
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

Development of a Client Interface
for a Methodology Independent

Object-Oriented CASE Tool

A thesis presented in partial fulfilment
of the requirements for the degree

of Master of Science in Computer Science
at Massey University, New Zealand

Steven Kevin Adams

1998

ABSTRACT

The overall aim of the research presented in this thesis is the development of a

prototype CASE Tool user interface that supports the use of arbitrary methodology

notations for the construction of small-scale diagrams. This research is part of the

larger CASE Tool project, MOOT (Massey's Object Oriented Tool). MOOT is a meta­

system with a client-server architecture that provides a framework within which the

semantics and syntax of methodologies can be described.

The CASE Tool user interface is implemented in Java so it is as portable as possible and

has a consistent look and feel. It has been designed as a client to the rest of the MOOT

system (which acts as a server). A communications protocol has been designed to

support the interaction between the CASE Tool client and a MOOT server.

The user interface design of MOOT must support all possible graphical notations. No

assumptions about the types of notations that a software engineer may use can be made.

MOOT therefore provides a specification language called NOL for the definition of a

methodology's syntax. Hence, the MOOT CASE Tool client described in this thesis is

a shell that is parameterised by NOL specifications.

The flexibility provided by such a high level of abstraction presents significant

challenges in terms of designing effective human-computer interaction mechanisms for

the MOOT user interface. Functional and non-functional requirements of the client user

interface have been identified and applied during the construction of the prototype. A

notation specification that defines the syntax for Coad and Yourdon OONOOD has

been written in NDL and used as a test case. The thesis includes the iterative evaluation

and extension of NDL resulting from the prototype development.

The prototype has shown that the current approach to NDL is efficacious, and that the

syntax and semantics of a methodology description can successfully be separated. The

developed prototype has shown that it is possible to build a simple, non-intrusive, and

efficient, yet flexible, useable, and helpful interface for meta-CASE tools. The

development of the CASE Tool client, through its generic, methodology independent

design, has provided a pilot with which future ideas may be explored.

ACKNOWLEDGEMENTS

This thesis is deservedly dedicated to Miriam, one who knows self-control much better

than I, and who always steered me back toward my work when it needed to be done.

Seeing this thesis finally reaching fruition means so much more to me because of her

and her unselfish and unconditional love, support, and encouragement.

Thanks must also go to the following people who have played a part in my research

efforts:

• Daniela Mehandjiska-Stavreva, for being my supervisor, and giving me the

opportunity to work in a field I enjoy;

• Chris Phillips, for the co-supervision and invaluable input you have given to

me in your field of expertise;

• David Page, for checking my work, and for being the one who knew what

they were talking about when no-one else seemed to;

• The other members of the MOOT research team, past and present, whom I

have had the pleasure of working with.

lll

CONTENTS

ABSTRACT ••·•••••·•••••••••••••••••·············••••· I

ACKNOWLEDGMENTS ••• III

CONTENTS ••• V

TABLE OF FIGURES ••.••••••••••••••••••••••••••••••••• IX

INTRODUCTION •••.•••••••••••••••.•..•••••••••••••••• 1

1. 1. OBJECT-ORIENTED DEVELOPMENT 1

1.2. CASE TECHNOLOGY 2

1.3. INDUSTRY ADOPTION OF CASE TECHNOLOGY 5

1.4. META-CASE TOOL INTERFACES 6

1.5. MOOT - A NEW CASE TooL. ... 7

1.6. ARCHITECTURE OF THE MOOT CASE TOOL 9

1.6.1. The MOOT CASE Tool Sub-System 9

1.6.2. Methodology Descriptions .. 11

1.6.3 . Notation-Semantic Mapping 12

1.6.4. CASE Tool Clients 14

1.7. ASPECTS OF MOOT RELATED TO THE THESIS 16

1.8. STRUCTURE OF THE THESIS 16

REQUIREMENTS DEFINITION FOR A NOTATION DEFINITION LANGUAGE 19

2.1. ANALYSIS OFNOTATIONS 19

2.1.1. Object Symbols 23

2.1.2. Connections ... 24

2.1.3. Docking Areas 26

2.1.4. Presentation Issues 28

2.2. REQUIREMENTS OF NDL 30

2.3. PREVIOUS RESEARCH ON AN ABSTRACT NOTATION DEFINIDON LANGUAGE 31

V

Vl

2.3.1. Overview 31

2.3.2. Basic Language Philosophy 32

2.3.3. Definition of Language Primitives 33

2.3.4. Definition of Language Templates ... 35

2.3.5. Notation-Semantic Mapping 36

NOTATION DEFINITION LANGUAGE PRIMITIVES 37

3.1 . DESCRIBING NOTATION ELEMENTS IN NDL 37

3.2. EQUATIONS AND EXPRESSIONS 39

3.3. GRAPHICAL COMPONENTS 42

3.4. GROUP TEMPLATES 47

3.5. ACTIVE AREAS 49

3.6. DOCKING AREAS ... 53

3.7. BOUNDING REGION 60

NOTATION SPECIFICATION AND INTERPRETATION 61

4.1. NOTATION SPECIFICATIONS 61

4.2. NOTATION TEMPLATES 63

4.2.1. Object Templates 63

4.2.2. Connection Symbol Templates 65

4.2.3. Connection Terminator Templates 69

4.2.4. Template Class Hierarchy 70

4.3. DESIGN OF THE NDL INTERPRETER 71

4.3.1. Context 72

4.3.2. Viewable Properties and Viewable Things 72

4.3.3. Expressions 73

4.3.4. Segment Templates 75

4.3 .5. Segments ... 76

4.3.6. Templates 77

4.3.7. Views 78

A CASE TOOL CLIENT AND THE NOTATION DEFINITION LANGUAGE 81

5.1. OVERVIEW OF CLIENT INTERFACE 81

5.2. NDL AND THE DIAGRAM EDITOR ... 85

5.2.1. GUIComponents 85

5.2.2. ModelComponents 89

5.3. DIAGRAM CONSTRUCTION 91

Vll

5.3.1. Creating Object Symbols ... 92

5.3.2. Creating Connections 93

5.3.3. Interacting with Graph Objects 94

5.3.4. Deleting Object Symbols and Connections ... 95

5.3.5. Supporting Undo and Redo 97

5.4. MAINTAINING DIAGRAM INTEGRITY 99

DESIGN OF THE CLIENT GRAPHICAL USER INTERFACE 103

6.1. ANALYSIS OF GUI REQUIREMENTS ... 103

6.1.1. Functional Requirements ... 104

6.1.2. Non-Functional Requirements ... 105

6.1.3. Design Issues ... 106

6.2. DESIGN OVERVIEW .. 107

6.2.1. Interface Basics ... 107

6.2.2. Drawing Tools (Modes) .. 108

6.3. OBJECT SYMBOLS .. 110

6.3 .1. Auto-highlights and Selection ... 110

6.4. INTERACTING WITH ACTIVE AREAS ... 111

6.4.1. Text Area Updates ... 111

6.4.2. Group Transitions .. 114

6.5. CONNECTIONS ... 115

6.6. MOVING GRAPH OBJECTS 121

6. 7. DELETING GRAPH OBJECTS ... 123

6.8. UNDOING AND REDOING DRAWING ACTIONS .. 124

CLIENT-SERVER COMMUNICATIONS ... 125

7 .1. COMMUNICATIONS OVERVIEW 125

7 .2. COMMUNICATION PACKETS ... 127

7.3. CLIENT-INITIATED COMMUNICATION 128

7.3.1. Client-Level Requests 129

7 .3.2. Project-Level Requests .. 129

7.3.3. Model-Level Requests ... 131

7 .3.4. Diagram-Level Requests ... 132

7 .3.5. Graph-Object-Level Requests 132

7.4. SERVER-INITIATED COMMUNICATION 133

7.4.1. Client-Level Requests ... 134

7.4.2. Project-Level Requests 135

7.4.3. Model-Level Requests 135

Vlll

7.4.4. Graph Object-Level Requests 135

7.5 . NOTATION TRANSPORTATION 136

7.6. NDL SERIALISED ABSTRACT SYNTAX TREE (AST) GRAMMAR 139

7.6.1. AST Notation Specification 139

7.6.2. Serialisation of Notation Primitives 140

7.6.3. Template Serialisation 145

7.7. DIAGRAM TRANSPORTATION 147

IMPLEMENTATION OF THE MOOT CASE TOOL CLIENT 149

8.l . lMPLEMENTATIONLANGUAGE 149

8.2. lMPLEMENTATIONDETAILS 151

8.3. RESULTS OF TIIE IMPLEMENTATION 153

CONCLUSION ••• 155

9.1. REVIEW OF THE NOTATION DEFINIDONLANGUAGE 155

9.1.1. Future Work 157

9 .2. REVIEW OF TIIE CASE TOOL CLIENT INTERFACE 159

9.2.1. Future Work 159

9.3. CONCLUSION 160

GLOSSARY ••• 161

REFERENCES ••• 165

APPENDIX A - EBNF DEFINITION •• 173

APPENDIX B - NOTATION DEFINITION LANGUAGE GRAMMAR 177

APPENDIX C - NOTATION ABSTRACT SYNTAX TREE SERIALISATION

GRAMMAR ••• 183

APPENDIX D - SAMPLE NOTATION SPECIFICATIONS 187

APPENDIX E - SPECIFICATION OF PACKET CONTENTS FOR CLIENT-

SERVER COMMUNICATION ••• 195

TABLE OF FIGURES

Figure 1-1 - Graphical user interface of the Paradigm Plus CASE Tool.. 7

Figure 1-2 - Architecture of the CASE Tool Sub-system of MOOT 9

Figure 1-3 - Relationship between software projects, methodology descriptions,

and the description languages 12

Figure 1-4 - Multiple views of an SSL object 13

Figure 1-5 - Notation-Semantic Mapping ... 14

Figure 1-6 - The relationship between Viewable Thing, NDL Template, and

NDL View 15

Figure 2-1 - Comparative examples of notations .. 21

Figure 2-2 - UML class symbols 23

Figure 2-3 - Topological description of a UML class symbol... 23

Figure 2-4 - Common sub-components in Coad and Yourdon 24

Figure 2-5 - Conceptual relationships 25

Figure 2-6 - Composition of connections ... 26

Figure 2-7 - Docking areas on Coad and Yourdon object symbols 27

Figure 2-8 - UML Sequence Diagram .. 28

Figure 2-9 - A UML class symbol showing various levels of detail 29

Figure 3-1 - Topological description of a UML class symbol... 38

Figure 3-2 - Common sub-components .. 39

Figure 3-3 - A UML class symbol with active areas and docking areas 39

Figure 3-4 - The Graphical Component class hierarchy .. .43

Figure 3-5 - Calculation of an arc's start angle and extent..45

Figure 3-6 - Arcs defined by bounding rectangle, start angle, and extent..45

Figure 3-7 - The Group Segment Template class hierarchy48

Figure 3-8 -The Active Area Segment Template hierarchy 50

Figure 3-9 - Association between a "text-area-update" active area and

its underlying text area at the user interface level 51

Figure 3-10 - Common text areas ... 52

Figure 3-11 - The Docking Area Segment Template hierarchy 54

Figure 3-12 - Point Docking Areas 55

Figure 3-13 - Line Docking Areas 57

Figure 3-14- Coad and Yourdon Line Docking Areas .. 57

Figure 3-15 - Arc Docking Areas 59

ix

X

Figure 4-1 - The composition of the Notation class 62

Figure 4-2 - Connection Symbol Template Rotation ... 66

Figure 4-3 - Grouped inheritance connection in Coad and Yourdon 67

Figure 4-4 - Ternary relationship 68

Figure 4-5 - Features of connection terminators 70

Figure 4-6 - The Template class hierarchy 71

Figure 4-7 - The Context class 72

Figure 4-8 - The Viewable Properties class hierarchy 73

Figure 4-9 - The Viewable Things class 73

Figure 4-10 - The Expression class hierarchy 74

Figure 4-11 - The Segment Template class hierarchy 75

Figure 4-12-The Segments class hierarchy 76

Figure 4-13 - The Action class hierarchy 77

Figure 4-14 - The Template class hierarchy 78

Figure 4-15 - The View class hierarchy ... 78

Figure 5-1 - MOOT CASE Tool Client Model 82

Figure 5-2 - CASE Tool Client Construction 84

Figure 5-3 -The GUIComponents class hierarchy 86

Figure 5-4 - Composition of a diagram via GUIComponents 89

Figure 5-5 -The ModelComponent class hierarchy 90

Figure 5-6 - Composition of a diagram via Model Components 91

Figure 5-7 - GUIJoinableComponent interface 99

Figure 5-8 - Forward and backward chaining of GUIComponents 100

Figure 5-9 - Movement of object symbols 101

Figure 6-1 -Toolbar for the Coad and Yourdon OOA methodology 108

Figure 6-2 - Pop-up menus for selecting drawing tools 109

Figure 6-3 - Conveyance of drawing modes via toolbar and mouse cursor.. 109

Figure 6-4 - Auto-highlighting of a graph object.. 110

Figure 6-5 - Context-sensitive pop-up menus 111

Figure 6-6 - Text editing via a custom on-screen editor .. 114

Figure 6-7 - Pop-up menus on single-line and multi-line text areas 114

Figure 6-8 - Group transitions on a class symbol.. 115

Figure 6-9 - Creating connections 116

Figure 6-10 - Creating comers on connecting lines 117

Figure 6-11 - Connection symbol rotation 117

Figure 6-12 - Preview of a complete connection 118

Figure 6-13 - Creating ternary associations 119

Figure 6-14 - Creating multiple grouped connections ... 119

xi

Figure 6-15 - Context-sensitive pop-up menu for connection symbols 120

Figure 6-16 - A mock-up of the "Change Terminator" dialog 120

Figure 6-17 - A model before and after movement of object symbols 121

Figure 6-18 - Movement of connection symbols 122

Figure 6-19 - Graph object associations with connections ... 123

Figure 6-20 - Example delete warning dialog 124

Figure 7-1 - Client-Server communication sub-systems 125

Figure 7-2 - Notation parsing in the Client.. 136

Figure 7-3 - Notation parsing in the Server 137

Figure 8-1 - Sample Coad and Yourdon class diagram 154

Figure 9-1 - Text wrapping in a process bubble 157

Figure 9-2 -Text wrapping in a UML class symbol... 158

Figure 9-3 - Text areas in UML class symbols showing varying levels of detail 158

Chapter 1

INTRODU CTION

1. 1. Object-Oriented Development

Over the past decade, object-oriented (00) technology has moved into the mainstream

of industrial-strength software development. Object-oriented languages in particular

were developed in response to a need for programming languages with semantics that

captured more meaning from the problem domain, rather than from the artefacts of

computer hardware (Collins, 1995). The evolution of software development methods

from structured analysis, design, and implementation to object-oriented approaches has

revolutionised the way that software is built (Sommerville, 1996). Indeed, 00

modelling techniques have changed the way that we think about enterprises and the way

we design related business processes (Martin, 1993).

Object-oriented software development is characterised by four mam features:

information hiding (encapsulation), data abstraction, inheritance, and dynamic binding.

Object-oriented modelling techniques focus software development on data (ie. objects)

and the interfaces to it, rather than on the tools that are available for system

construction. Encapsulation and data abstraction allow a clear separation between the

specification of data and how it may be manipulated, and the actual implementation of

object interfaces. Inheritance allows new classes to be defined in terms of existing

classes, thereby improving and reinforcing reuseability. Dynamic binding allows

different but related classes of objects to be dynamically substituted in place of a

common class, which supports a higher level of generalisation than could have

previously be obtained.

The acceptance of 00 modelling techniques as an effective software development

strategy has led to the development of numerous 00 methodologies (over 50 at the time

of writing). Each 00 methodology prescribes a particular process for one or more

phases of the software development lifecycle including requirements gathering,

analysis, design, implementation, testing, and maintenance. Each 00 methodology

1

2

uses its own set of models that are used to describe a software artefact. Construction of

these models is undertaken using a methodology's own particular set of notations.

Three generations of 00 methodologies have been defined over the past decade. First

generation methodologies were developed in the late 1980s and early 1990s. These

included Wirfs-Brock's responsibility driven design (Wirfs-Brock, 1990), Booch's

OOD (Booch, 1991), Rumbaugh's OMT (Object Modelling Technique) (Rumbaugh,

1991), Coad and Yourdon OOA/OOD (Coad and Yourdon, 1991a, 1991b), Shlaer and

Mellor's OOA (Shlaer and Mellor, 1991), and Jacobson's Objectory (Object Factory for

Software Development) (Jacobson et al, 1994).

The first generation techniques were applied and evaluated, resulting in second

generation methodologies. These included Booch's OOA/OOD (Booch, 1994),

Graham's SOMA (Semantic Object-Oriented Modelling Approach) (Graham, 1994),

Henderson-Sellers' MOSES (Methodology for Object Oriented Software Engineering

Systems) (Henderson-Sellers et al, 1994), Martin and Odell's Advanced Object

Modelling (Martin and Odell, 1995), Coleman's Fusion method (Coleman et al, 1993)

and Rumbaugh's second generation OMT (Rumbaugh, 1995a, 1995b).

To address the diversity of first and second generation methodologies, the 00

community has started looking at the possible standardisation of third generation

methodologies. The Unified Modelling Language (UML) (Booch, 1994; Rumbaugh,

1995b; Jacobson et al, 1994) and the OPEN Modelling Language (OML) (Henderson­

Sellers et al, 1996) have been defined. UML is a convergent modelling language

comprising Booch, Rumbaugh's OMT, and Jacobson's Objectory. OML is proposed by

Brian Henderson-Sellers, Ian Graham, and Donald Firesmith, with input from a

Consortium of methodology researchers including Larry Constantine, Meilir Page­

Jones, Bertrand Meyer, Rebecca Wirfs-Brock, and James Odell. UML provides only a

notation, whilst OML also has a defined process.

1.2. CASE Technology

The diversity of 00 software development methodologies was reflected by the creation

of several generations of CASE (Computer Aided Software Engineering) tools. The

main objective of CASE tools is to support software engineers in some or all phases of

the software development lifecycle, with the ultimate aim of enhancing productivity and

producing low defect solutions. First generation CASE tools addressed mostly form

and representation issues of software development methodologies (Sorenson, 1988a).

3

Program support tools such as translators, compilers, assemblers, linkers, and loaders

were developed. Later, the range of support tools began to expand with the

development of program editors, debuggers, code analysers, and so on. (Page et al,

1998)

Large-scale software development, however, demanded enhanced support for the entire

software development process from CASE tool developers (Sumner, 1992). Assistance

was required for the requirements definition , design, and implementation phases of the

software development lifecycle. Testing, documentation and version control support

was also required. The evolution of CASE tools split into two broad domains. Front­

end or upper-CASE tools were concerned with the early phases of the software

development lifecycle (such as requirements definition and design support tools).

Those tools used later in the lifecycle (such as compilers and testing tools) were referred

to as back-end or lower-CASE tools.

First generation CASE tools aided the user in creating system analysis and design

diagrams, and detailed textual-based specifications. They performed consistency,

completeness, and correctness checking, and some provided a primitive form of code

generation. Their main disadvantages were inadequate methodology support, no

customisation facilities, lack of support for reverse engineering, and an inability to

integrate the different CASE tools used at various stages of software development (Page

et al, 1998).

Second generation CASE tools attempted to address some of the problems of first

generation tools. Integration was achieved by sharing the definitions of objects and

relationships described in a common dictionary. Methodology support was improved

by the production of tool sets supporting customisation using a meta-system approach

(Brough, 1992; Rossi et al, 1992; Smolander et al, 1991; Sorenson, 1988b). However,

second generation CASE tools were still deficient in a number of important areas. They

lacked support for defining new methodologies (Nilsson, 1990; Papahristos, 1991), and

they did not provide information interchange of analysis and design results expressed in

different methodologies. Meta-system support for the description of the semantics of

more than one methodology was also limited (Mehandjiska et al, 1996a). From a

useability perspective, the tools did not facilitate the navigation of complex structures of

data. (Page et al, 1998)

Current research into CASE technology has been concentrated in two main areas. The

first addresses the development of software environments with an open architecture,

4

aiming at the integration of independently developed CASE tools (Lang, 1991; Nilsson,

1990; Sorenson, 1988b; Papahristos et al, 1991). Attempts have been made to create an

open environment in which different methodologies and their supporting CASE tools

coexist. Such environments would provide multiple views of evolving models in both

graphical and textual forms. To support the user, all views within an environment

would be kept consistent with one another in as automatic and transparent a fashion as

possible (Grundy et al, 1995). The benefit to users of such integrated environments is

that the interaction model with the tool is consistent across all phases of software

development. This approach has increased the reuseability of information. For

example, communication among diverse methodologies has been addressed by a

common data dictionary in the proposed Federated CASE Environment (Papahristos et

al, 1991). Unfortunately, however, these environments are typically restricted to

particular methodologies, and cannot be significantly extended or customised to meet

specific user requirements.

The second area of research addresses the methodology dependence of CASE tools. A

meta-modelling approach has been utilised to allow the generation of customised

software environments. The goal of a meta-system is to (semi-)automatically generate

the software necessary for a specific environment. Research prototypes adopting this

approach include Metaview, MetaEdit, MetaPlex, and RAMATIC (Smolander et al,

1991, Sorenson et al, 1988b). The meta-system approach allows the environment for a

given methodology to be specified in two parts: a conceptual definition, and a graphical

definition. Conceptual definitions can be based on different data models. For example,

MetaEdit (Smolander et al, 1991) is based on the Object-Property-Role-Relationship

(OPRR) model, Metaview (Sorenson et al, 1988b) is based on Entity-Aggregate­

Relationship-Attribute (EARA) model, and RAMATIC is based on the set-oriented data

model. The developed prototypes support mechanisms to express the mapping between

the meta-modelling concepts and the corresponding graphical representations.

The developed meta-tools have several deficiencies. In general, none of these systems

are aimed purely at 00 software development. The underlying models of the tools (eg.

EARA, OPRR, etc.) do not directly support the object-oriented concepts of inheritance

and message passing. In addition, the developed research prototypes also do not

address the important human-computer interaction issues.

5

1.3. Industry Adoption of CASE Technology

Due to the vast number of 00 software development methodologies, an equally large

number of 00 CASE tool products are available for use in the software industry. Each

product offers support for specific phases of the software development lifecycle, using

any manner of methodologies .

Unfortunately, many of the current 00 CASE tools suffer from generic problems. One

of the fundamental problems is the lack of flexibility (Phillips et al, 1998). Because of

their methodology dependence, current CASE tools often cannot meet the needs of

different users, and many CASE environments provide too fixed a variety of techniGiues

(Marttiin 1994). In one study conducted on the adoption of CASE tools in industry

(Iivari, 1996) it was found that although CASE tools improved development procedures

and standardisation to a degree, in many cases an increase in productivity was not

forthcoming. This may be due to the lack of CASE tool functionality being properly

identified. Identifying and standardising CASE tool interfaces is crucial for the success

of open and customisable CASE environments (Lang 1991).

The software industry has been very slow to adopt CASE technology for many other

reasons:

• The support of a methodology that is provided by a CASE tool is often

limited to a collection of diagram editors that correspond to the various

models a methodology provides. The underlying process and the actual

methods are often ignored.

• Many firms utilise in-house processes or methodologies. Their means of

work may also be a modification or extension of a popular, accepted

methodology. Neither of these situations are supported very well by current

CASE technology as the majority of 00 CASE tools do not allow

customisation.

• CASE tools that support the exchange of information between individual

components of the CASE environment do so at the expense of effective

exchange of information between the software engineers who need to work

together on a project (Churcher et al, 1996). Often users of such tools are

given the impression that they are the only user of the system.

• Many CASE tools do not integrate well into the existing operation of an

organisation. This means that changes are required to adopt a new tool.

People in general are resistant to change.

6

• CASE tools do not provide support for reuse of analysis and design models

between different projects. Whilst 00 technology does not guarantee reuse,

it is generally accepted that one of the principle objectives of 00 technology

is to support reuse.

• Some people feel that CASE tools will 'de-skill' and 'constrain' them rather

than enhance their productivity.

The reasons for lack of proliferation of CASE technology in the software industry can

be classified into limitations concerning flexibility, functionality, and useability of the

available CASE tools.

1.4. Meta-CASE Tool Interfaces

Research in the area of meta-CASE technology has focused almost entirely on the

underlying meta-models of such tools and the application of these meta-models to

describing the semantics of methodologies. The evaluation of several well-known

meta-CASE tools (Graphical Designer, Meta Edit+, Rational Rose, WithClass, and

OOTher) (Phillips et al, 1998) suggests that very little research has been conducted on

the user interface requirements of such tools. The evaluation framework described in

the paper identifies criteria of a user interface that relate to usability. In reference to

useability, it was found that the meta-CASE tools examined were inflexible, supporting

the view that current CASE tools provide a rigid environment in which user actions are

constrained. Also of concern was that none of the tools were considered particularly

robust, in that support for the achievement of user goals (such as error prevention and

recovery) was potentially lacking.

The results of this evaluation are not surprising. The design of the user interface of

meta-CASE tools is a much more difficult task than for a traditional piece of software.

Meta-CASE tools are designed to support multiple software development

methodologies, and hence the user interfaces to them must be designed at a very high

level of abstraction. Features specific to a subset of the available methodologies

typically cannot be supported without the tool becoming more specialised toward that

subset. The user interface of a meta-CASE tool would need to either support only the

subset of user interface features common to different methodologies, or support some

method of parameterisation that allows the interface to be customised to arbitrary

methodologies.

7

Many CASE tool environments are unnecessarily complex. For example, consider

Figure 1-1. This shows the user interface of the Paradigm Plus CASE tool, and is a

typical example of the traditional direct manipulation, tool-based interface. This

interface appears large and complex, and the diagram being edited is overwhelmed by

the interface
1
• Such an interface can be quite difficult and slow to use, mainly because

it is based on modes and selections. A user interface that was much leaner in design,

and provided more generic methods of operation that could be supported easily across a

wide range of methodologies, would be significantly quicker to learn, easier to use, and

reduce the net amount of errors and error-recovery mechanisms required .

. . . Player . .

+mfrrie ·
-acct_baiance
-networttr · ·
-ass~_list ·. ·

+buy _property()
+sel(..prilpert)l1'.)

Figure 1-1- User interface of the Paradigm Plus CASE Tool (Noble, 1996)

1.5. MOOT - A New CASE Tool

Research to address the deficiencies of existing CASE technology has been undertaken

through the development of a new CASE tool, MOOT (Massey's Object-Oriented Tool)

(Mehandjiska et al, 1995, 1996a; Page et al, 1998). The research aim is to construct a

useable, customisable CASE tool which provides a framework within which 00

methodologies can be described.

The initial focus of the research was the development of a CASE tool which supports

only 00 methodologies. However, further consideration of existing 00 methodologies

1
It should be noted that the image is from promotional material for Paradigm Plus, and hence the figure

appears more congested than it would in normal use.

8

indicated that some of them support models adopted from conventional structured

analysis/structured design and information engineering methodologies (eg. Rumbaugh,

Martin and Odell, UML). In addition, future developments of 00 technology may

result in new methodologies with different perceptions of the 00 paradigm and

consequently new requirements for the supporting tools. These future developments

cannot be predicted. This means that the new methodology independent CASE tool

MOOT must be flexible enough to allow description of such methodologies.

Methodologies are defined in terms of a process with which a software artefact is

developed. The process involves the construction of a number of models that describe

the artefact. These models have semantic meaning from which information about the

artefact can be ascertained. Models typically consist of graphical structures that are

built using a predefined set of symbols. These symbols form the syntax with which

models may be expressed.

To allow high levels of customisation and flexibility, MOOT utilises two methodology

specification languages: Semantic Specification Language (SSL) and Notation

Definition Language (NDL). These languages support the definition of the semantics

and syntax of a methodology, respectively. The logical and physical separation of the

two languages is a fundamental design decision to promote reuse of semantic and

syntactic methodology components. For example, an SSL description of a methodology

may be associated with more than one NDL definition.

The underlying meta-modelling approach adopted by MOOT breaks away from

traditional methods used in existing meta-CASE tools. Instead of extending the

conventional models to permit advanced semantic-based data modelling (eg.

aggregation, generalisation, and classification), the MOOT approach is to use the object

meta-model which naturally and directly supports all these concepts. To this end,

MOOT is based on the object-oriented concepts of objects, classes, inheritance, and

message passing. MOOT has a common methodology knowledge base which models

the core (generic) 00 concepts. Non-generic features of 00 methodologies require the

use of specialised knowledge bases to allow the complete definition of an 00

methodology. The common methodology knowledge base serves as a basis for

achieving migration of analysis and design results between different methodologies.

9

1.6. Architecture of the MOOT CASE Tool

The MOOT environment is divided into two logical sub-systems: the CASE Tool sub­

system, and the Methodology Development sub-system. These sub-systems support the

two types of users of MOOT. The first is the software engineer who interacts with the

CASE Tool sub-system to build descriptions of software artefacts (referred to as a user

project). The second is the methodology engineer who interacts with the Methodology

Development sub-system to build and modify descriptions of methodologies. The

research presented in this thesis relates only to the MOOT CASE Tool sub-system.

1.6.1. The MOOT CASE Tool Sub-System

The CASE Tool sub-system is the CASE of the MOOT environment. It is an integrated

tool-set that allows software engineers to develop software by applying methodologies

described using the Methodology Development sub-system. The behaviour of the

CASE Tool sub-system is completely determined by the methodology is use. Each user

project is an instance of the methodology the software engineers use to define it.

The CASE Tool sub-system supports a client-server architecture, as shown in Figure

1-2. Multiple clients may interact with the CASE Tool server via the Tool Manager of

the MOOT Core. The Tool Manager functions as a server, processing one thread of

control for each CASE Tool client. The Tool Manager maintains an instance of a

Methodology Interpreter for each user project that is open in each client. The Tool

Manager and the Methodology Interpreters are in turn clients of the Persistent Store.

The Persistent Store is a shared repository that facilitates storage of methodology

descriptions, user projects , individual user environment details, and so on.

CASE Tool Server Sub-System

Tool
Manager

Communications
Medium

Figure 1-2-Architecture of the CASE Tool Sub-system of MOOT

10

CASE Tool Clients

Each CASE Tool client is only responsible for the presentation of, and user interaction

with, a methodology. The only methodology specific information maintained by a

client is an NDL description of the methodology syntax. A Notation Interpreter is used

in the client to provide the syntactic descriptions of a methodology and the user

interactions that may occur with these descriptions to the graphical user interface. The

semantics of methodology descriptions are managed by unique corresponding instances

of a Methodology Interpreter in the server. Each client is responsible for mapping

physical user input to equivalent logical actions for the CASE Tool server. Only actions

that have an effect on the meaning of the model being described are propagated to the

server (eg. the creation or deletion of a concept or · connection). The Methodology

Interpreter corresponding to the methodology in use applies the description of that

methodology, specified using SSL, to create user software projects.

Server Proxy

The communication between the client and server sub-systems is supported by a Server

Proxy defined in the client. This proxy acts as a communication interface between the

client's graphical user interface and the Tool Manager. Requests for semantic changes

to a model are generated by various user interactions with the graphical user interface.

The Server Proxy is responsible for assembling these requests into a suitable form for

transmission to the server. The Server Proxy is also responsible for receiving requests

from the server, and delivering the request details to the appropriate target in the client.

Only one instance of a Server Proxy is created in each instance of a client.

Tool Manager

The Tool Manager facilitates communication between CASE Tool clients and the other

components of the server. The Tool Manager is responsible for coordinating access to

shared resources, and for monitoring the system's operation. Only one instance of the

Tool Manager is operating in each instance of the MOOT CASE Tool sub-system. The

Tool Manager is responsible for maintaining details on the user environments specific

to each client, such as personal preferences, the methodology in use, the projects that

are open, and so on. The Tool Manager is also responsible for maintaining

corresponding instances of Methodology Interpreters for each project that is open in

each CASE Tool client.

11

1.6.2. Methodology Descriptions

A methodology description in MOOT is composed of three parts: a description of the

semantics of the methodology, a description of the visual syntax, and a table describing

the mapping between the two descriptions (a Notation-Semantic Mapping (NSM)

Table). Two methodology specification languages have been developed to allow the

definition of the semantics and syntax of a methodology in the MOOT system.

Respectively these are SSL (Semantic Specification Language) and NDL (Notation

Definition Language).

SSL
SSL is an object-oriented language used to define the semantics of a methodology (Page

et al, 1997, 1998). The semantic description includes the models supported by the

methodology, the underlying process, and the various documents that are produced by

application of the methodology. A semantic description of a methodology consists of a

collection of SSL classes. SSL classes are compiled into a platform-independent,

binary byte-code representation that is interpreted by an SSL virtual machine. Each

Methodology Interpreter contains an instance of an SSL virtual machine (Page et al,

1997).

Each SSL class may have many instances. For example, an SSL class that represents a

particular methodology model will have a corresponding SSL object instance created

for each new model of that type that is created. A software project, developed with a

particular methodology, consists of a collection of SSL objects.

NDL

NDL is a scripting specification language used to define the notation of methodology

models. Notations are described in an NDL specification as a collection of NDL

templates. NDL templates describe how the symbols and connections that may appear

in the individual diagrams of a model are rendered onto a computer display. NDL

provides facilities for binding user actions (such as text area updates) to symbols and

connections. Logical distortion (the reshaping of symbols to show more, less, or just

different information) is also supported in NDL.

A rendered image that is generated from an NDL template is called an NDL view. A

new NDL view is created every time a property of the view (such as the contents of a

text area) is modified. Many NDL views may be created from a single NDL template.

For example, every view of a class symbol that is rendered in a diagram will be an

instance of a single NDL template that describes the appearance of such a symbol.

12

Figure 1-3 shows the relationship between the description languages (SSL and NDL), a

description of a particular methodology in MOOT, and a corresponding software

project. A methodology is described by a collection of SSL classes and NDL scripts.

Software projects in MOOT consist of a collection of SSL objects and NDL views. A

software project in MOOT is an instance of a methodology description that is defined in

SSL and NDL.

Semantics

Syntax

Figure 1-3 - Relationship between software projects, methodology
descriptions, and the description languages

NSM Table

Each methodology description also defines exactly one Notation-Semantic Mapping

(NSM) table. NSM tables (which exist in the Tool Manager of the CASE Tool server

sub-system) contain the mapping necessary to translate logical actions at the user

interface (such as the creation or deletion of a connection) to the corresponding

equivalent semantic action. This means the logical action is transformed into a message

to an SSL object which responds to the action. In the process of executing a semantic

action, an SSL object may generate other semantic actions as a side effect. If these

knock-on actions affect the syntactic representation of a model, then the user interface

needs to be informed. Therefore, the NSM table is also be used to transform semantic

actions back into the equivalent logical actions that the user interface can deal with.

1.6.3. Notation-Semantic Mapping

NDL views are visual representations of the semantic information described by SSL

objects (for example, a particular class or object). An SSL object may take part in more

than one model in a project (for example, an object may appear in sequence and class

diagrams in UML). Thus more than one view for any SSL object will often exist

(Figure 1-4). The different views may exist in different contexts (ie. different models)

13

but may also appear in the same context (for example the same external entity may

appear more than once on a data flow diagram).

/ ViewB / / ViewC \

q-SS-LObje-c< p
Q Q c:::s 8

Figure 1-4 - Multiple views of an SSL object

An NDL view is a container of visual syntax information and is derived from an NDL

template. De-coupling as much as possible an NDL view from the SSL object that it

represents is one of the requirements of MOOT.

An SSL object proxy is used in MOOT to de-couple NDL views and SSL objects. An

SSL object proxy, termed a viewable thing, is a container of the values of the attributes

of an SSL object, and provides the values that appear in the text areas in a

corresponding NDL view2
. Attributes of SSL objects are typed (integers, strings ,

collections, and so on), while properties of viewable things (ie . viewable properties) are

only strings. The purpose of this de-coupling mechanism is to maximise the separation

between the NDL and SSL descriptions. The use of strings in a viewable thing has been

also been adopted by UML, as stated in the UML notation guide (Rational, 1997):

"Strings represent various kinds of information in an ' unparsed' form.

UML assumes that each usage of a string in the notation has a syntax by

which it can be parsed into underlying model information. For example,

syntaxes are given for attributes, operations, and transitions. These

syntaxes are subject to extension by tools as a presentation option."

Each property that an SSL class defines has a type, and an ID number that is unique

within the context of the MOOT system. Viewable properties that relate to the

attributes of SSL objects are all strings, and have an ID number that is unique within the

context of a particular notation. NDL templates are written in terms of viewable

2 A viewable thing is actually a container of all the syntactic and semantic properties of view. Only the
properties that relate to SSL objects relevant to the notation description are discussed in this section.

14

property ID numbers. The mapping between SSL ID numbers and viewable property

ID numbers is defined in a Notation-Semantic Mapping table (Figure 1-5).

Viewable
Thing

State

Each property is a string,
and has a unique VP_ID.

NSM table
VP _ID A= SSL_ID Z

- --. VP _ID B = SSL_ID Y
VP _ID C = SSL_ID X
VP _ID D = SSL_ID W

SSL
Object

State and behavior

Each property has a type, a
unique SSL_ID, and a value.

Figure 1-5 - Notation-Semantic Mapping

This notation-semantic mapping mechanism effectively isolates the syntactic and

semantic descriptions of a methodology to the extent that different NDL descriptions

may be associated with different SSL descriptions. By modifying the NSM table, a

single notation can be associated with completely different semantic definitions.

Alternatively, an SSL semantic description may be able to be expressed using different

notations. This support for reuse in MOOT is fundamentally different to that of other

meta-CASE environments which only provide reuse by duplication (such as

MetaEdit+). The reuse strategy of MOOT is a reflection of the underlying object meta­

model.

1.6.4. CASE Tool Clients

The CASE Tool clients of the MOOT system encapsulate all the information on how to

display, manipulate, and control the interface that software engineers use in the

description of software artefacts. The CASE Tool client sub-system provides support

for software engineers to create user projects using software engineering methodologies

that have been previously defined. User projects typically consist of a number of

models supported by the methodology. Each model may contain one or more diagrams.

In most instances there is a one-to-one mapping between models and diagrams (ie. a

model generally contains only one diagram), however multiple diagrams may be

permitted where a methodology definition supports it.

A MOOT CASE Tool client is essentially a graphical user interface (GUI) shell that is

parameterised by NDL specifications. Each specification defines the syntax of a set of

symbols and connections (notation elements) that may exist in the diagrams of a model.

The GUI provides a set of drawing tools that allows a software engineer to construct

15

diagrams using these notation elements. The set of drawing tools available for a

particular model is based on a standard set of generic tools (applicable to the

construction of any diagram) and the notation elements that are defined in the NDL

specification for that model.

A software engineer creates a diagram by selecting drawing tools that represent notation

elements and by placing instances of these onto a drawing canvas. Each notation

element that appears in a diagram is an instance of one or more NDL template (an NDL

view). Each NDL view encapsulates a viewable thing that contains the viewable

properties associated with the view.

Figure 1-6 illustrates the relationship between a viewable thing, an NDL template, and a

generated NDL view for an arbitrary notation. The template contains a definition of the

view in terms of graphical components (and other primitives) . A Notation Interpreter

creates a view of a template when it is provided with a viewable thing. The Notation

Interpreter requests information from the viewable thing as it generates the view. The

size and position of the graphical components for a view may depend on the

information stored in the corresponding viewable thing . For instance, if additional

attribute items were defined in the viewable thing shown in the figure , the size of the

corresponding view would increase, and the text describing the operations would be

repositioned in order to accommodate the new information .

NDL Template

Graphical Components:

Single-Text: Classname
Multi-Text: attributes
Multi-Text: operations

a> Line: -
Line: I
Line: -
Line: I
Line: -
Line: -

Viewable Thing

Class name:
Stack

attributes:
Items

operations:
Push
Pop
Top
lsEmpty

NDL View

Figure 1-6 -The relationship between Viewable Thing, NDL Template,
and NDL View

16

The CASE Tool client communicates with the server whenever semantic changes to a

user project take place. For example, the creation of a new model, or the updating of

text in a view, is a semantic change. User interactions that do not cause semantic

changes, such as the repositioning of a notation element, are handled entirely by the

client.

1. 7. Aspects of MOOT Related to the Thesis

The focus of this thesis is on the representation and interpretation of methodology

notation descriptions by the MOOT CASE Tool. The overall aim is to develop a

prototype MOOT CASE Tool client that supports the use of arbitrary methodology

notations in the construction of small-scale diagrams. Research has been conducted in

the following areas:

A. An analysis and review of existing methodology notations for the purposes of

defining the requirements of NDL.

B. The development of an abstract notation definition language (NDL) that allows the

specification of the syntax of arbitrary methodologies, and the design of a notation

interpreter that allows sentences defined in NDL to be subsequently interpreted and

executed.

C. The analysis, design and implementation of a MOOT CASE Tool client that

supports the interpretation of NDL specifications for creating and modifying

methodology model diagrams. This includes the analysis of the specific

requirements of the graphical user interface, and the definition of a protocol for the

communication of information between the client and server CASE Tool sub­

systems.

1.8. Structure of the Thesis

The thesis is structured into nine chapters. The thesis begins with the definition and

specification of NDL, and proceeds to the analysis, design and implementation of the

CASE Tool client.

Chapters Two to Four specifically cover NDL in detail. In Chapter Two an extensive

analysis of existing methodology notations is performed. This culminates in the

requirements definition of NDL as it will be developed in this thesis. A review of

17

prev10us research that the current research succeeds is also conducted at the end of

Chapter Two. Chapter Three describes the set of basic notation primitives that can be

defined in NDL. These primitives can be utilised to construct NDL templates in a

notation specification, as described in Chapter Four. The design of the NDL Interpreter

that is used to construct views from NDL templates is also described in Chapter Four.

Chapters Five to Eight describe the CASE Tool client. In Chapter Five an overview of

the design of the client is presented, with details about how a notation specification and

the NDL Interpreter are used to construct diagrams. In Chapter Six the requirements of

the graphical user interface of the client are analysed and presented. This is followed by

a description of the subsequent design and implementation of the graphical user

interface. The communications protocol between the client and server is examined in

Chapter Seven. Chapter Eight describes the eventual implementation of the prototype

CASE Tool client as a platform-independent graphical user interface shell to the MOOT

CASE Tool sub-system. The prototype is implemented in Java (Sun, 1998).

The conclusions that have been drawn from the application of this research are

presented in Chapter 9. Proposals for future enhancements and extensions are also

considered in this chapter.

The design and implementation of NDL and the MOOT CASE Tool client has been

scaled down during the course of this research due to time constraints. NDL supports a

minimal subset of graphical primitives (lines, arcs, and text boxes) to generate template

views. This subset has been chosen as it is sufficient for constructing typical views and

determining the efficacy of the proposed approach to defining the syntax of a

methodology. Design and implementation of the client GUI is focused specifically

toward the diagram editor that allows the basic construction and manipulation of

diagrams. Supporting elements, such as project managers and advanced GUI features

(eg. group selections, cut/copy/paste operations, etc) have been considered however

they have yet to be incorporated into the design . Other constraints that have been

imposed that relate to specific areas of the research are documented in the thesis where

relevant.

18

