323 research outputs found

    Algorithms for advance bandwidth reservation in media production networks

    Get PDF
    Media production generally requires many geographically distributed actors (e.g., production houses, broadcasters, advertisers) to exchange huge amounts of raw video and audio data. Traditional distribution techniques, such as dedicated point-to-point optical links, are highly inefficient in terms of installation time and cost. To improve efficiency, shared media production networks that connect all involved actors over a large geographical area, are currently being deployed. The traffic in such networks is often predictable, as the timing and bandwidth requirements of data transfers are generally known hours or even days in advance. As such, the use of advance bandwidth reservation (AR) can greatly increase resource utilization and cost efficiency. In this paper, we propose an Integer Linear Programming formulation of the bandwidth scheduling problem, which takes into account the specific characteristics of media production networks, is presented. Two novel optimization algorithms based on this model are thoroughly evaluated and compared by means of in-depth simulation results

    Toward a Live BBU Container Migration in Wireless Networks

    Get PDF
    Cloud Radio Access Networks (Cloud-RANs) have recently emerged as a promising architecture to meet the increasing demands and expectations of future wireless networks. Such an architecture can enable dynamic and flexible network operations to address significant challenges, such as higher mobile traffic volumes and increasing network operation costs. However, the implementation of compute-intensive signal processing Network Functions (NFs) on the General Purpose Processors (General Purpose Processors) that are typically found in data centers could lead to performance complications, such as in the case of overloaded servers. There is therefore a need for methods that ensure the availability and continuity of critical wireless network functionality in such circumstances. Motivated by the goal of providing highly available and fault-tolerant functionality in Cloud-RAN-based networks, this paper proposes the design, specification, and implementation of live migration of containerized Baseband Units (BBUs) in two wireless network settings, namely Long Range Wide Area Network (LoRaWAN) and Long Term Evolution (LTE) networks. Driven by the requirements and critical challenges of live migration, the approach shows that in the case of LoRaWAN networks, the migration of BBUs is currently possible with relatively low downtimes to support network continuity. The analysis and comparison of the performance of functional splits and cell configurations in both networks were performed in terms of fronthaul throughput requirements. The results obtained from such an analysis can be used by both service providers and network operators in the deployment and optimization of Cloud-RANs services, in order to ensure network reliability and continuity in cloud environments

    Landscape of IoT security

    Full text link
    The last two decades have experienced a steady rise in the production and deployment of sensing-and-connectivity-enabled electronic devices, replacing “regular” physical objects. The resulting Internet-of-Things (IoT) will soon become indispensable for many application domains. Smart objects are continuously being integrated within factories, cities, buildings, health institutions, and private homes. Approximately 30 years after the birth of IoT, society is confronted with significant challenges regarding IoT security. Due to the interconnectivity and ubiquitous use of IoT devices, cyberattacks have widespread impacts on multiple stakeholders. Past events show that the IoT domain holds various vulnerabilities, exploited to generate physical, economic, and health damage. Despite many of these threats, manufacturers struggle to secure IoT devices properly. Thus, this work overviews the IoT security landscape with the intention to emphasize the demand for secured IoT-related products and applications. Therefore, (a) a list of key challenges of securing IoT devices is determined by examining their particular characteristics, (b) major security objectives for secured IoT systems are defined, (c) a threat taxonomy is introduced, which outlines potential security gaps prevalent in current IoT systems, and (d) key countermeasures against the aforementioned threats are summarized for selected IoT security-related technologies available on the market

    Public safety network design for broadband wireless access

    Get PDF
    Public protection and disaster relief (PPDR) agencies rely on wireless communications to respond in the event of emergencies. Public safety networks (PSNs) provide the wireless network used by emergency services. PSN is used to support push-to-talk services with some data transmission by employing land mobile radios. However, PPDR agencies are increasingly relying on additional information such as videos that require higher bandwidths. Therefore, many countries are transitioning or integrating their public safety networks with advanced broadband wireless communication systems such as fourth-generation (4G) long-term evolution (LTE) and planning to evolve to fifth-generation (5G) new radio (NR) in the future. The paper investigates infrastructure sharing mechanisms and deployment strategies in the transition of PSNs to a 4G LTE network, including a roadmap for cost analysis. Additionally, the paper examines LTE-based PSN deployment scenarios in various countries and engages in a discussion of the advantages and disadvantages of different sharing mechanisms and coexistence schemes. Finally, the challenges within the Public Safety Broadband Network (PSBN) are addressed and potential future research directions in this domain are deliberated

    Mission-Critical Communications from LMR to 5G: a Technology Assessment approach for Smart City scenarios

    Get PDF
    Radiocommunication networks are one of the main support tools of agencies that carry out actions in Public Protection & Disaster Relief (PPDR), and it is necessary to update these communications technologies from narrowband to broadband and integrated to information technologies to have an effective action before society. Understanding that this problem includes, besides the technical aspects, issues related to the social context to which these systems are inserted, this study aims to construct scenarios, using several sources of information, that helps the managers of the PPDR agencies in the technological decisionmaking process of the Digital Transformation of Mission-Critical Communication considering Smart City scenarios, guided by the methods and approaches of Technological Assessment (TA).As redes de radiocomunicações são uma das principais ferramentas de apoio dos órgãos que realizam ações de Proteção Pública e Socorro em desastres, sendo necessário atualizar essas tecnologias de comunicação de banda estreita para banda larga, e integra- las às tecnologias de informação, para se ter uma atuação efetiva perante a sociedade . Entendendo que esse problema inclui, além dos aspectos técnicos, questões relacionadas ao contexto social ao qual esses sistemas estão inseridos, este estudo tem por objetivo a construção de cenários, utilizando diversas fontes de informação que auxiliem os gestores destas agências na tomada de decisão tecnológica que envolve a transformação digital da Comunicação de Missão Crítica considerando cenários de Cidades Inteligentes, guiado pelos métodos e abordagens de Avaliação Tecnológica (TA)

    5G network end-to-end delay measurements for live video streaming

    Get PDF
    Abstract. Focus of this thesis is in the data transmission delay comparison between Edge server and Cloud server when utilizing either 4G or 5G connectivity. In previous mobile phone network generations for example a multimedia server had to be installed on a Cloud server in the internet. 5G mobile phone network introduces a new concept called Edge server. Edge server is located close to the base station and therefore it is assumed to shorten the data transmission delay between the 5G mobile/client and a server application. Edge server can be used both in 4G and 5G networks. In this thesis first the 5G network and the essential new 5G architecture main design principles are gone through. Next the 5G Test Network that is used as a test environment is described and 5G main modules like Multi-access Edge Computing are introduced. 5G performance is clarified and compared against 4G. Delay testing is done in the 5G Test Network using Hospital Use Case demo. There operating room personnel like doctors and nurses is wearing Augmented Reality glasses and they are streaming their view together with patient status related information to multimedia server residing in 5G Test Network Edge server or in internet cloud. From the multimedia server the video is streamed by for example students, medical experts or consultants in a remote location. As part of the thesis the test system is defined and built based on the Hospital Use Case demo. Test specification is created, and tests are executed according to it. Results are recorded and analysed. Data transmission delays between the video stream originator and multimedia server are measured using Qosium measurement system. Also delay between the multimedia server and the streaming client is measured. Measurements are done for configurations where multimedia server is located at the Edge server and the internet cloud server. Both 4G and 5G connectivity is used for both server locations. When delay measurement results were compared it became clear that Edge server has much shorter data transmission delays compared to the internet cloud server. With 5G connectivity the delay was measured to be around 10 milliseconds for both uplink and downlink. With internet cloud the delays varied between 31 and 45 milliseconds with 5G connection. It can be concluded that from today’s mobile phone networks, 5G network does offer the fastest connection to a server environment by utilizing Edge server.5G verkon viiveen mittaaminen videostriimille. Tiivistelmä. Tämä diplomityö keskittyy vertaamaan datatiedonsiirron eroja reunapalvelimen ja internetin pilvipalvelimen välillä 4G ja 5G matkapuhelinverkossa. Aiempien sukupolvien matkapuhelinverkoissa esimerkiksi multimediapalvelin oli asennettava internetin pilvipalvelimelle. Viidennen sukupolven matkapuhelinverkossa otetaan käyttöön reunapalvelin. Reunapalvelin sijaitsee tukiaseman läheisyydessä ja täten sen oletetaan lyhentävän 5G-päätelaitteen ja palvelimen sovelluksen välistä tiedonsiirtoviivettä. Reunapalvelinta voidaan käyttää sekä neljännen että viidennen sukupolven matkapuhelinverkoissa. Tässä diplomityössä käydään ensin läpi 5G-matkapuhelinverkko ja sen arkkitehtuurin pääsuunnittelukriteerit. Seuraavaksi kuvataan testaamisessa käytettävä 5G-testiverkko ja 5G-verkon tärkeimmät moduulit kuten Multi-access Edge Computing. 5G-verkon suorituskyky selitetään ja sitä verrataan edelliseen 4. sukupolven verkkoon. Viivemittaukset tehdään 5G testiverkossa käyttäen 5G lääketieteen käyttötapauksen demoympäristöä. Siinä operointihuoneen henkilöstöllä, kuten lääkäreillä ja hoitajilla, on yllään lisätyn todellisuuden lasit. Lasit lähettävät henkilön näkymän ja potilaaseen liittyvää tietoa 5G-testiverkon reunapalvelimella tai internetin pilvipalvelimella sijaitsevalle multimediapalvelimelle. Multimediapalvelimelta video striimataan esimerkiksi lääketieteen opiskelijoille, asiantuntijoille tai konsulteille, jotka ovat etäällä lähetyspaikasta. Osana diplomityötä määritellään ja rakennetaan lääketieteen käyttötapauksen demon perustuva testausjärjestelmä. Testispesifikaatio luodaan, testit suoritetaan sen perusteella. Testitulokset tallennetaan ja analysoidaan. Tiedonsiirtoviiveet videolähteen ja multimediapalvelimen välillä mitataan käyttäen Qosium mittausjärjestelmää. Myös multimediapalvelimen ja videostriimin vastaanottajan väliset viiveet mitataan. Mittaukset tehdään konfiguraatiolle, jossa multimediapalvelin on sijoitettu reunapalvelimelle ja konfiguraatiolle, jossa se on sijoitettu internetin pilvipalvelimelle. Sekä 4G että 5G-yhteyttä käytetään molemmille konfiguraatiolle. Kun mittaustuloksia verrataan, käy selväksi, että reunapalvelimella on huomattavasti lyhyempi tiedonsiirtoviive kuin internetin pilvipalvelimella. 5G-yhteydellä mitattu viive oli noin 10 ms sekä ylössyöttö- että alassyöttösuuntaan. Internetin pilvipalvelimella viiveet vaihtelivat 31 ja 45 millisekunnin välillä 5G-yhteydellä. Voidaankin todeta, että nykyisistä matkapuhelinverkoista 5G-verkko tarjoaa nopeimman yhteyden palvelinympäristöön reunapalvelimen avulla

    Optimization of 5G Second Phase Heterogeneous Radio Access Networks with Small Cells

    Get PDF
    Due to the exponential increase in high data-demanding applications and their services per coverage area, it is becoming challenging for the existing cellular network to handle the massive sum of users with their demands. It is conceded to network operators that the current wireless network may not be capable to shelter future traffic demands. To overcome the challenges the operators are taking interest in efficiently deploying the heterogeneous network. Currently, 5G is in the commercialization phase. Network evolution with addition of small cells will develop the existing wireless network with its enriched capabilities and innovative features. Presently, the 5G global standardization has introduced the 5G New Radio (NR) under the 3rd Generation Partnership Project (3GPP). It can support a wide range of frequency bands (<6 GHz to 100 GHz). For different trends and verticals, 5G NR encounters, functional splitting and its cost evaluation are well-thought-out. The aspects of network slicing to the assessment of the business opportunities and allied standardization endeavours are illustrated. The study explores the carrier aggregation (Pico cellular) technique for 4G to bring high spectral efficiency with the support of small cell massification while benefiting from statistical multiplexing gain. One has been able to obtain values for the goodput considering CA in LTE-Sim (4G), of 40 Mbps for a cell radius of 500 m and of 29 Mbps for a cell radius of 50 m, which is 3 times higher than without CA scenario (2.6 GHz plus 3.5 GHz frequency bands). Heterogeneous networks have been under investigation for many years. Heterogeneous network can improve users service quality and resource utilization compared to homogeneous networks. Quality of service can be enhanced by putting the small cells (Femtocells or Picocells) inside the Microcells or Macrocells coverage area. Deploying indoor Femtocells for 5G inside the Macro cellular network can reduce the network cost. Some service providers have started their solutions for indoor users but there are still many challenges to be addressed. The 5G air-simulator is updated to deploy indoor Femto-cell with proposed assumptions with uniform distribution. For all the possible combinations of apartments side length and transmitter power, the maximum number of supported numbers surpassed the number of users by more than two times compared to papers mentioned in the literature. Within outdoor environments, this study also proposed small cells optimization by putting the Pico cells within a Macro cell to obtain low latency and high data rate with the statistical multiplexing gain of the associated users. Results are presented 5G NR functional split six and split seven, for three frequency bands (2.6 GHz, 3.5GHz and 5.62 GHz). Based on the analysis for shorter radius values, the best is to select the 2.6 GHz to achieve lower PLR and to support a higher number of users, with better goodput, and higher profit (for cell radius u to 400 m). In 4G, with CA, from the analysis of the economic trade-off with Picocell, the Enhanced multi-band scheduler EMBS provide higher revenue, compared to those without CA. It is clearly shown that the profit of CA is more than 4 times than in the without CA scenario. This means that the slight increase in the cost of CA gives back more than 4-time profit relatively to the ”without” CA scenario.Devido ao aumento exponencial de aplicações/serviços de elevado débito por unidade de área, torna-se bastante exigente, para a rede celular existente, lidar com a enormes quantidades de utilizadores e seus requisitos. É reconhecido que as redes móveis e sem fios atuais podem não conseguir suportar a procura de tráfego junto dos operadores. Para responder a estes desafios, os operadores estão-se a interessar pelo desenvolvimento de redes heterogéneas eficientes. Atualmente, a 5G está na fase de comercialização. A evolução destas redes concretizar-se-á com a introdução de pequenas células com aptidões melhoradas e características inovadoras. No presente, os organismos de normalização da 5G globais introduziram os Novos Rádios (NR) 5G no contexto do 3rd Generation Partnership Project (3GPP). A 5G pode suportar uma gama alargada de bandas de frequência (<6 a 100 GHz). Abordam-se as divisões funcionais e avaliam-se os seus custos para as diferentes tendências e verticais dos NR 5G. Ilustram-se desde os aspetos de particionamento funcional da rede à avaliação das oportunidades de negócio, aliadas aos esforços de normalização. Exploram-se as técnicas de agregação de espetro (do inglês, CA) para pico células, em 4G, a disponibilização de eficiência espetral, com o suporte da massificação de pequenas células, e o ganho de multiplexagem estatística associado. Obtiveram-se valores do débito binário útil, considerando CA no LTE-Sim (4G), de 40 e 29 Mb/s para células de raios 500 e 50 m, respetivamente, três vezes superiores em relação ao caso sem CA (bandas de 2.6 mais 3.5 GHz). Nas redes heterogéneas, alvo de investigação há vários anos, a qualidade de serviço e a utilização de recursos podem ser melhoradas colocando pequenas células (femto- ou pico-células) dentro da área de cobertura de micro- ou macro-células). O desenvolvimento de pequenas células 5G dentro da rede com macro-células pode reduzir os custos da rede. Alguns prestadores de serviços iniciaram as suas soluções para ambientes de interior, mas ainda existem muitos desafios a ser ultrapassados. Atualizou-se o 5G air simulator para representar a implantação de femto-células de interior com os pressupostos propostos e distribuição espacial uniforme. Para todas as combinações possíveis do comprimento lado do apartamento, o número máximo de utilizadores suportado ultrapassou o número de utilizadores suportado (na literatura) em mais de duas vezes. Em ambientes de exterior, propuseram-se pico-células no interior de macro-células, de forma a obter atraso extremo-a-extremo reduzido e taxa de transmissão dados elevada, resultante do ganho de multiplexagem estatística associado. Apresentam-se resultados para as divisões funcionais seis e sete dos NR 5G, para 2.6 GHz, 3.5GHz e 5.62 GHz. Para raios das células curtos, a melhor solução será selecionar a banda dos 2.6 GHz para alcançar PLR (do inglês, PLR) reduzido e suportar um maior número de utilizadores, com débito binário útil e lucro mais elevados (para raios das células até 400 m). Em 4G, com CA, da análise do equilíbrio custos-proveitos com pico-células, o escalonamento multi-banda EMBS (do inglês, Enhanced Multi-band Scheduler) disponibiliza proveitos superiores em comparação com o caso sem CA. Mostra-se claramente que lucro com CA é mais de quatro vezes superior do que no cenário sem CA, o que significa que um aumento ligeiro no custo com CA resulta num aumento de 4-vezes no lucro relativamente ao cenário sem CA

    The strategies associated with the migration of networks to 4G

    Get PDF
    The networks need to provide higher speeds than those offered today. For it, considering that in the spectrum radio technologies is the scarcest resource in the development of these technologies and the new developments is essential to maximize the performance of bits per hertz transmitted. Long Term Evolution optimize spectral efficiency modulations with new air interface, and more advanced algorithms radius. These capabilities is the fact that LTE is an IPbased technology that enables end-to-end offer high transmission rates per user and very low latency, ie delay in the response times of the network around only 10 milliseconds, so you can offer any realtime application. LTE is the latest standard in mobile network technology and 3GPP ensure competitiveness in the future, may be considered a technology bridge between 3G networks - current 3.5G and future 4G networks, which are expected to reach speeds of up to 1G . LTE operators provide a simplified architecture but both robust, supporting services on IP technology. The objectives to be achieved through its implementation are ambitious, first users have a wide range of added services like capabilities that currently enjoys with residential broadband access at competitive prices, while the operator will have a network fully IP-based environment, reducing the complexity and cost of the same, which will give operators the opportunity to migrate to LTE directly. A major advantage of LTE is its ability to fuse with existing networks, ensuring interconnection with the same, increasing his current coverage and allowing a data connection established by a user in the environment continue when fade the coverage LTE. Moreover, the operator has the advantage of deploying network gradually, starting initially at areas of high demand for broadband services and expand progressively in line with this. RESUMEN. Las redes necesitan proporcionar velocidades mayores a las ofertadas a día de hoy. Para ello, teniendo en cuenta que en tecnologías radio el espectro es el recurso más escaso, en la evolución de estas tecnologías y en los nuevos desarrollos es esencial maximizar el rendimiento de bits por hercio transmitido. Long Term Evolution optimiza la eficiencia espectral con nuevas modulaciones en la interfaz aire, así como los algoritmos radio más avanzado. A estas capacidades se suma el hecho de que LTE es una tecnología basada en IP de extremo a extremo que permite ofrecer altas velocidades de transmisión por usuario y latencias muy bajas, es decir, retardos en los tiempos de respuesta de la red en torno a sólo 10 milisegundos, por lo que permite ofrecer cualquier tipo de aplicación en tiempo real. LTE es el último estándar en tecnología de redes móviles y asegurará la competitividad de 3GPP en el futuro, pudiendo ser considerada una tecnología puente entre las redes 3G – 3.5G actuales y las futuras redes 4G, de las que se esperan alcanzar velocidades de hasta 1G. LTE proporcionará a las operadoras una arquitectura simplificada pero robusta a la vez, soportando servicios sobre tecnología IP. Los objetivos que se persiguen con su implantación son ambiciosos, por una parte los usuarios dispondrá de una amplia oferta de servicios añadidos con capacidades similares a las que disfruta actualmente con accesos a banda ancha residencial y a precios competitivos, mientras que el operador dispondrá de una red basada en entorno totalmente IP, reduciendo la complejidad y el costo de la misma, lo que dará a las operadoras la oportunidad de migrar a LTE directamente. Una gran ventaja de LTE es su capacidad para fusionarse con las redes existentes, asegurando la interconexión con las mismas, aumentando su actual cobertura y permitiendo que una conexión de datos establecida por un usuario en el entorno LTE continúe cuando la cobertura LTE se desvanezca. Por otra parte el operador tiene la ventaja de desplegar la red LTE de forma gradual, comenzando inicialmente por las áreas de gran demanda de servicios de banda ancha y ampliarla progresivamente en función de ésta
    corecore