18 research outputs found

    A survey of flooding, gossip routing, and related schemes for wireless multi- hop networks

    Get PDF
    Flooding is an essential and critical service in computer networks that is used by many routing protocols to send packets from a source to all nodes in the network. As the packets are forwarded once by each receiving node, many copies of the same packet traverse the network which leads to high redundancy and unnecessary usage of the sparse capacity of the transmission medium. Gossip routing is a well-known approach to improve the flooding in wireless multi-hop networks. Each node has a forwarding probability p that is either statically per-configured or determined by information that is available at runtime, e.g, the node degree. When a packet is received, the node selects a random number r. If the number r is below p, the packet is forwarded and otherwise, in the most simple gossip routing protocol, dropped. With this approach the redundancy can be reduced while at the same time the reachability is preserved if the value of the parameter p (and others) is chosen with consideration of the network topology. This technical report gives an overview of the relevant publications in the research domain of gossip routing and gives an insight in the improvements that can be achieved. We discuss the simulation setups and results of gossip routing protocols as well as further improved flooding schemes. The three most important metrics in this application domain are elaborated: reachability, redundancy, and management overhead. The published studies used simulation environments for their research and thus the assumptions, models, and parameters of the simulations are discussed and the feasibility of an application for real world wireless networks are highlighted. Wireless mesh networks based on IEEE 802.11 are the focus of this survey but publications about other network types and technologies are also included. As percolation theory, epidemiological models, and delay tolerant networks are often referred as foundation, inspiration, or application of gossip routing in wireless networks, a brief introduction to each research domain is included and the applicability of the particular models for the gossip routing is discussed

    Verification of distributed epistemic gossip protocols

    Get PDF
    Gossip protocols aim at arriving, by means of point-to-point or group communications, at a situation in which all the agents know each other secrets. Distributed epistemic gossip protocols use as guards formulas from a simple epistemic logic and as statements calls between the agents. They are natural examples of knowledge based programs.We prove here that these protocols are implementable, that their partial correctness is decidable and that termination and two forms of fair termination of these protocols are decidable, as well. To establish these results we show that the definition of semantics and of truth of the underlying logic are decidable.</p

    OpenWeather: a peer-to-peer weather data transmission protocol

    Get PDF
    The study of the weather is performed using instruments termed weather stations. These weather stations are distributed around the world, collecting the data from the different phenomena. Several weather organizations have been deploying thousands of these instruments, creating big networks to collect weather data. These instruments are collecting the weather data and delivering it for later processing in the collections points. Nevertheless, all the methodologies used to transmit the weather data are based in protocols non adapted for this purpose. Thus, the weather stations are limited by the data formats and protocols used in them, not taking advantage of the real-time data available on them. We research the weather instruments, their technology and their network capabilities, in order to provide a solution for the mentioned problem. OpenWeather is the protocol proposed to provide a more optimum and reliable way to transmit the weather data. We evaluate the environmental factors, such as location or bandwidth availability, in order to design a protocol adapted to the requirements established by the automatic weather stations. A peer to peer architecture is proposed, providing a functional implementation of OpenWeather protocol. The evaluation of the protocol is executed in a real scenario, providing the hints to adapt the protocol to a common automatic weather station.Comment: Available as well: http://lib.tkk.fi/Final_project/2011/urn100502.pd

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    A Decentralized Session Management Framework for Heterogeneous Ad-Hoc and Fixed Networks

    Get PDF
    Wireless technologies are continuously evolving. Second generation cellular networks have gained worldwide acceptance. Wireless LANs are commonly deployed in corporations or university campuses, and their diffusion in public hotspots is growing. Third generation cellular systems are yet to affirm everywhere; still, there is an impressive amount of research ongoing for deploying beyond 3G systems. These new wireless technologies combine the characteristics of WLAN based and cellular networks to provide increased bandwidth. The common direction where all the efforts in wireless technologies are headed is towards an IP-based communication. Telephony services have been the killer application for cellular systems; their evolution to packet-switched networks is a natural path. Effective IP telephony signaling protocols, such as the Session Initiation Protocol (SIP) and the H 323 protocol are needed to establish IP-based telephony sessions. However, IP telephony is just one service example of IP-based communication. IP-based multimedia sessions are expected to become popular and offer a wider range of communication capabilities than pure telephony. In order to conjoin the advances of the future wireless technologies with the potential of IP-based multimedia communication, the next step would be to obtain ubiquitous communication capabilities. According to this vision, people must be able to communicate also when no support from an infrastructured network is available, needed or desired. In order to achieve ubiquitous communication, end devices must integrate all the capabilities necessary for IP-based distributed and decentralized communication. Such capabilities are currently missing. For example, it is not possible to utilize native IP telephony signaling protocols in a totally decentralized way. This dissertation presents a solution for deploying the SIP protocol in a decentralized fashion without support of infrastructure servers. The proposed solution is mainly designed to fit the needs of decentralized mobile environments, and can be applied to small scale ad-hoc networks or also bigger networks with hundreds of nodes. A framework allowing discovery of SIP users in ad-hoc networks and the establishment of SIP sessions among them, in a fully distributed and secure way, is described and evaluated. Security support allows ad-hoc users to authenticate the sender of a message, and to verify the integrity of a received message. The distributed session management framework has been extended in order to achieve interoperability with the Internet, and the native Internet applications. With limited extensions to the SIP protocol, we have designed and experimentally validated a SIP gateway allowing SIP signaling between ad-hoc networks with private addressing space and native SIP applications in the Internet. The design is completed by an application level relay that permits instant messaging sessions to be established in heterogeneous environments. The resulting framework constitutes a flexible and effective approach for the pervasive deployment of real time applications.The invention of the phone has radically changed the way people communicate, as it allowed persons to get in contact instantly no matter of their location. However, phone communication has been confined for decades to a fixed location, be it one's own house or a phone boot. The widespread affirmation of cellular technologies has had for fixed telephony a similar impact that the invention of the phone has had on communications years before. With mobile phones, people are enabled to talk with each other anytime and anywhere. Internet has also revolutionized the way people communicate. E-mails have soon become one of the Internet killer applications. Later on, instant messaging, popularly known as chatting, has gained huge consensus among net surfers. Only recently, the use of the Internet for voice communication is becoming mainstream, and the so called Voice over IP (VoIP) applications (Skype is probably the most famous for the masses) are becoming common use. Despite its popularity, Internet still suffers from the inherent limitations that affected early telephony: it is fixed. The usage of Internet on the move still does not constitute the easiest and most satisfactory user experience, due to capabilities and limitations of the access technology, terminals, services and applications. Efforts for mobilizing the Internet are ongoing both in the industrial and in the academic worlds, but several bricks are needed to build the wall of mobile Internet. This dissertation provides one of these bricks, describing a solution that allows the deployment of multimedia applications (chat, VoIP, gaming) in mobile environments. In other words, this dissertation gives solutions for facilitating ubiquitous Internet-based communication, anytime and anywhere. The vision that we want to become true is that Internet must become mobile in the same way as fixed telephony has become mobile thanks to the cellular technology. More than this, we do not want that users are limited by the presence of an infrastructure to communicate with each other. In order to achieve this, we present solutions to deploy Internet-based services and applications in environments where no support from servers is available. In other words, we enable direct device-to-device, user-to-user Internet communication. Our contribution is mainly focused on the steps needed to establish the communication, the so called session establishment or signaling phase. We have validated our signaling framework by building a chat application that utilizes its features and works in server-less environments. The custom server-less solution does not prohibit to connect at the same time with the Internet, so that one can engage in a chess game using direct communication with a person in the proximity while having a chat in progress with a friend using standard Internet services. The challenge that we had to face is that Internet services and applications are usually built implying support from a centralized server. In order to deploy direct user-to-user Internet services, while maintaining interoperability with mainstream services, we had to enhance native Internet services to work without infrastructure support, without sacrificing interoperability with standard Internet applications. To conclude, we have placed our brick on the still yet to be completed wall of mobile Internet. Our hope is that one day, thanks also to this brick, everybody will be able to enjoy Internet-based applications as easily as now it is possible to use mobile telephony services

    Adaptive probability-based broadcast forwarding in energy-saving sensor networks

    Get PDF
    International audienceNetworking protocols for multihop wireless sensor networks (WSNs) are required to simultaneously minimize resource usage as well as optimize performance metrics such as latency and reliability. This article explores the energy-latency-reliability tradeoff for broadcast in WSNs by presenting a new protocol called PBBF. Essentially, for a given reliability level, energy and latency are found to be inversely related and our study quantifies this relationship at the reliability boundary. Therefore, PBBF offers an application designer considerable flexibility in the choice of desired operation points. Furthermore, we propose an extension to dynamically adjust the PBBF parameters to minimize the input required from the designer

    Energy efficient hybrid routing protocol for wireless sensor networks

    Get PDF
    A wireless sensor network is designed to monitor events and report this information to a central location, or sink node. The information is required to efficiently travel through the network. It is the job of the routing protocol to officiate this process. With transmissions consuming the majority of the energy available to a sensor node, it becomes important to limit their usage while still maintaining reliable communication with the sink node. The aim of the research covered in this dissertation was to adapt the flat and hierarchical architectures to create a new hybrid that draws on current protocol theories. The designed and developed protocol, Hybrid Energy Efficient Routing (HEER) protocol, builds upon the initial groundwork laid out by the previously developed Simple Energy Efficient Routing (SEER) protocol designed by C.J. Leuschner. Another aspect of the work was to focus on the current lack of credibility that is present in the WSN research community. The validity of SEER was examined and tested and this led to the main focus of this research, ensuring that HEER proves to be valid. The HEER protocol for wireless sensor networks is designed such that it is computationally simple, limits the number of transmissions, employs a cross-layer approach, is reliable, is energy-aware, has limited support for mobile nodes, is energy efficient, and most importantly is credible. Sensor nodes are extremely limited when it comes to their available energy resources. To maximise the node and network lifetimes requires the designed algorithm to be energy aware and as efficient as possible. A cross-layer design approach is followed which allows for the different layers of the OSI model to interact. The HEER protocol limits the number of transmissions that are used for network operation. This is achieved by using a minimal amount of messages for network setup and by selecting the optimal route. Route selection is calculated using hop count, current energy available, energy available on the receiving node, and lastly the energy required to reach the destination node. HEER combines and expands upon the method used by SEER for route selection. Network lifetime for networks of large sizes is increased, mainly due to more efficient routing of messages. The protocol was kept computationally simple and energy efficient, thus maintaining network survivability for as long as possible.Dissertation (MEng)--University of Pretoria, 2008.Electrical, Electronic and Computer Engineeringunrestricte

    Topology design for time-varying networks

    Get PDF
    Traditional wireless networks seek to support end-to-end communication through either a single-hop wireless link to infrastructure or multi-hop wireless path to some destination. However, in some wireless networks (such as delay tolerant networks, or mobile social networks), due to sparse node distribution, node mobility, and time-varying network topology, end-to-end paths between the source and destination are not always available. In such networks, the lack of continuous connectivity, network partitioning, and long delays make design of network protocols very challenging. Previous DTN or time-varying network research mainly focuses on routing and information propagation. However, with large number of wireless devices' participation, and a lot of network functionality depends on the topology, how to maintain efficient and dynamic topology of a time-varying network becomes crucial. In this dissertation, I model a time-evolving network as a directed time-space graph which includes both spacial and temporal information of the network, then I study various topology control problems with such time-space graphs. First, I study the basic topology design problem where the links of the network are reliable. It aims to build a sparse structure from the original time-space graph such that (1) the network is still connected over time and/or supports efficient routing between any two nodes; (2) the total cost of the structure is minimized. I first prove that this problem is NP-hard, and then propose several greedy-based methods as solutions. Second, I further study a cost-efficient topology design problem, which not only requires the above two objective, but also guarantees that the spanning ratio of the topology is bounded by a given threshold. This problem is also NP-hard, and I give several greedy algorithms to solve it. Last, I consider a new topology design problem by relaxing the assumption of reliable links. Notice that in wireless networks the topologies are not quit predictable and the links are often unreliable. In this new model, each link has a probability to reflect its reliability. The new reliable topology design problem aims to build a sparse structure from the original space-time graph such that (1) for any pair of devices, there is a space-time path connecting them with the reliability larger than a required threshold; (2) the total cost of the structure is minimized. Several heuristics are proposed, which can significantly reduce the total cost of the topology while maintain the connectivity or reliability over time. Extensive simulations on both random networks and real-life tracing data have been conducted, and results demonstrate the efficiency of the proposed methods
    corecore