231 research outputs found

    Intensity preserving cast removal in color images using particle swarm optimization

    Get PDF
    In this paper, we present an optimal image enhancement technique for color cast images by preserving their intensity. There are methods which improves the appearance of the affected images under different cast like red, green, blue etc but up to some extent. The proposed color cast method is corrected by using transformation function based on gamma values. These optimal values of gamma are obtained through particle swarm optimization (PSO). This technique preserves the image intensity and maintains the originality of color by satisfying the modified gray world assumptions. For the performance analysis, the image distance metric criteria of CIELAB color space is used. The effectiveness of the proposed approach is illustrated by testing the proposed method on color cast images. It has been found that distance between the reference image and the corrected proposed image is negligible. The calculated value of image distance depicts that the enhanced image results of the proposed algorithm are closer to the reference images in comparison with other existing methods

    Image Enhancement using Guided Filter for under Exposed Images

    Get PDF
    Image enhancement becomes an important step to improve the quality of image and change in the appearance of the image in such a way that either a human or a machine can fetch certain information from the image after a change. Due to low contrast images it becomes very difficult to get any information out of it. In today’s digital world of imaging image enhancement is a very useful in various applications ranging from electronics printing to recognition. For highly underexposed region, intensity bin are present in darken region that’s by such images lacks in saturation and suffers from low intensity. Power law transformation provides solution to this problem. It enhances the brightness so as image at least becomes visible. To modify the intensity level histogram equalization can be used. In this we can apply cumulative density function and probabilistic density function so as to divide the image into sub images. In proposed approach to provide betterment in results guided filter has been applied to images after equalization so that we can get better Entropy rate and Coefficient of correlation can be improved with previously available techniques. The guided filter is derived from local linear model. The guided filter computes the filtering output by considering the content of guidance image, which can be the image itself or other targeted image

    Edge Enhancement from Low-Light Image by Convolutional Neural Network and Sigmoid Function

    Get PDF
    Due to camera resolution or any lighting condition, captured image are generally over-exposed or under-exposed conditions. So, there is need of some enhancement techniques that improvise these artifacts from recorded pictures or images. So, the objective of image enhancement and adjustment techniques is to improve the quality and characteristics of an image. In general terms, the enhancement of image distorts the original numerical values of an image. Therefore, it is required to design such enhancement technique that do not compromise with the quality of the image. The optimization of the image extracts the characteristics of the image instead of restoring the degraded image. The improvement of the image involves the degraded image processing and the improvement of its visual aspect. A lot of research has been done to improve the image. Many research works have been done in this field. One among them is deep learning. Most of the existing contrast enhancement methods, adjust the tone curve to correct the contrast of an input image but doesn’t work efficiently due to limited amount of information contained in a single image. In this research, the CNN with edge adjustment is proposed. By applying CNN with Edge adjustment technique, the input low contrast images are capable to adapt according to high quality enhancement. The result analysis shows that the developed technique significantly advantages over existing methods

    An Improved Approach for Contrast Enhancement of Spinal Cord Images based on Multiscale Retinex Algorithm

    Full text link
    This paper presents a new approach for contrast enhancement of spinal cord medical images based on multirate scheme incorporated into multiscale retinex algorithm. The proposed work here uses HSV color space, since HSV color space separates color details from intensity. The enhancement of medical image is achieved by down sampling the original image into five versions, namely, tiny, small, medium, fine, and normal scale. This is due to the fact that the each versions of the image when independently enhanced and reconstructed results in enormous improvement in the visual quality. Further, the contrast stretching and MultiScale Retinex (MSR) techniques are exploited in order to enhance each of the scaled version of the image. Finally, the enhanced image is obtained by combining each of these scales in an efficient way to obtain the composite enhanced image. The efficiency of the proposed algorithm is validated by using a wavelet energy metric in the wavelet domain. Reconstructed image using proposed method highlights the details (edges and tissues), reduces image noise (Gaussian and Speckle) and improves the overall contrast. The proposed algorithm also enhances sharp edges of the tissue surrounding the spinal cord regions which is useful for diagnosis of spinal cord lesions. Elaborated experiments are conducted on several medical images and results presented show that the enhanced medical pictures are of good quality and is found to be better compared with other researcher methods.Comment: 13 pages, 6 figures, International Journal of Imaging and Robotics. arXiv admin note: text overlap with arXiv:1406.571

    Simultaneous image color correction and enhancement using particle swarm optimization

    Full text link
    Color images captured under various environments are often not ready to deliver the desired quality due to adverse effects caused by uncontrollable illumination settings. In particular, when the illuminate color is not known a priori, the colors of the objects may not be faithfully reproduced and thus impose difficulties in subsequent image processing operations. Color correction thus becomes a very important pre-processing procedure where the goal is to produce an image as if it is captured under uniform chromatic illumination. On the other hand, conventional color correction algorithms using linear gain adjustments focus only on color manipulations and may not convey the maximum information contained in the image. This challenge can be posed as a multi-objective optimization problem that simultaneously corrects the undesirable effect of illumination color cast while recovering the information conveyed from the scene. A variation of the particle swarm optimization algorithm is further developed in the multi-objective optimization perspective that results in a solution achieving a desirable color balance and an adequate delivery of information. Experiments are conducted using a collection of color images of natural objects that were captured under different lighting conditions. Results have shown that the proposed method is capable of delivering images with higher quality. © 2013 Elsevier Ltd. All rights reserved

    Color Image Enhancement Method Based on Weighted Image Guided Filtering

    Full text link
    A novel color image enhancement method is proposed based on Retinex to enhance color images under non-uniform illumination or poor visibility conditions. Different from the conventional Retinex algorithms, the Weighted Guided Image Filter is used as a surround function instead of the Gaussian filter to estimate the background illumination, which can overcome the drawbacks of local blur and halo artifact that may appear by Gaussian filter. To avoid color distortion, the image is converted to the HSI color model, and only the intensity channel is enhanced. Then a linear color restoration algorithm is adopted to convert the enhanced intensity image back to the RGB color model, which ensures the hue is constant and undistorted. Experimental results show that the proposed method is effective to enhance both color and gray images with low exposure and non-uniform illumination, resulting in better visual quality than traditional method. At the same time, the objective evaluation indicators are also superior to the conventional methods. In addition, the efficiency of the proposed method is also improved thanks to the linear color restoration algorithm.Comment: 15 page

    Stable Backward Diffusion Models that Minimise Convex Energies

    Get PDF
    The inverse problem of backward diffusion is known to be ill-posed and highly unstable. Backward diffusion processes appear naturally in image enhancement and deblurring applications. It is therefore greatly desirable to establish a backward diffusion model which implements a smart stabilisation approach that can be used in combination with an easy to handle numerical scheme. So far, existing stabilisation strategies in literature require sophisticated numerics to solve the underlying initial value problem. We derive a class of space-discrete one-dimensional backward diffusion as gradient descent of energies where we gain stability by imposing range constraints. Interestingly, these energies are even convex. Furthermore, we establish a comprehensive theory for the time-continuous evolution and we show that stability carries over to a simple explicit time discretisation of our model. Finally, we confirm the stability and usefulness of our technique in experiments in which we enhance the contrast of digital greyscale and colour images
    • …
    corecore