913 research outputs found

    Setting the Agenda: Different strategies of a Mass Media in a model of cultural dissemination

    Full text link
    Day by day, people exchange opinions about a given new with relatives, friends, and coworkers. In most cases, they get informed about a given issue by reading newspapers, listening to the radio, or watching TV, i.e., through a Mass Media (MM). However, the importance of a given new can be stimulated by the Media by assigning newspaper's pages or time in TV programs. In this sense, we say that the Media has the power to "set the agenda", i.e., it decides which new is important and which is not. On the other hand, the Media can know people's concerns through, for instance, websites or blogs where they express their opinions, and then it can use this information in order to be more appealing to an increasing number of people. In this work, we study different scenarios in an agent-based model of cultural dissemination, in which a given Mass Media has a specific purpose: To set a particular topic of discussion and impose its point of view to as many social agents as it can. We model this by making the Media has a fixed feature, representing its point of view in the topic of discussion, while it tries to attract new consumers, by taking advantage of feedback mechanisms, represented by adaptive features. We explore different strategies that the Media can adopt in order to increase the affinity with potential consumers and then the probability to be successful in imposing this particular topic.Comment: 23 pages, 7 figure

    Exploitation of Data Correlation and Performance Enhancement in Wireless Sensor Networks

    Get PDF
    With the combination of wireless communications and embedded system, lots of progress has been made in the area of wireless sensor networks (WSNs). The networks have already been widely deployed, due to their self-organization capacity and low-cost advantage. However, there are still some technical challenges needed to be addressed. In the thesis, three algorithms are proposed in improving network energy efficiency, detecting data fault and reducing data redundancy. The basic principle behind the proposed algorithms is correlation in the data collected by WSNs. The first sensor scheduling algorithm is based on the spatial correlation between neighbor sensor readings. Given the spatial correlation, sensor nodes are clustered into groups. At each time instance, only one node within each group works as group representative, namely, sensing and transmitting sensor data. Sensor nodes take turns to be group representative. Therefore, the energy consumed by other sensor nodes within the same group can be saved. Due to the continuous nature of the data to be collected, temporal and spatial correlation of sensor data has been exploited to detect the faulty data. By exploitation of temporal correlation, the normal range of upcoming sensor data can be predicted by the historical observations. Based on spatial correlation, weighted neighbor voting can be used to diagnose whether the value of sensor data is reliable. The status of the sensor data, normal or faulty, is decided by the combination of these two proposed detection procedures. Similar to the sensor scheduling algorithm, the recursive principal component analysis (RPCA) based algorithm has been studied to detect faulty data and aggregate redundant data by exploitation of spatial correlation as well. The R-PCA model is used to process the sensor data, with the help of squared prediction error (SPE) score and cumulative percentage formula. When SPE score of a collected datum is distinctly larger than that of normal data, faults can be detected. The data dimension is reduced according to the calculation result of cumulative percentage formula. All the algorithms are simulated in OPNET or MATLAB based on practical and synthetic datasets. Performances of the proposed algorithms are evaluated in each chapter

    An information-theoretic and dissipative systems approach to the study of knowledge diffusion and emerging complexity in innovation systems

    Get PDF
    The paper applies information theory and the theory of dissipative systems to discuss the emergence of complexity in an innovation system, as a result of its adaptation to an uneven distribution of the cognitive distance between its members. By modelling, on one hand, cognitive distance as noise, and, on the other hand, the inefficiencies linked to a bad flow of information as costs, we propose a model of the dynamics by which a horizontal network evolves into a hierarchical network, with some members emerging as intermediaries in the transfer of knowledge between seekers and problem-solvers. Our theoretical model contributes to the understanding of the evolution of an innovation system by explaining how the increased complexity of the system can be thermodynamically justified by purely internal factors. Complementing previous studies, we demonstrate mathematically that the complexity of an innovation system can increase not only to address the complexity of the problems that the system has to solve, but also to improve the performance of the system in transferring the knowledge needed to find a solution

    Clustering algorithms for sensor networks and mobile ad hoc networks to improve energy efficiency

    Get PDF
    Includes bibliographical references (leaves 161-172).Many clustering algorithms have been proposed to improve energy efficiency of ad hoc networks as this is one primary challenge in ad hoc networks. The design of these clustering algorithms in sensor networks is different from that in mobile ad hoc networks in accordance with their specific characteristics and application purposes. A typical sensor network, which consists of stationary sensor nodes, usually has a data sink because of the limitation on processing capability of sensor nodes. The data traffic of the entire network is directional towards the sink. This directional traffic burdens the nodes/clusters differently according to their distance to the sink. Most clustering algorithms assign a similar number of nodes to each cluster to balance the burden of the clusters without considering the directional data traffic. They thus fail to maximize network lifetime. This dissertation proposes two clustering algorithms. These consider the directional data traffic in order to improve energy efficiency of homogeneous sensor networks with identical sensor nodes and uniform node distribution. One algorithm is for sensor networks with low to medium node density. The other is for sensor networks with high node density. Both algorithms organize the clusters in such a way that the cluster load is proportional to the cluster energy stored, thereby equalizing cluster lifetimes and preventing premature node/cluster death. Furthermore, in a homogeneous sensor network with low to medium node density, the clusterhead is maintained in the central area of the cluster through re-clustering without ripple effect to save more energy. The simulation results show that the proposed algorithms improve both the lifetime of the networks and performance of data being delivered to the sink. A typical mobile ad hoc network, which usually consists of moveable nodes, does not have a data sink. Existing energy-efficient clustering algorithms maintain clusters by periodically broadcasting control messages. In a typical mobile ad hoc network, a greater speed of node usually needs more frequent broadcasting. To efficiently maintain the clusters, the frequency of this periodic broadcasting needs to meet the requirement of the potentially maximum speed of node. When the node speed is low, the unnecessary broadcasting may waste significant energy. Furthermore, some clustering algorithms limit the maximum cluster size to moderate the difference in cluster sizes. Unfortunately, the cluster sizes in these algorithms still experience significant difference. The larger clusters will have higher burdens. Some clustering algorithms restrict the cluster sizes between the maximum and minimum limits. The energy required to maintain these clusters within the maximum and minimum sizes is quite extensive, especially when the nodes are moving quickly. Thus, energy efficiency is not optimized

    Blockchain security and applications

    Get PDF
    Cryptocurrencies, such as Bitcoin and Ethereum, have proven to be highly successful. In a cryptocurrency system, transactions and ownership data are stored digitally in a ledger that uses blockchain technology. This technology has the potential to revolutionize the future of financial transactions and decentralized applications. Blockchains have a layered architecture that enables their unique method of authenticating transactions. In this research, we examine three layers, each with its own distinct functionality: the network layer, consensus layer, and application layer. The network layer is responsible for exchanging data via a peer-to-peer (P2P) network. In this work, we present a practical yet secure network design. We also study the security and performance of the network and how it affects the overall security and performance of blockchain systems. The consensus layer is in charge of generating and ordering the blocks, as well as guaranteeing that everyone agrees. We study the existing Proof-of-stake (PoS) protocols, which follow a single-extension design framework. We present an impossibility result showing that those single-extension protocols cannot achieve standard security properties (e.g., common prefix) and the best possible unpredictability if the honest players control less than 73\% stake. To overcome this, we propose a new multi-extension design framework. The application layer consists of programs (e.g., smart contracts) that users can use to build decentralized applications. We construct a protocol on the application layer to enhance the security of federated learning

    Representation learning on complex data

    Get PDF
    Machine learning has enabled remarkable progress in various fields of research and application in recent years. The primary objective of machine learning consists of developing algorithms that can learn and improve through observation and experience. Machine learning algorithms learn from data, which may exhibit various forms of complexity, which pose fundamental challenges. In this thesis, we address two major types of data complexity: First, data is often inherently connected and can be modeled by a single or multiple graphs. Machine learning methods could potentially exploit these connections, for instance, to find groups of similar users in a social network for targeted marketing or to predict functional properties of proteins for drug design. Secondly, data is often high-dimensional, for instance, due to a large number of recorded features or induced by a quadratic pixel grid on images. Classical machine learning methods perennially fail when exposed to high-dimensional data as several key assumptions cease to be satisfied. Therefore, a major challenge associated with machine learning on graphs and high-dimensional data is to derive meaningful representations of this data, which allow models to learn effectively. In contrast to conventional manual feature engineering methods, representation learning aims at automatically learning data representations that are particularly suitable for a specific task at hand. Driven by a rapidly increasing availability of data, these methods have celebrated tremendous success for tasks such as object detection in images and speech recognition. However, there is still a considerable amount of research work to be done to fully leverage such techniques for learning on graphs and high-dimensional data. In this thesis, we address the problem of learning meaningful representations for highly-effective machine learning on complex data, in particular, graph data and high-dimensional data. Additionally, most of our proposed methods are highly scalable, allowing them to learn from massive amounts of data. While we address a wide range of general learning problems with different modes of supervision, ranging from unsupervised problems on unlabeled data to (semi-)-supervised learning on annotated data sets, we evaluate our models on specific tasks from fields such as social network analysis, information security, and computer vision. The first part of this thesis addresses representation learning on graphs. While existing graph neural network models commonly perform synchronous message passing between nodes and thus struggle with long-range dependencies and efficiency issues, our first proposed method performs fast asynchronous message passing and, therefore, supports adaptive and efficient learning and additionally scales to large graphs. Another contribution consists of a novel graph-based approach to malware detection and classification based on network traffic. While existing methods classify individual network flows between two endpoints, our algorithm collects all traffic in a monitored network within a specific time frame and builds a communication graph, which is then classified using a novel graph neural network model. The developed model can be generally applied to further graph classification or anomaly detection tasks. Two further contributions challenge a common assumption made by graph learning methods, termed homophily, which states that nodes with similar properties are usually closely connected in the graph. To this end, we develop a method that predicts node-level properties leveraging the distribution of class labels appearing in the neighborhood of the respective node. That allows our model to learn general relations between a node and its neighbors, which are not limited to homophily. Another proposed method specifically models structural similarity between nodes to model different roles, for instance, influencers and followers in a social network. In particular, we develop an unsupervised algorithm for deriving node descriptors based on how nodes spread probability mass to their neighbors and aggregate these descriptors to represent entire graphs. The second part of this thesis addresses representation learning on high-dimensional data. Specifically, we consider the problem of clustering high-dimensional data, such as images, texts, or gene expression profiles. Classical clustering algorithms struggle with this type of data since it can usually not be assumed that data objects will be similar w.r.t. all attributes, but only within a particular subspace of the full-dimensional ambient space. Subspace clustering is an approach to clustering high-dimensional data based on this assumption. While there already exist powerful neural network-based subspace clustering methods, these methods commonly suffer from scalability issues and lack a theoretical foundation. To this end, we propose a novel metric learning approach to subspace clustering, which can provably recover linear subspaces under suitable assumptions and, at the same time, tremendously reduces the required numbear of model parameters and memory compared to existing algorithms.Maschinelles Lernen hat in den letzten Jahren bemerkenswerte Fortschritte in verschiedenen Forschungs- und Anwendungsbereichen ermöglicht. Das primäre Ziel des maschinellen Lernens besteht darin, Algorithmen zu entwickeln, die durch Beobachtung und Erfahrung lernen und sich verbessern können. Algorithmen des maschinellen Lernens lernen aus Daten, die verschiedene Formen von Komplexität aufweisen können, was grundlegende Herausforderungen mit sich bringt. Im Rahmen dieser Dissertation werden zwei Haupttypen von Datenkomplexität behandelt: Erstens weisen Daten oft inhärente Verbindungen, die durch einen einzelnen oder mehrere Graphen modelliert werden können. Methoden des maschinellen Lernens können diese Verbindungen potenziell ausnutzen, um beispielsweise Gruppen ähnlicher Nutzer in einem sozialen Netzwerk für gezieltes Marketing zu finden oder um funktionale Eigenschaften von Proteinen für das Design von Medikamenten vorherzusagen. Zweitens sind die Daten oft hochdimensional, z. B. aufgrund einer großen Anzahl von erfassten Merkmalen oder bedingt durch ein quadratisches Pixelraster auf Bildern. Klassische Methoden des maschinellen Lernens versagen immer wieder, wenn sie hochdimensionalen Daten ausgesetzt werden, da mehrere Schlüsselannahmen nicht mehr erfüllt sind. Daher besteht eine große Herausforderung beim maschinellen Lernen auf Graphen und hochdimensionalen Daten darin, sinnvolle Repräsentationen dieser Daten abzuleiten, die es den Modellen ermöglichen, effektiv zu lernen. Im Gegensatz zu konventionellen manuellen Feature-Engineering-Methoden zielt Representation Learning darauf ab, automatisch Datenrepräsentationen zu lernen, die für eine bestimmte Aufgabenstellung besonders geeignet sind. Angetrieben durch eine rasant steigende Datenverfügbarkeit haben diese Methoden bei Aufgaben wie der Objekterkennung in Bildern und der Spracherkennung enorme Erfolge gefeiert. Es besteht jedoch noch ein erheblicher Forschungsbedarf, um solche Verfahren für das Lernen auf Graphen und hochdimensionalen Daten voll auszuschöpfen. Diese Dissertation beschäftigt sich mit dem Problem des Lernens sinnvoller Repräsentationen für hocheffektives maschinelles Lernen auf komplexen Daten, insbesondere auf Graphen und hochdimensionalen Daten. Zusätzlich sind die meisten hier vorgeschlagenen Methoden hoch skalierbar, so dass sie aus großen Datenmengen lernen können. Obgleich eine breite Palette von allgemeinen Lernproblemen mit verschiedenen Arten der Überwachung adressiert wird, die von unüberwachten Problemen auf unannotierten Daten bis hin zum (semi-)überwachten Lernen auf annotierten Datensätzen reichen, werden die vorgestellten Metoden anhand spezifischen Anwendungen aus Bereichen wie der Analyse sozialer Netzwerke, der Informationssicherheit und der Computer Vision evaluiert. Der erste Teil der Dissertation befasst sich mit dem Representation Learning auf Graphen. Während existierende neuronale Netze für Graphen üblicherweise eine synchrone Nachrichtenübermittlung zwischen den Knoten durchführen und somit mit langreichweitigen Abhängigkeiten und Effizienzproblemen zu kämpfen haben, führt die erste hier vorgeschlagene Methode eine schnelle asynchrone Nachrichtenübermittlung durch und unterstützt somit adaptives und effizientes Lernen und skaliert zudem auf große Graphen. Ein weiterer Beitrag besteht in einem neuartigen graphenbasierten Ansatz zur Malware-Erkennung und -Klassifizierung auf Basis des Netzwerkverkehrs. Während bestehende Methoden einzelne Netzwerkflüsse zwischen zwei Endpunkten klassifizieren, sammelt der vorgeschlagene Algorithmus den gesamten Verkehr in einem überwachten Netzwerk innerhalb eines bestimmten Zeitraums und baut einen Kommunikationsgraphen auf, der dann mithilfe eines neuartigen neuronalen Netzes für Graphen klassifiziert wird. Das entwickelte Modell kann allgemein für weitere Graphenklassifizierungs- oder Anomalieerkennungsaufgaben eingesetzt werden. Zwei weitere Beiträge stellen eine gängige Annahme von Graphen-Lernmethoden in Frage, die so genannte Homophilie-Annahme, die besagt, dass Knoten mit ähnlichen Eigenschaften in der Regel eng im Graphen verbunden sind. Zu diesem Zweck wird eine Methode entwickelt, die Eigenschaften auf Knotenebene vorhersagt, indem sie die Verteilung der annotierten Klassen in der Nachbarschaft des jeweiligen Knotens nutzt. Das erlaubt dem vorgeschlagenen Modell, allgemeine Beziehungen zwischen einem Knoten und seinen Nachbarn zu lernen, die nicht auf Homophilie beschränkt sind. Eine weitere vorgeschlagene Methode modelliert strukturelle Ähnlichkeit zwischen Knoten, um unterschiedliche Rollen zu modellieren, zum Beispiel Influencer und Follower in einem sozialen Netzwerk. Insbesondere entwickeln wir einen unüberwachten Algorithmus zur Ableitung von Knoten-Deskriptoren, die darauf basieren, wie Knoten Wahrscheinlichkeitsmasse auf ihre Nachbarn verteilen, und aggregieren diese Deskriptoren, um ganze Graphen darzustellen. Der zweite Teil dieser Dissertation befasst sich mit dem Representation Learning auf hochdimensionalen Daten. Konkret wird das Problem des Clusterns hochdimensionaler Daten, wie z. B. Bilder, Texte oder Genexpressionsprofile, betrachtet. Klassische Clustering-Algorithmen haben mit dieser Art von Daten zu kämpfen, da in der Regel nicht davon ausgegangen werden kann, dass die Datenobjekte in Bezug auf alle Attribute ähnlich sind, sondern nur innerhalb eines bestimmten Unterraums des volldimensionalen Datenraums. Das Unterraum-Clustering ist ein Ansatz zum Clustern hochdimensionaler Daten, der auf dieser Annahme basiert. Obwohl es bereits leistungsfähige, auf neuronalen Netzen basierende Unterraum-Clustering-Methoden gibt, leiden diese Methoden im Allgemeinen unter Skalierbarkeitsproblemen und es fehlt ihnen an einer theoretischen Grundlage. Zu diesem Zweck wird ein neuartiger Metric Learning Ansatz für das Unterraum-Clustering vorgeschlagen, der unter geeigneten Annahmen nachweislich lineare Unterräume detektieren kann und gleichzeitig die erforderliche Anzahl von Modellparametern und Speicher im Vergleich zu bestehenden Algorithmen enorm reduziert

    Topological Characterization of Hamming and Dragonfly Networks and its Implications on Routing

    Get PDF
    Current HPC and datacenter networks rely on large-radix routers. Hamming graphs (Cartesian products of complete graphs) and dragonflies (two-level direct networks with nodes organized in groups) are some direct topologies proposed for such networks. The original definition of the dragonfly topology is very loose, with several degrees of freedom such as the inter- and intra-group topology, the specific global connectivity and the number of parallel links between groups (or trunking level). This work provides a comprehensive analysis of the topological properties of the dragonfly network, providing balancing conditions for network dimensioning, as well as introducing and classifying several alternatives for the global connectivity and trunking level. From a topological study of the network, it is noted that a Hamming graph can be seen as a canonical dragonfly topology with a large level of trunking. Based on this observation and by carefully selecting the global connectivity, the Dimension Order Routing (DOR) mechanism safely used in Hamming graphs is adapted to dragonfly networks with trunking. The resulting routing algorithms approximate the performance of minimal, non-minimal and adaptive routings typically used in dragonflies, but without requiring virtual channels to avoid packet deadlock, thus allowing for lower-cost router implementations. This is obtained by selecting properly the link to route between groups, based on a graph coloring of the network routers. Evaluations show that the proposed mechanisms are competitive to traditional solutions when using the same number of virtual channels, and enable for simpler implementations with lower cost. Finally, multilevel dragonflies are discussed, considering how the proposed mechanisms could be adapted to them

    Distributed Computing for Scalable Optimal Power Flow in Large Radial Electric Power Distribution Systems with Distributed Energy Resources

    Get PDF
    Solving the non-convex optimal power flow (OPF) problem for large-scale power distribution systems is computationally expensive. An alternative is to solve the relaxed convex problem or linear approximated problem, but these methods lead to sub-optimal or power flow infeasible solutions. In this paper, we propose a fast method to solve the OPF problem using distributed computing algorithms combined with a decomposition technique. The full network-level OPF problem is decomposed into multiple smaller sub-problems defined for each decomposed area or node that can be easily solved using off-the-shelf nonlinear programming (NLP) solvers. Distributed computing approach is proposed via which sub-problems achieve consensus and converge to network-level optimal solutions. The novelty lies in leveraging the nature of power flow equations in radial network topologies to design effective decomposition techniques that reduce the number of iterations required to achieve consensus by an order of magnitude

    Stable and fair congestion control mechanisms for cooperative vehicle safety in vehicular networks

    Get PDF
    Cooperative vehicle safety (CVS) systems operate based on broadcast of vehicle position and safety information to neighboring cars. The communication medium of CVS is a Dedicated Short Range Communication (DSRC) wireless channel. One of the main challenges in large scale deployment of CVS systems is the issue of scalability. To address the scalability problem, several congestion control methods have been proposed and are currently under field study. These mechanisms adapt transmission rate and power, based on network measures such as: Channel Busy Ratio (CBR), packet reception rate and vehicles tracking error. Channel Busy Ratio (CBR) is defined as the ratio of time that the channel is sensed busy during a time slot. We examine two such algorithms named Linear Memoryless Range Control (LMRC) and Gradient Descent Range Control (GRC). The dynamic behavior of these algorithms over time and space has been studied to evaluate temporal stability and spatial fairness. Moreover we have introduced a novel congestion control mechanism named Stateful Utilization-Based Power Adaptation (SUPRA) which is fundamentally a stateful version of LMRC algorithm to control power of transmission in contrast to Range Control algorithms. The control function of SUPRA has the ability to be tailored to different road conditions from low to high densities and different rates of transmission. The stability of the algorithm is proven through complete analysis of control function and verified in numerous simulation runs for typical road scenarios.Fairness is another issue which is probable to happen in different scenarios. An Unfair situation is when cars having the same density and rate of transmission, do not have analogous share of the channel. We have proposed a distributed mechanism to resolve the issue of unfairness. In this method each node sends out its sensed CBR along with safety messages to neighboring nodes, so each node will have access to all CBRs received from neighbors as well as its own measured CBR. This will provide a wide-ranging view of the whole channel and consequently adaptation of range/power of transmission will be done based on an aggregation of all these CBR values
    corecore