight key objects that are important to navigation and usage, allowing a more guided
understanding of the functionalities of the interface. Unity finally makes use of better conceptual
modelling, through careful choice of descriptive words to explain elements that are otherwise difficult to
understand. Whilst visual interfaces are only a part of the many factors that make up the user
experience, the issues described in this chapter provides us with evidence of problem areas in current
interface design.

22

Chapter 3. The Conflicted View of Design Ideals

“A designer is an emerging synthesis of artist, inventor, mechanic, objective
economist and evolutionary strategist.” Richard Buckminster Fuller, architect, author,
designer, inventor and futurist.

In examining the qualities of interfaces, we reveal a layer of awareness, of lack thereof, about
design ideals. Whilst it may be argued that design ideals are subjective to individual interpretation, they
all relate objectively to a design’s final outcome. As a result, it is important to understand how the
different design perspectives affect a product and its relevant production process. This chapter
introduces the opposing interaction design philosophies Model-Based Design and Human-Centred
Design by briefly describing their significant traits. It will then proceed to compare and contrast the
strengths and weaknesses of each theory, leading to the conclusion that both Model-Based techniques
and Human-Centred Ideals are both needed in a project.

Figure 9.0 Waterfall structure of Software
Engineering. One of the many examples of
Model-Based Design approaches.

Model-Based Design focuses solely on an artefact’s
structural development. (Paterno 1999, 11) Examples of
Model-Based Design include Object-Oriented Design,
Bottom-Up Approach, Three-Level
Architecture and the Waterfall Technique (Figure 9.0).
These approaches tend to be managerial techniques that
support the developer in the organisation and control of
working environments. The attention to development is
especially useful if the project is overbearingly large or
consists of many confusing implemental details. (Paterno
1999, 1) It empowers the developer by providing a good
mechanical and technical understanding of the entirety of
the project, as well as the intricacies and relationships of
the project elements. However, Model-Based Design is
largely focused on the constructional issues of
implementation. Therefore, usability, which is usually
separated from the implementation stage, is often
neglected or insufficiently dealt with.

Human-Centred Design, in this context, is thus the opposite of Model-Based Design; it has the
user as its primary focus. Despite variable practical applications, Human-Centred Design overlaps with
and indeed incorporates several other disciplines including User-Centred Design, Cognitive Design and
Visual Design. The philosophy behind Human-Centred Design stems from the belief that products are
essentially made for the user. In another words, easy to use products are essential for a product’s

23

success. (Norman 1988, 17-33) Human-Centred Design makes extensive iterations of observation,
feedback, and modification to guarantee a continual improvement of product usage. Thus, information
like how easily a product is understood (Norman 1988, 13), the number of items humanly remembered
at a time (Norman 1988, 62-66) and the effect of visual objects on cognitive attention (Norman 1988, 14)
all help to define the rules and guidelines for Human-Centred Design.

Comparatively, Model-Based Design supports all aspects of production. It breaks down the
many stages of development into discernable segments which aids the developer in effectively
managing, distributing or focusing on tasks. The clarity provided through Model-Based Design enables
the identification of structural flaws, understanding of production affordance and also the likely
expenditure of resource. Digital products especially tend to be technically challenging and often harbour
many problems in the formulation, building and maintenance stages. Model-Based Design thus aids
developers by enforcing a systematic workflow structure to minimise error and contain unpredictability.
Disciplined methodologies have many benefits, such as enabling products to be built in less time,
conserving the use of resources in production, enabling better capabilities in handling errors or simply
being able to control a product’s functionality. As Model-Based Design has been refined through the
years of engineering and is a collection of working and tested techniques, it is thus highly useful and
reliable in production.

Human-Centred Design, on the other hand, is valued because it pays attention to the user and
user needs, albeit often at the expense of resource and time. In theory, an artefact’s function is only as
useful as the user perceives affordance and is able to actually learn how to use them; hence a product is
greatly devalued if it does not communicate effectively with the user. (Norman 1988, 75) Modern
interfaces especially tend to feature an exceptionally high number of accumulated functionalities,
resulting in many opportunities for loss of interpretation and meaningful use. Without appropriate
visual and behavioural feedback, all kinds of use-related problems can occur, from minor frustrations to
severe and costly errors. Use-related problems exist in many forms, like being difficult to interact with,
confusing to interpret, requiring an inappropriate skill level of the user or simply not being able to do
what the user really wants. (Cooper, Reimann and Cronin 2007, 4-8) In more physical representations,
errors in communication may be embodied as undesirable pop-up error messages, functions of gadgets
that never get used or behavioural interfaces that have no reversible option. Although Human-Centred
approaches do not aid in actually building products from scratch, it is valued because it tackles the most
visible and possibly most important aspect; the ability of interfaces and software to correctly
communicate its affordances with its user.

Yet, the role of Model-Based Design is just as evident in user experience as Human-Centred
Design. Although rarely stated, the issues that stem from inadequate development processes are in
essence also usability problems. Lack of functionality, unreliable behaviours or products that work too
inefficiently are examples of usability issues that negatively impact the user. Harold Thimbleby, author
of “Ignorance of Interaction Programming is Killing People”, highlights the many ways in which poor
practices in digital programming have deeply inconvenienced or harmed consumers, with instances as
severe as accidental death. (Thimbleby 2008) Model-Based Design is perhaps the only way to reliably
control the desired development of a product due to its ability to directly manipulate behaviour at a

24

micro rather macro level. Therefore Model-Based Design supports the development process, which in
turn contributes to the end user interactions, and makes Model-Based Design an intrinsic and
fundamentally important part of the user experience.

However, simply ensuring working functionality is insufficient in guaranteeing a product’s
popularity. Human-Centred Design is still more suitable for enabling products to be better distributed
and better appropriated to target audiences. By making products easy to interpret, more relevant and
easier to use, Human-Centred artefacts are able to cater to a greater range of skill levels and interests.
Whilst Human-Centred Design may have little influence over product development, it does allow a
better control over how the product is used at a distribution level. The usability, aesthetics and visual
communication of Human-Centred products work synonymously well with other areas such as
marketing and advertising, allowing companies to target consumers who may not necessarily possess
the expertise in the relevant field. “User-friendliness”, for example, has become a promotional feature
that has not only helped distribute products more widely but has made these same products more
relevant to the average consumer. (Cooper, Reimann and Cronin 2007, xxix) On top of which, paying
attention to user needs make people feel good, thus giving rise to branding and customer loyalty. Apple
is one such company that till today benefits from a large following of customers because of excellent
handling of user-related issues. (Cooper, Reimann and Cronin 2007, 4-8)

Whilst there are many other debates about the pros and cons of Model-Based Design and
Human-Centred Design, ultimately what is required is not an explicit direction in either, but an
incorporation of the two sides. A Human-Centred Designer cannot make a program more user-friendly if
there is no working program to control; neither can a Model-Based Designer make a useful program for
an environment if there is no knowledge of the environmental needs. The problem should not be about
the weaknesses of either Model-Based Design or Human-Centred Design, but rather noting the lack of
mutual understanding between developers and designers and end users. Projects in general will all have
similar constraints, deadlines, target audiences, contextual information, resource limitations, user
feedback handling, and product instabilities. Thus, both Model-Based Design and Human-Centred
Design are necessary to handle all these variety of issues. Model-Based Designers can certainly benefit
from learning user research techniques, and Human-Centred Designers in general would definitely
benefit from learning to build products more efficiently and easily. A lack of any one of these fields can
lead to a product failure, thus emphasising the point that no one aspect can be left out.

The uncontrolled issues that stem from poor execution of Model-Based Design invariably also
become use-related problems. Likewise, Human-Centred Design has a greater influence over the users.
Ultimately, both forms of design are deemed to be indispensible in a project. Despite having different
approaches, Model-Based Design and Human-Centred Design are essentially complementary rather than
conflicting.

25

Chapter 4. A Tool for Designing

“If you don't know where you are going, you will probably end up somewhere else.”
 Lawrence J. Peter, Educator

Following from the understanding that both Model Based Design and Human Centred Design
vary according to approaches, requirements and objectives, the question is still left unanswered as to
what the ideal balance for an interaction design method might be. The imbalance between Model-Based
Design and Human-Centred Design could be considered yet another form of a gap between designer and
the ideal approach. In this chapter we shall thus introduce Goal-Oriented Design and how it can aid
designers of game making applications in integrating the best of both Model-Based Design and Human-
Centred Design. In comparison, we will be evaluating Goal-Oriented Design against User-Centred Design
to demonstrate the difference in practicality and stability of the two approaches. Finally we will
conclude that Goal-Directed Design is a more suitable interaction design methodology due to its
coverage of design issues, depth of analysis and applicability to game making software.

Of the two contrasting positions between Model-Based Design and Human-Centred Design,
Goal-Oriented Design has emerged as a hybrid of the two. Goal-Oriented Design was founded by Alan
Cooper, Robert Reimann and Dave Cronin. It focuses on deciphering and handling goals related to a
context and covers a step-by-step procedure for completing a project. (Cooper, Reimann and Cronin
2007, 24) It is an expanded version of Activity-Centred Design and also shares the same core values as
User-Centred Design by focusing on user values. (Cooper, Reimann and Cronin 15) The entire process is
made up of six iterative steps (Figure 10) which is understood as research, modelling, forming
requirements, building framework, refining, and revising necessary details. (Cooper, Reimann and
Cronin 2007, 20) In essence, the entire Goal-Oriented approach makes use of project goals to become
an inherent part of the work process - helping to control the structure of activity, which in turn help to
direct the nature of tasks. (Norman 2005, 16) This process bears similarities to the practical benefits of
Model-Based Design in the way it aids the designer in production, but also shares its root philosophies
with Human-Centred Design’s concern for the user.

Figure 10.0 An abstract depiction of the complete Goal-Oriented Design process. This will be used as the
methodology for designing PlayBoard. However, as PlayBoard is a prototype, this thesis will only demonstrate the
Goal-Oriented structure up to the point of “Framework”.

26

The limitation of User-Centred Design is that user testing is only effective at the end of a project,
when a basic prototype is already built. (Cooper, Reimann and Cronin 2007, 70) User testing is the
process of having a number of people attempt to use a product whilst identifying problems. However,
from the developer’s point of view, user testing is difficult to act on, particularly if the testing is done
only towards the end of development. As the product is already largely defined, it becomes difficult to
modify due to its technical nature and also due to limitations on time constraints. Likewise if problems
become apparent in critical areas such as design structure or product purpose, the whole product may
even be redesigned which is highly inefficient and generally economically unfavourable. Therefore,
whilst usability tests may be an easy way to spot and edge out shallow mistakes, it does not cater well to
deeper problems in a design throughout the development process.

In terms of effectiveness, User-Centred Design practices are often unreliable. (Cooper, Reimann
and Cronin 2007, 71) Even though user testing is directed at seeking out and handling all errors, this
process is flawed by the fact that common users are sometimes not capable of giving helpful feedback
beyond what is obvious. (Alan, Cooper and Reimann 2007, 4) Despite their best intentions, what a user
says may be misleadingly different from what he or she means and differences of opinion between users
can also result in a loss of interpretation. General users lack the knowledge and familiarity of the
product to adequately comment about all issues that the designer may be looking for. As a result,
interpreters are forced to deal with inconsistent test results and worse still, depend on these statements
to derive follow-up action. (Norman 2005, 17)

Goal-Oriented Design, like User-Centred Design, is a problem-targeting approach. Goal –
Oriented design does this by dealing with user goals rather than simply handling usability mistakes
toward the end of the production process. Goals are determined through the study of potential users
before production. Research involves observing likely clients in their respective workplaces or homes
and noting their traits, habits and preferences. (Cooper, Reimann and Cronin 2007, 50-70) The gathering
of qualitative information helps designers to understand the product’s contexts which in turn are used
to formulate project goals. (Cooper, Reimann and Cronin 2007, 72-73) Prior research decreases
misunderstandings between user and designer at early stages of development and it also brings into
awareness the cultural and environmental issues relating to user needs. This allows the derivation of
clear and relevant directions which enable the rest of the development crew to stay focused on key
concerns; this is arguably necessary for work efficiency and effectiveness.

Goal-Oriented Design is likewise concerned about users, but it manages user issues more
precisely by splitting user identities into specified groups and relating products to their contextual needs.
Goal-Oriented Design makes use of an idea called “Personas” which are fictional references that signify
example user characteristics. (Cooper, Reimann and Cronin 2007, 76) This usually involves the writing of
an example background, an elaboration of user traits, naming the character and also providing a portrait
to complete the image. (Figure 11) Personas are often created from the research data that is part of the
Goal-Oriented Design process, and is meant to group related user concerns under categorised
similarities. Cooper et al argues that having an identity to reference is very useful for designers, as it
allows a representational concept to embody abstract interactive ideas such as intention, unsuitability
and satisfaction.

27

 Carefree Karen
 On concerns with her career

- Does not wish to give up her personal life for
work

- Wants to be in an environment in which she can
nurture her skills

- Is happy with a medium-range level of payment
- Uncertain of the her job opportunities based on

her degree

Figure 11.0 A picture being displayed on the left, and characteristics on the right. An example depiction of
persona being used in a design process.

The greatest weakness of User-Centred Design is that it simply is not a complete methodology.
Although User-Centred values are easy to understand, it lacks clear instructions on how a designer is
supposed to create a product. (Cooper, Reimann and Cronin 2007, 9) User-Centred Design was written
by a cognitive psychologist and not a designer. Therefore, a specialist from a different field is not
expected to know the nuances involved in all designs as there are far too many possibilities to predict. In
the context of an application, it is important to understand how to integrate design needs into the
development process in order for the approach to be effective. User-Centred Design mentions little
about the project structures and work flows that actually make up the design process. (Cooper, Reimann
and Cronin 2007, 9) In this sense, User-Centred Design, though valued by many in the design industry, is
essentially an incomplete approach that serves as a checklist rather than a complete production or
design guideline.

On the other hand, Goal-Oriented Design has more coverage in terms of instruction. Unlike
User-Centred Design which mostly states a list of constraints, Goal-Oriented Design actually goes
through the step-by-step process (figure 12 on the next page) of how to design a product from the early
stages such as research, to the planning of meetings and development, as well as the reiterative changes
to guarantee completion and success. (Cooper, Reimann and Cronin 2007, 24) The coverage of
instructions stated in Goal-Oriented Design extends to all aspects of production, including the designer’s
working context and client’s environment, greatly increasing the level of feasibility and clarity. It scopes
down large possibilities into several specific goals of achievements and follows up with recommended
actions to achieve these targets. On top of which, Goal-Oriented Design will always stay relevant to the
project because it is structured to function relative to the appropriate context.

28

Fig. 12.0 A detailed examination of the research, modelling and definition phases of Goal-Oriented Design.

29

In conclusion, Goal-Oriented Design is far more complete and therefore suitable as an approach
for the questions of this thesis compared to User-Centred Design. User-Centred Design makes it difficult
to implement changes when its main focus is toward the end of the design process. On the other hand,
Goal-Oriented Design can be applied at the initial stage of research and makes use of contextual
understanding to prevent problems from arising earlier in the process. Furthermore, Goal-Oriented
Design understands its users throughout the production process better than User-Centred Design and
more aptly manages user issues. User-Centred Design is considered an incomplete approach, lacking
realistic instructions for actual application whilst Goal-Oriented Design is highly detailed and has an
extensive coverage of instruction. For these reasons, Goal-Oriented Design is more developed and
reliable, and hence more feasible for realistic use. To further demonstrate the notion, Goal-Oriented
Design will be used as an adopted methodology toward the development of a prototype of a 2d game
development platform, PlayBoard.

30

Chapter 5. Applying Goal Oriented Design

The following chapter documents the application of Goal-Oriented Design in the design and
development of the amateur-targeted game-making tool, PlayBoard. As PlayBoard is only a prototype,
meant to demonstrate an initial stage of design, the product did not complete all stages of the Goal-
Oriented Design process. Instead the approach has been followed until the point of “Framework”, where
further testing and refinement was intentionally uncovered. The building of Playboard is therefore
documented through the Goal-Oriented processes of Research, Modelling, Requirements and
Framework as depicted in Figure 13.

Figure 13 The abstracted flow of Goal-Oriented Design used in the construction of PlayBoard.

5a. Research of Users and Domains

The research data in this section is about independent game makers and their surrounding
environments. It summarises the concerns, issues and factors of the users PlayBoard is targeting. It is
also directly used to create the user personas as demonstrated in the following chapter.

• Independent game developers are interested in a wide variety of topics, are generally engaged
in expressive activities and often make games that reference popular identities as well.

• Their works are often judged by large active communities of game players, who are generally
able to critique quality of games according to in depth detail, execution and overall appreciation,
demonstrating a notable form of expertise in game content.

• Actual number of online game players makes up a third of online population. These are likely to
be mixtures of casual gamers as well as more serious gamers.

• Independent Flash Developers refer to various forums and tutorials in order to learn how to
script and use functions. These tutorials are unsorted and difficult to piece together without
prior knowledge.

• Game players greatly outnumber game makers 10000 to 1, indicating a high probability that a
large number of players are interested in making games but do not know how.

• Newgrounds, Kongregate and Mochi Media, all feature Flash-based games, and are very popular.

• Flash is installed on majority of all computers, making it highly accessible and conveniently
distributable.

• Flash is commonly used, but its interface is not designed for the common user.

31

5b. Modelling the Personas

The three personas represent the target users of the program PlayBoard. These personas are
entirely fictional, but are based on distinct characteristics that make up the diverse and probable user
community. In particular, PlayBoard’s broad primary targets are of the beginner-intermediate region,
which in this case is represented by Simply Sandy and Expressive Ed.

Capable Colin

Colin is a full-time programmer who has plenty of
experience with creating digital products. He is proficient
in several coding languages, as well as the surrounding
code conventions in professional production. In his free
time he answers questions posted by Internet users on
forums in regards to project developing strategies,
technical difficulties and other related concerns. He also
keeps up-to-date with open-source news and may help in
the development of a project if he finds it exciting or
interesting. Colin is a vital part of the game-making
community as he plays the role of the advisory “expert”.

• Colin is involved with an active community of game makers and is likely to want to share his
games with them. Being able to publish standalone games would therefore be one of his
main requirements for usage.

• Colin has more ambitious game making needs. He likes having a high level of functionality in
programs, and expects certain kinds of conventions such as a level editing mechanic, physics
engine and scripting capabilities.

• Colin has a large history of project files and his most desired trait of a game making tool is
the ability to import his own assets, code and external files.

• Colin understands that not every new product comes out perfect immediately and takes
time to refine, but prefers it if the product was open-source so he can edit it himself.

32

Expressive Eddie

Eddie is a full-time student who loves all forms of
creative works. He frequents online communities
such as Newgrounds, DeviantArt and Youtube and
finds joy in the kinds of inspirations and interactive
experiences his virtual peers provide. Having already
dabbled in photography, web design and animation,
Eddie wants to progress on to game design to share
his many ideas. In terms of game making, Eddie
would be considered a beginner, but he has a good
wealth of prior experience in game mechanics to
know what game making is likely to be about. Eddie
is PlayBoard’s primary target as he is likely to be a
continuing user.

• Eddie is looking for the simplest and quickest way to effectively get his idea out. He is willing
to put up with minor setbacks and difficulties but is ultimately impatient in ‘getting things
moving’. He detests unnecessary clicks and interruptions, and is more likely to ignore the
reading of a manual.

• Eddies makes many mistakes in trying to get an idea out, he also changes his mind very
frequently. He expects the program to be unaffected by constant change, as well as for the
program to cater to backtracking and modification.

• Eddie is a fundamentally visual person. He makes many assumptions simply based on how
an object looks, and does get affected or offended by concepts that do not look like they
behave.

• Eddie is self-driven and is highly explorative. If he is given three basic colours, he will
discover how to paint an elaborate picture.

Simply Sandy

Sandy is one of the many users who believe that
technology is too difficult for her to use. Her daily life
revolves around social activities and travelling, and
rarely requires the need to make use of any digital
tool. However, she has played several games casually,
and is familiar with the concepts of gaming. Sandy has
a good sense of fun, but when asked if she would
make be interested in making games, she would reply,
“If I can understand it!”

33

• Visual experience for Sandy is very important in attracting and maintaining her attention. As she
is inexperienced with the different kinds of game making platforms, she wants to find something
she can connect and identify with.

• Sandy has no experience in game design, so she needs a clear and quick visual reference to
indicate understandable action.

• As Sandy is unfamiliar with the conventions of interfaces, and as such would require programs
to allow her to learn and discovery at her own pace.

• Sandy naturally has very little resources in terms of graphics, sounds and code. She is also
unfamiliar with the means to get them. Her ideal program would not require her to do so.

5c. User Requirements and Context Scenarios

From the personalities and preferences of the distinct users, we deduce the desired role of
PlayBoard and relate it to the product design. For example, the development of interactions should
always be focused on being efficient as Eddie is generally impatient, whilst the visual presentation of
PlayBoard should be attractive to Sandy to help her maintain interest. In methodologically comparing
and interpreting the individual traits of users, we derive with a set of user requirements. The table
below represents the summary of the program’s desired traits based on the personas described in the
previous chapter.

User Requirements

Capable Colin Expressive Eddie Simply Sandy

Distributable Efficient Attractive

Capable Forgiving Directive

Flexible Obvious Safe

Open Sourced Expansive No prior requirements

 However, simply having a list of desired traits does not complete the actual sense of usage.
These traits have to be applied through a course of time, through meaningful interactions, and in
regards to their contextual scenarios. A new program is not likely to be fully understood in an instant; its
identity progressively changes according to usage, understanding and familiarity. Since PlayBoard is
meant to introduce game making ideas to new users, the flow of information should be well controlled
and predictable. In order to understand how users are likely to view PlayBoard, we thus simulate their
responses according to predicted forms of usage. Understanding the different usage also helps to better
envision user’s temporal goals and which should also be taken into account in the program’s design and
development. The presentation on the next page demonstrates the context scenarios of Colin, Eddie
and Sandy according to five different stages of usage - Learning, Experimentation, Familiarisation,
Acknowledgement and Mastery.

34

Context Scenarios

Learning

“Okay, so how does this program work?” Colin

“This looks interesting.” Eddie

“What is this?” Sandy

Experimentation

“Ah, I see. That’s handy.” Colin

“Nice, it responds to me!” Eddie

“Oh, I did something. It’s prettier than I expected.” Sandy

Familiarisation

“I wonder if it works if I try doing this here instead.” Colin

“How did I do that again?” Eddie

“I didn’t know I could do that.” Sandy

Acknowledgement

“I can see where this is going.” Colin

“This is interesting.” Eddie

“That was easier than I expected.” Sandy

Mastery

“Now all this program needs is ...” Colin

“I am going to make a game out of this.” Eddie

“This is quite fun to play with.” Sandy

35

5d. Constructing the Framework

This section is a loose chronological summary of the development process of Playboard. It is an
abstract of the events I felt best embodied the significant moments of adherence and deterrence of
design goals. Whilst the goals of the project were largely fixed, there were many unexpected
constructional issues that arose during the course of development, causing me to backtrack and
reconsider new information in my approach. In many ways, modelling my artefact and experimenting
with its behaviours before development was a form of research that occurred very frequently during the
development process.2

The first aspect I had focused on was the formation of the visual cognitive model. The goals I
had highlighted for the visual interfaces were to be supportive of high level interaction without
impeding on vision. From the very start, I was looking for a presentational model that was easy to relate
to game design. I immediately knew that I could not reference any of the popular game making
platforms, firstly due to the fact that they were not commonly known, and secondly because of their
lack of friendliness that made it unsuitable for Sandy or even Eddie-type users. However, in referencing
the aspects that made these game platforms functional, I deduced the need to provide a stage, some
form of navigation, options and a channel of feedback. I looked into various other utility-type
conventions and found that most utilities used a constant grey-coloured interface. This I felt was
important to retain as the game screen had the potential to be visually erratic. Grey is the most neutral
colour and works like a background; essentially pushing the stage area and other active areas forward.

 Technicalities and details in areas such coding which are not directly relatable to
the purpose and argument of my thesis were left out. My documentation will explain the various ways I
have struggled to achieve a holistic balance in consideration of the different requirements and needs.

Figure 12.1 Microsoft Word Inspired

Design

Knowing that I could not use many of the conventional
game making interfaces for as a reliable reference, I looked for
other utilitarian programs that the public was already familiar
with. My first design was inspired by Microsoft Word 2007.
(Figure 12.1) It had most of its functions at its top bar, as well as
the use of tabs that helped symbolise areas of selection. It even
featured a blue header bar to look like a Windows program and
to balance the dull colours of the interface. However, after
testing this proved to look too much like a utilitarian program,
and would only relate to Colin-type users who did not mind
staring at boring interfaces.

2 PlayBoard was programmed in Adobe Flash CS4 with Adobe Air and Actionscript 3.0. This was due to the ease of
installation and cross-platform capabilities that helped to reinforce the “user-friendliness” of the program. A
desktop application, rather than a browser-based application was also decided on, so as to make use of localised
files in future extensions.

36

Figure 12.2 Stylised Utilitarian Design

Figure 12.3 Minimalistic version of visual
interface

This interface design was eventually reworked through
several other iterations to become notably glossier, with various
gradients and shiny edges to highlight buttons and tools. (Figure
12.2) Unfortunately, in focusing too much on graphical detail, I
had missed out on a certain key area of usage. Informal
comments on the visual presentation helped me to highlight that
the presentation did not look like it was meant to do anything in
particular. It was important to visually project the kinds of options
a user would wish to know about.

This eventually led to the requestioning of what was truly
needed in relation to matching user cognitive design with a basic
interface. I knew that there were several factors to take into
account, such as the interface should not be too colourful so as to
distract the eye; it had to host a visual stage, selectable icons,
some form of navigation and a feedback channel. Yet, at the same
time it had to have some level of visual interest, whilst
communicating the nature of its activities. What was not well
answered was how much or to what degree I needed to
accomplish all this, and how I was going balance these traits with
my own constraints and resources. The only real measurement of
standard I had was primarily my eye, and secondly the opinions of
testers.

I therefore, started a process of simplification (Figure 12.3), taking out elements that were not

absolutely necessary and prioritising the functionalities that were needed. I decided to leave visual
polishes and attractiveness as a separate issue for future touch-ups. In the mean time, I removed every
element that could afford to be removed. In doing so I was trying to take into account the personas
requirements whilst imagining how the user would actually be interacting with the interface. After
which, I placed essential elements back onto the stage, in a row by row manner, starting with the left
and proceeding to the right - the conventional reading directions of western languages. I also used a
hierarchy of functions of sorts, by placing, arguably most important elements in the top left and the
least on the far right. This procedural placement was to provide as much familiarity of order (as reading
order is commonly recognised, as well as the convention used in software tools) as possible.

37

Figure 13 PlayBoard’s current Interface design, demonstrating the spaciousness and cleanliness that derives from
horizontal spatial usage and reinforcements of left to right order, as well as subtle elements described in Figure 15.

To my own surprise, the strict, methodological process of simplification produced a visual style
by itself. It was minimalistic, and at the same time clear. The significance of each object and their
individual relationships were recognised and the absence of elements such as scrollbars, buttons and
labels diminished distractions for the eye. Minimising elements also allowed better control of widths
and spaces, allowing me to create a sleek form of presentation that was incidentally aesthetically neat,
without disrupting the order of presentation. In addition, I managed to create a large amount of space
(Figure 13), which was a desirable trait for new users such as Eddie and Sandy who would be turned off
easily by cramped or cluttered interfaces.

However, in shifting the menu bar down, the navigational area became significantly less
prominent. The navigation bar (figure 14) is fundamentally linked to all aspects of usage, and it was thus
important to not only be visually noticeable, but also had to reflect its behaviours. I made use of several
text icons to solve this issue, primarily because they were horizontal images, which fit neatly within
horizontal bars. To create attention on these texts I made use of contrast, spacing and size. Being an
entirely gray-scale design, the only option of contrast I was logically able to use was of the distinction
between white and black. White, being the more visually attractive colour was chosen as the font colour,
which was also bolded for additional emphasis. The surrounding environments were then evenly and
gratuitously spaced and shaded, and the texts were enlarged to make them look prominent.

38

 Figure 14 The navigational bar at bottom of stage, designed to be distinguished from the rest of the program

As the major areas of usage were laid down, the visual order naturally became self-evident. It
became easier to fill these spaces up and knowing which areas to leave spacious because of the clear
distinctions of groupings and relevancies. There were several other subtle details (figure 15) about the
use of alignment, spacing, shading, typography and sizing that were put into place to ensure an entire
coherency of presentation. As a final product, the visual presentation achieved a level of ‘obviousness’
that I felt would satisfy the Eddie type user.

Figure 15.1 Dynamically moving button which is very
darkly coloured to provide contrast with navigational
text. Is given a slight 3-dimensional look to its edges
which helps bring a sense of forwardness and distinction
to its contextual area, which was deemed to require
visual attention. The button is also the only element in
the interface which has a rounded corner, providing
contrast in shape and therefore producing emphasis. Its
flattened rectangular shape and protruding sides once
again hints at the horizontal left-to-right reading flow.

Figure 15.3 The PlayBoard prompting text. This was an
area to provide subtle hints and feedback as the user
used the program. As such, it was placed in contrasting
bright area and centralised vertically to ensure
readability. Its positioning was also close to the initial
points of usage, the navigation and object elements, thus
making it easier to read. Yet, its low positioning also
meant it could be easily ignored for Colin and Eddie type
users who do not wish to be guided when using the
program.

Figure 15.2 The PlayBoard logo, used to signify a direct
representation of Play icon on a board. The slants and
arrows are also meant to point towards the right,
enforcing the overall reading direction, whilst the board
hints downwards, indicating the importance of bottom
areas. Green represents permissibility and yellow for
humour, reflecting the personality of an easy-to-use
program for beginners.

Figure 15.4 PlayBoard, the name was chosen as a
synonym for a physical property. PlayBoard establishes
multiple relationships and metaphors of board games,
still objects, getting on board, playing or an object with
physical properties. The application’s interface was also
large, flat looking and resembled a board, thereby
reinforcing contextual identity. The font chosen was Bell
Gothic Std, a san serif font for cleaner visual impression,
which had balanced boldness and clear spacings. With
these two aspects combined the Bell Gothic Std best
embodied a friendly and supportive look. The fonts
colour was also close to black, but not of utmost
darkness, to reduce the extremity of its impression,
implying feelings of ‘softness’.

Aesthetics

Aesthetics is an important part of the game making process because of the use preferences of
the personas Expressive Eddy and Simple Sandy. These users are primarily sensorial rather than
conceptual, and aesthetics was one of the key ways to provide users with a sense of gratification as the

39

stage filled with personally placed objects. This also provided beginners like Sandy, who is not expected
to have her own images or know how to create one, a sense of visually being able to build something
quickly.

Following User-Centred Design’s guide of making use of familiar conceptual models, I made an
assumption that platform games such as Super Mario were well recognised and easy to identify with. As
a result, I decided to provide graphical objects that all related to the common visual conventions of
platform games. (Figure 16) I drew, and to some extent animated, a basic set of platforms, grass, blocks,
characters and stars. The provision of graphics was not meant to control the actions of the user, but
allow the user to form their own interpretations through the placement of them. Nevertheless, I
provided objects that looked like they came from platform games to give beginners a starting idea of
how these objects can be used.

Figure 16 Graphical Objects which showcases a variety of bright colours, distinctive shapes and familiar platform
game style representation of objects.

 These objects were designed to contrast the dull-looking grey interface. As such they are all
distinctly shaped, full coloured and to some extent textured, depending on the model of representation.
All of these features aid in the creation of visual emphasis. They were also made to look like they
popped up slightly from the screen providing a visual hint of their affordance; that is to be interacted
with via clicking and dragging.

In addition to the visuals, I provided the options to include sounds, because they are important
aesthetic elements and complete the entire game making experience. In this way I had only one sound
file, which was personally edited from a previous game I had made, and I also provided a music clip. This
music track3

The interface was not complete without interaction. Upon implementing the individual item
behaviours, there were many other unperfected areas that became evident through informal and
personal testing. For example when attempting to navigate between folders, the transition of pages

 was composed by a friend named Luigi Alvarado in Costa Rica, and was used with his
acknowledged permission. This form of file sharing in turn reflected the nature of amateur game
communities, where artists, coders, designers, musicians and sound artists frequently share their works
to combine into a multimedia object.

3 The track used is entitled “Daytime Detectives”, by Luigi Alvarado (Composer for Media) – Costa Rica.

40

happened too suddenly, leading to unnecessary surprise. Abrupt reactions to mouse clicks or
movements can cause a loss of spatial interpretation, which negatively disrupts the learning process. It
became recognisably important to control the feeling of interaction, and to reduce its impression of
miscommunication.

I made use of animation to give the user a sense of responsiveness that was natural and
affirming. This was firstly done through the elastic motion of the navigational button that followed the
mouse cursor wherever the user navigated to; as if the button reaches out and attempts to understand
where the user wanted to go. The movement as well as spatial effect better reflected the progressive
nature of navigation, reducing the potential feeling of a user getting lost.

Secondly, all usable objects highlighted themselves whenever being hovered, indicating a sense
of pre-selection. Objects that were dynamically selectable would respond by lighting up with a white
glow as the mouse hovered over them. This gave the user a basic recognition of what was being affected,
and increased perceived affordance which became significantly more important as the game building
process progressed and cluttered with objects.

Thirdly, game objects that were interactive made use of drag and drop mouse mechanics to be
placed and moved onto the stage. Dragging provided a sense of manual control that was at the same
time easy to perform, enforcing the idea of confident usage in Sandy and Eddie. It also helped to reduce
the likelihood of occurrences of accidental clicking in unintended areas, or accidental movement when
objects were already in place.

Closer to the end of the production process, when I had many visual objects in place, I was able
to envision the relationships in the interface with the user significantly better. This allowed me to design
an entire framework of predicted usage intentions, which I in turn used to develop a prompting system
to guide the user in interface usage. This prompting system would read the user’s current actions, and
compare it with the user’s history to provide a suggestion that would be appropriate to the respective
context. (Figure 17) I felt this form of communication was much like a conversation in real-time rather
than a documentation which had to be read linearly. This has noted to be one of the most significant
factors which made the program easy to comprehend, as affirmed by my several testers.

Figure 17 Example messages that the prompt displays to aid user in the ease of learning.

Understanding the full cycle of usage also allowed for better reflection of user-desired tasks in
the actual work process. I was able to design a framework that could to some extent distinguish when

41

the user was interested in simply viewing the stage, as compared to when the user actually was looking
for in-depth information. This allowed me to create a dynamically reactive window that provided
appropriate options when the user was trying to examine an object. (Figure 18) Conversely the same
window could also hide to conserve visual space when the user was not examining a game object. This
function became a significant part of the interface use as it was relevant to all interactive objects within
the application.

Figure 18 The pop-up information window in the right central area that appears as user selects an object.

 Lastly, I had to design a simplified process of game
logic, so as to introduce the concept of game making to new
users. I referred to my experiences in programming, and the
use of the conceptual object commonly entitled “functions”,
and presented them as visual options to toggle on and off.
(Figure 19)

 These functions work by pre-coding the sets of
behaviours that belonged to an object, and are activated only
when the user manually turns them on. The functions would
then visually appear during usage, whenever a user examines
an object. In doing so, the user can personally control the
effects of how each behaviour worked in regards to their
contextual placement.

Figure 19 A window depicting options of a
game object’s logical processes. The
options were specially selected to help new
users figure out game logic through
controlled presentations.

 I also made use of the fact that these options were only of two states, on and off, to effectively
reduce the complexity of usage, even though it could still be used to create relatively complex effects.

42

This form of visual presentation became a useful way to represent the “public” and “private” properties
of objects commonly understood in “object-oriented” coding conventions.

5e. Usability Testing

From testing the prototype with several users, there have been a fair variety of responses. Game
development had not been an easy concept to introduce, but was met with relative amount of success.
Users who firstly proclaimed that they were avid game players, all managed to figure out how to create
their own stages as well as create a logical display of win conditions. Expert users, who had game-
making backgrounds, were able to understand the intent of the interface and had commented with
statements like “Very good program for beginners.” There were several true beginners who managed to
perform the tasks as required, but admitted that they still did not understand fully how to use it. Most
of the minor issues such as inappropriate prompting, or lack of indication, that have been highlighted
during the course of testing have already been adopted into the program as fixes. However, PlayBoard is
only a demonstration of a program’s potential state through the presentation of its prototype.
PlayBoard is designed to continually expand and develop through time and as such, will require a
continual effort to identify, control and communicate elements to satisfy user needs.

See Appendix C and Appendix D for the consent form and questionnaire provided to program
testers. As the testing was concerned about collective opinions, actual responses are not published to
retain confidentiality of identities of each individual.

43

Conclusion

Gaming today is not only a leisure activity, but a potential means of communicating experiences
with each other. Each game possesses the capacity to create memories, inspire, relate and teach
concepts at rates that exceeds many other traditional forms of media. A game is essentially an idea,
embodied through representation and interaction. It is the recognition of the value of personalised
ideas that I have attempted to provide users with a game creation tool.

In line with Goal-Oriented Design’s first step to research users and their domains, the first
chapter describes the current amateur game making communities made up of game makers, players and
the environments in which they mutually interact. I have highlighted how the interactions between the
members of these communities have resulted in a system of intercreativity, which is not only notably
popular but were in part responsible for the generation of new game makers. I have also identified the
interaction design approaches that impede on game making and game playing cycle of interactions, as
well as proposed a design approach for game design tools to target these communal needs more
effectively.

The second chapter examined two of the current game making platforms Adobe Flash CS4 and
Unity 2 through their visual interfaces. It elaborated on how Adobe Flash CS4 negatively impacted usage
by congesting too many elements within a screen, projected unclear relationships and provided
functions that were not only impractical, but detrimental to usage. The chapter also explained how
Unity 2’s interface was comparatively better because of the enforcements of visual order, grouping and
appropriate behavioural conventions that attributed to an easier learning experience.

The third chapter examined the traits of Model-Based Design and Human-Centred Design as
representatives of opposing design philosophies. Model-Based Design was noted for its reliability in
production and capability in tackling development-based issues, as well as its fundamental role in
enabling user experience. Human-Centred Design, on the other hand, was valued for its attention on the
user, ability to make objects meaningful, as well as enabling better distribution and marketing of
products. Yet, upon examining the realistic and demanding needs of a design project, it was evident that
neither Model-Based Design nor Human-Centred Design could be excluded from the design process, and
that both the strengths of Model-Based Design and Human-Centred Design were necessary to create
successful products.

The fourth chapter focused on Goal-Oriented Design, which was compared against User-Centred
Design. It demonstrated how Goal-Oriented Design was a desirable methodology because it was unlike
User-Centred Design which only focused on inefficient and sometimes unreliable user testing. Goal-
Oriented Design is essentially an extended form of User-Centred Design, as it not only includes the user
testing process, but also conducts prior research to reduce future misunderstandings. Goal-Oriented
Design is also better at understanding its users, being able to make use of fictional personas to
effectively simulate the usage and associated effects of its users. Goal-Oriented Design was finally

44

deemed to be more reliable, simply because it was a complete approach with an extensive set of
achievable actions, whilst User-Centred Design served best as a checklist than a guideline.

In the design documentation, I described how I made use of Goal-Oriented Design in the
creation of a game making tool entitled PlayBoard. This was achieved by following the Goal-Oriented
Design’s process of Research, Modelling, Requirements and Framework. My research summarised the
current conditions of amateur game making as well as highlighted several key areas of difficulty indie
game makers faced. In modelling, I created three fictional personas of Colin, Eddie and Sandy who were
likely target users of PlayBoard as well as abstracted some of their key concerns in usage. In the
requirements section I further made use of these personas to create a usage scenario that attempted to
understand the real-time experiences of program usage. Lastly, in the section of frameworks, I
accounted the many decisions and actions that have led to the current presentation of PlayBoard.

Ultimately, PlayBoard has been a considerable success. The final usability tests prove that
Playboard engages with the target users, albeit to varying degrees. In terms of usability, there was a
notable difference compared to common products of game making, however in terms of usefulness,
PlayBoard still has plenty of room for potential expansion.

45

46

Appendix A. PlayBoard Preview

PlayBoard is a game making tool designed for the non-professional user. It is meant to demonstrate how
interaction design principles can affect the way we design complex applications. The program was built
by myself within a relatively short timeframe. As a result, this version of PlayBoard is only a prototype of
a game making tool with reduced functionalities. However, the remaining functions are results of careful
selection and planning, and PlayBoard is nonetheless capable of demonstrating a fair variation of basic
games.

 Figure i. Screenshot of PlayBoard.

47

The PlayBoard Visual Introductory Interface

PlayBoard’s visual interface is designed to reflect the progressive activity of usage. Although the starting
interface only presents four basic areas, the number of notable interface elements increases depending
on interaction.

1. Header Bar
This bar contains the
PlayBoard logo, example
menu buttons, as well as
an application closing
button. The menus are
currently not functional,
but are left in the
interface to provide a
sense of recognition and
potential usage.

2. Stage Area
This is the main working
area in which objects
can be dragged. Objects
that are dropped in the
stage area are
immediately active.
Upon selecting active
objects, a sub-window
of possible functions
dynamically appears

3. Toolbar
This is the tool bar
which displays both the
prompts and the
contained objects within
an active folder. An
array of possible objects
appears when a folder is
selected, which can then
be dragged into the
stage or clicked on for
relevant use.

4. Navigational Bar
The navigation bar
displays which folder
you are currently
viewing, as well as the
other available areas
you can navigate to.
Clicking on any one of
these icons leads to a
presentation of its
respective elements.

48

Appendix B. Screenshots from Prototype

49

Appendix C. Consent Form

50

Appendix D. Questionnaire

Thank you for your cooperation. The following survey is an evaluation for a prototype game making
program entitled “Play Board”. It is created by an Honours student from Murdoch University under the
project “Bridging the Gap – Building Better Tools for Game Development”. The answers and comments
that you write here will be used as part of a design process to help improve the game making program.

General Information

Kindly mark the most appropriate answer in the brackets provided.

1. Have you ever used or attempted to use

any computer creative tool such as Adobe
Photoshop, Flash CS3, Adobe Illustrator or
Game Maker?

a. () Not at all.
b. () Attempted, but with little

 success.
c. () Use to a basic degree.
d. () Use with moderate skill.
e. () Use rather extensively.

2. When using such programs, how often do
you encounter usage difficulties?

a. () Not applicable.
b. () Frequently, usually unable to

 solve them.
c. () A varying range of difficulties

 and successes, depending on
 program.

d. () Generally able to find a solution.

3. Are you familiar with game making

programs or the concept of game making?

a. () Not at all.
b. () No, but I would be interested in

 finding out.
c. () Yes, I have some relatable

 experience.
d. () Yes, I have actually been

 involved in the process of game
 making.

51

Program Testing

1. Spend a few moments to familiarise yourself with the interface, click on objects and attempt to
figure out the controls. What do you think the program is for?

2. What do you think about the presentation of the interface? Note down any logical or emotional
impressions that stand out to you, if any.

3. Attempt to create a game scene with backgrounds and platforms. Build as you see fit, and stop
whenever you like. Was this task easy and natural to you? Comment on any difficulties or
positive aspects of the design that encouraged/discouraged you from realising your goal.

4. Place a character and a few stars onto the stage. Was this easy to figure out? State whether you
succeeded and comment on the difficulty of the task.

5. Attempt to make the character move. Was this easy to figure out? State whether you managed
to succeed and comment on the difficulty of the task.

6. Attempt to create the following scenario:
a) Character moves until a collision with a star.
b) A jingle sound is played.

State whether you were successful and comment on the difficulty of the task.

7. Add a few more stars onto the stage and extend the scene accordingly:

a) Character moves until collision with a star.
b) A jingle sound is played.
c) The star disappears.

State whether you were successful and comment on the difficulty of the task.

8. Using the above environment created, attempt to add the following details:
a) Character moves until collision with a star.

52

b) A jingle sound is played.
c) The star disappears.
d) Repeat steps a to d until the last star disappears
e) Display a text “You Win!” on the screen.

State whether you were successful and comment on the difficulty of the task.

9. The tasks given to you so far have acted as prompts to help you design a mini-game. Do you
think you would have been able to do so without prompting based on the interface provided?
State any aspects of this program that have encouraged or discouraged you from achieving this
task.

10. State any other comments, suggestions or complaints you would like to make if you have any.

53

Appendix E. Citations

Bruns, Axel 2008. Blogs, Wikipedia, Second Life, and Beyond: From Production to Produsage. Peter Lang
Pub Inc.

Cooper, Alan, Remainn, Robert and Cronin Dave 2007. About Face 3.0: the Essentials of Interaction
Design. John Wiley & Sons, Inc.

Feller, Joseph, Fitzgerald, Brian, Hissam, Scott A., Lakhani, Karim R, Feller, J. eds. 2005. Perspectives on
Open Source. Cambridge: MIT Press Books.

Fulp, Tom, and Baez, John 2005. “Indie power! Riding the FBI with Alien Hominid”. Game Developer 12.5
(2005): 28+. Academic OneFile. Web. 19 June 2010.

GRABstats.com 2009. Online Gaming Statistics, Industry Figures and Information. Retrieved 23 June
2010 from http://www.grabstats.com/statcategorymain.asp?StatCatID=14

Helgason, David 2009. A free Unity? Retrieved 23 June 2010 from
http://blogs.unity3d.com/2009/10/29/a-free-unity/

Newgrounds 2010a. Fun Flash Portal Statistics. Retrieved 15 June 2010 from
http://www.newgrounds.com/portal/stats

Newgrounds 2010b. The Most Recent Portal Submissions. Retrieved 15 June 2010 from
http://www.newgrounds.com/portal/list.php?which=mr&order=date

Norman, Donald A. 2005. Human-centered design considered harmful. interactions 12, 4 (Jul. 2005), 14-
19. DOI= http://doi.acm.org/10.1145/1070960.1070976

Norman, Donald A. 1988. The Design of Everyday Things. New York: Currency and Doubleday.

Paterno, Fabio. 1999. Model-Based Design and Evaluation of Interactive Applications. London: Springer-
Verlag London Limited

Sheffield, Brandon 2009. “Download Revolution”. Game Developer 16.9 (2009): 21. Academic OneFile.
Web. 19 June 2010.

SourceForge 2010. Dev Status. Retrieved 23 June 2010 from
http://sourceforge.net/softwaremap/?words=&sort=latest_file_date&sortdir=desc&offset=75&type_of
_search=soft&fq%5B%5D=trove%3A794

Tunnell, Jeff 2009. Pushbutton for beginners – a possibility? Retrieved 23 June 2010 from
http://pushbuttonengine.com/forum/viewtopic.php?f=5&t=91

