
s
o
u
r
c
e
:
 
h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
4
8
3
5
0
/
1
6
5
5
1
1
 
|
 
d
o
w
n
l
o
a
d
e
d
:
 
2
.
8
.
2
0
2
2

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJCOMS.2022.3149965, IEEE Open
Journal of the Communications Society

OJCOMS-00777-2021 1

Toward a Live BBU Container Migration in Wireless Networks

Eryk Schiller, Member, IEEE, Jesutofunmi Ajayi, Student Member, IEEE, Silas Weber,
Torsten Braun, Senior Member, IEEE, Burkhard Stiller, Member, IEEE

Cloud Radio Access Networks (Cloud-RANs) have recently emerged as a promising architecture to meet the increasing demands
and expectations of future wireless networks. Such an architecture can enable dynamic and flexible network operations to address
significant challenges, such as higher mobile traffic volumes and increasing network operation costs. However, the implementation
of compute-intensive signal processing Network Functions (NFs) on the General Purpose Processors (General Purpose Processors)
that are typically found in data centers could lead to performance complications, such as in the case of overloaded servers.
There is therefore a need for methods that ensure the availability and continuity of critical wireless network functionality in such
circumstances.

Motivated by the goal of providing highly available and fault-tolerant functionality in Cloud-RAN-based networks, this paper
proposes the design, specification, and implementation of live migration of containerized Baseband Units (BBUs) in two wireless
network settings, namely Long Range Wide Area Network (LoRaWAN) and Long Term Evolution (LTE) networks. Driven by
the requirements and critical challenges of live migration, the approach shows that in the case of LoRaWAN networks, the
migration of BBUs is currently possible with relatively low downtimes to support network continuity. The analysis and comparison
of the performance of functional splits and cell configurations in both networks were performed in terms of fronthaul throughput
requirements. The results obtained from such an analysis can be used by both service providers and network operators in the
deployment and optimization of Cloud-RANs services, in order to ensure network reliability and continuity in cloud environments.

Index Terms—Cloud-RAN, Live Migration, LoRaWAN, LTE, NFV

I. INTRODUCTION

CURRENTLY, significant efforts focus on new access
methods targeting the Internet-of-Things (IoT). New

standards have emerged, with the most prominent examples
being Long Range (LoRa) or cellular technologies, such as
Long Term Evolution (LTE) Cat. M (LTE-M) or LTE Cat.
N (i.e., Narrow Band (NB)-IoT). While LoRa defines a new
access method, LTE-M and NB-IoT defined new features
of LTE Advanced Pro in Release 13 of the 3rd Generation
Partnership Project (3GPP) specifications. With these enhance-
ments evolved Node Bs (eNodeBs) may activate LTE-M or
NB-IoT after a software upgrade, depending on the base
software release and configuration in use.

The introduction of new access methods into a wireless
network ecosystem typically requires significant investments
in terms of Capital Expenditure (CAPEX) and Operating Ex-
penditure (OPEX) which do not guarantee profitable returns in
a short time. However, with the current network virtualization
trend and the goal of managing network infrastructure, plat-
forms, and applications through the Everything-as-a-Service
(XaaS) paradigm, significant cost reductions can be obtained
since no upfront investments are required, and resources can be
traded on-demand, leading to zero-CAPEX for Infrastructure
Providers (InfraPs). Furthermore, the risk of ill-estimated

Submitted 15 October 2021; This paper was partially supported by (a)
the University of Zürich UZH, Switzerland, (b) the University of Berne, and
(c) the European Union H2020 Research and Innovation Program under grant
agreement No. 830927, namely the H2020 Concordia Project.

Eryk Schiller (schiller@ifi.uzh.ch) and Burkhard Stiller
(stiller@ifi.uzh.ch) are with the Communication Systems Group CSG,
Department of Informatics IfI, Universität Zürich UZH, Zürich, Switzerland

Silas Weber is with the Faculty of Law IUS, Universität Zürich UZH,
Zürich, Switzerland (silas.weber@uzh.ch)

Jesutofunmi Ajayi (jesutofunmi.ajayi@inf.unibe.ch) and Torsten Braun
(torsten.braun@inf.unibe.ch) are with the Communication and Distributed
Systems Group CDS, Institut für Informatik INF, Universität Bern UniBE,
Bern, Switzerland.

CAPEX versus revenue estimations is minimized since re-
sources, and thus infrastructure, platforms, and applications
scale up continuously as needed. When the XaaS operational
model is applied to the telecommunications (telco) industry,
significant benefits of the XaaS model can counter the effect
of the ever-decreasing Average Revenue Per User (ARPU) in
telco ecosystems. As such, cloud computing and (network)
virtualization have stood out as two essential technologies that
can be used to create new opportunities to meet current and
future goals of Mobile Network Operators (MNOs). Cloud
computing enables ubiquitous and on-demand access to a
shared pool of scalable computational resources (i.e., pro-
cessing, networking, and storage). Furthermore, virtualization
techniques, such as Network Function Virtualization (NFV)
and Software Defined Networking (SDN), use a network
abstraction to virtualize network functions and to improve
network programmability and intelligence.

Centralized Radio Access Networks (C-RANs) have
emerged as a novel mobile network architecture to be deployed
in the network providing features, such as network slicing,
statistical multiplexing, energy efficiency, and higher network
capacity. C-RAN systems replace traditional Base Stations
(BSs), where distributed (passive) radio elements, such as the
Remote Radio Unit (RRU), are connected to a centralized
baseband processing pool at a central location, typically at
data centers, through Radio Aggregation Units (RAUs) [19].
Such an architecture supports the up/down-scaling, as well as
the migration of virtual Baseband Units (vBBUs) across virtual
and physical infrastructure resources to meet varying levels of
network and processing demands.

Thus, this paper evaluates the feasibility of live migrating
containerized Baseband Units (BBUs) in wireless networks,
while specifically targeting LoRa and LTE networks. Different
from other works, which focus on the live migration of generic



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJCOMS.2022.3149965, IEEE Open
Journal of the Communications Society

OJCOMS-00777-2021 2

applications and services in simulated or emulated network
environments, this paper approaches the problem of live BBU
migration in a systems-oriented manner. This approach enables
us to adequately study the practical and technical challenges
of performing a live migration in complex and real-time
network environments. In this way, this paper evaluates and
studies the impact of migrating the BBU on the performance
and availability of the network in real-time, something that
cannot be adequately investigated in non-real-time scenarios.
By providing containerized versions of LoRa (BBU, RRU
and Network Server (NS)) and LTE (BBU, RRU) C-RAN
networks, this approach is now able to design, implement,
and study the impact of live migrations in these widely-used
and popular networks. Based on the performed evaluations,
dedicated challenges of the considered live migration approach
applied to real test-bed setups of the different networks are
derived, which further leads to the suggestion of suitable
methods that can facilitate a live migration of BBUs in wireless
networks, in the future.

The remainder of this paper is organized as follows. Sec-
tion II lays the background for which related work is detailed,
leading to the critical assumptions determined. While the
design of the live container migration process is described in
Section III, the cloud-based architecture of wireless networks
evaluated is specified in Section IV. Driven by the experimental
setup defined in Section V, key evaluation results are presented
in Section VI. Finally, Section VII summarizes the work and
suggests areas for further improvements.

II. BACKGROUND AND RELATED WORK

To allow for a basis for exploiting technical features and
functionality of existing networking technologies, those are
discussed first. Second, the narrowing down of these ap-
proaches to investigate the live migration aspect is performed
by summarizing related work specifically, before the main
assumptions for the approach undertaken here are derived.

A. Long Range Wide Area Network

LoRa is a spread spectrum modulation technique used in
Low Power Wide Area Networks (LP-WAN), allowing for
long-range communications in low power IoT applications.
It is also used to provide support for devices installed in
remote areas1. It has become the primary technology in IoT
networks, and it provides a Long Range Wide Area Network
(LoRaWAN)2. The Medium Access Protocol (MAC) protocol
is placed on top of the LoRa Physical (PHY) layer within the
LoRaWAN open standard. Because IoT sensors show limited
battery life, capacity, and range, LoRaWAN is built to optimize
LP-WAN, while taking those limits into account.

1) The Things Network
The Things Network (TTN), also a LoRa Alliance mem-

ber, provides a worldwide LoRaWAN network for the TTN
community. Anyone with a LoRa Gateway (GW) can register
GWs with TTN, thereby extending the network coverage. At

1https://www.semtech.com/lora/what-is-lora
2https://lora-alliance.org/resource hub/what-is-lorawan

the time of writing, TTN lists 47,713 GWs and is present in
more than 80 countries [48]. A LoRaWAN network (cf. Fig. 1)
shows a star-of-stars topology. GWs act as a relay between end
devices and the central network server. GWs use the Internet
Protocol (IP)-based communication to connect to the network
server by turning LoRa Radio Frequency (RF) signals into IP
packets and vice versa [23]. End devices are not associated
with any particular GW. Messages are delivered without any
regard for the destination on the MAC layer and can be
spotted by many GWs simultaneously. A message received by
a GW is forwarded to the NS, which filters redundant message
instances, performs security checks, and forwards messages to
an appropriate application server [24]. The NS is also in charge
of Downlink (DL) message scheduling.

2) Long Range Wide Area Network
LoRaWAN is an ALOHA-based protocol allowing any end

device to initiate a transmission at any time, supporting 3 end
device categories:

• All LoRaWAN devices support the default Class A com-
munication. Two DL reception windows, established on
an end device right after an Uplink (UL) transmission has
been established, are used to receive a response, which
enables two-way server-to-end device communication. In
Class A communications, DL transmissions origination
from the server must wait for the UL transmission from
a targeted end device and cannot be launched unilaterally
by the network server, while the power consumption of
Class A devices is the lowest.

• An end device supporting Class B communications (i.e.,
two-way communication with a deterministic DL de-
lay) open additional receive windows at predetermined
periods. This is accomplished by a beacon-based time
synchronization in which GWs instruct an end device to
open a reception window at a specific moment.

• In the Class C communication paradigm (i.e., low latency
and two-way communications), devices always open re-
ception windows except when transmitting themselves.
If the device is not transmitting, the NS can initiate a
DL transmission at any time. Class C devices have the
highest power requirements and remain plugged-in rather
than being battery-powered.

Network Server

GatewaysEnd Devices

Fig. 1: LoRaWAN Architecture



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJCOMS.2022.3149965, IEEE Open
Journal of the Communications Society

OJCOMS-00777-2021 3

3) Long Range Modulation
LoRa is intended for long-range, low-power communication

with only a few bytes sent each day. Typically, LoRa shows
a range of 2–5 km in urban areas and 15 km in suburban
setups [2], however, LoRa communication also demonstrates
a successful reception from a low-orbit satellite [47].

In the license-free Industrial Scientific Medical (ISM) band,
LoRa signals are modulated as chirps using the Chirp Spread
Spectrum (CSS) technique [14], [36], where the ISM band
in the sub-GHz band is located in the 902-928 MHz and
863-870 MHz Electromagnetic (EM) spectrum range in North
America and Europe, respectively, and a regular LoRa channel
bandwidth is at 500 kHz and 125 kHz, respectively. The LoRa
signal consists of up- and down-chirps. Up-chirps begin with
a low frequency and gradually grow in frequency in time,
whereas down-chirps (or conjugated chirps) start with a high-
frequency signal and progressively reduce the frequency in
time. An unmodulated up-chirp (or down-chirp) in Europe,
for example, changes its frequency between 868.4375 MHz
and 868.5625 MHz in the 125 kHz channel centered around
868.5 MHz. Every UL LoRa frame starts with a preamble,
which consists of ten unmodulated up-chirps, preceding the
actual payload. The preamble is subsequently followed by
two and a quarter unmodulated down-chirps, which signal the
conclusion of the preamble and the start of the payload, i.e.,
Start of the Frame Delimiter (SFD). The payload is composed
of symbols (i.e., modulated chirps) that represent the header,
the message, and a Cyclic Redundancy Check (CRC) that is
used to detect transmission errors [45].

OS

SYS

LoRa
Concentrator

SPI

Security UDP

LoRa Gateway
NET

CO
RE

RAL
HAL NS

Fig. 2: LoRa GW Architecture

4) Long Range Gateway
The architecture of the LoRa GW [42] (cf. Fig. 2) includes

the LoRa concentrator, e.g., the SX1276/SX1278 chip, at-
tached to a single board computer through a Serial Peripheral
Interface (SPI). The GW is built on top of several abstraction
layers. Semtech’s Hardware Abstraction Layer (HAL) libraries
interact with radio hardware of several designs. The radio
functionality is abstracted through the Radio Abstraction Layer
(RAL) prepared for different HALs. The System Abstraction
Layer (SYS) is provided for different Operating Systems
(OSs), such as Linux or FreeRTOS. The Network Abstraction
Layer (NET) builds upon a security subsystem and is used for
communicating with the NS. The CORE functionality of the
packet forwarder uses abstraction layers to communicate with
LoRa end devices through the LoRa concentrator and the NS
through the NET abstraction layer.

The LoRa concentrator as of Fig. 3, e.g., a SX1276/ SX1278
chip3, consists of an analog radio chain, a baseband Digital

3https://www.semtech.com/products/wireless-rf/lora-core/sx1276

Signal Processing (DSP) unit, and an SPI sub-system. On the
UL, the signal passes through the Low Noise Amplifier (LNA),
an Analog to Digital (ADC), and a Digital Down Converter
(DDC), which provides the baseband In-phase/Quadrature
(I/Q) sample stream to the digital baseband LoRa demodulator,
demodulating that stream and providing decoded messages
toward the SPI subsystem. On the DL, a LoRa message
coming from the SPI subunit is modulated with the digital
baseband LoRa modulator, providing a baseband I/Q sample
stream toward the Digital Up Converter (DUC). The DUC
converts the I/Q stream to the passband. The passband signal
is converted to the analog signal through the Digital to Analog
(DAC), which is amplified through the Power Amplifier (PA)
and sent through the air toward end devices.

B. Long Term Evolution

The LTE [44] network is one of the most advanced and
widely used mobile telecommunications technologies, since it
provides high-speed data and voice capabilities, while consid-
erably outperforming the previous generation cellular networks
in the above aspects. The LTE network provides IP connec-
tivity between the User Equipment (UE) and a Packet Data
Network (PDN), such as the Internet, without a significant
disruption to end users’ connectivity during mobility. LTE’s
prominent network architecture consists of two components:

• Radio Access Network (RAN): It facilitates wireless
radio connections between UEs and the BSs and per-
forms certain functions, such as Radio Admission Con-
trol (RAC), Radio Resource Management (RRM), Radio
Resource Control (RRC), and inter-cell interference co-
ordination, at the edge of the network.

• Evolved Packet Core (EPC): the EPC connects UEs to the
Internet or a MNO’s network and supports user mobility
in the network through handovers. It is also responsible
for the establishment of radio bearers, e.g., Signalling
Radio Bearers (SRBs), in the LTE network.

The 3GPP 4G RAN-specified LTE-Uu protocol is based on
a hybrid PHY layer with Orthogonal Frequency-Division Mul-
tiple Access (OFDMA)-based UL (UE–eNodeB) and Single-
Carrier-Frequency-Division Multiple Access (SC-FDMA)-
based DL (eNodeB–UE).

The 3GPP Release 13 LTE Cat. M1 is an LTE standard to
support IoT applications [31] and based on an LTE resource
grid shared among UEs in the network, where a UE node
receives a portion of frequency delivered on a Transmission
Time Interval (TTI)-basis, where one TTI lasts for 1 ms.

From the eNodeB perspective, LTE Cat. M1 provides
amendments to the regular LTE-Uu protocol stack, specifically

SPI
SPI

LNA ADC

DAC

DDC

DUCPA

Demodulator

Modulator

Fig. 3: LoRa Concentrator



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJCOMS.2022.3149965, IEEE Open
Journal of the Communications Society

OJCOMS-00777-2021 4

at MAC and Radio Link Control (RLC) layers, and uses a
subset of PHY functionality of a regular eNodeB. LTE Cat.
M supports the UE mobility via a handover operation, UE
measurement reporting, RRC connection release, RRC re-
establishment, and voice communications.

LTE Cat. N is also known as NB-IoT [18], [33] and defines
a new PHY layer for 3GPP Release 13. It uses 200 kHz
channels, i.e., one 180 kHz Physical Resource Block (PRB),
in the frequency domain with 10 kHz guard bands on each
channel edge. LTE Cat. N, unlike LTE Cat. M, does not
support mobility (i.e., handovers) or voice. Since the 3GPP
Cat. N PHY is entirely new, an eNodeB must support and
configure LTE Cat. N within a specific frequency range. On
the DL, subcarriers are organized in the same way as in the
regular LTE, i.e., 12 subcarriers with 15 kHz spacing with the
same TTI organization in time. On the UL, another channel
organization was added of 48 subcarriers with 3.75 kHz
spacing, where one LTE Cat. N frame consists of five slots of
2 ms each, which is in contrast to regular LTE with one frame
composed of 10 TTIs or 20 slots. To support LTE Cat. N,
the eNodeB has to implement the new PHY, e.g., in software.
However, the new organization does not change much, since it
still mainly depends on the OFDMA/SC-FDMA access using
different parameters [15].

C. Centralized Radio Access Network
The virtualization of the RAN has emerged as a possible

solution for MNOs to improve their services while keeping
costs down. This involves decoupling the software that controls
the access network from the underlying hardware, which
allows for fast upgrades and improved scalability to meet
varying network traffic demands, the rapid deployment of
new services, and the ability to centralize and pool various
resources together. As a result of this abstraction [13], C-RAN
implementations consume significantly less power than tradi-
tional RAN implementations provided by BSs.

With C-RAN, BBUs are not deployed along with physical
BSs at a remote location. Instead, they are decoupled and
moved to a centralized processing pool, including other BBUs
too. Pooling BBUs together can lead to more sophisticated
joint spatio-temporal processing of radio signals, while also
improving the spectral efficiency [30].

However, this deployment comes with several challenges.
As the result of signal processing performed on General Pur-
pose Processors (GPPs), the C-RAN performance can suffer,
at least compared to hardware-based implementations. E.g.,
if due to a lack of computational resources (i.e., memory or
CPU) the GPPs cannot meet signal processing requirements
for Ethernet frames received from the front haul network on
time, this will have an overall negative impact on the service-
level performance of the network. This is further characterized
by the fact that in such a scenario, strict timing requirements
for Hybrid Automatic Repeat Request (HARQ) would not be
met, which leads to more frequent re-transmissions and per-
formance degradation. This is especially critical for services
requiring low-latency in the order of a few ms, and/or highly
reliable communications, such as Augmented Reality (AR) and
Industrial Automation (IA) applications.

The HARQ timing constraint in LTE C-RAN can be con-
sidered as one of the most restricting limitations of such
deployments, since for every MAC Packet Data Unit (PDU)
received it requires an Acknowledgment (ACK) or Negative
Acknowledgment (NACK) issued by entities in the network.
This NACK is expected to be received in 8ms, i.e., HARQ
Round Trip Time (RTT), which puts stringent requirements on
the front haul link to maintain this timing constraint.

The use of virtualization layers in certain C-RAN deploy-
ments, such as Virtual Machine (VM), introduces fluctuations
in processing time [30]. Such fluctuations can make it chal-
lenging to maintain connectivity in C-RANs due to frequently
missing real-time requirements caused by the introduction of
the virtualization layer. Finally, the high-capacity link required
to carry the I/Q sample stream between the RRUs and a
centrally placed BBUs located several kilometers away from
the network edge (at a datacenter) remains challenging for
C-RAN deployments.

The Cloud Radio Access Network (Cloud-RAN) concept
is a result of advancements (i) to facilitate the development
of flexible wireless networks to respond quickly to changes
in demand and (ii) toward designing service-based network
architectures. The concept is very similar to C-RAN, in which
compute-intensive signal processing functions are decoupled
from specialized hardware and implemented on GPPs.

The cloudification of the RAN has facilitated the oppor-
tunity to deploy it as a service in cloud environments. Thus,
Radio Access Network as a Service (RANaaS) has emerged as
a new cloud computing paradigm, in which an access network
can be delivered as a pay-as-you-go service instantiated on top
of a cloud infrastructure [30]. This allows MNOs to respond
quickly to changes in the load of the network (e.g., increased
demand at a particular cell) by deploying new instances of
RAN network functions, distributing network and processing
load across different cloud instances through load balancing.

D. Functional Splits

To enable the RAN to meet heterogeneous service require-
ments, 3GPP envisions eight options on how to split the RAN
radio stack between the BBU and the RRU. These splits
can occur between any of the five principal layers in the
radio stack, which includes: RRC-Packet Data Convergence
Protocol (PDCP), PDCP-RLC, RLC-MAC, MAC-PHY, and
PHY-Radio Front-end, and three internal splits between the
MAC, PHY, and RLC layers (i.e., High RLC-Low RLC, High
MAC-Low MAC, High PHY-Low PHY), cf. Fig. 4.

The current RAN architecture requires baseband signals
to be transported between the BBUs located at a Remote
Cloud Center (RCC) and the edge located RRUs through,
for example, a Radio-over-Fiber (RoF)-based Common Public
Radio Interface (CPRI) [51] (cf. Fig. 4). However, this places
very high bandwidth requirements on the front haul transport
network, and such an architecture is unlikely to meet scalabil-
ity and performance requirements of upcoming 5G use cases,
like AR and Virtual Reality (VR) applications. Recent develop-
ments have focused on redefining the architecture of the access
network by proposing a Next Generation Fronthaul Network



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJCOMS.2022.3149965, IEEE Open
Journal of the Communications Society

OJCOMS-00777-2021 5

(NGFN), which can split the radio stack between BBUs and
RRUs, determining a centralized control of distributed radios.
To connect these components, a new front haul interface, the
Next Generation Fronthaul Interfaces (NGFI) [6], is proposed
and can be used to transport baseband signals using the Radio-
over-Ethernet (RoE) protocol or IP interfaces.

RRC PDCP High- 
RLC

Low- 
RLC

High- 
MAC

Low- 
MAC

High- 
PHY

Low- 
PHY RF

RRC/IP PDCP

Channel
Coding &

Time
Estimation

OFDM, Equalization, MIMO
Precoding

Channel Estimation, Resource
Mapping, Sampling, FFT/IFFT RF

RCC (BBU) RRU

Data Link Layer Physical LayerNetwork
Layer

Option 1 Option 2 Option 3 Option 4 Option 5 Option 6 Option 7/7.1
(IF4.5)

Option 8 
(IF5)

Network 
Core

Cell ProcessingUser Processing

Backhaul Ethernet-based Fronthaul (NGFI)

RCC (BBU) RRUNetwork 
Core

CPRI

Fig. 4: Functional Split Options

Furthermore, in current C-RANs deployments, I/Q samples
are carried from the BBU to the RRU, which places very high
bandwidth requirements on the front haul transport network.
Such an architecture likely struggles to meet future wireless
networks’ scalability and performance requirements. The de-
sign and implementation of NGFI enable decoupling front haul
bandwidth from the number of antennas to ultimately reduce
bandwidth and increase transmission efficiency [16]. Through
the NGFI architecture, these components can be connected
through Ethernet or IP interfaces. More specifically, this allows
for point-to-multipoint connections between BBUs and RRUs
and for a third component, RAU, to control multiple RRUs
that operate in different bands and with different coverage.
Functional Splits (FSs) can be established through NGFI, too,
which makes C-RAN deployments more flexible and reduces
the required front haul capacity [39]. However, the clock-
based synchronization between the BBU and RRU is lowered,
which impacts the front haul network due to increased data
transmission errors [34].

E. Related Work in Detail

C-RAN [19] was first introduced by China Mobile for the
optimization of CAPEX and OPEX in future mobile networks.
Several approaches exist in the scope of cloudified4 LoRa,
such as [9], [22], [38]. [9] studies different RRU/BBU split
configurations and provides a LoRa monitoring application
within the cloud environment. It is unclear, whether their
cloudified decoder is able to decode LoRa signals. [38] pro-
vides a working C-RAN system based on the existing LoRa
encoder/decoder implementation [35]. [22] studies front haul
compression able to reduce the RRU-BBU communication by
a factor of 93.7%. This work mainly extends [38] with the
docker.io5 migration functionality of cloudified BBUs.

4The terms “cloudified” and “virtualized” are used interchangeably here.
5The terms “docker.io” and “docker” are used interchangeably here.

In 3GPP networks, a C-RAN allows the BBU to be hosted
at a central location that is close to the edge or at a data center
that is further away. Several cloudified implementations of
real-time 3GPP LTE or 5G networks exist, such as Amarisoft
OpenAirInterface (OAI) [28], [29].

Several approaches study service migration in various sce-
narios, including wireless networks. [21] focuses on low-
latency strategies for service migration. It discusses con-
nectivity enhancements, migration strategies, and bandwidth
slicing as considerations that could be used to support the
migration of services with low-latency requirements. However,
[21] focuses on service migration in transport networks with
a particular focus on schemes for vehicular communications.
Furthermore, that evaluation is carried out via simulations
using mobility pattern data. [26] addresses the problem of live
migrating multiple mobile services across centralized and edge
clouds while maintaining high Quality-of-Service (QoS) to
ensure that Service Level Agreements (SLAs) are not violated.
Their approach is based on a mathematical formulation of
the problem, and the proposed model is carried out using
simulations, limiting its applicability to real wireless network
settings. [25] supports user mobility through live migration
of offloaded services in Wide Area Networks (WANs), and
proposes an edge computing-based solution leveraging layered
storage to reduce the file system synchronization overhead
while supporting seamless migrations. [12] discusses require-
ments and perceived challenges of providing seamless service
migration of industrial applications between edge servers.
They propose a novel iterative migration scheme that reduces
service downtime by excluding the stop-and-copy phase of live
migration. [3] studies the dynamic adaptation of Functional
Splits between the Central Unit (CU) and the Distributed Unit
(DU) in 5G the RAN. It is claimed that such an approach is
equivalent to live migration of functions between the CU and
the DU. Their proposed approach is based on replicating the
MAC and RLC functions of the RAN at both the CU and the
DU simultaneously, even when they are not being used, and
transferring the state of functions between the old set of MAC
and RLC functions and the active set of functions.

F. Assumptions

The majority of these approaches do not study the live
migration of containerized C-RAN functions in wireless net-
works, and they do not address strict timing and processing
constraints. While only one approach known so far for live mi-
grating C-RAN functions in wireless networks was proposed
in [3], it considers a different functional split scenario from
the one studied in this work.

Driven by the background provided and the analysis of
related work, two types of NGFI-based splits are considered:

• NGFI:IF5/CPRI (3GPP Option 8): The IF5 split is
performed at the input, i.e., Receive (RX), and output, i.e.,
Transmit (TX), of the Orthogonal Frequency-Division
Multiplexing (OFDM) symbol generator (i.e., frequency
domain signals) and transports resource elements trans-
mitted or received in usable channel bandwidth. RCC
and RRU swap baseband I/Q samples across the front



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJCOMS.2022.3149965, IEEE Open
Journal of the Communications Society

OJCOMS-00777-2021 6

haul link. A low compression is applied to I/Q data
being transported across Ethernet front haul. This reduces
the front haul link capacity requirement to 28% of the
time-domain I/Q split case. Therefore, an RRU with a
bandwidth of 20 MHz can be provisioned using a 1 Gbps
link between an RRU and RCC [30].
Note that LoRa does not define any splits in its current
state. Therefore, this work is inspired by the IF5 split
in LoRa, where the RRU generates a raw baseband I/Q
sample stream. To this end, Software Defined Radio
(SDR) applies DDC/ADC functions, which produce a
raw baseband I/Q sample stream as output. This stream
does not have to be necessarily provided toward the
digital demodulator immediately but can be transported
through the front haul interface to the remote cloud LoRa
demodulator. However, the problem of IF5 is currently
its efficiency, e.g., it requires approximately 1 Gbps to
sample 20 MHz channels. LTE defines more efficient
splits to protect against high load on front haul interfaces,
e.g., IF4.5. However, no splits are currently specified in
the LoRa domain.

• NGFI:IF4.5 (3GPP Option 7.1): The IF4.5 split is
similar to the BBU–RRU interface, in which baseband
frequency domain I/Q samples of all PRBs are trans-
ported between the BBU and RRU. With this split, the
distributed RRUs is responsible for the lower PHY layer
processing, namely Fast Fourier Transform (FFT) and
Inverse Fast Fourier Transform (IFFT), which optimizes
throughput of the front haul link. As a result, this split
can be considered a hybrid centralization solution, since
the Cyclic Prefix (CP) removal and transformation of the
signal received to the frequency-domain are performed
using FFT [20]. Hence, guard-band subcarriers, typically
present in OFDM-based systems, like LTE, can be re-
moved at the distributed RRUs and carried over the front
haul to the BBU. As the number of guard subcarriers
in LTE is 40% [52], the front haul bit rate is lowered
using the NGFI IF4.5 (Option 7.1) split and, thus, it is
significantly lower than for the NGFI IF5 (Option 8) split.

Thus, the NGFI IF5 and IF4.5 functional splits for LoRa and
LTE, respectively, are applied to the setup utilized in this work.
Note that the IF4.5 functional split is considered the standard
C-RAN-based split in LTE networks and corresponds to the
PHY-Radio Front-end split as defined by 3GPP [1]. In the
case of LoRa, the complex representation of the I/Q sample
stream with 64 bits per I/Q sample is used. Thus, in turn, the
performance of containerized LTE deployments is evaluated
and provides the first practical solution for a containerized
migration in such network environments.

III. LIVE MIGRATION DESIGN

With cloud computing and NFV emerging to enable com-
puting resources to be scaled on demand and packet process-
ing to be moved from hardware middle-boxes (i.e., routers)
to software middle-boxes running on commodity hardware,
service providers are able to improve the management of
computing and network resources in data center environments.

The virtualization of Network Functions (NFs) leads to higher
energy savings, improved resource efficiency, and better QoS
performance. The live migration of NFs can also be used
to provide similar benefits, since it can support flexible and
reliable provisioning of NFs and services in data centers, too.
However, current management and orchestration technologies
available for a live migration have been primarily adopted
from the IT industry, which limits their suitability in the
support of telco-grade performance (i.e., being low-latency,
high performance, reliable, and scalable), especially in the
scope of next-generation wireless networks, such as upcoming
virtualized 5G networks.

The process of live migration has been used extensively
in cloud computing environments as it offers a solution for
typical data center operational concerns, such as fault manage-
ment, load balancing, and low-level system maintenance [7].
The process involves transferring running services (or ap-
plications) from one physical or virtual resource to another
while ensuring minimal disruption to users of the services
being transferred. Due to the ease of duplication, MNOs
tend to deploy Virtual Network Functions (VNFs) in VMs,
which further enables the flexible scheduling and placement of
such VNFs in the infrastructure [54]. Unlike VM migration,
where the CPU state, memory content, and content storage
are considered during the migration process, the migration
of containers is primarily concerned with memory content.
Memory migration depends on the type of application being
migrated and the workload being supported by the underlying
operating system [4]. Thus, the more collaborative processes
the system handles, the more time the migration process is
likely to take, leading to a longer downtime of the service
being migrated.

To migrate a containerized BBU between two hosts, while
keeping the users’ connection active, two possible migration
approaches can be applied. In the “stop-and-copy approach”,
where the running state of the containerized BBU is check
pointed at the source node, the BBU on the source is stopped
before being migrated and restored on the destination node.
The second approach entails performing the migration step
in an iterative manner by executing several checkpoints of
application processes (i.e., BBU functions) before the final
migration step is completed. The advantage here is the reduced
downtime of the application due to less memory being check-
pointed at the beginning of the migration, which is essential
to maintain the network’s performance.

A. Checkpoint and Restore in Userspace

Docker.io packages software components into self-
containing software bundles (i.e., images) and relieves the
host operating system from the installation of libraries
necessary to support a given application. Such software
bundles can be migrated from one host to another without
any hassle by copying the image between those machines. To
perform (live) migration of docker containers across nodes
in a network, the user-level process tool Checkpoint and
Restore in Userspace (CRIU) is integrated into the docker
system. CRIU supports several types of migrations, including



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJCOMS.2022.3149965, IEEE Open
Journal of the Communications Society

OJCOMS-00777-2021 7

disk-less Migration, iterative migration, lazy migration, and
live migration. In general, the migration procedure can be
achieved by check pointing the state of running processes
in a container and restoring these processes in user space
at the current node or at a different node in the network
infrastructure. CRIU stores snapshots of container processes
as momentary protocol buffer (protobuf) images in a file
system [50]. To access the state of processes during the check
pointing phase, CRIU uses the /proc file system to collect
running threads and child/dependent processes. It uses the
ptrace () Linux system call for gathering core parameters
that need to be dumped/restored. Upon restoration, CRIU
uses the fork () Linux system call to recreate process
trees. Other steps during the restore process include mapping
necessary code and pages into address spaces needed at the
destination node, restarting threads, and rebinding any sockets
to resume communications. The CRIU migration process is
explained in Fig. 5, where a given process tree (e.g., within a
docker container) can be dumped, copied, and restored.

Dump Copy Restore

Fig. 5: Migration Framework

B. Container Migration Challenges

A live BBU container migration in a wireless network, espe-
cially of containerized BBU in LoRaWAN was rather trivial to
perform, compared to doing the same in LTE networks. This is
due to the fact that the GW present in LoRaWAN does neither
maintain any state (i.e., it is stateless) related to end clients nor
does it need any strict synchronization. However, this is not
the case for migrating the BBU in LTE networks, which makes
it significantly more challenging to perform a live migration
in such environments, as detailed in the following:

1) Strict timing and synchronization network requirements
exist. In LTE, the Hybrid Automatic Repeat Request
(HARQ) is a mechanism used to improve transmission
reliability, and it requires the transmitter to retransmit
packets in the case of NACKs or acknowledges the
reception of packets with an ACK to avoid packet
errors [8]. This results in a major impact on the fea-
sibility and performance of the live BBU migration,
since the eNodeB is unable to send or receive any
ACK/NACK messages to the UEs connected during
downtime. Therefore, the period of inactivity at the
eNodeB causes multiple packets to be lost and degrades
the QoS experienced by users.

2) In a Cloud-RAN deployment, where RAN functional
splits exist between the BBU and the RRU, ensuring that
packets arriving over-the-air at non-migrated functions
(i.e., the Low-PHY and Radio Front-end stacks at the
RRU) are later transferred to migrated function(s), is of
significant importance to maintain stability and consis-
tency in the network. While [3] showed the feasibility

of a similar approach using a custom-made solution for
functional splits that occur between layers (i.e., RLC and
MAC), their implementation was based on the modular
and customizable srsLTE platform. The complexity of
the OAI platform, which implements option 7.1 (NGFI
IF4.5) function split out of the box, makes such an
approach non-trivial, especially for intra-layer functional
splits, such as the intra-PHY (i.e., High PHY-Low PHY)
split considered in this work.

3) The Cloud-RAN used in this work, OAI-RAN, is a soft
real-time system, which means that any excessive burden
to the CPU leads to the desynchronization between
the eNodeB and the UE [17]. This is also the case
during prolonged periods of inactivity of the RAN.
Since the migration (checkpoint and restore) of the
BBU does require a non-negligible period of downtime,
maintaining synchronization between the eNodeB and
the UEs during this period is non-trivial.

These observations obtained indicate that any momentary
interruptions in the operation of the BBU in an LTE net-
work break the communication between the UE and the
Core Network (i.e., Mobility Management Entity (MME) and
Serving/Packet Gateway (S/PGW) (Serving Packet Gateway)),
which causes the UE to no longer have access to the Internet.

The interruption caused by the procedure of live migrating
the BBU in LTE can be seen as an example of a temporary
call drop in the network, or more specifically, a Radio Link
Failure (RLF). In LTE networks, a RLF typically occurs
when the connection between the UE and the eNodeB cannot
be established or maintained. If a UE experiences a radio
link problem, which would occur due to BBU migration, it
typically waits for a specified time until the broken PHY
link is either recovered or canceled. If this period passes
and the connection is not reestablished with eNodeB, it is
released from the eNodeBs list of connections, which requests
to the MME the release of the UE-associated logical S1-
connection (S1-U/S1AP) as a result of E-UTRAN-generated
reasons. However, more studies are needed in this area.

Outside the mentioned network-related observations, it
needs to be noted that in order to checkpoint the containerized
BBU in LTE, it is required to checkpoint and restore Stream
Control Transmission Protocol (SCTP) sockets that are used to
communicate with the Evolved Core Network/EPC. However,
as at the time of writing, the tool used to perform the
migration, CRIU, does not support the check pointing of SCTP
sockets, which limits the suitability of the approach to support
the migration of the LTE BBU.

IV. CENTRALIZED RADIO ACCESS NETWORK
ARCHITECTURE DESIGN

The overall architecture considered (cf. Fig. 6) envisions
a cloud ecosystem composed of compute nodes (i.e., hosts)
running virtual BBUs or vBBUs), which in turn support RRUs.
Those BBUs are provided as containers and executed among
compute nodes, since containers are better adapted for real-
time applications [28]. The cloud supports live migration of
BBUs through the CRIU engine. Live migration might be used,



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJCOMS.2022.3149965, IEEE Open
Journal of the Communications Society

OJCOMS-00777-2021 8

for example, to increase energy efficiency of the infrastructure.
If services run idle, e.g., at night, it can be beneficial to migrate
BBUs to a smaller number of compute nodes, power-off un-
used infrastructures, and save energy [19], thus, materializing
green computing. Live migration shows measurable benefits,
since it limits service downtime (i.e., upon migration while
swapping containers) and allows for an uninterrupted operation
of services being migrated. If these services are efficiently
migrated, the user has the impression that the service was not
interrupted, even though it was migrated several times.

A. Long Range Centralized Radio Access Network

A “regular” LoRa GW consists of distinct subcomponents
(cf. Fig. 2). LoRa C-RAN executes the PHY layer processing
in a cloudified setup. Thus, signal processing, implemented
in software, runs within a cloud environment using general-
purpose server infrastructures. This contrasts in comparison
to a GW directly executing signal processing in hardware
using custom-designed Radio Frequency Integrated Circuit
(RFIC) modules. In this cloudified case, the RRU has to
remain in a distant location. However, the RRU design is
significantly reduced, while the LoRa PHY, which performs
demodulation and decoding, is moved to the cloud. Therefore,
any specialized pieces of hardware, such as the SX1302
transceivers6 found on regular LoRa GWs, are not required
on the LoRa in the C-RAN setup.

1) Long Range Centralized RAN Architecture
A high level architecture is shown in Fig. 7, including all

network functions in the system (i.e., RRU, BBU, and NS).
The RRU might be a small-sized computer equipped with a
radio chain composed of an antenna, an amplifier, and DAC
as well as ADC converters. Similar functionality might be
provided by an SDR board attached to the computer using

vBBUvBBUvBBU

vBBUvBBUvBBU

vBBUvBBUvBBU

Cloud

Compute 
Node #1

Compute 
Node #2

Compute 
Node #N

live migration

RRU #1 RRU #2 RRU #M

Fig. 6: Cloudified RAN Network

6https://www.semtech.com/products/wireless-rf/lora-gateways/sx1302

a Universal Serial Bus (USB) port. The SDR board can be
used to communicate with LoRa end devices (e.g., Raspberry
Pi or Arduino with LoRa compliant chips) in the LoRaWAN
through analog radio signals.

End-Device RRU BBU Network Server

fronthaul backhaulRXTX

5V
G
N
D

G
N
D Vi
n

A
5

Upstream I/Q sample stream

Downstream I/Q sample stream
IP Based Communication

LoRa Uplink Communication

LoRa Downlink Communication

Fig. 7: Cloudified LoRa Network [38]

In essence, on the upstream, the RRU converts analog LoRa
radio signals transmitted by end devices over the air into the
baseband I/Q sample stream sent over the front haul interface.
On the downstream, in turn, the RRU converts the received
I/Q baseband sample stream into analog signals sent over the
air interface towards end devices with regular LoRa chips.

The overall communication on the front haul interface may
be characterized by the following:

• Upstream: the RRU receives LoRa radio signals, con-
verts them into a baseband I/Q sample stream using an
ADC/DDC (through SDR), and forwards resulting sam-
ples over the Internet (e.g., using an Ethernet connection)
to the cloud signal processing unit, the BBU.

• Downstream: the BBU provides LoRa signals to the RRU,
which are encoded in the form of a baseband I/Q sample
stream, converted to an analog signal by the RRU via the
DUC/DAC module (through SDR), and propagated over
an antenna.

The RRU fully replaces a LoRa GW allowing for the
communication in the LoRaWAN under the assumption that (i)
the upstream baseband I/Q sample stream is sent over the front
haul and appropriately processed at the later stage as well as
(ii) a necessary downstream baseband I/Q sample stream (e.g.,
coding DL LoRa signals) arrives at the RRU on time through
the front haul interface. Typically, the front haul interface, i.e.,
the RRU-BBU link meets much higher demands in terms of
throughput, latency, and jitter in comparison to the backhaul
interfaces between the GW and NS. This is related to radio
signals handled as the I/Q sample stream of high bandwidth
requirements. This work implements the IF5 functional split
as defined by [1] (i.e., working with the baseband I/Q sample
stream).

The BBU executes a LoRa modem implemented in software
and provisioned as a VNF over an RRC. The task of the LoRa
modem is to demodulate and decode in real-time LoRa signals
provided within the baseband I/Q sample stream received from
the RRU over the front haul on the upstream.

In essence, on the upstream, the LoRa modem accepts the
real-time baseband I/Q sample stream on input and output
byte-streams containing distinct LoRa packets originating at
LoRa end devices. The BBU provides every message decoded
toward the NS on the upstream through the backhaul interface
for further processing (e.g., using a Datagram (DGRAM)
message).



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJCOMS.2022.3149965, IEEE Open
Journal of the Communications Society

OJCOMS-00777-2021 9

The NS processes messages received over the backhaul
interface. If an end device requests a response, the NS origi-
nates a downstream transmission. The downstream message is
sent over the backhaul toward the corresponding BBU (e.g.,
using a DGRAM message). The BBU encodes a response
message (i.e., DGRAM message) and sends the corresponding
downstream I/Q sample stream to the RRU on the front
haul interface. Coding and modulation is provided by the
LoRa modem, which accepts a byte-stream on input and
outputs the corresponding baseband I/Q sample stream on the
downstream.

The RRU sends the sample stream to a DUC/DAC (i.e.,
SDR), which converts it into an analog signal that can be
amplified and broadcast into the air via an antenna. The signal
may reach an end device using a standard LoRa chip, which
would decode the message and send it to higher layers in the
communication protocol stack.

2) Containerization and Orchestration
The docker-based containerization used in our setup pro-

vides for a uniform resource abstraction layer for all virtual
entities, i.e., RRU, BBU, and NS, described in the following
subsections. Docker containers are more light-weight than full
VMs, and are better adapted for signal processing VNFs [28].
The docker platform provides the orchestration tool docker-
compose, which stores the configuration of the entire container
bundle using Yet Another Markup Language (YAML). As a
result, a single orchestration action can start multiple contain-
ers implementing a specific composed software function, i.e.,
cloudified LoRa, or LoRa as a Service (LaaS). Furthermore,
docker-compose lets the user scale services according to the
momentary load by spawning new containers when required.
Therefore, docker is the foundation for the LoRa C-RAN spec-
ified and implemented in this work. Docker.io can also equally
well deploy functions among open cloud-computing platforms,
such as OpenStack7, which can improve the usability of the
system.

End Device

RXTX

5V
G
N
D

G
N
D Vi
n

A
5

RX

TX

PUB

SUB

RRU

PUB

SUB

DG
RAM

BBU

Encoder

Decoder

I/Q samples

I/Q samples

DG
RAM

Receive
Analyze

Send

SDR

NS

Fig. 8: C-RAN Socket Communications Between Components

3) Remote Radio Unit
The RRU (cf. Fig. 8) is a pure GNU Radio-based com-

ponent [11]. Physically, it consists out of the computing node

7https://www.openstack.org/

equipped with a Lime SDR8 attached through USB and anten-
nas installed on appropriate input and output ports of the SDR
device. Logically, the architecture uses the Publish/Subscribe
(PUB/SUB) model. RRU uses two Radio Front-end compo-
nents, i.e., SDR RX and SDR TX, which correspond to the
physical RX and TX of the SDR device.

The RX component of LimeSDR provides an incoming
signal as a stream of 64-bit wide I/Q samples and publishes
them in a Zero Message Queue (ZMQ)9-based Publish (PUB)
socket. The first task of the RRU is, therefore, to publish
I/Q samples toward registered subscribers, i.e., BBUs. The
second task is related to the processing of downstream I/Q
samples originating at the BBU. The I/Q sample stream is
received through a Subscribe (SUB) socket from the BBU and
forwarded toward the TX block of the LimeSDR, which emits
corresponding LoRa waveforms through the air. It is notewor-
thy that the RRU does not decode/encode LoRa packets on
its own, but passively forwards the sample stream between a
remote BBU and the local RF component.

4) Baseband Units
Physically, a BBU (cf. Fig. 8) is a cloud-native computing

resource, while logically it is a GNU Radio [11] environment
running a LoRa [35]/LTE [28] decoder/encoder. It is worth
noting that the BBU does not contain any physical Radio
Front-end components, such as SDR RX or TX radio chains.
The BBU receives the I/Q sample stream from the ZMQ SUB
socket and passes it further towards the local decoder. The
decoder, in turn, processes LoRa signals and forwards mes-
sages decoded to the User Datagram Protocol (UDP)/DGRAM
message socket leading toward the NS. Moreover, the BBU
shall use the UDP socket to receive a byte-stream from the NS,
provide the received byte-stream towards an extended version
of the encoder component [35], and send the corresponding
I/Q samples (i.e., received from the encoder) towards the PUB
socket, publishing I/Q samples on the downstream toward the
subscribed RRUs.

Note that the downstream chain is currently only partially
implemented because the downstream packet is built by the
NS and delivered directly to the RRU, bypassing the BBU.

5) Network Server
An NS (cf. Fig. 8) receives and logs data packets received

from the BBU through an upstream UDP socket. Furthermore,
the NS requests a downstream transmission by contacting the
BBU through its downstream UDP socket. In the current im-
plementation, the NS bypasses the BBU and directly provides
the RRU with the corresponding I/Q sample stream on the
downstream.

6) Communication Diagram
All communication between the components is implemented

through sockets. The ZMQ messaging library is deployed
here since it offers reliable communication schemes using the
Request-Reply or PUB/SUB paradigms. GNU Radio offers
ZMQ blocks by default, while Transmission Control Protocol
(TCP) source/sink blocks for socket-based communication
are still available but deprecated. For the RRU-BBU com-

8https://limemicro.com/products/boards/limesdr
9https://zeromq.org/



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJCOMS.2022.3149965, IEEE Open
Journal of the Communications Society

OJCOMS-00777-2021 10

munication, the PUB/SUB paradigm is applied unless CRIU
restoration has to be supported, cf. below.

7) Notes on the Implementation
a) Zero Message Queue: All PUB/SUB blocks, as well

as the accompanying data flow, are shown in Fig. 8. The
SDR RX chain generates an I/Q sample stream, which is
published by the RRU through the PUB socket. While BBU’s
SUB socket subscribes to the RRU PUB socket, BBU receives
I/Q samples from the RRU. Please note that because a TCP
connection is used, I/Q samples from the RRU RX radio chain
arrive intact at the BBU decoder [35]. The BBU exports de-
coded LoRa messages towards the NS, which is implemented
with the help of a dockerized Python script through a UDP
communication. The NS receives decoded LoRa messages
provided over UDP and, if desired, feeds I/Q samples of the
answer down to the BBU through a DGRAM socket. The
BBU encodes the message, which is then propagated towards
the PUB communication channel of the BBU. The RRU SUB
socket subscribes to the BBU PUB socket, which closes the
communication loop. Finally, the message is emitted through
the air through the TX radio chain of the RRU.

The advantage of ZMQ is that sockets can ignore time
out or disconnect actions. Thus, subscribing sockets can be
started before publishing sockets without interference. The
subscribing socket can wait for the publishing socket to be
instantiated. In this architecture, this means, in particular, that
all docker containers for the RRU and BBU can be started
in any order. Furthermore, additional BBU instances can be
added at run-time, while the PUB/SUB paradigm allows for
new subscribers and publishers to join at any moment.

b) GNURadio TCP and UDP source and sink blocks:
Due to the fact that BBU using the ZMQ communication was
not restoring properly upon evaluation (cf. Table III), the ZMQ
communication between RRU and BBU was replaced with
the GrNet10 UDP implementation. GrNet sends I/Q sample
stream using the UDP socket communication and can replace
the ZMQ communication. The UDP message size can be set
arbitrarily. However, the message size has to be configured as
a multiple of the I/Q sample size. When the complex type is
used, multiples of 64 bits have to be configured.

B. Long Term Evolution Centralized Radio Access Network

The LTE C-RAN architecture is composed of three main
components: BBU, RRU and UEs. The centrally located BBU
has the responsibility of allocating network resources with
various conflicting objectives (resource, throughput, and en-
ergy) and constraints (power, throughput, CPU, and memory)
[10]. At the same time, the remotely placed radio units are
primarily used for the transmission and reception of signals to
and from UEs, respectively. In LTE C-RAN, different layers
of the radio protocol stack can be executed at the centralized
BBU pool (i.e., RCC) or closer to the edge, at the radio units
(i.e., RRU). This division of the protocol stack execution and
the exact functional split deployed can be determined by a
host depending on factors, such as the available processing
resources at each location or the performance requirements

10https://github.com/ghostop14/gr-grnet

for the users being supported, i.e., more protocol stack layers
could be offloaded to the radio unit to enable low-latency
communications for users at the edge. Similar to the LoRa
C-RAN architecture, the signal processing functions at the
BBU can be placed and executed in a cloud environment and
run on GPPs.

UE RRU RCC EPC

fronthaul backhaul
RXTX

5V
G
N
D

G
N
D Vi
n

A
5

I/Q sample-based communication IP Based Communication

E-UTRAN

Fig. 9: Cloudified LTE Network

1) Long Term Evolution Centralized Radio Access Network
Architecture

The components of the LTE C-RAN architecture can be
seen in Fig. 9. The displayed RCC hosts support several RAN-
related functions, including Packet Processing Function (PPF),
Baseband Processing Function (BPF), etc. The RRU is used
to handle functions that require special radio hardware such
as modulation/demodulation, filtering, signal amplification,
Analog/Digital (A/D) conversion. In the Cloud-RAN setup, the
typical transceiver and receiver functions of a base station (i.e.,
RRU) are provided by the Universal Software Radio Peripheral
(USRP) B210 SDR board attached to the RRU via a USB 3.0
cable.

Specifically, since the IF4.5 split (Section II-D) is applied,
the RRU is configured to perform lower-layer PHY layer
processes, such as FFT and IFFT. The EPC contains the NFs,
such as MME, Home Subscriber Server (HSS), and S/PGW.

2) Containerization and Orchestration
The uniform resource abstraction layer is the key to the

provisioning of network functions. All virtual entities estab-
lished in the LoRa and LTE C-RAN setup, i.e., RRU, BBU,
and NS, may benefit from the universal resource abstraction by
utilizing the docker.io containerization. The lightweight nature
of docker containers in comparison to full VMs makes them a
better-adapted technology for signal processing VNFs [28].
The orchestration of docker containers is similar to VMs.
Docker is equipped with an orchestration tool called docker-
compose, which uses YAML to store the configuration of the
system. The system is organized in a so-called bundle of
services of the micro-service architecture. As a consequence,
multiple containers provisioning various VNFs bundled to-
gether to provide a complex use-case (e.g., an LTE C-RAN
ecosystem) might be started with a single orchestration action.
Docker-compose enables the vertical and horizontal scaling
of services according to the momentary network load, by
increasing the computational capacity of a given container, or
spawning new containers when required. Therefore, the LoRa
and LTE C-RAN systems specified and implemented in this
work use docker as their foundation. Docker also natively
supports cloud management platforms like OpenStack11 to

11https://www.openstack.org/



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJCOMS.2022.3149965, IEEE Open
Journal of the Communications Society

OJCOMS-00777-2021 11

deploy its software functions, which improves the system
usability and speeds up the deployment phase.

V. EXPERIMENTAL SETUP

The experimental setup enables the analyses of the archi-
tectures considered and their major characteristics.

A. Long Range Evaluation

The configuration, cf. Fig. 10, consists of two standard
laptops running Ubuntu 21.0412 and meeting the requirements
of supported applications (cf. Fig. 8). The processor is a 64-bit,
4-core x86 processor with a clock rate of 2.70 GHz. Laptops
come with an 8GB DDR3 RAM module of a 1,867 MT/s
transfer rate and a Samsung 860 EVO Solid State Drive with
a 250 GB capacity. Both laptops are equipped with Base-T
Ethernet cards supporting a full-duplex 1 Gbps connectivity.
The fronthaul interface is provided by connecting the Ethernet
cards in those laptops with a category six twisted-pair cable.

A LimeSDR board, with a 2 dBi Sub-Miniature version A
(SMA) antenna for the 868 MHz frequency band, is connected
with the Compute Node #1 (i.e., RRU) through a USB 3.0
connector. Compute Node #2 is a standard computing node
with no extra Radio Front-end components. Both computers
are equipped with the Linux kernel 5.10, docker.io version
20.10.8, and CRIU 3.14. Docker.io is configured such that
it supports experimental features, i.e., checkpointing/restoring
containers with CRIU13. CRIU is configured with the tcp-
established option allowing checkpointing process trees, hav-
ing open TCP connections14. GNU Radio modules available
on the host and guest docker containers are in version 3.8.2.
The end device is an Arduino Mega board with the Semtech
SX1276 radio transceiver provided as a Dragino LoRa shield.
While the system is still in its early development stages, the
focus is currently put on the communication between a single
end device and a cloudified LoRa eco-system. It is worth
noting that several contributions in this field enable minimal
configurations as well, only encompassing a transmitter and
the receiver [35], [41], [46].

B. Long Term Evolution Evaluation

1) Hardware and Software Components
To instantiate the LTE-based Cloud-RAN, a real-time im-

plementation of an LTE network provided by the OAI platform
was deployed15. OAI supports protocol amendments for IoT
applications including LTE Cat. M (supported by the master
OAI branch) and LTE Cat. N (supported in the develop-nb-iot
branch) [15]. OAI implements 3GPP technology on general
purpose hardware and contains the full protocol stack of the
LTE 3GPP standard16, which includes the RAN, EPC, and the
UE. The RAN is implemented through an eNodeB application
and instantiated as a VNF inside a container. This imple-
mentation enables testing multiple network configurations and

12http://releases.ubuntu.com/21.04/
13https://criu.org/docker
14https://criu.org/TCP connection
15https://gitlab.eurecom.fr/oai/openairinterface5g
16Based on LTE Release 8.6; implements a subset of Release 10

monitoring network performance and the UEs attached to the
network in real-time. The containerized eNodeB is located on a
host with an Intel i7-4790 CPU @ 3.60 GHz and offers 32 GB
of RAM (cf. Fig. 11). To ensure that the eNodeB application
is able to meet various processing and scheduling deadlines
required by the network (i.e., HARQ deadlines), the eNodeB
sees a real-time prioritization on the host, and it applies a
deadline scheduling policy for the application process. Further-
more, the eNodeB host runs a 64-bit Ubuntu 16.04 operating
system with a low-latency kernel (4.15.0).

Arduino Mega
 (AT2560)

RXTX

5V
G
N
D

G
N
D Vi
n

A
5

LimeSDR Compute Node #1

USB

Compute Node #2

EthernetRF Connector

Dragino LoRa
Shield v1.4

Antenna

Fig. 10: LoRa Setup

RRU
(PC)

eNodeB
(PC)

USB

Dell PowerEdge R530

RF 
Connector

Antenna

HSSMySQL
S/PGW MME

OpenStack
Ethernet 
1 Gbps

Ethernet 
10 Gbps

USRP
B210

RF 
Connector

Huawei
E3272

UE
(PC)

Diplexer
LTE FDD 
Band 7

USB

Fig. 11: LTE Setup

The receiver and transmitter functions of a typical BS are
realized using a USRP B210 SDR17 that is connected via a
USB 3.0 interface to a host machine running an application
that carries out the Low-PHY and Radio Front-end functions
of the RAN stack (i.e., RRU operations). The RRU host
specifications are: Intel CPU Core i7-3770 @ 3.40 GHz, with
16 GB RAM, running Ubuntu 16.04 and a low-latency kernel
(4.4.0). Finally, the UE, which is provided as a Cat. 4 LTE
Huawei E3272 device (cf. Table I), is run on an Intel CPU
i5-2400 @ 3.1 GHz, also running Ubuntu 16.04 and a generic
kernel. Following the Cloud-RAN architecture, the eNodeB
hosting machine is connected to the RRU host containing
via a 10 Gbps Ethernet (10 GbE) cable. Finally, the Core
Network/EPC components (MME, HSS, S/PGW) are instan-
tiated as VNFs in an OpenStack Mitaka cloud environment.

2) Cloudification
To cloudify the RAN deployment and enable its delivery

as a service, containerization is applied to establish the access
network. An eNodeB application is deployed within a docker
container delivering the application as a micro-service to
take advantage of benefits such as maintainability, flexibility,
scalability, and reduced complexity. While in previous work
[30] Linux Containers (LXC) were used to deploy the network,
docker.io is chosen here as the containerization environment
since it offers the option to use CRIU for migration. Com-
pared to other virtualization platforms, such as VMs, docker
containers are a more appropriate environment for hosting the
eNodeB application, as they do not require a virtualization
layer. They also provide other advantages such as running
the application directly on the kernel, using less memory

17https://www.ettus.com/all-products/ub210-kit/



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJCOMS.2022.3149965, IEEE Open
Journal of the Communications Society

OJCOMS-00777-2021 12

(compared to the VMs), and making runtime executions more
efficient [27]. Therefore, there is little performance degrada-
tion by deploying the application in such an environment.
Finally, docker containers are built on modern kernel features
(i.e., cgroups, namespaces, and chroot). These features are
essential for ensuring that the host scheduler can meet real-
time deadlines [30] needed for the correct operation of the
eNodeB application.

TABLE I: LTE Network Parameters

Parameter Values
LTE Release 3GPP Release 8.6
LTE Band FDD band 7
LTE Frequency 2.5 (UL)/2.6 GHz (DL)
Transmission Mode (TM) 1
Antenna Mode SISO
System bandwidth Variable (5, 10, and 20 MHz)
Modulation UL QPSK, 16-QAM
Modulation DL QPSK, 16-QAM, 64-QAM
Fronthaul Capacity 10 Gbps Ethernet
CP Normal
Ethernet MTU Size 1,500 B
UE Cat. 4 LTE, Huawei E3272

To facilitate two-way communication between the eNodeB,
providing the access network and the EPC, a bridge is created
by using Open Virtual Switch (OVS) [32]. This supports
traffic management between the two network entities (eNodeB,
EPC) and a forwards user-received traffic from the eNodeB
through an S1-U tunnel to the S/PGW at the core, which uses
a Tunnel Endpoint Identifier (TEID) to recognize traffic on
a per-user level appropriately, cf. [40]. To enable unfiltered
communication and access between the containerized eNodeB
application and the OVS bridge, the container is bound to
the bridge using an SDN-based tool, Pipework18. The tool
enables us to connect containers in complex scenarios and is
a viable alternative to docker bridge networking. From the
experiments, it can be concluded that binding the container
to a docker configured network did not facilitate the required
communication between the application and the rest of the
network components since user-defined networks do not allow
for direct access to host interface(s).

VI. EVALUATION RESULTS

LoRa and LTE results were evaluated, while the implemen-
tation was tested in the experimental setup described above.

A. Long Range Results

In-depth evaluation of the LoRaWAN developed is divided
into seven cases.

1) System Provisioning Time
First, the provisioning operation is evaluated (cf. Table II).

The system is composed of three docker containers, namely

18https://github.com/jpetazzo/pipework

RRU, BBU, and NS, holding all necessary GNU Radio Ele-
ments and instantiated over Compute Nodes #1 and #2. The
RRU runs on Compute Node #1, while Compute Node #2
spawns both the BBU and NS. The Ethernet connection
becomes the fronthaul of this LoRa C-RAN, while a virtual
bridge interface on Compute Node #2 becomes the backhaul.
Docker enables caching previously instantiated containers
through the docker.io image subsystem. Therefore, service
instantiation of those VNFs is a rapid operation, with less
than a second completion time. Every test (e.g., the docker run
operation of the RRU) is repeated five times. The mean value
and the standard deviation of the completion time are listed
in the table. In all tested situations, the service instantiation
time is considered very rapid and remains under 1 s. Saving
docking images to file-system storage is costly and requires
20–30 s of processing time. The large size of the RRU and
BBU images is the cause of this issue. The reason for that
is that the preparation of those docker containers depends on
the compilation of software provided as sources. In such a
case, the development toolchain have to be installed (e.g., gcc,
g++, and cmake), and some libraries have to be delivered in
their development versions, which makes the docker container
heavy. As an example, RRU needs to compile gr-limesdr19,
which is a LimeSDR module for GNU Radio, while BBU has
to compile gr-lora [35] with our changes. The restoration of
images, in turn, is a quick operation and requires a couple of
seconds to complete. It is worth noting, however, that saving
and restoring images can be done in the preparatory phase of
docker container migration. Therefore, saving, copying, and
loading images do not pose significant delays in the docker.io
migration process.

TABLE II: docker.io Processing Delays

Images Run Stop Save Load
[ms] [ms] [s] [s]

RRU 235±10 50±1 22.06±0.57 1.70±0.12
BBU 228±29 42±2 23.01±1.60 1.32±0.13

NS 313±80 40±1 07.31±0.44 3.01±0.03

2) System Migration
The checkpointing experience of LoRa BBU was studied

with CRIU (cf. Table III). First, the regular BBU application
is started, which uses a TCP/ZMQ socket to receive I/Q
samples from the RRU in the IF5 functional split and a
UDP socket to communicate with the NS. The application
can be checkpointed and restored successfully with CRIU, i.e.,
all operations complete successfully, however, the TCP/ZMQ
socket is not functional anymore, thus, the BBU application is
not receiving any I/Q samples after restoration. The experiment
is repeated in a containerized environment, where the container
is checkpointed through the docker.io checkpointing subsys-
tem, providing a similar outcome. Again, no I/Q samples
are received after the BBU container restoration. Therefore,
the TCP/ZMQ communication was replaced with a UDP-
based socket communication on the fronthaul in RRU and
BBU resulting in a UDP socket opened on the BBU for the

19https://github.com/myriadrf/gr-limesdr



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJCOMS.2022.3149965, IEEE Open
Journal of the Communications Society

OJCOMS-00777-2021 13

fronthaul purposes. This allowed for successful checkpointing
and restoration of BBU application. Furthermore, the com-
munication on the RRU–BBU axis was functional. It allowed
an end device to successfully report information towards the
network NS on the upstream. Moreover, packets originated at
the NS were successfully sent to the end device downstream
in the LoRa Class A operation (i.e., also after restoration).

TABLE III: BBU Evaluation of CRIU

Execution Fronthaul Sockets Checkpoint Restore Functional
Host TCP/ZMQ ✓ ✓ ✗

Guest TCP/ZMQ ✓ ✓ ✗

Host UDP/grnet ✓ ✓ ✓

Guest UDP/grnet ✓ ✓ ✓

When the guest functionality was confirmed after check-
pointing and restoration (Table III), the performance statis-
tics were gathered on the processes, which are displayed
in Table. IV. Both checkpointing & restoration of the BBU
were repeated five times. The mean value and the standard
deviation of the completion time are listed in the table. It
is worth noting that checkpointing and restoration are very
efficient processes completing within a sub 2 s time frame.
The total BBU downtime due to the service migration (i.e.,
checkpointing+restoration) is evaluated at the level of sub 3 s.

TABLE IV: CRIU Processing Delays

Image Fronthaul Sockets Checkpoint Restore
[ms] [ms]

BBU UDP/grnet 1,403±6 1,314±6

3) Demodulation and Decoding Processing Time
According to [37] end devices in LoRa networks, such as

TTN, periodically report tiny data chunks with a periodicity
ranging from 0–300 hours. The signal on the BBU is sampled
with 1 MS/s (i.e., Mega Samples per s), while the end device
sends LoRa packets with a 125 kHz bandwidth, Spreading
Factor (SF) 7, and Code Rate (CR) 1 PHY parameters.
Note that with a 125 kHz BW and SF 7, every symbol
coding SF bits, i.e., chirp, lasts for 1.024ms, while the lowest
CR 1 introduces redundancy resulting in the 4/5 effective
CR. Decoding is far more computationally expensive than
encoding, since the signal must go through detection, synchro-
nization, demodulation, deinterleaving, dewhitening, decoding,
and packet reconstruction.The BBU implementation [35] is
benchmarked in Fig. 12, which shows the processing time for
tiny LoRa packets received. The figure displays the time, the
BBU decoder stays in a given state, where:

0) detection,
1) synchronization to the signal,
2) the detection of the start of the frame delimiter,
3) pause (skipping samples),
4) header decoding,
5) payload decoding.

The processing time for such small packets is established at the
level of less than 10ms, cf. Fig. 12, in which the decoder goes
from idle through all states 1-5 and comes back to the detection

state again. This is good since for SF 7, one chirp lasts around
1ms. Therefore, the processing time is shorter than the length
of the frame preamble of around 12ms. This allows for LoRa
signal processing in real-time. Note that SF 7 has the shortest
symbol duration in the LoRa PHY specification. Hence, it
stresses the computing infrastructure the most, while chirps
for higher SFs last longer, i.e., when SF increases by one, the
symbol duration doubles. In our experimental setup, the most
considerable anomalies were encountered in the discovery of
the frame delimiter, where for the 4-Byte packet, the receiver
completely lost the synchronization with the transmitter, and
5-Byte packet required a longer duration to find the SFD.
According to our benchmarks, this arises from a test verifying
the correctness of time synchronization based on the threshold
value received from a correlation coefficient between the
instantaneous frequency of the locally generated chirp and the
received chirp (please consult [35], [36] for a more detailed
explanation). When the synchronization is dramatically low,
the receiver breaks the synchronization (cf. the 2-to-0 state
transition experienced by the receiver upon the 4-Byte packet
processing). Furthermore, when the synchronization is too
little, the receiver adjusts the synchronization, which can result
in a longer processing time in state 2 (cf. 5-Byte packet).

6 Bytes
5 Bytes
4 Bytes

Processing Time [s]

D
ec
o
d
er

S
ta
te

0.010.0050

5
4
3
2
1
0

Fig. 12: LoRa Decoder Signal Processing Time

4) Fronthaul Network Utilization

(a) 1,000,000 S/s

(b) 125,000 S/s

(c) 62,500 S/s

Fig. 13: The Effect of the LoRa Signal Sampling Rate

Monitoring the fronthaul yields 335 Bps on idle. Once the
C-RAN is instantiated, and the connection between RRU and
BBU is established, the network utilization raises to a fixed



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJCOMS.2022.3149965, IEEE Open
Journal of the Communications Society

OJCOMS-00777-2021 14

8 MiB/s. The theoretical value can be derived the following
way: LimeSDR sends 1 MS/s of complex type (i.e., 2×32 b),
which results in the data traffic of 64 Mbps. Overhead of TCP
and IP is 40 B (20 B each); the Maximum Segment Size
(MSS) is, therefore, 1,460 B assuming the 1,500 B Maximum
Transmission Unit (MTU). 64 Mbps requires 5480 TCP pack-
ets/s of MSS 1,460 B, which results in the total overhead of
1.76 Mbps. Hence, 64 Mbps (data) + 1.76 Mbps results in the
7.8 MiB/s fronthaul load.

The RRU constantly sends samples to the BBU despite
the LoRa network utilization, therefore, the fronthaul load
stays at the constant level. The load of the fronthaul may
be, however, reduced. According to the Nyquist-Shannon
sampling theorem [43], [53], a sufficient sampling rate fs is
needed to sample the LoRa signal according to the Nyquist-
Shannon limit. The LoRa signal bandwidth in the experiment
is set to 125 kHz, where the signal frequency varies between
−62.5 kHz and 62.5 kHz with respect to the central fre-
quency. Thus, the authors believe that the minimum sampling
frequency required to decode a LoRa signal of 125 kHz
bandwidth is 125 kS/s, which is 1/8 of the previous sample
rate of 1 MS/s. To verify this experimentally, an example
samples UL LoRa signals in the time and frequency domain
for various sampling rates (cf. Fig. 13). It is noteworthy that
the LoRa signal is correctly represented for both sampling
frequencies of 125 kS/s and 1 MS/s, cf. Fig. 13(a)–(b). The
signal varies between −62.5 kHz and 62.5 kHz and provides
the clear visibility of particular CSS modulated chirps. On the
other hand, the signal sampled with 62.5 kS/s, cf. Fig. 13(c),
does not contain the same information as the other signals,
cf. Fig. 13(a)–(b). It is, therefore, concluded that lowering
the sampling rate below the Nyquist-Shannon limit of 125
kS/s should result in the signal being definitely unsuccessfully
decoded. The implementation [35] used in this work properly
decodes LoRa signals for 250 kS/s, 500 kS/s, and 1 MS/s. It
does not work with the signals sampling rate of 125 kS/s. The
most recent code version [35] does not even allow setting the
sampling frequency below 250 kS/s. Following this, it can
be concluded that the minimal fronthaul data load for the
tested LoRa transceiver in the case of the 125 kHz channel is
2 MiB/s with sampling at the level of 250 kS/s (cf. Table V),
as the decoder uses oversampling at the level of 2. In the
case of better implementation, the sampling rate could be
hypothetically further reduced to 125 kS/s as reported by [53].

TABLE V: Sampling Rates and Network Utilization

Samples Max. Signal Network Decode Success
per second Frequency20 Utilization in Experiment

1,000,000 500 kHz 8 MiB/s ✓

500,000 250 kHz 4 MiB/s ✓

250,000 125 kHz 2 MiB/s ✓

125,000 62.5 kHz 1 MiB/s ✗

Various network delays for the outgoing ZMQ-based sample
stream between the RRU to the BBU on the fronthaul interface

20For complex/quadrature sampling used in this work, the baseband signal
can be centered at 0 Hz, and spans from −fM to +fM , where fM is the
Maximum Signal Frequency indicated in the table.

were tested (cf. Table VI). Overall, the higher the delay, the
lower the network utilization was measured on the fronthaul
since the TCP does not maintain an appropriate throughout.
Without additional delays, RX and TX, respectively, on the
fronthaul are as expected at 8 MiB/s. However, when the delay
on the fronthaul reaches 600ms, the network utilization drops
to 2.32 MiB/s.

TABLE VI: Effect of Delay on Network Traffic and the
Decoding Process

Fronthaul Fronthaul Decode
Delay [ms] Load [MiB/s] Success

0 8 ✓

300 8 ✓

400 5.5 ✓

600 3.6 ✗

5) Cost of the Long Range Centralized Radio Access
Network

LoRa GWs come at various price ranges. The low cost TTN
GW costs around 70 US$, while the high-end counterpart sells
for 300 US$. Since the bandwidth consumed by a regular GW
is minimal, the cost of maintaining a regular LoRa GW is
considered a one-time investment. Currently, SDR devices do
not incur elevated costs, as a regular LimeSDR, which are
used as part of our cloudified LoRa setup (cf. Section IV-A3),
costs 300 US$. Considering the OPEX incurred by running a
virtualized BBU over Amazon Web Services21, the following
parameters are used to calculate the cost of such a deployment:
Compute (i.e., Amazon EC2 instance), and data transfer, (i.e.,
ingress and egress traffic), respectively.

In the case of an EC2 instance, and specifically when an
a1.medium VM flavour which comes with 1 vCPU and 2 GiB
of memory is selected, the costs could approach 0.0255 US$
per hour. In order to support the maximum possible signal
bandwidth of 500 kHz in the US or 250 kHz in EU, the
cloudified system requires 8 MiB/s and 4 MiB/s of Ingress
traffic, in the two regions, respectively. Thus, for the European
case 4 MiB per second equals 363 GB per day. Ingress traffic
is free on AWS, giving a daily cost of 0.00 US$.

Egress data transfers, on the other hand, are attached with a
cost. The amount of data sent depends on how many UL sig-
nals (here assuming Class A LoRa devices) trigger a DL signal
on the DL, which can be of variable length in LoRaWAN. The
3 B DL payload is assumed to be fixed (excluding preamble,
header, and CRC), SF 7, and CR 1, which yields an I/Q sample
stream of around 248 kB (including preamble, header, and
CRC) after coding and modulation and has a LoRa air-time
of 25.86 ms. The EU specifies a 1% duty cycle for the 868.0–
868.6 MHz frequency band [49]. With this, a DL signal can
be sent every 3 s. This means that a maximum of 28,800 DL
signals of this type can be sent by one GW a day. The Egress
data transfer is, in such a case, limited to 7 GB a day, if
duty cycles are respected, i.e., 28, 800×248 kB = 7 GB. TTN
encourages end devices to avoid DL transmissions, since GWs
are not designed to send and receive simultaneously. Assuming
that about 30% DL messages are used, the egress traffic sets

21https://calculator.s3.amazonaws.com/index.html



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJCOMS.2022.3149965, IEEE Open
Journal of the Communications Society

OJCOMS-00777-2021 15

at the level of around 2.1 GB/day. The total monthly cost of a
cloudified BBU is evaluated at the level of 24.07 US$, which
includes the Amazon EC2 Instance at 18.67 US$, ingress
traffic at 0 US$, and egress traffic at 5.40 US$, overall clearly
acceptable. Furthermore, the OPEX is expected to go down in
the future with the future development of cloud data centers
and wired networks. Decreasing prices should, therefore, drive
the development of LoRa C-RAN in the future.

6) Long Range DL Messages
Current LoRa modulator/demodulator implementations [35]

focus on modulating/demodulating UL signals. To materialize
a cloud RAN with a successful UL and DL communication,
small modifications in the implementation are necessary. The
LoRa encoder [35] currently available only provides UL
messages (compatibility with, e.g., SX1302 GW chips). To
produce a DL LoRa signal, a DL transmission was first
recorded from a regular GW to an end device. Differences
between UL and DL transmissions are studied. By observing
similarities in the UL, cf. Fig. 13(a)–(b), and DL messages, cf.
Fig. 14, in the time and frequency domain, it is assumed that a
DL transmission is complimentary to the UL message, where
all up-chirps are converted to down-chirps and vice versa. The
regular encoder implements down-chirps, e.g., in UL headers
upon SFD (cf. Fig. 13(a)–(b) for the time period between 10 to
12.25 symbols), which is provided through a so called complex
conjugate (c.c.) of chirps in the modulator [36]. Therefore, a
flag was added to the modulator [35], which flips all down
chirps up and vice versa on the DL using the already existing
functionality.

Fig. 14: LoRa DL Message

Finally, it was tested whether the DL signal generated
is successfully received by the end device equipped with a
standard SX1276 transceiver. The current implementation does
not display good performance, while only a tiny fraction of
packets are decoded on the DL. However, typically, well-
tested message byte-streams (i.e., encoder input) can be found,
resulting in DL signals (i.e., produced by the encoder) decoded
by the regular decoder (e.g., SX1276 on the end device) with
high probability. Nevertheless, the regular encoder [35] does
not deliver any packets to the end device, while a small fraction
of DL messages issued by the modified encoder is successfully
decoded by the SX1276 chip, which confirms the hypothesis
(cf. Table VII).

TABLE VII: DL Decoding by the SX1276 Chip

Encoder Successful Decoding by SX1276
Regular ✓

Modified ✗

DATA

TIME

4 s

DATA

(a) Regular Data Reporting

DATA

TIME

4 s

DATAACK

(b) Data Reporting using ACKs/Retransmissions

Fig. 15: Data Reporting Schemes

7) Long Range Baseband Unit Experienced Service Down-
time

To test the influence of the BBU service downtime on
the LoRa network, two transmission schemes were used as
presented in Fig. 15. The first scheme illustrated in Fig. 15(a)
refers to a regular LoRa Class A operation, in which an end
device wakes up at any time, reports DATA packets on a
regular time basis (i.e., with the packet separation of 4 s),
and goes to sleep again. The second scheme displayed in
Fig. 15(b) is similar to the first one. An end device issues
DATA packets with a time separation of 4 s between two
distinct UL messages. The DATA packet issued has to be
acknowledged with an ACK packet, i.e., a DL transmission, by
the NS within 4 s. If the ACK packet arrives, the subsequent
DATA message can be issued. However, if the corresponding
ACK message does not arrive at the end device, the previously
sent DATA packet is re-transmitted again. This transmission
scheme was planned as a simplified LoRa Class A operation. It
is worth noting that LoRaWAN specifies two receive windows
for Class A devices (cf. Section II-A). The first one typically
opens 1 s after the UL transmission. If no DL transmission
was received in the first window, another reception window
could open 2 s after the initial transmission again. Therefore,
the ACK-based protocol in this experiment is more lenient
because when the initial DATA transmission is over, the
device starts constantly listening for at least 4 s. If any
DL ACK transmission targets the device within this time
frame, the device will receive it. It, therefore, unifies two
original reception windows of LoRaWAN Class A into a single
longer reception window, relieving the network server from
calculating the correct timing of DL transmission windows. If
the corresponding ACK arrives within the 4 s window, a new
packet can be transmitted as scheduled, i.e., 4 s after the end
of previous DATA transmission. Otherwise, the device retrans-
mits the previously unacknowledged packet after 4 seconds
expire. Currently, the experiment is carried out in a laboratory
setup without any regard for duty cycles, as the ultimate goal
is to model the outage time of future LoRaWAN deployments
when the cloudified gateway goes through checkpointing and
restoration. The appropriate LoRaWAN operation has to be,
however, implemented in the future. It will support the timing
of DL reception windows as well as duty cycles, which was



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJCOMS.2022.3149965, IEEE Open
Journal of the Communications Society

OJCOMS-00777-2021 16

decided to be kept outside the scope of this paper.
The configuration of the experiment is the following. The

end device and RRU are spaced by 1 m. A single channel
at 868.5 MHz is used for UL and DL communication. The
125 kHz BW, SF 12, and CR 1 are set. The DATA packet
size is 16 B in the simple reporting scheme and 19 B in the
ACK/Retransmission scheme. The ACK packet size is equal
to 3 B. The experiment comprises 4 trials. In one trial, 10 UL
DATA packets are sent for both schemes. After the successful
reception of the third packet, the LoRa BBU is checkpointed
and immediately restored, which takes around 3 s to complete.

It is noted that the result of all trials is exactly the same. In
the regular scheme, DATA packets 1–3 arrive at the NS, DATA
packet 4 is lost on the UL as well as all remaining DATA
packets 5–10 arrive at the NS. In the ACK/Retransmission
scheme, all DATA packets 1–10 arrive at the NS. Upon
transmitting DATA packet 4, the NS does not receive the first
instance of the DATA or confirm DATA packet 4 with an ACK.
Therefore, the end device does not receive the corresponding
ACK, which triggers a retransmission of DATA packet 4. The
second instance of DATA packet 4 as well as all remaining
DATA packets 5–10 arrive at the NS.

TABLE VIII: Effect of Checkpointing/Restoring on the
LoRaWAN Operation

Scheme DATA pkts DATA pkts ACK pkts ACK pkts
sent received sent received

regular 10 9 - -
ACK/ret. 10 (+1 ret.) 10 10 10

This experiment is presented in summary in Table VIII,
which compares two data reporting schemes, i.e., the regular
one and the ACK/retransmission-based (ACK/ret). Four met-
rics are gathered, i.e., the number of DATA packets sent by the
end device, the number of DATA packets received by the NS,
the number of ACK packets sent by the NS, and the number
of ACK packets received by the end device. When the packets
are sent 4 s apart from an end device, the number of dropped
messages due to checkpointing/restoration is confirmed at 1.
However, typical reporting time is highly elevated and spans
several hours or days [37]. Therefore, the vast majority of
devices will not notice the migrated BBU.

B. Long Term Evolution Results

In-depth evaluations of the architecture developed are pro-
vided for three key parameters.

1) Service Provisioning Time

TABLE IX: Service Provisioning Time

eNodeB HSS MME S/PGW

Average (s) 6 0.20 0.13 0.14
MAX (s) 6 0.21 0.17 0.16
MIN (s) 6 0.19 0.10 0.11

The RAN components (cf. Sec. V-B2) were instantiated
by deploying them in docker containers, hosted across two
different machines (BBU and RRU), essentially provisioning
them as containerized services. Thus, service instantiation
times of containers were measured (cf. Table IX), which

indicated that the instantiation time of a RAN service took
approximately 6 s on average across various runs. Part of
the time required to instantiate the RAN is based on the
instantiation of the USRP B210 SDR, which also takes a
few seconds to start. This instantiation time could include the
time required to load firmware into the USRP B210 board
that provides the Radio Front-end for the setup. A similar
metric was collected for EPC VM instances, i.e., MME, HSS,
S/PGW (cf. Table IX). It can be derived that the instantiation
times of EPC components are relatively short, as compared to
the eNodeB. The increased instantiation time of the eNodeB
is likely due to the fact that the LTE software modem was
compiled from sources, which makes the container heavy.

2) System Migration–Observations
To assess the effects of live migration on the network, the

experiments monitored and evaluated the outcome of the net-
work by emulating the migration process (i.e., checkpointing
and restoring the eNodeB application). From the observations
on the migration process, it had been noticed that the RAN
network could continue operations and remain synchronized
with the rest of the network (e.g., UE and eNodeB), despite
downtime periods of up to 8ms, which is effectively the
period of a single HARQ ACK. However, for longer downtime
periods, such as those that would be required for a stop-copy-
restore migration (e.g., 1,314 ms needed to restore the BBU in
LoRaWAN), the system synchronization breaks. This causes
the eNodeB application to trigger a ue release context to the
EPC MME22. As a result, the network-connected UEs lose
their active network connections, and the average throughput
of the system instantly drops to 0 Mbps. Note, however, that
users remained attached to the network during the period, in
which the eNodeB was down (or check pointed) and restored
subsequently.

TABLE X: Fronthaul Throughput Rates based on Physical
Resource Block (PRB) configuration

PRBs Fronthaul Fronthaul
(bandwidth) Throughput UL Throughput UL

25 (5 MHz) 79.2 Mbps 80.8 Mbps
50 (10 MHz) 144.8 Mbps 146.4 Mbps
100 (20 MHz) 276.8 Mbps 278.4 Mbps

3) Network Performance
To determine the ability of the configured network to

support various services, the average throughput was measured
for different BBU cell configurations running on bare metal
and in a container environment (cf. Fig. 16 and Fig. 17). Based
on the cell configuration parameters used for the evaluation
of the LTE network performance (LTE Release 8.6, Single
Output Single Input (SISO), LTE FDD Band 7), the available
and expected DL throughputs in the OAI-based network (i.e.,
Release 8.6) for bandwidths of 5 MHz, 10 MHz, and 20 MHz
using a Cat. 4 UE, are 17 Mbps, 34 Mbps and 69 Mbps,
respectively23. Furthermore, the upper theoretical limit for user

22Based on the observation of the OAI eNodeB and EPC logs
23https://gitlab.eurecom.fr/oai/openairinterface5g/blob/develop/doc/

FEATURE SET.md



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJCOMS.2022.3149965, IEEE Open
Journal of the Communications Society

OJCOMS-00777-2021 17

TABLE XI: Fronthaul Load as a Function of Throughput and Bandwidth

Technology Bandwidth Sample Rate I/Q Sample Size Throughput Functional Split Fronthaul Load

LoRa UL 125 kHz 125 kS/s 64-bit 8 Mbps IF5 64 bps/Hz
LoRa UL 125 kHz 125 kS/s 32-bit 4 Mbps IF5 32 bps/Hz
LTE-FDD UL 20 MHz 30,720 kS/s 32-bit 278 Mbps IF4.5 13.9 bps/Hz
LTE-FDD UL 10 MHz 15,360 kS/s 32-bit 146 Mbps IF4.5 14.6 bps/Hz
LTE-FDD UL 5 MHz 7,680 kS/s 32-bit 80 Mbps IF4.5 16 bps/Hz

25 50 100

0

5

10

Physical Resource Blocks (PRBs)

T
hr

ou
gh

pu
t

(M
bp

s) Container
Host

Fig. 16: Average Throughput (UL)

25 50 100
0

5

10

15

Physical Resource Blocks (PRBs)

T
hr

ou
gh

pu
t

(M
bp

s) Container
Host

Fig. 17: Average Throughput (DL)

plane throughput is 75.376 Mbps24 for an LTE FDD SISO
configuration with 20 MHz channels. Nevertheless, while a
lower UE performance was experienced and displayed by a
host-based OAI RCC, this was not caused by the separation
of eNodeB into two primary components, i.e., RRU and RCC.
Similar throughput (i.e., UL and DL) was experienced on a UE
connected to a non-cloudified eNodeB running on a dedicated
PC, confirming that the rather limited performance is a result
of the OAI platform. Furthermore, placing the RCC in the
docker container had a degrading impact on the experienced
throughput. However, the cause of this phenomenon needs to
be investigated further.

Finally, despite the limited measured throughput, streaming
High Definition (HD) 1080p videos is possible at the UE
using the described network setup as well as browsing other
generic websites with little to no delay. However, to ensure
the network implemented could support strict requirements for
services envisioned for 5G networks, such as enhanced Mobile
Broadband (eMBB), massive Machine Type Communication
(mMTC), and Ultra-Reliable and Low Latency Communi-

24This value reaches 100.8 Mbps on the PHY layer as reported in [44]

cation (URLLC) services, it will require modifications to
different layers of the OAI RAN protocol stack (such the
current Physical Layer implementation). Such considerations
are outside the scope of the current work.

4) Front Haul Network Utilization
Table X shows fronthaul measurements for different net-

work configurations. As expected, the fronthaul throughput
(UL and DL) increases as the number of PRBs increases. It is
observed that fronthaul throughput for 20 MHz LTE C-RAN
network, based on the IF4.5 split (cf. Section II-D) reaches
276.8 Mbps UL and 278.4 Mbps DL, respectively. Those val-
ues agree with the fronthaul throughput experimentally verified
by [5]. The theoretical IF5 throughput in LTE-FDD assuming
a 20 MHz channel, 32-bit I/Q sample size (OAI with USRP
B210), and the LTE basic sampling rate of 30.72 MHz [44]
equals to 32 bits×30.72 MHz = 983.04 Mbps. Based on
the experimental setup used in this work, it is worth noting
that the USRP B210 sample size (i.e., for I or Q channels)
is 12-bit wide25. OAI, in turn, works with a 16-bit sample
resolution. Therefore, the designed OAI setup, which utilizes
a USRP B210 as the SDR, uses 32 b to encode an I/Q sample.
Due to CP removal and compression in IF4.5, the fronthaul
throughput was reduced to 276.8 Mbps UL and 278.4 Mbps
DL, respectively, which corresponds to approximately 28%
of the initial IF5 throughput (i.e., IF4.5 compression ratio of
around 72%).

The LoRa C-RAN network, based on the IF5 split (cf.
Section II-D) required at least 8 Mbps on the fronthaul
interface for 125 kHz LoRa spectrum with 64-bit I/Q sample
resolution. However, the fronthaul load can be further reduced
by using a shorter sample resolution as in the case of OAI
with USRP B210 (i.e., 32-bit). Thus, the fronthaul load could
be further reduced to 4 Mbps for 125 kHz channels. This
effectively highlights the efficiency of the IF4.5 split in the
LTE C-RAN in terms of throughput requirements compared
to the IF5 split used in the LoRa setup. The LTE IF4.5 requires
sending around 14–16 bps/Hz, while LoRa IF5 is at the level
of at least 32 bps/Hz (cf. Table XI). Even if LTE samples with
a little bit higher sampling rate than required (i.e., 30.72 MS/s)
instead of 20 MS/s for 20 MHz channels (due to certain
particularities of the sub-carrier spacing and the channel width
in LTE), the compression rate of IF4.5 split (i.e., 72%) is so
high that spectrum-wise LTE with IF4.5 split is more efficient
in transporting I/Q samples than IF5 split in LoRa by a factor
of around 57%. Therefore, the specification of an efficient split
for LoRa communication is of high importance, as a significant
amount of bandwidth can be spared on the fronthaul interface.

25https://www.ettus.com/wp-content/uploads/2019/01/b200-b210 spec
sheet.pdf



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJCOMS.2022.3149965, IEEE Open
Journal of the Communications Society

OJCOMS-00777-2021 18

VII. SUMMARY AND FUTURE WORK

This new approach presented the design and experimenta-
tion of live migration of a containerized BBU. Besides its
functional design and prototypical implementation, limitations
in doing so are due to current deficits of the CRIU tool used by
docker.io for live migration. Nevertheless, the demonstration
of the first successful migration of a dockerized LoRa BBU
with CRIU was possible due to changing all open sockets to
UDP communications. While it would be possible to migrate
the eNodeB application, particular concerns may arise, when
the application is restored at the destination node, such as the
complete re-synchronization of the entire network (EPC-RAN
and RAN-UE).

Looking ahead, a recent proposal by the European Telecom-
munications Standards Institute (ETSI) to co-deploy Multi-
Access Edge Computing (MEC) nodes at C-RAN sites mo-
tivates the study of more intelligent MEC/C-RAN resource
management approaches. Thus, in future steps, contention-
induced performance prediction of RAN VNFs, as a result of
being possibly co-located with other VNFs or non-RAN ap-
plications/services, can be studied. The information predicted
on RAN VNF performance can be used to proactively and
dynamically determine the optimal functional split(s) between
the C-RAN BBU and the RRUs. Such an approach will prevent
performance degradation of RAN-related applications, such as
the eNodeB. The adoption of Open-Radio Access Network
(O-RAN) as an architecture based on openly available and
commercial hardware to provide intelligent radio control in 5G
and Beyond networks can also be investigated in the context of
live migration of NFs. Thus, the work presented here can serve
as a reference point for such future research. Specifically, novel
approaches to support the migration of hardware-accelerated
NFs in such an open and programmable network architecture
can prove to be crucial for the successful deployment of
O-RAN-based networks.

REFERENCES

[1] 3GPP, “Study on New Radio Access Technology: Radio Access Archi-
tecture and Interfaces, (TR 38.801, Version 14.0.0, Release 14),” Mar.
2016.

[2] F. Adelantado, X. Vilajosana, P. Tuset-Peiro, B. Martinez, J. Melia-
Segui, and T. Watteyne, “Understanding the Limits of LoRaWAN,” IEEE
Communications Magazine, vol. 55, no. 9, pp. 34–40, 2017.

[3] A. M. Alba, J. H. G. Velásquez, and W. Kellerer, “An Adaptive
Functional Split in 5G Networks,” in IEEE Conference on Computer
Communications Workshops (Infocom Wkshps’19), 2019, pp. 410–416.

[4] H. Ben Arab, “Virtual Machines Live Migration,” Technical Rep.
University of Passau, Germany, Mar. 2015, https://www.researchgate.
net/publication/273574310 Virtual Machines Live Migration, Last-
Accessed: December 4, 2021.

[5] C.-Y. Chang, R. Schiavi, N. Nikaein, T. Spyropoulos, and C. Bonnet,
“Impact of Packetization and Functional Split on C-RAN Fronthaul
Performance,” in IEEE Conference on Communications (ICC’16), 2016,
pp. 1–7.

[6] I. Chih-Lin, J. Huang, Y. Yuan, S. Ma, and R. Duan, “NGFI, the xHaul,”
in IEEE Globecom Workshops (GC Wkshps’15), Dec. 2015, pp. 1–6.

[7] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield, “Live Migration of Virtual Machines,” in 2nd USENIX
Conference on Networked Systems Design & Implementation (NSDI’05)
– Volume 2. USA: USENIX Association, 2005, pp. 273–286.

[8] F. Daquan, L. Lifeng, L. Jingjing, Z. Yi, Z. Canjian, and K. YING,
“Ultra-Reliable and Low-Latency Communications: Applications, Op-
portunities and Challenges,” Science China Information Sciences,
vol. 64, no. 2, pp. 1–12, 2021.

[9] C. Delacourt, P. Savelli, and V. Savaux, “A Cloud RAN Architecture for
LoRa,” in URSI GASS 2020. Gent, Belgium: URSI, Sep. 2020.

[10] W. Ejaz, S. K. Sharma, S. Saadat, N. Muhammad, and N. Chughtai, “A
Comprehensive Survey on Resource Allocation for CRAN in 5G and
Beyond Networks,” Journal of Network and Computer Applications, vol.
160, p. 102638, Mar. 2020.

[11] GNU Radio, “About GNU Radio,” https://www.gnuradio.org/about/,
Last-Accessed: December 4, 2021.

[12] K. Govindaraj and A. Artemenko, “Container Live Migration for La-
tency Critical Industrial Applications on Edge Computing,” in 23rd
IEEE Conference on Emerging Technologies and Factory Automation
(ETFA’18), vol. 1, 2018, pp. 83–90.

[13] H. Guo, K. Wang, H. Ji, and V. C. M. Leung, “Energy Saving in C-RAN
based on BBU Switching Scheme,” in IEEE Conference on Network
Infrastructure and Digital Content (IC-NIDC’16), 2016, pp. 44–49.

[14] J. Haxhibeqiri, E. De Poorter, I. Moerman, and J. Hoebeke, “A Survey of
LoRaWAN for IoT: From Technology to Application,” MDPI Sensors,
vol. 18, no. 11, p. 3995, 2018.

[15] C.-Y. Ho, R.-G. Cheng, J.-W. Chen, and C.-S. Liu, “Open NB-IoT
Network in a PC,” in IEEE Globecom Workshops (GC Wkshps’19), 2019,
pp. 1–6.

[16] C.-L. I, J. Huang, Y. Yuan, and S. Ma, “5G RAN Architecture: C-RAN
with NGFI,” in 5G Mobile Communications, W. Xiang, K. Zheng, and
X. S. Shen, Eds. Cham, Switzerland: Springer International Publishing,
Oct. 2017, pp. 431–455.

[17] M. Irazabal, E. Lopez-Aguilera, I. Demirkol, R. Schmidt, and
N. Nikaein, “Preventing RLC Buffer Sojourn Delays in 5G,” IEEE
Access, vol. 9, pp. 39 466–39 488, 2021.

[18] M. Kanj, V. Savaux, and M. Le Guen, “A Tutorial on NB-IoT Physical
Layer Design,” IEEE Communications Surveys Tutorials, vol. 22, no. 4,
pp. 2408–2446, 2020.

[19] C. Kuilin and D. Ran, “C-RAN the Road Towards Green RAN,” China
Mobile Research Institute, White Paper, 2011.

[20] L. M. P. Larsen, A. Checko, and H. L. Christiansen, “A Survey of the
Functional Splits Proposed for 5G Mobile Crosshaul Networks,” IEEE
Communications Surveys Tutorials, vol. 21, no. 1, pp. 146–172, 2019.

[21] J. Li and J. Chen, “Supporting Low-Latency Service Migration in 5G
Transport Networks,” in Optical Fiber Communications Conference and
Exhibition (OFC’20), 2020, pp. 1–3.

[22] J. Liu, W. Xu, S. Jha, and W. Hu, “Nephalai: Towards LPWAN C-RAN
with Physical Layer Compression,” in Proceedings of the 26th ACM
Conference on Mobile Computing and Networking (ACM Mobicom’20).
New York, NY, USA: Association for Computing Machinery (ACM),
2020.

[23] LoRa Alliance, “About LoRaWAN,” https://lora-alliance.org/
about-lorawan, Last-Accessed: December 4, 2021.

[24] Lora Alliance, “What is LoRaWAN,” https://lora-alliance.org/
wp-content/uploads/2020/11/what-is-lorawan.pdf, Last-Accessed:
December 4, 2021.

[25] L. Ma, S. Yi, N. Carter, and Q. Li, “Efficient Live Migration of Edge
Services Leveraging Container Layered Storage,” IEEE Transactions on
Mobile Computing, vol. 18, pp. 2020–2033, Sep. 2018.

[26] B. E. Mada, M. Bagaa, T. Tale, and H. Flinck, “Latency-Aware Service
Placement and Live Migrations in 5G and Beyond Mobile Systems,” in
IEEE Conference on Communications (ICC’20), 2020, pp. 1–6.

[27] S. Matoussi, I. Fajjari, S. Costanzo, N. Aitsaadi, and R. Langar, “5G
RAN: Functional Split Orchestration Optimization,” IEEE Journal on
Selected Areas in Communications, vol. 38, no. 7, pp. 1448–1463, 2020.

[28] N. Nikaein, R. Knopp, L. Gauthier, E. Schiller, T. Braun, D. Pichon,
C. Bonnet, F. Kaltenberger, and D. Nussbaum, “Demo: Closer to Cloud-
RAN: RAN as a Service,” in 21st ACM Annual International Conference
on Mobile Computing and Networking (MobiCom’15), 2015, pp. 193–
195.

[29] N. Nikaein, R. Knopp, F. Kaltenberger, L. Gauthier, C. Bonnet, D. Nuss-
baum, and R. Ghaddab, “Demo: OpenAirInterface: An Open LTE
Network in a PC,” in 20th ACM Conference on Mobile Computing
and Networking (MobiCom’14). New York, NY, USA: Association
for Computing Machinery (ACM), 2014, pp. 305–308.

[30] N. Nikaein, E. Schiller, R. Favraud, R. Knopp, I. Alyafawi, and T. Braun,
“Towards a Cloud-Native Radio Access Network,” in Advances in
Mobile Cloud Computing and Big Data in the 5G Era, C. X. Mavro-
moustakis, G. Mastorakis, and C. Dobre, Eds. Cham, Switzerland:
Springer International Publishing, Nov. 2017, pp. 171–202.

[31] L. Oliveira, J. J. Rodrigues, S. A. Kozlov, R. A. Rabêlo, and V. H. C.
de Albuquerque, “MAC Layer Protocols for Internet of Things: A
Survey,” MDPI Future Internet, vol. 11, no. 16, pp. 1–42, 2019.



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJCOMS.2022.3149965, IEEE Open
Journal of the Communications Society

OJCOMS-00777-2021 19

[32] B. Pfaff, J. Pettit, T. Koponen, E. J. Jackson, A. Zhou, J. Rajahalme,
J. Gross, A. Wang, J. Stringer, P. Shelar, K. Amidon, and M. Casado,
“The Design and Implementation of Open VSwitch,” in 12th USENIX
Conference on Networked Systems Design & Implementation (NSDI’15).
USA: USENIX Association, 2015, pp. 117–130.

[33] S. Popli, R. K. Jha, and S. Jain, “A Survey on Energy Efficient
Narrowband Internet of Things (NBIoT): Architecture, Application and
Challenges,” IEEE Access, vol. 7, pp. 16 739–16 776, 2018.

[34] T. Rabia and O. Braham, “A New SDN-Based Next Generation Fron-
thaul Interface for a Partially Centralized C-RAN,” in 2018 IEEE 32nd
International Conference on Advanced Information Networking and
Applications (AINA), 2018, pp. 393–398.

[35] P. Robyns, E. Marin, W. Thenaers, and C. Smith, “GNU Radio Blocks
for Receiving LoRa Modulated Radio Messages Using SDR,” https:
//github.com/rpp0/gr-lora, Last-Accessed: December 4, 2021.

[36] P. Robyns, P. Quax, W. Lamotte, and W. Thenaers, “A Multi-Channel
Software Decoder for the LoRa Modulation Scheme,” in 3rd Inter-
national Conference on Internet of Things, Big Data and Security
(IoTBDS’18). Setúbal, Portugal: SciTePress, Mar. 2018, pp. 41–51.

[37] E. Schiller, S. Rafati-Niya, T. Surbeck, and B. Stiller, “Scalable Trans-
port Mechanisms for Blockchain IoT Applications,” in 44th IEEE LCN
Symposium on Emerging Topics in Networking, Oct. 2019, pp. 34–41.

[38] E. Schiller, S. Weber, and B. Stiller, “Design and Evaluation of an
SDR-based LoRA Cloud Radio Access Network,” in 16th International
Conference on Wireless and Mobile Computing, Networking and Com-
munications (WiMob’20), 2020, pp. 1–7.

[39] E. Schiller, N. Nikaein, R. Favraud, K. Kostas, D. Stavropoulos,
I. Alyafawi, Z. Zhao, T. Braun, and T. Korakis, “Network Store:
Exploring Slicing in Future 5G Networks,” in 10th ACM Workshop on
Mobility in the Evolving Internet Architecture (MobiArch’15). ACM,
Sep. 2015, pp. 8–13.

[40] E. Schiller, N. Nikaein, E. Kalogeiton, M. Gasparyan, and T. Braun,
“CDS-MEC: NFV/SDN-based Application Management for MEC in 5G
Systems,” Computer Networks, vol. 135C, pp. 96–107, Feb. 2018.

[41] B. Seeber, Bastille Threat Research Team, IQ Donors, T. Telkamp,
and C. Swiger, “GNU Radio OOT Module Implementing the LoRa
PHY,” https://github.com/BastilleResearch/gr-lora, Last-Accessed: De-
cember 4, 2021.

[42] Semtech, “How to Use LoRa Basics (TM) Station,” p. 9,
Sep. 2020, https://lora-developers.semtech.com/documentation/
tech-papers-and-guides/how-to-use-lora-basics-station/
download-how-to-use-lora-basics-station/, Last-Accessed: December 4,
2021.

[43] C. Shannon, “Communication in the Presence of Noise,” Proceedings
of the Institute of Radio Engineers (IRE), vol. 37, no. 1, pp. 10–21, Jan.
1949.

[44] B. Stiller, E. Schiller, and C. Schmitt, “An Overview of Network
Communication Technologies for IoT,” in Handbook of Internet-of-
Things, S. Ziegler and M. James, Eds. Cham, Switzerland: Springer,
2020, ch. 12.

[45] J. Tapparel, “Complete Reverse Engineering of LoRA PHY,” Telecom-
munications Circuits Laboratory, EPFL, Lausanne, Switzerland, Tech.
Rep., 2019, https://www.epfl.ch/labs/tcl/wp-content/uploads/2020/02/
Reverse Eng Report.pdf, Last-Accessed: December 4, 2021.

[46] J. Tapparel, O. Afisiadis, P. Mayoraz, A. Balatsoukas-Stimming, and
A. Burg, “An Open-Source LoRa Physical Layer Prototype on GNU
Radio,” in 21st IEEE International Workshop on Signal Processing
Advances in Wireless Communications (SPAWC’20), May 2020, pp. 1–5.

[47] T. Telkamp, “LoRa Signals from a Low Orbit Satellite,” https://twitter.
com/telkamp/status/956900631985475586, Last-Accessed: December 4,
2021.

[48] The Things Industries, “The Things Network,” https://www.
thethingsnetwork.org, Last-Accessed: December 4, 2021.

[49] ——, “TTN Duty Cycle,” https://www.thethingsnetwork.org/docs/
lorawan/duty-cycle.html, Last-Accessed: December 4, 2021.

[50] R. S. Venkatesh, T. Smejkal, D. S. Milojicic, and A. Gavrilovska,
“Fast in-memory CRIU for docker containers,” in Proceedings of the
International Symposium on Memory Systems (ACM MEMSYS’19).
New York, NY, USA: Association for Computing Machinery (ACM),
2019, pp. 53–65.

[52] D. Wubben, P. Rost, J. S. Bartelt, M. Lalam, V. Savin, M. Gorgoglione,
A. Dekorsy, and G. Fettweis, “Benefits and Impact of Cloud Computing

[51] M. Waqar, A. Kim, and P. K. Cho, “A Study of Fronthaul Networks in
CRANs–Requirements and Recent Advancements,” KSII Transactions
on Internet and Information Systems (TIIS), vol. 12, no. 10, pp. 4618–
4639, 2018.
on 5G Signal Processing: Flexible centralization through cloud-RAN,”
IEEE Signal Processing Magazine, vol. 31, no. 6, pp. 35–44, 2014.

[53] X. Xia, Y. Zheng, and T. Gu, “LiteNap: Downclocking LoRa Reception,”
in IEEE INFOCOM 2020 - IEEE Conference on Computer Communi-
cations, 2020, pp. 2321–2330.

[54] C. Zeng, F. Liu, S. Chen, W. Jiang, and M. Li, “Demystifying the
Performance Interference of Co-Located Virtual Network Functions,”
in IEEE INFOCOM 2018 - IEEE Conference on Computer Communi-
cations, 2018, pp. 765–773.

Eryk Schiller received two M.Sc. degrees, one in Electronics and Telecom-
munications from the University of Science and Technology, and one in
Theoretical Physics from Jagiellonian University, Cracow, Poland, in 2006
and 2007. He received a Ph.D. in Computer Science from the University of
Grenoble, France, in 2010. He was a postdoctoral scholar at the University of
Neuchâtel, Switzerland and the University of Berne, Switzerland. Since 2018,
he has been a senior researcher at the University of Zürich UZH, Switzerland.

Jesutofunmi Ajayi received a B.Sc. (Hons) in Computer Science from
Brunel University London, United Kingdom. He received an M.Sc. degree in
Computer Science from the University of Berne, Switzerland, and is currently
pursuing a Doctorate degree at the same university. His current research
interests are Next-Generation Mobile Networks, Network Virtualization, and
Edge or Fog computing.

Silas Weber received an M.Sc. Degree in Informatics from the University
of Zürich UZH, Zurich, Switzerland. He is currently serving as a project
manager within the Faculty of Law at the same university. His interests are
in Next-Generation Mobile Networks, Long Range (LoRa), Containers, and
Cloud Computing.

Torsten Braun received a Ph.D. degree from the University of Karlsruhe,
Germany, in 1993. From 1994 to 1995, he was a guest scientist at INRIA
Sophia-Antipolis, France. From 1995 to 1997, he worked at the IBM European
Networking Centre Heidelberg, Germany, as a Project Leader and Senior
Consultant. Since 1998, he has been a Full Professor in Computer Science at
the University of Berne, Switzerland. He was Vice President of the SWITCH
Foundation from 2011 to 2019. He received Best Paper Awards from IEEE
LCN 2001, WWIC 2007, EE-LSDS 2013, IFIP WMNC 2014, ARMSCC 2014
Workshop, and the GI-KuVS Communications Software Award in 2009.

Burkhard Stiller received a Diplom-Informatiker (M.Sc.) degree in Computer
Science and a Dr. rer.-nat. (Ph.D.) degree from the University of Karlsruhe,
Germany. He chairs as a full professor the Communication Systems Group
CSG, Department of Informatics IfI, the University of Zürich UZH since
2004. He held previous positions with the Computer Laboratory, University
of Cambridge, U.K., the Computer Engineering and Networks Laboratory
TIK, ETH Zurich, Switzerland, and the University of Federal Armed Forces,
Munich, Germany. He received Best Paper Awards at IFIP Networking 2005,
IFIP/IEEE DSOM 2007, AIMS 2012/2015/2016, IEEE APWiMob 2017, and
IEEE ICBC 2021.


	1

