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Abstract
The increasing penetrations of distributed energy

resources (DERs) at the power distribution level
augments the complexity of optimally operating the
grid edge assets, primarily because of the nonlinearity
and scale of the system. An alternative is to solve
the relaxed convex or linear-approximated problem,
but these methods lead to sub-optimal or power-flow
infeasible solutions. This paper proposes a scalable
and fast approach to solve the large nonlinear
optimal power flow (OPF) problem using a developed
distributed method. The full network-level OPF problem
is decomposed into multiple smaller sub-problems
that are easy to solve - the distributed method
attains network-level optimal solutions upon consensus.
This effective decomposition technique reduces the
number of iterations required for a consensus by
order of magnitude compared to traditional distributed
algorithms. We demonstrate the proposed approach
by solving different nonlinear OPF problems (different
problem objectives) for a distribution system with more
than fifty-thousands (50,000) problem variables.

Keywords: Distributed Control, Optimal Power Flow,
Distributed Optimization, Power Distribution Systems.

1. Introduction
The nature and the requirements of the power

systems, especially at the distribution level are
changing rapidly with the large-scale integration
of controllable distributed energy resources (DERs).
The continued proliferation of DERs, which include
Photovoltaic (PV) systems, battery energy storage
units (BESS), and controllable loads such as Electric
Vehicles (EVs) is leading to a drastic increase in
the number of active nodes at the distribution level
that need to be controlled/managed optimally for
efficient and resilient grid operations. Traditionally,
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grid operations are centrally managed upon solving an
optimal power flow (OPF) problem where centralized
optimization techniques are used to solve the resulting
difficult non-linear non-convex OPF problem [1], [2].
Unfortunately, the computational challenges, primarily
posed by the non-convex power flow constraints in
OPF formulation, increase drastically with the size
of the distribution systems motivating computationally
efficient approaches [3].

Existing methods manage the computational
challenges using convex relaxation or linear
approximation techniques [4], [5]. The primary
drawbacks of (i) the relaxed models are the possibilities
of inexact and/or infeasible power flow solutions [6],
and (ii) the approximated models may lead to NLP
infeasible solutions and high optimality gap depending
upon the problem type [7]. Moreover, methods based
on both approximation and relaxation techniques use
a centralized paradigm that may lead to scalability
challenges as the problem size increases. With a
majority of DER integration happening at the secondary
feeder level, the OPF problem will need to be solved
for even larger feeders with thousands of secondaries.
For example, the largest IEEE test feeder is an 8500
node test system that terminates at the secondary
transformer level and does not include secondary
feeders. If each service transformer is expanded to a 20
node secondary feeder, it will lead to a total of 22000
secondary nodes added to the problem formulation.
Such problem complexities motivate the move towards
a distributed computing and/or control paradigm.
Fortunately, the radial operational topology of power
distribution systems makes them highly conducive
for parallelization and distributed computing. This
paper develops a distributed computing approach for
distribution-level OPF problems that can scale for very
large distribution feeders and converge using fewer
iterations among distributed computing nodes, thus
significantly reducing the overall compute time.

Within this context, existing literature includes
numerous approaches on the application of distributed
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optimization algorithms for power distribution systems
[8], [9]. In general, these methods adopt the
traditional distributed optimization techniques to model
a distributed optimal power flow (D-OPF) problem
[8]–[11]. A D-OPF formulation decomposes the OPF
into several smaller subproblems that require multiple
micro- and macro-iterations for convergence. Within
each micro-iteration, the distributed sub-problems are
solved in parallel. While, during macro-iterations, the
solutions or more specifically the updated boundary
variables obtained from the distributed subproblems
are exchanged to enforce network-level consensus.
Both micro and macro-iterations together decide the
time-of-convergence for the algorithm. Unfortunately,
the existing distributed optimization algorithms require
a very large number of macro-iterations to converge
for medium-scale distribution feeders [9], [12]–[14]. A
practical implementation of such algorithms requires
to solve distributed sub-problems a large number
of times as well to reach a converged solution
within a reasonable time. A large number of
communication rounds/message-passing events among
distributed computing agents is not preferred since
this leads to significant delays in decision-making.
Lately, to address some of these challenges, real-time
feedback-based online distributed algorithms have
been explored in the related literature for network
optimization [15]–[20]. Generally, these algorithms do
not wait to optimize for a time-step but asymptotically
arrive at an optimal decision over several steps of
real-time decision-making. However, these algorithms
also take hundreds of iterations to track the optimal
solution for a mid-size feeder. This raises further
challenges to the performance of the algorithm for larger
feeders, especially during the fast-varying phenomenon.

To address these challenges, we have developed a
distributed OPF formulation for the radial distribution
systems based on the equivalence of networks principle
[21], [22]. In this paper, we test the performance
of the distributed algorithm for scaled systems and
various network-level objectives. Specifically, we have
(i) proposed distributed computation method to solve
OPF for very large notional distribution test feeders
(with 10,000 nodes & 50,000 problem variables) where
the centralized computation can solve for at max
20% of the feeders, and (ii) solved OPF for several
different operational problem objectives with different
control variables, that face different levels of challenges
mathematically. In brief, we have tested the proposed
D-OPF method for scalability while subjected to severe
non-linearities in terms of problem objectives. The
proposed approach solves the original non-convex OPF
problem for power distribution systems using a novel

decomposition technique combined with distributed
computing approach. First, the low-compute distributed
OPF sub-problems are locally solved. The consensus of
the boundary variables is achieved using a Fixed-Point
Iteration (FPI) algorithm. Upon consensus, the
solutions converge to network-level OPF solutions. We
demonstrate the proposed approach for three problem
objectives (1) loss minimization, (2) DER generation
maximization, and (3) voltage deviation minimization
using a balanced synthetic 10,000 node distribution
feeder and single-phase equivalent of 8500-node test
feeder (with 2500 nodes). The proposed approach is
shown to scale for all problem objectives while most
centralized formulations can’t be solved for more than
2000 nodes using off-the-shelf optimization solvers such
as Artelys Knitro. To our knowledge, this is the first
paper to demonstrate an approach that solves such a
large-scale D-OPF on a regular CPU without the use of
any high-performance computing (HPC) machines.

2. Centralized OPF Model
In this paper, (·)∗ represents the complex-conjugate;

(·)T represents matrix transpose; (·)n represents the
nth iteration; (.) and (.) denotes the maximum and
minimum limit of a given quantity. Also for complex
numbers, we denote j =

√
−1.

2.1. System Variable Definitions
Let us represent a balanced radial power distribution

network by the directed graph G = (N , E), where N be
the set of all nodes in the system and E denotes the set
of all distribution lines connecting the pair of buses (i, j)
i.e., from node i to node j. Also, rij + jxij is the series
impedance ∀{ij} ∈ E . Let, for node j, k be the set of
all children nodes. Next we denote vj = |Vj |2= VjVj

∗,
as the squared magnitude of voltage at node j. Let
lij be the squared magnitude of current flow in branch
{ij}. We denote Pij , Qij as the sending-end active and
reactive power flows for branch ij, and complex power
pLj

+ jqLj
is the load connected and pDj + jqDj is the

power output of DER connected at node j.

2.2. System Models
The network is modeled using the branch flow

equations [23] defined for each line {ij} ∈ E and
∀j ∈ N in (1).

Pij − rij lij − pLj + pDj =
∑

k:j→k

Pjk (1a)

Qij − xij lij − qLj + qDj =
∑

k:j→k

Qjk (1b)

vj = vi − 2(rijPij + xijQij) + (r2ij + x2
ij)lij (1c)

vilij = P 2
ij +Q2

ij (1d)

Page 2672



The DERs are modeled as Photovoltaic modules
(PVs) interfaced using smart inverters, capable of
2-quadrant operation. If the reactive power generation,
qDj , is controllable and modeled as the decision variable
for the optimal operation, then the real power generation
by the DER, pDj , is assumed to be known(measured).
Let the rating of the DER connected at node j be SDRj ,
then the limits on qDj are given by (2).

−
√

S2
DRj − p2Dj ≤ qDj ≤

√
S2
DRj − p2Dj (2)

On the contrary, if the active power generation, pDj ,
is modeled as the decision variable, then qDj is set to 0,
and pDj can vary between 0 and SDRj , see (3).

0 ≤ pDj ≤ SDRj (3)

2.3. Centralized OPF problems
To optimize the network for some cost function,

we define a centralized OPF (C-OPF) problem by
(i) a network-level problem objective, (ii) the power
flow models in equation (1), and (iii) the operating
constraints on the power flow variables. In this paper, we
formulate three different optimal power flow problems
for the power distribution grids, (1) active power
loss minimization, (2) DER generation maximization,
and (3) Voltage deviation (∆V) minimization. The
corresponding OPF problems are detailed below.
2.3.1. Loss Minimization: The problem objective
is to reduce the network losses by controlling the
reactive power output from DERs (qDj). Let Xlm =
[Pij , Qij , lij , vj , qDj ]

T be the problem variables ∀j ∈
N , and ∀{ij} ∈ E . Note that, if node j doesn’t have
any DER, then qDj = 0. Also, let Flm(Xlm) denote
the objective function representing the total power loss
in the given distribution system. Note that Flm(Xlm) is
a function of both the power flow variables and decision
variables. Then, the OPF problem is defined as the
following in (C1).

(C1) min Flm(Xlm) =
∑

{ij}∈E

lijrij (4a)

s.t. (1) and (2) (4b)

V 2 ≤ vj ≤ V
2

;∀j ∈ N (4c)

lij ≤
(
Iratedij

)2

; ∀{ij} ∈ E (4d)

where, V = 1.05 pu and V = 0.95 pu are the limits on
bus voltages, and (Iratedij )2 is the thermal limit for the
branch {ij}.
2.3.2. DER Maximization: In the DER
maximization problem objective, the DER active
power generation is maximized without violating the
operational limits of the distribution system. This is

achieved by maximizing the active power output from
DERs (pDj). Let Xdm = [Pij , Qij , lij , vj , pDj ]

T

be the problem variables. Here, the objective function
is denoted by Fdm(Xdm), representing the total
active power generation by DERs. Then, this DER
maximization OPF problem is defined as the following
in (C2). Similar to the previous formulation, if any node
j doesn’t have any DER, then we set pDj

= 0.
(C2) max Fdm(Xdm) =

∑
j∈N

pDj (5a)

s.t. (1) and (3) (5b)

V 2 ≤ vj ≤ V
2

; ∀j ∈ N (5c)

lij ≤
(
Iratedij

)2

; ∀{ij} ∈ E (5d)

2.3.3. Voltage Deviation Minimization: In this
specific network-level optimization problem, we try
to keep the nodal voltages as close as possible to a
pre-specified reference, Vref . The problem objective
is to minimize the nodal voltage deviations from the
reference value by controlling the reactive power output
from DERs (qDj). The problem variables are denoted by
Xdv = [Pij , Qij , lij , vj , qDj ]

T , ∀j ∈ N and ∀{ij} ∈
E . Also, the cost function, Fdv(Xdv), represents the
total two-norm distances of nodal voltages, vj , from
reference voltage vref . Mathematically Fdv(Xdv) =√∑

(vj − vref )2, ∀j ∈ N . The OPF problem is
defined as the following in (C3). Here in this paper, we
used Vref = 1.00 pu as the bus reference voltage.

(C3) min Fdv(Xdv) =

√ ∑
∀j∈N

(vj − vref )2 (6a)

s.t. (1) and (2) (6b)

V 2 ≤ vj ≤ V
2

; ∀j ∈ N (6c)

lij ≤
(
Iratedij

)2

; ∀{ij} ∈ E (6d)

Assumption 1: The loads in the network for all three
OPFs are modeled as constant power loads; i.e., in ZIP
load model, (Z, I, P ) = (0, 0, 1).

In the next section, we detail the method of how
to decompose the optimization problems for large-scale
distribution grids into several sub-problems, solve in
parallel, and converge into the final solution.

3. Decomposition of the OPF Problem
The OPF problems described in the previous section

are formulated as a centralized optimization problem
for the radial power distribution systems. For a
large scale distribution system with thousands of
nodes and decision variables, solving the NLP OPF
is computationally expensive and difficult to converge
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for very large-scale distribution systems. Since the
power distribution system is operated radially, the
OPF problems defined in (C1)-(C3) are naturally
decomposable into multiple sub-problems defined for
the connected areas. The details of the proposed
problem decomposition technique and the resulting
distributed OPF problem are discussed next.

3.1. Decomposition Method
First, we decompose the whole distribution grid into

N smaller areas. Let AR = {A1, A2, . . . , AN}, be
the set of all decomposed areas. Also, let each area,
Am ∈ AR, be defined as a directed graph Am =
G(Nm, Em). Here, each area Am has a maximum
number of nodes/variables, so that the respective OPF
sub-problems for that area can easily be solved using
off-the-shelf NLP solvers. The coupling/complicating
variables among these smaller sub-problems, associated
with respective areas, are defined based on the network
topology. Since the grid was radial to begin with, the
decomposed areas or the sub-trees of the networks are
also connected radially with each other. This specific
structure of the network helps to identify the unique
parent area and the child areas for any area Am, which
in turn associates the complicating/shared variables
that are exchanged among sub-problems to solve the
overall master problem. For this decomposition method,
the complicating variables are the shared bus voltages
and power flows in the shared bus. Computationally,
sub-problems associated with each area are solved in
parallel by assuming a fixed voltage at the shared
bus with the unique parent area, and constant loads
at the shared buses with child areas. After solving
the sub-problems, the respective complicating variables,
i.e., the total power requirements in that area are shared
with the sub-problem for the parent area and the shared
bus voltages are shared with sub-problems associated
with child areas; then the sub-problems are solved
again with updated values. The step of exchanging
the complicating variables is termed macro-iteration.
This process is repeated until all the complicating/shared
variables have converged.

The proposed decomposition approach is elaborated
using a two-area system as an example. Let us assume
the network is decomposed into 2 areas – area A1 and
A2. Here area A1 is the parent area of area A2; each
with their purely own local variables defined by x1 and
x2. Let Y = [y1, y2]

T be the complicating variable that
couples the sub-problems for the two areas. Here, y1 and
y2 are the bus voltage magnitude (v) and the complex
power flow through the bus (S = P + jQ) shared
between A1 and A2, respectively; i.e., [y1, y2]

T =
[v, S]T . If the set of all local variables for A1 and
A2 is denoted by X1 and X2, respectively, then X1 =

{x1, y1} & X2 = {x2, y2}. Let X = X1 ∪X2 be the
set of all problem variables and S is the set of constraints
for the overall centralized optimization problem. If F is
a decomposable cost function, then the problem can be
decomposed and written as (7), where, S1 and S2 are
the set of constraints on local variables for decomposed
area A1 and A2, respectively. Also, f1, f2 are the cost
functions for the respective local sub-problems.

min
X∈S

F (X) = min
X1∈S1,X2∈S2

f1(X1, y2) + f2(X2, y1) (7)

The original problem defined in (7) can be readily
decomposable into the following two sub-problems (see
(8)), associated for respective decomposed areas; i.e.,
equation (8a) and (8b) for area A1 and A2, respectively.

For A1 : min
X1∈S1

f1(X1, y2) (8a)

For A2 : min
X2∈S2

f2(X2, y1) (8b)

Remark 1: Please note that the decomposition of the
OPFs also works for any maximization problem, such
as (C2).
Remark 2: The decomposition method described here
can easily be extended for a network, where a multiple
area decomposition is required to make the individual
sub-problems small enough to be solved efficiently.
Similar to the 2-area distributed OPF, the optimization
problem can be decomposed into several smaller
sub-problems, each representing one decomposed area.
Remark 3: The decomposition approach can be further
extended to nodal decompositions, where each node
represents one area.

3.2. Consensus for the Decomposed
Sub-problems

After decomposing the optimization problem into
several smaller sub-problems, the proposed distributed
algorithm solves the sub-problems individually to
obtain respective local and complicating variables.
Here, at each boundary among decomposed areas, the
complicating variable y2 and y1 are kept fixed to solve
sub-problem (8a) and sub-problem (8b), respectively.
Then the solved y1 by sub-problem (8a) and solved
y2 by sub-problem (8b) are exchanged again between
areas. After each macro-iteration, the update step
of complicated variable, Y, is performed using Fixed
Point Iteration (FPI) method, described by (9) for nth

macro-iteration, where α ∈ [0, ∞).

Y(n) :=
Y(n) + αY(n−1)

1 + α
(9)

While α = 0 signifies directly using the respective
computed shared variable’s value to approximate
respective parent or children areas, α > 0 represents a
weighted approximation that helps to reduce oscillations
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of the complicated variables, Y, at the shared
boundaries. Here, instead of a constant value, alpha
can be made adaptive for better convergence in case
of oscillation. The macro-iterations continue until the
change in all complicating variables for all decomposed
boundaries are within tolerance ϵtol, see (10).∣∣∣Y(n) − Y(n−1)

∣∣∣ ≤ ϵtol (10)

4. Distributed OPF for Scalability

We detail the proposed distributed approach to solve
large-scale OPF problems for distribution networks
using the aforementioned decomposition technique.
First, we discuss the formulation of the sub-problems,
and then we describe the proposed algorithm.

4.1. Distributed Sub-Problems
For a system decomposed into multiple areas, the

sub-problems are defined for each Am ∈ AR. While
decomposing the network, it is ensured that the number
of variables in each decomposed area does not exceed a
certain number so that the local problems can be solved
fast. Here, the power flow model is defined in (11b),
and are used by the corresponding sub-problem for area
Am, defined ∀j ∈ Nm and ∀{ij} ∈ Em. Let Area Am

shares bus ’o’ with its parent area, and Ch be the set
of buses shared with its child areas. The sub-problems
for (1) loss minimization, (2) DER maximization, and
(3) ∆V minimization are detailed next. For these OPF
objectives, we use the same OPF formulation as the
central problem, but only define it for the respective
area, Am. Also, at (n)th iteration, the complicating
variables are updated using (9) and approximates the
parent area as a constant voltage source at bus ’o’
(eq. (11c)) and child areas as constant power loads
at the shared buses k ∈ Ch (eq. (11d)-(11e)). The
sub-problem for loss minimization is described below.

(D1) min fm =
∑

{ij}∈Em

lijrij (11a)

s.t. equation (1) (11b)

vo = v′o; (11c)

pLk = P ′
kl ; ∀k ∈ Ch, {kl} ∈ EmCh (11d)

qLk = Q′
kl ; ∀k ∈ Ch, {kl} ∈ EmCh (11e)

−
√

S2
DRj − p2Dj ≤ qDj ≤

√
S2
DRj − p2Dj (11f)

V 2 ≤ vj ≤ V
2

;∀j ∈ Nm (11g)

lij ≤
(
Iratedij

)2

; ∀{ij} ∈ Em (11h)

Here, EmCh
represents the set of lines in the child areas

of Area Am. In this example, the bus voltage, v′o, is

Algorithm 1: Distributed Algorithm for Scaled OPFs
1 Decompose the network into N areas, so that each

area has a maximum specified node numbers
2 Initialize complicating variables, Y0 ∈ S; error,
e = 1; and macro-iteration count n = 0

3 If |e|≤ ϵtol, stop iteration count, and go to step 10
4 Else, increase iteration count n: n← n+ 1
5 Solve Φm in parallel using Algorithm 2, for all

decomposed areas Am, where, Φm depicts the
sub-problem –
Φm : X

(n)
m := argmin/argmax

Xm∈Sm

fm
(
Xm, y

(n−1)

m
′

)
6 Update all the complicating variables, Y, using (9),

where α can be constant or adaptive

7 Check residual vectorR(n) =
[

Y(n) − Y(n−1)
]

8 e = max |R(n)|
9 Go to step 2

10 Return Global Minimizer:
X∗ = {X(n)

m |m = 1, 2, ..., N}

obtained from the parent area based on its converged
solutions for the previous (n − 1)th micro-iteration.
Similarly, ∀k ∈ Ch, & {kl} ∈ EmCh

, P ′
kl,& Q′

kl is
the solved branch flows obtained from the converged
solutions of (n − 1)th micro-iteration, executed by
child areas of Am. Note that, the symbol (.)′ depicts
that the variable is solved by other neighboring areas.
The sub-problems for DER maximization and ∆V
minimization are also formulated ad defined in (12) and
(13), respectively.

(D2) max fm =
∑

j∈Nm

pDj (12a)

s.t. (11b) - (11e), (3), (11g) - (11h) (12b)

(D3) min fm =

√ ∑
∀j∈Nm

(vj − vref )2 (13a)

s.t. (11b) - (11e), (2), (11g) - (11h) (13b)

4.2. Algorithm
For completeness, now we discuss the full

distributed algorithm that decomposes the OPFs for
large-scale power distribution systems and solves
iteratively to reach the global solution. Here, we use the
decomposition technique that we developed in Section
3, and solve sub-problems for different network level
objectives, i.e., (D1)-(D3) until convergence. We use
tolerance of ϵtol = 0.001 to meet the convergence
criterion. The algorithm is detailed in Algorithm 1. To
better understand the distributed computing of the OPFs,
the sub-routine in step 5 of Algorithm 1 is described in
Algorithm 2.

Page 2675



Algorithm 2: Sub-routine to Solve Sub-Problems
Φm at Step-5 of Algorithm 1

Sub-Problem : For decomposed area
Am ∈ AR

Macro-Iteration step : (n)
Complicated Variables : y(n−1)

m
′ , variables that are

used for coupling
sub-problems

Optimization Variable : Xm

Steps :
1 Approximate the neighboring areas of Am using

complicating variables, shared by the neighbors;
i.e., y(n−1)

m
′ is set to either constant voltage (if it has

parent area), or constant loads (if it has child areas),
or both – depending on the position of the area Am

(See equation (11c)-(11e))
2 Solve distributed sub-problems of minimizing or

maximizing the decomposed cost function fm, e.g.,
(D1), (D3), etc. using off-the-shelf NLP solvers

3 Store the local minimizer in the variable X
(n)
m

5. Result
The proposed approach is evaluated using a large,

balanced synthetic 10,000 node distribution system and
medium-size balanced IEEE-8500 node test system with
2500 nodes. All experiments are simulated in Matlab
2018b on a machine with 8GB memory and Core
i7-8700 CPU @3.19 GHz. The NLP subproblems
for the proposed distributed method are solved using
Matlab’s fmincon using ’sqp’ algorithm. However, given
the NP-hard nature of the centralized OPF problems,
to bench-mark against centralized OPF, we also use a
commercial NLP solver Artelys Knitro with ’active-set’
algorithm that scales relatively well with the problem
size [24]. Note that, the solution time in this paper
includes (i) writing the problem (creating the matrices
for OPF solvers), (ii) calling the solvers, and (iii) getting
the solution from the solver (solver time).
5.1. Simulated System

The simulations are conducted using the following
two test systems: (i) Synthetic 10,000 node distribution
system with different DER penetration levels, and (ii)
Balanced IEEE-8500 node test system with 100% DER
penetration for nodal decomposition. The % penetration
here implies the percentage of DER nodes relative to the
total load nodes in the system. The synthetic 10,000
node system is shown in Fig. 1. This system is
comprised of 1 main feeder, and 20 laterals, where
each lateral supplies 20 neighborhoods. It is assumed
that each neighborhood is comprised of 20 households.
Thus, each lateral supplies a total of 400 houses. Also,
in between 2 laterals, we assume 4 nodes in the main
feeder that represent the distributed loads. Every load
in this distribution network is set to consume a total of

F1 F2

F3
F4

F20

F19

Grid

Area

(Zoomed View)

20 nodes

Figure 1: Synthetic 10,000 Node System

SL = 0.1 + 0.01j pu, and the line impedance of all
the branches is assumed to be z = 0.07 + 0.01j pu.
The base voltage for the network is 12.47 kV (VLL)
and the base kVA is 1000. For loss minimization and
∆V minimization objectives, each DER in the system
can generate 7 kW of real power, with a nominal rating
of 8.4 kVA. For the DER maximization problem, the
rating of the DERs is increased to at-most 10 times to
stress the system. We decompose the distribution system
in multiple areas where each area is composed of 100
nodes (see Fig. 2).

For the IEEE 8500 node test system, the DER
sizes are chosen randomly with a rating ranging from
1.3 to 5.8 kVA. We use this medium-scale distribution
system to further decompose the problem into the nodal
level, i.e., each node is considered as an area. The
simulated system is a balanced, single-phase equivalent
distribution system of the original 8500-node test system
with 2522 nodes. The base values are assumed to be
the same with 12.47 kV and 1000 kVA. The proposed
decomposition technique is then simulated for various
DER penetration with different network objectives.

5.2. Loss Minimization Objective: (D1)
We solve the loss minimization problem (D1) for a

10,000 node test system with varying DER penetration
levels. The reactive power from DERs is optimized
to reduce the system power losses. All the loads are
assumed at a nominal value (SL). The kVA rating of
the DERs is assumed to be 120% of their nominal active
power generation rating. We have simulated (i) 100%,
(ii) 50%, and (iii) 10% DER penetration levels for loss
minimization objective. The results are detailed next.
We have used α = 0 for FPI update in (9).

The converged solution of the decomposed central
OPF and the convergence properties of the proposed
method for the loss minimization problem are shown
in Fig. 2. We can see that the converged voltage does
not violate any voltage constraints, i.e., the voltage is
not outside of the specified limit of 0.95-1.05 pu bound
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(c) Convergence
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(d) Simulation time
Figure 2: Numerical Results for Loss Minimization Objective for Synthetic 10,000 Node System

50% Penetration

20% Penetration
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(a) Nodal voltages

50% Penetration

20% Penetration

10% Penetration

(b) Objective value

50% Penetration

20% Penetration

10% Penetration

(c) Convergence

50% Penetration

20% Penetration
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Figure 3: Numerical Results for DER Maximization Objective for Synthetic 10,000 Node System
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Figure 4: Numerical Results for ∆V Minimization

Objective for Synthetic 10,000 Node System

(Fig. 2a). Fig. 2b shows the change in the objective
function value with macro-iterations. 100% penetration
can reduce the line losses to 4.5 kW. The convergence
properties for this case are shown in Fig. 2c. For
all the cases, it takes around 11 macro-iterations to
satisfy the convergence criterion. The time taken at
each iteration for this case is also plotted in Fig. 2d.
This time represents the highest time it takes to solve
any sub-problem at each iteration. It only takes ∼ 30
seconds to solve the OPF by decomposing the problems
into several sub-problems for all the DER penetration
levels (see Table 1).

Table 1: Results Summary

Problem DER% Objective Value Time (s)

Loss Min
100 4.5 kW 34
50 21.58 kW 35
10 44.05 kW 30

DER Max
50 1.03 MW (cap. 1.05 MW) 120
20 0.55 MW (cap. 0.56 MW) 240
10 0.66 MW (cap. 0.70 MW) 300

∆V Min 100 2.65 pu 30
50 6.68 pu 15

5.3. DER Maximization Objective: (D2)
In this section, we present the result for DER

maximization OPF problem for the power distribution
networks. Here, we solve the decomposed problem
(D2) for a 10,000 node test system with different DER
penetration levels. The active power generation of the
DERs is maximized while maintaining the operation
limits of the network, such as voltage limits. For this
optimization problem, we have used various load and
generation multipliers to stress the system. We simulate
3 different cases – (i) 50% DER penetrations where the
active power generation capacities of DERs are 21 kW
and loads are set to their nominal values, (ii) 20% DER
penetrations with 28 kW of active power generation
capacities for each DERs and load multiplier is set to
0.5, and (iii) 10% DER penetration levels with max of
70 kW generation capabilities and load multiplier set to
0.5. The result of this OPF is discussed next. We have
used α = 2.33 for FPI update in (9).

Fig. 3 shows the results for the DER maximization
OPF. Similar to the previous objective, we can see
that the nodal voltages do not violate the pre-specified
voltage limits (Fig. 3a). The voltages are near their
upper bound which implies that the systems were highly
stressed for different simulated cases. With increased
DER penetrations, more nodes have voltages that are
closer to the upper limits of 1.05 pu. Fig. 3b shows
the normalized objective value of the OPF problem w.r.t.
macro-iterations. Here, the objective value is scaled
w.r.t. the converged/final cost as the orders of the final
costs are different. The actual values of the objective
function upon solving OPFs using distributed approach
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Figure 5: Solution Time for Central OPF (C-OPF) Problems for Different Sizes of Networks

is shown in Table 1. Note that, even though the number
of DERs in 10% penetration case is lower than 20%
case, individual DERs have higher capacity in 10%
penetration case than later, and thus total generation is
higher in 10% penetration case than 20% penetration
case. It takes 7, 10 and 14 iterations to converge for
50, 20 and 10% DER penetrations (Fig. 3b, 3c ). The
simulation time per macro-iteration is shown in Fig. 3d.
The solution time to for the OPF using the proposed
decomposition approach is reported in Table 1.

5.4. ∆V Minimization Objective: (D3)
Next we detail the results for the ∆V minimization

problem. Here, we solve the decomposed problem
(D3) for a 10,000 node test system with different DER
penetration levels, but with nominal values of DER
generation and loads. The reactive power generation of
the DERs are optimized for the given problem objective
with a reference value of Vref = 1.00 pu. For this
optimization problem, we have simulated two different
cases: (i) 100% DER penetrations and (ii) 50% DER
penetrations. We have set α = 0 for the FPI updates.

The results of the OPF are shown in Fig. 4, where
Fig. 4a shows the nodal voltages after optimization.
The higher penetrations of DERs result in a better
network-level reduction in voltage deviation. Also, for
both cases, it only takes 11 macro-iterations to reach
convergence (Fig. 4b). The objective value and the
solution time are shown in Table 1. As can be seen, the
OPF problem converges within a reasonable time.

5.5. Failure of Central Solution
In this section, we solve the centralized version

of the same OPF problem for increasing system size
and demonstrate the scalability challenges. We also
highlight the system size for which central OPF is
unable to converge. It can be observed from Fig. 5
that with increasing DER penetration, it takes a higher
time to solve the NLP OPFs. Also, for the same
system size (node number), an OPF with higher DER
penetration fails to converge sooner. For example,
in the case of loss minimization, the NLP solver can

solve the OPF problems for 800 nodes for a 50% DER
penetration case (Fig. 5a). However, it can only solve
for 600 nodes with 100% DER penetration. Similarly,
for the DER maximization objective, with 20% DER
penetration, the central problem can be solved for no
more than 1100 nodes. On the contrary, for 50% DER
penetration, central OPF fails to solve for more than
500 nodes. None of the OPFs can be solved using
a centralized optimization technique for a distribution
feeder with more than 2000 nodes. Kindly note that
all the centralized optimization problems have been
solved using KNITRO with the active-set algorithm that
has shown better optimization performances than other
solvers, such as, fmincon with different algorithms - sqp,
active-set, and interior-point-method. Using different
commercial solvers may lead to different convergence
performances, however, all of them will still be
challenged by the scale of the nonlinear optimization
problem for modern power distribution systems with
high penetrations of renewable energy resources.

Further, we have compared the objective values from
converged centralized cases with proposed distributed
solutions. For all the cases, the maximum difference of
objective values is not more than 0.01 pu. For better
demonstration, in this paper, we have shown objective
function values for 500 and 1000 node systems with
50% and 10% PV penetration cases, respectively, in
Table 2. From the table, it is clear that the D-OPF
results match the centralized computation, validating the
proposed method as well.

Table 2: Comparison with converged C-OPF

Problem Node / DER % C-OPF D-OPF

Loss Min 500 / 50% 0.188 kW 0.184 kW
1000 / 10% 0.840 kW 0.845 kW

DER Max 500 / 50% 50 kW 50.01 kW
1000 / 10% 18.5 kW 18.2 kW

∆V Min 500 / 50% 0.218 pu 0.210 pu
1000 / 10% 0.614 pu 0.619 pu
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Figure 6: Result for Nodal Decomposition for
IEEE-8500 Node Test System

5.6. Nodal Decomposition
To show the efficacy of the proposed decomposition

and distributed computing approach, we further
decompose the problem at the individual node level
and solve the resulting OPF for the loss minimization
objective for a balanced IEEE-8500 bus test system.
While the commercial NLP solver, KNITRO, failed
to optimize C-OPF, the nodal decomposition is able
to solve the system with significant speed up. This
method decomposes the OPF into 2522 sub-problems;
each sub-problem needs to solve a nodal OPF with
5 variables. Overall network-level convergence took
275 macro-iterations, and each sub-problem took 480
microseconds (avg) to solve. Thus, the overall solution
time for network-level optimization is relatively short,
∼ 5 seconds. The convergence is shown in Fig. 6.

5.7. Three-Phase Unbalanced Network
Now we extend our proposed decomposition-based

method for 3-phase unbalanced distribution systems.
The IEEE-123 bus system has been used (decomposed
into 4 sections) as a test system with randomly placed
50 DERs in the network with (i) 40 kW active power
generation (Rated 50 kVar) for Loss minimization &
∆V minimization OPF, and (ii) up to 100 kW capacity
For DER maximization OPF. As a power flow model,
we have used the equations developed in [3]. The result
is shown in Table 3. It only takes 6-9 macro-iteration
for the proposed method and the results match with
the centralized computation. For example, the line loss
is 25.1 kW using the D-OPF method, and the C-OPF
solution is 23.2 kW. Implementing the method for a
larger unbalanced system with binary variables is a part
of our future work.

Table 3: Result for Unbalanced Network

Problem C-OPF D-OPF Iteration
Loss Min 23.2 kW 25.1 kW 6
DER Max 4.56 MW 4.58 MW 6
∆V Min 7.30 pu 7.63 pu 9

6. Conclusion
This paper presents a scalable distributed computing

algorithm to solve non-linear OPF problems for power
distribution systems that scale well for all general
classes of distributed OPF problems. The proposed
distributed approach converges within a short time for
large feeders even when the centralized OPF takes a
significant amount of time or fails to converge. We have
demonstrated the successful application of the proposed
approach for a synthetic 10,000-node distribution test
system with a total of ∼ 50, 000 variables on a regular
CPU. All OPF problems are shown to converge within
a reasonable time. To the best of our knowledge,
this is the first work to demonstrate the application
of distributed algorithms to solve the OPF problem
for large distribution feeders without requiring HPC
machines. It should be noted that the proposed
decomposition is amenable to implementation on
many-core machines. Moreover, the fast convergence
and fewer communication requirements among
decomposed problems demonstrated using several case
studies further make the algorithm appealing for a
distributed implementation. Although the convergence
of the proposed method is not guaranteed theoretically,
it is observed in all our simulation cases, even for
a 3-phase unbalanced system. The convergence
properties of the proposed algorithms are being
thoroughly examined as part of ongoing research.
Additionally, as part of our ongoing research, we will
adapt the proposed algorithms to meshed systems,
OPFs with binary variables, and large-scale real-world
feeders.
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