
Virginia Commonwealth University Virginia Commonwealth University 

VCU Scholars Compass VCU Scholars Compass 

Theses and Dissertations Graduate School 

2023 

Blockchain security and applications Blockchain security and applications 

Phuc D. Thai 

Follow this and additional works at: https://scholarscompass.vcu.edu/etd 

 

© The Author 

Downloaded from Downloaded from 
https://scholarscompass.vcu.edu/etd/7323 

This Dissertation is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It 
has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars 
Compass. For more information, please contact libcompass@vcu.edu. 

http://www.vcu.edu/
http://www.vcu.edu/
https://scholarscompass.vcu.edu/
https://scholarscompass.vcu.edu/etd
https://scholarscompass.vcu.edu/gradschool
https://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F7323&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarscompass.vcu.edu/etd/7323?utm_source=scholarscompass.vcu.edu%2Fetd%2F7323&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu


c©Phuc Thai, September 2023

All Rights Reserved.



BLOCKCHAIN SECURITY AND APPLICATIONS

A submitted in partial fulfillment of the requirements for the degree of Doctor of

Philosophy at Virginia Commonwealth University.

by

PHUC THAI

Bachelor of Science, Vietnam National University, 2017

Directors: Thang Dinh, Hong-Sheng Zhou,

Associate Professors, Department of Computer Science

Virginia Commonwealth University

Richmond, Virginia

May, 2023



Acknowledgements

I would like to express my gratitude to my advisors, Dr. Thang Dinh and

Dr. Hong-Sheng Zhou, for their unparalleled support and guidance. Looking back,

I appreciate every rewarding discussion that could last for the whole day. I have

learned a great deal from their research expertise and from the mistakes that I made

and confronted in those discussions.

Second, I sincerely thank Dr. Tamer Nadeem, Dr. Zhifang Wang, and Dr. Foteini

Baldimtsi for serving on my dissertation committee and for providing valuable time

and feedback.

I would also like to thank all collaborators at other institutions and my colleagues

for their help and support.

Finally, I express my gratitude to my family and friends for their immense sup-

port, motivation, and trust in me throughout my academic journey.

i



TABLE OF CONTENTS

Chapter Page

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Research Scopes, Objectives, and Motivations of the Dissertation . 4

1.1.1 The network layer . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1.1 Reliable dissemination . . . . . . . . . . . . . . . . . . 4

1.1.1.2 Fast synchronization . . . . . . . . . . . . . . . . . . . 7

1.1.2 The consensus layer . . . . . . . . . . . . . . . . . . . . . . . 8

1.1.3 The application layer . . . . . . . . . . . . . . . . . . . . . . 11

1.2 Contributions of the Dissertation . . . . . . . . . . . . . . . . . . . 12

1.2.1 The network layer . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2.1.1 Reliable dissemination . . . . . . . . . . . . . . . . . . 12

1.2.1.2 Fast synchronization . . . . . . . . . . . . . . . . . . . 15

1.2.2 The consensus layer . . . . . . . . . . . . . . . . . . . . . . . 16

1.2.3 The application layer . . . . . . . . . . . . . . . . . . . . . . 22

1.3 Organization of the Dissertation . . . . . . . . . . . . . . . . . . . 23

2 The network layer: reliable dissemination . . . . . . . . . . . . . . . . . . 25

2.1 Consensus Models for Sparse Networks . . . . . . . . . . . . . . . . 25

2.1.1 Sparse network model (SNM) . . . . . . . . . . . . . . . . . . 26

2.1.2 Security Properties . . . . . . . . . . . . . . . . . . . . . . . 30

2.1.3 Consensus in Sparse Network . . . . . . . . . . . . . . . . . . 32

2.2 Protocol Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2.1 Protocol design . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2.1.1 Epoch-based configuration . . . . . . . . . . . . . . . 33

ii



2.2.1.2 Core selection . . . . . . . . . . . . . . . . . . . . . . 35

2.2.1.3 Core-periphery topology construction . . . . . . . . . 36

2.2.2 Security components . . . . . . . . . . . . . . . . . . . . . . 37

2.2.2.1 Verifiable random connections . . . . . . . . . . . . . 38

2.2.2.2 Confidentiality of core nodes . . . . . . . . . . . . . . 39

2.2.3 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.2.4 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.3 Security analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.3.1 Security properties . . . . . . . . . . . . . . . . . . . . . . . . 43

2.3.1.1 Step i-A: Achieving the security properties from

reliable dissemination . . . . . . . . . . . . . . . . . . 46

2.3.1.2 Step i-B: Achieving reliable dissemination from

the security properties . . . . . . . . . . . . . . . . . . 52

2.3.2 Network sparsity . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.3.3 Main theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 68

2.4 Weakly Adaptive security . . . . . . . . . . . . . . . . . . . . . . . 70

2.4.1 M-adaptive security . . . . . . . . . . . . . . . . . . . . . . . 71

2.4.2 S-adaptive security . . . . . . . . . . . . . . . . . . . . . . . 72

2.4.3 S-adaptive 〈φ, γ〉 security . . . . . . . . . . . . . . . . . . . . 79

2.5 Numerical Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

2.5.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

2.5.2 Costs of attacks . . . . . . . . . . . . . . . . . . . . . . . . . 85

2.5.2.1 Sybil attacks . . . . . . . . . . . . . . . . . . . . . . . 85

2.5.2.2 Double-spending attacks . . . . . . . . . . . . . . . . . 85

2.5.3 CoSpaN in different security settings . . . . . . . . . . . . . . 86

2.5.4 Network characteristics . . . . . . . . . . . . . . . . . . . . . 88

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

2.7 Supplemental materials . . . . . . . . . . . . . . . . . . . . . . . . 89

2.7.1 Nakamoto’s protocol ΠNak . . . . . . . . . . . . . . . . . . . 89

2.7.2 Verifiable Random Functions . . . . . . . . . . . . . . . . . . 90

2.7.3 Chernoff bound . . . . . . . . . . . . . . . . . . . . . . . . . 91

3 The network layer: Fast synchronization . . . . . . . . . . . . . . . . . . 93

3.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.2 Theoretical limit of the blockchain network . . . . . . . . . . . . . 95

3.3 Propagation Scheme in Heterogeneous Networks . . . . . . . . . . 98

3.3.1 ProSHeN: A Propagation Scheme in Heterogeneous Networks 98

3.3.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . 99

iii



3.3.1.2 Assignment of Links to Trees . . . . . . . . . . . . . . 101

3.3.1.3 Broadcast Trees Construction . . . . . . . . . . . . . . 102

3.3.1.4 Transmission Schedule . . . . . . . . . . . . . . . . . . 103

3.3.2 ProSHeN+: Distributed Data Distribution scheme . . . . . . 105

3.3.2.1 Topology construction . . . . . . . . . . . . . . . . . . 106

3.3.2.2 Propagation method . . . . . . . . . . . . . . . . . . . 106

3.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

3.4.1 Near-optimal throughput . . . . . . . . . . . . . . . . . . . . 108

3.4.2 O(log n) latency . . . . . . . . . . . . . . . . . . . . . . . . . 115

3.4.3 Sparsity constraint . . . . . . . . . . . . . . . . . . . . . . . . 118

3.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

3.5.1 The setup for experiments . . . . . . . . . . . . . . . . . . . 119

3.5.2 Experiment results . . . . . . . . . . . . . . . . . . . . . . . 121

4 The consensus layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.1 Security Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.1.1 Blockchain protocol executions . . . . . . . . . . . . . . . . . 125

4.1.2 Chain growth, common prefix, and chain quality . . . . . . . 128

4.1.3 Unpredictability . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.2 An Impossibility Result . . . . . . . . . . . . . . . . . . . . . . . . 131

4.2.1 Single-extension proof-of-stake protocols . . . . . . . . . . . . 132

4.2.2 Impossibility result for single-extension proof-of-stake protocols 135

4.2.3 Distinct-context-extension . . . . . . . . . . . . . . . . . . . 138

4.2.4 Achieving the best possible unpredictability via distinct-

context-extension . . . . . . . . . . . . . . . . . . . . . . . . 142

4.2.5 Breaking the common prefix property via distinct-context-

extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

4.3 Greedy Strategies: How to overcome the impossibility . . . . . . . 151

4.3.1 Multi-extension proof-of-stake protocols . . . . . . . . . . . . 151

4.3.2 Greedy strategies . . . . . . . . . . . . . . . . . . . . . . . . 154

4.3.3 The protocol Π• . . . . . . . . . . . . . . . . . . . . . . . . . 157

4.3.4 A new tiebreak rule for our multi-extension protocol . . . . . 159

4.3.5 Addressing the tradeoff on security and performance . . . . . 163

4.4 Security Analysis: Overview . . . . . . . . . . . . . . . . . . . . . 164

4.5 Chain Growth in Multi-Extension: A New Analysis Framework . . 169

4.5.1 Defining a Markov chain . . . . . . . . . . . . . . . . . . . . 170

4.5.2 Chain growth property for a multi-extension protocol . . . . 172

4.6 Chain Growth in Multi-Extension: Security analysis details . . . . 173

iv



4.6.1 A hybrid experiment: Ignoring the adversarial extension . . . 175

4.6.2 Analyzing the chain growth property via a simplified Markov

chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

4.6.2.1 Depth-based subsets in the set of best chains in the

execution . . . . . . . . . . . . . . . . . . . . . . . . . 179

4.6.2.2 The simplified Markov chain for D = 1 . . . . . . . . . 181

4.6.2.3 The simplified Markov chain for a general D . . . . . 182

4.6.3 Analyzing the chain growth via an augmented Markov chain 186

4.6.3.1 Depth-distance-based subsets in the set of best chains

in the execution . . . . . . . . . . . . . . . . . . . . . 188

4.6.3.2 The augmented Markov chain for D = 2 . . . . . . . . 189

4.6.3.3 The augmented Markov chain for a general D . . . . . 194

4.6.4 Achieving chain growth . . . . . . . . . . . . . . . . . . . . . 199

4.7 Common Prefix in Multi-Extension: A New Analysis Framework . 201

4.7.1 Virtual block-sets and virtual chains . . . . . . . . . . . . . . 201

4.7.2 Unique signature scheme . . . . . . . . . . . . . . . . . . . . 204

4.7.3 Common prefix property w.r.t. virtual chains . . . . . . . . . 206

4.7.4 From common prefix w.r.t. virtual chains, to the standard

common prefix property . . . . . . . . . . . . . . . . . . . . . 210

4.8 Chain quality and best possible unpredictability . . . . . . . . . . 211

4.8.1 Chain quality . . . . . . . . . . . . . . . . . . . . . . . . . . 211

4.8.2 Best possible unpredictability . . . . . . . . . . . . . . . . . . 212

4.9 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

4.9.1 Full-fledged blockchain . . . . . . . . . . . . . . . . . . . . . 213

4.9.2 Blockchain in the non-flat model . . . . . . . . . . . . . . . . 214

4.9.3 Defending against adaptive registration . . . . . . . . . . . . 215

4.10 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

4.10.1Proof-of-stake protocols . . . . . . . . . . . . . . . . . . . . . 216

4.10.2Security analysis for Bitcoin-like PoS protocols . . . . . . . . 219

4.11 Supplemental materials . . . . . . . . . . . . . . . . . . . . . . . . 221

4.11.1Predictability-based attacks . . . . . . . . . . . . . . . . . . . 221

4.11.2Existing single-extension proof-of-stake protocols . . . . . . . 222

5 The application layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

5.1 Federated Learning and Secure Client Selection Problem . . . . . . 226

5.1.1 Federated Learning . . . . . . . . . . . . . . . . . . . . . . . 226

5.1.2 Secure client selection (SCS) problem . . . . . . . . . . . . . 227

5.2 Defending against semi-malicious adversaries . . . . . . . . . . . . 229

v



5.2.1 Secure protocol (SeP) for SCS problem . . . . . . . . . . . . 229

5.2.2 Communication-efficient and secure protocol (CoSeP) for

SCS problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

5.3 Security Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

5.3.1 Security of Bitcoin protocol in [46] . . . . . . . . . . . . . . . 236

5.3.2 Security analysis of protocol SeP . . . . . . . . . . . . . . . . 236

5.3.3 Security analysis of protocol CoSeP . . . . . . . . . . . . . . 241

5.3.4 Communication complexity . . . . . . . . . . . . . . . . . . . 245

5.4 Defending against active adversaries . . . . . . . . . . . . . . . . . 247

5.4.1 Protocol CoSeP+ . . . . . . . . . . . . . . . . . . . . . . . . 247

5.4.2 Security analysis . . . . . . . . . . . . . . . . . . . . . . . . . 250

5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

5.5.1 Experimental settings. . . . . . . . . . . . . . . . . . . . . . . 256

5.5.2 Experiments results . . . . . . . . . . . . . . . . . . . . . . . 257

5.6 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

Appendix A Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

vi



LIST OF TABLES

Table Page

1 A comparison between CoSpaN protocol and existing designs for reli-

able dissemination. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Feasible parameter settings of CoSpaN (L, s, d) against different ad-

versary models. CoSpaN, parameterized by the epoch length L, the

core width s, and the connection parameter d can achieve reliable

dissemination with a sparsity of 2
1−η (1 + s

n
)d = O(log n), where n is

the number of nodes and η denotes the fraction of malicious nodes.

Defending against (weakly) adaptive adversaries requires (1) shorter

epoch lengths and (2) larger numbers of core nodes to limit the effect

of targeted corruption toward the core nodes. In an S-adaptive〈φ, γ〉
model, where φ ∈ (0, 1) and γ ∈ (ρ, 1− ρ)), we consider an S-adaptive

adversary when the top φ fraction of honest nodes control a fraction

γ of mining power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3 Summary of the communication complexity of 3 protocols. Here, n is

the number of clients, c is the probability that a client is selected in

each training round, τ = Ω(κ) (where κ is the security parameter) is

the length (in block height) of each training round, b is the size of each

block, and d is the fraction of the dispute clients. . . . . . . . . . . . . . 245

vii



LIST OF FIGURES

Figure Page

1 An example of blockchain. . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 The layered architecture of blockchain. . . . . . . . . . . . . . . . . . . . 3

3 The block propagation time of Bitcoin. . . . . . . . . . . . . . . . . . . . 8

4 CoSpaN protocol ΠCSN. . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Epoch of L blocks consisting of 1) a registration period in which nodes

use a PoW merged-mining to perform core registration and 2) a short

grace period of 2k blocks for k = O(κ). The first half of the grace

period is to guarantee the convergence of nodes’ views on the set of

core registrations. In the second half of the grace period, nodes will

construct a new network topology using verifiable random connections,

computed from the core registrations. . . . . . . . . . . . . . . . . . . . 35

6 Establishing connections. To preserve core anonymity, an extra step

is added to establish core-core connections. . . . . . . . . . . . . . . . . 39

7 The induction proof of the CoSpaN protocol. . . . . . . . . . . . . . . . 43

8 Protocols’ resiliency against Sybil attacks. For each network connec-

tion parameter (d), the shaded areas above the curves show the cor-

responding Sybil factors that the adversary needs to break the pro-

tocols’ security. The higher Sybil factor that a protocol can with-

stand, the stronger security. At the Bitcoin’s connection parameter

d = 8 (the dashed line), the adversary can disrupt Bitcoin-L’s network

without any Sybil nodes (ns = 0), disrupt Bitcoin-R’s network with

ns ≈ 1.5, but can only disrupt CoSpaN’s network for unrealistically

high ns > 100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

viii



9 Double-spending attacks with less than 51%. The required mining

power by an adversary to reverse a 12-confirmation transaction with

a more than 10% probability in each protocol. The adversary is able

to split the networks in Bitcoin-L and Bitcoin-R (but not CoSpaN)

protocols, thus, only needs to exceed the mining power of the largest

connected component. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

10 The required honest mining power to achieve reliable dissemination

for CoSpaN protocol. The area under the curve show when the same

requirement (51%) in PSS is met. . . . . . . . . . . . . . . . . . . . . . . 87

11 The correlation between the mining power and the degree of nodes in

CoSpaN and Bitcoin-random network. The distribution of Bitcoin-L

and Bitcoin-R are the same. . . . . . . . . . . . . . . . . . . . . . . . . . 88

12 Constructing 2 broadcast trees with the capacity w = 2 for the set

V of 7 nodes, the capacity C = (3, 7, 5, 6, 6, 5, 2), the arrival rate λ =

(1, 0, 1, 0, 1, 0, 1). Nodes assign (0, 1, 0, 3, 0, 2, 0) links to the blue tree

and (0, 2, , 2, 0, 2, 0, 0) links to the red tree. . . . . . . . . . . . . . . . . . 100

13 Forwarding data from the source node 1 through the red broadcast

tree. As node 1 already had the data, we do not use the link (3, 1) to

forward data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

14 The block propagation time and the relative time that nodes does not

mine on the longest chain. . . . . . . . . . . . . . . . . . . . . . . . . . . 122

15 The increase under DoS attack of the block propagation time and the

relative time that nodes waste on not mining the longest chain. . . . . . 123

16 The required mining power by an adversary to reverse a transaction

with 6 confirmations with a probability at least 1%. . . . . . . . . . . . . 123

17 The roadmap for the proof of our impossibility result (Theorem 50).

First, we show in Lemma 53 that if a single-extension PoS protocol

achieves the best possible unpredictability, it must achieve distinct-

context-extension property. Secondly, we show in Lemma 59 that if a

single-extension PoS protocol achieves distinct-context-extension prop-

erty and the honest players control less than 73% of stake, the protocol

cannot achieve common prefix property. . . . . . . . . . . . . . . . . . . 137

ix



18 A toy example of distinct-context-extension for two chains. Consider

two chains C1 = B0‖B1‖B2‖B3 and C2 = B0‖B1‖B2‖B3‖B4‖B5. Here,

Context(C1) = hash(B3) and Context(C2) = hash(B5). As B3 6= B5,

we have, Context(C1) 6= Context(C2). In other words, C1 and C2 are

distinct-context-extension. At round r2, the events that the adversary

A can extend the chain C1 to generate a new block B ′4 and the prob-

ability that A can extend the chain C2 to generate a new block B6

are independent. At round r1, the adversary A has not yet received

the chain C2. Therefore, it cannot predict whether it can extend C2 to

generate block B6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

19 A toy example of shared-context-extension for two chains. The def-

inition of function Context here is very different from that in Figure 18.

Consider two chains C1 = B0‖B1‖B2‖B3 and C2 = B0‖B1‖B2‖B3‖B4‖B5.

We stress that, here, Context(C1) = hash(B1) and Context(C2) = hash(B1).

While in Figure 18, Context(C1) = hash(B3) and Context(C2) = hash(B5).

We have, Context(C1) = Context(C2). In other words, C1 and C2 are

shared-context-extension. At round r2, if the adversary A can extend

the chain C1 to generate a new block B ′4, it can also extend the chain

C2 to generate a new block B6. Thus, at round r1, when the adversary

A has received C1 but not yet received C2, the adversary can predict

whether or not it can extend C2 to generate block B6 at round r2. . . . . 140

20 A toy example for illustrating the distance between two chains C =

B0‖B1‖B2‖B3‖B4 and C1 = B0‖B1‖B ′2‖B ′3. Here, distance(C1 → C) =

2, i.e., the distance from C1 to C is 2. Similarly, distance(C → C1) = 3,

i.e., the distance from C to C1 is 3. . . . . . . . . . . . . . . . . . . . . . 155

21 A toy example of 1-distance-greedy strategy. Here, the best chain is

Cbest = B0‖B1‖B2‖B3‖B4. The number in blue on top of each block

denotes the distance from the best chain Cbest (i.e., the branch chain)

to the reference chain that consists of a sequence of blocks from the

genesis block B0 to that block. The bold blocks in the yellow area are

the last blocks of the chains in the set of best chains. . . . . . . . . . . . 156

x



22 Partitioning a set of best chains Cbest into multiple disjoint depth-based

subsets for D = 2. Here, the set of best chains Cbest is partitioned into

3 subsets L0, L1, L2. Let ` be the length of the best chain. The 0-

depth subset L0 consists of 3 chains of length `, i.e., the chains that

have the last blocks are B`,B
′
`,B

′′
` . The 1-depth subset L1 consists of

3 chains of length ` − 1, i.e., the chains that have the last blocks are

B`−1,B
′
`−1B ′′`−1. The 2-depth subset L2 consists of 1 chain of length

`− 2, i.e., the chain that has the last block is B`−2. . . . . . . . . . . . . 161

23 The lower bounds of the amplification ratio using the simplified and

augmented Markov chains resepectively. . . . . . . . . . . . . . . . . . . 174

24 The upper bounds of the fraction on honest players using the simplified

and augmented Markov chains resepectively. . . . . . . . . . . . . . . . . 174

25 Partitioning a set of best chains Cbest into multiple disjoint depth-

based subsets for D = 2. Note that, the set of best chains Cbest here

is identical to the one in Figure 22. The set of best chains Cbest is

partitioned into 3 subsets L0, L1, L2. Let ` be the length of the best

chain. Here, the probability that honest players generate a new best

chain of length ` + 1 is w(|L0|). The probability that honest players

generate a new chain in L0 is w(|L1|). The probability that honest

players generate a new chain in L1 is w(|L2|). . . . . . . . . . . . . . . . 180

26 The complete state machine for the simplified Markov chain for D = 1. 181

27 The transitions from state s = 〈n0, · · · , nD−1〉 in the state machine of

a simplified Markov chain for a general D . . . . . . . . . . . . . . . . . 184

xi



28 The depth-distance-based subsets of the set of best chains Cbest for

D = 2. Recall that, in Figure 25, the set of best chains Cbest is par-

titioned into 3 disjoint depth-based subsets L0, L1, · · · , L2. Let Cextend

be the first chain in L0 that is extended. In this figure, Cextend =

· · · ‖B`−1‖B`−1‖B`. (In some future round, a new best chain is gen-

erated by adding a block B`+1 to Cextend.) Consider a i-depth subset

Li, where i ∈ [0..D ]. We further define multiple subsets of chains

based on the distance from Cextend to those chains in Li. More con-

cretely, for i ∈ [0..D ], j ∈ [i..D ], the “i-depth j-distance” subset Li,j
consists of all the chains in the i-depth subset Li such that the dis-

tance from the chain Cextend to those chains does not exceed j, i.e.,

Li,j = {C ∈ Li : distance(Cextend → C) ≤ j}. . . . . . . . . . . . . . . . . . 187

29 The new set of best chains C′best when a new block is added on Cextend.

Here, the set of best chains C′best consists of the chains in which the

last blocks of those chains are B`−1,B`,B
′
`,B`+1. The chains in which

the last block of those chains are B`−2,B
′
`−1,B

′′
`−1,B

′′
` are belong to

Cbest but not C′best. For i ∈ [0..D ], j ∈ [i..D ], let L′i,j be the “i-depth

j-distance” subset of the set of best chains C′best, i.e., L′i = {C ∈
C′best : len(C) = ` − i}. The subset L′0 only consists of the best chain

C ′best = · · · ‖B`−2‖B`−1‖B`‖B`+1. For i ∈ [1..D − 1], the i-depth subset

of C′best can be obtained by the depth-distance-based subsets of Cbest in

Figure 28. Indeed, L′i,j = Li−1,j−1, where Li+1,D−1 is the “(i−1)-depth

(D − 1)-distance” subset of Cbest. . . . . . . . . . . . . . . . . . . . . . . 188

30 The transitions from a state 〈(n0,1, n0,2), (n1,2)〉 in the state machine

for D = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

31 The transition from state s = 〈(n0,1, · · · , n0,D), · · · , (nD−1,D)〉 in the

state machine for a general D . . . . . . . . . . . . . . . . . . . . . . . . . 196

32 A toy example for the virtual block-sets and virtual chains with D =

2. Each block is represented by a solid rectangle and each virtual

block-set is represented by a blue area that consists of multiple blocks.

Here V0 = {B0}, V1 = {B1,B
′
1,B

′′
1 }, V2 = {B2,B

′
2,B

′′
2 ,B

′′′
2 }, V3 =

{B3,B
′′
3 }, V ′3 = {B ′3,B ′′′3 }, V4 = {B4,B

′
4,B

′′
4 }, V5 = {B5,B

′
5}, In this

case, the best chain is Cbest = B0‖B1‖B2‖B3‖B4‖B5. Here, for all

i ∈ [0..5], we have Bi ∈ Vi. Thus, the best virtual chain is Vbest =

V0‖V1‖V2‖V3‖V4‖V5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

xii



33 A toy example for illustrating an extension of honest players. Honest

players extend the set of best chains from Figure 32, using 2-distance-

greedy strategy. The blue blocks denote the new blocks. Here, the

players generate either a new block to create a new longest chain (that

is longer than the current longest chain) or a new block that is added

to an existing virtual block-set. . . . . . . . . . . . . . . . . . . . . . . . 208

34 From common prefix w.r.t. virtual chains, to the standard common

prefix property. If common prefix property does not hold, i.e., C[¬(κ+

D)] � C ′, then common prefix w.r.t. virtual chain property does not

hold, i.e., V [¬κ] � V ′. Here, C belongs to V and C ′ belongs to V ′. . . . . 210

35 The steps of efficient client selection protocols in each training round.

The protocol CoSeP in a semi-malicious setting consists of two steps:

(1) Randomness extraction and (2) VRF-based random election. In

the active setting in Section 5.4, CoSeP will be extended into a new

protocol CoSeP+ with 3 additional steps: (3) Initial selection commit-

ment, (4) Dispute, and (5) Dispute selection commitment. . . . . . . . . 234

36 Security error of the protocols on pool consistency, pool quality, and

anti-targeting. The result of pool consistency, anti-targeting, and pool

quality (with 500 selected client) are identical. . . . . . . . . . . . . . . . 257

37 Communication overhead of the server and each client. The com-

munication overhead of the server in the protocols that use public

blockchains is identical. Regardless of whether public or private blockchain

is used, the communication overhead of the client in CoSeP and CoSeP+

are identical. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

38 The size of transactions and computation costs on the blockchain for

the pool selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

39 The size of transactions and computation costs on the blockchain for

dispute. There is no dispute clients in protocol SeP and CoSeP. We

plot their result for comparison. . . . . . . . . . . . . . . . . . . . . . . . 261

xiii



Abstract

BLOCKCHAIN SECURITY AND APPLICATIONS

By Phuc Thai

A submitted in partial fulfillment of the requirements for the degree of Doctor of

Philosophy at Virginia Commonwealth University.

Virginia Commonwealth University, 2023.

Director: Thang Dinh, Hong-Sheng Zhou,

Associate Professors, Department of Computer Science

Cryptocurrencies, such as Bitcoin and Ethereum, have proven to be highly

successful. In a cryptocurrency system, transactions and ownership data are stored

digitally in a ledger that uses blockchain technology. This technology has the poten-

tial to revolutionize the future of financial transactions and decentralized applications.

Blockchains have a layered architecture that enables their unique method of authen-

ticating transactions. In this research, we examine three layers, each with its own

distinct functionality: the network layer, consensus layer, and application layer. The

network layer is responsible for exchanging data via a peer-to-peer (P2P) network.

In this work, we present a practical yet secure network design. We also study the

security and performance of the network and how it affects the overall security and

performance of blockchain systems. The consensus layer is in charge of generating

and ordering the blocks, as well as guaranteeing that everyone agrees. We study

the existing Proof-of-stake (PoS) protocols, which follow a single-extension design

framework. We present an impossibility result showing that those single-extension

protocols cannot achieve standard security properties (e.g., common prefix) and the

xiv



best possible unpredictability if the honest players control less than 73% stake. To

overcome this, we propose a new multi-extension design framework. The application

layer consists of programs (e.g., smart contracts) that users can use to build decen-

tralized applications. We construct a protocol on the application layer to enhance

the security of federated learning.

xv



CHAPTER 1

INTRODUCTION

The arrival of Bitcoin [82] marked the beginning of the blockchain era, promising a

new decentralized economy without the risk of a single point of failure, monopoly, or

censorship. In a blockchain system, transactions are recorded and stored in blocks,

which are linked together in a chain-like structure (see Figure 1 for an example),

hence the name “blockchain”. Each block contains a set of transactions and a pointer

(hash value) to the previous block. Once a block is added to the chain, it cannot

be altered or deleted without invalidating the entire chain, making the system highly

secure.

Hash of 

Alice pays Bob $100

Bob pays Charlie $50

Charlie pays Dave $75

Hash of 

Charlie pays Alice $200

Alice pays Dave $150

Dave pays Bob $100

...
Hash of 

Alice pays Charlie $50

Bob pays Dave $100

Charlie pays Dave $150

Figure 1: An example of blockchain.

The blockchain protocol provides a secure and public ledger that enables users

to view and submit transactions. This public ledger is immutable and tamper-proof,

meaning that once a transaction is recorded, it cannot be altered. To achieve this,

the public ledger must satisfy two essential properties [88]: persistency and liveness.

In more details, persistency ensures that data stored on the blockchain remains

unchangeable, thereby guaranteeing the integrity and security of transactions. This

is achieved through cryptographic algorithms that verify and validate the authen-

ticity and accuracy of each transaction before it is added to the public ledger. The

1



blockchain’s distributed architecture also ensures that each participant in the network

has a copy of the public ledger, which acts as a safeguard against any attempts to

tamper with the data.

Liveness guarantees that the blockchain can process new transactions from users.

This is particularly important for applications that require constant updates and

real-time data sharing. By guaranteeing liveness, blockchain networks can provide a

reliable and secure infrastructure for a wide range of use cases, from financial trans-

actions to supply chain management and beyond. In addition, liveness can contribute

to the overall stability and resilience of the network, as it enables nodes to quickly

recover from failures and continue processing transactions without interruption.

Overall, the public ledger provides a secure, decentralized and transparent plat-

form for users to conduct transactions, while maintaining the integrity and security

of the data stored on it.

Blockchain technology is best known as the underlying technology behind cryp-

tocurrencies like Bitcoin, but it has many other potential applications. For example,

it can enhance the security and trustworthiness of multiparty computation [109] by

providing a decentralized and immutable ledger for recording the computation results

and ensuring that the computation is performed correctly. Other notable applications

of blockchain include decentralized finance [105, 61, 101], voting systems [58, 60], and

digital identity verification [102, 98].

Layered architecture. Blockchain technology is commonly depicted as a layered

architecture (see Figure 2), with each layer building on the layer beneath it. In this

dissertation, we will consider the three-layer architecture as follows.

• The network layer defines the rules for how nodes communicate with each other

and how transactions are propagated through the network. It is responsible for

2



View, submit transactions

Propagate transactions, blocks

Consensus layer
Generate blocks, verify

transactions

Network layer
Exchange messages

Application layer
Build smart contracts,

communicate with end users

Figure 2: The layered architecture of blockchain.

exchanging messages via a peer-to-peer (P2P) network. For instance, in the

Bitcoin network, each node forms an overlay network for propagating messages

such as transactions and blocks. To do this, each node establishes 8 outbound

connections and accepts a maximum of 125 inbound connections [37, 84]. Once

the network is formed, nodes can exchange messages with their neighbors.

• The consensus layer is where the rules for validating transactions and creat-

ing new blocks are defined. It is in charge of generating the blocks, ordering

them, and guaranteeing that everyone agrees. For example, in Bitcoin [82],

nodes generate new blocks using a proof-of-work (PoW) mechanism. Specifi-

cally, the node that finds a valid solution (a random nonce) to the hash-based

PoW puzzle becomes the block producer for generating the next block. The

newly generated block is then sent to the network layer to be propagated to

other nodes. Although Bitcoin is one of the most successful cryptocurrencies,

its PoW mechanism results in a significant waste of computing resources and

3



energy. Proof-of-stake (PoS) protocols have been proposed to eliminate the

unnecessary waste of energy and computing power in PoW.

• The application layer consists of programs (e.g., smart contracts) that can be

used by the users to build decentralized applications. The application layer

communicates with the underlying layers via application programming inter-

faces, which allow it to interact with the blockchain network and access data

stored on blockchain.

The network and consensus layers offer a blockchain infrastructure that supports

building applications on top of it.

1.1 Research Scopes, Objectives, and Motivations of the Dissertation

1.1.1 The network layer

In the network layer is responsible for exchanging messages (e.g., transactions,

blocks) that will be used in consensus layer. To ensure security in the consensus layer,

the network layer must guarantee that newly generated blocks will be received by all

nodes quickly. We consider the two following properties in the network layer.

• Reliable dissemination. The ability that any valid message (broadcasted by an

honest node) will be received by all other nodes.

• Fast synchronization. The ability of nodes to quickly exchange messages.

The above properties are usually assumed in the existing security analysis [47, 88] for

consensus layer.

1.1.1.1 Reliable dissemination

Reliable dissemination guarantees that if any valid message (e.g., blocks, trans-

4



actions) is broadcasted by an honest node, it will be received by all other nodes within

some bounded time. The existing analysis of Bitcoin security [47, 88] assumes the

availability of a network functionality that provides reliable dissemination. While

this assumption can be achieved in a complete network, it may not hold in real-world

P2P networks. These networks are typically sparse, i.e., each node have only a small

number of connections. For instance, each node in the Bitcoin network establishes 8

outbound connections and accepts a maximum of 125 inbound connections [37, 84].

Furthermore, nodes maintain the same set of connections over a long period. For ex-

ample, observations in [14] indicate that 75% of Bitcoin nodes maintain the same set

of connections even after 10 hours. To break the reliable dissemination assumption,

several attacks have been shown in [56, 103, 78, 50, 86].

Eclipse attack on blockchain’s P2P networks. The adversary aims to eclipse a

node or a group of nodes by monopolizing all of their inbound and outbound connec-

tions, effectively isolating the target nodes from the rest of the network. To monopolize

outbound connections, the adversary can exploit the network protocol to lure honest

nodes into establishing more outbound connections toward the adversary-controlled

nodes [56]. Furthermore, in the permissionless setting, the adversary can spawn a

large number of Sybil nodes, significantly increasing the chances for honest nodes to

connect to adversary-controlled nodes. The adversary can monopolize inbound con-

nections in Bitcoin network through connection starvation attacks [39, 56]. In this

attack, the adversary employs a large number of (sybil) nodes to constantly request

to establish connections with the target nodes, filling up all inbound connections of

those nodes. Thus, the other honest nodes can hardly connect to the target nodes.

An impossibility against an adaptive adversary. In sparse networks, reliable dissemi-

nation is unachievable against an adaptive adversary that can instantly corrupt honest

nodes and known the network topology. Specifically, consider a network with n nodes

5



and an adversary who can dynamically corrupt any subset of f nodes. In theory, such

an adversary can eclipse any node with fewer than f + 1 connections by corrupting

all of its neighbors [42, 100, 67].

Rigorous designs for reliable dissemination. There has been a growing interest

in rigorous designs for reliable dissemination, as shown by recent works [79, 74, 30, 73].

These designs are secure against a (weakly) adaptive adversary (refer to as a mildly

adaptive or M-adaptive adversary) that needs to wait for some time to corrupt honest

nodes.

In [74, 73], nodes randomly establish connections to other nodes based on their

resources to construct expander graphs for propagating messages. This prevents the

adversary from monopolizing outbound connections. However, these designs lack a

mechanism for verifying inbound connections, leaving them vulnerable to DoS attacks

by adversaries who can flood honest nodes with inbound connections. To defend

against such attacks, nodes can limit the number of inbound connections (similar

to the approach used in the Bitcoin network). However, this solution can make the

designs vulnerable to connection starvation attacks. Moreover, nodes construct a

distinct random graph for each message they send. As a result, over a long period,

each node connects to most of the nodes in the network. This contradicts the real-

world networks where nodes only have a small number of connections over a long

period.

The Generals’ Scuttlebutt protocol [30] proposes a new design for reliable dis-

semination in proof-of-stake settings. In this design, nodes use verifiable random

functions to randomly establish connections with other nodes based on their stake.

This allows nodes to verify whether other nodes have followed the protocol to es-

tablish connections, preventing the adversary from monopolizing both outbound and

inbound connections.

6



Challenges in PoW settings. The existing designs [74, 30, 73] assume that the

amount of resource each node controls is known by everyone. This assumption does

not hold in PoW settings since there is no readily available proof of mining power.

Furthermore, binding resources and physical addresses of nodes is unnecessary and

can introduce new vectors of attack. An adversary could obtain the addresses of

nodes with high connections by leveraging the distribution of resources. These nodes

typically control more resources and are critical for network connectivity. The adver-

sary could then perform DoS attacks in an attempt to bring down a small number of

these highly connected nodes and disrupt the network. This dissertation proposes a

new network protocol to achieve reliable dissemination in PoW settings.

1.1.1.2 Fast synchronization

Fast synchronization refers to the ability of nodes to quickly exchange messages.

This offers better security for achieving consensus [88]. Specifically, after a node

generates a new block, it must be propagated to the other nodes in the network before

they can begin mining on it. This process of block propagation can take some time

and cause asynchronization between nodes. As a result, nodes may end up mining on

different blocks, which can lead to a waste of mining power. After removing the waste

of mining power, we refer to the remaining mining power as “effective mining power”.

With faster synchronization, nodes can reduce the waste of mining power and increase

effective mining power. As shown in [88], if the adversary has more mining power

than the effective mining power, it can break the security of the system. Therefore,

nodes need to synchronize blocks faster to require the adversary to have more mining

power to attack the system.

Heterogeneous bandwidth distribution. One reason for asynchronization in

a blockchain network is the highly heterogeneous distribution of bandwidth among

7



0 20 40
Time (s)

0

10

20

30

No
de

 re
ac

he
d 

(%
) Bandwidth distribution 

    (Gini coefficient)
Homogeneous (0)
Real world (.5)
Heterogeneous (.9)

Figure 3: The block propagation time of Bitcoin.

nodes. For example, a study of IPv4-based Bitcoin nodes in [49] found an average

bandwidth of 73.1 Mb/s, with a Gini coefficient of 0.5. Figure 3 illustrates how

block propagation time in the Bitcoin network rapidly increases as the distribution

of bandwidth becomes more heterogeneous. In this dissertation, we propose a new

network protocol that provides fast synchronization, even when the distribution of

bandwidth is highly heterogeneous.

1.1.2 The consensus layer

The consensus layer defines the rules for validating transactions and creating

new blocks. The protocols in the consensus layer provide a public ledger that allows

users on the application layer to view and submit transactions. Once a transaction

is recorded on the public ledger, it cannot be altered. To achieve this, the public

ledger must satisfy two properties [88]: persistency and liveness. As shown in Pass et

al. [88], the persistency and liveness properties of the public ledger are proven based

on three security properties for consensus called chain growth, common prefix, and

8



chain quality. The chain growth property ensures that the blockchain continues to

grow over time. The common prefix property ensures that all nodes in the network

have the same view of the blockchain up to a certain point in time. The chain quality

property ensures that a significant fraction of blocks are generated by honest miners.

We say a consensus protocol is secure if it achieves chain growth, common prefix,

and chain quality properties. In this dissertation, we focus on designing a secure

proof-of-stake consensus protocol.

Proof-of-stake (PoS). Bitcoin is widely regarded as one of the most successful

cryptocurrencies to date, yet its utilization of the Proof-of-Work (PoW) mechanism

has led to significant concerns regarding energy consumption and computational

waste. PoW requires an enormous amount of computing resources to solving the

hash-based PoW puzzle, which in turn leads to high energy usage and environmental

impact. Fortunately, proof-of-Stake (PoS) protocols(e.g., [2, 70, 99, 13]) have pro-

posed as an alternative solution. These protocols offer a more energy-efficient and

eco-friendly alternative to PoW. In a nutshell, in a PoS based blockchain protocol,

players are expected to prove ownership of a certain number of stake (coins); only

the players that can provide such proofs are allowed to participate in the process of

maintaining the blockchain.

In order to extend the chain, the players make attempts to find the solutions to

the the hash-based PoS puzzles. Note that, the PoS puzzles are defined based on “con-

texts”; Usually, the context is extracted from the previous blocks on the blockchain.

In our protocol, the context is the hash value of the last block on the longest chain.

In a very high level, the context could be used as a (biased) randomness to determine

which players can generate the next block. The solution to the puzzle is based on

the information of the stake, a time step (round number), and the context. Thus, in

comparison with PoW mechanisms, the computational cost to find the solutions in

9



PoS mechanisms is very “cheap”.

From ad hoc to rigorous designs. Early PoS designs (e.g., [2, 70, 99, 13]), are

in an ad hoc style. This is the same for PoW based design: the original Bitcoin

design is indeed in an ad hoc style. The recent trend is to follow a rigorous approach:

security concerns are carefully defined and the designed protocols are mathematically

analyzed. Notable efforts include the work in [34, 32, 7] for proposing provably secure

PoS protocols.

(Un)predictability. Intuitively, predictability means that (certain) protocol players

are aware that they will be selected to generate blocks of blockchain, before they actu-

ally generate the blocks. Brown-Cohen et al. [19] have studied the (un)predictability

of PoS in incentive-driven settings (in which the players will deviate from the protocol

if doing so yields higher profit). The “power” of predictability can be abused by the

attackers so that they can reduce the difficulty/cost of performing many incentive-

driven attacks such as selfish-mining [19], or bribing [7]. In a selfish-mining attack,

an attacker gains an unfair advantage by selectively withholding or revealing blocks.

With predictability, the attacker can develop a better strategy to perform the attack.

In a bribery attack, an attacker bribes players to work on specific chains in order

to benefit themselves, such as supporting double-spending or censorship attacks. By

predicting which players are likely to mine new blocks, the attacker can attempt to

bribe them. Such attacks undermine the fairness of the blockchain and discourage

honest participation.

Therefore, it is crucial for a PoS protocol to minimize predictability and mitigate

the risks of such attacks. Ideally, we expect a PoS protocol to achieve the (best

possible) unpredictability property so that the attacks based on the predictability

can be addressed as much as possible. By achieving this goal, the fairness of the

10



blockchain can be maintained, and honest players can be incentivized to participate

in the protocol. Unfortunately, the state-of-the-art PoS protocol in [34, 32] cannot

achieve the best possible unpredictability.

1.1.3 The application layer

The application layer is built on top of the consensus layer. The users of applica-

tions can view and submit transactions to the public ledger (provided by the protocol

in consensus layer). As the public ledger offers decentralization, transparency, im-

mutability, the applications can provide a high degree of data integrity, and can

enforce rules via self-executing smart contracts. In this work, we focus to design an

application of blockchain to enhance the security of federated learning (FL).

Federated learning has been developed to simultaneously offer both data privacy

and high performances in training models, via a distributed learning protocol. It

address the privacy concerns for critical applications of machine learning with sensitive

data such as health care [25, 91] and the internet of things [87, 107]. By design, FL

allows clients to collaboratively train a global model without having to disclose their

private training data. In each training round, a central server distributes the current

global model to a random subset of clients who will train locally and upload model

updates to the server. Then, the server averages the local updates into a new global

model. As training data never leaves the clients’ devices, FL is widely regarded for

preserving data privacy.

However, the promise of privacy in FL has been repeatedly contested. Prior work

has shown that the local model updates do, in fact, leak some sensitive information

about the client’s private data, thereby making them a vector for privacy attacks

from FL servers [96, 95, 48, 44]. To tackle this issue, recent research has focused

on concealing the local models via devising secure aggregation protocols [17, 5, 106].

11



With this new framework, the central server can compute the average of the local

models to update the global model in a way that each individual local model is kept

private. As a result, the local model updates are protected from the server, thereby

preventing the server from exploiting the updates of any client for privacy attacks.

However, the FL server can manipulate the client selection process to circumvent the

secure aggregation protocols. The server can then obtain the local model updates

of a targeted client, and exploit those updates to compromise their data privacy. In

this dissertation, we leverage the properties of blockchain to design a secure client

selection protocol.

1.2 Contributions of the Dissertation

This dissertation focuses on designing secure blockchain protocols for network

and consensus layers, and leveraging the security of blockchain to develop applica-

tions.

1.2.1 The network layer

1.2.1.1 Reliable dissemination

We propose a novel design, called CoSpaN, for reliable dissemination in PoW

settings. Here, CoSpaN stands for Consensus in Sparse Networks.

Proof of mining power. Nodes use merge-mining to provide proofs of mining

power, using the same PoW for generating new blocks, albeit with different thresholds.

This way, the number of proofs of mining power is proportional to the mining power of

nodes. After generating proofs of mining power, nodes submit them to the blockchain

to make them readily available to everyone.

Based on proofs on mining power, nodes construct a bi-level random graph,

12



called a core-periphery graph. Each proof of mining power entitles a node to act as

a core node and establish connections to other nodes. Nodes that are not associated

with any core nodes are referred to as periphery nodes. The core nodes select a set

of neighbors, which includes both core and periphery nodes, to establish outbound

connections. The selection of neighbors depends on the nodes’ information and a

random token extracted from the blockchain.

To ensure the connections are random and verifiable by the participating nodes of

each connection, we design the functions to select the set of neighbors using inequali-

ties over verifiable random functions (VRF) [40]. In addition, using VRF also ensures

the confidentiality of connections, i.e., each connection is known only by the two par-

ticipating nodes. This prevents adversaries from learning the network topology and

allows the protocol to achieve reliable dissemination in a sparse network against an

adaptive adversary. Shielding the network topology also provides protection against

network disruption attacks such as BGP hijacks [94].

DoS resilience. To defend against DoS attacks on highly connected nodes, CoSpaN

protocol preserves the confidentiality of core nodes by hiding the association between

core nodes and their physical addresses. As a result the adversary cannot determine

whether or not a node is associated with a core node. This prevents the adversary

from launching DoS attacks to bring down core nodes and disrupt the network.

Security analysis in different threat models. Besides proving the security of

CoSpaN protocol against the M-adaptive adversary, we also prove that the CoSpaN

protocol is secure against a (weakly) slow-observation adaptive adversary (S-adaptive).

In contrast with the M-adaptive adversary, the S-adaptive can instantly corrupt hon-

est nodes but need to wait for some time to discover a newly established connection.

Comparision to existing designs. We compare the proposed CoSpaN protocol

13



Protocols PoW
DoS Reliable Verifiable Sparse Non-mining Security analysis

resilience dissemination random connection network nodes for consensus
[74]
[73]
[30]

CoSpaN

Table 1.: A comparison between CoSpaN protocol and existing designs for reliable

dissemination.

with existing designs for reliable dissemination. Please refer to Table 1 for a summary.

PoW settings. The existing designs in [74, 30, 73] cannot be directly applied in PoW

settings because there is no readily available proof of mining power. CoSpaN is the

first design to provide reliable dissemination for sparse networks in PoW settings.

DoS resilience. In the designs in [74, 30, 73], the adversary could obtain the addresses

of nodes with high connections by leveraging the distribution of resources and then

perform DoS attacks on those nodes.

Reliable dissemination. The Generals’ Scuttlebutt protocol [30] can only guarantee

partial reliable dissemination. This means that a message broadcasted by an honest

node will only be received by a large fraction of nodes in the network. In contrast,

CoSpaN and the designs in [74, 73] can achieve reliable dissemination.

Verifiable random connections. The designs in [74, 73] lack a mechanism for verifying

inbound connections, allowing the adversary to monopolizing the inbound connections

of nodes. Meanwhile, CoSpaN and Generals’ Scuttlebutt use VRF to allows the

participant nodes to verify the connection.

Sparse networks. We say a network is sparse if each nodes in the network only connect

with a few other nodes over a long period. In the designs in [74, 73], nodes construct

a distinct random graph for each message they send. Thus, over a long period, each

node connects to most of the nodes in the network. On the other hand, the network

in CoSpaN and Generals’ Scuttlebutt protocol are sparse since nodes keep the same

14



set of a few connections over a long period.

Non-mining nodes. The designs in [74, 30] provide no connectivity to non-mining

nodes. Those non-mining nodes, such as relay nodes and nodes that provide the tools

and infrastructure for DApps, play an important role in blockchain ecosystems. In

contrast, CoSpaN and the design in [73] provide connectivity guarantees for all nodes,

including non-mining nodes.

Security analysis for consensus. The designs in [74, 30] completely separate the net-

work design and the consensus design. While this approach simplifies the analysis

for network designs, it adds extra complexity to the analysis of the overall protocol

(including both network and consensus designs). For example, the network design

in [30] can only guarantee partially reliable dissemination. Hence, the existing anal-

ysis, which assumes reliable dissemination, cannot be used. The CoSpaN protocol

makes minimal modifications to the consensus design. Thus, we can use the existing

analysis [47, 88] to analyze the security of our protocol.

1.2.1.2 Fast synchronization

We investigate the theoretical bounds on the fast synchronization in terms of both

throughput and latency in a blockchain system, consisting of nodes with heterogeneous

capacities. We assume that major traffic in blockchain, such as Bitcoin, are due to

transaction propagation [85] and traffic due to block propagation becomes negligible

due to improvement such as Compact Block Relay [29]. Thus, the data can orignate

from any nodes before being broadcasted to all nodes in the P2P network. Similar

to previous works [71, 68, 26, 24], we assume the upload-links are the bottlenecks,

i.e., nodes are only constrained by their upload capacities (but not their download

capacities).

In contrast to common folklore that the throughput is limited by the node with

15



the weakest capacity, we show a stronger theoretical limit: the average upload capac-

ity of nodes. We formulate the throughput problem as a Blockchain P2P Network

Design Problem, asking for what throughput (data arrival rates) there exist a feasible

transmission schedule with a low average degree and latency. More importantly, we

prove that there exists a transmission schedule for any throughput up to (1− ε) the

theoretical limit, the average upload capacity. In addition, the transmission schedule

has an average degree O(1/ε) and a latency is optimal up to a factor O(log n).

More importantly, there exist sparse P2P network design that approach arbitrar-

ily close to the theoretical limit. Our result implies that nodes with higher capacities

can make up for the shortage in upload capacity of weaker nodes, providing a route

to strengthen the throughput by adding strong nodes into the P2P network. Our

construction implies a practical approach for designing real-world blockchain P2P

network. To maximize the throughput, nodes should create same-capacity links, i.e.,

the number of links should be proportional to the nodes’ upload capacity.

1.2.2 The consensus layer

We identify an interesting impossibility for a class of PoS protocols that follow

a single-extension design framework. Existing provably secure Bitcoin-like PoS pro-

tocols (e.g., [34, 32, 7]) are all in the single-extension framework. To overcome the

impossibility, we introduce a new design framework, called multi-extension. We de-

velop a novel D-greedy strategy in the multi-extension framework, which allows us to

design provably a secure Bitcoin-like PoS protocol. Finally, we present new analysis

techniques to analyze the chain growth and the common prefix properties for PoS

protocols in multi-extension framework. We next elaborate our results.

Impossibility result of single-extension protocols. We formally define a single-

extension framework for constructing PoS protocols, which is followed by existing

16



PoS protocols such as Ouroboros Praos [34], SnowWhite [32], and Bagaria et al. [7].

In a single-extension protocol, each honest player selects a chain using a best chain

algorithm and then attempts to extend it as follows. The player first extracts a

context from the chain using a context extraction algorithm. Then, the player uses

the context, the current round number, and secret key to determine whether or not

they are allowed to generate a new block at that round.

We have identified an interesting impossibility result for single-extension PoS

protocols: For any single-extension PoS protocol that achieves the best possible unpre-

dictability, it cannot achieve the common prefix property if the honest players control

less than 73% of the stake.

We prove the impossibility based on a new property that we formulated called

distinct-context-extension in PoS protocols. The distinct-context-extension property

states that the contexts of any two valid chains are different. Our proof consists of two

steps as follows. First, we show that if the single-extension PoS protocol achieves the

best possible unpredictability, it must have the distinct-context-extension property.

Intuitively, if the extension of the two different chains are shared-context-extension

(the opposite of the distinct-context-extension property), a player can predict whether

or not she/he can extend one chain after making an attempt to extend the other chain.

Thus, if the protocol does not achieve the distinct-context-extension property, it can-

not achieve the best possible unpredictability. Secondly, we show that if the protocol

has the distinct-context-extension property, then it cannot achieve the common prefix

property if the honest players control less than 73% stake. We consider an adversary

that extends a set of chains privately, and we can bound the chain growth of the

adversary by using a random tree to model the chain extension of the adversary. We

can show that the adversary can amplify its stake by a factor e, where e = 2.72 is

the base of the natural logarithm. Therefore, if the honest players control less than

17



73% stake, the adversary can extend the chain faster than the honest players, thus

breaking the common prefix property.

We remark that, we are the first to present the impossibility result for the single-

extension protocols. Our previous version and the work in [7] showed that some

single-extension protocols can be secure with 73% honest stake. However, those works

never claim the impossibility result. To prove the impossibility result, we formally

define the single-extension protocol and the new concept of distinct-context-extension

property.

New design: Overcoming the impossibility via multi-extension. To overcome

the impossibility, we propose a new design framework, called multi-extension, for PoS

protocols. In a multi-extension protocol, each honest player is allowed to extend

multiple chains in a round, rather than just one. We remark that, designing a secure

and practical multi-extension PoS protocol is challenging. For example, Bagaria et

al. [7] have shown that a protocol allowing for the honest players to extend slightly

shorter chains than the best chain is vulnerable to “balance attacks” which can break

the common prefix property. Fortunately, we can have a particular design that follows

a novel “D-distance-greedy” strategy, that can be proven to be secure.

D-distance-greedy strategy. We propose a novel D-distance-greedy strategy that al-

lows the honest player to a set of best chains, where D is a positive integer. By using

the D-distance-greedy strategy, we can construct a protocol that achieves the best

possible unpredictability. At the same time, the protocol can be proven to be secure

with a smaller fraction (e.g., 57%) of honest stake.

In the D-distance-greedy strategy, the players extend a set of best chains that

are “close” to the best chain. We say a chain is “close” to the best chain if a common

prefix can be obtained by removing the last D blocks from the best chain. This

18



ensures that the honest players extend a set of chains that share the same prefix,

making it impossible for adversary to launch balance attacks.

A new tiebreak rule. In a multi-extension protocol, the probability of generating a

new best chain can change depending on the number of chains in the set of best

chains. Consider a protocol execution round, and there are two longest chains; dif-

ferent strategies of choosing the best chain may increase or decrease the probability

of generating a new one. This creates an opportunity for an adversary to slow down

chain growth by publishing a chain with the same length but with fewer chains in

the set of best chains, as the best chain. To address this issue, we introduce a new

tiebreak rule: If there are multiple chains with the same length, then the chain that

can be extended the fastest, will be selected as as the best chain.

Intuitively, honest players will generate a new best chain faster if there are more

chains in the set of best chains. To make this more concrete, we can partition the set

of best chains into D + 1 subsets based on their depth. The depth of a chain is the

difference between its length and the length of the current best chain. For i ∈ [0..D ],

we denote the i-depth subset as the set of chains at depth i. A new best chain is

generated if a player extends a chain in the 0-depth subset, which consists of all chains

with the same length as the current best chain. Additionally, for i ∈ [0..D − 1], a

new chain is added to the i-depth subset if a chain in the (i + 1)-depth subset is

extended. Therefore, we compare the number of chains in each depth-based subset,

from the 0-depth subset up to the D-depth subset, to break ties between chains of

equal length. This way, players can select the best chain that can be extended the

fastest.

New analysis: Chain growth in multi-extension. To analyze the chain growth

property, we propose a new Markov chain analysis framework to study the chain

19



growth in multi-extension protocols. Then, we apply the new analysis framework to

analyze the chain growth of our protocol. We consider a hybrid experiment, where

all messages sent by the adversary are removed. Based on our tiebreak rule, we can

show that the chain growth in a real execution is lower bound by the chain growth

in the hybrid execution. Note that, the hybrid experiment have been introduced in

the analysis in [88] to analyze the chain growth of Bitcoin protocol. In our protocol,

the honest players may extend multiple chains in a round. Thus, we design a random

walk on a Markov chain to analyze the chain growth in the hybrid experiment for our

protocol.

We start by designing a simplified Markov chain and then proceed to design an

augmented Markov chain. Recall that, the set of best chains can be partitioned into

D + 1 subsets based on the depth of those chains. A new best chain is generated if

a player extends a chain in the 0-depth subset, which consists of all the chains that

have the same length as the current best chain. We can analyze chain growth by

analyzing the expected number of chains in the 0-depth subset of each round. In the

simplified Markov chain, each state represents a protocol round with specific numbers

of chains in all depth-based subsets. The transitions on the Markov chain depends

on how the set of best chains is updated after each round. The simplified Markov

chain only gives information about the depth-based subsets, but it doesn’t show how

many chains are removed when a new chain is generated. This makes it hard to find

a good lower bound for the amplification ratio, even with a large D .

To solve the issue in the simplified Markov chain, we propose an augmented

Markov chain. We use depth-distance-based subsets that select chains based on both

their length and distance from the best chain. The augmented Markov chain shows

a more detailed representation of the best chains, so we can identify which chains

belong to the new set when a new best chain is generated. This gives a better lower

20



bound for the amplification ratio.

We remark that, the Markov chain technique has been used to analyze the com-

mon prefix property [65] for Bitcoin protocol, which follows a single-extension fashion.

However, our Markov chain is very different from the Markov chain in [65]. As our

protocol follows the multi-extension framework. Thus, a more complex Markov chain

is needed to analyze the chain growth property.

New analysis: Common prefix in multi-extension. Previous analysis of Bit-

coin’s PoW consensus [47, 88] showed that the key factor for establishing the common

prefix property is that honest participants can contribute only one block at a block

height. Breaking this property requires the adversary to generate more blocks than

the honest participants, which is infeasible due to the majority control of mining

power by the honest participants. Our proposed protocol aims to defend against

nothing-at-stake attacks by allowing players to extend multiple chains. Thus, we

can no longer guarantee that honest participants contribute only one block per block

height.

To analyze the common prefix property for the multi-extension protocol, we intro-

duce the notions of virtual block-sets and virtual chains, and then define the common

prefix property w.r.t. virtual chains. We can prove the common prefix w.r.t. virtual

chains by showing that the honest players only contribute at most one virtual block-

set at a block height. Afterward, we show that the standard common prefix property

can be reduced to common prefix w.r.t. virtual chains. In detail, a virtual block-set

consists of multiple blocks with the same height that are “close” to each other. We

first define two chains are “close”, and then define two blocks are “close.” We say two

chains are close if they share a common prefix in a recent past. When two chains are

close, the last blocks of the two chains are also “close”. We define the virtual chain

consists of multiple virtual block-sets that are linked together. Note that, the adver-

21



sary cannot use the blocks of honest players to break the common prefix property,

the adversary needs to generate more virtual block-sets than the honest players to

break the common prefix property (w.r.t virtual chains). This requires the adversary

to control the majority of the stake (which contradicts the assumption that the hon-

est players control the majority of the stake). Finally, we show the common prefix

w.r.t. virtual chains implies the regular common prefix property. This is given by the

fact that the blocks in the same virtual block-set are “close”.

Best possible unpredictability. Our protocol minimizes predictability by using

the hash value of the last block to extract the context. This ensures that the contexts

of any two different chains in the execution of our protocol are different, i.e., our

protocol achieves distinct-context-extension property. As a result, players cannot

predict the extendibility of a future chain based on the extensions of a current chain.

Players can only predict whether or not they can extend the current best chain. Our

protocol provides the best possible unpredictability for PoS protocols.

Extensions: Full-fledged blockchain and adaptive stake registration. Our

protocol can be “upgraded” to a regular blockchain to include payload, such as trans-

actions, in the blocks. The chain in our protocol serves as a randomness beacon to

select a PoS player to generate a new block and extend the blockchain. Similar to

[6], we also allow new players to join the system and participate in the process of

extending chains, as long as they have registered their stake a specified number of

rounds earlier. This ensures that the adversary cannot gain any extra advantage.

1.2.3 The application layer

To defend against the client selection attacks, we first formulate a secure client

selection (SCS) problem in which the goal is to enforce semi-malicious (and malicious)

adversaries to select random pools of clients in each training round, thus, providing an

22



effective defense against the newly proposed client selection attacks. Importantly, we

narrow down the defense into achieving three necessary security properties, namely,

pool consistency, pool quality, and anti-targeting. We present a framework, termed

Secure Protocols (SeP), for achieving such security properties, leveraging blockchain

as a public trust entity for randomness generation and verifiable random function

(VRF), a cryptographic tool to make the client selection both random and unpre-

dictable.

Communication-efficient Design. To mitigate the amount of communication, we

extend SeP into a Communication-efficient and Secure Protocol (CoSeP) for the

SCS problem. In CoSeP, we develop light-weight client communication procedure,

where the clients only need to retrieve the block headers, which are much smaller

than the blocks from the blockchain, to verify the correctness of the client selec-

tion. Our communication procedure uses a so-called pass-through communication, in

which the server will gather the information of the selected clients and only submit a

logarithmically-small commitment of that data to the blockchain.

Defending against active adversaries. While pass-through communication helps

reduce communication complexity, it may introduce new attack vectors for an active

adversary that can divert from the protocol. For example, the active adversary can

manipulate the client selection process by corrupting the server and excluding the

information of some clients in the pass-through communication. Hence, we devise

protocol CoSeP+ by adding extra steps to CoSeP which enable the clients to dispute

if the server does not include their data in the pass-through communication.

1.3 Organization of the Dissertation

In Chapter 2, we present CoSpaN protocol for reliable dissemination in PoW

settings. This chapter is based on:

23



Phuc Thai, Hong-Sheng Zhou, Lei Fan, Jonathan Katz, and Thang N Dinh.

“CoSpaN: Permissionless Consensus in Sparse Networks.”

In Chapter 3, we propose propagation scheme for fast synchronization in hetero-

geneous blockchain networks. This chapter is based on:

Phuc Thai, Hong-Sheng Zhou, My T. Thai, Tam Vu, and Thang N Dinh. “Asyn-

chronization in Heterogeneous Blockchain Networks: Optimization and Mitigation

Principles.”

In Chapter 4, we present a new PoS consensus protocol with the best possible

unpredictability . This chapter is based on:

Phuc Thai, Lei Fan, Jonathan Katz, and Hong-Sheng Zhou. “A Permissionless

Proof-of-Stake Blockchain with Best-Possible Unpredictability.”

In Chapter 5, we leverage blockchain technology to propose an application to

securely select clients in federated learning process. This chapter is based on:

Truc Nguyen, Phuc Thai, Jeter Tre’R, Thang N. Dinh, and My T. Thai. “Blockchain-

based Secure Client Selection in Federated Learning.”

24



CHAPTER 2

THE NETWORK LAYER: RELIABLE DISSEMINATION

In this chapter, we present CoSpaN, the first network protocol designed for sparse

networks in PoW setting. Nodes use merge-mining to provide proofs of mining power,

and establish verifiable random connections such that the expected number of connec-

tions for each node is proportional to their mining power. Additionally, the CoSpaN

protocol preserves the confidentiality of core nodes. This means that the adversary

cannot determine whether or not a node is associated with a core node. As a result,

the adversary is unable to launch DoS attacks to bring down core nodes and disrupt

the network.

We organize the chapter as follows. In Section 2.1, we present a model for con-

sensus in sparse networks. The design of CoSpaN protocol is presented in Section 2.2.

The analysis of the security of CoSpaN against a static adversary and adaptive adver-

sary are presented in Section 2.3 and Section 2.4, respectively. The numerical studies

are shown in Section 2.5.

2.1 Consensus Models for Sparse Networks

In this section, we introduce our network-aware consensus model, which captures

the sparse nature of real-world P2P networks. We further define the formal concept

of reliable dissemination and the task of designing consensus in sparse networks,

providing the first theoretical framework for analyzing consensus protocols in sparse

networks.

25



2.1.1 Sparse network model (SNM)

We introduce a sparse network model (SNM) for a blockchain protocol execution.

Extending the model by Pass, Seeman, and Shelat [88], referred to as the PSS model,

our model includes a set N that consists of n (n ∈ N) participating nodes, a blockchain

protocol (Π,Λ), an environment Z that captures all aspects external to the protocol

itself, and an adversary A. The execution proceeds in rounds that model time steps.

There are three major differences between the SNM model and the PSS model.

First, we consider a point-to-point communication in which nodes can only send mes-

sages after establishing connections to other nodes. This contrasts with the PSS

model, which considers a communication model in which nodes can send messages to

all other nodes. Secondly, we consider a non-flat mining model where each node can

have a different amount of mining power, in contrast to the flat mining model (i.e., all

nodes have the same mining power) in PSS. In particular, our non-flat model allows

nodes with zero-mining power, e.g., nodes that participate in relaying messages but

not the mining process. Such nodes and their corruption were not investigated in

the PSS model. We are the first to go beyond the standard corruption of the mining

nodes and investigate the corruption of zero-mining power nodes that are responsible

for communication functionality. Finally, in the SNM model, we start with a static

adversary that controls the same subset of nodes during protocol execution. Then, in

Section 2.4, we consider two (weakly) adaptive adversaries who may corrupt honest

nodes during the protocol execution but in certain restricted manners. 1

Participating nodes. The set of participating nodes N can be partitioned into

1In the PSS model, nodes (with mining power) are allowed to be corrupted in an
adaptive manner; furthermore, corrupted nodes can be uncorrupted. In our SNM
model, both nodes with mining power and the ones with zero-mining power are al-
lowed to be corrupted in weakly adaptive manners; in addition, already corrupted
nodes are not allowed to be uncorrupted.

26



the set of honest nodes H ⊂ N, who strictly follow the blockchain protocol (Π,Λ),

and the set of malicious nodes N \ H, which are controlled by an adversary A. The

number of malicious nodes f = |N \ H| is bounded by η · n for a fixed η ∈ (0, 1).

A blockchain protocol. Algorithm Π, which takes a security parameter κ as input,

dictates how each node communicates and maintains a blockchain data structure

C, a collection of blocks. Algorithm Λ contains a set of rules to extract a ledger

L from C, i.e., L = Λ(C). Here, the ledger L is a sequence of transactions, i.e.,

L = tx1‖tx2‖ . . . ‖txi‖ . . .. We also overload the notation Λ to define the position of a

transaction tx in the ledger. Specifically, for a transaction tx, Λ(C, tx) = i if tx = txi,

the i-th transaction in the ledger, and Λ(C, tx) = 0 if tx is not included in the ledger.

The validity of a ledger is captured by a predicate V. The predicate V(L) returns 1 if

and only if the ledger L is valid for some notion of validity (e.g., no double spending).

The algorithm Π is parameterized by V (denoted by ΠV) to ensure that nodes always

maintain valid ledgers.

Non-flat mining model. All nodes interact with a random oracle H : {0, 1}∗ → {0, 1}κ

(where κ is the security parameter) that takes an arbitrary length string and output

a random value in {0, 1}κ. In each round, a node i ∈ N can make at most qi queries

to the random oracle H for some non-negative integer qi. The integer qi represents

the node’s “mining power”. We denote Q =
∑

i∈N qi as the total mining power of all

nodes in N. The total mining power of all malicious nodes is at most ρ · Q where

ρ ∈ (0, 1/2) is the fraction of adversarial hash power. This generalizes the “flat”

model in [88] in which all nodes have the same mining power.

The non-flat mining model allows nodes with zero-mining power in the SNM

model. The adversary can control a large number of (sybil) nodes with zero mining

power, making the fraction of malicious nodes η can be arbitrarily close to 1.

27



Point-to-point communication. Any two nodes can establish a new connection

or drop an existing connection. A node can only send messages to its neighbors, to

whom it has established connections. These messages are guaranteed to be delivered

to the neighbors after some unknown delivery delay δ ∈ N rounds.

Establishing/dropping connections. It takes te ∈ N rounds to establish a new connec-

tion between two nodes. At round r, two nodes start establishing a connection with

each other. Then, at round r + te, they can start exchanging messages. Once the

connection is established, the nodes can instantly drop it.

Delivering messages. A node u only sends messages to a node v if there is a connection

between u and v in that round. The adversary A is responsible for delivering all

messages. The adversary cannot forge or alter the messages of honest nodes, but it

can delay or reorder the messages as long as they are delivered within some unknown

delivery delay δ ∈ N rounds.

Connection observation. For the static adversary, we consider that newly established

connections can be instantly observed by the adversary. In Section 2.4, we discuss

the adaptive adversary and restrict their ability to observe connections. Specifically,

the adversary can only observe new connections after a certain amount of time has

passed.

A blockchain execution. The execution of the blockchain protocol is directed

by the environment Z, which initiates the set of nodes N. The nodes are initially

designed as honest or malicious. We consider the execution with a polynomial in κ

number of rounds. In each round, each node receives a list of transactions txs as

input from the environment and adjusts its connections according to Π. Each honest

node executes Π and incorporates any input and messages from its neighbors into

its local data structure C. Each node i ∈ N accesses the random oracle H(·) exactly

qi times with different nonces to find a valid proof of work (PoW). If an oracle call

28



returns a proof of work, the node can generate a new block and send the new block

to its neighbors, who will propagate it further.

Static adversary. We start with a static adversary A that controls the same subset

of nodes throughout the entire execution of the protocol. In Section 2.4, we will

analyze the security of our protocols against (weakly) adaptive adversaries that can

corrupt more nodes during the protocol execution, but in certain restricted manners.

To enable security in the presence of weakly adaptive adversaries, we will consider

a restricted point-to-point communication model in which the adversary can only

observe the connections among honest nodes after a sufficiently long time.

For adversary A, and environment Z, let EXECΠV,A,Z(κ) be a random variable

denoting the joint view of all nodes (i.e., all their inputs, randomness, and messages

received) over all rounds.

We will be considering executions with restricted adversaries and environments.

Given a predicate Γstat(·, ·, ·, ·, ·), we define Γstat-admissible environment as follows.

Definition 1 (Γstat-admissible environments). We say a tuple

(n,Q, η, ρ, δ,A,Z) with Γstat(n,Q, η, ρ, δ) = 1 is Γstat-admissible w.r.t (ΠV,Λ) if A,

Z are probabilistic polynomial-time algorithms, and for every view in the support of

EXECΠV,A,Z(κ), the following holds:

1. The adversary A can control at most η · n nodes, where n is the total number

of nodes. The total mining power of the nodes controlled by the adversary is at

most ρQ, where Q is the total mining power.

2. In every round r, the environment Z only sends the list of transactions txs

as input to an honest player that maintains a ledger L = Λ(C) if the list of

transactions can be appended to the ledger, i.e., V(L‖txs) = 1.

3. A message sent by an honest node is delayed by at most δ rounds before sending

29



to its neighbors.

4. The adversary can instantly observe newly established connections among nodes.

When context is clear, we refer (n,Q, η, ρ, δ,A,Z) as Γstat-admissible.

2.1.2 Security Properties

We say a blockchain protocol is secure if it maintains a ledger that satisfies

the persistence and liveness properties. The persistence property states that if a

transaction is added to the ledger of an honest player, then it will be added to

the same position in the ledgers of all honest players. The liveness property states

that if a transaction is given as input to all honest players, the transaction should

eventually appear on the ledgers of honest players. The security analysis [88] of a

blockchain protocol relies on a property that any valid message can be disseminated

from any honest node within a bounded time. We refer to this property as reliable

dissemination.

Notations. Let Cri be the local chain of player i at round r. We define the persistence

and liveness properties in the joint view EXECΠV,A,Z(κ) as follows. We define view←

EXECΠV,A,Z(κ) to denote that view in the support of EXECΠV,A,Z(κ). We define a

function ε(·) is a negligible such that for any polynomial poly(·), there exists some

κ0 ∈ N in which ∀κ ≥ κ0, ε(κ) ≤ 1
poly(κ)

.

Persistence. For a view ← EXECΠV,A,Z(κ), we define per(view) = 1 iff for any

honest player i at round r and any transaction tx in the ledger Λ(Cri ), and any honest

player j at round r′ ≥ r, we have Λ(Cri , tx) = Λ(Cr′j , tx).

Definition 2 (Persistence). A blockchain protocol (ΠV,Λ) achieves persistence in

Γstat-environments if Pr[view← EXECΠV,A,Z(κ) : per(view) = 1] ≥ 1− ε(κ).

Liveness. For view ← EXECΠV,A,Z(κ) we define liv(view) = 1 iff there exists a

30



“wait time” parameter t = O(κ) such that for any transaction tx that is given as

input for all the honest players from round r to round r + t, we have, any honest

player i at round r + t, Λ(tx, Cr+t
i ) > 0.

Definition 3 (Liveness). A blockchain protocol (ΠV,Λ) achieves liveness in Γstat-

environments if Pr[view← EXECΠV,A,Z(κ) : liv(view) = 1] ≥ 1− ε(κ).

Reliable dissemination. The reliable dissemination property states that upon

an honest node receives (or generates) a valid message, with high probability, the

message will be disseminated to all (honest) nodes in the network within a bounded

time. For a view ← EXECΠV,A,Z(κ), consider a message msg that is first known by

an honest player i at round rmsg. Here, the message msg could either be generated

by the honest player i or sent from the adversary. For a parameter ∆ ∈ N, we define

rel(view,∆) = 1 iff for any message msg that is known by an honest node at round

rmsg, all honest nodes received the message msg at round rmsg + ∆.

Definition 4 (Reliable dissemination). A blockchain protocol (ΠV,Λ) achieves ∆-

reliable dissemination in Γstat-environments if

Pr[view← EXECΠV,A,Z(κ) : rel(view,∆) = 1] ≥ 1− ε(κ).

The security analysis in Pass et al. [88] uses reliable dissemination2 as an assump-

tion. While this condition holds for fully connected networks, it may not necessarily

hold for real-world blockchain networks, e.g., Bitcoin.

2To be precise, the security analysis in Pass et al. [88] assume a perfect reliable
dissemination, i.e., the messages from honest nodes will always be disseminated to all
other honest nodes.

31



2.1.3 Consensus in Sparse Network

We now introduce the notion of network sparsity and then define the “consensus

in sparse network” problem.

Network sparsity. The sparsity of a network is measured as the average number

of connections per honest node within a given period. Consider a blockchain protocol

execution, a view in the support of EXECΠV,A,Z(κ), and a parameter ts = Ω(κ). For

a round r, let mr be the number of connections that are established at some round

r′ ∈ [r, r + ts] and have at least one end is an honest node. Let nr be the number of

nodes that are honest at round r+ ts. We define the sparsity as dr = mr
nr

, the average

number of connections per honest node from round r to round r+ ts. For parameters

d, ts, we define spa(view, d, ts) = 1 iff for any round r in the execution view, we have,

dr ≤ d.

Definition 5 (Network sparsity). A blockchain protocol (ΠV,Λ) achieves d-sparsity

in Γstat-environments if there exists a parameter ts = Ω(κ) such that

Pr[view← EXECΠV,A,Z(κ) : spa(view, d, ts) = 1] ≥ 1− ε(κ).

We define the consensus in sparse network as follows.

Definition 6 (Consensus in Sparse Network). The goal is to construct a consen-

sus protocol (ΠV,Λ) in a Γstat-admissible environments that can achieve together 1)

persistence and liveness; and 2) sparsity.

2.2 Protocol Design

The CoSpaN protocol extends Nakamoto’s protocol [82] and implements a P2P

network protocol that provides reliable dissemination. In CoSpaN protocol, nodes

form a new network topology every epoch, which is a duration of L consecutive

32



blocks. During an epoch, nodes use merge-mining to generate readily available proof-

of-mining power and establish pseudo-identities called core registrations, which in-

clude public keys and a commitment to their network addresses. Each registration

entitles a node to act as a core node in the next epoch. Thus, a node with high

mining power is often associated with multiple (logical) core nodes. Nodes that are

not associated with any core nodes are referred to as periphery nodes. Based on the

selection of core nodes, CoSpaN protocol constructs a core-periphery topology that

connects all honest nodes in a small-diameter network.

2.2.1 Protocol design

Protocol ΠCSN employs an epoch-based reconfiguration, where a new topology is

constructed every epoch. The reconfiguration in each epoch is divided into two stages:

core selection and topology construction. The pseudocode of protocol ΠCSN can be

found in Figure 4.

2.2.1.1 Epoch-based configuration

As shown in Figure 5, each epoch consists of a consecutive group of L (where

L ∈ N) blocks. For a node in the network, the i-th epoch will include all rounds

in which the block heights are in the interval [(i − 1)L, iL). The block height at a

round is defined as length of the longest chain. Due to network delays and malicious

behavior, nodes may observe different block heights.

Each epoch is divided into two smaller periods: a registration period for core

selection, followed by a short grace period for topology construction. For k = Ω(κ)

and k � L, we set the lengths of the registration and grace periods to Lreg = L− 2k

and 2k, respectively. The grace period serves to tolerate any potentially different

views of the nodes. During the first half of the grace period, consisting of k blocks,

33



Parameters:

• Epoch length L, grace period half-length k = Ω(κ)

• Core width s, connection parameter d

Local state: Node u has a state 〈C, ip〉 containing blockchain copy C and its network
address ip.

Compute block height l = len(C)
Compute epoch number i = bl/Lc+ 1
Core selection: If l < L− 2k

Generate a pseudo-identity cid
Set context := 〈prev,MkRoot(txs), cid〉
Upon finding a nonce such that

H (context, nonce) ∈ [T, T + Tcore] (Eq. 2.2),
propagates a core registration

cr = 〈context, nonce〉.
Topology construction: If l ∈ [iL− k, iL)

Randomness extraction:
If l = iL − k, concatenate all the blocks with block heights in [iL − 3k, iL − 2k) and
return the hash value as rndi

Verifiable random connections:
Let C̄ = {core registrations in the registration period}
Let C̄u ⊆ C̄ be the set of core registrations from node u
Core-core connections:
For each core registration cr ∈ C̄u do

• Step 1: Announcing eligible connections
For each core registration v ∈ C̄ \ C̄u do

With probability µ̄, announce the address to v via a eligible message.

• Step 2: Establishing connections
For each eligible message from w with the address w.ip

Connect to w.ip after verification.

• Step 3: Accepting connections
For each connection request

Accept the connection after verification.

Core-periphery connections:
[u as a core node] Establishing connections
For each core registration cr ∈ C̄u do
For each periphery node v 6= u with address v.ip do

With probability µ̄, connect to v.ip.
[u as a periphery node] Accepting connections
For each connection request from w

Accept the connection after verification.

CoSpaN Protocol ΠCSN

Figure 4: CoSpaN protocol ΠCSN.

34



Registration period Registration period

Grace
period

Epoch 𝑖 (𝐿 blocks)

(2𝑘 blocks)

Epoch 𝑖 + 1

Block height 𝐿 × 𝑖

Figure 5: Epoch of L blocks consisting of 1) a registration period in which nodes

use a PoW merged-mining to perform core registration and 2) a short grace period

of 2k blocks for k = O(κ). The first half of the grace period is to guarantee the

convergence of nodes’ views on the set of core registrations. In the second half of the

grace period, nodes will construct a new network topology using verifiable random

connections, computed from the core registrations.

there is sufficient time to rule out any divergence among nodes regarding the set of

core registrations, i.e., the set of core nodes in the next epoch. The k blocks in the

second half allow sufficient time for nodes to establish new connections. During the

grace period, the nodes maintain their existing connections and only drop them when

the new epoch begins to ensure network connectivity continuity.

2.2.1.2 Core selection

During the registration period, the nodes are selected via the same PoW mining

to find new blocks, albeit, with different thresholds [92, 8]. To generate new blocks,

nodes attempt to solve a PoW puzzle by searching for a nonce over a context that

satisfies the hash inequality

H (context, nonce) < T,

35



where T is the mining difficulty. The context consists of a hash value prev of the

previous block, the Merkle root MkRoot(txs), a single hash value to validate the

included transactions, and a network pseudo-identity cid, i.e.,

context = 〈prev,MkRoot(txs), cid〉. (2.1)

Let Tcore denotes core registration difficulty, whenever the node finds a nonce that

T ≤ H (context, nonce) < T + Tcore, (2.2)

it generates and propagates a core registration

cr = 〈context, nonce〉.

The core registrations will be propagated within the P2P network and included in

the ledger as (prioritized) transactions.

Denote by s the core width, which represents the expected number of core reg-

istrations (i.e. the number of core nodes) in each epoch. To ensure Θ(s) core regis-

trations in each period, we set Tcore = s
Lreg

T. This can be verified by noting that the

mining difficulty T leads to approximately Lreg blocks during the registration period.

Our later security analysis remains valid when the number of actual registrations is

within a constant ω, such as ω = 90%, of the core width s. This adds robustness to

the protocol, for example against low participation of nodes in the core selection.

2.2.1.3 Core-periphery topology construction

During the second half of the grace period, the core-periphery topology is con-

structed in two phases. First, all nodes in the network extract randomness from the

previous epoch. Then, based on this randomness, core nodes establish verifiable ran-

36



dom connections to other core and periphery nodes. The probability that a core node

establishes a connection to another (core or periphery) node is µ̄ = d
2s

, where d is

the connection parameter and s is the core width. Note that the expected number of

(logical) core nodes associated with the same (physical) node (or miner) i is propor-

tional to its mining power qi, as is the expected number of connections established

by i.

Randomness extraction. Similar to the method described in [34], nNodes compute

the randomness rndi as the hash value of the concatenation of the last k blocks in the

registration period, which have block heights in the range [iL − 3k, iL − 2k). This

ensures that all nodes obtain the same randomness rndi at the second half of the grace

period.

Connection establishment. During the second half of the grace period, all nodes

utilize core registrations and extracted randomness to establish new connections. The

connection establishment procedure is divided into two sub-procedures for two types

of connections: core-core connections and core-periphery connections.

• Core-core connections. Each core node u establishes a connection with every

other core node v with a probability of µ̄. Two core nodes u and v are connected

if either u establishes a connection to v or v establishes a connection to u.

• Core-periphery connections. Each core node u establishes a connection with

every periphery node v with a probability µ̄. Periphery nodes do not establish

connections with other nodes.

2.2.2 Security components

We present the secure components of the CoSpaN protocol. First, we describe

how nodes establish verifiable random connections. This ensures that the adversary

37



cannot monopolize the connections and protect the confidentiality of connections,

i.e., each connection is only known by the two participating nodes. Next, we describe

how to preserve the confidentiality of core nodes to prevent the adversary from DoS

attacking highly connected nodes that associate with multiple core nodes.

2.2.2.1 Verifiable random connections

To establish verifiable random connections, a public-key pseudorandom function

known as a VRF is employed [40]. The VRF provides proofs that its outputs were

calculated correctly and randomly, making them difficult to predict. The owner of

the secret key can compute the function value σ and an associated proof π for a given

input value. Others can use an algorithm called Verify, along with the proof and the

associated public key, to check if the function value was calculated correctly without

revealing any information about the secret key. For the formal definition of the VRF,

please refer to Section 2.7.2.

Consider a core node u that hold the key pair (sk′, pk′) for VRF. For a (core or

periphery) node v, let idv be the identity of node v. Here, if v is a core node, we set

the identity idv as the pseudo-identity cidv of v. If v is a periphery node, we set the

identity idv as the address ipv of v. The node u computes (σv, πv) := Provesk′(rndi||idv).

We say that u is eligible to connect to v, in epoch i + 1, if and only if output σv is

smaller than a threshold Tcon = µ̄ · 2κ, i.e.,

σv < Tcon. (2.3)

Upon receiving a connection request from u, the node v can verify node u is

eligible by verifying 1) (σv, πv) is computed correctly, and 2) σv < Tcon.

38



2.2.2.2 Confidentiality of core nodes

As we mentioned, we preserve the confidentiality of core nodes by hiding the

association between core nodes and their physical addresses. Thus, the node’s address

is not included in the pseudo-identity to preserve anonymity. To generate cid, a node

generates key pairs (sk′, pk′), (sk, pk), (s̄k, p̄k) for a VRF, a public-key encryption

scheme, and a signature scheme, respectively. The network pseudo-identity is returned

as cid = 〈pk′, pk, p̄k〉.

Core node 
(hidden address)

Establishing connection

Periphery node 
(public address)

Accepting connection

(a) Core-periphery connection.

Core node 
(hidden address)

Announcing eligible 
connection

Core node 
(hidden address)

Establishing connection

Accepting connection

(b) Core-core connection.

Figure 6: Establishing connections. To preserve core anonymity, an extra step is

added to establish core-core connections.

In Figure 6, we show the interactions to establish core-periphery and core-core

connections. The establishment of a core-periphery connection consists of two steps.

First, a core node u requests to connect to a periphery node v if it is eligible to do

so. Then, node v will accept the connection after verifying that u is eligible.

For the core-core connections, as the addresses of core nodes cannot be obtained

from the pseudo-identities, an extra step is added to establish core-core connections.

First, each core node u need to broadcast an encryption of it address to the core

nodes that it is eligible to connect. Node u creates a message M containing infor-

39



mation on eligible connections to broadcast to all nodes in the P2P network. For

each “eligible” core node v, u uses v’s public key, v.pk, for encryption. It computes

ξ ← Encv.pk(σcore, πcore, ip) and adds ξ to a list M . Node u then computes a signature

γ = Signs̄k(M, cr) and broadcasts (M, cr, γ) to all nodes in the network. By using

encryption, u limits the visibility of its network address, u.ip, to only those nodes that

u is eligible to connect to in the future. To prevent spamming attacks, every node

will only forward at most one valid message (M, cr, γ) for each core registration cr.

Then, the core node v can decrypt the message to extract the address of the node u.

After verifying u eligible, node v request to make connection to node u, by sending

a signature Signs̄k(v.cr). The node u then accept the connection if the signature of

node v is correct.

2.2.3 Complexity

Computation cost. On average, each core node performs 1) n+s times to compute the

VRF (each for a core or periphery node); 2) d times to encrypt (each for an eligible

core node); and 3) ds times to decrypt (for every encryption from core nodes). In

total, the time complexity of a core node in each epoch is O(n+d·s). On average, each

periphery node performs d times to verify the connection. Thus, the time complexity

of a periphery node in each epoch is O(d).

Communication cost. In an epoch, each core node broadcasts a message that contains

the encryption to all other node. The message complexity to broadcast the encryption

is O(n · s). The remaining communication happens between the nodes that are con-

nected to each other in that epoch. The message complexity to this communication

is O(n+s)d. Thus, the total message complexity in each epoch is O(n ·s+n ·d+s ·d).

40



2.2.4 Discussions

We now discuss the practicality of CoSpaN protocol in real-world blockchain

systems.

CoSpaN as a backbone network. We can use the CoSpaN protocol to construct a secure

backbone network for propagating important information, such as block headers. For

actual data propagation, a high-performance relay network such as FIBRE [28] or

Falcon [10] can be used.

Coping with low participation rate of core nodes. In practice, some core nodes may not

participate in establishing connections in the next epoch. This can be due to nodes

being offline or behind a NAT, making them unreachable by other nodes. To address

this issue without increasing the number of connections, we can prioritize the use of

VRF outputs to establish or accept connections instead of relying on the inequalities.

Specifically, nodes will establish or accept connections with the top few nodes that

have the smallest VRF outputs. For example, suppose a node needs to connect with

some core nodes but they did not participate in establishing connections. In that

case, the node will instead connect with the core nodes that have the next smallest

VRF outputs.

Public-private nodes. In Bitcoin network, nodes can be categorized into two types:

public and private nodes. We can also view the Bitcoin network as a core-periphery

network where the public nodes can be viewed as core nodes and the private nodes

can be viewed as periphery nodes. This is contradict with the CoSpaN network where

the core nodes are private and the periphery nodes are public.

The CoSpaN network is more resistant to DoS attacks, compared with the Bitcoin

network. Indeed, in Bitcoin network, the IP addresses of core nodes are public (known

by everyone); while the IP addresses of core nodes in CoSpaN network are private

41



(only known by the nodes that have direct connections to them). Without knowing

the IP address of core nodes, the adversary cannot perform DOS attacks to bring

down those core nodes.

2.3 Security analysis

Threat model
Adaptive Connection

Epoch length L Core width s Connection parameter d
corruption observability

Static n/a Instantly Ω
(

κ
(1−ρ)ω

)
Ω
(

κ
1−ρ

)
O
(

κ
− log((1−ρ)ω) + log s

)
M-adaptive τcorr rounds Instantly O (τcorr · α) Ω

(
κ

1−ρ

)
O
(

κ
− log((1−ρ)ω) + log s

)
S-adaptive Instantly τobs rounds O (τobs · α) Ω

(
κ+h
1−2ρ

)
O
(

κ
− log((1−2ρ)ω)

+ log s
)

S-adaptive〈φ, γ〉 Instantly τobs rounds O (τobs · α) Ω
(
κ+h·φ
γ−ρ

)
O
(

κ
− log((γ−ρ)ω) + log s

)

Table 2.: Feasible parameter settings of CoSpaN (L, s, d) against different adversary

models. CoSpaN, parameterized by the epoch length L, the core width s, and the

connection parameter d can achieve reliable dissemination with a sparsity of 2
1−η (1 +

s
n
)d = O(log n), where n is the number of nodes and η denotes the fraction of malicious

nodes. Defending against (weakly) adaptive adversaries requires (1) shorter epoch

lengths and (2) larger numbers of core nodes to limit the effect of targeted corruption

toward the core nodes. In an S-adaptive〈φ, γ〉 model, where φ ∈ (0, 1) and γ ∈

(ρ, 1 − ρ)), we consider an S-adaptive adversary when the top φ fraction of honest

nodes control a fraction γ of mining power.

We prove that by choosing sufficient parameters (Theorem 2.3.3), the CoSpaN

protocol can achieve security properties (defined in Section 2.1.2) under the presence

of a static adversary in a network with O(log n) sparsity. Later, in Section 2.4, we

will show that the CoSpaN protocol can also achieve security properties under the

presence of weakly adaptive adversaries. In Table 2, we provide a summary of the

security analysis of the CoSpaN protocol against a static adversary and two additional

weakly adaptive adversaries. An M-adaptive adversary needs to wait for τcorr rounds

42



to corrupt an honest node. An S-adaptive adversary can corrupt a node instantly,

however, needs to wait for τobs rounds to discover a newly established connection. We

also consider an S-adaptive〈φ, γ〉 setting, in which the top φ fraction of honest nodes

control a fraction γ of mining power. The S-adaptive setting can be seen as a special

case of S-adaptive〈φ, γ〉 with φ = 1 and γ = 1− ρ.

2.3.1 Security properties

We prove that protocol ΠCSN achieves security properties (including persistence

and liveness) through induction (see Figure 7). In each induction step, we assume

reliable dissemination in the current epoch and prove that protocol ΠCSN achieves

security properties that lead to reliable dissemination in the next epoch. For the

basis step, we assume a bootstrapping condition that provides reliable dissemination

for protocol ΠCSN in the first epoch.

Epoch 𝑖

Reliable dissemination

Bootstrapping 
condition

Epoch 1
……

Step 0. 𝑏

Initialization

Epoch 𝑖 + 1

Nakamoto’s 
protocol Π

Verifiable random 
connection

Sybil 
resistance

Private 
connection

M
-adaptive

S-adaptive

Chain growth

Chain quality 

Consistency

Persistence

Liveness

Reliable dissemination

Step 𝑖. 𝑎

P2P network 
protocol Π

Reliable dissemination

Step 𝑖. 𝑏

……

Step (𝑖 − 1). 𝑏

Security properties

Figure 7: The induction proof of the CoSpaN protocol.

43



We prove that the ΠCSN protocol achieves the necessary security properties for

the ledger (persistence and liveness) and consensus (chain growth, chain quality, and

consistency). For simplicity, we will refer to both the security properties for the ledger

and consensus as the security properties for the remainder of this paper. For a given

view← EXECΠV,A,Z(κ), we define sec(view) = 1 if the following conditions are met.

• Persistence and liveness. per(view) = 1 and liv(view, t) = 1 (see Subsec-

tion 2.1.2).

• Chain growth. There exists a parameter cg > 0 such that, for any honest player

i at any rounds r and r′ = r + Ω(κ), we have, len(Cr′i ) − len(Cri ) ≥ (r′ − r)cg,

where, Cri , Cr
′
i are the chains of the player i at round r, r′, respectively.

• Chain quality. There exists a parameter cq > 0 such that, for any honest player

i at any rounds r, among any k = Ω(κ) consecutive blocks in the chain Cri , the

fraction of honest blocks is at least cq.

• Consistency. For any honest player i at rounds r and any honest player j at

rounds r′ > r, after removing the last k block of Cri , we obtain a prefix of the

chain Cr′j .

Let emax be the number of epochs in the execution. For i ∈ [0..emax], let viewi

be the view of nodes in view up until the last round of epoch i (the last round in

which there exists an honest node with the chain of length i ·L). For ∆ = O(log n)δ,

we define Si,Ri as the events where protocol ΠCSN achieves the security properties

and reliable dissemination, respectively, up until epoch i:

Si
def
= (view← EXECΠCSN

A,Z (κ) : sec(viewi) = 1),

Ri
def
= (view← EXECΠCSN

A,Z (κ) : rel(viewi,∆) = 1).

44



In the induction proof, for each epoch j ∈ [1..emax], we prove

Pr[Sj ∧Rj+1] > 1− (2j + 1)ε(κ).

The statement for j = emax indicates that protocol ΠCSN achieves the security prop-

erties.

Basis step (step 0-B). We assume a bootstrapping condition where the network of

honest nodes is connected with a small diameter at epoch 1. Thus, protocol ΠCSN

achieves reliable dissemination at epoch 1, i.e., Pr[R1] > 1 − ε(κ). The bootstrap-

ping condition can be achieved through a trusted setup or a one-time decentralized

bootstrapping scheme.

Induction step. Given that the hypothesis is true for j = i− 1, (where i ∈ [1..emax]),

we will prove the statement is true of j = i. The induction step consists of two parts

as follows.

• Step i-A: Given from step (i− 1)-B that

Pr[Si−1 ∧Ri] > 1− (2i− 1)ε(κ).

We prove Pr[Si ∧Ri] > 1− 2iε(κ) by showing that

Pr[Si | Si−1 ∧Ri] > 1− ε(κ).

• Step i-B: Given from step i-A that

Pr[Si ∧Ri] > 1− 2iε(κ).

We prove Pr[Si ∧Ri+1] > 1− (2i+ 1)ε(κ) by showing that

Pr[Ri+1 | Si ∧Ri] > 1− ε(κ).

45



2.3.1.1 Step i-A: Achieving the security properties from reliable dissem-

ination

Assuming that ΠCSN has achieved the security properties up until epoch i − 1,

we will now prove that it also achieves security properties up until epoch i. First, we

summarize the security analysis of Nakamoto’s protocol in the PSS model [88]. Then,

we can reduce the security of ΠCSN in the SNM model to the security of Nakamoto’s

protocol ΠNak in the PSS model, provided that the CoSpaN protocol achieves reliable

dissemination.

Nakamoto’s protocol in PSS model [88]. We summarize the security analysis of

Nakamoto’s protocol ΠNak in PSS model [88], where nodes can send messages to all

other nodes within a bounded time. We then demonstrate that the security of the

CoSpaN protocol ΠCSN can be reduced to the security of ΠNak if the reliable dissem-

ination property is achieved. We say a tuple (n, ρ,∆,A,Z) with ΓPSS(n, ρ,∆) = 1 is

ΓPSS-admissible w.r.t (Π,Λ) if reliable dissemination is given as an assumption, i.e.,

any message sent by an honest node is delayed by at most ∆ rounds before sending

to all other nodes. Further, ΓPSS-admissible environments, in each round, each node

can make 1 query to the random oracle (flat model).

Let p = T
2κ

be the probability that a node can generate a new block with a single

query. We consider the following two quantities. Let α(n, ρ,∆) = 1 − (1 − p)(1−ρ)n

be the probability that at least one honest node generates a new block in one round.

Let β(n, ρ,∆) = ρnp be the expected number of blocks that the adversary can mine

in a round. When the n, ρ,∆ is clear from the context, we simply write α, β. The

analysis in [88] considers environments with a predicate Γ∗PSS with the honest majority

assumption. For n,∆ ∈ N, ρ ∈ (0, 1), we say Γ∗PSS(n, ρ,∆) = 1 if α(1−2(∆+1)α) > β.

Definition 7 (ΓPSS-admissible environments). We say a tuple (n, ρ,∆,A,Z) with

46



ΓPSS(n, ρ,∆) = 1 is ΓPSS-admissible w.r.t (Π,Λ) if A, Z are probabilistic polynomial-

time algorithms, and for every κ ∈ N, for every view in the support of EXECΠ,A,Z(κ),

the following holds:

1. The adversary A can control at most ρ · n nodes, where n is the total number

of nodes, and each node has 1 mining power.

2. Conditions (2) in Definition 1.

3. Any message sent by an honest node is delayed by at most ∆ rounds before

sending to all other nodes.

We can achieve the security properties for ledger as follows.

Lemma 8 (Theorem 7.4 in [88]). Consider protocol ΠNak in Γ∗PSS-admissible environ-

ments. Protocol ΠNak maintains a ledger that satisfies persistence and liveness with

the “wait time” t = κ
(1−ε)α .

In Pass et al. [88], the security properties for ledger are proven based on three

security properties for consensus called chain growth, common prefix, and chain qual-

ity.

Chain growth. For a chain growth parameter cg and view ← EXECΠV,A,Z(κ), we

define grw(view, cg) = 1 iff for any honest player i at any rounds r and r′ = r + t

(where t = Ω(κ)), we have, len(Cr′i ) − len(Cri ) ≥ tcg where, Cri , Cr
′
i are the chains of

the player i at round r, r′, respectively.

Definition 9 (Chain growth). A blockchain protocol (ΠV,Λ) achieves chain growth

in Γstat-environments if there exists a chain growth parameter cg > 0 such that

Pr[view← EXECΠV,A,Z(κ) : grw(view, cg) = 1] ≥ 1− ε(κ),

in all Γstat-admissible environments.

47



Chain quality. For a chain quality parameter cq and view ← EXECΠV,A,Z(κ), we

define qty(view, cq) = 1 iff for any honest player i at any rounds r, among any

k = Ω(κ) consecutive blocks in the chain Cri , the fraction of honest blocks is at least

cq. and r′ = r + t, we have, len(Cr′i )− len(Cri ) ≥ t · cg.

Definition 10 (Chain quality). A blockchain protocol (ΠV,Λ) achieves chain quality

in Γstat-environments if there exists a chain quality parameter cq > 0 such that

Pr[view← EXECΠV,A,Z(κ) : qty(view, cq) = 1] ≥ 1− ε(κ),

in all Γstat-admissible environments.

Common prefix. For a view ← EXECΠV,A,Z(κ), we define cns(view) = 1 iff for any

honest player i at any rounds r and any honest player j at any rounds r′ > r, after

removing the last k = Ω(κ) block of Cri , we obtain a prefix of the chain Cr′j .

Definition 11 (Common prefix). A blockchain protocol (ΠV,Λ) achieves chain quality

in Γstat-environments if

Pr[view← EXECΠV,A,Z(κ) : cns(view) = 1] ≥ 1− ε(κ),

in all Γstat-admissible environments.

The Nakamoto’s protocol achieves chain growth, chain quality, and consistency

as follows.

Lemma 12 (Theorem 4.1 (chain growth), Theorem 4.3 (consistency), Theorem 4.2

(chain quality) in [88]). Consider Nakamoto’s protocol in Γ∗PSS-admissible environ-

ments. Nakamoto’s protocol achieves chain growth with parameter cg = (1 − ε)γ

where ε > 0, γ = α
1+∆α

; chain quality with parameter cq = 1 − (1 + ε)β
γ

; and consis-

tency.

48



CoSpaN in SNM model (given reliable dissemination). Given the event Ri,

which signifies that protocol ΠCSN achieves reliable dissemination up until epoch i,

we can reduce the security of ΠCSN in the SNM model to that of Nakamoto’s protocol

ΠNak in the PSS model. Intuitively, since any valid message can be disseminated

within a bounded time ∆, we can simulate an execution in the PSS model to achieve

the same message delay as in the SNM model. Additionally, in the non-flat mining

model, each node v can be considered as a cluster of multiple nodes in the flat mining

model. Similar to [88], we consider environments with a predicate Γ∗stat that assumes

an honest majority. For n,Q, δ ∈ N, η, ρ ∈ (0, 1); we say Γ∗stat(n,Q, η, ρ, δ) = 1 if

there exists some ∆ ∈ N such that, ∆ = O(log n)δ and Γ∗PSS(Q, ρ,∆) = 1.

Lemma 13 (Step i-A). Consider protocol ΠCSN in Γ∗stat-admissible environments.

For any i ∈ N, we have, Pr[Si | Si−1 ∧Ri] > 1− ε(κ).

Proof of Lemma 13. We will reduce the security of ΠCSN in Γ∗stat-admissible environ-

ments to the security of ΠNak in Γ∗PSS-admissible environments.

More concretely, consider a tuple (n,Q, η, ρ, δ,A,Z) that is Γ∗stat-admissible with

respect to ΠCSN. We will construct an environment Z ′ and an adversary A′ such that

the tuple (Q, ρ,∆,A′,Z ′) is Γ∗PSS-admissible with respect to ΠCSN. Based on Lemma

8, protocol ΠNak achieves persistence and liveness in Γ∗PSS-admissible environments.

Thus, we can prove the security of Π by mapping the execution of protocol ΠCSN in

(n,Q, η, ρ, δ,A,Z) to the execution of protocol ΠNak in (Q, ρ,∆). Indeed, consider

the execution EXECΠCSN
A,Z (κ) and a modified execution in which after some round r,

nodes run the protocol ΠCSN in the presence of Z ′ and A′. We will show that by

fixing the randomness, the views in the support of the two executions are compatible

with high probability.

We say view1 and view2 are compatible, denoted by view1
c
= view2, if at any

49



round r, for any honest node i in view1, there exists an honest node j in view2 such

that the local chain of i and j are the same.

We construct an environment Z ′ from the environment Z as follows:

• For each node i that is activated by Z, if qi > 0, the environment Z ′ initiates

a set F (i) of qi nodes in which each node has 1 mining power.

• If the environment Z corrupts a node i, the environment Z ′ corrupts all nodes

in F (i).

• In each round, the environment Z ′ sends the same input that Z sends to i to

all nodes in F (i).

• In each round, nodes in F (i) receive the same results from the random oracle

queries as the node i.

We also construct a new adversary A′ from the adversary A as follows:

• Upon A sending a message to an honest node i (from a malicious node), the

adversary A′ sends the same message to all nodes in F (i).

• Consider a message m that is generated at an honest i. Let ∆ij(m) be the time it

takes for node i to send a message to node j in the point-to-point communication

model. Upon a node in F (i) broadcasting the message m, the adversary A′

immediately sends m to all nodes in F (i) and delays for min(∆,∆ij(m)) rounds

before sending the message to all nodes in F (j).

AsA and Z are probabilistic polynomial-time algorithms, we have thatA′ and Z ′

are also probabilistic polynomial-time algorithms. Additionally, Γ∗stat(n,Q, η, ρ, δ) =

1, so Γ∗PSS(Q, ρ,∆) = 1, meaning that (Q, ρ,∆,A′,Z ′) is Γ∗PSS-admissible with respect

to ΠCSN.

50



Let EXEC1(λ) and EXEC2(λ) denote the output of the executions EXECΠCSN,A,Z(κ)

and EXECΠNak,A′,Z′(κ), respectively, with the randomness fixed to λ. Here, the ran-

domness λ can be partitioned into two parts: λ1 is used when nodes query the random

oracle to generate new blocks, and λ2 is used when nodes generate the keys of the

VRFs.

Let wi be the latest round in EXEC1(λ) such that the maximum epoch in the

view of an honest player is i. Let EXEC1wi(λ) and EXEC2wi(λ) be the joint view of

all nodes in EXEC1(λ) and EXEC2(λ), respectively, until round wi.

We consider the case where rel(EXEC1wi(λ),∆) = 1, i.e., any honest node in

EXEC1wi(λ) can disseminate any message to all honest nodes within ∆ rounds. In

this case, for any honest node i and any message m, the nodes in A(i) (in EXEC2wi(λ))

receive m (from other honest nodes and the adversary) at the same round as the node

i (in EXEC1wi(λ)). Thus, at any round r, the local chain of i is the same as the local

chain of all nodes in A(i), i.e., EXEC1wi(λ)
c
= EXEC2wi(λ).

We have,

Pr
λ

[EXEC1wi(λ)
c
= EXEC2wi(λ)] ≥ Pr

λ
[rel(EXEC1wi(λ),∆)]. (2.4)

Consider an honest node i at round r, and an honest node j at round r′ ≥ r

in EXEC1wi(λ). If EXEC1wi(λ)
c
= EXEC2wi(λ), then there exists an honest node i′

at round r and an honest node j′ at round r′ in EXEC2wi(λ) such that the local

chain of i at round r (respectively, the local chain of j at round r′) is the same

as the local chain of i′ at round r (respectively, the local chain of j′ at round r′).

Thus, based on Definition 2, if EXEC1wi(λ)
c
= EXEC2wi(λ), then per(EXEC2wi(λ)) =

per(EXEC1wi(λ)). Using similar arguments for liveness and reliable dissemination, we

51



have,

If EXEC1wi(λ)
c
= EXEC2wi(λ),

then sec(EXEC1wi(λ)) = sec(EXEC2wi(λ)).

Hence, we have,

Pr[view← EXECΠCSN
A,Z (κ) : sec(view) = 1]

= Pr
λ

[sec(EXEC1(λ)) = 1]

≥Pr
λ

[sec(EXEC2(λ)) = 1]× Pr
λ

[EXEC1wi(λ)
c
= EXEC2wi(λ)]

≥(1− ε(κ))× Pr
λ

[EXEC1wi(λ)
c
= EXEC2wi(λ)] (Lemma 8)

≥Pr
λ

[rel(EXEC1wi(λ),∆)]− ε(κ) (Eq. 2.4).

2.3.1.2 Step i-B: Achieving reliable dissemination from the security prop-

erties

Given that protocol ΠCSN achieves the security properties up until epoch i, we

will prove that protocol ΠCSN achieves reliable dissemination up until epoch i+ 1. To

ensure reliable dissemination, we demonstrate that the diameter of the network of

honest nodes is bound by O(log n). This is achieved by showing that the number of

honest core nodes is sufficiently large and the connections between honest nodes are

verifiably random. We then bound the diameter of the network of honest nodes by

proving 1) the network of honest core nodes has a connected diameter of O(log n),

and 2) each periphery node is connected to at least one honest core node.

Core-periphery graph. Given the event that protocol ΠCSN achieves the security

52



properties (persistence, liveness, chain growth, chain quality, and consistency) and

reliable dissemination up until epoch i, we will prove that protocol ΠCSN achieves

reliable dissemination up until epoch i+ 1 with high probability.

Let G = (N,E) be the network at the i-th epoch3, where N is the set of partici-

pating nodes and E is the set of connections. The network G can be obtained from the

core-periphery graph that is constructed using the P2P protocol ΠP2P. Let Ḡ = (N̄, Ē)

be the core-periphery graph, where N̄ = N ∪ C̄, C̄ is a set of core registrations that

are included in the registration period, and Ē is the set of verifiable random connec-

tions that are established in the topology construction of the P2P protocol ΠP2P. In

the P2P protocol ΠP2P, each participating node in N acts as one periphery node and

(possibly) multiple core nodes. For example, if a participating node v has two core

registrations included in the registration period, it can be mapped as 3 nodes in N̄:

one periphery node and two core nodes. Each node in Ḡ can be mapped to exactly

one node in G. Thus, we can obtain the network G by merging corresponding nodes

in the core-periphery graph Ḡ.

Let H̄ be the set of honest nodes in the core-periphery graph Ḡ, i.e., the set of

core and periphery nodes that are mapped to honest participating nodes in H. Let

G[H] be the honest network with the set of nodes H and the set of edges consisting

of all the edges in G that have both endpoints in H. Similarly, let Ḡ[H̄] be the

honest core-periphery graph. The diameter of the honest network G[H] can be upper-

bounded by the diameter of the honest core-periphery graph Ḡ[H̄], i.e., Diam(G[H]) ≤

Diam(Ḡ[H̄]). Indeed, each node in Ḡ[H̄] can be mapped to exactly one node in G[H].

Thus, the distance between two honest nodes in G[H] is bounded by the distance of

the two corresponding nodes in Ḡ[H̄]. We show that protocol ΠCSN achieves reliable

3G is constructed at the end of epoch i and will be used in epoch i+ 1.

53



dissemination based on the diameter Diam(Ḡ[H̄]) of the honest core-periphery graph

as follows.

Lemma 14. For any epoch i, we have

Pr [Ri+1 | Si ∧Ri] ≥ Pr
[
Diam(Ḡ[H̄]) ≤ O(log n) | Si ∧Ri

]
.

Proof. We first show that any honest node can deliver any message to all other honest

nodes within ∆ rounds via the honest network G[H]. Indeed, a node can send messages

to all its neighbors on the honest network G[H] within δ rounds. Additionally, the

distance between two honest nodes on G[H] is at most ∆
δ

. Thus, any message from

an honest node can be delivered to all honest nodes within ∆ rounds.

Next, we show that nodes can finish establishing connections before epoch i+ 1

starts. Equivalently, we will show that nodes cannot generate more than k blocks in

te rounds.

Let r1 be the first round in the execution in which the length of the chain of any

honest node is at least i · L − k, i.e., all honest nodes enter the second part of the

grace period of epoch i and start establishing the new connection. Let r2 = r1 + te.

From round r1 +1 to round r2, nodes make at most te ·Q queries to the random oracle

in which the probability of success in generating a new block of a single query is p.

We represent each query by a Bernoulli random variable with an expected value of

p. Let nb be the number of blocks that are generated from round r1 + 1 to round r2.

For any ε > 0 such that te <
k

(1+ε)Q·p , using the Chernoff bound in Lemma 56 on at

most te ·Q Bernoulli random variables, we have,

Pr[nb < k] = 1− e−Ω(κ).

54



Thus, at round r2, with a probability of 1 − e−Ω(κ), the length of the longest

chain is at most i · L − k + nb < i · L, i.e., nodes have not yet entered epoch i + 1.

Hence, the network Ḡ(i) is constructed before epoch i + 1 starts. Additionally, any

honest node can deliver any message to all other honest nodes within ∆ rounds via

the honest network G[H]. Therefore, protocol ΠCSN achieves ∆-reliable dissemination

until epoch i+ 1.

Honest core nodes. We demonstrate that the number of honest core nodes is

sufficiently large. The selection of core nodes through a PoW mechanism implies that

the number of honest core nodes is proportional to the total mining power of honest

nodes. Therefore, a big enough core width can ensure that the number of honest

core nodes is high enough. To be more specific, in each round, malicious nodes can

query the random oracle at most ρQ times, while honest nodes can query it at least

(1− ρ) times. According to Eq. 2.2, the probability of successfully generating a core

registration with a single query to the random oracle is p′ = Tcore
2κ

. Thus, the expected

number of core registrations of honest nodes in each round is at least (1 − ρ)Q · p′.

Also, a fraction ω of honest nodes are willing to participate as core nodes. Therefore,

in each round, the expected number of core registrations generated by honest nodes

willing to participate as core nodes is (1− ρ)ω ·Q · p′ = (1− ρ)ω ·Q · p s
Lreg

(as p = T
2κ

and Tcore = s
Lreg

T, we replace p′ = p s
Lreg

).

Nodes can participate as core nodes in the next epoch if their core registra-

tions are included in the registration period of Lreg blocks. From the chain quality

property, there is at least one honest block in the last k blocks. Thus, all honest

core registrations generated within the first Lreg − k blocks (before the last honest

block is generated) will be included in the registration period. It takes nodes at

55



least (Lreg − k)(1− o(1))/(Q · p) time to generate Lreg−k blocks. Therefore, in each

epoch, the number of honest core nodes is at least (Lreg − k)(1− o(1))/(Q · p) · (1−

ρ)ω ·Q · p s
Lreg

= q · s, where q = (1− o(1))(1− ρ)ω(1− k
Lreg

).

Lemma 15 (Honest core nodes). Consider any epoch i, let hc be the number of honest

core nodes. We have, Pr[hc ≥ q·s | Si∧Ri] > 1−e−Ω(κ), where q = (1−ρ)ω(1− 1
Lreg

)−ε,

and ε > 0.

Proof. We first show that with high probability, all honest nodes have the same view

of the set of core nodes. Here, we define the set of core nodes C̄ as the union of all the

sets of core nodes in the view of honest nodes. For each participating honest node

u ∈ H, let C̄(u) be the set of core nodes in the view of node u. The set of core nodes

is defined as

C̄ =
⋃
u∈H

C̄(u).

In the CoSpaN protocol, nodes start constructing the network after k blocks

since the registration period ends. Thus, based on the consistency property, when

nodes construct the network, all honest nodes have the same view of the blocks

in the registration period. Hence, they can obtain the same set of core nodes C̄.

Consequently, we have that all honest nodes have the same view of the set of core

nodes H̄c.

Let r1 be the first round in the execution in which the length of the chain of any

honest node is at least iL, i.e., all honest nodes are at epoch i.

For any ε1 > 0, let r2 = r1 + (1− ε1)
Lreg−k
Q·p . From round r1 + 1 to round r2, nodes

make at most (1 − ε1)
Lreg−k

p
queries to the random oracle in which the probability

of success in generating a new block of a single query is p. We represent each query

by a Bernoulli random variable with an expected value of p. Let nb be the number

of blocks that are generated from round r1 + 1 to round r2. By using the Chernoff

56



bound in Lemma 56 on at most (1− ε1)
Lreg−k
Q·p Bernoulli random variables, we have,

Pr[nb < k] ≤ 1− e−Ω(κ).

Using the Chernoff bound in Lemma 56, we have,

Pr[nb < (1− ε1)(1 + ε1)(Lreg − k)]1− e−Ω(κ)

⇒Pr[nb < (Lreg − k)]1− e−Ω(κ)

Let h̄c be the number of registration blocks generated by honest nodes willing to

participate as core nodes from round r1 to r2. In each round, honest nodes willing

to participate as core nodes make (1 − ρ)ω queries to the random oracle. Thus,

from round r1 to round r2, honest nodes willing to participate as core nodes make

(1− ε1)
Lreg−k

p
(1− ρ)ω queries to the random oracle. Here, the probability of success

in generating a new registration block from a single query is p′ = p s
Lreg

. We represent

each query by a Bernoulli random variable with an expected value of p′. We choose

ε2 > 0 such that 1− ε = (1− ε1)(1− ε2). Using the Chernoff bound in Lemma 56, we

have,

Pr[h̄c > (1− ε)(1− ρ)(1− 1

Lreg

)ω · s] > 1− e−Ω(κ).

At round r2, with a probability of 1 - e−Ω(κ), we have, 1) the length of the

longest chain is at most iL+ Lreg − k; and 2) the number of registration blocks that

are generated by honest nodes, who are willing to participate as core nodes is at least

(1− ε)(1− ρ)(1− 1
Lreg

)ω.

From the chain quality property in Lemma 12, with a probability of 1− e−Ω(κ),

there exists an honest block from the (i ·L+Lreg−κ+1)-th block to the (i ·L+Lreg)-

th block. Therefore, if an honest node registers as a core node (by propagating a

57



registration block) before the (Lreg−k)-th block of the registration period is generated,

it will be selected as a core node in the next epoch (i.e., the registration block will be

included on the blockchain). Thus, we have,

Pr[hc ≥ h̄c] > 1− e−Ω(κ)

⇒Pr[hc ≥ q · s] > 1− e−Ω(κ)

Verifiable random connections. The verifiable random connections property

states that the probability of there being a connection from an honest core node

to another honest node (core or periphery) is the same. In CoSpaN protocol, a node

core can establish a connection to another node if it can compute a VRF output of

the randomness and the other node’s identity that is smaller than a given threshold.

Based on the consistency property of the blockchain, all nodes will obtain the same

randomness value. Additionally, as the output of VRFs is random, we can ensure

that the probability of there being a connection from an honest core node to another

honest node is the same.

Lemma 16 (Verifiable random connections). For any honest node u ∈ H̄ and any

honest core node v ∈ H̄c, let µ̄ = d
2s
− ε(κ), we have,

Pr[Xv→u = 1 | Si ∧Ri] ≥ µ̄. (2.5)

Proof. First, we show that all honest nodes obtain the same randomness rndi at epoch

i. In the CoSpaN protocol, nodes obtain the randomness rndi after k blocks since

the registration period ends. Based on the consistency property, at that moment,

all honest nodes have the same view of the blocks in the registration period. As the

randomness rndi is computed based on the last k blocks in the registration period, all

58



honest nodes obtain the same value of the randomness rndi.

Let X̄u→v be the event where a core node u can solve the inequality in Eq.2.3 for

another core or periphery node v. We prove that, for any honest core nodes u, v, we

have,

Pr[X̄u→v] ≥ µ̄ =
d

2s
− ε(κ).

Assume towards contradiction that there exists a non-negligible number p such

that

Pr[X̄u→v] <
d

2s
− p.

Let sk′ be the private key for VRF of the node u. Since the public-key encryption

and the signature schemes are secure, we have,

Pr

[
Fsk′(rndi‖v) <

d

2s
2κ
]
<

d

2s
− p

We will construct an adversary A that is given a query to the oracle Proveskv as

follows.

• Compute x = rndi‖v and send x to the prover.

• Upon receiving yb from the prover.

• If yb <
d
2s

2κ, return b′ = 1. Otherwise, return b′ = 0.

We have

59



Pr[b = b′] =
1

2

(
Pr

[
y0 ≥

d

2s
2κ
]

+ Pr

[
y1 <

d

2s
2κ
])

=
1

2

(
Pr

[
Fsk′(x) ≥ d

2s
2κ
]

+
d

2s

)
>

1

2

(
1− d

2s
+ p+

d

2s

)
=

1

2
(1 + p)

This contradicts the pseudo-randomness property of VRF.

Similarly, for any honest core node u and a periphery node v, we have,

Pr[X̄u→v] ≥ µ̄.

The node v accepts the connection for a core node u if node u can provide an

output of the VRF that satisfies the hash inequality in Eq. 2.3. If the node u is

honest, it always requests to establish a connection to a node v if it can find the

suitable VRF output. Hence, we have,

Pr[Xu→v] = Pr[X̄u→v] ≥ µ̄.

Reliable dissemination. We prove that the ΠCSN protocol achieves reliable dis-

semination by demonstrating that the diameter of the network among honest nodes

is bounded by O(log n). We establish this result in two steps. First, we model the

network of honest core nodes as an Erdos-Renyi random network. Following Theo-

rem 7.1 in [45], we can show that the diameter of the network of honest core nodes is

bounded by O(log n). Secondly, each honest core node will connect to any periphery

node with a certain probability. Thus, with a sufficient number of core nodes, each

60



honest periphery node will be connected to at least one honest core node.

Lemma 17. For d ≥ 4 log s, we have,

Pr[Diam(Ḡ[H̄c]) ≤ O(log n)] ≥ 1− e−Ω(κ).

Proof. For any honest core nodes u, v ∈ H̄c, we have,

Auv ≥ µ,

where µ = 1− (1− µ̄)2, µ̄ = d
2s
− ε(κ).

Thus, there exists a constant c1 > 2 such that

µ =
c1 · log hc

hc

.

For any node v ∈ H̄c, let

Nk(v) = {w ∈ H̄c : dist(v, w) = k},

where dist(v, w) is the distance between v and w. We define the event

Fk = |Nk(v)| ∈ Ik =

[(
hc · µ

2

)k
, (2hc · µ)k

]
.

For any constant c′ > 0, let q = log(hc) ∗ log(h2
c/c
′)/ log(hc · µ). Let bin(x, y)

be the binomial distribution with parameters x and y, i.e., the discrete probability

distribution of the number of successes in a sequence of x independent experiments

61



in which the probability of success in each experiment is y. For k ≤ dq/2e, we have

Pr[F̄k | F1, · · · , Fk−1]

= Pr

[
bin

(
hc −

k−1∑
i=1

|Ni(v), 1− (1− p)|Nk−1(v)|

)
/∈ Ik

]

≤Pr

[
bin

(
hc − o(hc),

3

4

(
hc · µ

2

)k−1

µ

)
≤
(
hc · µ

2

)k]

+ Pr

[
bin

(
hc − o(hc),

5

4
(2hc · µ)k−1 µ

)
≥ (2hc · µ)k

]
= e−Ω((hc·µ)k) = e−Ω(dk).

Using union bound, we have

Pr[F̄k] ≤
k∑
i=1

Pr[F̄i | F1, · · · , Fi−1]

=
k∑
i=1

e−Ω(dk) = e−Ω(d).

Thus, with probability 1− e−Ω(d), for any node u, v, we have

|Ndlog(hc)/2e(v)| ≥
(
hc · µ

2

)dlog(hc)/2e

,

and |Nblog(hc)/2c(u)| ≥
(
hc · µ

2

)blog(hc)/2c

.

Let X = Ndlog(hc)/2e(v) and Y = Nblog(hc)/2c(u) 6= ∅ We have, either X ∩ Y 6= ∅ or

Pr[@ an edge between X, Y ] = (1− µ)(
hc·µ
2 )

log(hc)

≤ e−Ω(d).

In other word, for any node u, v, we have

Pr[dist(u, v) > log(hc) + 1] ≤ e−Ω(d).

62



Using union bound on all h2
c pairs of nodes, we have,

Pr[Diam(Ḡ[H̄c]) > log(hc) + 1] ≤ h2
ce
−Ω(d) = e−Ω(d)−log hc

= e−Ω(d).

Lemma 18. Let RB be the event where all honest periphery nodes have at least one

connection to a core node. For d > k
− log q

. We have,

Pr[RB | Si ∧Ri] ≥ 1− e−Ω(κ).

Proof. Recall that, the probability that there exists a connection between an hon-

est core and an honest periphery node is d
2s

. Thus, the probability that an honest

periphery node has no connection to any honest core nodes is

(
1− d

2s

)hc
=

((
1− d

2s

) 2s
d

)hc·d
2s

≤ e−
hc·d
2s

Since the number of periphery honest node is smaller than h, using union bound, we

have, the probability that there exists an honest periphery node has no connection

to any honest core nodes is

n · e−
hcd
2s = e−(hcd2s

−log h)

= e−Ω(κ).

We are now ready to prove the CoSpaN protocol achieve reliable dissemination.

63



Lemma 19 (Step i-B). Let ∆ = O(log n) × δ, k = Ω(κ). Consider protocol ΠCSN

with parameters L > k
(1−ρ)ω

+ 2k, s > k and d ≥ max( k
− log q

, 4 log s). We have,

Pr[Ri+1 | Si ∧Ri] > 1− ε(κ).

Proof. Combining Lemma 17 and Lemma 18, with probability 1 − e−Ω(κ), we have

that the maximum distance between two honest core nodes is at most log hc + 1,

and all honest periphery nodes connect to at least one honest core node. Thus, the

maximum distance between an honest periphery node and an honest core node is

at most log hc + 2. Therefore, the maximum distance between two honest periphery

nodes is at most log hc + 3.

We have that

Pr[Diam(Ḡ(i)) ≤ log hc + 3] ≥ 1− e−Ω(d).

Note that an honest node can send any messages to all of its neighbors within

a network round of δl time units. Thus, with a probability of 1 − e−Ω(d), an honest

node can send any messages to all honest nodes within

∆ = O(log hc)× δl.

2.3.2 Network sparsity

We analyze the sparsity of the CoSpaN network. In the CoSpaN protocol, nodes

establish verifiable random connections to other nodes based on public randomness. If

the randomness is fixed, we can use a concentration inequality to bound the number

of connections in the network. However, an adversary can perform a randomness

grinding attack, i.e., use different values of randomness to increase the chance of

connecting malicious nodes to honest nodes and increasing the sparsity. Fortunately,

64



based on the chain quality property, the adversary cannot try too many different

values of randomness. Thus, the sparsity of the network remains bounded.

Lemma 20 (Network sparsity). For any ε > 0, with probability 1− eΩ(d), the average

degree (sparsity) of an honest node in G is at most D = 2(1+ε)
(1−η)

(1 + s
n
)d.

Proof. We first analyze the sparsity of the core-periphery graph Ḡ and the network

G. To analyze the sparsity of the core-periphery graph, we analyze the maximum

number of core nodes and then bound the number of connections from those core

nodes.

We bound the number of connection in the core-periphery graph when the ran-

domness rndi is fixed. Let r1 be the first round in the execution in which the length

of the chain of any honest node is at least iL, i.e., all honest nodes are at epoch i. For

any ε1 > 0, let r2 = r1 + (1 + ε1)
Lreg

Qp
]. Let nb, nc be the number of blocks, registration

blocks that are generated from round r1 + 1 to round r2.

From round r1+1 to round r2, nodes make at most (1+ε1)
Lreg−k

p
queries to random

oracle in which the probability of success in generating a new block, registration block

of a single query are p, p′ respectively.

We choose ε2 such that (1− ε2)(1 + ε1) = 1, using the Chernoff bound in Lemma

56 on at most (1 + ε1)
Lreg−k

p
Bernoulli random variables with the expected value of p,

we have,

Pr[nb ≥ Lreg − k] ≥ 1− e−Ω(κ).

We choose ε3, ε4 > 0 such that 1 + ε4 = (1 + ε1)(1 + ε3). Using the Chernoff

bound in Lemma 56 on at most (1 + ε1)
Lreg−k

p
Bernoulli random variables with the

65



expected value of p′ = p s
Lreg

, we have,

Pr[nb ≥ (1 + ε4)s] ≥ 1− e−Ω(κ).

At round r2, with a probability of 1 - e−Ω(κ), we have, 1) the length of the

longest chain is at least iL+Lreg; and 2) the number of registration blocks is at most

(1 + ε4)s. Recall that, in the CoSpaN protocol, nodes can only register as core nodes

in the registration period. Thus, with a probability of 1 - e−Ω(κ), the number of core

nodes at epoch i is at most ŝ = (1 + ε4)s.

For a core node v and a (core or periphery) node u, let Xv→u be the Bernoulli

random variable that represent whether or not there exists a connection from v to u.

We have, Pr[Xv→u = 1] = µ̄ = d
2s

.

In the the core-periphery graph Ḡ, with a probability of 1 - e−Ω(κ), there are at

most n periphery nodes and ŝ core nodes. Thus, the number of connections in G+ is

at most

ŝ∑
v=1

n+ŝ∑
u=1

Xv→u.

Using the Chernoff bound in Lemma 56, for ε5 > 0, we have,

Pr[
ŝ∑

v=1

n∑
u=1

Xv→u ≤ (1 + ε5)ŝ(n+ ŝ)
d

2s
] ≥ 1− e−Ω((n+s) d

2
).

Hence, there exists a constant ε > 0 such that, with a probability of 1 - e−Ω(κ),

the number of connections in G+ is at most (1 + ε)(n+ s)d
2
.

Now, we analyze degree of a node when the randomness rnd is computed based

on the hash value of the blocks in the previous epoch. Since the miner does not know

the hash value until the new block is created, we consider the hash value of any block

as a perfect randomness. In other words, the adversary cannot predict the hash value

66



of future blocks (even when that block is create by a malicious miner). Thus, the

adversary can only manipulate by changing the hash value of the last block in the

registration period, i.e., if an malicious miner create the last block in the registration

period, the adversary can choose either to publish the that block or not. Thus, the

adversary can try at most O(κ) different values of the randomness rnd. Using union

bound, we have with probability at least 1 − κeΩ((n+s) d
2
−log k) = 1 − eΩ(κ), for any

constant ε > 0, the number of connections in G+ is at most (1 + ε)(n+ s)d
2
.

We now bound the sparsity of the network G based on the core-periphery graph

Ḡ. Since the sum of degree of nodes in network G does not exceed that in the the

core-periphery graph Ḡ, with a probability of 1 - e−Ω(κ), the number of connections

in G is at most (1 + ε)(n+ s)d
2
. Thus, the sum of degree of nodes in G is

(1 + ε)(n+ s)d.

As the number of honest nodes is at least n(1− η), with a probability of 1 - e−Ω(κ)the

average degree of nodes in G is

(1 + ε)
(n+ s)d

n(1− η)
(1 + ε) = (1 +

s

n
)/(1− η)d.

We also analyze the degree of an honest physical node. We consider two cases of

mining nodes and non-mining nodes as follows.

• Degree of a mining node. Let q be the maximum number of queries that an

honest node can make in a round. For any ε > 0, with high probability, an

honest node can register at most (1 + ε) q
Q
s times as core nodes. Thus, for any

ε > 0, the degree of an honest physical node is at most (1 + ε) q(2s+n)
2Q

d.

• Degree of a non-mining node. A non-mining node can only participate and

67



periphery node. Thus, the average degree of a non-mining node is d
2
.

2.3.3 Main theorem

We are now ready to prove the security of CoSpaN protocol in a sparse network

by induction as follows. From the bootstrapping condition and Lemma 13, we have

protocol ΠCSN is secure in the bootstrapping epoch. Then, combining Lemma 13 and

Lemma 19, if protocol ΠCSN is secure in epoch i− 1, it is secure in epoch i.

Theorem 21 (Static security in a sparse network). Consider Γ∗stat-admissible en-

vironments and protocol ΠCSN with parameters L > k
(1−ρ)ω

+ 2k, s > k and d ≥

max( k
− log q

, 4 log s). Under the bootstrapping condition is satisfied, protocol ΠCSN

achieves

• persistence, liveness ; and

• D-sparsity, where D = 2(1 + ε)(1 + s
n
)/(1− η)d.

Proof. We prove the security of protocol ΠCSN, i.e.,

Pr[view← EXECΠCSN
A,Z (κ) : sec(view) = 1] ≥ 1− ε(κ),

by induction. For each epoch j ∈ [1..emax], we prove the two following hypothesis

Pr[Sj ∧Rj+1] > 1− (2j + 1)ε(κ).

As the number of epoch in the protocol execution is at most emax, we can conclude

that protocol ΠCSN is secure if the hypothesis is true for j = 2emax, i.e.,

Pr[Semax ∧Remax+1] > 1− (2emax + 1)ε(κ).

Basis step. From the bootstrapping condition, protocol ΠCSN achieve reliable dissem-

68



ination at epoch 1, i.e.,

Pr[R1] ≥ 1− ε(κ).

Induction step. Given that the hypothesis is true for j = i− 1, (where i ∈ [1..emax]),

we will prove the hypothesis is true of j = i. The induction step consists of two parts

as follows.

• Step i-A: Given from step (i− 1)-B that

Pr[Si−1 ∧Ri] > 1− (2i− 1)ε(κ).

From Lemma 13, we have,

Pr[Si ∧Ri] ≥ Pr[Si ∧Ri | Si−1 ∧Ri]× Pr[Si−1 ∧Ri]

= Pr[Si | Si−1 ∧Ri]× Pr[Si−1 ∧Ri]

> (1− (2i− 1)ε(κ))(1− ε(κ))

> 1− 2iε(κ).

• Step i-B: Given from step i-A that

Pr[Si ∧Ri] > 1− 2iε(κ).

From Lemma 19, we have,

Pr[Si ∧Ri+1] ≥ Pr[Si ∧Ri+1 | Si ∧Ri]× Pr[Si ∧Ri]

= Pr[Ri+1 | Si ∧Ri]× Pr[S1 ∧Ri]

> (1− 2iε(κ))(1− ε(κ))

> 1− (2i+ 1)ε(κ).

69



Thus, we have,

Pr[view← EXECΠCSN
A,Z (κ) : sec(viewi) = 1]

≥1− 2iε(κ).

Since the number of rounds in EXECΠCSN
A,Z (κ) is polynomial in κ, the number

of epochs in EXECΠCSN
A,Z (κ) is also polynomial in κ. In other words, there exists a

polynomial poly() such that emax = poly(κ). We have

Pr[view← EXECΠCSN
A,Z (κ) : sec(view) = 1]

= Pr[view← EXECΠCSN
A,Z (κ) : sec(viewemax) = 1]

≥1− 2emaxε(κ) = 1− 2poly(κ)ε(κ) = 1− ε′(κ),

where ε′(·) is a negligible function.

Further, from Lemma 20, the average degree of a node in each epoch is at most

D. Recall that, each epoch consists of L blocks. Thus, for any ε > 0, with probability

1− eΩ(κ), each epoch lasts for at least ts = L
(1+ε)(α+β)

rounds. In ts rounds, the length

of the chain of honest players increase by at most L. Thus, for any ts consecutive

rounds, there is no overlap between the connections in G(j) and G(j+2) (j ∈ N). Hence,

protocol ΠCSN achieves 2D-sparsity.

2.4 Weakly Adaptive security

In this section, we demonstrate the security of the CoSpaN protocol in several

(weakly) adaptive settings. In Subsection 2.4.1, we consider an M-adaptive adversary

that requires some time to corrupt honest nodes. Then, in Subsection 2.4.2, we ex-

amine an S-adaptive adversary that can instantly corrupt honest nodes. In Appendix

2.4.3, we conduct further analysis on the security of the protocol in the presence of an

70



S-adaptive adversary, particularly when the mining power is concentrated on a few

top nodes.

2.4.1 M-adaptive security

We extend the model in Section 5.1 in the presence of a mildly adaptive (M-

adaptive) adversary that can corrupt honest nodes during the protocol execution

in which the time it takes to corrupt honest nodes is τcorr rounds. We can prove

that protocol ΠCSN achieves the same security properties as in the static setting

(Section 2.3).

Protocol ΠCSN can defend against an M-adaptive adversary due to the fact that

the network topology dynamically changes in every epoch. According to the chain

growth property, within τcorr rounds, the length of the chain of honest players increases

by at least 2L blocks. In other words, it takes at least 2 epochs for the adversary to

corrupt honest nodes. In order to corrupt some honest nodes at epoch i, the adversary

must begin the corruption before epoch i − 2. Since the core nodes of epoch i are

selected at epoch i − 1, the adversary cannot predict the network topology of epoch

i at epoch i − 2. Therefore, the adversary cannot gain an advantage by adaptively

corrupting the honest nodes.

We consider admissible environments in the presence of an M-adaptive adversary

with a predicate Γ∗M-adap in which the honest majority assumption is given and τcorr >

2
(

k
(1−ρ)ω

+ 2k
)
/ ((1− ε)α).

Definition 22 (ΓM-adap-admissible environments). We say a tuple (n,Q, η, ρ, δ, τcorr,A,Z)

with ΓM-adap(n,Q, η, ρ, δ, τcorr) = 1 is ΓM-adap-admissible w.r.t (ΠV,Λ) if A, Z are

probabilistic polynomial-time algorithms, and for every view in the support of EXECΠV,A,Z(κ),

the following holds:

1. In each round, the environment Z can adaptively corrupt additional nodes as

71



long as the number and the hash power of malicious nodes do not exceed ηn

and ρQ, respectively. The corruption of an honest node will take τcorr rounds to

complete.

2. Conditions (2), (3), (4) in Definition 1.

Theorem 23 (M-adaptive security). Let k = Ω(κ). Consider Γ∗M-adap-admissible

environments and protocol ΠCSN with parameters k
(1−ρ)ω

+ 2k < L < τcorr(1−ε)α
2

, ε ∈

(0, 1), s > k and d ≥ max( k
− log q

, 4 log s). Under the bootstrapping condition, protocol

ΠCSN achieves persistence and liveness; and sparsity.

Proof. From the chain growth property, in τcorr rounds, the length of the chain of

honest players increases by at least 2L blocks. In other words, it takes at least 2

epochs for the adversary to corrupt honest nodes. Thus, to corrupt some honest

nodes at epoch i, the adversary must start the corruption before epoch i − 2. In

the execution of protocol ΠCSN, the network topology is unpredictable until the core

nodes are selected. As the core nodes of epoch i are selected at epoch i − 1, the

adversary cannot predict the network topology of epoch i at epoch i− 2. Hence, we

can achieve the same security as in the static case in Theorem 21.

2.4.2 S-adaptive security

We analyze the security of the CoSpaN protocol against a slow-observation adap-

tive (S-adaptive) adversary that can instantly corrupt honest nodes, but takes τobs

rounds to observe connections among honest nodes. The S-adaptive adversary is

stronger than the M-adaptive adversary when τobs = τcorr. The M-adaptive adver-

sary needs to start corrupting some honest nodes at round r − τcorr to corrupt them

at round r, while the S-adaptive adversary can start at round r. Therefore, the S-

adaptive adversary can gather more information to decide which nodes to corrupt.

72



To defend against an S-adaptive adversary, we need to increase the core width, which

in turn increases the network sparsity.

Restricted point-to-point communication model. To allow a slow observa-

tion of connections, we introduce a restricted point-to-point communication model in

which the environment is responsible for delivering all messages. The deliver delay

is determined by an algorithm D that is proposed by the adversary A before the

execution starts.

Delivering message. Consider at round r, an honest node u send a message to a

neighbor v. At a round r′ ∈ [r + 1..r + δ], the environment Z takes the view of all

nodes at the current round and uses algorithm D to determine whether or not to send

the message to node v at the current round. At round r + δ, if the node v have not

received the message yet, the environment Z will send the message to node v.

Observing connection. The adversary can observe a connection after τobs rounds.

Specifically, consider a connection between two nodes u and v that is established

at round r. At round r + τobs, if u and v are still connected, the adversary knows

about the existence of the connection between u and v.

We consider admissible environments in the presence of S-adaptive adversaries

with a predicate Γ∗S-adap in which the honest majority assumption is given and τobs >

4k
α

+ 2k
(1−2ρ)ω·α .

Definition 24 (ΓS-adap-admissible environments). We say a tuple (n,Q, η, ρ, δ, τobs,A,Z)

with ΓS-adap(n,Q, η, ρ, δ, τobs) = 1 is ΓS-adap-admissible w.r.t (ΠV,Λ) if A, Z are proba-

bilistic polynomial-time algorithms, and for every view in the support of EXECΠV,A,Z(κ),

the following holds:

1. In each round, the environment Z can adaptively instantly corrupt additional

nodes as long as the number and the hash power of malicious nodes do not exceed

73



ηn and ρQ, respectively.

2. Conditions (2), (3) in Definition 1.

3. The adversary can observe new connections among nodes after τobs rounds.

We set the core width to ensure that most honest nodes are selected as core

nodes. This way, even if the adversary can corrupt a set of nodes that control a

fraction ρ of mining power, we can still guarantee a large enough number of honest

core nodes.

Lemma 25 (Honest core nodes in S-adaptive security). For any ε > 0, let qM-adap =

(1− 2ρ)ω − k
Lreg
− ε. Consider protocol ΠCSN with parameter s > k + 2(1+ε)

qM-adap·ε2 log2 e
h,

we have,

Pr[hc ≥ s · qM-adap | Si ∧Ri] > 1− e−Ω(κ).

Proof of Lemma 25. Let H be the set of honest nodes. Consider a set W ⊆ H in

which the total mining power of all nodes in W is at least 1− 2ρ.

Let r1 be the first round in the execution in which the length of the chain of any

honest node is at least iL, i.e., all honest nodes are at epoch i.

For any ε1 > 0, let r2 = r1 + (1 − ε1)
Lreg−k
Q·p . From round r1 + 1 to round r2,

nodes make at most (1− ε1)
Lreg−k

p
queries to random oracle in which the probability

of success in generating a new block of a single query is p. We represent each query

by a Bernoulli random variable with an expected value of p. Let nb be the number

of blocks that are generated from round r1 + 1 to round r2. By using the Chernoff

bound in Lemma 56 on at most (1− ε1)
Lreg−k
Q·p Bernoulli random variables, we have,

Pr[nb < k]1− e−Ω(κ).

74



Using the Chernoff bound in Lemma 56, we have,

Pr[nb < (1− ε1)(1 + ε1)(Lreg − k)]1− e−Ω(κ),

⇒Pr[nb < (Lreg − k)]1− e−Ω(κ).

Let h̄c be the number of registration blocks that are generated by the honest nodes

that are willing to participate as core nodes from round r1 to r2. In each round, the

honest nodes in W make at least (1− 2ρ)ω queries to the random oracle. Thus, from

round r1 to round r2, the honest nodes in W make at least (1 − ε1)
Lreg−k

p
(1 − 2ρ)ω

queries to the random oracle. Here, the probability of success in generating a new

registration block of a single query is p′ = p s
Lreg

. We represent each query by a

Bernoulli random variable with an expected value of p′. We choose ε2 > 0 such that

1− ε = (1− ε1)(1− ε2). Using the Chernoff bound in Lemma 56, we have,

Pr[h̄c > (1− ε)(1− 2ρ)(1− 1

Lreg

)ωs] > 1− e−Ω(κ).

At round r2, with a probability of 1 - e−Ω(κ), we have, 1) the length of the

longest chain is at most iL+ Lreg − k; and 2) the number of registration blocks that

are generated by honest nodes in W who are willing to participate as core nodes is

at least (1− ε)(1− 2ρ)(1− 1
Lreg

)ω.

From chain quality property in Lemma 12, with probability 1 − e−Ω(κ), there

exist an honest block from the (iL + Lreg − κ + 1)-th blocks to the (iL + Lreg)-th

blocks. Thus, if an honest node register as a core node (by propagating a registration

block) before the (Lreg− k)-th block of the registration period is generated, it will be

selected as a core node in the next epoch (i.e., the registration block is included on

75



the blockchain). Thus, we have,

Pr[hc ≥ h̄c] > 1− e−Ω(κ),

⇒Pr[hc ≥ qM-adap · s] > 1− e−Ω(κ).

Next, we demonstrate that the connections between honest core nodes and other

honest nodes are verifiably random and unpredictable. This means the adversary has

no knowledge of whether there are connections among honest nodes.

Lemma 26 (Private connection in S-adaptive security). Let H̄ be the set of honest

(core and periphery) nodes and H̄c ⊆ H̄ be the set of honest core nodes at the beginning

of epoch i. Until some round r at epoch i, let W̄ ⊆ H̄ be the set of nodes that is

corrupted by the adversary. Let W̄c ⊆ W̄ be the set of corrupted core nodes. Consider

an adversary A runs some ppt algorithm to return an honest node u ∈ H̄ \ W̄ and

an honest core node v ∈ H̄c \ W̄c. We have,

Pr[Xv→u = 1 | Si ∧Ri] ≤ µ̄+ ε(κ). (2.6)

Proof of Lemma 26. We consider two cases of node u as follows.

The node u is a core node (core-core connection). Assume toward contradiction that

there exists an adversary A that can break the security definition in Eq. 2.6. Let

sk′, pk′ be the key pair that the node v holds. Recall that, the node v broadcast an

encryption using the public key of the node u. Hence, the adversary cannot learn any

information, including the VRF output, from the encryption.

We construct the adversaryA′ that is given query to the oracle Provesk′ as follows.

• Run A and obtain u and v from A.

• Compute x = rndi‖u and send x to the prover.

76



• Upon receiving yb from the prover.

• If yb < 2κ d
2s

, return b = b′. Otherwise, return b = 1− b′.

We have,

Pr[b 6= Xv→u]

=
d

2s
Pr[b = 0|Xv→u = 0] + (1− d

2s
) Pr[b = 1|Xv→u = 1]

=
d

2s
Pr[b = 0|Fskv(x) <

d

2s
2κ]

+ (1− d

2s
) Pr[b = 1|Fskv(x) ≥ d

2s
2κ].

Recall that, as A that can break the security definition in Eq. 2.6, there exists

a non-negligible number p such that

Pr[Xv→u = 1] >
d

2s
+ p,

⇒Pr[Fskv(rndi‖v) < 2κ
d

2s
] >

d

2s
+ p.

Thus, we have

Pr[b = b′] =
1

2
Pr[Fskv(rndi‖v) < 2κ

d

2s
|b = 0]+

1

2
Pr[Fskv(rndi‖v) ≥ 2κ

d

2s
|b = 1]

≥ 1

2

(
d

2s
+ p

)
+

1

2

(
1− d

2s

)
=

1

2
+

1

2
p.

This contradicts the pseudorandomness property of VRF.

The node u is a periphery node (core-periphery connection). Here, the v directly send

a request to connect to node u. Thus, the adversary cannot learn the VRF output

that node v sends to node u. Similar to the core-core connection, can prove the

core-periphery connection between two honest nodes is private.

77



Private connections ensure that an adversary cannot take advantage by adap-

tively corrupting honest nodes. This ensures that connections remain verifiable ran-

dom, even in the presence of an S-adaptive adversary.

Lemma 27 (Random verifiable connection in S-adaptive security). For any honest

node u ∈ H̄ \ W̄ and any honest core node v ∈ H̄c \ W̄c, we have,

Pr[Xv→u = 1 | Si ∧Ri] ≥ µ̄. (2.7)

Proof. We assume toward contradiction that there exists an honest node u ∈ H̄ \ W̄

and an honest core node v ∈ H̄c \ W̄c and a non-negligible number p such that

Pr
v←H̄c\W̄c,u←H̄\W̄

[Xv→u = 1 | Si ∧Ri] <
d

2s
− p.

Recall from Lemma 16 that

Pr
v←H̄c,u←H̄

[Xv→u = 1 | Si ∧Ri] ≥ µ̄.

Thus, there exists a pair of nodes v′ ∈ H̄c, u
′ ∈ H̄ in which v′ ∈ W̄c and u′ ∈ W̄

such that

Pr[Xv′→u′ = 1 | Si ∧Ri] >
d

2s
+ p′,

where p′ is a non-negligible number. This contradicts the private connection property

in Lemma 26.

Now, we can follow the same proof in the Lemma 19 (except replacing the core

quality q by qM-adap) to prove that protocol ΠCSN achieves ∆-reliable dissemination.

Then, following the same proofs and Theorem 21, we can prove the security of protocol

ΠCSN in the presence of an S-adaptive adversary.

78



Theorem 28 (S-adaptive security). Consider Γ∗S-adap-admissible environments and

protocol ΠCSN with parameter s > k + 2(1+ε)
qM-adap·ε2 log2 e

h, k
(1−2ρ)ω

+ 2k < L < τobs(1−ε)α
2

,

and d ≥ max( k
− log qM-adap

, 4 log s). Given that the bootstrapping condition is satisfied.

Then, protocol ΠCSN achieves persistence and liveness; and sparsity.

2.4.3 S-adaptive 〈φ, γ〉 security

We consider mining power concentration4, in which the top γ fraction of honest

nodes control at least a fraction γ of the mining power, for some γ > ρ. With

mining power concentrated in the top few nodes, it is possible to reduce the number

of core nodes, thus reducing network sparsity. More concretely, since mining power

is concentrated in a small fraction of nodes, the CoSpaN protocol requires a smaller

core width so that the nodes selected as core control a large fraction of the mining

power. The adversary can not control more than a fraction ρ of mining powers, we

can guarantee that a big enough number of core nodes are honest.

Consider admissible environments with a predicate Γ∗conc in which the honest

majority assumption holds. Now we say it holds that Γ∗conc(n,Q, η, ρ, δ, τobs, φ, γ) = 1

if for all n,Q, δ, τobs ∈ N, η, ρ, φ, γ ∈ (0, 1), there exists k = Ω(κ) such that

Γ∗S-adap(n,Q, η, ρ, δ, τobs) = 1 and γ > ρ.

Definition 29 (Γconc-admissible environments). We say a tuple (n,Q, η, ρ, δ, τobs, φ, γ,A,Z)

with Γconc(n,Q, η, ρ, δ, τobs, φ, γ) = 1 is Γconc-admissible w.r.t (ΠV,Λ) if A, Z are prob-

abilistic polynomial-time algorithms, and for every view in the support of EXECΠV,A,Z(κ),

the following holds:

1. Conditions (1), (2), (3), (4) in Definition 24.

4For example, in Bitcoin [1], more than 50% of the mining power is controlled by
the top 7 mining pools.

79



2. The top φ fraction honest nodes control at least a fraction γ of mining power

As the mining power is concentrated in a small fraction of nodes, the nodes that

are selected as core control a large fraction of mining power. We set the core width

such that top φ fraction of nodes are selected as core nodes. In other words, the set

of core nodes control at least a fraction γ of mining power. Since the adversary can

not control more than a fraction ρ of mining powers, it cannot corrupt all core nodes.

Thus, we can show that the number of honest core nodes is still big enough.

Lemma 30 (Honest core nodes in S-adaptive setting with mining power concen-

tration). For any ε > 0, let qconc = (γ − ρ)ω − k
Lreg
− ε. Consider protocol Π with

parameter s > k + 2(1+ε)
qconc·ε2 log2 e

hφ, we have,

Pr[hc ≥ s · qconc | Si ∧Ri] > 1− e−Ω(κ).

Proof. Let K be the set of the top honest nodes that control at least a fraction γ of

honest mining power. Consider a set W ⊆ K in which the total mining power of all

nodes in W is at least γ − ρ.

Let r1 be the first round in the execution in which the length of the chain of any

honest node is at least iL, i.e., all honest nodes are at epoch i.

For any ε1 > 0, let r2 = r1 + (1 − ε1)
Lreg−k
Q·p . From round r1 + 1 to round r2,

nodes make at most (1− ε1)
Lreg−k

p
queries to random oracle in which the probability

of success in generating a new block of a single query is p. We represent each query

by a Bernoulli random variable with an expected value of p. Let nb be the number

of blocks that are generated from round r1 + 1 to round r2. By using the Chernoff

bound in Lemma 56 on at most (1− ε1)
Lreg−k
Q·p Bernoulli random variables, we have,

Pr[nb < k]1− e−Ω(κ).

80



Using the Chernoff bound in Lemma 56, we have,

Pr[nb < (1− ε1)(1 + ε1)(Lreg − k)]1− e−Ω(κ),

⇒Pr[nb < (Lreg − k)]1− e−Ω(κ).

Let h̄c be the number of registration blocks that are generated by the honest nodes

that are willing to participate as core nodes from round r1 to r2. In each round, the

honest nodes in W make at least (γ − ρ)ω queries to the random oracle. Thus, from

round r1 to round r2, the honest nodes in W make at least (1 − ε1)
Lreg−k

p
(γ − ρ)ω

queries to the random oracle. Here, the probability of success in generating a new

registration block of a single query is p′ = p s
Lreg

. We represent each query by a

Bernoulli random variable with an expected value of p′. We choose ε2 > 0 such that

1− ε = (1− ε1)(1− ε2). Using the Chernoff bound in Lemma 56, we have,

Pr[h̄c > (1− ε)(γ − ρ)(1− 1

Lreg

)ω · s] > 1− e−Ω(κ).

At round r2, with a probability of 1 - e−Ω(κ), we have, 1) the length of the

longest chain is at most iL+ Lreg − k; and 2) the number of registration blocks that

are generated by honest nodes in W who are willing to participate as core nodes is

at least (1− ε)(γ − ρ)(1− 1
Lreg

)ω.

From chain quality property in Lemma 12, with probability 1 − e−Ω(κ), there

exist an honest block from the (iL + Lreg − κ + 1)-th blocks to the (iL + Lreg)-th

blocks. Thus, if an honest node register as a core node (by propagating a registration

block) before the (Lreg− k)-th block of the registration period is generated, it will be

selected as a core node in the next epoch (i.e., the registration block is included on

81



the blockchain). Thus, we have,

Pr[hc ≥ h̄c] > 1− e−Ω(κ),

⇒Pr[hc ≥ qconc · s] > 1− e−Ω(κ).

Following the same proofs and Theorem 28 (except replacing qM-adap by qconc), we

can prove the security of the protocol ΠCSN in the presence of an adaptive adversary.

Following the same proofs and Theorem 28 (except replacing the core quality

qM-adap by qconc), we can prove the security of the protocol ΠCSN in the presence of

an adaptive adversary.

Theorem 31 (S-adaptive 〈φ, γ〉). Consider Γ∗conc-admissible environments and the

protocol ΠCSN with parameters k
(γ−ρ)ω

+ 2k < L < τobs(1−ε)α
2

, s > k + hφ and d ≥

max( k
− log qconc

, 4 log s). Under the bootstrapping condition is satisfied, protocol ΠCSN

achieves persistence and liveness; and sparsity.

2.5 Numerical Studies

We compare the CoSpaN protocol to existing Bitcoin-like protocols by analyzing

the costs for adversaries to perform various attacks. Additionally, we analyze the de-

fense costs in the proposed threat models and the effect of mining power concentration

on reducing defense costs.

2.5.1 Setup

Protocols. We consider CoSpaN and the following two protocols.

Bitcoin-L(ike):This protocol mimics the current protocol for the Bitcoin P2P

network. Each node makes d = 8 outbound connections and accepts up to

dmax = 125 ≈ 15d inbound connections. Nodes follow the proposed defenses in

82



[56] to randomize their connections, i.e., 1) each node makes connections to d = 8

random nodes, and 2) if a node receives more than dmax requests for inbound

connections, it randomly selects dmax nodes to accept the connections. Note that

the adversary can no longer perform preferential attachment attacks to increase

the probability of honest nodes establishing outbound connections toward their

controlled nodes. However, we assume that each adversary-controlled node will

make connections to all honest nodes to get more slots from the 125 inbound

connections to honest nodes.

Bitcoin-R(andom): This protocol considers a more advanced topology construc-

tion, building a truly random topology over the participating nodes. Any two

nodes have exactly the same probability d
n

of having a connection. Thus, the

expected number of connections for each node is d, and there is no limit on the

number of inbound connections. In this protocol, the adversary can no longer get

more slots within the 125 connection limit of the honest nodes. However, the ad-

versary can increase the number of connections to honest nodes by creating more

sybil nodes (higher η).

Note that with the same connection parameter d, all three protocols will construct

networks of similar sparsity (average degree).

Parameter settings. We consider a network with 1, 000 honest nodes, 1, 000 mali-

cious nodes, and additional 2, 000 · ns Sybil nodes (of zero-mining power). Thus, the

fraction of malicious node η = 1
2(1+ns)

. Without otherwise mentioned, we consider a

static adversary that controls a fraction ρ = 0.3 of mining power, the participation

rate in CoSpaN protocol is ω = 0.9. For CoSpaN protocol, we set the core width to

be 5% the number of nodes in the network.

Metrics. We measure the cost for the adversary to break the security of the protocols

83



including 1) the Sybil factor needed for the adversary to disconnect the network

(thus, violating the reliable dissemination requirement) and 2) the adversarial mining

power needed for the adversary to perform a double spending attack. We also study

the required honest mining power to guarantee the security of CoSpaN protocol in

different settings and analyze the degree distribution and its correlation to mining

power distribution. All the experiments are repeated 1, 000 times and the average

numbers were reported.

Bitcoin connection parameter d=8

=100+

=0 
=1.5

Figure 8: Protocols’ resiliency against Sybil attacks. For each network connection

parameter (d), the shaded areas above the curves show the corresponding Sybil factors

that the adversary needs to break the protocols’ security. The higher Sybil factor that

a protocol can withstand, the stronger security. At the Bitcoin’s connection parameter

d = 8 (the dashed line), the adversary can disrupt Bitcoin-L’s network without any

Sybil nodes (ns = 0), disrupt Bitcoin-R’s network with ns ≈ 1.5, but can only disrupt

CoSpaN’s network for unrealistically high ns > 100.

84



2.5.2 Costs of attacks

We compare the protocols by showing the cost for the adversary to perform

certain attacks in static settings.

2.5.2.1 Sybil attacks

We consider a static adversary that controls 30% of the mining power. The ad-

versary attempts to disrupt the network by creating more Sybil nodes, i.e., increasing

the Sybil factor, in order to break reliable dissemination. Figure 8 shows that the

cost to break the reliable dissemination of the CoSpaN protocol is significantly higher

than that of the other protocols. For example, at Bitcoin’s sparsity level with d = 8,

the adversary needs a Sybil factor ns > 100 to break the reliable dissemination of the

CoSpaN protocol, while the numbers for Bitcoin-L and Bitcoin-R are only ns = 0 and

ns = 1.5, respectively. Even at a much higher connection parameter (d = 64), the

adversary can still break the reliable dissemination security requirement of Bitcoin-L

and Bitcoin-R with a high Sybil factor (ns < 100).

2.5.2.2 Double-spending attacks

We consider a static adversary with a Sybil factor of ns = 10 and a connection

parameter of d = 8. The adversary performs a double-spending attack by 1) splitting

the network, and thus the honest mining power, and 2) using the block withholding

strategy [88]. In Figure 9, we show the required mining power for the adversary to

successfully reverse a 12-confirmation transaction with a probability of more than

10%. For the CoSpaN protocol, the adversary always needs 51% of the mining power

to perform the attacks, as it cannot split the network. For the Bitcoin-L and Bitcoin-

R protocols, the honest nodes are disrupted into multiple components. Hence, the

85



adversary can perform the double-spending attack in each component with much

less mining power. For example, if the Sybil factor is ns = 100 and the connection

parameter is d = 8, the adversary only needs 4% of the mining power to attack the

Bitcoin-L network and 20% of the mining power to attack the Bitcoin-R network.

CoSpan

Bitcoin-R

Bitcoin-L

Figure 9: Double-spending attacks with less than 51%. The required mining power

by an adversary to reverse a 12-confirmation transaction with a more than 10% prob-

ability in each protocol. The adversary is able to split the networks in Bitcoin-L and

Bitcoin-R (but not CoSpaN) protocols, thus, only needs to exceed the mining power

of the largest connected component.

2.5.3 CoSpaN in different security settings

We will now analyze the security of the CoSpaN protocol in different settings.

We will omit Bitcoin-L and Bitcoin-R as they cannot achieve the desired security

properties in (weakly) adaptive settings. Figure 10 shows the required honest mining

power to achieve security in the network layer of the CoSpaN protocol with different

parameter settings (connection parameter and core width). We will consider four

security settings: static, M-adaptive, S-adaptive (with uniform mining power), and

86



S-adaptive 〈0.1, 0.5〉.

Static/M-adaptive

S-adaptive .1,.5

S-adaptive

Figure 10: The required honest mining power to achieve reliable dissemination for

CoSpaN protocol. The area under the curve show when the same requirement (51%)

in PSS is met.

In the S-adaptive setting, there is a trade-off between the connection parameter

and the core width. When the core width increases, it requires a smaller connection

parameter, and vice versa. For example, when the core width increases from 5% to

15% to achieve the security of 51% of honest mining power, the connection parameter

d decreases from 22 to 8. Mining power concentration helps to reduce the required

core width. For example, with a core width of 5%, the required connection parameter

in an S-adaptive setting with no mining power concentration (i.e., all nodes have

the same mining power) is 22. Meanwhile, the required connection parameter in

S-adaptive 〈0.1, 0.5〉 is 17.

87



101 102

Degree
0

2

4

6

8

10
No

de
s (

%
)

Bitcoin-L/R
CoSpan

(a) Degree distribution distribution.

0.00 0.25 0.50 0.75 1.00
Mining power (%)

101

102

De
gr

ee

Bitcoin-L/R CoSpan

10 1

100

101

No
de

s (
%

)

Nodes (%)

(b) The correlation between mining
power and degree of nodes. The shaded
areas show the 99% confidence intervals.

Figure 11: The correlation between the mining power and the degree of nodes in

CoSpaN and Bitcoin-random network. The distribution of Bitcoin-L and Bitcoin-R

are the same.

2.5.4 Network characteristics

Consider a network in which the mining power of nodes follows a power law

distribution. We analyze the degree distribution and the relation between the degree

distribution and the mining power distribution of the honest nodes. From Figure 11a,

the degree distribution of Bitcoin-L and Bitcoin-R networks follows a normal distribu-

tion. The degree distribution of the CoSpaN network follows a power law distribution.

Specifically, as shown in Figure 11, the degrees of nodes in Bitcoin-L and Bitcoin-R

networks are independent of the mining power. The degree of nodes in those networks

has the same distribution. Meanwhile, in the CoSpaN network, the degree of nodes

is proportional to the mining power.

88



2.6 Conclusion

This paper presents CoSpaN, the first network protocol designed for sparse net-

works in the PoW setting. Nodes use merge-mining to provide proofs of their mining

power, and establish verifiable random connections such that the expected number

of connections for each node is proportional to its mining power. Additionally, the

CoSpaN protocol preserves the confidentiality of core nodes, meaning that the adver-

sary cannot determine whether or not a node is associated with a core node. As a

result, the adversary is unable to launch DoS attacks to bring down core nodes and

disrupt the network. Plus, each connection is known only by the two participating

nodes. This is a key feature for achieving reliable dissemination in a sparse network

against an adaptive adversary.

Our CoSpaN protocol can be utilized to build a backbone network for the dis-

semination of critical information such as block headers. Additional connections can

be added to increase the throughput and performance of the blockchain systems. A

future direction is to investigate whether or not we can construct a secure consensus

protocol with nodes of bounded degree.

2.7 Supplemental materials

2.7.1 Nakamoto’s protocol ΠNak

In Nakamoto’s protocol ΠNak [89], each node maintains a chain, i.e., a sequence of

blocks linked by hash values. Each block is a tuple (context, txs, nonce), where txs the

list of transactions that the node received from the environment, the context consists

of a pointer (hash value) prev to the previous block, the Merkle root MkRoot(txs),

a single hash value to prove the validate the included transactions following the ap-

proach in the Bitcoin’s header.

89



Also, we add to the context a network pseudo-identity cid, that is needed in core

selection,

context = 〈prev,MkRoot(txs), cid〉. (2.8)

The algorithm Λ obtains the ledger from a chain C by truncating the last k blocks for

some integer k = O(κ) and returns the list of transactions [88]. The nodes compete

to become block producers via a PoW mechanism. The block producer will generate

and propagate a new block to all the nodes.

Block producer selection. In each round, nodes makes attempts to solve a PoW puzzle

by searching for a nonce over a context that satisfies the hash inequality

H (context, nonce) < T,

where T is the mining difficulty.

If the hash inequality is satisfied, the node becomes a block producer, adds a new

block (context, txs, nonce) to the longest (best) chain, and propagate the new chain

to all the neighbors (who will forward the chain further). Before adding a new chain

C to the local state, each node verifies the validity of 1) the hash inequalities in all

blocks and 2) the list of transactions in the chain, using a predicate V.

2.7.2 Verifiable Random Functions

In our design, a verifiable random function (VRF) has been used for core miners

to establish connections with other miners. Here, we present formal definitions of

Verifiable Random Functions in [40].

Definition 32. A function family F(·)(·) : {0, 1}a(κ) → {0, 1}b(κ) (where a(·), b(·) are

polynomials) is a family of VRFs if there exist algorithms (Gen,Prove,Verify) such

that:

90



• The algorithm Gen takes as input a security parameter 1κ and outputs a key

pair (sk′, pk′).

• The algorithm Prove takes as input a private key sk′, a string x, and outputs a

pair (σ, π), where σ = Fsk′(x).

• The algorithm Verify takes as input a public key pk′, a string x, an output σ, a

proof π and verifies that σ = Fsk′(x) using the proof π. It output 1 if y is valid

and 0 otherwise.

Additionally, we require the following properties:

1. Uniqueness. No values (pk′, x, σ, σ′, π, π′) can satisfy both

Verifypk′(x, σ, π) = 1 and Verifypk′(x, σ
′, π′) = 1

unless σ = σ′

2. Provability. If (σ, π) := Provesk′(x), then Verifypk′(x, σ, π) = 1.

3. Pseudorandomness. For all ppt adversary A = (AE,AJ) that does not

query the oracle on x, we have

Pr



(pk′, sk′)← Gen(1κ);

(x, st)← AProvesk′ (·)
E ;

y0 := Fsk′(x); y1 ← {0, 1}b(κ); b = b′

b← {0, 1};

b′ ← AProvesk′ (·)
J (yb, st)


≤ 1

2
+ ε(κ).

2.7.3 Chernoff bound

We provide here the Chernoff bound for Bernoulli random variables [52] that we

use in the proofs.

91



Lemma 33. Suppose {Zi : i ∈ [t]} are independent and identically distributed

Bernoulli random variables with Pr[Zi = 1] = µ, for all i ∈ [t]. Then, for any

ε > 0, we have

Pr[
t∑
i=1

Zi ≤ (1− ε)tµ] ≤ e−ε
2tµ/2,

Pr[
t∑
i=1

Zi ≥ (1 + ε)tµ] ≤ e−ε
2tµ/3.

92



CHAPTER 3

THE NETWORK LAYER: FAST SYNCHRONIZATION

In this chapter, we examine the impact of heterogeneity in network bandwidth on

system synchrony, throughput, and latency, i.e., how the system security and perfor-

mance are affected by the weakest nodes in the P2P network. Our findings reveal that

certain intelligent (centralized) designs of the P2P network can counteract the lack

of bandwidths of the weakest nodes, achieving near-optimal throughput and latency.

We identify the key principles of our centralized design, which we use to develop

a practical decentralized approach for P2P networks called ProSHeN. ProSHeN in-

corporates half-duplexity, constant-capacity channel, and early burst to significantly

enhances the network synchrony. In our comprehensive evaluation, ProSHeN shows

substantial improvement in both security and performance, enhancing the blockchain

resiliency against block withholding and selfish-mining attacks.

We present a model of networks with heterogeneity bandwidth in Section 3.1 and

investigate the theoretical limit of blockchain network in Section 3.2. In Section 3.3

we present the propagation schemes in heterogeneous networks. We show the analysis

of the propagation schemes in Section 3.4. The experiments are shown in Section 3.5.

3.1 Model

Abstracting a blockchain system. Consider a blockchain system with n partic-

ipants that are modeled as a set of nodes V = {1, 2, . . . , n}. Each node i ∈ V has

93



a upload bandwidth1 ci. The set of nodes adhere to a consensus protocol to com-

municate with each other and maintain a blockchain. The blockchain consists of a

sequence of blocks that contain transactional data. The mining power of each node

determines its ability to add new blocks to the chain, and nodes with higher mining

power can generate and contribute more blocks to the blockchain.

Data arrival rate. During the execution of the blockchain system, some source

node i may produce new data (e.g., blocks, transactions) and propagate the data to

other nodes. We denote the data arrival rate λi as the average amount of data that

is produced by node i. Normally, the total data arrival rate of all nodes is considered

the throughput of the blockchain system. However, this may not hold true when the

data arrival rate is too high (e.g., when the system is under DoS attacks). When the

total data arrival rate exceeds the network’s capacity, the network becomes highly

asynchronous, and nodes may receive different data. In the best-case scenario, nodes

can achieve consensus on the data received by all nodes.

DoS attacks. The adversary can increase the data arrival rate by performing a

DoS attack, such as a transaction flooding attack. For instance, the Solana network,

which has a multi-billion dollar market cap, experienced a few hours of downtime due

to flooding attacks2. In this type of attack, the adversary creates a large number of

transactions, including empty ones, which act as congestion material and overload

the network, causing it to go offline.

Our goal is to answers the following research questions:

1Today in the Internet, the download bandwidth is much larger than the upload
bandwith, e.g., the case of ADSL. Thus, we assume, for simplicity, that all nodes
have sufficient download bandwidths so that time to transmit data between two nodes
depend on the upload bandwidth of the sender but not the download bandwidth of
the receivers.

2https://u.today/solana-network-goes-offline-again-now-ddos-attack-may-be-
reason

94



1. What level of DoS attack can a heterogeneous network handle?

2. Is there a way to make the heterogeneous network handle DoS attacks?

3.2 Theoretical limit of the blockchain network

To answer the first question on the level of DoS attack that a heterogeneous

network can handle, we study the theoretical limit of the blockchain network. For

simplicity, we consider that data can be divided into packets of arbitrarily small

sizes. Further, different packets at an intermediate node can be mixed together using

network coding [4, 59] before forwarding. This will help nodes to receive only novel

information from peers [4, 59].

Transmission schedule. For a source node i ∈ V a target node j ∈ V , we charac-

terize the data flow from i to j. We denote the data on an edge (u, v) ∈ E of the flow

from i to j by a non-negative variable f
(i,j)
uv .

Flow’s constraint. For each node u ∈ V , the flow’s constraint from i to j at u gives

us

∑
v∈V

f (i,j)
vu −

∑
v∈V

f (i,j)
uv +−λi1{u=i}

− λi1{u=j} = 0,∀u ∈ V, ∀i, j ∈ V. (3.1)

Capacity’s constraint. Also, we denote f
(i)
uv is the data originated from s flowing

through the edge (u, v), i.e.,

f (i)
uv = max

j∈V \{i}
f (i,j)
uv ,∀i ∈ V, u, v ∈ V. (3.2)

and guv is the total data transmission on the edge (u, v), i.e.,

guv =
∑
s∈V

f (i)
uv ,∀s ∈ V, (u, v) ∈ E. (3.3)

95



The upload capacity at node u is capped by cu, thus, the capacity’s constraint

at node u give us

∑
v∈V

guv ≤ cu ∀ u ∈ V. (3.4)

Feasible transmission schedule. Consider an arrival rate λ = (λ1, · · · , λn) in which

each node i ∈ V produce new data with the rate of λi. We say a transmission schedule

f is a feasible transmission schedule if it satisfies the flow’s constraint in Eq.3.1 and

the capacity’s constraint in Eq.3.4.

Throughput. Given a set of nodes V = (1, · · · , n) and the upload capacity C =

(c1, · · · , cn), we say an algorithm can achieve a throughput of TP if for all arrival

rate λ = (λ1, · · · , λn) such that
∑

i∈V λi ≤ TP, the algorithm can always returns a

feasible schedule f of λ.

Throughput optimization. In [69], Kumar and Ross showed, in Theorem 1, that

the maximum throughput is upper bounded by

min

{
dmin,

∑n
i=1 ci

n− 1

}
,

where dmin is the minimum download bandwidth of any receiver.

Under our assumption, the upper-bound on the optimal throughput can be sim-

plified into

OPTTP ≤
∑n

i=1 ci
n− 1

. (3.5)

While the bound is derived using a fluid model [69], it remains true in general.

More importantly, the optimal throughput is realizable under the fluid model by

through a feasible transmission schedule in [69]. Using the same transmission sched-

ule, we can also prove that the optimal throughput is achievable if network coding is

deployed [59]. The transmission schedule is, however, not scalable as it requires each

96



node to connect and forward the data to all other nodes, resulting in an O(n2) wiring

scheme with fragmented data.

Latency. The latency is the time for any source nodes to transmit the data to

all other nodes. Almost all existing studies on optimal throughput [69, 97, 4, 59, 75]

assume a synchronous setting in which data transmission incurs zero-delay. As a

consequence, the minimum propagation time |B|
OPTTP

of a block B (with block size

|B|) is achieved when the throughput is maximized at OPTTP .

We propose a model that incorporate transmission delay at each link. Consider

a source node s, for each target node t, the delay δ(p) incurs by a packet along a path

p from s to t is defined as the total latencies of all edges in p, i.e., δ(p) =
∑

(i,j)∈p δij.

Let fp = min(u,v)∈p f
(i,j)
u,v be the amount of data travel through path p from s to t.

Distribution time. Given a transmission schedule (f, g), the time to deliver block

B from s to t will be

µ(s, t) = inf
T>0

∑
p∈Ps,t

fp max{0, T − δ(p)} ≥ |B|

 , (3.6)

where Ps,t is the set of all paths from s to t.

For each path p, if the source start transmission along p at time 0, then the source

will start receiving data at time δ(p). Thus, the amount of data received through p at

time T will be fp max{0, T − δ(p)}. Observe that only the paths p with δ(p) < µ(s, t)

help in delivering the data from s to t.

Latency. The latency is the maximum distribution time from any source node s

to any target node t, i.e.,

µ = max
s,t∈V

µ(s, t) (3.7)

Network sparsity. In a transmission schedule, we allow all pairs of nodes to prop-

97



agate data to each other. However, for most of the pairs, the total data transmission

should be 0. Given a transmission schedule f , We define an (directed) overlay net-

work Gf = (V,Ef ) for a transmission schedule by including all of pairs of nodes that

have non-zero data transmission links in E, i.e.,

Ef = {(i, j) : i, j ∈ V, gi,j > 0} (3.8)

The network sparsity is defined over the number of links in Ef . We say a network

is sparse if the number of link in Ef is O(dn) for some parameter d > 1.

Definition 34 (Blockchain P2P Network Design Problem (BlockNetDP)). Consider

a P2P network consisting of n nodes {1, 2, . . . , n} in which node i has upload capacity

C(i) (and unbounded download capacity), and transmision delay dij between i and j,

for all i, j ∈ [n]. Let λi ≥ 0 be the rate that node i broadcast data to all network for

i ∈ [n]. Design a P2P network that admit a feasible transmission schedule with rate

λ = {λi} subjecting to the following constraints

• Capacity constraint: ∀i ∈ V :
∑

j∈V gij ≤ C(i)

• Sparsity constraint: The number of links is at most O(dn), for some constant

d > 1.

At the same time, we aim to minimize the propagation time, i.e., the time for any

source nodes to propagate the data to all other nodes.

3.3 Propagation Scheme in Heterogeneous Networks

3.3.1 ProSHeN: A Propagation Scheme in Heterogeneous Networks

We present ProSHeN, a Propagation Scheme in Heterogeneous Networks. The

transmission schedule can achieve near-optimal throughput. Plus, the data will be

received by all nodes with O(log n) hops.

98



3.3.1.1 Overview

The main idea of our algorithm is building d directed broadcast trees or broadcast

trees with disjoint links, in which all links in the trees have the same capacity. We

denote by w the capacity in each link. The data will be distributed to all nodes

through the directed broadcast trees.

Algorithm 1: ProSHeN algorithm

Input : Given the set of node V = (1, · · · , n), the upload capacity

C = (c1, · · · , cn), the arrival rate λ = (λ1, λ2, · · · , λn), the number

of broadcast tree d, and the capacity of each tree w.

Output: Return the transmission schedule f .

1 S = LinkAllocation(C, λ, d, w)

2 T = BuildBroadcastTrees(S)

3 f = ConstructSchedule(λ, T, w)

4 Return f

The ProSHeN algorithm consists of three steps (see Algorithm 1) as follows.

First, based on the capacity of nodes, we assign links into trees such that we are able

to build the trees with O(log n) depth. Then, we build broadcast trees in which, in

each tree, the nodes that assigns more links is closer to the root nodes (which is the

node that assigns the most links). Finally, to construct the transmission schedule,

the source first forward the arrival data to the root nodes. Then, the data will be

forwarded through the links of the broadcast trees. In Figure 12, we illustrate an

example of constructing multiple broadcast trees for a set V of 7 nodes. In Figure 13,

we show how nodes forward data from the source node 1 through the red broadcast

tree.

99



1 2 3 4 5 6 7

Arrival rate Unused capacity

Assigned capacity 
for the blue tree

Assigned capacity 
for the red tree

Figure 12: Constructing 2 broadcast trees with the capacity w = 2 for the set V of

7 nodes, the capacity C = (3, 7, 5, 6, 6, 5, 2), the arrival rate λ = (1, 0, 1, 0, 1, 0, 1).

Nodes assign (0, 1, 0, 3, 0, 2, 0) links to the blue tree and (0, 2, , 2, 0, 2, 0, 0) links to the

red tree.

1 2 3 4 5 6 7

1
1

1

1

1 1

Figure 13: Forwarding data from the source node 1 through the red broadcast tree.

As node 1 already had the data, we do not use the link (3, 1) to forward data.

100



3.3.1.2 Assignment of Links to Trees

Consider a set of node V = (1, · · · , n), an upload capacity C = (c1, · · · , cn),

and an arrival rate λ = (λ1, λ2, · · · , λn). We first assign the links of each nodes

into d broadcast trees in which each trees consist of n − 1 links with capacity w.

Furthermore, the links should be assigned in the way that we are able to construct

the trees with O(log n) depth.

Algorithm 2: AssignTrees algorithm.

Input : Given the upload capacity C, the arrival rate λ and the

parameters d, w.

Output: Return the set of links trees S.

1 L =
{
`i = b ci−λi

L
c
}
i∈[n]

, L′ = {`′i = li})i∈[n]

2 qk = n− 1, ∀k ∈ [d]

3 S = {sk,i = 0}k∈[d],i∈[n]

4 while ∃qk > 0 and ∃`′i > 0 do

5 k = arg maxk∈[d] qk, i = arg maxi∈[n] `
′
i

6 nl = min(`′i, qk, bn4 c)

7 sk,i = sk,i + nl, qk = qk − nl, `′i = `′i − nl

8 Return S

Let S = {sk,i}k∈[d],i∈V be the assigned matrix, where sk,i is the number of assigned

links of node i in the k-th tree. The number of assigned links in each tree equals n−1,

i.e., ∑
i∈[1,n]

sk,i = n− 1,∀k ∈ [d] (3.9)

Additionally, to construct the tree with O(log n) depth, we limit the number of

single-link nodes in each tree. Here, we say node i is a single-link node of the k-th

101



tree if sk,i = 1. To be precise, the number of single-link nodes in each tree should be

at most 3n
4

, i.e., ∑
i∈[1,n]:sk,i=1

sk,i ≤
3n

4
,∀k ∈ [d] (3.10)

Let `i be the maximum number of links that node i can contribute in all trees.

Since each node i need to reserve λi bandwidth to send the data to the root nodes,

we have,

`i = bci − λ
w
c

In Algorithm 2, we assign the links into trees as follows. Let `′i be the number

of unassigned links of node i and qk be the number of links we need to assign into

the k-th tree. At the beginning, we set `′i = `i (line 1) and qk = n − 1 (line 2).

We repeat the following steps until all trees are assigned (qk = 0,∀k ∈ [d]) or there

is no unassigned links left (`′i = 0, ∀i ∈ V ). First we choose the k-th with the the

highest number of links need to be assigned (line 5) and the node i with the highest

number of unassigned links `′i (line 6). Then, we assign nl = min(`′i, qk, bn4 c) of node

i to the k-th tree. This way, we ensure that the number of assigned links of each

node i does not exceed `i. Plus, different in the number of link need to be assigned

in any trees does not exceed bn
4
c. Hence, we can avoid the cases where we assign all

of non-single-link nodes in some trees and have to fill up other trees with single-link

nodes.

3.3.1.3 Broadcast Trees Construction

Intuitively, in each tree, the nodes that assigns more links is closer to the root

nodes (which is the node that assigns the most links).

In detail, we build the k-th broadcast tree Tk in Algorithm 3 as follows. At

line 2, we sort the nodes in V as h1, · · · , hn in the decreasing order of sk,hi , i.e.,

102



Algorithm 3: BuildBroadcastTrees procedure.

Input : Given the list of d trees S.

Output: Return d broadcast trees T = (T1, · · · , Td).

1 for k = 1 to d do

2 Sort h1, h2, · · · , hn such that sk,hi ≥ sk,hi+1
, ∀i ∈ [n− 1]

3 Initiate an empty tree Tk with the root rk = h1

4 child = 1

5 for i = 1 to n do

6 for j = 1 to sk,hi do

7 Add (hi, hchild+j) to Tk

8 child = child+ sk,hi

9 Return T

sk,hi ≥ sk,hi+1
,∀i ∈ [n− 1]. At line 3, we set h1 as the root node of Tk. For each node

i, we add sk,i directed links from i to the first sk,i nodes that do not directed links

from any node j < i. This way, we can guarantee that each node have at exactly

one directed links from other node. Furthermore, since hi is sorted in the decreasing

order of sk,hi , we can ensure that all nodes can be reached from the root.

3.3.1.4 Transmission Schedule

After building the broadcast tree, the root nodes of those trees gather the data

from the source node and then distribute to all other nodes through the broadcast

trees.

In Algorithm 4, each node i assigns a broadcast load πki to the tree Tk. Most

of the time, each node i only assigns one non-zero broadcast load to a tree; all other

tree will be assign zero broadcast load. Then, node i send the broadcast load to the

103



Algorithm 4: ConstructSchedule procedure

Input : Given the arrival rate λ, the list of broadcast tree T , and the

parameter w.

Output: Return the transmission schedule f .

1 πk,i = 0, ∀k ∈ [d], i ∈ [n]

2 ηk = w, ∀k ∈ [d]

3 λ′ = {λ′i = λi}i∈[n]

4 while ∃ηk > 0 and ∃λ′i > 0 do

5 k ← arg maxk∈[d] ηk, i← arg maxi∈[n] λ
′
i

6 nl← min(ηk, λ
′
i)

7 πk,i = nl, ηk = ηk − nl, λ′i = λ′i − nl

8 for each πk,i > 0 do

9 rk = root of Tk, T
i
k = Tk

10 if rk 6= i then

11 Remove the (directed) edge to i from T
(i)
k

12 Add (i, rk) to T
(i)
k

13 Set i as the root of T
(i)
k

14 for each node j ∈ V \ {i} do

15 for each link (u, v) on the path from i to j on T
(i)
k do

16 f
(i,j)
uv = f

(i,j)
uv + πk,i

17 Return f

104



roots of the trees. Then, the data will be forwarded through the broadcast tree.

Assign broadcast load. For each node i, we assign an amount πk,i of data to be

broadcast through the tree Tk. Unless the root node of the broadcast tree already

gather to much data (close to w), each node i only broadcast the data through one

broadcast tree. From line 4-10, for each iteration in the while loop, we select node

i with maximum (remaining) arrival rate and the tree k with maximum (remaining)

capacity and set πk,i as the minimum of those values. This way, for we can guarantee

that the each root node of the tree does not gather more than the capacity w amount

of data.

Forwarding data through broadcast tree. For each source node i and tree Tk such

that the broadcast load πk,i > 0, nodes forward through the Tk an πk,i amount of

data from node i. In detail, node i first forward πk,i amount of data to the root node

rk of Tk. Then the data will be send from rk to all other node through Tk. Note that,

since i already has the data, nodes will node upload the data to i again.

Let T
(i)
k be the tree constructed from Tk by adding a new edge (i, rk) removing

the edge to node i. For each source node j 6= i, for all link (u, v) on the path from i

to j on the tree T
(i)
k , we set the data flow from i to j on link (u, v) as f

(i,j)
uv = πk,i.

3.3.2 ProSHeN+: Distributed Data Distribution scheme

Inspired by ProSHeN, we develop ProSHeN+ algorithm, a distributed data dis-

tribution scheme. This approach comprises of two key components. The first part

involves the distributed construction of a network topology by nodes. To optimize

the performance, we have adopted the same-capacity links principle to construct a

topology such that the number of outgoing links is proportional to the node’s upload-

ing bandwidth. The second part entails the propagation of data across the network

using a method similar to Bitcoin’s propagation technique [37]. Specifically, nodes

105



utilize an invite-getdata-send method to avoid sending duplicated data. However, un-

like Bitcoin, the communication links in ProSHeN+ are half-duplex, i.e., nodes only

forward data through the outgoing links.

3.3.2.1 Topology construction

Node constructs the network topology using a parameter w. Under this scheme,

the capacity of each link is expected to be w. As a result, the number of outgoing

connections a node creates is proportional to its upload capacity. For instance, if a

node u has an upload capacity of Cu, it will create du = bCu
w
c outgoing links. Node u

will randomly select du outgoing neighbors and connect to them.

The ProSHeN+ protocol is more robust in a heterogeneous network because the

number of outgoing connections is proportional to the upload capacities of the nodes.

This allows us to utilize nodes with high bandwidth to forward more data to other

nodes in the network. In contrast, if all nodes have the same number of outgoing

links (as in the design of Bitcoin), nodes with high bandwidth will be idle most of

the time because they can forward data to all of their neighbors quickly.

Furthermore, when node u creates an outgoing connection to a node v, we refer

to node u as an incoming neighbor of node v. This relationship can have important

implications for the behavior of the network. Most of the time, nodes only forward

the data to their outgoing neighbors.

3.3.2.2 Propagation method

ProSHeN+ uses the invite-getdata-send propagation method, which is similar to

Bitcoin and was described by Decker and Wattenhofer [37]. This method is efficient

because it avoids sending duplicate data and enables nodes to selectively request the

transactions or blocks they need. However, it may result in some redundancy in data

106



transmission by sending invite and getdata messages.

In contrast to Bitcoin, nodes in ProSHeN+ use half-duplex links instead of full-

duplex links. This means they only forward data through outgoing links, reducing

the amount of redundant data, such as invite and getdata messages, that need to

be transmitted. This approach increases the total amount of meaningful data, such

as blocks and transactions, that are propagated in the network. As a result, the

ProSHeN+ protocol can handle a higher level of DoS attacks.

In summary, while ProSHeN+ and Bitcoin share a similar propagation method,

the former improves upon the latter by using half-duplex links to reduce redundancy

and increase the amount of meaningful data propagated in the network. This enables

the ProSHeN+ protocol to handle a higher level of DoS attacks and provides a more

efficient solution for blockchain networks.

When a node u in a peer-to-peer network receives a new message, it sends an

invite message to all its outgoing neighbors. This message requests the receiver to

send a specific piece of data to the sender. If node u is the source of the message, it

sends the invite messages to all incoming and outgoing neighbors. This ensures that

nodes in the network are notified of the new message quickly. When node v receives

an invite message from node u that it doesn’t have locally, it issues a getdata message

to the sender of the invite message. This getdata message requests the actual data

that the sender is asking for. Once received, node u will send the message to node

v. This process is crucial for the proper functioning of the blockchain peer-to-peer

network. It enables efficient and reliable sharing of information between nodes.

Moreover, the propagation scheme can also be useful when the network is under

DoS attacks and the total arrival rate exceeds the network’s capacity. In such cases,

nodes can prioritize the propagation of important information, such as blocks or

transactions included in compact blocks. This allows nodes to synchronize the data

107



on the blockchain and still achieve consensus.

3.4 Analysis

In this section, we perform an analysis for ProSHeN algorithm. We first prove

that our broadcast trees overlay network is feasible (i.e., the total capacity in all

upload-links from a node do not exceed its upload capacity). Then, we show that

the broadcast trees overlay network can achieve 1 − 1
d
− 2

n
optimal throughput and

O(log n) latency, while satisfying the sparsity constraint.

3.4.1 Near-optimal throughput

Lemma 35. Consider a set of n nodes V , upload capacity C, a vector throughput λ,

and parameter d, w such that

d ≤ 1

n− 1

(∑
i∈V

`i

)
, (3.11)

where `i = b ci−λi
w
c. Then AssignTrees algorithm returns a list S of d tree that satisfies

the following conditions.

∑
i∈V

sk,i = n−1,∀k ∈ [d]. (Eq.3.9)

∑
k∈[d]

sk,i ≤ `i,∀i ∈ V. (3.12)

Proof. For simplicity, without other mentioned, we only refer to the lines Algorithm 2

in this proof. First, we show that S satisfies Eq.3.9. We consider the termination

conditions of the while loop from line 4 as follows.

• qk = 0,∀k ∈ [d]. Before the while loop starts, at line 2, we set qk = n− 1. Plus,

from line 8-9, we only subtract qk by nl after we add nl to some sk,i. Thus, we

108



have, ∑
i∈V

sk,i = n− 1.

• `′i = 0,∀i ∈ V and ∃qk > 0. We show that this case cannot happen if Eq. 3.11

is satisfied. From line 9-10, we only subtract `′i by nl after we subtract qk by nl.

Plus, before the while loop starts, we set qk = n−1, ∀k ∈ [d] and `′i = `i, ∀i ∈ V .

Thus, before the while loop starts, we have,

∑
i∈V

`i <
∑
k∈[d]

qk = d(n− 1).

Recall from line 1, `i = b c
′
i

w
c = b ci−λi

w
c. Combine with Eq. 3.11, we have,∑

i∈V `i ≥ d(n− 1) (contradiction).

Now, we show that S satisfies Eq.3.12. From line 8-10, we only add nl to sk,i

when we subtract `i by nl. Thus, the sum of all sk,i when the while loop ends cannot

exceed `i before the while loop starts. Hence, S satisfies Eq.3.12.

Lemma 36. Consider a set of n nodes V and a list of d trees S that satisfies Eq.3.9.

Then BuildBroadcastTrees algorithm returns a list T of d trees in which for each tree

Tk, all nodes in V is reachable from the root node rk of the tree Tk.

Proof. For simplicity, without other mentioned, we only refer to the lines Algorithm 3

in this proof.

Consider the k-th iteration of the first for loop to build the tree Tk. Let pi =

1 +
∑

j∈[i] sk,hj . Note that, since
∑

i∈V sk,hi ≥ n− 1 (Eq.3.9) and sk,hi ≥ sk,hi+1
(line

2 in the algorithm), ∀i ∈ [n− 1], we have,

i+ 1 ≤ pi ≤ n,∀i ∈ [n− 1] and pn = n.

109



We will show by induction that after the i-th iteration of the second for loop, the list

of nodes h1, · · · , hpi are reachable from the root node rk = h1.

• After the first iteration, the root node h1 makes sk,hi connections to h2, · · · , hp1

(line 6-7). Thus, the list of nodes h1, · · · , hp1 are reachable from h1.

• Now, we assume that h1, · · · , hpi are reachable from h1 after the i-th iteration.

We will show that h1, · · · , hpi+1
are reachable from h1 after the (i+ 1)-th itera-

tion. Indeed, in the (i + 1)-th iteration hi+1 make connections to sk,hi+1
nodes

pi + 1, · · · , pi+1. Node that, after i-th iteration, hi+1 is reachable from h1 (since

pi ≥ i+ 1). Hence, after (i+ 1)-th iteration, hpi+1, · · · , hpi+1
are reachable from

h1.

Lemma 37. Consider a set of n nodes V , upload capacity C, a vector throughput λ,

and parameter d, w, that satisfy Eq.3.9, Eq.3.12, and

∑
i∈V

λi ≤ w × d. (3.13)

Then BuildSchedule algorithm produces a transmission schedule f with arrival rate λ

that satisfies the flow’s condition in Eq.3.1.

Proof. For simplicity, without other mentioned, we only refer to the lines Algorithm 4

in this proof.

Consider a soure node i and a broadcast tree Tk. We denote the data on an edge

(u, v) of the flow from a source node i to a target node j in the broadcast tree Tk as

f
(i,j)(k)
u,v . From lines 11-14, f

(i,j)(k)
u,v can be either πk,i or 0.

The data on an edge (u, v) ∈ E of the flow from i to j is the total data on all

110



the broadcast trees, i.e.,

f (i,j)
u,v =

∑
k∈[d]

f (i,j)(k)
u,v

To prove the flow’s constraint, we show that on each tree Tk, the data flow from

the source node i to all target node j is πk,i, i.e.,

F (i,j)(k)
u =

∑
v∈V

f (i,j)(k)
vu −

∑
v∈V

f (i,j)(k)
uv + πk,i1{u=i}

− πk,i1{u=j} = 0,∀u ∈ V, ∀i ∈ V, j ∈ V \ {j}, k ∈ [d].

Indeed, for any source node i ∈ V and any target node j ∈ V \ {i}, based on

lines 18-19, we have

f (i,j)(k)u, v =


πk,i, if (u, v) on the path from i to j on T

(i)
k ,

0, otherwise.

Note that, in the tree T
(i)
k , there is exactly on path from any source node i to

any target node j. Thus, F
(i,j)(k)
u = 0, ∀u ∈ V .

Thus, we can conclude that data flow from the source node i to all target node

j on the tree Tk is πk,i. We show that
∑

k∈[d] πk,i = λi by contradiction. We consider

the two following cases.

•
∑

k∈[d] πk,i > λi. From line 8-10, we only add nl to πk,i if we subtract nl from λ′i.

When the while loop from lines 4-10 terminated, we have λ′i ≥ 0. Plus, before

the while loop starts, we set λ′i = λi. Thus, when the while loop terminated,

we have, λi =
∑

k∈[d] πk,i + λ′i ≥
∑

k∈[d] πk,i (contradiction).

•
∑

k∈[d] πk,i < λi. In this case, when the while loop terminated, λ′i > 0 (since

λi =
∑

k∈[d] πk,i + λ′i). Thus, the while loop terminated when ηk = 0,∀k ∈ [d].

111



From line 9-10, subtract a ηk by nl before we subtract a λ′i by nl. Thus, before

the while loop starts, we have
∑

i∈V λi >
∑

k∈[d] ηk = d × w. This contradict

with Eq.3.13.

Finally, we show that f satisfies the flow’s constraint in Eq.3.1 for any node u as

follow.

∑
v∈V

f (i,j)
vu −

∑
v∈V

f (i,j)
uv + λi1{u=i} − λi1{u=j}

=
∑
v∈V

∑
k∈[d]

f (i,j)(k)
vu −

∑
v∈V

∑
k∈[d]

f (i,j)(k)
uv +

∑
k∈[d]

πk,i

1{u=i}

−

∑
k∈[d]

πk,i

1{u=j}

=
∑
k∈[d]

(∑
v∈V

f (i,j)(k)
vu −

∑
v∈V

f (i,j)(k)
uv + πk,i1{u=i} − πk,i1{u=j}

)
= 0.

Lemma 38. Consider a set of n nodes V , upload capacity C, a vector throughput λ,

and parameter d, w, that satisfy Eq.3.9, Eq.3.12, and

∑
i∈V

λi ≤ w × d. (3.14)

Then BuildSchedule procedure (Algorithm 4) produces a transmission schedule f with

arrival rate λ that satisfies the capacity’s condition in Eq.3.4.

Proof. From Eq.3.2, we have,

f (i)
uv = max

j∈V
f (i,j)
uv = max

j∈V

∑
k∈[d]

f (i,j)(k)
uv


≤
∑
k∈[d]

(
max
j∈V

f (i,j)(k)
uv

)
.

112



From lines 13-18, if (u, v) /∈ T (i)
k ⊆ Tk∪{(i, rk)} (rk is the root of Tk), f

(i,j)(k)
uv = 0.

Otherwise, f
(i,j)(k)
uv can be at most πk,i. Thus, we have,

f (i)
uv ≤

∑
k∈[d]:(u,v)∈Tk∪{(i,rk)}

πk,i.

Replace this the right-hand side of Eq.3.3, we have

guv =
∑
i∈V

f (i)
uv ≤

∑
i∈V

 ∑
k∈[d]:(u,v)∈Tk∪{(i,rk)}

πk,i


=

∑
k∈[d]:(u,v)∈Tk

(∑
i∈V

πk,i

)
+
∑
k∈[d]

(1v=rkπk,u) .

Note that, from line 4-10 of algorithm 4, we have

∑
k∈[d]

πk,i = λi,∀i ∈ V,

∑
i∈V

πk,i ≤ w,∀k ∈ [d],

We now show that f satisfies the capacity’s constraint for in Eq.3.4 any node u

as follows.

∑
v∈V

guv ≤
∑
v∈V

 ∑
k∈[d]:(u,v)∈Tk

(∑
i∈V

πk,i

)
+ (1v=rkπk,u)


≤
∑
v∈V

 ∑
k∈[d]:(u,v)∈Tk

w

+
∑
k∈[d]

(πk,u)

=
∑
k∈[d]

∑
v∈V :(u,v)∈Tk

w + λu =
∑
k∈[d]

sk,u × w + λu

≤ `u × w + λu ≤ c′u + λu = cu.

113



Lemma 39. For any d ≥ 1 and any arrival rate λ such that

∑
i∈V

λi ≤
1

(1 + 1
n−1

+ 2
d
)
OPTTP , (3.15)

where OPTTP =
∑
i∈V ci
n−1

is optimal throughput. Set w as the maximum value that

satisfies ∑
i∈V

bci − λi
w
c ≥ d(n− 1). (3.16)

ProSHeN algorithm returns a feasible transmission schedule f of λ.

Proof. Combine with Lemma 37 and Lemma 38, ProSHeN algorithm returns a feasible

transmission schedule f of λ if ∑
i∈V

λi ≤ dw.

We now show that the above equation is satisfied if w is is the maximum value

that satisfies Eq.3.16. We have,

∑
i∈V

bci − λi
w
c < (d+ 1)(n− 1)

Furthermore, there exists i ∈ V , such that b ci−λi
w
c = ci−λi

w
. Indeed, let x =

mini∈V
(
ci−λi
w
− b ci−λi

w
c
)
. We prove x = 0 by contradiction. Assume x > 0, let

j = argmini∈V
(
ci−λi
w
− b ci−λi

w
c
)
. Let w′ =

cj−λj
b
cj−λj
w
c
. We have, b ci−λi

w
c = b ci−λi

w′
c,

∀i ∈ V . Plus, since
cj−λj
w

> b cj−λj
w
c, w′ > w. Hence, there exists w′ > w that satisfies

Eq.3.16. Therefore, we have,

∑
i∈V

ci − λi
w

<
∑
i∈V \j

(
bci − λi

w
c+ 1

)
+ bcj − λj

w
c

=
∑
i∈V

bci − λi
w
c+ (n− 1) < (d+ 2)(n− 1).

114



Multiple both sides by w
n−1

, we have,

1

n− 1

(∑
i∈V

(ci − λi)

)
≤ (d+ 2)w

⇒OPTTP −
1

n− 1

(∑
i∈V

λi

)
≤ (d+ 2)w

Using Eq. 3.15, we have

⇒
(

1 +
1

n− 1
+

2

d
− 1

n− 1

)(∑
i∈V

λi

)
≤ (d+ 2)w

⇒
∑
i∈V

λi ≤ dw

Combine with Lemma 37 and Lemma 38, ProSHeN algorithm returns a feasible

transmission schedule f of λ if
∑

i∈V λi ≤ dw.

3.4.2 O(log n) latency

Now, we prove that, all the broadcast trees have O(log n) depth (i.e., the longest

distance from the root to other nodes is O(log n)).

Lemma 40. Consider a set of n ≥ 8 nodes V , upload capacity C, a vector throughput

λ, and parameter d, w such that

∑
i∈V

b`ic ≥ d(n− 1) and d ≥ 2d ≤ 1

n− 1

(∑
i∈V

`i

)

Let S be the list of d trees that is returned by AssignTrees procedure (Algorithm 2).

For the k-th tree, we say i ∈ V is a single-link node if sk,i = 1. Then, for any tree

115



Sk, the number of single-link nodes is at most 3n
4

, i.e.,

∑
i∈V :sj,i=1

sj,i ≤
3n

4
(3.17)

Proof. Assume toward contradiction that,
∑

i∈V :sj,i=1 sj,i >
3n
4
. We define an adding

single-link node event is the event where a single upload link is added to a tree.

Consider the first adding single-link node event occurs when node i add the new

upload link to tree Sj′ . We consider two cases as follows.

• The number upload-links need to be added to Sj′ is 1. From algorithm 2, Sj′ is

the tree that is needed to add the most upload-links. Thus, all tree has at most

1 upload-link need to be added.

Since, this is the first adding single-link node event, all nodes either add more

than 1 links to the trees or add nothing. Hence, we have,
∑

i∈V :sj,i=1 sj,i ≤ 1 <

3n
4
, ∀j ∈ [d]. This contradict the our assumption.

• Node i only have 1 remaining upload-links. From algorithm 2, i is the node

have the most upload-links. Thus, all nodes have at most 1 upload links. In

other words, the total remaining upload-links of all nodes is at most n.

Recall that, Sj′ is the tree that is needed to add the most upload-links. Since we

assume there exists a tree Sj that has more than 3n
4

nodes that have 1 upload-

link, Sj′ also has more than 3n
4

nodes that have 1 upload-link. Further, each

time, a node can only add at most n
4
. Therefore, all other tree have more than

3n
4
− n

4
= n

2
nodes that have 1 upload-link. Hence, the number of upload-links

need to be added since the first adding single-link node event is more than

n
2
× d ≥ n (contradiction).

116



Lemma 41. Given a tree Sk that satisfies
∑

i∈V :sk,i>1 sk,i ≥
n
4

(equivalent with

Eq. 3.17) and
∑

i∈V sk,i = n − 1,∀k ∈ [d] (Eq.3.9). Algorithm 3 returns list T of

d broadcast trees with O(log n) depth.

Proof. Consider the k-th iteration of the first for loop to build the tree Tk. Let Tk,i be

the subtree of Tk that consists of i nodes h1, · · · , hi (Tk,1 ⊂ Tk,2 ⊂ · · · ⊂ Tk,n = Tk).

We denote depth(Tk,i) as the depth (the maximum distance from the root node h1 to

all other nodes) of the tree Tk,i. depth(Tk,1) = 0.

Let pi = 1 +
∑

j∈[i] sk,hj . We have p1 ≤ p2 ≤ · · · ≤ pn = n.

From lines 6-7, node hi, make sk,hi connections to hpi−1+1, · · · , hpi . Thus,

depth(Tk,pi) ≤ depth(Tk,i) + 1

Recall from line 2 that sk,hi ≥ sk,hi+1
, ∀i ∈ [n − 1]. Let τ ∈ [n] be the biggest

index such that sk,hτ > 1, and τ1 be the biggest index such that sk,hτ1 ≥ 1. We have

pτ ≥
n

4
(Eq. 3.17) and pτ1 = n (Eq.3.9).

For any i ∈ [τ ], we have,

pi = 1 +
∑
j∈[i]

sk,hj ≥ 1 + 2i

Thus, the depth of Tk,pτ is depth(Tk,pτ ) = O(log τ) = O(log n).

For i ≤ τ1, we have,

pi − i = pi−1 − (i− 1) + (ski − 1) ≥ pi−1 − (i− 1).

117



Thus, for any i such that, τ ≤ i ≤ τ1, we have,

pi − i ≥ pτ − τ ≥
pτ
2
≥ n

8

(Here, τ ≤ pτ
2

, thus, pτ − τ ≥
pτ
2
.)

⇒depth(Tk,i+bn
8
c) ≤ depth(Tk,pi) ≤ depth(Tk,i) + 1

Thus, for any i, j such that τ ≤ i ≤ j ≤ pτ1 = n, we have

depth(Tk,j) ≤ depth(Tk,i) +
j − i
bn

8
c
≤ n

bn
8
c

= depth(Tk,i) +O(1).

Let i = pτ and j = n, we have,

depth(Tk,n) = depth(Tk,pτ ) +O(1) = O(log n) +O(1).

Lemma 42. For any source i ∈ V and any broadcast tree Tk ∈ T , the depth of the

tree T
(i)
k is O(log n)

3.4.3 Sparsity constraint

Lemma 43. Consider a set of n nodes V , and parameter d. ProSHeN returns a

transmission schedule f with at most (d+ 1)n non-zero links.

Proof. Let Ef = {(u, v) : ∃i, j ∈ V such that f
(i,j)
uv > 0}. There are two types of links

in Ef as follows.

• ∃k ∈ [d] such that (u, v) ∈ Tk. From Algorithm 3, each tree Tk has (n−1) links.

Thus, there are at most d(n− 1) pairs (u, v) that satisfy this conditions.

• ∃k ∈ [d] such that πk,u > 0 and v is the root of Tk. Form the while loop in

lines 4-10 in Algorithm 4, the number of pair k, u such that πk,u > 0 equals the

118



number of iterations of the while loops. From lines 5-6, for each iteration, we

first select the values of ηk > 0 (k ∈ [d]) and λ′i > 0 (i ∈ [n]). Then, either (or

both) ηk or λ′i will be reduce to 0 (lines 7-10). Since the while loop terminated

when all ηk = 0 (k ∈ [d]) or all λ′i = 0 (i ∈ [n]), the number of iterations is at

most n+d. Thus, there are at most n+d pairs (u, v) that satisfy this conditions.

Therefore, the maximum number of links in E is at most (n − 1)d + n + d =

n(d+ 1).

3.5 Experiments

We provide the performance evaluation of ProSHeN+ and the data distribution

scheme of Bitcoin. We also consider ProSHeN∗ that use the multi-tree topology of

ProSHeN (see Algorithm 3) and the transmission scheduling of ProSHeN+.

3.5.1 The setup for experiments

Blockchain simulator. We build an event management data structure that allows

us to simulate the mining and data propagation among nodes, by processing/updating

events.

• Simulated mining. We simulate the mining using a Bernoulli random variable

for each node in each time unit (0.1s). In each time unit, each node has a

probability p of generating a new block. The probability p so that a new block

is generated in every 10 minutes.

• Transaction generation. For every time unit, some transactions are randomly

generated among the nodes based on the transaction rate.

• Compact block relay [29]. Compact Block Relay is a feature implemented in the

Bitcoin that allows for more efficient and faster transmission of blocks between

119



nodes in the Bitcoin network. Instead of sending the full block, node constructs

and sends a compact block by replacing each transaction with a 6-byte non-

cryptographic hash of that transaction’s identifier.

Topology construction. We construct the topology for a 5, 000 nodes networks in

which the average outgoing links of each node is 8 (the default number of outgoing

links in Bitcoin [37]).

• Bitcoin. We construct the topology of Bitcoin network as described in [37].

Each node in the network randomly selects 8 other nodes to request establishing

outgoing transactions.

• ProSHeN+. We construct the topology as described in Section 3.3.2. Each node

requests establishing outgoing to other nodes based on its bandwidth.

• ProSHeN∗. We construct the multi-tree topology as described in Algorithm 3.

Propagation method. Nodes propagate data using invite-getdata-send method to

avoid sending duplicated data.

• Bitcoin. A node sends invite messages through both incoming and outgoing

links.

• ProSHeN+ and ProSHeN∗. If a node is the source of the data, it sends invite

messages through both incoming and outgoing links. Otherwise, the node only

sends the invite message through the outgoing links.

Bandwidth distribution. Based on the provisioned bandwidth statistics in [49],

we fit the bandwidth distribution using a log-normal distribution [57]. Here, the

average bandwidth of a node is 73.1 Mb/s. We have the Gini coefficient [43] to

measure the level of heterogeneity for the bandwidth distribution. The Gini coefficient

120



ranges from 0 to 1, with 0 representing perfect equality (where every node has the

same bandwidth) and 1 representing perfect inequality (where one node has all the

bandwidth, while the remaining has nothing).

Parameter settings. We set the transaction size is 500 bytes3 and block size is

4MB (the maximum block size of Bitcoin4).

3.5.2 Experiment results

Effect of heterogeneity. We first study the effect of heterogeneity on the three

data distribution scheme. Here, we set the transaction rate to 1 Mb/s.

As shown in Figure 14a, when the heterogeneity (Gini coefficient) increases, the

block propagation time of Bitcoin increases significantly. As a result, the relative

time that nodes waste on not mining the longest chain also increases when the Gini

coefficient increases (see Figure 14b). Specifically, when the Gini coefficient of the

bandwidth distribution increases from 0 to 0.9, the block propagation time of Bitcoin

increases from 8.8s to 43.8s, the relative time that nodes waste on not mining the

longest chain increase from 0.87% to 7.23%.

On the other hand, the block block propagation time and the relative time that

nodes waste on not mining the longest chain of ProSHeN+ and ProSHeN∗ remain

stable when the Gini coefficient increases.

DoS (transaction flooding) attacks. We also study the effect of DoS (transaction

flooding) attacks. We increase the transaction rate to 71.3 Mb/s (same as the average

bandwidth).

As shown in Figure 15, the Bitcoin data distribution scheme suffers more under

3https://bitcoinvisuals.com/chain-tx-size
4https://bitcoinmagazine.com/guides/what-is-the-bitcoin-block-size-limit

121

https://bitcoinvisuals.com/chain-tx-size
https://bitcoinmagazine.com/guides/what-is-the-bitcoin-block-size-limit


0 0.3 0.6 0.9
Heterogenity (Gini)

20

40

60
Pr

op
ag

at
io

n 
tim

e 
(s

)
Bitcoin
ProSHeN +

ProSHeN *

(a) The block propagation time

0 0.3 0.6 0.9
Heterogenity (Gini)

0

2

4

6

Ti
m

e 
(%

)

Bitcoin
ProSHeN +

ProSHeN *

(b) The relative time that nodes waste
on not mining the longest chain

Figure 14: The block propagation time and the relative time that nodes does not

mine on the longest chain.

the DoS attack. For example, if the Gini coefficient of the bandwidth distribution

is 0.9, under DoS attack, the block propagation time and the relative time that

nodes waste on not mining the longest chain of Bitcoin increase by 88% and 113%,

respective. Meanwhile, the number for ProSHeN+ and ProSHeN∗ are 24%, 36%, and

23%, 34%, respective.

Double-spending attacks. We consider the HashSplit attacks [93] to perform

double-spending attack. We consider an adversary that can instantly send and receive

any data from any other node. The adversary also perform the DoS attack to reduce

the requirement on the mining power.

As shown in Fig 16, when the Gini coefficient of the bandwidth distribution

increases, the required mining power to perform double-spending attack on Bitcoin

reduces significantly. When the Gini coefficient increase from 0.1 to 0.9, the required

mining power for the adversary to revert a 6 confirmations transaction with a prob-

ability at least 1% reduce from 27.22% to 13.40%. Meanwhile, the required mining

122



0 0.3 0.6 0.9
Heterogenity (Gini)

0

25

50

75

100
In

cr
ea

se
 (%

)
Bitcoin
ProSHeN +

ProSHeN *

(a) The block propagation time

0 0.3 0.6 0.9
Heterogenity (Gini)

0

25

50

75

100

In
cr

ea
se

 (%
)

(b) The relative time that nodes waste
on not mining the longest chain

Figure 15: The increase under DoS attack of the block propagation time and the

relative time that nodes waste on not mining the longest chain.

power to perform double-spending attack on ProSHeN+ and ProSHeN∗ remains stable

at approximately 28%.

Bitcoin ProSHeN + ProSHeN *10

15

20

25

30

M
in

in
g 

po
we

r (
%

) 27.22 27.80 27.92
26.02

27.78 27.90

23.89

27.75 27.88

20.15

27.71 27.85

13.40

27.67 27.81

Heterogenity (Gini)
0.1 0.3 0.5 0.7 0.9

Figure 16: The required mining power by an adversary to reverse a transaction with

6 confirmations with a probability at least 1%.

123



CHAPTER 4

THE CONSENSUS LAYER

In this chapter, we first present an impossibility result for all proof-of-stake protocols

under the single-extension design framework. In this framework, each honest player is

allowed to extend exactly one chain in each round; the state-of-the-art permissionless

PoS protocols (e.g., Praos, Snow White, and more), are all under this single-extension

framework. Our impossibility result states that, if a single-extension PoS protocol

achieves the best possible unpredictability, then this protocol cannot be proven secure

unless more than 73% of stake is honest. Then, to overcome the impossibility result,

we introduce a new design framework, called multi-extension PoS, which allows each

honest player to extend multiple chains in a round. We develop a novel strategy called

“D-distance-greedy” strategy (where D is a positive integer), in which honest players

are allowed to extend a set of best chains that are “close” to the longest chain. (Of

course, malicious players are allowed to behave arbitrarily in the protocol execution.)

This “D-distance-greedy” strategy enables us to construct a class of PoS protocols

that achieve the best possible unpredictability. Plus, we design a new tiebreak rule

for the multi-extension protocol to chose the best chain that can be extended faster.

This ensures that the adversary cannot slowdown the chain growth of honest players.

Note, these protocols can be proven secure, assuming a much smaller fraction (e.g.,

57%) of stake to be honest.

The chapter is organized as follows. In Section 4.1, we introduce an analytical

framework for PoS protocols. In Section 4.2, we show an impossibility result for the

single-extension PoS protocols. In Section 4.3, we construct a new PoS protocol in the

124



multi-extension design framework, bypassing the impossibility for the single-extension

PoS protocols. Next, we provide the security analysis of our new PoS protocol. In

Section 4.4, we provide an overview of the security analysis. In Section 4.5, we provide

a new analysis framework to analyze the chain growth property of a PoS protocol

in the multi-extension design framework. Then, in Section 4.6, we apply the new

analysis framework to analyze the chain growth property for our new PoS protocol.

In Section 4.7, we propose a new analysis framework to analyze the common prefix

property for the new protocol. In Section 4.8, we show the chain quality and the

best possible unpredictability properties of the new protocol. Finally, in Section 4.9,

we discuss how to upgrade our protocol to a full-fledged blockchain protocol and

show how to enable players to register their key-pairs adaptively. In Section 4.10, we

provide the related work. Supplemental materials are presented in Section 4.11.

4.1 Security Model

4.1.1 Blockchain protocol executions

The security of Bitcoin-like PoW-based protocols has been rigorously investigated

by Garay et al. [47] and then by Pass et al. [88] in the cryptographic setting. Below

we define a framework for analyzing Bitcoin-like PoS-based blockchain protocols. We

note many formulation ideas are taken from the previous frameworks [47, 88].

The execution of a PoS blockchain protocol. Following Canetti’s formulation

of the “real world” executions [21], we present an abstract model for a PoS blockchain

protocol Π in the hybrid world of the partially synchronous network communication

functionality, the random oracles, and certain initialization functionality.

We consider the execution of blockchain protocol Π that is directed by an envi-

ronment Z(1κ), where κ is a security parameter. A necessary condition in all common

125



blockchain systems is that all players agree on the first, i.e., the genesis block. The

genesis block consists of the identities (e.g., public keys) and the stake distribution

of the players. Here, the registered players must control a certain number of stake.

During the protocol execution, the stake distribution can be changed, the player can

register to join or deregister to leave the system. For simplicity, we focus on the

idealized “flat” model where all PoS-players have the same number of stake. In the

non-flat model, the players that have more stake can register multiple identities.

The environment Z can “manage” protocol players through an adversary A that

can dynamically corrupt honest players. More concretely, the protocol execution

proceeds as follows. Each player in the execution is initialized with an initial state

including all initial public information, e.g., a genesis block. The environment Z

first activates the adversary A and a set P of PoS-players. The environment Z

also provides instructions for the adversary A. The execution proceeds in rounds,

and in each round, a protocol player could be activated by the environment or the

functionalities. Players are equipped with (roughly synchronized) clocks that indicate

the current round.

In any round r, each PoS-player P ∈ P , with a local state stater, receives a

message from Z, and potentially receives messages from other players. Then, it

executes the protocol, broadcasts a message to other players, and updates its local

state. Note that, the network is controlled by the adversary, i.e., the adversary A is

responsible for delivering all messages sent by players. The adversary A can reorder

or delay the messages. However, it cannot modify the messages. Plus, any message,

that is broadcasted by an honest player, is guaranteed to arrive at all other honest

players within a maximum delay of ∆ rounds.

At any round r of the execution, Z can send message (Corrupt,P), where

P ∈ P , to adversary A. Then, the adversary A will have access to the player’s local

126



state and control P . Let EXECΠ,A,Z be a random variable denoting the joint VIEW of

all players (i.e., all their inputs, random coins and messages received, including those

from the random oracle) in the above protocol execution; note that this joint view

fully determines the execution.

Protocol players are allowed to join the protocol execution EXECΠ,A,Z . In the

current version of our modeling, we assume that when (honest) PoS-players leave the

protocol execution, they will erase their own local internal information.1

Random oracles. As mentioned, we assume the availability of random oracles that

capture the idealization of hash functions. Two hash functions are used for computing

the context of the chains, and for creating the puzzles, respectively; note, to create a

puzzle, the context of (certain) chains will be computed first.

Block and blockchain basics. A blockchain C consists of a sequence of ` con-

catenated blocks B0‖B1‖B2‖ · · · ‖B`, where ` ≥ 0 and B0 is the initial block (genesis

block). We use len(C) to denote blockchain length, i.e., the number of blocks in

blockchain C; and here len(C) := `. (Note that since all chains must consist of the

genesis block, we do not count it as part of the chain’s length. In other words, a

chain C with length ` actually has ` + 1 blocks in total.) We use sub blockchain

(or subchain) for referring to a segment of a chain; here for example, C[0, `] refers to

an entire blockchain, whereas C[j,m], with j ≥ 0 and m ≤ ` would refer to a sub

blockchain Bj‖ · · · ‖Bm. We use C[i] to denote the i-th block, Bi in blockchain C; here

i denotes the block height of Bi in chain C.

If blockchain C is a prefix of another blockchain C1, we write C � C1. If a chain

C is truncated the last κ blocks, we write C[¬κ]. For some A,Z, consider some VIEW

in the support of EXECΠ,A,Z . We use the notation VIEWr to denote the prefix of VIEW

1Players may sell their own secret keys; this is out of scope of this paper.

127



up until round r. Let Cr be the set of chains in VIEWr, and let Cri be the chain in the

view of player i at round r.

4.1.2 Chain growth, common prefix, and chain quality

Previously, several fundamental security properties for Bitcoin-like PoW-based

blockchain protocols have been defined: common prefix property [47, 88], chain quality

property [47], and chain growth property [63]. Intuitively, the chain growth property

states that the chains of honest players should grow linearly to the number of rounds.

The common prefix property indicates the consistency of any two honest chains except

the last κ blocks. The chain quality property aims at indicating the number of honest

blocks’ contributions that are contained in a sufficiently long and continuous part of

an honest chain. Specifically, for parameters ` ∈ N and µ ∈ (0, 1), the ratio of blocks,

that are generated by honest players, in a continuous part of an honest chain is at

least µ. We follow the same path to define the security properties for Bitcoin-like

PoS-based blockchain protocols, as below.

Definition 44 (Chain growth). Consider a blockchain protocol Π with a set P of

players. The chain growth property with parameter g ∈ R, states: for any honest

player P1 with local chain C1 at round r1, and honest player P2 with local chain C2 at

round r2, where P1,P2 ∈ P and r2 > r1, in the execution EXECΠ,A ,Z , it holds that

len(C2)− len(C1) ≥ g(r2 − r1).

Definition 45 (Common prefix). Consider a blockchain protocol Π with a set P of

players. The common prefix property states the following: for any honest player P1

adopting local chain C1 at round r1, and honest player P adopting local chain C at

round r, in the execution EXECΠ,A ,Z , where P1,P ∈ P and r ≤ r1, it holds that

C[¬κ] � C1.

128



Definition 46 (Chain quality). Consider a blockchain protocol Π with a set P of

players. The chain quality property with parameters µ, `, where µ ∈ R and ` ∈ N,

states: for any honest player P ∈ P, with local chain C in round r, in EXECΠ,A ,Z , it

holds, for any ` consecutive blocks of C, the ratio of honest blocks is at least µ.

4.1.3 Unpredictability

The unpredictability property has been investigated by Brown-Cohen et al. [19] in

incentive-driven settings. At a high level, predictability means that (certain) protocol

players are aware that they will be selected to generate blocks of the blockchain, before

they actually generate the blocks. (Please see several predictability-based attacks in

Supplemental materials 4.11.1.)

In this subsection, we investigate the unpredictability property in the crypto-

graphic setting. For any environment Z and any adversary A, consider some VIEW in

the support of EXECΠ,A,Z . Consider a malicious player P ∈ P at round r. Let VIEWr

be the view of all players at round r, and Cr be the best valid chain of all players in

VIEWr. At round r, the adversary A makes an attempt to predict if the (malicious)

player P is able to extend the best chain at a future round r′, where r′ > r. Let

zr
′

P ∈ {0, 1} be the prediction: here, zr
′

P = 1 means that the adversary A predicts that

player P can extend the best chain at round r′.

Now we need to introduce another random variable z̄r
′

P to indicate if the mali-

cious player P indeed is able to extend the best chain at round r′ (as the adversary

predicated at an early round r, where r < r′) or not. Let VIEWr
′

be the view of all

players at round r′, and Cr′ be the best valid chain of all players in VIEWr
′
. We set

z̄r
′

P := 1 if there exists a chain C = Cr′‖B in VIEW with a block B generated by player

P at round r′, otherwise we set z̄r
′

P := 0.

We say a prediction zr
′

P by the adversary is considered accurate if zr
′

P = z̄r
′

P .

129



Consider a view VIEW, and protocol round r, and a malicious player P . For

L ∈ N and a prediction zr
′

P where r′ > r, we define the predicate predictable to be

true if the prediction zr
′

P accurately predicts whether or not player P can generate a

new chain at round r′ that is L blocks longer than the longest chain at round r. More

concretely, we define predictable(VIEW,P , L, r, r′, zr
′

P ) := 1 if and only if the following

three conditions hold: (i) r′ > r; (ii) len(Cr′) + 1− len(Cr) = L; and (iii) zr
′

P = z̄r
′

P .

We say a player is L-unpredictable at round r if the adversary cannot predict

whether or not the player can generate the next L blocks.

Definition 47 (L-unpredictability). Consider a blockchain protocol Π. For L ∈ N,

we say a malicious player P is L-unpredictable at round r if for all ppt Z, for all

ppt A, we have,

Pr

 VIEW← EXECΠ,A,Z ; predictable(VIEW,P , L, r, r′, zr
′

P ) = 0

(r′, zr
′

P )← A(P , r, VIEWr)

 > 1− negl(κ),

where negl(·) is a negligible function.

The best possible unpredictability for any PoS protocol is 2-unpredictability. As

already shown in their Observation 1 by Brown-Cohen et al. [19], in any PoS protocol,

all players can always predict whether or not they can generate the next block. In

other words, 1-unpredictability cannot be achieved, i.e., 2-unpredictability is the best

possible unpredictability. We formally define the best possible unpredictability as

follows.

Definition 48 (The best possible unpredictability). Consider a blockchain protocol

Π. We say protocol Π achieves the best possible unpredictability if for all ppt Z,A,

130



for any malicious player P at any round r, we have,

Pr

 VIEW← EXECΠ,A,Z ; predictable(VIEW,P , 2, r, r′, zr
′

P ) = 0

(r′, zr
′

P )← A(P , r, VIEWr)

 > 1− negl(κ),

where negl(·) is a negligible function.

4.2 An Impossibility Result

We investigate an impossibility result for a group of proof-of-stake protocols,

namely, single-extension PoS protocols. The result states that a single-extension PoS

protocol cannot achieve both the common prefix and the best possible unpredictability

properties if honest players control less than 73% of the stake.

We studied existing Bitcoin-like PoS protocols, such as Ouroboros Praos [34] and

SnowWhite [32]. These protocols use the same context to generate multiple blocks

on the blockchain during an epoch. This means that any two chains within the same

epoch share the same context. We refer to this as a shared-context-extension. Players

attempt to extend the chain by solving puzzles based on the chain’s context. If two

chains share the same context, players can extend both chains simultaneously. Thus,

the shared-context-extension property allows for predictability in the PoS protocol

execution. When a player receives one chain with shared-context-extension, they can

predict whether or not they can extend the other chain in the future.

In contrast to the existing PoS designs, in Bitcoin, the contexts of two different

chains are always different. Therefore, the extension of one chain does not affect the

extension of any other chain. This property is referred to as distinct-context-extension,

and it provides the best possible unpredictability for PoS protocols. Players can only

obtain the context of a chain when they receive it, thus allowing them to determine

whether they can extend the chain or not.

131



Based on the distinct-context-extension property, we investigate an impossibil-

ity result for single-extension PoS protocols. We first describe the single-extension

proof-of-stake framework in Subsection 4.2.1. Then, in Subsection 4.2.2, we state

the impossibility result for the single-extension proof-of-stake protocols. In Subsec-

tion 4.2.3, we present a new definition of distinct-context-extension property and

prove the impossibility result for the single-extension proof-of-stake protocols in Sub-

section 4.2.4 and Subsection 4.2.5.

4.2.1 Single-extension proof-of-stake protocols

We now describe a design framework, called single-extension framework, for

Bitcoin-like PoS protocols. Intuitively, in a single-extension protocol, in each round,

each honest player identifies only a single “best chain”, and then extends the chosen

best chain. We remark that, the state-of-the-art PoS protocols (e.g., [32, 34, 7]) can

be categorized as single-extension PoS protocols (see Supplemental material 4.11.2

for more details).

We emphasize that, we focus on Bitcoin-like PoS protocols only; the players can

generate new blocks in a non-interactive fashion by solving PoS puzzles. Our design

framework cannot be applied for BFT-like protocols (e.g., Algorand [23, 51]); in those

protocols, the players must interact with each other to generate new blocks.

Definition 49 (Single-extension framework for PoS protocols). A single-extension

PoS protocol Π is executed by a set of player P. Initially, each player P ∈ P holds

a key pair (sk,pk). The protocol Π is parameterized by deterministic algorithms

(Context,Extend,Validate,BestChain) as follows:

The validation algorithm Validate takes a chain C and a round r as input and

returns 1 if the chain C is valid at round r, and returns 0 otherwise.

132



The context extraction algorithm Context takes a valid chain C as input and returns

a context η. The context η is the hash value of some blocks on the chain C, based

on some hash function hash : {0, 1}∗ → {0, 1}∗. Note that hash function hash will

be treated as a random oracle in our analysis.

More concretely, the input chain C is parsed into B0,B1, · · · ,B`, where ` ∈ N.

The algorithm Context returns a context η := hash(Bi1‖ · · · ‖Bit). Here, ij ∈ [0..`]

for all j ∈ {1, . . . , t}. (Note that, the algorithm Context returns ⊥ when the input

chain C is invalid. )

We remark that, the state-of-the-art PoW (e.g., Bitcoin [47, 88]) and PoS

(e.g., [32, 34, 7]) use the context extraction algorithms in the above format. For

example, in Bitcoin [47, 88], the context is computed as the hash value of the

last block on the chain. In Ouroboros Praos [34], the context is computed as the

hash value of one or multiple blocks from the previous epoch. In Snow White [32],

the context is the concatenation of the random seeds from multiple blocks in the

previous epoch; here, the function hash first truncates the blocks in the previous

epoch and obtain the random seeds from those blocks; then it concatenates all the

random seeds to obtain the context. More details can be found in the Supplemental

material 4.11.2.

The extension algorithm Extend is parameterized by a probability p ∈ (0, 1). The

algorithm Extend takes input as a context η, a round r, and a secret key sk and

returns a new block B or ⊥ (if no new block is generated). Here, the secret

key sk is generated by a player P in the blockchain initialization phase and the

corresponding public key of sk will be stored in the genesis block. The function

Extend(η, r, sk) returns a block B with probability p.

The best chain algorithm BestChain takes a set of valid chains C and returns the

longest chain Cbest as the best chain. Here, the honest player will only extend a

133



single chain, i.e., the longest chain Cbest. Thus, we name the protocol single-

extension.

The execution of a single-extension protocol consists of two phases as follows.

Blockchain initialization phase. In this phase, the genesis block will be created;

the genesis block consists of a randomness, the public information and the stake dis-

tribution of the players. Consider an (initial) group of PoS-players P = {P1,P2,

. . . ,Pn} and a security parameter κ. Each player Pj ∈ P generates a pair of public

key pkj and private key skj. The public keys of all players are stored in the genesis

block, denoted by B0, of the blockchain system.

Algorithm 5: A single-extension proof-of-stake protocol Π.

State : Initially, the set of chains C only consists of the genesis block. At round
r, the PoS-player P ∈ P, with key pair (sk,pk) and local chain set C,
proceeds as follows.

1 Upon receiving a chain C′, set C := C ∪ {C′} after verifying Validate(C′, r) = 1;
2 Set Cbest := BestChain(C);
3 Set η := Context(Cbest); Set B := Extend(η, r, sk);
4 if B 6=⊥ then
5 Set C := Cbest‖B ; Add C to the set C; Broadcast C;

Blockchain extension phase. A single-extension proof-of-stake protocol Π is de-

scribed in Algorithm 5. In each round r, a player P with the secret key sk proceeds as

follows. First, the player P computes Cbest := BestChain(C, r). Here the local set of

chains C consists of all valid chains that are received (or generated) by P. Then, the

player P uses the function Context to compute the context η in the best chain Cbest,

i.e., η := Context(Cbest). Finally, based on the context η, the current round number

r, and the secret key sk, the player P uses the function Extend to determine whether

or not it can generate a new block. If the player P can generate a new block B, it

creates a new chain C := Cbest‖B, adds C to the set of chains C, and broadcasts C to

all other players.

134



4.2.2 Impossibility result for single-extension proof-of-stake protocols

We present an impossibility result for single-extension PoS protocols. More con-

cretely, consider a PoS protocol in the single-extension framework; we can show that,

if the PoS protocol achieves the best possible unpredictability, then the protocol can-

not simultaneously maintain fundamental security properties, such as the common

prefix, when honest players control less than 73% of the stake.

We will prove the impossibility of the result through the distinct-context-extension

property. This property is essential for the protocol to achieve the best possible un-

predictability. Specifically, it ensures that the contexts of any two different chains in

the execution are different, making it impossible for an adversary to predict future

chain extensions based on past extensions. However, this property also allows an

adversary to amplify their stake by a factor of e = 2.72, enabling them to break the

common prefix property with only 27% of the stake. Therefore, if the honest players

control less than 73% of the stake, it becomes impossible to simultaneously achieve

both the distinct-context-extension and common prefix properties, resulting in our

impossibility result.

We remark that, the aforementioned impossibility does not hold for single-extension

PoW protocols. In these protocols, the property of distinct-context-extension is also

necessary for the best possible unpredictability. However, the cost of computing power

needed to generate a new block in a PoW protocol is prohibitively high, preventing

players from extending multiple chains to improve their chances of generating new

blocks. On the other hand, the computing power required to extend a chain in a

Proof-of-Stake (PoS) protocol is very cheap, making it possible for an adversary to

extend multiple chains and increase their chances of generating new blocks. There-

fore, a PoW protocol can achieve the best possible unpredictability and maintain the

135



security (e.g., common prefix property) when 51% of the mining power is honest.

Let N be the number of players and ρ be the fraction of malicious players in

the protocol execution. Let p be the probability that a player can extend a chain

in a round. The probability that honest players extend a chain in a round is α =

1 − (1 − p)N ·(1−ρ). Similarly, the probability that the adversary extends a given

chain is β = 1 − (1 − p)N ·ρ. Later, we will show that if the protocol Π achieves the

distinct-context-extension property, the adversary can amplify its stake by a factor

of e = 2.72. Therefore, if α < 2.72β (i.e., less than 73% of the total stake is honest),

the protocol cannot achieve the common prefix property. We are now ready to state

the impossibility theorem for protocol Π.

Theorem 50. Consider a single-extension PoS protocol Π that achieves the best

possible unpredictability. If α < 2.72β, then protocol Π cannot achieve common prefix

property.

We describe in Figure 17, the roadmap for the proof of the impossibility theorem.

Proof. We prove Theorem 50 in the following two steps. First, we show in Lemma 53

that if the single-extension PoS protocol Π achieves the best possible unpredictability,

it must achieve distinct-context-extension property. Secondly, we show in Lemma 59

that if the single-extension PoS protocol Π achieves distinct-context-extension prop-

erty, it cannot achieve common prefix property if α < 2.72β. Specifically, if protocol

Π achieves distinct-context-extension property, then the adversary can amplify its

stake by a factor e = 2.72 by extending all valid chains. Thus, if α < 2.72β, the

adversary can extend the chain faster than the honest player. Hence, they can break

the common prefix property by keep its chain hidden for a sufficient long period and

then publish the hidden chain. As the chain of the adversary is longer, it will be

come the new best chain. Since the new best chain does not share a common prefix

136



Single-extension
PoS protocol

Definition 49

Best possible
unpredictability

Definition 48

< 73% honest
stake

Distinct-context-
extension

Definition 52

Common prefix

Definition 45

Lemma 59Lemma 53

Figure 17: The roadmap for the proof of our impossibility result (Theorem 50). First,

we show in Lemma 53 that if a single-extension PoS protocol achieves the best possible

unpredictability, it must achieve distinct-context-extension property. Secondly, we

show in Lemma 59 that if a single-extension PoS protocol achieves distinct-context-

extension property and the honest players control less than 73% of stake, the protocol

cannot achieve common prefix property.

with the old best chain of the honest players, the common prefix property does not

hold.

We remark that we are the first to show the impossibility result for single-

extension PoS protocols. To show the impossibility, we need to formally define the

single-extension PoS protocol and introduce a new concept of a distinct-context-

extension property. Then, based on the distinct-context-extension property, we can

prove the impossibility result in two steps, as mentioned above. The proof of the

second step has been shown in [7]. However, the impossibility result has not been

presented in those works.

137



4.2.3 Distinct-context-extension

We introduce a new definition for the distinct-context-extension property. As

previously stated, we will use this property to prove an impossibility result for single-

extension PoS protocols. The distinct-context-extension property states that the con-

texts of any chains in the execution must be distinct. This prevents the adversary

from predicting the extension of a chain in the future based on an existing chain in

the past. Hence, the distinct-context-extension property is needed in order to achieve

the best possible unpredictability. At the same time, this also allows the adversary to

amplify their stake by a factor of e = 2.72, enabling them to extend the chain faster

than the honest players and break the common prefix property if they control more

than 27% of the stake. Therefore, it is impossible for a single-extension protocol to

simultaneously achieve the distinct-context-extension and common prefix properties

if the adversary controls more than 27% of the stake.

Additionally, we define shared-context-extension, which is the counterpart of

distinct-context-extension. We say two chains in the execution are shared-context-

extension if the contexts of the two chains are the same. The shared-context-extension

allows the adversary to predict whether or not it can extend a future chain that has

not yet been generated. Specifically, if the future chain shares the same context as

the current chain, the adversary can base its prediction (for the future chain) on the

extension of the current chain. We note that existing protocols, such as Ouroboros

Praos [34] and SnowWhite [32], have the shared-context-extension property, while

our protocol in Section 4.3 achieves the distinct-context-extension property.

We now present the definition of distinct-context-extension and shared-context-

extension for two chains. The toy examples of distinct-context-extension and shared-

context-extension can be seen in Figure 18 and Figure 19, respectively.

138



At round ,  cannot predict if
it can generate .

,
.

The contexts of ,  are distinct.

At round , the events that 
generates  and  generates

 are independent. 

Figure 18: A toy example of distinct-context-extension for two chains. Consider two

chains C1 = B0‖B1‖B2‖B3 and C2 = B0‖B1‖B2‖B3‖B4‖B5. Here, Context(C1) =

hash(B3) and Context(C2) = hash(B5). As B3 6= B5, we have, Context(C1) 6=

Context(C2). In other words, C1 and C2 are distinct-context-extension. At round

r2, the events that the adversary A can extend the chain C1 to generate a new block

B ′4 and the probability that A can extend the chain C2 to generate a new block B6

are independent. At round r1, the adversary A has not yet received the chain C2.

Therefore, it cannot predict whether it can extend C2 to generate block B6.

139



At round ,  can predict if it
can generate .

,
.

,  share the same context.

At round , if  can generate
, then  can generate  

Figure 19: A toy example of shared-context-extension for two chains. The defi-

nition of function Context here is very different from that in Figure 18. Consider

two chains C1 = B0‖B1‖B2‖B3 and C2 = B0‖B1‖B2‖B3‖B4‖B5. We stress that,

here, Context(C1) = hash(B1) and Context(C2) = hash(B1). While in Figure 18,

Context(C1) = hash(B3) and Context(C2) = hash(B5). We have, Context(C1) =

Context(C2). In other words, C1 and C2 are shared-context-extension. At round r2, if

the adversary A can extend the chain C1 to generate a new block B ′4, it can also ex-

tend the chain C2 to generate a new block B6. Thus, at round r1, when the adversary

A has received C1 but not yet received C2, the adversary can predict whether or not

it can extend C2 to generate block B6 at round r2.

140



Definition 51 (Distinct and shared-context-extension for two chains). Consider a

single-extension proof-of-stake protocol Π that is parameterized by four algorithms:

Validate, BestChain, Context, and Extend. Let P be the set of players. For any

adversary A and environment Z, consider some VIEW in the support of EXECΠ,A,Z .

Consider two chains C1 and C2 in VIEW.

• We say the extensions of C1 and C2 are distinct-context-extension if the con-

texts of C1 and C2 are distinct, i.e., Context(C1) 6= Context(C2). We write

distinct-context-extension(C1, C2) = 1. In this case, the event that the adver-

sary A can extend the chain C1 and the event that A can extend the chain C2

are independent.

• We also consider the flip side of distinct-context-extension, namely, shared-

context-extension. We say the extensions of C1 and C2 are shared-context-

extension if the contexts of C1 and C2 are the same, i.e., Context(C1) = Context(C2).

We write shared-context-extension(C1, C2) = 1. In this case, if the adversary A

can extend the chain C1, it can also extend the chain C2, and vice versa.

We are now ready to define the distinct-context-extension property for a PoS

protocol. Intuitively, we say that a protocol achieves the distinct-context-extension

property if all different chains in the protocol’s execution have distinct contexts.

Definition 52 (Distinct-context-extension for all chains in the executions). Consider

a single-extension proof-of-stake protocol Π that is parameterized by four algorithms:

Validate, BestChain, Context, and Extend. Let P be the set of players. For any

adversary A and environment Z, consider some VIEW in the support of EXECΠ,A,Z .

Consider some round r; let Cr be the set of all chains that appear on the view of some

players (or the adversary) in VIEWr. Here, VIEWr is the prefix of VIEW up until round

r. We overload the predicate distinct-context-extension for a view VIEW. Intuitively,

141



a view VIEW is distinct-context-extension if all different chains in VIEW have distinct

contexts. More concretely, we say a view VIEW is distinct-context-extension if and

only if for any round r, for any chains C1, C2 ∈ Cr such that C1 6= C2, we have,

distinct-context-extension(C1, C2) = 1. We write distinct-context-extension(VIEW) = 1.

We say protocol Π achieves distinct-context-extension property if for every ppt Z,A,

we have,

Pr[VIEW← EXECΠ,A,Z | distinct-context-extension(VIEW) = 1] = 1− negl(κ),

where negl(·) is a negligible function.

4.2.4 Achieving the best possible unpredictability via distinct-context-

extension

We prove that a single-extension PoS protocol can only achieve the best possible

unpredictability if it satisfies the distinct-context-extension property. Intuitively, as

shown in Figure 19, if there are two chains that are shared-context-extension, the

adversary can predict whether or not it can extend a chain in the future (i.e., the

chain is not yet generated). This contradicts the best possible unpredictability. More

concretely, consider two chains C1 and C2 that share a context extension. Without

loss of generality, we assume that the length of C1 is greater than the length of C2.

We define C as the longest common prefix of C1 and C2. Recall that, the contexts of

C1 and C2 are computed using a hash function (which will be treated as a random

oracle) over some blocks on the two chains. Since the contexts of C1 and C2 are the

same, the shared context must be extracted from the longest common prefix C of C1

and C2. Upon receiving the chain C at round r, player P can predict whether or not

they can extend C1. As the length of C1 is greater than the length of C, player P is

2-predictable at round r, which contradicts the best possible unpredictability.

142



Lemma 53. Consider a single-extension proof-of-stake protocol Π that is parameter-

ized by four algorithms: Validate, BestChain, Context, and Extend. If the protocol Π

achieves the best possible unpredictability, then it achieves distinct-context-extension

property.

Proof. We assume toward contradiction that there exist two chains C1 and C2 such

that C1 6= C2 and the extensions of those two chains are shared-context-extension. We

will prove that the protocol Π cannot achieve the best possible unpredictability, i.e.,

there exists a round r and a malicious player P such that the player P is 2-predictable

at round r.

Let η1 = Context(C1) and η2 = Context(C2). We have, η1 = η2. We parse C1 into

B0‖B1‖ · · · ‖B`1 and parse C2 into B ′0‖B ′1‖ · · · ‖B ′`2 . Here, `1 = len(C1) and `2 = len(C2)

are the lengths of C1, C2, respectively. Without loss of generality, we assume `1 ≥ `2.

Let r1, r2 be the round where C1, C2 are generated. Here, C1 is the best chain at round

r1.

Let C be the longest common prefix of C1 and C2. Let ` = len(C) be the length

of chain C. We have, for all i ∈ [0..`], Bi = B ′i ; and for all i ∈ [`+ 1, `2], Bi 6= B ′i . Let

r be the round where C is generated. We will prove that player P is 2-predictable at

round r. In other words, at round r, the player P can predict weather or not she/he

can extend the chain C1 at round r.

We will show that the contexts of C1 and C2 can be computed when the chain

C is generated. As shown in Definition 49, the contexts are computed based on the

hash values of some blocks on the chain. Let Bi1 , · · · ,Bit be the blocks that are

used to compute the context of C1, where t ∈ N and for all j ∈ [t], ij ∈ [0..`1].

We have, η1 = hash(Bi1‖ · · · ‖Bit). Let B ′i′1
, · · · ,B ′i′

t′
be the blocks that are used to

compute the context of C2, where t ∈ N and for all j ∈ [t′], i′j ∈ [0..`2]. We have,

143



η2 = hash(B ′i′1
‖ · · · ‖B ′i′

t′
).

The function hash is treated as a random oracle2. Note that η1 = η2. Now we

have, Bi1‖ · · · ‖Bit = B ′i′1
‖ · · · ‖B ′i′

t′
. Thus, we have t = t′ and for all j ∈ [t], Bij = B ′i′1

.

Hence, all blocks Bi1 , · · · ,Bit must belong to the chain C, the common prefix of C1

and C2. In other words, the contexts η1 and η2 must be obtained from the chain C.

Next, we will show that chain C1 is longer than chain C, i.e., len(C1) > len(C).

We consider two cases based on the length of C1 and C2 as follows:

• Case 1: len(C1) > len(C2). As C is a prefix of C2, we have, len(C2) ≥ len(C).

Thus len(C1) > len(C2) ≥ len(C).

• Case 2: len(C1) = len(C2). Assume toward contradiction that len(C1) = len(C).

As C is a prefix of C1, we have C = C1. Similarly, we have C = C2. Thus, we

have C1 = C2 (this contradicts the condition that C1 6= C2). Hence, we have,

len(C1) > len(C).

Let r be the round where player P receives C. At round r, player P can calculate

the context η1 of the chain C1. At round r, the adversary makes a prediction zr1P ,

where

zr1P =


0, if Extend(η1, r1, sk) =⊥,

1, if Extend(η1, r1, sk) 6=⊥ .

If the function Extend(η1, r1, sk) returns a block, i.e., Extend(η1, r1, sk) 6=⊥, player

P can extend the chain C1 at round r1. Hence, the prediction zr1P = 1 is always

accurate. Furthermore, since len(C1) − len(C) ≥ 1, i.e., len(C1) + 1 − len(C) ≥ 2, we

have, predictable(VIEW,P , 2, r, r1, z
r1
P ) = 1. In other words, the malicious player P is

2-predictable at round r. This contradicts the fact that protocol Π achieves the best

2It is sufficient to assume that hash is collision resistant hash function in this proof.

144



possible unpredictability, i.e., player P must be 2-unpredictable at every round.

We note that the single-extension protocols in [32, 34] cannot achieve the best

possible unpredictability. The execution of these protocols is divided into epochs,

each consisting of O(κ) blocks. In these protocols, the context is computed based on

the hash values of the blocks in the previous epoch. As a result, all chains in the

same epoch share the same context. Thus, at the beginning of each epoch, malicious

players can predict whether or not they can extend their chains in the current epoch.

Bagaria et al. [7] proposed a single-extension protocol with a constant-sized epoch. In

this protocol, the context of a chain is computed as the hash value of the last block in

the previous epoch. If each epoch consists of at least two blocks, the protocol cannot

achieve the best possible unpredictability. This is because all the chains in the same

epoch share the same context. On the other hand, if each epoch consists of only one

block, the protocol can achieve the best possible unpredictability. Now, the protocol

achieves distinct-context-extension property. Jumping ahead, in Subsection 4.2.5,

we will show that the protocol requires 73% of honest stake to achieve the security

properties.

4.2.5 Breaking the common prefix property via distinct-context-extension

We show that if a single-extension proof-of-stake (PoS) protocol achieves the

distinct-context-extension property, the adversary can violate the common prefix

property if the honest players control less than 73% of the stake. More specifically,

based on the distinct-context-extension property, the adversary can amplify their

stake by at least a factor of e = 2.72. Therefore, if the honest players control less

than 73% of the stake, the adversary can extend chains faster than the honest players

145



and thus break the common prefix property of the protocol.

The chain growth of the adversary. We establish a bound on the chain growth

of the adversary as follows. We demonstrate that for any valid chain C at any round

r, there exists an adversary who can extend the chain C with a probability of at

least β. Given that the protocol achieves the distinct-context-extension property,

the extensions of all chains are independent. We model the chain extension of the

adversary as a random tree, where each branch of the tree represents a chain in the

block tree and the extensions of the branches are modeled as independent random

variables.

Claim 54. Adversarial extension Consider any proof-of-stake protocol Π with a set

of player P. For some adversary A and environment Z, consider some VIEW in the

support of EXECΠ,A,Z . Let Cr be the set of chains in the view of all players at round

r. At round r, the adversary makes an attempt to extend a chain C ∈ Cr. Specifically,

the adversary A, takes inputs as a chain C ∈ Cr, the round number r, and output a

block B. For every, ppt Z, there exists an adversary A such that, at any round r,

we have,

Pr


VIEW← EXECΠ,A,Z ;

C ← Cr; Validate(C‖B , r) = 1

B ← A(C, r);

 ≥ β.

Proof. Consider an adversary A that corrupts N · ρ players at the start of the pro-

tocol. The adversary A extends all chains in Cr for each round r. For each mali-

cious player P , let sk be their secret key. The adversary instructs player P to run

Extend(Context(C), r, sk). Recall that, the algorithm Extend(Context(C), r, sk) returns

⊥ if no new block is generated. Otherwise, if Extend(Context(C), r, sk) 6=⊥, i.e., the

algorithm return a new block, the player P can generate a new block.

The adversary can generate a new block in a round r if there exists a malicious

146



player P ′ successfully generates a new block, i.e., Extend(Context(C), r, sk′) 6=⊥, where

sk′ is the secret key of P ′. In this case, the adversary returns the block that is output

by the algorithm Extend(Context(C), r, sk′). Otherwise, if all malicious players cannot

generate a new block at round r, the adversary returns ⊥.

Recall that, the algorithm Extend(Context(C), r, sk) returns a new block with

probability p. As the number of malicious players is N · ρ, the probability that there

exists an malicious play can extend the chain C at round r is 1− (1− p)N ·ρ = β. In

this case, the adversary returns a block core that is generated by a malicious player

at round r.

Next, we show that the adversary can amplify its stake by a factor of e = 2.72.

To do this, we consider an adversary that extends all chains. The extension of the

adversary is modeled as a random tree, in which each branch represents the extension

of a chain. Based on Lemma 54, the probability of the adversary extending a chain in

each round is at least β. Additionally, as stated in Lemma 53, to achieve the best pos-

sible unpredictability, the extensions of all chains must be distinct-context-extension.

Thus, the probabilities of the adversary extending the chains are independent. The

chain extension of the adversary is modeled as a random tree with independent ex-

tensions in each branch. To bound the growth rate of the chain, we first bound the

number of branches in the random tree and then, based on the number of branches

and the growth rate of each branch, we can determine the maximum length of all

branches in the random tree.

Before presenting the detailed proofs, we introduce a useful inequality as follows.

Claim 55 (Theorem 1 in [22]). Consider a Poisson random variable X that has the

expected value of λ. We have the following inequalities.

• For any ε > 0, we have, Pr[X > λ · (1 + ε)] ≤ e−λ
ε2

2(1+ε) .

147



• For any 0 < ε < 1, we have, Pr[X < λ · (1− ε)] ≤ e−λ
ε2

2(1+ε) .

Claim 56 (Theorem 3 in [52]). Let X1, X2, · · · , Xt be identical independent random

variables in range [0, 1] with an expected value of λ. Then, for any ε > 0, we have

Pr[
∑t

i=1Xi < (1− ε) · t · λ] ≤ e−Ω(t).

We describe the adversary’s chain extension as a branching process, as follows.

Let Zt be the set of all branches at round t, where t ∈ N, and Gt be the number of

branches in Zt. At the beginning, there is only one branch of length 0, i.e., Z0 = {0}

and G0 = 1. Let X be a Poisson random variable with an expected value of β. Let

Xt,i be the random variable that represents the random process in the i-th branch

in Zt. Here, Xt,i are independent and identically distributed random variables of X.

Let `t,i be the length of the i-th branch in Zt. We will add Xt,i + 1 branches with the

length `t,i, `t,i + 1, · · · , `t,i + Xt,i into Zt+1. We denote Tt as the maximum length of

all branches in Zt, i.e., Tt = maxi∈{1,2,··· ,Gt} `t,i. The maximum length Tt is equivalent

to the length of the longest chain. To bound the adversary’s chain growth, we first

bound the number of different branches at the end of the process (see Lemma 57).

Then, we use the union bound for the maximum length of all branches.

Claim 57. Consider the set of branches Zt at time t. For any ε′′ > 0, we have

Pr[Gt < (β + 1)(1−ε′′)·t] < e−Ω(t).

Proof. In each round, on average, the adversary can create β + 1 new branches from

a branch in the previous rounds. Thus, for j ∈ N, we have E
[Gj+1

Gj

]
= β+ 1. In other

words, we have E
[

log(Gj+1)− log(Gj)
]

= log(β + 1).

Let Q1, Q2, · · · , Qt be independent and identically distributed random variables

148



with the expected value of log(β + 1). We have, logGt =
∑t

j=1 Qj. Therefore,

Pr
[
Gt < (β + 1)(1−ε′′)·t] = Pr

[
log(Gt) < (1− ε′′) · t · log(β + 1)

]
= Pr

[ t∑
j=1

Qj < (1− ε′′) · t · log(β + 1)
]
< e−Ω(t).

Claim 58. Consider a single-extension proof-of-stake protocol Π satisfies distinct-

context-extension property. For some adversary A and environment Z, consider some

VIEW in the support of EXECΠ,A,Z . Let Cr1 be the set of chains at round r1. The

adversary takes inputs as a chain C1 ∈ Cr1 and the round numbers r1, r2 and outputs

a chain C2. For every, ppt Z, there exists an adversary A such that, at any round

r1, r2, where r2 − r1 = t and t = Ω(κ), we have,

Pr


VIEW← EXECΠ,A,Z ; C1 ← Cr1 ;

(
Validate(C2, r2) = 1

)
C2 ← A(C1, r1, r2);

∧ (
C1 � C2

)
`1 := len(C1); `2 := len(C2);

∧ (
`2 − `1 > (1− ε) · e · β · t

)
 ≥ 1−e−Ω(κ),

where e = 2.72.

Proof. Let Y :=
∑t

j=1Xj be a Poisson random variable with the expected value of

k · β. We have,

Pr
[
Tt < (1− ε) · t · β · e

]
≤

∑
i∈{1,2,··· ,Gt}

Pr
[
`t,i < (1− ε) · t · β · e

]
≤Gt · Pr

[
Y < (1− ε) · t · β · e

]
≤(β + 1)(1+ε′′)·t · Pr

[
Y < (1− ε) · t · β · e

]
+ e−Ω(κ)

≤Pr
[
Y < (1− ε′) · t · β

]
+ e−Ω(κ) = e−Ω(κ).

149



Breaking common prefix. Since the adversary can amplify its stake by a factor

e = 2.72, the adversary can extend the chain faster than the honest players it control

more than 27% of stake. Thus, the adversary can keep its blocks hidden and then

publishes those block when the length of hidden chain is bigger than κ. Now, the

hidden chain will become the new best chain and it does not share a common prefix

with the previous best chain.

Lemma 59. Assume α < e · β, where e = 2.72. Consider a single-extension proof-

of-stake protocol Π that is parameterized by four algorithms: Validate, BestChain,

Context, and Extend. If protocol Π achieves distinct-context-extension property, then

it cannot achieve common prefix property.

Proof. Consider an adversary that extends a set of chains and keep them private from

the beginning of the protocol execution. Consider a round r = Ω(κ), let C1 be the best

chain that is generated by the adversary. Here, C1 is private, i.e., it is hidden from

the honest players. From Claim 58, we have Pr[len(C1) < (1− ε1) · r · e · β] < e−Ω(κ),

where e = 2.72. Let C2 be the best public chain at round r. Using Chernoff bound,

we have, Pr[len(C2) > (1 + ε2) · r · α] < e−Ω(κ). Here, we choose ε1, ε2 such that

(1− ε1) · e · β > (1 + ε2) · α. We have, Pr[len(C1) > len(C2)] > Pr[(1− ε1) · r · e · β >

(1 + ε2) · α]− e−Ω(κ) = 1− e−Ω(κ).

At some round r′ = Ω(κ) such that len(C1) > κ, the adversary publishes the best

private chain C1. Recall that, Pr[len(C1) > len(C2)] > 1− e−Ω(κ). In other words, with

overwhelming probability, the private chain C1 is longer than the best public chain

C2. Therefore, the honest players will adopt C1 as the best public chain.

Note that, all blocks in the private chains C1 (except the genesis block) do not

belong to the public chain C2. Thus, we have, C1[¬κ] � C2. Therefore, the common

prefix property does not hold.

150



4.3 Greedy Strategies: How to overcome the impossibility

In Section 4.2, we have demonstrated the impossibility of single-extension PoS

protocols. Specifically, we have shown that a single-extension PoS protocol that

achieves the best possible unpredictability cannot simultaneously achieve the com-

mon prefix property if honest players control less than 73% of the stake. In this

section, we introduce a multi-extension framework that allows honest players to ex-

tend multiple chains. We then present greedy strategies that follow this framework. In

these strategies, honest players are allowed to extend multiple chains that are ”close”

to each other. Additionally, we design a new tiebreak rule for the multi-extension

protocol to maximize the chain growth of honest players. Our multi-extension proto-

col can achieve the best possible unpredictability while only requiring a much smaller

fraction (e.g., 57%) of the honest stake to achieve the security properties.

For simplicity, we consider the idealized “flat” model where all PoS-players have

the same number of stake and register exactly one public key in the genesis block. In

a non-flat model where the PoS-players may have different numbers of stake, we can

set the difficulty of the hash inequality based on the number of stakes that the player

controls (see more details in Section 4.9.2). Plus, we assume all protocol players have

their stake registered at the beginning of the protocol execution. In Section 4.9.3, we

will turn to consider a dynamic stake distribution and use a similar strategy as in [6]

to allow new players to join the system during the protocol execution.

4.3.1 Multi-extension proof-of-stake protocols

We say a PoS protocol is a multi-extension protocol if in each round, each honest

player is allowed to extend multiple chains. By extending multiple chains, the honest

players can extend the best chain faster, compared to the single-extension protocol.

151



Definition 60 (Multi-extension framework for PoS protocols). A multi-extension

PoS protocol Π◦ is parameterized by 4 deterministic algorithms (Validate◦, BestChainSet◦,

Context◦,Extend◦) as follows:

• The validation algorithm Validate◦ takes a chain C and a round r as input and

returns 1 if the chain C is valid at round r, and returns 0 otherwise.

• The context extraction algorithm Context◦ takes a valid chain C as input and

returns a context η. If the input chain is invalid, the algorithm returns ⊥.

• The extension algorithm Extend◦ is parameterized by a probability p ∈ (0, 1).

The algorithm takes input as a context η, a round r, and a secret key sk, and

returns a new block B or ⊥ (if no new block is generated). Here, the secret

key sk is generated by a player P in the blockchain initialization phase, and the

corresponding public key of sk will be stored in the genesis block. The function

Extend◦(η, r, sk) returns a block B with probability p.

• The best chain set algorithm BestChainSet◦ takes a set of chains C and returns

a set of the best chains Cbest. Here, the honest players will extend multiple

chains, i.e., all the chains in the set of the best chains Cbest. Thus, we name

the protocol multi-extension.

We note that the descriptions of algorithms Validate◦, Context◦, and Extend◦ are iden-

tical to the descriptions of algorithms Validate, Context, and Extend in the single-

extension PoS protocol, defined in Definition 49. The difference between the single-

extension and multi-extension protocols is the utilization of different algorithms, namely

BestChain and BestChainSet◦, for determining the chains to be extended. The single-

extension protocol uses the best chain algorithm BestChain to select a single best

chain. Meanwhile, the multi-extension protocol employs the best chain set algorithm

152



BestChainSet◦, which returns a set of multiple best chains. The advantage of extend-

ing multiple chains is that honest players can extend the best chain faster compared

to the single-extension protocol.

Blockchain initialization phase. In this phase, the genesis block will be created;

the genesis block consists of a randomness, the public information and the stake dis-

tribution of the players. Consider an (initial) group of PoS-players P = {P1,P2,

. . . ,Pn} and a security parameter κ. Each player Pj ∈ P generates a pair of public

key pkj and private key skj. The public keys of all players are stored in the genesis

block of the blockchain system. We let B0 denote the genesis block. .

Algorithm 6: A multi-extension proof-of-stake protocol Π◦.
State : Initially, the set of chains C only consists of the genesis block. At round

r, the PoS-player P ∈ P, with key pair (sk,pk) and local chain set C,
proceeds as follows.

1 Upon receiving a chain C′, verify Validate◦(C′, r) = 1 and set C := C ∪ {C′};
2 Set Cbest := BestChainSet◦(C);
3 for C ∈ Cbest do
4 η := Context◦(C); B := Extend◦(η, r, sk);
5 if B 6=⊥ then
6 C′ := C‖B ; Add C′ to C; Broadcast C′;

Blockchain extension phase. A multi-extension proof-of-stake protocol Π is de-

scribed in Algorithm 6. In each round r, a player P with the secret key sk proceeds

as follows. First, the player P set Cbest := BestChainSet◦(C). Here the local set of

chains C consists of all valid chains that are received (or generated) by P. Then, for

each chain C ∈ Cbest, the player P uses the function Context◦ to extract the context

η in the best chain C, i.e., η := Context◦(C, r). Finally, based on the context η, the

current round number r, and the secret key sk, the player P uses the function Extend◦

to determine whether or not it can generate a new block. If the player P can generate

a new block B, it creates a new chain C ′ := C‖B, adds C ′ to the set of chains C and

153



broadcasts C ′ to all other players.

Remark 1. We remark that, there are other ways to design multi-extension protocols.

However, to simplify the presentation, we focus on the design in Definition 60. We

used this design of multi-extension protocols for our protocol in Section 4.3.

4.3.2 Greedy strategies

We allow the PoS players to take a greedy strategy to extend the chains in a

protocol execution: instead of extending a single best chain (i.e., the longest chain),

the players are allowed to extend a set of best chains, expecting to extend the best

chain faster. This is possible because extending the chains in a PoS protocol is “very

cheap”. We remark that, the set of best chains should be carefully chosen; otherwise,

the protocol may not be secure. In our greedy strategy, the honest player extends the

set of chains that share the same common prefix after removing the last few blocks.

With this strategy, the security of the protocol is guaranteed. Next, we will formally

study the greedy strategies.

Distance-greedy strategies. We first introduce distance-greedy strategies for hon-

est protocol players. Consider a blockchain protocol execution. In each player’s local

view, there are multiple chains, which can be viewed as a tree. More concretely, the

genesis block is the root of the tree, and each path from the root to another node

is essentially a chain. The tree will “grow”: the length of each existing chain may

increase, and new chains may be created, round after round. Before giving the formal

definition for distance-greedy strategies, we define the “distance” between two chains

in a tree. Intuitively, we say the distance from a “branch” chain to a “reference” chain

is d if we can obtain a prefix of the reference chain by removing the last d blocks of

the branch chain.

154



Definition 61 (Distance between two chains). Let C be a chain of length `. We

view C as the “reference” chain, and now consider C1 to be a “branch” chain (of the

reference chain). Let `1 be the length of C1. Next, we define the distance between

the reference chain C and the branch chain C1, and we use distance(branch chain →

reference chain), i.e., distance(C1 → C) to denote the distance. More formally, if d is

the smallest non-negative integer so that C1[0, `1 − d] � C, then we say the distance

between the reference chain C and the branch C1 is d, and we write distance(C1 →

C) = d.

Remark 2. Note that the distance of chain C from chain C1 is different from the

distance of C1 from C, and it is possible that distance(C → C1) 6= distance(C1 → C).

For example, in Figure 20, the distance of C from C1 is 4, i.e. distance(C → C1) = 4,

while the distance of C1 from C is 2, i.e., distance(C1 → C) = 2. We also note that

the distance of C from itself is always 0, i.e., distance(C → C) = 0.

Figure 20: A toy example for illustrating the distance between two chains C =

B0‖B1‖B2‖B3‖B4 and C1 = B0‖B1‖B ′2‖B ′3. Here, distance(C1 → C) = 2, i.e., the

distance from C1 to C is 2. Similarly, distance(C → C1) = 3, i.e., the distance from C

to C1 is 3.

After explaining the concept of the distance between two chains, we are ready to

introduce the distance-greedy strategies. Intuitively, a player who plays a distance-

greedy strategy will make attempts to extend a set of best chains in which those chain

155



01

2234

4 23

13

The set of best
chains for 

Figure 21: A toy example of 1-distance-greedy strategy. Here, the best chain is

Cbest = B0‖B1‖B2‖B3‖B4. The number in blue on top of each block denotes the

distance from the best chain Cbest (i.e., the branch chain) to the reference chain that

consists of a sequence of blocks from the genesis block B0 to that block. The bold

blocks in the yellow area are the last blocks of the chains in the set of best chains.

should be very “close” to the best chain, i.e., the distance from the best chain to the

chain must be small. Here, we consider the best chain as the branch chain and all

other chains in the set of best chains as the reference chains. By the definition of the

distance, we can obtain a common prefix of all reference chains by removing the last

few blocks of the branch chain. Jumping ahead, we will use this observation to prove

the common prefix property of our protocol. More formally, we have the following

definition.

Definition 62 (D-distance-greedy strategy). Consider a blockchain protocol execu-

tion. Let P be a player of the protocol execution, and let C be the set of chains in

player P’s local view. Let Cbest be the longest chain at round r, where ` = len(Cbest).

Let D be non-negative integers. Define a set of chains Cbest as

Cbest =
{
C ∈ C

∣∣ distance(Cbest → C) ≤ D
}
.

156



We say the player is D-distance-greedy if, for all r, player P makes attempts to

extend all chains C ∈ Cbest.

In Figure 21, a pictorial illustration for the toy example of 1-distance-greedy

strategy can be found. The honest players will extend the bold blocks (B3,B4,B
′′
4 ).

4.3.3 The protocol Π•

We present a new protocol Π• with the goal to achieve the best possible unpre-

dictability while only requiring a much smaller fraction (e.g., 57%) of honest stake to

achieve the security properties. To simplify the presentation, we construct a protocol

in which the payloads in all blocks are empty. We will extend our protocol to include

the payload in Section 4.9.1. Protocol Π• uses a unique digital signature scheme and

a hash function as building blocks. For completeness, we present the definition of the

unique digital signature scheme in Supplemental material 4.7.2.

Blockchain initialization phase. In this phase, the genesis block will be created.

Here, the genesis block consists of a randomness, the public keys of the players. Given

a group of PoS-players P = {P1,P2, . . . ,Pn}, a security parameter κ, and a unique

digital signature scheme (uKeyGen, uKeyVer, uSign, uVerify), the initialization is as

follows: each PoS-player Pj ∈ P generates a key pair (skj,pkj) ← uKeyGen(1κ),

publishes the public key pkj and keeps skj secret. The public keys are stored in the

genesis block of the blockchain system; let B0 denote the genesis block. In addition,

an independent randomness rand ∈ {0, 1}κ will also be stored in B0. That is B0 =

〈(pk1,pk2, · · · ,pkn), rand〉3.

Blockchain extension phase. Follow the design of multi-extension framework,

3For simplicity, we omit the stake distribution in the genesis block since all players
have the same number of stake in the flat model.

157



Algorithm 7: Algorithms Context•, Mining•, Validate•, and D-BestChainSet•.

1 Context•(C):
2 ` := len(C); η := h(C[`]); Return η;
3 Mining•(η, r, sk,pk):
4 σ := uSign(sk, 〈η, r〉)
5 if H(η, r,pk, σ) < T then
6 Create new block B := 〈η, r,pk, σ〉; Return B ;
7 else Return ⊥
8 Validate•(C, r):
9 Parse C into B0‖B1‖ · · · ‖B`;

10 for i ∈ [1, `] do
11 Parse Bi into 〈ηi, ri,pki, σi〉;
12 if h(Bi−1) 6= ηi or H(ηi, ri,pki, σi) ≥ T or uVerify(pki, 〈ηi, ri〉, σi) = 0 or

ri > r then
13 Return 0;

14 Return 1;

15 D-BestChainSet•(C):
16 Set Cbest as the longest chain in C and Cbest = {Cbest};
17 for C ∈ C do
18 if distance(Cbest → C) ≤ D then
19 Cbest := Cbest ∪ {C};

our protocol is parameterized by four algorithms: Context•, Mining•, Validate•, and

D-BestChainSet•. (Please see Algorithm 7 for the pseudocode of the four algorithms.)

In our protocol, the players extend a set of chains Cbest in which, for all chain C ∈

Cbest, the distance from the best chain Cbest to the chain C does not exceed D , i.e.,

distance(Cbest → C) ≤ D .

The procedure D-BestChainSet• will output a set of best chains including the

longest (i.e., the best) chain, and several chains that are very close to the longest

chain. First, the procedure D-BestChainSet• iterates through all chains in the local

state and uses algorithm Validate• to remove the invalid chains. Here, the algorithm

Validate• takes a chain C and the current round r as input and evaluates every block

of the chain C sequentially. Let ` be the length of C. Starting from the head of C, for

every block C[i], for all i ∈ [`], in the chain C, the procedure D-BestChainSet• verifies

158



that 1) C[i] is linked to the previous block C[i− 1] correctly, 2) the hash inequality is

correct, and 3) the signature is correctly generated by the player. Then, the procedure

D-BestChainSet• selects the best chain Cbest as the longest chain and iterates through

the set of chains in the local state of the player to find all the chains in which the

distances from the best chain to those chains do not exceed D .

For a chain C = B0‖B1‖B2‖ . . . ‖Bi in the set of best chains Cbest, the honest

players P , with key pair (sk,pk), make attempts to extend the chain C as follows.

Let r denote the current time (or round number). The player P first computes the

context η := Context•(C). Here, algorithm Context• return the hash value of the

last block on C, i.e., Context•(C) = h(Bi). A PoS-player P is able to successfully

generate a new block if the following hash inequality holds: H(η, r,pk, σ) < T, where

σ := uSign(sk, 〈η, r〉). The new block Bi+1 is defined as Bi+1 := 〈η, r,pk, σ〉.

Algorithm 8: Protocol Π•

State : Initially, the set of chains C only consists of the genesis block. At round
r, the PoS-player P ∈ P, with key pair (sk,pk) and local set of chains
C, proceeds as follows.

1 Upon receiving a chain C′, set C := C ∪ {C′} after verifying Validate•(C′, r) = 1;
2 Compute Cbest := D-BestChainSet•(C);
3 for C ∈ Cbest do
4 η := Context•(C); B := Mining•(η, r, sk,pk);
5 if B 6=⊥ then
6 C1 := C‖B ; Broadcast C1;

4.3.4 A new tiebreak rule for our multi-extension protocol

We design a new tiebreak rule for our D-greedy strategy. In a multi-extension

protocol, the honest players extend all chains in the set (of best chains). The prob-

ability of generating a new best chain can vary depending on the number of chains

in the set of best chains. This opens up opportunities for an adversary to slow down

the chain growth by publishing a chain with the same length as the best chain but

159



with fewer chains in the set of best chains. To defend against this attack, it is crucial

to establish a tiebreak rule that maximizes the growth of the chain. In contrast, the

probability of generating a new best chain in a single-extension protocol is constant;

thus such tiebreak rule (that maximizes the growth) is not needed in single-extension

PoS protocols.

Intuitively, when there are two equally longest chains in a round, the best chain

is selected based on the expected time to extend the chain and generate a new best

chain. Honest players will choose the chain that is expected to be extended more

quickly.

Recall that, the probability of generating a new best chain can vary depending

on the number of chains in the set. As the number of chains in the set of best chains

increases, the chance for honest nodes to generate a new longest chain also increases.

To take advantage of this, our tiebreak rule prioritizes the chain with more chains

in the set of best chains. This guarantees that the adversary cannot slow down the

chain growth of the honest players.

Depth-based subsets. Before presenting the tiebreak rule, we introduce the defini-

tion of the depth-based subsets. Consider a protocol execution at a certain round, let

Cbest denote the best chain and Cbest be the set of best chains. In our protocol execu-

tion, honest players follow the D-greedy strategy, and make attempts to extend the

set of best chains. As shown in Figure 22, we partition the set Cbest into D +1 number

of disjoint subsets based on the length of those chains. Let ` = len(Cbest) be the length

of the best chain, and for all i ∈ [0..D ], the i-depth-based subset Li is the subset of

chains with the length of `−i in the set Cbest. That is, Li = {C ∈ Cbest : len(C) = `−i}.

Our new tiebreak rule. The tiebreak rule states that when there are two chains of

160



...

Figure 22: Partitioning a set of best chains Cbest into multiple disjoint depth-based

subsets for D = 2. Here, the set of best chains Cbest is partitioned into 3 subsets

L0, L1, L2. Let ` be the length of the best chain. The 0-depth subset L0 consists

of 3 chains of length `, i.e., the chains that have the last blocks are B`,B
′
`,B

′′
` . The

1-depth subset L1 consists of 3 chains of length ` − 1, i.e., the chains that have the

last blocks are B`−1,B
′
`−1B ′′`−1. The 2-depth subset L2 consists of 1 chain of length

`− 2, i.e., the chain that has the last block is B`−2.

the same length, the one with a faster expected time for further extension is chosen.

Recall that, in our protocol, honest players extend all chains in the set of best chain.

The tiebreak rule is based on the number of chains in the set. By utilizing this rule,

we can ensure that the adversary is unable to slow down the growth of the chain for

honest players.

In our protocol, honest players use a D-greedy strategy to extend the set of best

chains. The length of the best chain increases by 1 when a chain in the 0-depth subset

(i.e., a chain with the same length as the best chain) is extended. Therefore, having

more chains in the 0-depth subset will allow honest players to extend the best chain

faster. Additionally, when a chain in the 1-depth subset is extended, the number of

chains in the 0-depth subset also increases. As a result, if the number of chains in the

0-depth subset is the same, having more chains in the 1-depth subset will also allow

honest players to extend the best chain faster.

161



To break the tie of two equally longest chains, the players compare the number

of chains in subsets at 0-depth, 1-depth, 2-depth, and so on, in order to determine the

best chain (see Algorithm 9 for the pseudocode). If the number of chains in subsets

is the same, we break the tie by comparing the number of chains in the next depth

subset, and so on. If the tie still cannot be broken, the chain with the smallest hash

value of the last block is chosen as the best chain.

Algorithm 9: Tiebreak rule

Input : Two chains Cbest, C′best of length `, the local set of chains C
Output: Return the better chain between Cbest and C′best

1 Cbest := ∅; C′best := ∅
2 for C ∈ C do
3 if distance(Cbest → C) ≤ D then
4 Cbest := Cbest ∪ {C}
5 if distance(C′best → C) ≤ D then
6 C′best := C′best ∪ {C}
7 for i ∈ [0..D ] do
8 Li := {C ∈ Cbest : len(C) = `− i}
9 L′i := {C ∈ C′best : len(C) = `− i}

10 i := 0
11 while i ≤ D do
12 if |Li| > |L′i| then
13 Return Cbest

14 if |Li| < |L′i| then
15 Return C′best

16 if |Li| = |L′i| then
17 i := i+ 1

18 if H(Cbest[`]) < H(C′best[`]) then
19 Return Cbest

20 else
21 Return C′best

More concretely, suppose we have two equally longest chains C and C ′. Let Cbest

and C′best be the corresponding sets of best chains for C and C ′, respectively. For

i ∈ [0..D ], let Li denote the set of chains in Cbest with length ` − i, and let L′i

denote the set of chains in C′best with length ` − i. In other words, Li and L′i are

i-depth subsets in Cbest and C′best, respectively. To break the tie between C and C ′,

162



the players follow this procedure: If the number of chains in L0 is bigger than the

number of chains in L′0, i.e., |L0| > |L′0|, we say the chain C is better than the chain C ′.

Similarly, if |L′0| > |L0|, we say the chain C ′ is better than the chain C. If |L0| = |L′0|,

we compare the number of chains in L1, L′1. If |L1| > |L′1|, we say we say the chain

C is better than the chain C ′. Similarly, if |L′1| > |L1|, we say the chain C ′ is better

than the chain C. If |L1| = |L′1|, we compare the number of chains in L2, L′2, and so

on. If we still cannot break the tie, we choose the chain with the smallest hash value

of the last block.

4.3.5 Addressing the tradeoff on security and performance

When the greedy parameter D increases, the number of chains in the set of best

chains also increases. This means that honest players are more likely to create the

longest chain, which ultimately reduces the amount of total stake controlled by honest

players needed to maintain security. However, this increase in the number of chains

also has drawbacks on performance. Specifically, players must download additional

blocks that are not part of the best chain. As the transactions in those blocks are

not included in the ledgers, the resources (communication and storage) used for those

blocks are wasted. In other words, if the greedy parameter D increases, players need

to spend more resources to maintain the blockchain, but the overall performance

(throughput) does not improve.

To address this issue, a directed acyclic graph (DAG) can be used to link blocks

on the best chain to additional blocks. DAG technology allows transactions within

these blocks to be included in the ledger, ensuring that the resources required to

download them are not wasted. DAG design provides a way to maintain network

security without sacrificing efficiency. Furthermore, by enabling parallel transactions

within multiple blocks, DAG technology can increase the transaction rate of the

163



network. This can be especially beneficial for high-volume networks where efficiency

is a primary concern..

4.4 Security Analysis: Overview

In this section, we provide the overview of security analysis for protocol Π•.

Then, in Section 4.5, we propose a new analysis framework to study the chain growth

in multi-extension protocols. In Section 4.6, we use the above analysis framework to

examine the chain growth of our protocol. In Section 4.7, we present a new analysis

framework to analyze the common prefix property. Finally, in Section 4.8, we present

the analysis of chain quality and the best possible unpredictability.

As in the previous section, assuming the underlying scheme (uKeyGen, uKeyVer, uSign,

uVerify) is a unique digital signature scheme, a malicious player for a given context,

can create exactly one signature. Now, we can prove the security properties of proto-

col Π• under the assumption of honest majority of effective stake based on α• = Â•D ·α

(e.g., Â•50 ≥ 2.04) and β• = 2.72β.

It is important to note that the techniques described in [47, 88, 34, 7] can provide

valuable insights for analyzing the security properties of protocols based on the single

extension design framework. However, our protocol Π• does not follow this framework

and requires new analysis techniques to prove its security properties.

Theorem 63. Consider an execution of multi-extension protocol Π• in the random

oracle model, where honest players follow the D-distance-greedy strategy while adver-

sarial players could follow any arbitrary strategy. Additionally, all players have their

stake registered at the beginning of the execution. Assume (uKeyGen, uKeyVer, uSign,

uVerify) is a unique digital signature scheme, and α• = λβ•, λ > 1. Then protocol

Π• achieves 1) chain growth, chain quality, and common prefix properties; and 2) the

best possible unpredictability.

164



Chain growth. We propose a new analysis framework to study the chain growth

in multi-extension protocols in Section 4.5. We develop a random walk in a Markov

chain that consists of multiple states to analyze the chain growth property. In the

Markov chain, each state provides a representation of the set of best chains in a

protocol round. Note that, for the existing single-extension protocols [47, 88, 34], since

the honest players only extend a single best chain, the probability that honest players

extend the best chain is the same for every round. Hence, the analysis of chain growth

for such protocols is quite simple. On the other hand, in multi-extension protocols,

the honest players may extend multiple chains in a single round, and the probability

of extending the best chain can vary between rounds. Therefore, a new analysis

framework is necessary to evaluate the chain growth in multi-extension protocols.

In Section 4.6, we use the above analysis framework to examine the chain growth

of our protocol. Note that, in a multi-extension protocol, the adversary may attempt

to slow down the chain growth by launching attacks. Fortunately, as we mention in

the previous paragraph, our tiebreak rule prevents the adversary from launching such

attacks. We start our analysis with the design of a simplified Markov chain and then

extend it to design an augmented Markov chain.

Simplified Markov chain. We design the simplified Markov chain using the information

of the depth-based subsets. Recall that, by following the D-distance-greedy strategy,

the honest players extend a set of best chains. The set of best chains can be partitioned

into D + 1 subsets based on the depth of those chains, where the depth of a chain

is computed based on the difference between its length and the length of the current

best chain. For i ∈ [0..D ], the i-depth subset consists of all the chains that are i

blocks behind the best chain. In each round, a new best chain is generated if a player

extends a chain in the 0-depth subset, which consists of all the chains that have the

same length as the current best chain. Further, a new chain is added to the i-depth

165



subset if a chain in the (i+ 1)-depth subset is extended, where i ∈ [0..D − 1]. Hence,

we can analyze the chain growth based on the number of chains in those subsets.

In the simplified Markov chain, each state represents a protocol round with specific

numbers of chains in all depth-based subsets. The chain growth of our protocol can

be estimated based on the expected number of chains in the 0-depth subset. The

simplified Markov chain provides information about the number of chains in depth-

based subsets, but it does not provide how many chains are removed from the set of

best chains when a new best chain is generated. This leads to a worst-case scenario

where the set of best chains only consists of the best chain and its prefixes, making

it difficult to determine a good lower bound for the amplification ratio, even with a

large D .

Augmented Markov chain. To resolve the issue in the simplified Markov chain, we

introduce an augmented Markov chain. The states of the augmented Markov chain

contain more information. This helps us determine the number of chains that are

removed after generating a new best chain. By doing so, we can avoid considering

the worst-case scenario where the set of best chains only consists of the best chain and

its prefixes. More concretely, we present the notion of depth-distance-based subsets.

These subsets are selected based on both the length of the chains and their distance

from the best chain. When a new best chain is generated, the distance from the new

best chain to the chains in the subsets increases by one. As a result, we can obtain the

number of chains in the new depth-distance-based subsets (when the new best chain

is generated) based on the number of chains in the old depth-distance-based subsets

(when the new best chain has not been generated). The states in the augmented

Markov chain provide information about the number of chains in the depth-distance-

based subset, allowing us to identify which chains belong to the new set of best chains

when a new best chain is generated. This approach results in a better lower bound

166



on the amplification ratio.

Common prefix. To analyze the common prefix property, we first demonstrate that

the adversary can increase their stake by a factor of e = 2.72 if they extend the chain

themselves. It is worth noting that the adversary cannot use the blocks of honest

players to compromise the security property. To break the common prefix property,

the adversary must find a way to create two divergent chains, i.e., two chains that do

not share a common prefix after removing the last κ+ D blocks. Recall that, in our

protocol, we use the D-distance-greedy strategy, where honest players in the protocol

execution will only extend the set of best chains. Based on the definition of the D-

distance-greedy strategy, the set of best chains must be “close”. That is, these chains

share a common prefix after removing the last D blocks. Thus, the chains produced

by the honest players share a common prefix with the best chain, after removing the

last D blocks. This prevents the adversary from using the chain of honest players to

break the common prefix property.

To formally prove the common prefix property, we introduce the notions of virtual

block-sets and virtual chains, and then define the common prefix property w.r.t. vir-

tual chains. We can prove the common prefix w.r.t. virtual chains by showing that

the honest players only contribute at most one virtual block-set at a block height.

Afterward, we show that the standard common prefix property can be reduced to

common prefix w.r.t. virtual chains.

Virtual block-sets and virtual chains. A virtual block-set consists of multiple blocks

with the same height that are “close” to each other. More concretely, we first define

two chains as “close” if they share a common prefix after removing the last few blocks,

say D , where D is a parameter as mentioned above. When two chains are “close”,

the last blocks of the two chains are also “close”. Now the virtual chain consists of

167



multiple virtual block-sets that are linked together.

Common prefix w.r.t. virtual chains. To prove the common prefix w.r.t. virtual chains,

we introduce the concept of honest virtual block-sets. We say a virtual block-set is

honest if the first generated block in the virtual block-set is generated by an honest

player. As the honest players follow a D-greedy strategy that we mentioned above, at

each block height, there is at most one honest virtual block-set. Thus, to break the

common prefix property w.r.t virtual chains, the adversary needs to generate more

virtual block-sets than the honest players. This requires the adversary to control the

majority of the stake. Thus contradicts the assumption that honest players control

the majority of the stake.

Common prefix. Finally, we demonstrate that the common prefix property can be

achieved from the common prefix w.r.t. virtual chains. Recall that, the common

prefix w.r.t. virtual chains property states that the best virtual chains of honest

players share the same common prefix after removing the last κ virtual block-sets.

Plus, based on the definition of the virtual block-set, the blocks in the same virtual

block-set are “close” together. In other words, the chains that have those block as

the last blocks share the common prefix after removing the last D blocks. Hence, the

best chains of honest players share the same common prefix after removing the last

κ+ D blocks.

Chain quality. After proving the chain growth and common prefix properties, the

proof of chain quality will be very similar to the proof in [88]. Intuitively, in order to

break the chain quality property, the adversary must generate κ consecutive blocks

on the best chains. This requires the adversary to control majority of the stake.

The best possible unpredictability. In our protocol, the players extract the

context of a chain based on the hash value of the last block. Thus, a player cannot

168



know the hash value of the next block unless he generate the block himself. Hence,

the player can only predict whether or not she/he can generate the next block. In

other words, our protocol achieves the best possible unpredictability.

4.5 Chain Growth in Multi-Extension: A New Analysis Framework

In this section, we present a framework for analyzing the chain growth property

in multi-extension protocols using the Markov chain. We develop a random walk

in a Markov chain. The Markov chain consists of multiple states, where each state

provides some information on the set of best chains in a protocol round. Then, we

will apply this framework to analyze the chain growth property of our protocol Π•.

We construct a Markov chain with a state space S and a transition matrix T.

Each state s ∈ S provides some information on the view of the players in a protocol

round. The transition matrix T is a |S| × |S| matrix that reflects how the set of

best chains is updated after one protocol round. We define a chain growth function

growth : S → [0, 1] to represent the chain growth rate on each state. Then, we consider

a random walk of t states s1, s2, · · · , st, where t ∈ N and for all i ∈ [t], si ∈ S. This

random walk represents how the set of best chains is updated in t protocol rounds.

The chain growth is computed as the sum of outputs of the chain growth function

over all the states in the random walk. (See Section 4.5.1 for more details.)

We remark that, in a single-extension protocol, the probability of honest players

extending the best chain remains constant in every round. As a result, the chain

growth function can be simplified to a constant value, making the analysis of chain

growth property easier, compared to the analysis of a multi-extension protocol.

169



4.5.1 Defining a Markov chain

Before presenting our analysis for the chain growth property, let us summarize

the definition of a Markov chain and the random walk on a Markov chain [27]. We

will use the Markov chain to analyze the chain growth property of our protocol.

Markov chain. A Markov chain is a mathematical model that describes a sequence

of events in which the probability of each event depends only on the state preceding

it. The defining characteristic of a Markov chain is that no matter how the process

arrived at its present state, the possible future states are fixed. In other words, the

probability of transitioning to any particular state is dependent solely on the current

state. A Markov chain is specified by a state space S and a transition matrix T. For

simplicity, we will refer to the Markov chain as (S,T). Each state s ∈ S is a tuple of

d integers 〈n0, · · · , nd−1〉, where d ∈ N and for all i ∈ [0..d], ni ∈ N. In our analysis,

each state provides some information on the view of the players in a protocol round.

For example, we can define each state s ∈ S in the format of 〈n0〉, where n0 ∈ N.

Here, n0 is the number of chains that have the same length as the current best chain.

The state space is given as S = {〈n0〉}n0∈N. The transition matrix T is an |S| × |S|

matrix that contains information on the probability of transitioning between states,

where |S| is the size of the state space S. For any two states s and s′, the probability

of transitioning from state s to state s′ is Ts,s′ .

Random walk. A random walk in the Markov chain is a sequence of t states s1, s2, · · · , st,

where t ∈ N and for all i ∈ [t], si ∈ S. The random walk starts at some state s1,

traverses to a new state s2, based on the transition matrix T, and then repeats the

process.

Stationary distribution. A stationary distribution Q = [qs]s∈S of a Markov chain

is a probability distribution that represents the probabilities that states appear in

170



a random walk. Here, the probability that a state s is drawn from the stationary

distribution Q is qs. If the state s is randomly drawn from the stationary distribution

Q, we write s ∼ Q. The sum of the probabilities in Q equals 1, i.e.,
∑

s∈S qs = 1. For

every state s ∈ S, the probability qs is computed based on the transitions from other

states to the state s, i.e., qs =
∑

s′∈S qs′ · Ts′,s. Hence, we can obtain the stationary

distribution by solving the following equations.
∑

s∈S qs = 1,

qs =
∑

s′∈S (qs′ ·Ts′,s) ,∀s ∈ S.
(4.1)

Chain growth function. We define a chain growth function growth : S → [0, 1]

to represent the chain growth rate on each state. For example, if each state s ∈ S

is in the format of 〈n〉, where n is the number of chains that have the same length

with the current best chains, we have, growth(n) = n · α. Consider a random walk

s1, s2, · · · , st. The chain growth, i.e., the increasing length of the best chain, in those

t protocol rounds is computed as
∑t

i=1 growth(si). As the stationary distribution Q

represents the probabilities that states appearing in a random walk, the expected

chain growth in a protocol is given by

ḡ = Es∼Q[growth(s)].

Compatible Markov chain and chain growth function for a protocol execu-

tion. To analyze the chain growth of a multi-extension protocol, we need to design a

compatible Markov chain and chain growth function. We say the Markov chain (S,T)

and the chain growth function growth is compatible to the execution of protocol Π◦ if

for every state s ∈ S that represents the view of the players at round r, the probability

that the honest players generate a new best chain is at least growth(s).

171



Definition 64 (A compatible Markov chain and chain growth function for a protocol

execution). Consider a multi-extension proof-of-stake protocol Π◦. Consider a Markov

chain (S,T) and a chain growth function growth : S → [0, 1]. For a protocol round r,

the view VIEWr of players at round r can be mapped to a state s in the state space S.

We say the Markov chain (S,T) and the chain growth function growth : S → [0, 1]

are typical to the execution of protocol Π◦ if for every round r with the view VIEWr,

which is represented by a state s ∈ S, we have the probability that the length of the

best chain increases by 1 at round r is at least growth(s).

4.5.2 Chain growth property for a multi-extension protocol

Consider a multi-extension proof-of-stake protocol Π◦. Consider a Markov chain

(S,T) and a chain growth function growth : S → [0, 1] that are compatible to the

execution of the protocol Π◦. We can bound the chain growth, i.e., the increasing

length of the best chain, in a multi-extension proof-of-stake protocol Π◦ using the

compatible Markov chain and chain growth function as follows.

Lemma 65 (Chain growth property for a multi-extension protocol). Consider a

Markov chain (S,T) and a chain growth function growth : S → [0, 1] that are

compatible to a multi-extension protocol Π◦. Let Q be the stationary distribution

over S, and ḡ = Es∼Q[growth(s)] be the expected chain growth. Consider an hon-

est player P with the best chain C in round r, and an honest player P1 with the

best chain C1 in round r1, where r1 = r + t, for some t = Ω(κ). Then we have

Pr
[
len(C1)− len(C) ≥ (1− δ) · ḡ · t

]
≥ 1− e−Ω(κ) where t = r1 − r, and δ > 0.

Proof. Consider a random walk from round r to round r1. Let si denote that state

at round i in the random walk, where i ∈ [r..r1] and si ∈ S. Since the Markov

chain (S,T) and the chain growth function growth : S → [0, 1] that are compatible

172



to protocol Π◦, the probability that the players extend the best chain at round i is

at least growth(si). Using the Chernoff bound on the Markov chain in [27], we have,

Pr[len(C1)− len(C) < (1− δ) · ḡ · t] < e−Ω(κ).

We remark that, our analysis framework can be applied to other multi-extension

protocols, beyond the protocol in Section 4.3.3. By designing the compatible Markov

chain, and chain growth function, we can use the Chernoff bound to analyze the chain

growth over a sufficiently long period. This approach provides a general and flexible

way to study the chain growth of multi-extension protocols.

4.6 Chain Growth in Multi-Extension: Security analysis details

We will now analyze the chain growth property of our protocol using the analysis

framework in Section 4.5. Before constructing the Markov chains for our protocol, we

will first consider a hybrid execution in which the malicious players will not contribute

to the chain extension. We demonstrate that by utilizing the tiebreak method, honest

players will always follow the best chain with the fastest expected time for extension.

As a result, the adversary is unable to slow down the growth of the chain for honest

players. The chain growth in this hybrid scenario serves as a lower bound for the

chain growth in the real execution. We will then construct two Markov chains to

analyze the chain growth in the hybrid execution for the protocol.

We start with a simplified Markov chain. Then, we extend the simplified Markov

chain to design an augmented Markov chain. In Figure 23, we show the lower bounds

of the amplification ratio using the simplified and augmented Markov chains. In

Figure 24, we show the corresponding fraction of honest stake to prove the security

173



of the protocol based on the lower bounds of the amplification ratio. For example,

by using the augmented Markov chain, we have Â•50 ≥ 2.04, i.e., protocol Π• is secure

if 57% of stake is honest.

0 25 50
D

1.0

1.5

2.0

Am
pl

ifi
ca

tio
n 

ra
tio

Augmented Markov chain
Simplified Markov chain

Figure 23: The lower bounds of the

amplification ratio using the simpli-

fied and augmented Markov chains re-

sepectively.

0 25 50
D

50

55

60

65

70

75

Ho
ne

st
 st

ak
e 

(%
) Augmented Markov chain

Simplified Markov chain

Figure 24: The upper bounds of

the fraction on honest players using

the simplified and augmented Markov

chains resepectively.

We facilitate the analysis of the chain growth property for our protocol by defining

a new notion, called amplification ratio. The amplification ratio is the ratio between

the chain growth when the honest players follow D-distance-greedy strategy and 0-

distance-greedy strategy. In our protocol, in each round, for each chain in the set

of best chains, each honest player makes one attempt to generate a new block by

making one query to the random oracle. The event where an honest player successfully

generates a new block (from a given chain in the set of best chains) can be modeled as

an (independent) Bernoulli random variable which takes the value 1 with probability

p = T
2κ

. Hence, in each round, the probability that an honest player extends a

chain in the set of best chains is α = 1 − (1 − p)N ·(1−ρ). Let N0 and ND be the

average increased length of the longest chain that is extended by the honest players,

following the 0-distance-greedy, and D-distance-greedy strategies, respectively. In

174



the 0-distance-greedy, since the honest players only extend the best chain, we have,

N0 = α. We define the amplification ratio in the presence of an adversary for the

D-distance-greedy strategy as A•D = ND

α
. We can compute the amplification ratio is

as

Â•D =
ḡ

α
= Es∼Q

[
growth(s)

α

]
.

4.6.1 A hybrid experiment: Ignoring the adversarial extension

We consider a hybrid experiment where all messages sent by the adversary are

removed. Through this experiment, we demonstrate that the adversary cannot slow

down the growth of the honest player’s chain. We note that, hybrid experiments were

introduced in the analysis of the Bitcoin protocol in [88].

Let REAL(ω) = EXECΠ•,A,Z(ω) denote the standard execution of Π•, where ω is

the randomness involved in the execution. Let HYBr(ω) denote the hybrid execution,

which is identical to the real execution up until round r, with the following modi-

fications: 1) the randomness is fixed to ω, and 2) honest players eliminate all new

messages sent by the adversary.

No slow-down tiebreak. First, we show that by using the tiebreak rule in Subsec-

tion 4.3.4, the adversary cannot slow down the chain growth of honest players. More

specifically, we will demonstrate that, based on the tiebreak rule, honest players al-

ways choose the best chain that can be extended more quickly.

We consider the expected time for the honest players to generate a new best chain

by extending a set of best chain Cbest. The set of best chains Cbest is partitioned into

D + 1 depth-based subsets L0, L1, · · · , LD . The length of the best chain increases by

1 if a chain in the subset L0 (i.e., a chain that has the same length as the best chain)

is extended. Plus, for i ∈ [0..D − 1], the number of chains in a subset Li increases by

1 if a chain in the subset Li+1 is extended.

175



Let w(n) = 1−(1−p)N ·n·(1−ρ) be the probability that the honest players generate

at least one block by extending at n number of blocks in a round, where N is the

number of players and ρ is the fraction of malicious players. Here, w(n) ≈ n · α. For

i ∈ [0..D ], let ni = |Li| be the number of chains in i-depth subset. The probability

that the honest players generate a new best chain of length ` + 1 is w(n0) ≈ n0 · α.

For i ∈ [0..D − 1], the probability that the honest players generate a new chain in Li

is w(ni+1) ≈ ni+1 · α.

Let BlockTime(n0, · · · , nD) be the expected time for the honest players to gen-

erate a new best chain by extending a set of best chains Cbest. We consider three

following cases when the honest players extend the set of best chains Cbest.

• Case 1: The honest players can generate a new best chain after one round with

a probability of w(n0).

• Case 2: The honest players generate a new chain which is added to the i-depth

subset, where i ∈ [0..D−1]. The probability that a chain is added to the i-depth

subset is w(ni+1).

• Case 3: The honest players do not generate a new chain with a probability of

(1−
∑D−1

i=0 w(ni+1)).

Based on the three cases above, we can calculate the expected time for the honest

players to generate a new best chain as follows.

BlockTime(n0, · · · , nD) =
D−1∑
i=0

(
w(ni+1) · BlockTime(n0, · · · , ni−1, ni + 1, ni+1, nD)

)

+ (1−
D−1∑
i=0

w(ni+1)) · BlockTime(n0, · · · , nD) + 1.

176



By simplify the above equation, we have,(
D−1∑
i=0

w(ni+1)

)
· BlockTime(n0, · · · , nD)

=
D−1∑
i=0

(
w(ni+1) · BlockTime(n0, · · · , ni−1, ni + 1, ni+1, nD)

)
+ 1

>

D−1∑
i=0

(
w(ni+1) · BlockTime(n0, · · · , ni−1, ni + 1, ni+1, nD)

)
.

Thus, for any i ∈ [0..D ], we have,

BlockTime(n0, · · · , nD) > BlockTime(n0, · · · , ni−1, ni + 1, ni+1, nD). (4.2)

Base on Equation 4.2, we can show that honest players always choose the best

chain that can be extended more quickly.

Lemma 66. We consider two chains, C and C ′. Let Cbest and C′best be the corre-

sponding sets of best chains for C and C ′, respectively. In other words, the distance

from C to the chains in Cbest is smaller than D, and the distance from C ′ to the chains

in C′best is smaller than D. Here, Cbest is partitioned into D + 1 depth-based subsets

L0, L1, · · · , LD and C′best is partitioned into D +1 depth-based subsets L′0, L
′
1, · · · , L′D .

For i ∈ [0..D ], let ni = |Li| be the number of chains in Li and n′i = |L′i| be the number

of chains in L′i. If the tiebreak rule in Algorithm 9 return the chain C, then, we have,

BlockTime(n0, · · · , nD) < BlockTime(n′0, · · · , n′D).

Analyzing chain growth in the hybrid experiment. Next, we show that the

chain growth rate in the execution REAL(ω) is always bigger than or equal to the chain

growth rate in the execution HYBr(ω). The tiebreak rule ensures that honest players

always follow the best chain with the fastest expected time to extend it. Therefore, if

177



the adversary broadcasts its chain to the honest players, the growth of the best chain

will speed up, making it impossible for the adversary to slow down the chain growth

of the honest players.

Lemma 67. For all randomness ω and all round r, consider two executions REAL(ω)

and HYBr(ω). Consider an honest player P at round r1, where r1 > r. Let C be the

best chain at round r1 in the execution REAL(ω), and let Chyb be the best chain at

round r1 in the execution HYBr(ω). Then, we have, len(C) ≥ len(Chyb).

Proof. As demonstrated in Lemma 66, the tiebreak rule described in Subsection 4.3.3

guarantees that honest players always follow the best chain with the fastest expected

time for extension. Therefore, if the adversary broadcasts its chain to the honest

players, the growth of the best chain will accelerate, making it impossible for the

adversary to impede the chain growth of the honest players.

To analyze the chain growth from round r to round r1 in the real execution

REAL(ω), we consider the hybrid execution HYBr(ω). Since the first r rounds in the

hybrid execution HYBr(ω) are the same as in the real execution REAL(ω), the best

chain at round r in both executions is the same. Moreover, as stated in Lemma 67,

the best chain at round r1 in the real execution REAL(ω) is longer than the best chain

in the hybrid execution HYBr(ω). Thus, the chain growth from round r to round r1

in the real execution REAL(ω) is larger than the chain growth in the hybrid execution

HYBr(ω).

4.6.2 Analyzing the chain growth property via a simplified Markov chain

Next, we design Markov chains and a chain growth function to analyze the chain

growth in the hybrid execution. In this subsection, we introduce a simplified Markov

chain. Then, in Subsection 4.6.3, we extend the simplified Markov chain to design a

178



more complex augmented Markov chain. Using the augmented Markov chain, we can

obtain a tighter bound for chain growth.

We will use the definition of the depth-based subsets to design the simplified

Markov chain. We show how to use the depth-based subsets to analyze the chain

growth in Subsection 4.6.2.1. Here, each state in the simplified Markov chain con-

tains information about the number of chains in the depth-based subsets. Then, we

present a simplified Markov chain to analyze the chain growth property for D = 1

in Subsection 4.6.2.2. Finally, we present a simplified Markov chain to analyze the

chain growth property for an arbitrary D in Subsection 4.6.2.3.

4.6.2.1 Depth-based subsets in the set of best chains in the execution

We represent the definition of depth-based subsets in the set of best chains.

Consider a protocol execution at a certain round, let Cbest denote the best chain and

Cbest be the set of best chains. We partition the set Cbest into D +1 number of disjoint

subsets based on the length of those chains. Let ` = len(Cbest) be the length of the

best chain, and for all i ∈ [0..D ], the i-depth-based subset Li is the subset of chains

with the length of `− i in the set Cbest. That is, Li = {C ∈ Cbest : len(C) = `− i}.

Let n0 = |L0| be the number of chains in 0-depth subset. The probability that

the honest players generate a new best chain of length ` + 1 is w(n0) ≈ n0 · α (see

Figure 25). Recall that, if the honest players follows the single extension framework

and only extend the best chain, then the probability that the honest players generate

a new best chain of length `+ 1 is w(1) = α. Here, the amplification ratio Â•D can be

estimated by the average number of chains in L0. More concretely, let E[w(n0)] be

the expected value of the number of chains n0 in L0 and E[w(n0)] be the expected

value of the probability that the honest players generate a new best chain. We have,

179



the amplification ratio is

Â•D =
E[w(n0)]

α
≈ E[n0 · α]

α
= E[n0].

...

A new best chain of length
 is generated with

probablity 

A new chain is added to  with
probablity 

where 

Figure 25: Partitioning a set of best chains Cbest into multiple disjoint depth-based

subsets for D = 2. Note that, the set of best chains Cbest here is identical to the one

in Figure 22. The set of best chains Cbest is partitioned into 3 subsets L0, L1, L2. Let

` be the length of the best chain. Here, the probability that honest players generate a

new best chain of length `+1 is w(|L0|). The probability that honest players generate

a new chain in L0 is w(|L1|). The probability that honest players generate a new chain

in L1 is w(|L2|).

To analyze the number of chains in L0, we need to analyze the number of chains

in L1. Similarly, for all i ∈ [D − 1], to analyze the number of chains in Li, we

need to analyze the number of chains in Li+1. Thus, to compute the amplification

ratio, we develop a Markov chain that consists of multiple states. The states in the

Markov chain represent the number of chains in all depth-based subsets in the set of

best chains. Note that, as the subset LD always has exactly one chain, we omit the

representation of |LD | in the Markov chain state.

180



4.6.2.2 The simplified Markov chain for D = 1

We describe the simplified Markov chain with the state space S and a transition

matrix T to analyze the chain growth for D = 1. Here, each state in S is in the

format of 〈n0〉 that represents a protocol round in which a set of best chains in which

the number of chains in 0-depth subset is n0, where n0 ∈ N. The state space is

given as S = {〈n0〉}n0∈N. More concretely, consider the set of best chains that is

partitioned into two subsets L0 and L1. Let ` be the length of the current best chain.

Let n0 = |L0| and n1 = |L1| be the numbers of chains in L0 and L1, respectively.

Note that, the number of chains in L1 always equals 1, i.e., n1 = 1. Thus, we omit

the representation of |L1| in the states of the Markov chain.

Case 1: Case 2: 

Case 3: 

...

The transitions from state 

Figure 26: The complete state machine for the simplified Markov chain for D = 1.

The transition matrix T is an |S| × |S| matrix that contains information on the

probability of transitioning between states. We construct the transition matrix T as

follows. Initially, we set all the values in T to 0. Then, for each state 〈n0〉, we update

181



the transition matrix based on the following cases of transitions (see Figure 26).

Case 1: A new chain of length ` is generated. In other words, a chain of length `−1 in

L1 is extended. As the number of chains in L0 is one, the probability that the honest

players generate a new chain of length ` is w(1). In this case, the state machine moves

from state 〈n0〉 to state 〈n0 + 1〉. We set T〈n0〉,〈n0+1〉 := w(1).

Case 2: A new best chain of length ` + 1 is generated. In other words, a chain of

length ` in L0 is extended. The probability that the honest players generate a new

best chain of length `+ 1 is w(n0), where n0 is the number of chains in L0. In this

case, the new 0-depth subset of the new set of best chains only consists of one chain,

i.e., the new best chain. The state machine moves from state 〈n0〉 to state 〈1〉. We

set T〈n0〉,〈1〉 := w(n0).

Case 3: No new chain is generated. The state machine remains at the current state

〈n0〉 with a probability of 1− w(1)− w(n0). We set T〈n0〉,〈n0〉 := 1− w(1)− w(n0).

Let qn0 be the stationary probability of the state 〈n0〉. Similar to Equation 4.1,

for all s ∈ S, we have,
∑

s∈S qs = 1 and qs =
∑

s′∈S qs′ · Ts′,s. We define the chain

growth function growth : S → [0, 1] such that growth(n0) = w(n0) ≈ n0 · α. The

amplification ratio Â•1 is computed as the expected number of chains in L0 in each

round, i.e.,

Â•1 =
∞∑

n0=1

(
qn0 ·

growth(n0)

α

)
=

∞∑
n0=1

qn0 · n0.

Based on the equation, we have Â•1 = 1.39.

4.6.2.3 The simplified Markov chain for a general D

We now describe the simplified Markov chain with the state space S and a

transition matrix T to analyze the chain growth for arbitrary D . Consider a pro-

tocol round in which the set of best chains is Cbest. For i ∈ [0..D ], let Li be the

182



i-depth subset in Cbest and ni = |Li| be the number of chains in Li. In the simplified

Markov chain, we use the state 〈n0, · · · , nD−1〉 to represent the protocol round with

the set of best chains Cbest. Note that, since the subset LD always has exactly one

chain, i.e., nD = 1, we does not include the number of chains in LD in the repre-

sentation of the states. The state space of the simplified Markov chain is given as

S = {〈n0, · · · , nD−1〉}ni∈N,∀i∈[0..D−1].

The state of the simplified Markov chain provides information about the set of

best chains in each round. After each round, the state machine transitions to a new

state depending on updates in the set of best chains. We categorize the transitions

in the simplified Markov chain based on how the set of the best chains is updated as

follows.

• Case 1: A new chain is generated but the length of the best chain remains the

same. In this case, a chain will be added to a depth-based subset. The remaining

depth-based subsets will remain the same. The state machine moves to a new

state in which the number of chains in the updated depth-based subset increases

by one.

• Case 2: A new best chain is generated, i.e., the length of the best chain increases

by 1. As a result, the new best chain is added to the set of best chains, while

some existing chains may be removed. Based on the number of chains in the

depth-based subsets, we cannot know how many chains are removed. Thus, we

consider the worst-case scenario where the set of best chains only consists of

the best chain and its prefixes. The state machine moves to the new state in

which the number of each depth-based subset contains only one block.

• Case 3: No chain is generated. The set of best chains remains unchanged. The

state machine remains at the same state.

183



The transition matrix T is constructed as follows. First, all values in T are

initially set to 0. Then, for each state 〈n0, · · · , nD−1〉 ∈ T, the transition matrix is

updated based on the three cases of transitions (see Figure 27).

-- -

Case 1- : 
Case 2: 

Case 3: 

Figure 27: The transitions from state s = 〈n0, · · · , nD−1〉 in the state machine of a

simplified Markov chain for a general D .

Case 1: A new chain is generated but the length of the best chain remains the same.

Here, a player generates a chain C such that len(C) ≤ `. The chain C can be added

to one of the i-depth subsets Li in the set of best chains Cbest, where i ∈ [0..D − 1].

This case is the generalization of the Case 1 in Figure 26. Based on the depth of the

new chain, we divide this case into D sub-cases as follows. For any i ∈ [0..D − 1],

we consider the sub-case 1-i in which the new chain is added to subset Li. In other

words, a chain in subset Li+1 is extended. The probability of such an event is w(ni+1),

where ni+1 is the number of chains in the subset Li+1. For each i ∈ [0..D − 1], we

define the function new-chaini : S → S that takes as input a state in S and outputs an

updated state when a new chain is added to the i-depths subset Li. In other words,

if a new chain is added to Li, the state machine moves from state 〈n0, · · · , nD−1〉 to

state new-chaini(n0, · · · , nD−1). Next, we show the definition of function new-chaini.

For a state 〈n0, · · · , nD−1〉 ∈ S, let 〈n′0, · · · , n′D−1〉 = new-chaini(n0, · · · , nD−1). We

have, n′i′ = ni′ , ∀i′ 6= i and n′i′ = ni′ + 1 if i′ = i. For example, with D = 1, we have,

new-chain0(n0) = 〈n0 + 1〉. We set T〈n0,··· ,nD−1〉,new-chaini(n0,··· ,nD−1) := w(ni+1).

184



Case 2: A new best chain is generated, i.e., the length of the best chain increases

by 1. In this case, a chain in the subset L0 is extended. The probability that the

honest players generate a new best chain of length ` + 1 is w(n0), where n0 is the

number of chains in the subset L0. This case is the generalization of the Case 2 in

Figure 26. In this case, we consider the worst-case scenario where the set of best

chains only consists of the best chain and its prefixes, meaning each depth-based

subset contains only one block. This is because based on the information on depth-

based subsets, we cannot determine how many chains will be removed from the set

of best chains if the distance from the new best chains to those chains is greater

than D . We define the function new-best-chain : S → S that takes as input a

state in S and outputs an updated state when a new best chain is generated. In

other words, if a new best chain is generated, the state machine moves from state

〈n0, · · · , nD−1〉 to state new-best-chain(n0, · · · , nD−1). Next, we show the definition

of function new-best-chain. For a state 〈n0, · · · , nD−1〉 ∈ S, let 〈n′0, · · · , n′D−1〉 =

new-best-chain(n0, · · · , nD−1). We have, n′i′ = 1, ∀i′ ∈ [0..D − 1]. For example, with

D = 1, we have, new-best-chain(n0) = 〈1〉. We set T〈n0,··· ,nD−1〉,new-best-chain(n0,··· ,nD−1) :=

w(n0).

Case 3: No chain is generated. In this case, the state machine remains at the current

state 〈n0, · · · , nD−1〉 with a probability of 1−
∑D

i=0 w(ni). We set T〈n0,··· ,nD−1〉,〈n0,··· ,nD−1〉 :=

1−
∑D

i=0 w(ni).

Let qn0,··· ,nD−1
be the stationary probability of the state 〈n0, · · · , nD−1〉. Similar

to Equation 4.1, we have,


∑∞

n1=1 · · ·
∑∞

nD−1=1 qn0,··· ,nD−1
= 1,

qn0,··· ,nD−1
=
∑
〈n′0,··· ,n′D−1〉∈S

(
qn′0,··· ,n′D−1

·T〈n′0,··· ,n′D−1〉,〈n0,··· ,nD−1〉

)
.

(4.3)

185



We define the chain growth function growth : S → [0, 1] such that growth(n0, · · · , nD−1) =

w(n0) ≈ n0 · α. The amplification ratio Â•D equals the expected number of chains in

L0 in each round, i.e.,

Â•D =
∞∑

n0=1

· · ·
∞∑

nD−1=1

(
qn0,··· ,nD−1

· growth(n0, · · · , nD−1)

α

)

=
∞∑

n0=1

· · ·
∞∑

nD−1=1

(
qn0,··· ,nD−1

· n0

)
.

Using the simplified Markov chain, we can find a lower bound of the amplification

ratio as shown in Figure 23. For D = 50, we can find a lower bound Â•50 ≥ 1.56.

4.6.3 Analyzing the chain growth via an augmented Markov chain

In the simplified Markov chain, the state only provide the information on the

number of chain in the depth-based subsets. Some critical information is omitted due

to this simple representation. Indeed, when a new best chain is generated and some of

the chains are removed from the set of best chains, we have to consider the worst-case

scenario. Hence, we cannot establish a good lower bound of the amplification ratio,

even when D is big! For example, with D = 50, using the simplified Markov chain, we

can only guarantee an amplification of 1.56. Here, we present an augmented Markov

chain in which each state contains more information on the set of best chains. With

the augmented Markov chain, we can find a better lower bound of the amplification

ratio.

Before presenting the augmented Markov chain, we introduce the notion of depth-

distance-based subsets in Subsection 4.6.3.1. The chains in a depth-distance-based

subset are selected based on both the length of those chains and the distance from

the best chain to those chains. Each state in the augmented Markov chain contains

information about the number of chains in each depth-distance-based subset. With

186



this information, we can determine the number of chains removed from the set of

best chains when a new longest chain is generated. This avoids having to consider

the worst-case scenario where each depth-based subset contains only one chain, as in

the simplified Markov chain.

We first present a augmented Markov chain to analyze the chain growth for

D = 2 in Subsection 4.6.3.2 and then extend the augmented Markov chain for an

arbitrary D in Subsection 4.6.3.3.

...

Figure 28: The depth-distance-based subsets of the set of best chains Cbest for D = 2.

Recall that, in Figure 25, the set of best chains Cbest is partitioned into 3 disjoint

depth-based subsets L0, L1, · · · , L2. Let Cextend be the first chain in L0 that is ex-

tended. In this figure, Cextend = · · · ‖B`−1‖B`−1‖B`. (In some future round, a new

best chain is generated by adding a block B`+1 to Cextend.) Consider a i-depth subset

Li, where i ∈ [0..D ]. We further define multiple subsets of chains based on the dis-

tance from Cextend to those chains in Li. More concretely, for i ∈ [0..D ], j ∈ [i..D ],

the “i-depth j-distance” subset Li,j consists of all the chains in the i-depth subset Li

such that the distance from the chain Cextend to those chains does not exceed j, i.e.,

Li,j = {C ∈ Li : distance(Cextend → C) ≤ j}.

187



4.6.3.1 Depth-distance-based subsets in the set of best chains in the ex-

ecution

...

Figure 29: The new set of best chains C′best when a new block is added on Cextend.

Here, the set of best chains C′best consists of the chains in which the last blocks

of those chains are B`−1,B`,B
′
`,B`+1. The chains in which the last block of those

chains are B`−2,B
′
`−1,B

′′
`−1,B

′′
` are belong to Cbest but not C′best. For i ∈ [0..D ], j ∈

[i..D ], let L′i,j be the “i-depth j-distance” subset of the set of best chains C′best,

i.e., L′i = {C ∈ C′best : len(C) = ` − i}. The subset L′0 only consists of the best

chain C ′best = · · · ‖B`−2‖B`−1‖B`‖B`+1. For i ∈ [1..D − 1], the i-depth subset of C′best

can be obtained by the depth-distance-based subsets of Cbest in Figure 28. Indeed,

L′i,j = Li−1,j−1, where Li+1,D−1 is the “(i−1)-depth (D −1)-distance” subset of Cbest.

We introduce the notion of depth-distance-based subsets. Let Cextend be the first

chain in L0 that is extended. We remark that, the chain Cextend can be changed when

the set of best chain Cbest is updated. Indeed, when the a chain C ′ is added to subset

L0, the chain C ′ can be extended earlier than the current chain Cextend. In this case

we update Cextend = C ′. For i ∈ [0..D ], we define multiple subset of the i-depth subset

Li as follows. For j ∈ [0..D ], the “i-depth j-distance” subset Li,j is the set of chains

in the i-subset Li such that the distance from Cextend to those chains does not exceed

188



j, i.e., Li,j = {C ∈ Li : distance(Cextend → C) ≤ j}. Here, for all j < i, Li,j = ∅ and

Li,i consists of exact 1 chain, i.e., the prefix of Cextend with the length ` − i, where

` = len(Cextend). Further, Li,j is a subset of Li,j+1, i.e., Li,j ⊆ Li,j+1. In other words,

Li,i ⊆ Li,i+1 ⊆ · · · ⊆ Li,D . For example, in Figure 28, the “0-depth 0-distance”

L0,0 consists of 1 chain that has the last block is B`. The “0-depth 1-distance” L0,1

consists of 2 chains that have the last blocks are B`,B
′
`. The “0-depth 2-distance”

L0,2 consists of 3 chains that have the last blocks are B`,B
′
`,B

′′
` .

When the chain Cextend is extended, a new best chain is added and some chains

are removed form the set of best chain (see Figure 29 for an example). Let C ′best be the

new best chain and C′best be the new set of best chain. Let L′i be the i-depth subset of

the set of best chains C′best, i.e., L′i = {C ∈ C′best : len(C) = `− i}. The subset L′0 only

consists of the best chain C ′best = · · · ‖B0‖B2‖B5‖B8‖B10. For i ∈ [1..D ], the i-depth

subset of C′best can be obtained by the depth-distance-based subsets of Cbest in Figure

28. Indeed, for any chain C, we have, distance(Cextend → C) = distance(C ′best → C)− 1.

Thus, C ′best = {C : distance(C ′best → C) ≤ D} = {C : distance(Cextend → C) ≤ D − 1}.

Hence, L′i = {C : len(C) = `+ 1− i ∧ distance(Cextend → C) ≤ D − 1} = Li−1,D−1.

4.6.3.2 The augmented Markov chain for D = 2

We will now design an augmented Markov chain to analyze chain growth. The

augmented Markov chain keeps track of the number of chains in Li,j for different values

of i and j, providing a way to analyze chain growth. The states in the augmented

Markov chain capture information about the number of chains in each Li,j, where

i ∈ [0..D ] and j ∈ [0..D ]. Note that for all i ∈ [1..D ], we have |Li,j| = 0 for

j ∈ [0..D − i − 1] and |Li,D−i| = 1. Thus, for i ∈ [1..D ] and j ∈ [0..D − i], we omit

the representation of Li,j.

For D = 1, the augmented Markov chain is equivalent to the simplified Markov

189



chain. Therefore, we will first design an augmented Markov chain for D = 2. Then,

we will extend the design for a general D .

Case 6: 

Case 7: 

Cases 2,4: 

Case 3: 

Case 5: 

Case 1: 

Figure 30: The transitions from a state 〈(n0,1, n0,2), (n1,2)〉 in the state machine for

D = 2.

We describe the augmented Markov chain with the state space Ŝ and a transition

matrix T̂ to analyze the chain growth for D = 2. Consider a round with the set of

best chains Cbest, let Cextend be the first chain in L0 that is extended. For i, j ∈

[0..2], let Li,j be the “i-depth j-distance” subset of the set of best chain Cbest, i.e.,

Li,j = {C ∈ Li : distance(Cextend → C) ≤ j}. Let ni,j = |Li,j| be the numbers of

chains in Li,j. In the augmented Markov chain, the state 〈(n0,1, n0,2), (n1,2)〉 represents

the protocol round with the set of best chains Cbest. (Note that, for i ∈ [1..D ]

190



and j ∈ [0..D − i], we omit the representation of Li,j since the numbers of chains

in those subsets are the same for every state.) The state space of the augmented

Markov is given as Ŝ = {〈(n0,1, n0,2), (n1,2)〉}n0,1,n0,2,n1,2∈N. Here, each state in Ŝ is

in the format of 〈(n0,1, n0,2), (n1,2)〉 that represents a set of best chains such that

the numbers of chains in “0-depth 1-distance”, “0-depth 2-distance”, and “1-depth

2-distance” subsets are n0,1, n0,2, n1,2, respectively. The state space is given as Ŝ =

{〈(n0,1, n0,2), (n1,2)〉}n0,1,n0,2,n1,2∈N. More concretely, consider the set of best chains

and let Li,j (i, j ∈ [0..D ]) be the i-depth j-distance subset of the set of best chains.

Let ni,j = |Li,j| be the numbers of chains in Li,j. As we mentioned above, for i ∈ [1..D ]

and j ∈ [0..D − i], we omit the representation of Li,j.

Recall that, the transition matrix T̂ is an |Ŝ|× |Ŝ| matrix that contains informa-

tion on the probability of transitioning between states. We construct the transition

matrix T̂ as follows. Initially, we set all the values in T̂ to 0. Then, for each state

〈(n0,1, n0,2), (n1,2)〉, we update the transition matrix based on the following cases of

transitions (see Figure 30).

Case 1: A new chain C is added to subset L1,2. A chain C is added to subset L1,2

if a chain in L2,2 is extended. As the number of chains in the subset L2,2 is 1,

the probability of this case is w(1). In this case, the state machine moves from state

〈(n0,1, n0,2), (n1,2)〉 to state 〈(n0,1, n0,2), (n1,2 + 1)〉. We set T̂〈(n0,1,n0,2),(n1,2)〉,〈(n0,1,n0,2),(n1,2+1)〉 :=

w(1).

Case 2: A new chain C is added to subset L0,1 and the chain C is the first chain that

is extended in the subset L0. A new chain C is added to subset L0,1 if a chain in subset

L1,1 is extended. As the number of chains in the subset L1,1 is 1, the probability that

a new chain C is added to subset L0,1 is w(1). The probability that the chain C is the

first chain that is extended in the subset L0 is 1
n0,2+1

. The probability of this event

191



is 1
n0,2+1

. In this case, the state machine moves from state 〈(n0,1, n0,2), (n1,2)〉 to state

〈(1, n0,2 + 1), (n1,2)〉. We set T̂〈(n0,1,n0,2),(n1,2)〉,〈(1,n0,2+1),(n1,2)〉 := w(1)
n0,2+1

.

Case 3: A new chain C is added to subset L0,1 and the chain C is not the first chain

that is extended in the subset L0. As we show in Case 2, the probability that a new

chain C is added to subset L0,1 is w(1). Given that a new chain C is added to subset

L0,1, the probability that the chain C is not the first chain that is extended in the sub-

set L0 is n0,2

n0,2+1
. In this case, the state machine moves from state 〈(n0,1, n0,2), (n1,2)〉

to state 〈(n0,1 + 1, n0,2 + 1), (n1,2)〉. We set T̂〈(n0,1,n0,2),(n1,2)〉,〈(n0,1+1,n0,2+1),(n1,2)〉 :=

n0,2·w(1)

n0,2+1
.

Case 4: A new chain is added to subset L0,2 and the chain C is the first chain that is

extended in the subset L0. A new chain is added to subset L0,2 if a chain in the subset

L1,2 is extended. As the number of chains in the subset L1,2 is n1,2, the probability that

a new chain C is added to subset L0,2 is w(n1,2). The probability that the chain C is the

first chain that is extended in the subset L0 is 1
n0,2+1

. In this case, the state machine

moves from state 〈(n0,1, n0,2), (n1,2)〉 to state 〈(1, n0,2 + 1), (n1,2)〉. Recall that, we

already added a transition from state 〈(n0,1, n0,2), (n1,2)〉 to state 〈(1, n0,2 + 1), (n1,2)〉

in Case 2. Thus, we set T̂〈(n0,1,n0,2),(n1,2)〉,〈(1,n0,2+1),(n1,2)〉 := w(n1,2)

n0,2+1
+ w(1)

n0,2+1
.

Case 5: A new chain is added to subset L0,2 and the chain C is not the first chain that

is extended in the subset L2. As we show in Case 4, the probability that a new chain

C is added to subset L0,2 is w(n1,2). Given that a new chain C is added to subset L0,1,

the probability that the chain C is not the first chain that is extended in the subset

L0 is n0,2

n0,2+1
. In this case, the state machine moves from state 〈(n0,1, n0,2), (n1,2)〉 to

state 〈(n0,1, n0,2 + 1), (n1,2)〉. We set T̂〈(n0,1,n0,2),(n1,2)〉,〈(n0,1,n0,2+1),(n1,2)〉 := n0,2·w(n1,2)

n0,2+1
.

Case 6: A new best chain is generated, i.e., the length of the best chain increases by 1.

A new best chain is generated if a chain in the subset L0 is extended. As L0 = L0,2, the

192



number of chains in L0 is n0,2. Thus, with a probability of w(n0,2), a new best chain

is generated. After the new chain is generated, the 0-depth subset only consists of the

best chain. Thus, the number of chains in “0-depth 1-distance” subset and “0-depth

2-distance” subset are the same and equal 1. The number of chains in “1-depth 2-

distance” subset is n0,1. Thus, the state machine moves from state 〈(n0,1, n0,2), (n1,2)〉

to state 〈(1, 1), (n0,1)〉. We set T̂〈(n0,1,n0,2),(n1,2)〉,〈(1,1),(n0,1)〉 := w(n0,2).

Case 7: No new chain is generated. With a probability of 1 − 2 · w(1) − w(n0,2) −

w(n0,2), the state machine remains at the current state 〈(n0,1, n0,2), (n1,2)〉. We set

T̂〈(n0,1,n0,2),(n1,2)〉,〈(n0,1,n0,2),(n1,2)〉 := 1− 2 · w(1)− w(n0,2)− w(n0,2).

Let q(n0,1,n0,2),(n1,2) be the stationary probability of the state 〈(n0,1, n0,2), (n1,2)〉.

Similar to Equation 4.1, we have,
∑

s∈Ŝ qs = 1,

qs =
∑

s′∈Ŝ qs′ · T̂s′,s, ∀s ∈ Ŝ.
(4.4)

The equations in Equation 4.4 equivalent to the following.

∑∞
n0,1=1

∑∞
n0,2=1

∑∞
n1,2=1 q(n0,1,n0,2),(n1,2) = 1,

3 · w(1) · q(1,1),(n1,2) =
∑∞

n2,1=1

∑∞
n2,2=1 q(n0,1,n0,2),(n1,2),

(2 · w(1) + w(n0,2)) · q(n0,1,n0,2),(n1,2) = q(n0,1−1,n0,2−1),(n1,2) · w(1),

(w(1) + w(n1,2) + w(n0,1)) · q(1,n0,2),(n1,2) = q(n0,1,n0,2)−1,(n1,2) · w(1) + q(n0,1,n0,2),(n1,2) · w(n1).

(4.5)

We define the chain growth function growth : Ŝ → [0, 1] such that growth((n0,1, n0,2), (n1,2)) =

w(n0) ≈ n0 · α. The amplification ratio Â•2 equals the expected number of chains in

193



L0 in each round, i.e.,

Â•2 =
∞∑

n0,1=1

∞∑
n0,2=1

∞∑
n1,2=1

(
q(n0,1,n0,2),(n1,2) ·

growth((n0,1, n0,2), (n1,2))

α

)

=
∞∑

n0,1=1

∞∑
n0,2=1

∞∑
n1,2=1

(
q(n0,1,n0,2),(n1,2) · n0,2

)
.

Combining with Equation 4.5, we have, Â•2 ≈ 1.51.

4.6.3.3 The augmented Markov chain for a general D

We now describe the augmented Markov chain with the state space Ŝ and a

transition matrix T̂ to analyze the chain growth for D = 2. Consider a round with

the set of best chains Cbest. Let Li be the i-depth subset in Cbest, where i ∈ [0..D ].

Let Cextend be the first chain in L0 that is extended. For i ∈ [0..D ] and j ∈ [0..D ],

let Li,j be the ”i-depth j-distance” subset of the set of best chains Cbest, i.e., Li,j =

{C ∈ Li : distance(Cextend → C) ≤ j}. Let ni,j = |Li,j| be the number of chains in Li,j.

In the augmented Markov chain, the state 〈(n0,1, · · · , n0,D), · · · , (nD−1,D)〉 represents

the protocol round with the set of best chains Cbest. (We remark that, for i ∈ [1..D ]

and j ∈ [0..D − i], we do not include the number of chains in Li,j since they are the

same for every state.) Hence, the state space of the augmented Markov chain is given

as Ŝ = {〈(n0,1, · · · , n0,D), · · · , (nD−1,D)〉}ni,j∈N,∀i∈[0..D−1],j∈[i+1..D ].

Similar to the simplified Markov chain, the state of the augmented Markov chain

represents the information about the set of best chains in each round. We categorize

the transitions in the simplified Markov chain based on how the set of the best chains

is updated as follows.

• Case 1: A new chain that is shorter than the current best chain is generated.

In this case, a chain will be added to a distance-depth-based subset and all its

supersets. The remaining distance-depth-based subsets will remain the same.

194



As a result, the state machine will transition to a new state in which the number

of chains in the updated depth-based subsets has increased by one.

• Case 2: A new chain that has the same length as the current best chain is

generated and added to L0, and the new chain is not the first chain in subset

L0 that is extended. In this case, the updates on the set of best chains are

similar to Case 1. A chain will be added to a distance-depth-based subset and

its supersets that are subsets of the 0-depth subset. The state machine moves

to the new state in which the number of chains in the updated depth-based

subsets increases by one.

• Case 3: A new chain that has the same length as the current best chain is

generated and added to L0, and the new chain is the first chain in subset L0

that is extended. In this case, the new chain is added to the set of best chains

without removing any chains. Additionally, the chain Cextend is updated as the

new chain. The state machine transitions to a new state in which the number

of chains in distance-depth-based subsets is updated based on the new value of

Cextend.

• Case 4:A new best chain is generated, i.e., the length of the best chain increase

by 1. The new best chain has been added and some of the chains have been

removed from the set of best chains. The chain Cextend has been updated to

become the new best chain. The state machine has moved to a new state where

the number of chains in distance-depth-based subsets is determined based on

the number of chains in distance-depth-based subsets in the current state.

• Case 5: No chain is generated. The set of best chains remains unchanged. The

state machine remains at the same state.

195



Let T̂ be an |Ŝ| × |Ŝ| transition matrix that contains information on the proba-

bility of transitioning between states. We construct the transition matrix T̂ as follows.

Initially, we set all the values in T̂ to 0. Then, for each state s = 〈(n0,1, · · · , n0,D), · · · , (nD−1,D)〉,

we update the transition matrix based on the following cases of transitions (see Figure

31).

- -- -

Case 4: 

Case 5: 

-

-

Case 2- : 

Case 1- : 

Case 3- : 

Figure 31: The transition from state s = 〈(n0,1, · · · , n0,D), · · · , (nD−1,D)〉 in the state

machine for a general D .

Case 1: A new chain C that is shorter than the current best chain is generated.

Based on the depth and the distance of the new chain C to the chain Cextend, we

consider the following sub-cases. For i ∈ [1..D − 1], j ∈ [i + 1..D ], we consider

the sub-case 1-(i, j) where the new chain C is added to “i-depth j-distance” subset

Li,j. In other words, a player extends a chain in “(i + 1)-depth j-distance” subset

Li+1,j. As the number of chains in Li+1,j is ni+1,j, the probability of such event is

196



w(ni+1,j). This case is generalized from Case 1 in Figure 30. We define a function

new-chaini,j : Ŝ → Ŝ that takes as input a state in Ŝ and outputs an updated state

when a new chain is added to the subset Li,j. In other words, if a new chain is added

to Li,j, the state machine moves from state 〈(n0,1, · · · , n0,D), · · · , (nD−1,D)〉 to state

new-chaini,j((n0,1, · · · , n0,D), · · · , (nD−1,D)).

Let 〈(n′0,1, · · · , n′0,D), · · · , (n′D−1,D)〉 = new-chaini,j((n0,1, · · · , n0,D), · · · , (nD−1,D)). We

have, n′i′,j′ := ni′,j′ for all i′ 6= i, j′ ∈ [i′ + 1..D ] or i′ = i, j′ ∈ [i + 1..j − 1]; and

n′i,j′ := ni,j′ + 1 for all j′ ∈ [j..D ]. We set T̂s,new-chaini,j(s) := w(ni+1,j).

Case 2: A new chain C, that has the same length as the current best chain, is gener-

ated, and the new chain C is not the first chain in subset L0 that is extended. Based

on the distance of the new chain C to the chain Cextend, we consider D sub-cases

as follows. For j ∈ [1..D ], we consider a sub-case 2-j in which the new chain C is

added to “0-depth j-distance” subset L0,j. In other words, a player extends a chain

in “1-depth j-distance” subset L1,j. As the number of chains in the subset L1,j is

n1,j, the probability of such event is w(n1,j). Given that a new chain C is added

to “0-depth j-distance” subset L0,j, the probability that C is not the first chain in

subset L0 that is extended is
n0,D

n0,D+1
. In this case, the state machine moves from state

〈(n0,1, · · · , n0,D), · · · , ni,D), · · · , (nD−1,D)〉 to state new-chain0,j((n0,1, · · · , n0,D), · · · , (nD−1,D)).

Here, function new-chain0,j is defined as in Case 1. Let 〈(n′0,1, · · · , n′0,D), · · · , (n′D−1,D)〉 =

new-chain0,j (〈(n0,1, · · · , n0,D), · · · , (nD−1,D)〉). For all i′ 6= 0, j′ ∈ [i′ + 1..D ] or

i′ = 0, j′ ∈ [i + 1..j − 1], we have, n′i′,j′ := ni′,j′ ; and for all j′ ∈ [j..D ], we have,

n′0,j′ := n0,j′ + 1. We set T̂s,new-chain0,j(s) :=
w(n1,j)·n0,D

n0,D+1
.

Case 3: A new chain C, that has the same length as the current best chain, is gen-

erated, and the new chain C is the first chain in subset L0 that is extended. Similar

to case 2, for j ∈ [1..D ], we consider a sub-case 2-j in which the new chain C is

197



added to “0-depth j-distance” subset L0,j. Given that a new chain C is added to

“0-depth j-distance” subset L0,j, the probability that C is the first chain in subset

L0 that is extended is 1
n0,D+1

. We define a function new-extend-chain0,j : Ŝ → Ŝ that

takes as input a state in Ŝ and outputs an updated state when a new chain C is

added to the “0-depth j-distance” subset Li,j and the chain C is the first chain in

subset L0 that is extended. If such event happens, the state machine moves from state

〈(n0,1, · · · , n0,D), · · · , (nD−1,D)〉 to state new-extend-chain0,j((n0,1, · · · , n0,D), · · · , (nD−1,D)).

Let 〈(n′0,1, · · · , n′0,D), · · · , (n′D−1,D)〉 = new-extend-chain0,j ((n0,1, · · · , n0,D), · · · , (nD−1,D)).

We have, n′i′,j′ := 1 for all i′ ∈ [0..D ], j′ ∈ [i′+1..D−1]; n′i′,D := ni′,D for all i′ ∈ [0..D ],

and n′0,D := n0,D + 1. We set T̂s,new-extend-chain0,j(s) :=
w(n1,j)

n0,D+1
.

Case 4: A new best chain is generated, i.e., the length of the best chain increase by

1. This case is a generalization of Case 4 in Figure 30. A new best chain is generated

if a chain in the 0-depth subset L0 is extended. As the number of chains in the

subset L0 is n0,D , the probability of this event is w(n0,D). We define the function

new-best-chain : Ŝ → Ŝ that takes a state in Ŝ as input and outputs an updated state

when a new best chain is generated. In other words, if a new best chain is generated,

The state machine moves from state s = 〈(n0,1, · · · , n0,D), · · · , (nD−1,D)〉 to state

new-best-chain(s). Let 〈(n′0,1, · · · , n′0,D), · · · , (n′D−1,D)〉 = new-best-chain(s). We have,

n′0,j′ := 1 for all j′ ∈ [1..D ]; and n′i′,j′ := ni′+1,j′−1 for all i ∈ [1..D − 1], j′ ∈ [i′+ 1..D ].

We set T̂s,new-best-chain(s) := w(n0,D).

Case 5: No new chain is generated. This case is generalized from Case 5 in Figure 30.

The probability of this event is 1−
∑D

i=0 w(ni,D). Here, the state machine remains at

the same state 〈(n0,1, · · · , n0,D), · · · , (nD−1,D)〉. We set

T̂〈(n0,1,··· ,n0,D ),··· ,(nD−1,D )〉,〈(n0,1,··· ,n0,D ),··· ,(nD−1,D )〉 := 1−
∑D

i=0 w(ni,D).

Let q(n0,1,··· ,n0,D ),··· ,(nD−1,D ) be the stationary probability of the state 〈(n0,1, · · · , n0,D),

198



· · · , (nD−1,D)〉. Based on Equation 4.1, we have,



∑∞
n0,1=1 · · ·

(∑∞
n0,D=1 · · ·

(∑∞
nD−1,D=1 q(n0,1,··· ,n0,D ),··· ,(nD−1,D )

))
= 1,

q(n0,1,··· ,n0,D ),··· ,(nD−1,D ) =
∑
〈(n′0,1,··· ,n′0,D ),··· ,(n′D−1,D )〉∈Ŝ

(
q(n′0,1,··· ,n′0,D ),··· ,(n′D−1,D )·

T̂〈(n′0,1,··· ,n′0,D ),··· ,(n′D−1,D )〉,〈(n0,1,··· ,n0,D ),··· ,(nD−1,D )〉

)
.

(4.6)

We define the chain growth function growth : Ŝ → [0, 1] such that

growth((n0,1, · · · , n0,D), · · · , (nD−1,D)) = w(n0) ≈ n0 · α.

The amplification ratio Â•D equals the expected number of chains in L0, i.e.,

Â•D =
∞∑

n0,1=1

· · ·
( ∞∑
n0,D=1

· · ·
( ∞∑
nD−1,D=1

q(n0,1,··· ,n0,D ),··· ,(nD−1,D )·

growth((n0,1, · · · , n0,D), · · · , (nD−1,D))

α

))
=

∞∑
n0,1=1

· · ·
( ∞∑
n0,D=1

· · ·
( ∞∑
nD−1,D=1

q(n0,1,··· ,n0,D ),··· ,(nD−1,D ) · n0,D

))
.

Using the augmented Markov chain, we can find a lower bound of the amplifica-

tion ratio as shown in Figure 23. For D = 50, we can find a lower bound Â•50 ≥ 2.04.

4.6.4 Achieving chain growth

Now, we show our protocol Π• can achieve the chain growth property, based

on the augmented Markov chain. As mentioned, we consider a hybrid experiment

where all messages sent by the adversary are removed. We show that, in the hybrid

experiment, the adversary cannot slow down the chain growth of the honest players.

Then, we use the Chernoff bound on the augmented Markov chain to bound the chain

199



growth of protocol Π•.

Lemma 68 (Chain growth). Consider protocol Π• in the real execution REAL(ω).

Consider an honest player P with the best local chain C in round r, and an honest

player P1 with the best local chain C1 in round r1, where r1 > r. Then we have

Pr
[
len(C1) − len(C) ≥ g · t

]
≥ 1 − e−Ω(t·α), where t = r1 − r, g = (1 − δ) · α•0,

α•0 = Â•D · α, and δ > 0.

Proof. In order to analyze the growth of the best chain from round r to round r1

in the real execution REAL(ω), we consider a hybrid execution HYBr(ω). Since the

first r rounds of both the real execution REAL(ω) and the hybrid execution HYBr(ω),

the best chain at round r of the two executions is the same. Furthermore, based on

Lemma 67, at round r1, the best chain in the real execution REAL(ω) is longer than

the best chain in the hybrid execution HYBr(ω). Thus, from round r to round r1, the

chain growth in the real execution REAL(ω) is greater than the chain growth in the

hybrid execution HYBr(ω).

As defined in Subsection 4.5.1, let Q = [qs]s∈Ŝ be the stationary distribution over

Ŝ. Here, for each state s ∈ Ŝ, the probability that the state s occurs in the random

walk is Prs′∼Q[s′ = s] = qs, where the probability qs is computed as in Equation 4.6.

(Here, the state s is in the format 〈(n0,1, · · · , n0,D), · · · , (nD−1,D)〉.)

We have,

Es∼Q
[
growth(s)

]
= E〈(n0,1,··· ,n0,D ),··· ,(nD−1,D )〉∼Q[w(n0,D)]

=
∑

〈(n0,1,··· ,n0,D ),··· ,(nD−1,D )〉∈Ŝ

q〈(n0,1,··· ,n0,D ),··· ,(nD−1,D )〉 · w(n0,D)

= Â•D · α.

Recall that each state in the augmented Markov chain provides a lower bound on

200



the number of chains in the depth-distance-based subsets. The chain growth function

growth returns the probability of successfully extending a chain in the 0-depth subset

L0. (Note that from the number of chains in the depth-distance-based subsets, we

can also obtain the number of chains in the depth-based subset.) Thus, the chain

growth function provides a lower bound for the probability that the honest players

generate a new best chain. Therefore, the augmented Markov chain (Ŝ, T̂) and the

chain growth function growth are typical to protocol Π•. Hence, based on Lemma 65,

we have,

Pr
[
len(C1)− len(C) < (1− δ) · Â•D · α · t

]
< e−Ω(t·α).

4.7 Common Prefix in Multi-Extension: A New Analysis Framework

We present a new analysis framework for examining the common prefix property

in multi-extension protocols. We introduce the concepts of virtual block-sets and

virtual chains. Then, we define the common prefix property w.r.t. virtual chains and

prove that our protocol can achieve this property. Finally, we demonstrate that the

standard common prefix property can be reduced to the common prefix w.r.t. virtual

chains.

4.7.1 Virtual block-sets and virtual chains

We construct virtual block-sets and then form virtual chains based on them.

Intuitively, blocks with the same height that are “close” to each other are grouped

into a virtual block-set. Then, a virtual chain is formed by concatenating these

virtual block-sets that are linked together. This method is intended to ensure that,

at each height, honest players will only extend blocks that belong to the same virtual

block-set.

201



We define two blocks to be “close” as follows: Given two blocks B and B ′ with

the same height, let C and C ′ be the chains from the genesis block to B and B ′,

respectively. The blocks B and B ′ are considered “close” to each other if the distance

from C to C ′ is less than D , i.e. distance(C → C ′) ≤ D .

In our protocol Π•, consider an honest player and let Cbest be the set of the

player’s best chains. For any two chains C, C ′ ∈ Cbest, the distance between C and C ′

is less than D , i.e. distance(C → C ′) ≤ D . Hence, if len(C) = len(C ′), the last blocks

on C and C ′ are “close” to each other. Note that an honest player only extends chains

in the set of best chains. Thus, at each height, an honest player will only extend

blocks that belong to the same virtual block-set.

Figure 32 illustrates an example of virtual block-sets with D = 2. In this example,

the set of virtual block-sets isV = V0,V1,V2,V3,V
′
3,V4,V5. A virtual chain is formed

by linking several virtual block-sets together. A virtual block-set V is considered

linked to a virtual block-set V ′ if there exists a block B ∈ V and a block B ′ ∈ V ′

such that B is linked by B ′.

Definition 69 (Virtual block-sets and virtual chains). Consider an execution of pro-

tocol Π•, and consider an honest player with the set C of local chains. Let B be the

set of all blocks on the chains in C.

Based on the set of block B, we define a set V of virtual block-sets, as follows.

Initially, we set V := ∅. For each block B ∈ B, let C be the chain from the genesis

block to the block B. If the block B has not been added to any virtual block-set (i.e.,

for all V ′ ∈ V, we have, B /∈ V ′), we build a virtual block V based on the block B

as follows. Initialize that V := {B}. For any block B ′ ∈ B, let C ′ be the chain from

the genesis block to the block B ′. If len(C) = len(C ′) and distance(C → C ′) ≤ D, we

set V := V ∪ {B ′}. Finally, we set V := V ∪ {V }.

202



Based on the above information, we can further define a set VC of virtual chains,

as follows. Initialize that VC := {V0}, where V0 = {B0} and B0 is the genesis block.

For each virtual chain V = V0‖V1‖ · · · ‖V` (where ` is a non-negative integer) in the

set VC, we construct new virtual chains as follows. First, we define that V` is linked

by the V`+1 if there exists a block B`+1 ∈ V`+1 and a block B` ∈ V` such that B` is

linked by B`+1
4. For each such virtual block-sets V`+1 ∈ V such that V` is linked by

V`+1, we construct a new virtual chain V ′ := V‖V and set VC := VC ∪ {V ′}. In

the example in Figure 32, V0‖V1‖V2‖V ′3 and V0‖V1‖V2‖V3‖V4‖V5 are two virtual

chains.

Figure 32: A toy example for the virtual block-sets and virtual chains with D = 2.

Each block is represented by a solid rectangle and each virtual block-set is represented

by a blue area that consists of multiple blocks. Here V0 = {B0}, V1 = {B1,B
′
1,B

′′
1 },

V2 = {B2,B
′
2,B

′′
2 ,B

′′′
2 }, V3 = {B3,B

′′
3 }, V ′3 = {B ′3,B ′′′3 }, V4 = {B4,B

′
4,B

′′
4 }, V5 =

{B5,B
′
5}, In this case, the best chain is Cbest = B0‖B1‖B2‖B3‖B4‖B5. Here, for all i ∈

[0..5], we have Bi ∈ Vi. Thus, the best virtual chain is Vbest = V0‖V1‖V2‖V3‖V4‖V5.

4In protocol Π•, the block B`+1 is in the form of 〈η, r,pk, σ〉, where η is the hash
value of the previous block, r is the current round number, pk is the public key of the
player, and σ is the signature of the player over 〈η, r〉. We say B` is linked by B`+1

if η = h(B`).

203



We define the best virtual chain as the virtual chain in which each virtual block-

sets in the virtual chain contains a block in the best chains. In Figure 32, the

best virtual chain is Vbest = V0‖V1‖V2‖V3‖V4‖V5 since the best chain is Cbest =

B0‖B1‖B2‖B3‖B4‖B5. We formally define the best virtual chain as follows.

Definition 70 (The best virtual chain). Let Cbest = B0‖B1‖ · · · ‖B` be the best chain.

A virtual chain Vbest = V0‖V1‖ · · · ‖V` is the best virtual chain if for all i ∈ [0..`],

Bi ∈ Vi.

Virtual block-set and virtual chain basics. Consider a virtual chain V consists

of a sequence of ` concatenated blocks V0‖V1‖V2‖ · · · ‖V`, where ` ∈ N. We use V [i]

to denote the i-th virtual block-set Vi in virtual chain V . Here, ı denote the block

height of the virtual block-set Vi in the virtual chain V . The block height of a virtual

block-set Vi is equal to the block height of all blocks in Vi. We refer to V [j,m], with

j ≥ 0 and m ≤ `, as a sub virtual chain Vj‖ · · · ‖Vm. If a virtual chain V is truncated

the last κ virtual block-sets, we write V [¬κ].

4.7.2 Unique signature scheme

In a unique signature scheme, for every possible verification key, every message

to be signed, there is a unique signature. Please see Section 6.5.1 of Goldreich’s

textbook [53] for details. Here we include a version of the definition for syntax and

properties: A unique signature scheme consists of four algorithms, a randomized key

generation algorithm uKeyGen, a deterministic key verification algorithm uKeyVer,

a deterministic signing algorithm uSign, and a deterministic verification algorithm

uVerify; we expect for each verification key there exists only one signing key; we also

expect for each pair of message and verification key, there exists only one signature.

We have the following definition.

204



Definition 71. We say (uKeyGen, uKeyVer, uSign, uVerify) is a unique signature scheme,

if it satisfies:

Correctness of key generation: Honestly generated key pair can always be verified.

More formally, it holds that

Pr

[
(pk, sk)← uKeyGen(1κ) | uKeyVer(pk, sk) = 1

]
= 1.

Uniqueness of signing key: There does not exist two different valid signing keys for

a verification key. More formally, for all ppt adversary A, it holds that

Pr


(uKeyVer(pk, sk1) = 1)

(pk, sk1, sk2)← A(1κ)
∧

(uKeyVer(pk, sk2) = 1)∧
(sk1 6= sk2)

 ≤ negl(κ).

Correctness of signature generation: For any message x, it holds that

Pr

[
(pk, sk)← uKeyGen(1κ);σ := uSign(sk, x) | (uVerify(pk, x, σ) = 1)

]
≥ 1−negl(κ)

Uniqueness of signature generation: For all ppt adversary A,

Pr


(uVerify(pk, x, σ1) = 1)

(pk, x, σ1, σ2)← A(1κ)
∧

(uVerify(pk, x, σ2) = 1)∧
(σ1 6= σ2)

 ≤ negl(κ).

Unforgeability of signature generation: For all ppt adversary A,

Pr

 (pk, sk)← uKeyGen(1κ); (uVerify(pk, x, σ) = 1)

(x, σ)← AuSign(sk,·)(1κ)
∧

((x, σ) 6∈ Q)

 ≤ negl(κ),

where Q is the history of queries that the adversary A made to signing oracle

uSign(sk, ·).

Unique signature schemes and related notions have been investigated in liter-

205



atures (e.g., [54, 81, 76]). Please see Section 6.5.1 of Goldreich’s textbook [53] for

detailed discussions about the constructions. Several efficient constructions can be

found in literature. For example, the well-known BLS signature [18] can be a good

candidate.

4.7.3 Common prefix property w.r.t. virtual chains

We are now ready to define the common prefix property w.r.t. virtual chains.

The property states that all honest players share the same common prefix of virtual

chains after removing the last κ virtual blocks.

Definition 72 (Common prefix w.r.t. virtual chains). Consider a blockchain protocol

Π with a set P of players. The common prefix with respect to virtual chains, states the

following: for any honest player P ′ adopting a local best virtual chain V ′ at round r′,

and honest player P adopting a local best virtual chain V at round r, in the execution

EXECΠ,A ,Z , where P ′,P ∈ P and r ≤ r′, it holds that V [¬κ] � V ′, where V [¬κ] is

the virtual chain resulting from removing the last κ blocks.

In order to demonstrate the common prefix property with respect to virtual

chains, we introduce the concept of an honest virtual block-set, where the first block

generated in the virtual block-set is honest. Our analysis shows that there is at most

one honest virtual block-set at any block height. This means that, in order to violate

the common prefix property, the adversary must extend the virtual chain as quickly

as the honest players. This, in turn, requires the adversary to have control over the

majority of the stake. Therefore, our protocol achieves the common prefix property

under the assumption that the majority of stake is controlled by honest players.

Definition 73 (Honest virtual block-sets). Consider a virtual block-set V , let B be

206



the earliest block in V , i.e., B is the block with the smallest round number5. We say

V is the honest if the earliest block B is generated by an honest player.

We override the equal operator for virtual block-sets since new blocks may be

added to the existing virtual block-sets through time. Intuitively, we say two virtual

block-sets are equal if all the blocks in the two virtual block-sets are “close”.

Definition 74 (Equal operator for virtual block-sets). Consider two virtual block-

sets Vi and V ′i at the same block height i. We say Vi equals V ′i (i.e., Vi = V ′i ) if

the following constraint is satisfied: For any block B ∈ Vi and any block B ′ ∈ V ′i ,

let C and C ′ be the chains from the genesis block to B and B ′, respectively. We have,

distance(C → C ′) ≤ D .

The equal operator for virtual block-sets is symmetric. Given that Vi = V ′i . For any

block B ∈ Vi and any block B ′ ∈ V ′i , we have, distance(C ′ → C) = distance(C →

C ′) ≤ D . Thus, based on Definition 74, we have, V ′i = Vi.

We will demonstrate that there is at most one honest virtual block-set at each

block height. The definition of virtual block-sets states that honest players only

extend blocks that belong to the same virtual block-set. We consider two cases as

follows (see Figure 33 for an example).

• If an honest player creates a new longest chain, a new honest virtual block-set

is created at the new block height, as there was no honest virtual block-set at

this height previously.

• If honest players do not create a new longest chain, they can only create a new

block in an existing virtual block-set.

5For a block B = 〈η, r,pk, σ〉, the round number of block B is r.

207



Add a new block to an
existing virtual block set

Create the first block of
the first honest virtual

block at this block height

Figure 33: A toy example for illustrating an extension of honest players. Honest

players extend the set of best chains from Figure 32, using 2-distance-greedy strategy.

The blue blocks denote the new blocks. Here, the players generate either a new block

to create a new longest chain (that is longer than the current longest chain) or a new

block that is added to an existing virtual block-set.

Lemma 75. Consider an honest player P. Let Vbest = V0‖V1‖ · · · ‖V` be the best

virtual chain in the local state of player P at the beginning of round r, where ` ∈ N is

the length of the best chain. If player P generates a new chain C = B0‖B2‖ · · · ‖B`′,

where `′ ∈ N. Then, one of the following two conditions is true: 1) `′ = `+ 1 (a new

longest chain is generated); or 2) `′ ≤ ` and B`′ ∈ V`′ (the last block of the new chain

is added to an existing virtual block-set).

Proof. Let Cbest be the best chain in the local state of player P at the beginning of

round r. Let C ′ = C[0, `′ − 1]. At round r, player P extend the chain C ′ by adding

the block B`′ to generate the new chain C. Since the honest players only extend

the chains in the set of best chains, we have, C ∈ Cbest. Recall from procedure

D-BestChainSet•, the distance from the best chain Cbest to C ′ is smaller than D , i.e.,

distance(Cbest → C ′) ≤ D . We consider two cases of C ′ as follows.

• The length of the chain C ′ equals `, i.e., len(C) = `. In this case, we have,

208



`′ = len(C) = len(C ′‖B) = `+ 1. In other words, a new best chain of length `+ 1

is generated.

• The length of the chain C ′ is smaller than `, i.e., len(C ′) < `. Since distance(Cbest →

C ′) ≤ D , from Definition 61, we have, Cbest[0, `−D ] � C ′. Thus, Cbest[0, `+ 1−

D ] � C (as C = C ′‖B). Therefore, distance(Cbest[0, `
′] → C) ≤ D . Plus, since

Cbest belongs to Vbest, we have, Cbest[`
′] ∈ V`′ . Thus, based on the definition of

the virtual block-set, we have, B`′ ∈ V`′ .

We assume α• = λ · β•, λ > 1. If r1 − r is big enough, the adversary cannot

extend the virtual chain as fast as the honest players. Given that ∆ · α• � 1, most

of the time, there is at most one honest virtual block-set at a block height. Now, we

are ready to prove the common prefix property on virtual chains.

Lemma 76 (Common prefix w.r.t. virtual chains). Assume α• = λ · β•, λ > 1.

Consider an execution of protocol Π• with an arbitrary adversary. Consider an honest

player P in round r with the local best virtual-chain V, and an honest player P1 in

round r1 with the local best virtual-chain V1, respectively, where r1 ≥ r. Then, we

have,

Pr [V [¬κ] � V1] ≥ 1− e−Ω(κ).

Proof. Assuming towards a contradiction that the virtual chain V does not share

a common prefix with the virtual chain V ′ after removing the last κ virtual block-

sets, i.e., V [¬κ] � V ′. Let us consider the last common virtual block-set of V and

V ′ generated at round r0. By the chain growth property in Lemma 68, from round

r0 to round r, the virtual chain V must increase in length by at least α• · t, where

t = r − r0. However, from Lemma 75, there can only be at most one honest virtual

209



block-set at any given block height. Thus, the adversary must generate at least α• · t

virtual block-sets from round r0 to round r, which occurs with probability less than

e−Ω(κ).

4.7.4 From common prefix w.r.t. virtual chains, to the standard common

prefix property

...

...

...

 blocks  blocks
 

 

...

 
 

 is the last common
block of  and 

 is the last common
virtual block-set of  and 

Figure 34: From common prefix w.r.t. virtual chains, to the standard common prefix

property. If common prefix property does not hold, i.e., C[¬(κ + D)] � C ′, then

common prefix w.r.t. virtual chain property does not hold, i.e., V [¬κ] � V ′. Here, C

belongs to V and C ′ belongs to V ′.

We prove the common prefix property w.r.t. virtual chains. Lemma 76 establishes

that the virtual chains of any two honest players share a common prefix after removing

the last κ virtual blocks. All blocks in a virtual block-set have the same common prefix

after removing the last D blocks. Let V denote the last common virtual block-set

between the two virtual chains. All chains in the virtual block-set V have the same

common prefix after removing the last D blocks (see Figure 34). Therefore, the chains

of any two honest players share the same common prefix after removing the last κ+D

blocks, thus achieving the common prefix property.

210



Lemma 77 (Common prefix). Assume α• = λ · β•, λ > 1. Consider an execution of

protocol Π• with an arbitrary adversary. Consider two honest players, P in round r

with the local best chain C, and P ′ in round r′ with the local best chain C ′, respectively,

where r′ ≥ r. Then, we have,

Pr [C[¬(κ+ D)] � C ′] ≥ 1− e−Ω(κ).

Proof. Assuming toward a contradiction that C[¬(κ+ D)] � C ′. Let V and V ′ be the

virtual chains of C and C ′, respectively. Let ` = len(C) be the length of the chain C and

`′ = `− (κ+ D). Since C[¬(κ+ D)] � C ′, the blocks at block height `′ of C and C ′ are

different, i.e., C[`] 6= C ′[`]. Thus, we have, distance(C[0, `′ + D ]→ C ′[0, `′ + D ]) > D .

Let V [`′+D ],V ′[`′+D ] be the virtual block-sets at block height `′+D of the virtual

chains V and V ′, respectively. We have, C[`′+D ] ∈ V [`′+D ] and C ′[`′+D ] ∈ V ′[`′+D ].

As distance(C[0, `′+ D ]→ C ′[0, `′+ D ]) > D , we have, V [`′+ D ] 6= V ′[`′+ D ]. In other

words, V [0, `′+ D ] 6= V ′[0, `′+ D ] or V [¬κ] � V ′. This contradicts the common prefix

property w.r.t. virtual chains in Lemma 76.

4.8 Chain quality and best possible unpredictability

We show that our protocol can achieve the chain quality and the best possible

unpredictability properties.

4.8.1 Chain quality

After proving the chain growth and common prefix properties, the proof of chain

quality will be very similar to the proof in [88]. Intuitively, the adversary cannot

extend the chain as fast as the growth rate of the best chain. Thus, some blocks on

the best chain must be generated by the honest players.

211



Lemma 78 (Chain quality). Assume α• = λ · β•, λ > 1, and δ > 0. Consider an

execution of protocol Π• with an arbitrary adversary. Consider an honest player with

chain C. Consider that ` consecutive blocks of C, where `good blocks are generated by

honest players. Then we have Pr
[
`good
`
≥ µ

]
≥ 1− e−Ω(`) where µ = 1− (1 + δ) · 1

λ
.

Proof. Assuming toward contradiction that all block from round r to round r1 are

generated by malicious players. From Lemma 68, we have, the length of the best chain

from round r to round round r1 increase by at least (1−δ) ·α• · t, where t = r1−r. As

all blocks from round r′ to round r′′ are generated by malicious players, the adversary

can grow the chain with the rate (1− δ) ·α•. Recall that, the adversary can grow the

chain with the rate at most β•. Thus, we have, β• > (1 − δ) · α•. This contradicts

the assumption that β• < (1− δ) · α•.

4.8.2 Best possible unpredictability

We now show that protocol Π• can achieve the best possible unpredictability. In

our protocol, players only predict whether or not they can generate the next block,

i.e., they are 2-unpredictable. In our protocol, the context of a chain is computed

as the last block on the chain. Thus, the contexts of any two different chains in

our protocol execution are different. In other words, the our protocol Π• archives

distinct-context-extension property. Hence, protocol Π• achieves the best possible

unpredictability.

Lemma 79. Consider an execution of protocol Π• with a set of player P. For every

ppt Z,A, for any player P ∈ P at any round r, we have,

Pr

 VIEW← EXECΠ•,A,Z ;
(
predictable(VIEW,P , 2, r, r′, zr

′
P ) = 0

)
(r′, zr

′
P )← A(P , r, VIEWr)

 > 1−negl(κ),

Proof. Assuming toward contradiction that the player P is 2-predictable at round r.

212



Hence, there exists a round r′ > r such that the adversary A can make an accurate

prediction zr
′

P at round r and len(Cr′) = len(Cr) + 1, where Cr and Cr′ are the best

chains at round r and r′, respectively. Let (sk,pk) be the key pair of player P . In

order to predict whether or not the player P can extend the chain Cr′P , the adversary

must be able to compute the context η. Since the context η is computed as the hash

value of the last block in the chain Cr′ , the adversary must know the chain Cr′ to

make a correct prediction on whether or not the player P can extend the chain Cr′ .

As the chain Cr′ is not generated at round r, the adversary cannot provide a accurate

prediction.

4.9 Extensions

We provide the extensions for our protocol to make it more practical. In Sub-

section 4.9.1, we will “upgrade” our protocol to a regular blockchain protocol so that

payload (e.g., the transactions) can be included. Then, in Subsection 4.9.2, we further

extend our protocol in a more realistic “non-flat” model. Finally, in Subsection 4.9.3,

we follow a similar strategy in [6] to allow new players to join the system and par-

ticipate in the process of extending the chains if they have their stake registered a

specified number of rounds earlier.

4.9.1 Full-fledged blockchain

We extend protocol Π• to a full blockchain protocol by using it to generate

a random beacon that selects the PoS-players that can generate new main-blocks

with payloads. The blocks are linked together as a hash chain called the main-

chain. Each PoS-player holds a pair of keys, (sk,pk), from a unique signature scheme

(uKeyGen, uSign, uVerify) and a pair of keys, (s̃k, p̃k), from a regular digital signature

scheme (KeyGen, Sign,Verify). We note that, to achieve adaptive security, this regular

213



signature scheme will be replaced by a forward-secure digital signature scheme [11].

More concretely, consider a best chain C = B0‖B1‖ · · · ‖B` with the corresponding

main-chain C̃ = B̃0‖B̃1, · · · ‖B̃`. Here, the genesis block B0 and the genesis main-block

B̃0 are the same. Once a new block B`+1 is generated by a PoS-player, then the same

PoS-player is selected to generate the new main-block B̃`+1, in the following for-

mat B̃`+1 = 〈h̃`,B`+1, X`+1, p̃k, σ̃〉 where σ̃ ← Signs̃k(h̃`,B`+1, X`+1), h̃` := hash(B̃`),

X`+1 is payload. By linking the blocks in the main blockchain to the blocks in the

blockchain, the security of the main blockchain protocol can be reduced to the security

of the blockchain protocol.

4.9.2 Blockchain in the non-flat model

In our previous sections, we presented our ideas in the “flat” PoS model, where

all players are assumed to hold the same number of stake and have an equal chance of

being selected as the winning player in each round. However, in reality, PoS players

have varying amounts of stake. In this section, we will extend our design to reflect

the more realistic “non-flat” model.

The genesis block, B0, in the “non-flat” model consists of the public keys of the

players, their respective stake distribution, and a randomness. Specifically, we have,

B0 = 〈(〈pk1, s1〉, 〈pk2, s2〉, · · · , 〈pkN , sN〉), rand〉. The number of stakes held by each

player can vary in this model. For a PoS player with the key pair (pk, sk) holding s

stake at round r, the hash inequality is changed as follows:

H(η, r,pk, σ) < s · T.

It is straightforward to see that the probability of a PoS player being selected

to generate a new block is proportional to the amount of stake they control. If the

player puts all their s stake in one account, their probability of being selected to sign

214



a PoS block is s · p. On the other hand, if they divide their s stake into s accounts,

each with one stake, the probability of an individual account being selected is p. As

the outputs of the hash function are independent for different verification keys, the

total probability of the player being selected is 1− (1− p)s ≈ s · p.

4.9.3 Defending against adaptive registration

Our design can be further improved to allow for the dynamic registration and

deregistration of players during the protocol’s execution. As a reminder, the chain ex-

tension process relies on the hash inequality H(context , solution) < T, where solution

takes the form of (pk, σ). However, malicious players can use a “rejection re-sampling”

strategy to generate their keys adaptively, taking advantage of the known context .

In this strategy, a malicious player generates a key-pair (pk, sk) and then checks if

the resulting (pk, σ) is a valid solution to the hash inequality. If it’s not, the player

repeats the key generation process. This increases the probability that the malicious

player will be selected to extend the chain.

Adaptive registration. Similar to the approach in [6], we defend against rejection

re-sampling attacks by requiring new players to have their stake registered for a

specified number of rounds before being allowed to extend the chains. To join the

protocol, player P generates two key pairs: (sk,pk)← uKeyGen(1κ) and (s̃k, p̃k)←

KeyGen(1κ). P keeps sk and s̃k secret and broadcasts a registration transaction.

After a player has registered, they are eligible to extend the chain after η blocks have

been added to the blockchain. It is important to note that players who registered

prior to the start of the protocol (i.e. in the genesis block) do not have to wait η

blocks before they can extend the chain.

By implementing this requirement, malicious players cannot register key pairs

to extend the chains immediately. However, they can still attempt to register biased

215



key pairs and then extend the chains many rounds later. But since the adversary

cannot accurately predict future events, they cannot choose a biased key pair that

will increase their chances of extending the chain many rounds in the future.

4.10 Related Work

In this section, we summarize the existing results for the designs and analysis of

PoS protocols.

4.10.1 Proof-of-stake protocols

The ideas of using coins/stake to construct cryptocurrency has been intensively

considered. Since the inception of the idea in an online forum [15], several proof-

of-stake proposals have been introduced or implemented (e.g., [2, 70, 99, 20, 13]).

These proposals are ad hoc without formal security. Recently, several provably secure

proof-of-stake based blockchain proposals have been developed. More details can be

found below.

Bitcoin-like proof-of-stake protocols. We focus on Bitcoin-like PoS protocols;

these are closely related to the results in the current writeup. All these related proto-

cols follow the single-extension framework. These related protocols include Snow

White [32], Ouroboros Praos [34] and Ouroboros Genesis [6], and a protocol by

Bagaria et al. [7]. Note that, all of the above protocols are single-extension protocols

(thus suffering from the impossibility result in Section 4.2).

In Snow White [32], the protocol execution is divided into epochs, where each

epoch consists of Ω(κ) blocks (for security parameter κ). The players are selected

to generate new blocks based on the public key, the current round number, and the

randomness of the current epoch (via a hash inequality). The Snow White protocol

is based on the Sleepy protocol [90] (in which the new players are not allowed to join

216



the system during the execution). The Snow White protocol allows new players to

join the system but relies on external trust.

In Ouroboros Praos [34], similar to Snow White, the protocol execution is divided

into epochs of Ω(κ) blocks. In each round, the player queries a verifiable random

function (VRF) [81] to determine whether it can generate a new block; note that the

input of VRF consists of the current round, the public key of the player, and the

randomness of the current epoch. Here, the randomness of the epoch is computed

based on the output of the VRF in the previous epoch. Note that, the protocol of

Ouroboros Praos does not allow new players to join the system after the protocol

execution starts. In their follow-up work, Ouroboros Genesis [6], new players are

allowed to join the protocol execution securely.

In Bagaria et al. [7], similar to Praos, the players use a VRF to determine whether

or not they can generate new blocks. However, here, the length of each epoch can be

arbitrary. The authors also adopt the technique in [6] to allow new players to join

the system. We remark that, the work in [7] is independent and concurrent from our

effort in this paper.

BFT-like PoS protocols. Besides Bitcoin-like PoS protocols, in which the players

generate blocks in a non-interactive fashion, BFT-like PoS protocols (including Algo-

rand [23, 51], EOS [3], Dfinity [55]) have been constructed in an interactive fashion.

In Algorand [23, 51], verifiable random function (VRF) has been used for selecting

a committee of players. For each player, the opportunity to be selected is proportional

to the number of stake the player’s account. Then, the committee members run a

Byzantine Agreement (BA) sub-protocol to jointly generate a block.

EOS [3] introduces a delegated proof-of-stake protocol, in which stakeholders

(those who hold the stake on the blockchain) can select block producers through a

217



continuous approval voting system. At the beginning of each round, 21 unique block

producers are chosen based on the preference of votes cast by token holders. The

selected block producers can create new blocks as long as 15 or more block producers

agree.

Dfinity [55] proposes a four-layer consensus protocol to achieve consensus among

players. The first layer registers the players. The second layer provides randomness

for all higher layers. The third layer generates blocks. In each round, the protocol

ranks the players based on the random beacon of that round. All players can generate

new blocks, but each block has a different weight. The weight of the block is assigned

based on the rank of the block procedure in that round. The best chain is selected as

the “heaviest” chain in terms of accumulated block weight. The fourth layer provides

fast finality of the block by using a threshold signature.

Note that, the above protocols (Algorand [23, 51], EOS [3], Dfinity [55]) require

quadratic communication complexity to generate new blocks. HotStuff [104] uses a

threshold signature scheme to achieve linear communication complexity. Specifically,

the block producer, i.e., the player who generates a new block, collects votes from

other players. Then, they compute and broadcast a single threshold signature that

proves at least 2/3 of the players have voted for their block.

Hybrid PoS protocols using verifiable delay function (VDF). Deb et al. [36]

proposed the PoSAT protocol, which is a hybrid consensus using both proof-of-stake

and verifiable delay function (VDF). In the PoSAT protocol, the VDF acts as a

random beacon to generate blocks. After computing a VDF, players can instantly

attempt to solve a hash puzzle to check if they can extend a PoS block from the

output of the VDF. Since players cannot predict the output of VDFs, the PoSAT

protocol is completely unpredictable, similar to Bitcoin.

218



We remark that, the PoSAT protocol [36] is not a “pure” PoS protocol. In “pure”

PoS protocols, the process of generating new blocks involves only the competition of

“stake” (not other resources such as computing power). VDF-based PoS protocols

allow the competition of sequential computation. The PoSAT protocol is based on

the following assumptions: (1) both adversary and honest players have the same ca-

pability to execute sequential work: they take the same time to execute a VDF; and

(2) honest players hold more stake than the adversary does. If one of the two as-

sumptions does not hold, then the security of the PoSAT protocol cannot be ensured.

However, in practice assumption (1) may not hold; it is possible that the adversary

can have faster dedicated hardware for executing sequential work.

4.10.2 Security analysis for Bitcoin-like PoS protocols

Bagaria et al. [7] present a possible “balance attacks” on a multi-extension

proof-of-stake protocols. We emphasize that, their “balance attacks” cannot be

launched on our protocol. There, the adversary will try to balance the length of

the two chains by publishing the block on the shorter chain, with the goal of main-

taining two longest chains that are diverted for a long period. If the protocol is not

carefully designed, the honest players may extend two chains that are diverted for a

long period. Since the adversary only publishes the blocks on the shorter chain, the

shorter chain will be extended faster and eventually catch up to have the same length

as the other chain. Note that, in our protocol, the honest players only extend the

chains that share a common prefix after removing the last few blocks. That is, the

honest players will never extend two chains that are diverted for a long period. Thus,

the adversary is not able to launch the “balance attacks” on our protocol.

Based on the analysis in [32, 34], common prefix property is guaranteed with

error e−Ω(κ) by removing the last O(κ2) blocks. While in Bitcoin, the consistency is

219



guaranteed with error e−Ω(κ) by removing only the last O(κ) blocks. Blum et al. [16]

improve the analysis for the consistency (i.e. common prefix property) of proof-of-

stake based blockchain protocols in cryptographic setting. Now, similar to Bitcoin,

the consistency is guaranteed with error e−Ω(κ) by removing only the last O(κ) blocks.

However, in [16], the “multiply honest” rounds (the rounds that have multiple honest

players that can generate new blocks) are treated as “malicious” rounds (the rounds

that have at least one malicious players that can generate new blocks). Kiayias et

al. [64] extends the result from [16]. Here, the “multiple honest” rounds are treated

as “unique honest” rounds (the rounds that have exactly one honest player that can

generate a new block). Dembo et al. [38] introduces a new technique to analyze

the blockchain protocols (including Bitcoin and proof-of-stake based protocols). The

analysis shows that the best strategy for the adversary to break consistency is private

“double-spend attack”, i.e., the adversary does not contribute to the public best chain

and aims to extend a private chain that is longer than the public best chain.

Unpredictability. The proof-of-stake protocols allow the players to predict whether or

not they can create new blocks in the future. Indeed, in proof-of-work based protocols,

the randomness is in some sense external to the blockchain. Thus, the players cannot

predict whether or not they can create new blocks in the future. On the other hand,

in proof-of-stake based protocols, the randomness comes from the blockchain itself.

Hence, the players can predict whether or not they can create a few next block in

the future. We refer to this as predictability. Brown-Cohen et al. [19] exploit the

(un)predictability of proof-of-stake based protocols in a incentive-driven setting. The

predictability allows the adversary to perform many incentive-driven attacks such as

predictable selfish mining and predictable bribing. In this work, we investigate the

unpredictability in a cryptographic setting.

220



4.11 Supplemental materials

4.11.1 Predictability-based attacks

We now describe the attacks where the attackers rely on the power of predictabil-

ity.

Predictable selfish mining attacks. In a selfish mining attack, a player chooses

to not immediately publish the blocks they have generated to the rest of the net-

work, which undermines the fairness of the blockchain. This type of attack is more

prevalent in proof-of-stake protocols, as they allow players to predict their chances

of successfully mining multiple blocks in the future. Brown-Cohen et al. [19] have

demonstrated a predictable selfish mining attack in proof-of-stake protocols, where

players predict a specific time period in which they will generate a certain number

of blocks. If the probability that other players will not generate the same number of

blocks during that time period is high enough, the player can choose to keep those

blocks hidden until the last block is mined. This increases the likelihood that the

player’s blocks will be included in the longest chain.

Predictable bribing attacks. In bribery attacks, an attacker pays players to work

on specific chains in order to benefit themselves, such as supporting double spending

or censorship attacks. These attacks are more dangerous in proof-of-stake protocols,

as players can predict their chances of successfully mining blocks in the future. In

epoch-based proof-of-stake protocols, this is particularly true at the beginning of

each epoch, when an attacker can attempt to bribe players who are likely to mine

new blocks. If the attacker is able to bribe enough players, they can control the

majority of the blocks mined during that epoch. There are two cases to consider:

Case 1: The confirmation time is shorter than the length of each epoch. In this case,

221



the attacker can perform a double spending attack by issuing transactions at the

beginning of the epoch and then hiding their blocks. At the end of the epoch,

these transactions will be confirmed on the best public chain. The attacker can

then publish their hidden blocks and revert the transactions they issued at the

beginning.

Case 2: The confirmation time is longer than the length of each epoch. The at-

tacker can perform censorship attacks by preventing certain transactions from

being included on the blockchain. In each epoch, the attacker can perform a

predictable bribing attack to control a majority of the blocks, which means con-

trolling the longest chain. Since all blocks on the longest chain belong to the

attacker, they can prevent any transaction from being added to the blockchain.

4.11.2 Existing single-extension proof-of-stake protocols

We now describe the existing state-of-the-art PoS protocols in [32, 34, 7] as

single-extension PoS protocols.

Snow White [32]. The Snow White protocol [32] is divided into epochs, each

consisting of Tepoch = Ω(κ) rounds. When players generate new blocks, they em-

bed random seeds in those blocks. The random seeds are then used to determine

which players will generate blocks in the next epoch. The four algorithms Validate,

BestChain, Context, and Extend are constructed as follows:

• The algorithm Context takes as input a chain C at round r and output the

context η as the the context is the concatenation of the random seeds from

multiple blocks in the previous epoch. Here, the function hash first truncates

the blocks in the previous epoch and obtain the random seeds from those blocks.

Then it concatenates all the random seeds to obtain the context. Note that,

222



hash can be treated as a random oracle. The random seeds in those block are

random; thus the probability that two random seeds is the same is negligible.

• The algorithm Extend takes as input a context η, a round r, and a public key

pk. The algorithm returns a new block if the hash value of the context, the

round number, and the public key are smaller than a given threshold.

• The algorithm Validate takes as input a chain C, a round number r, and outputs

1 if each block in the chain C satisfies the following: 1) the context is correctly

computed, 2) the hash inequality in the blocks holds, and 3) the round number

of the block is smaller than the current round r.

• The algorithm BestChain takes as input a set of chains C and a round r. It

outputs the longest valid chain in C.

Ouroboros Praos [34]. The Ouroboros Praos protocol is constructed using a Verifi-

able Random Function [40] (VRF). The VRF generates a pseudorandom number with

a proof of its correctness. The VRF is specified by three algorithms (Gen,Prove,Ver).

The algorithm Gen takes the security parameter κ as input and outputs a key pair

(sk,pk). The algorithm Prove takes the secret key sk and a message msg as in-

put and returns a pseudorandom output σ along with a proof π. We write (σ, π) :=

Provesk(msg). The algorithm Ver takes a public key pk, a message msg, an output σ,

and a proof π as input and returns 1 if the output and the proof are correct. Similar

to the Snow White protocol [32], the Ouroboros Praos protocol [34] separates rounds

into epochs; each epoch has Tepoch = Ω(κ) rounds. The four algorithms Validate,

BestChain, Context, and Extend is constructed as follows:

• The algorithm Context takes as input a chain C at round r and outputs the

context η as the hash value of the VRF output in the blocks in C that are

223



generated in the previous epochs. Here, the function hash can be treated as a

random oracle.

• The algorithm Extend takes as input a context η, a round r, and a secret key

sk. The algorithm computes (σ, π) := Provesk(η, r) and returns a new block if

it holds that σ < T, where T is the difficulty.

• The algorithm Validate takes as input a chain C and a round number r, and

outputs 1 if each block in the chain C satisfies the following conditions: 1) the

context is computed correctly, 2) the VRF output in the block is computed

correctly using algorithm Ver(·)(·), 3) the output of the VRF is smaller than the

difficulty T, and 4) the round number in the block is smaller than the current

round r.

• The algorithm BestChain takes as input a set of chains C and a round r. It

outputs the longest valid chain in C.

Bagaria et al. [7]. The protocol described in Bagaria et al. [7] is divided into epochs,

each of which consists of c ∈ N blocks. The protocol uses a VRF to determine which

players can generate new blocks. The following four algorithms are defined: Validate,

BestChain, Context, and Extend.

• The algorithm Context takes as input a chain C at round r and outputs the

context η as the VRF output of the last block from the previous epoch. The

probability that two blocks have the same VRF output equals the probability

of selection two random numbers in {0, 1}κ that are equals. As the number of

blocks is polynomial in κ, the probability that there exist two blocks that have

the same VRF output is negligible.

224



• The algorithm Extend takes as input a context η, a round r, and a secret key

sk. The algorithm computes (σ, π) := Provesk(η, r) and returns a new block if

it holds that σ < T, where T is the difficulty.

• The algorithm Validate takes as input a chain C and a round number r, and

outputs 1 if each block in the chain C satisfies the following conditions: 1) the

context is computed correctly, 2) the VRF output in the block is computed

correctly using algorithm Ver(·)(·), 3) the output of the VRF is smaller than the

difficulty T, and 4) the round number in the block is smaller than the current

round r.

• The algorithm BestChain takes as input a set of chains C and a round r. It

outputs the longest valid chain in C.

225



CHAPTER 5

THE APPLICATION LAYER

In this chapter, we leverage blockchain technology to propose secure client selections

protocols in federated learning process. Thanks to the immutability and transparency

of blockchain, our proposed protocol enforces a random selection of clients, thereby

preventing the server from manipulating the selection process.

We present the secure client selection problem in Section 5.1. In Section 5.2, we

propose our protocol in a semi-malicious setting. The analysis of the protocols in the

semi-malicious setting is presented in Section 5.3. Section 5.4 provides our protocol

in an active setting. Experiments to evaluate our solution are given in Section 5.5.

We discuss some related work in Section 5.6 and finally provide concluding remarks

in Section 5.7.

5.1 Federated Learning and Secure Client Selection Problem

In this section, we first review FL protocols. Then we describe our client selection

problem.

5.1.1 Federated Learning

Depending on how training data is distributed among the participants, there are

two main versions of federated learning: horizontal and vertical. In this paper, we

focus on horizontal FL in which different data owners hold the same set of features

but different sets of samples.

Typically, an FL process follows the FedAvg framework [80] which comprises

226



multiple rounds. In this setting, a server and a set U of n = |U| clients participate in

a collaborative learning process. Each client u ∈ U holds a training dataset Du and

agrees on a single deep learning task and model architecture to train a global model.

A central server S keeps the parameters Gt of the global model at round t. Let xtu be

a vector representing the parameters of the local model of client u at round t. Each

training round includes the following phases:

1. Client selection: S samples a subset of m clients U ′ ⊆ U and sends them the

current global model Gt.

2. Client computation: each selected client u ∈ U ′ updates Gt to a new local model

xtu by training on their private data Du, and uploads xtu to the central server S.

3. Aggregation: the central server S averages the received local models to generate

a new global model as follows:

Gt+1 =
1

m

∑
u∈U ′

xtu (5.1)

The training continues until the global model converges.

5.1.2 Secure client selection (SCS) problem

Threat model. In our model, there are one server, n clients that execute a client

selection protocol. The protocol execution comprises multiple training rounds, each

consisting of multiple timesteps. In each training round, the server and clients execute

a client selection protocol Π to select a set of clients. The selected clients are notified

and possibly provided with proof of selection. Only selected clients will participate

in the training round.

The protocol execution is directed by an environment Z(1κ) that captures all

aspects external to the protocol itself, such as inputs to the protocol (e.g., the data

227



of clients). Here, κ ∈ N is the security parameter. At the beginning of the execution,

the environment Z initializes the server and the participating clients as either honest

or corrupt. The adversary can corrupt the server and at most a fraction β of the

clients.

We first consider a semi-malicious adversary that follows the protocol execution

but can arbitrarily choose its local randomness and inputs. This semi-malicious server

can be viewed as an extension of previous work on secure aggregation in FL [17, 106,

5]. In Section 5.4, we will also consider an active adversary that can divert from the

protocol.

Problem definition. We define a new problem, called secure client selection (SCS)

problem that asks for a protocol Π, executed by a server S and a set of clients U , to

select a subset of clients in each training round in FL. At the end of the execution of

the protocol Π, for each client j, the server S sends a collections of proofs {ω(i)
j }i∈U ,

in which ω
(i)
j is either empty or a proof on whether or not the client i is selected.

Importantly, the designed protocol needs to satisfy three security properties, namely,

pool consistency, pool quality, and anti-targeting.

Definition 80 (Secure client selection problem). Let stj be the local state of the client

j ∈ U at the end of a training round. We say Π is secure iff there exists a predicate

PVerΠ that takes the state stj, a proof ω
(i)
j (provided by server S) as input and outputs

PVerΠ(stj, ω
(i)
j ) =


1 if i is selected in the view of j,

0 if i is not selected in the view of j,

⊥ if ω
(i)
j is empty or invalid,

with the following properties:

228



• Pool consistency: Let H be the set of honest clients, ∀i ∈ U and ∀j1, j2 ∈ H,

Pr

 ∃ ω(i)
j1
, ω

(i)
j2

PVerΠ(stj1 , ω
(i)
j1

) = 1∧

PVerΠ(stj2 , ω
(i)
j2

) = 0

 ≤ e−Ω(κ),

where κ is the security parameter.

• γ-pool quality for γ ∈ (0, 1): Let P be the set of selected clients, defined as:

P = {i ∈ U : ∃j ∈ H s.t. PVerΠ(stj, ω
(i)
j ) = 1}.

We have:

Pr

[
H ∩ P
P

≥ γ

]
≥ 1− e−Ω(κ).

• Anti-targeting: Let c = m
n

be the selection probability,

|Pr[i ∈ P ]− c| ≤ e−Ω(κ), ∀i ∈ U .

5.2 Defending against semi-malicious adversaries

We present our defense against client selection attacks in the semi-malicious

setting. We begin with identifying three essential security properties for a secure client

selection in Subsection 5.1.2. Then, in Subsection 5.2.1, we propose our blockchain-

based protocol (SeP) that achieves those properties. Finally, we extend SeP into

CoSeP protocol to reduce significantly the communication complexity.

5.2.1 Secure protocol (SeP) for SCS problem

We propose a secure protocol (SeP) for SCS problem that use blockchain as 1) a

source of public randomness, and 2) a distributed database to store the information

of the selected clients. Blockchain, introduced in [83], is a type of distributed ledger,

jointly maintained by a set of nodes in a network, called miners. Blockchain can

229



provide guarantees on the correctness (i.e. tamper-resistance) and security of the

ledger without the need of trust on a central trusted party. In this work, we consider

the Bitcoin protocol, in which miners compete to solve a PoW puzzle.

We remark that using blockchain to solve the secure client selection problem

may introduce a different attack vector. It is possible for an adversary with sufficient

mining power to revert the last few blocks in the blockchain [46]. This can lead to

(temporary) inconsistent views among the participants, compromising the security of

the protocol.

The protocol SeP consists of a one-time registration phase and multiple train-

ing rounds. In the registration phase, the clients submit their public keys to the

blockchain. In our protocols, the client selection will happen over a sufficiently large

span of blocks to ensure that all the participants, including the clients and the server,

will arrive to the same view on the set of selected clients.

Algorithm 10: Protocol SeP.
Registration phase : All clients submit their public keys to the blockchain.
One trainning round: Consider a training round that starts at block height

(BH) `.
1 Step 1 (BH `): Randomness extraction.

2 The server and clients extract the randomness rnd from the blockchain.
3 Step 2 (BH `+ τ): Random selection.

4 Each client i proceeds as follows.
5 If H(rnd, pki) < c2κ then
6 Submit a selection transaction that consists of pki to the blockchain

Each training round of the protocol SeP consists of 2 steps: (1) randomness

extraction and (2) random selection. In step 1 (randomness extraction), all clients

and the server compute locally a random token rnd by hashing together the block

headers in the previous round. In step 2, the clients use a hash function to determine

whether or not they get selected. Each selected client will submit a transaction to the

230



blockchain to announce that she/he is selected. We provide the details for the steps

in the client selection protocol in Algorithm 10. We use the height of the blockchain,

or block height (BH), to measure time. We select a parameter τ = Ω(κ) so that sent

messages are received and submitted transactions are finalized within 2τ blocks. For

a training round started at BH `, the client selection protocol is executed between

block heights ` and `+ 2τ .

Step 1: Randomness extraction. We follow the scheme to extract the randomness

in [35]. At block height `, the server and all clients compute a randomness rnd by

hashing together the block headers of the first τ blocks created during the previous

training round. The chain quality of the blockchain means that, with high probability,

at least one of those blocks must be from an honest miner [46]. Thus, rnd includes at

least one unbiased random source.

Step 2: Random selection. After extracting the randomness, each client i uses the

hash function to check whether or not she/he is selected in this round. Here, a hash

function H, takes as input an arbitrary-length string in {0, 1}∗ and output a random

string in {0, 1}κ.

We say a client i is qualified if H(rnd, pki) < c2κ. Here, c = m
n

is the selection

probability, i.e., the fraction of selected clients per round. If the client i is qualified,

she/he submits a transaction that consists of the public key pki to the blockchain.

After the transaction is included in the blockchain, the client i is selected.

Proof of membership. For a client i, the proof of membership ω
(i)
i includes the selection

transaction that consists of the public key pki.

Pool membership verification function. For each client j with the state stj, the func-

tion PVer(stj, ω
(i)
j ) extracts the blockchain Cj from the local state stj and then pro-

ceeds as follows. First, the function verifies whether or not the selection transaction

is included in the header blockchain Cj. If the condition does not hold, it returns

231



⊥. If the condition holds, i.e., the proof ω
(i)
j is valid, the function extracts the ran-

domness rnd from the blockchain. Then, the function verifies H(rnd, pki) < c2κ. If

the condition holds, it returns 1, i.e., the client i is selected. Otherwise, the function

returns 0, i.e., the client i is not selected.

While the protocol SeP is secure, it requires a huge amount of communication for

both server and clients. In protocol SeP, both server and clients must download and

verify all transactions on the blockchain. Plus, the direct communication between

the clients and the blockchain is not efficient. In the registration phase, each client

submits a transaction to register its public key. In each training round, each selected

client needs to submit a transaction. This costs a huge amount of communication.

5.2.2 Communication-efficient and secure protocol (CoSeP) for SCS prob-

lem

We present a communication-efficient and secure protocol (CoSeP) using light-

weight blockchain clients and pass-through communication to optimize the communi-

cation complexity.

Light-weight blockchain clients. In a blockchain system, there are light-weight

SPV (Simplified Payment Verification) nodes that only need to download the block

headers. A SPV node can verify that a transaction is included in the Bitcoin blockchain

by requesting a proof from a full node. In protocol CoSeP, the clients only need to

run the SPV nodes.

Pass-through communication. Instead of using direct communication between

the clients, the server will gather the data from the clients and only submit a small

commitment of those data to the blockchain. The server can provide a proof of that

some data from the client was used to compute the commitment. In our protocol, we

using the sorted Merkle tree [31] to implement the commitment.

232



Membership proof with sorted Merkle tree. Given a set of l values X = {d1, d2, . . . , dl},

a Merkle tree is a binary tree constructed over the hash values of di. The root of the

Merkle tree, denoted by MRoot(X), can be used as a succinct representation of all

the values. Knowing MRoot(X), we can construct a membership/non-membership

proof of size O(log l) to prove whether a value x appears in X. Such a proof, denoted

by MProof(x
?
∈ X), can also be verified in a time O(log l).

Verifiable random functions (VRF). To enhance the privacy of the selected

clients, instead of using hash function, we use a cryptographic tool called verifiable

random function [41]. By using the VRF, the adversary cannot determine whether

or not a client is qualified.

VRF is a public-key pseudorandom function that provides proofs showing that its

outputs were calculated correctly and randomly, i.e., hard to predict. Consider a user

with secret and public keys sk and pk. The user can use VRF to generate a function

output σ and a proof π for any input value x by running a function VRFprovesk(x).

Everyone else, using the proof π and the public key pk, can check that the output

σ was calculated correctly by calling a function VRFverify(pk, σ, π). Yet, the proof π

and the output σ does not reveal any information on the secret key sk.

In the registration phase, clients registered their public keys with the server.

Let U be the set of registered clients, the server submits a registration transaction

containing the Merkle root MRoot(U) to blockchain and sends MProof(pki
?
∈ U) to

each client i.

At the beginning of each training round, a random subset of clients will be

selected based on a public randomness that is obtained from a blockchain. As shown

in Figure 35, the selection protocol consists of 2 steps: (1) randomness extraction

and (2) VRF-based random election. Step 1 is the same as in Algorithm 10. In step

2, verifiable random functions (VRFs) [41], taking the client’s public key and rnd as

233



4. Dispute

...

5. Dispute selection commitment 

3. Initital selection commitment 

Central server

2. VRF-based random election

1. Randomness extraction 

Bl
oc

kc
ha

in

Figure 35: The steps of efficient client selection protocols in each training round. The

protocol CoSeP in a semi-malicious setting consists of two steps: (1) Randomness

extraction and (2) VRF-based random election. In the active setting in Section 5.4,

CoSeP will be extended into a new protocol CoSeP+ with 3 additional steps: (3)

Initial selection commitment, (4) Dispute, and (5) Dispute selection commitment.

inputs, are employed to determine which clients are selected. We provide the details

for the steps in protocol CoSeP in Algorithm 11. For a training round started at BH

`, the client selection protocol is executed between block heights 2` and `+ 2τ .

Step 2: VRF-based random election. After extracting the randomness, each client i

uses the VRF to check whether or not she/he is selected in this round. The client

i computes the output σi and the proof πi of the VRF based on the randomness

rnd, i.e., (σi, πi) ← VRFproveski(rnd). If the VRF output σi is smaller than a given

threshold, i.e., σi < c2κ, the client i is qualified to be selected. Here, c = m
n

is the

selection probability, i.e., the fraction of selected clients per round. If the client i is

qualified, she/he sends a message (σi, πi, pki) to the server. Since both honest and

colluding clients follows the protocol, all qualified clients will send the proofs to the

server.

234



Algorithm 11: Communication-efficient protocol CoSeP for semi-

malicious settings
Registration phase : The server submits a registration transaction containing

the Merkle root that is computed from the clients’
public keys.

One trainning round: Consider a training round that starts at block height
(BH) `.

1 Step 1 is the same as in Algorithm 10.
2 Step 2 (BH `): VRF-based random election.

3 Each client i proceeds as follows.
4 Computes (σi, πi)← VRFproveski(rnd)
5 If σi < c2κ (i.e., the client i is qualified) then
6 Sends the proof (σi, πi, pki) to the server.

Let Pt be the set of public keys of qualified clients that are verified by the server.

The server computes the Merkle tree root MRoot(Pt) and send the Merkle proof

MProof(pki
?
∈ Pt) for each client i ∈ U .

Proof of membership. For each qualified client i, the server provides the proof of

membership ω
(i)
i of a client i. The proof consists of (1) the VRF output, proof, and

the public key (σi, πi, pki) of the client i , (2) the Merkle root MRoott, and (3) the

Merkle proof MProof(pki
?
∈ Pt).

Pool membership verification function. For each client j with the state stj, the func-

tion PVer(stj, ω
(i)
j ) extracts the blockchain Cj from the local state stj and then pro-

ceeds as follows. The function extract the randomness rnd as in step 1 and verifies

VRFverifypki(rnd, σi, πi) = 1. If the condition does not hold, it returns ⊥. If all condi-

tions hold, i.e., the proof ω
(i)
j is valid, the function verifies (1) σi < c2κ, and (2) pki

is included in MRoott. If those conditions hold, it returns 1, the client i is selected,

and 0, otherwise.

235



5.3 Security Analysis

We summarize the security properties of blockchain in [46] in Subsection 5.3.1 to

provide the foundation for the security analysis of SeP and CoSeP in Subsections 5.3.2

and 5.3.3, respectively. Finally, we summarize the communication complexity of each

protocol in Subsection 5.3.4.

5.3.1 Security of Bitcoin protocol in [46]

We extend our model in Section 5.1.2 to include the miners, who execute the

blockchain protocol. In each round, each miner makes attempts to generate a new

block by solving a hash inequality. Let H(·) be a hash function that takes as input an

arbitrary length string in {0, 1}∗ and outputs a string of length κ (where κ is security

parameter) in {0, 1}κ. A miner can generate a new block if it can find a random

nonce such that the hash value H(·, nonce) is smaller than a given threshold. The

adversary can corrupt to up a fraction ρ of the miner.

Based on the analysis in [46], under the honest majority assumption (ρ < 1/2),

the Bitcoin protocol achieves 1) persistence: all honest miners have the same view

of the ledger; and 2) liveness: the valid transactions will eventually be added to the

ledger. The persistence and liveness properties are proved based on three properties,

namely chain growth, common prefix, and chain quality.

5.3.2 Security analysis of protocol SeP

Pool consistency. In protocol SeP, a client is selected if 1) the hash value of the

randomness and its public key is smaller than a given threshold; and 2) a selection

transaction that consists of its public key is included in the blockchain. We can prove

the pool consistency by showing that all honest clients have the same view on 1) the

236



randomness and 2) the list of selection transactions.

First, we show that all honest clients obtain the same randomness. Indeed, in

protocol SeP, the randomness is computed based on the hash values of the first τ

blocks in the previous training round. As each training round consists of 2τ blocks,

based on the common prefix property, we can ensure that all honest clients have the

same view on the first τ blocks in the previous training round. Hence, all honest

clients obtain the same value of randomness.

Secondly, we prove that all honest clients have the same view of the list of

selection transactions. In protocol SeP, all selection transactions are included before

block height ` + τ . At the end of the client selection protocol (block height ` + 2τ),

all selection transactions are included in the ledgers of the honest clients. Based on

persistency property, we can guarantee that all honest clients have the same view on

those selection transactions.

Lemma 81 (Pool consistency). For any client i ∈ U , and any honest clients j1, j2,

we have,

Pr

 ∃ ω(i)
j1
, ω

(i)
j2

PVer(stj1 , ω
(i)
j1

) = 1∧

PVer(stj2 , ω
(i)
j2

) = 0

 ≤ e−Ω(κ).

Proof. Consider two honest clients j1, j2, let I(j1, j2) be the event where the views of

j1 and j2 on the set of selected clients are different, i.e.,

Pr[I(j1, j2)] = Pr

 ∃ ω(i)
j1
, ω

(i)
j2

PVer(stj1 , ω
(i)
j1

) = 1∧

PVer(stj2 , ω
(i)
j2

) = 0

 .
Assume toward contradiction that there exists a non-negligible number p such

that

Pr[I(j1, j2)] > p.

237



Let S be the event where the blockchain protocol is secure, i.e., it achieves chain

growth, chain quality, common prefix, persistency, and liveness properties. Given

that the blockchain protocol is secure, we will show that both j1 and j2 obtain the

same randomness rnd. Indeed, as the blockchain protocol is secure, all honest clients

obtain the same prefix of the chains after removing the last τ blocks. In step 1 of

the client selection protocol, the randomness rnd is computed as the hash value of

the first τ blocks in the previous training round. As each training round last more

than 2τ blocks, all honest clients will have the same view on the first τ blocks of the

previous training round. Hence, all clients obtain the same randomness rnd.

Given the event when the blockchain protocol is secure, we consider the case

such that there exists ω
(i)
j1
, ω

(i)
j2

such that PVer(stj1 , ω
(i)
j1

) = 1 and PVer(stj2 , ω
(i)
j2

) = 0.

In this case, the clients j1 and j2 must obtain two different selection transactions that

consist of two different public key of the client i. This contradict the assumption that

the public keys of the clients are known by every nodes.

Pool quality. We prove that the fraction of honest selected clients is proportional to

the fraction of honest clients. As the output of the hash function is random, we can

guarantee the qualified clients are uniformly selected from the set of clients. Plus, the

semi-malicious adversary strictly follows the protocol. Hence, all the qualified clients

will be selected.

For a client i ∈ U , let xi is the Bernoulli random variable that represents where

or not the client i is qualified, i.e.,

xi =


1 if i is qualified,

0 otherwise.

238



As the output of the hash function is random, we have,

Pr[xi = 1] = c.

Lemma 82 (Pool quality). Let H be the set of honest clients in the set of selected

clients P. For ε > 0, we have,

Pr[
H ∩ P
P

≥ α(1− ε)] ≥ 1− e−Ω(nc−log κ) − e−Ω(κ),

where n is the number of clients, α = 1 − β is the fraction of honest clients, and c

is the selection probability.

Proof. We prove by bounding the number of honest qualified clients. Then, we will

show that all qualified clients will be selected, since the semi-malicious server and

clients still follow the protocol.

Let P ′ be the set of qualified clients, i.e., the clients having VRF outputs smaller

than c2κ. Let H′ andM′ be the set of honest and colluding clients in P ′, respectively.

Using the Chernoff bound on the set of nβ colluding clients U ′, for any ε′ > 0,

we have,

Pr[
∑
i∈U ′

xi ≥ (1 + ε′)nβc] ≤ e−Ω(nc),

⇒Pr[|M′| ≥ (1 + ε′)nβc] ≤ e−Ω(nc).

Using the Chernoff bound on the set of nα honest clients U \ U ′, for any ε′ > 0,

we have,

Pr[
∑
i∈U\U ′

xi ≤ (1− ε′)nαc] ≤ e−Ω(nc),

⇒Pr[|H′| ≤ (1− ε′)nαc] ≤ e−Ω(nc).

239



By choosing ε such that ε = 1− 1−ε′
1+ε′

, we have,

Pr

[
|H′|
|M′|

≤ α

β
(1− ε)

]
≤ e−Ω(nc).

Thus, we have,

Pr

[
|H′|
|P ′|
≤ α(1− ε)

]
= Pr

[
|H′|

|M′|+ |H′|
≤ α(1− ε)

]
≤ Pr

[
|H′|
|M′|

≤ α

β
(1− ε)

]
≤ e−Ω(nc).

As the clients (both honest and colluding) follows the protocols, if they are

qualified, they will send the VRF proofs to the server (step 2 in Algorithm 10). Since

the semi-malicious server still follow the protocol, all qualified clients will be selected.

We have,

Pr[P = P ′] ≥ Pr[S] ≥ 1− e−Ω(κ).

In other words, we have, Pr[P 6= P ′] < e−Ω(κ). Therefore, we have,

Pr

[
|H|
|P|
≥ α(1− ε)

]
≥ Pr

[
|H|
|P|
≥ α(1− ε) ∧ S

]
= Pr

[
|H′|
|P ′|
≥ α(1− ε) ∧ S

]
≥ Pr

[
|H′|
|P ′|
≥ α(1− ε)

]
− (1− Pr[S])

≥1− e−Ω(nc) − e−Ω(κ).

Anti-targeting. Since all qualified clients are selected, the probability that an honest

client is selected is the same as the probability that an honest client is qualified. We

can prove the anti-targeting property as follows.

Lemma 83 (Anti-targeting). For any honest client i,

|Pr[i ∈ P ]− c| = e−Ω(κ),

240



where c is the selection probability.

Proof. As we have shown in the proof of Lemma 87, if the blockchain protocol is

secure, all qualified clients are selected. Thus, we have,

Pr[i ∈ P ] ≥ Pr[i ∈ P ∧ S] = Pr[xi = 1 ∧ S]

≥ Pr[xi = 1]− (1− Pr[S]) ≥ c− e−Ω(κ).

Plus, a selected clients must be qualified. Thus, we have,

Pr[i ∈ P ] ≤ Pr[xi = 1] ≤ c+ e−Ω(κ).

Together, Lemmas 81, 82, and 83 yield the security proof of the protocol SeP in

semi-malicious settings.

Theorem 84. The client selection protocol SeP achieves pool quality, pool consis-

tency, and anti-targeting properties in the presence of a semi-malicious adversary.

5.3.3 Security analysis of protocol CoSeP

Pool consistency. In protocol CoSeP, a client is selected if 1) it is qualified, i.e., its

VRF output on the randomness is smaller than the given threshold and 2) its public

key is included in the Merkle tree root, which is computed by the server. Similar

to the analysis in Subsection 5.3.2, we can show that all honest clients obtain the

same value of the randomness. Plus, as the semi-malicious server strictly follows the

protocol, it shares the same Merkle tree to all clients. Hence, we can guarantee the

pool consistency of protocol CoSeP.

241



Lemma 85 (Pool consistency). For any client i ∈ U , and any honest clients j1, j2,

we have,

Pr

 ∃ ω(i)
j1
, ω

(i)
j2

PVer(stj1 , ω
(i)
j1

) = 1∧

PVer(stj2 , ω
(i)
j2

) = 0

 ≤ e−Ω(κ).

Proof. Consider two honest clients j1, j2, let I(j1, j2) be the event where the views of

j1 and j2 on the set of selected clients are different, i.e.,

Pr[I(j1, j2)] = Pr

 ∃ ω(i)
j1
, ω

(i)
j2

PVer(stj1 , ω
(i)
j1

) = 1∧

PVer(stj2 , ω
(i)
j2

) = 0

 .
Assume toward contradiction that there exists a non-negligible number p such that

Pr[I(j1, j2)] > p.

Similar to Lemma 81, given the event S, i.e., the blockchain protocol is secure,

we have both j1 and j2 obtain the same randomness rnd.

We obtains (σi, πi) from ω
(i)
j1

and (σ′i, π
′
i) from ω

(i)
j2

. As PVer(stj1 , ω
(i)
j1

) = 1, we

have, VRFverifypki(rnd, σi, πi) = 1 and σi < c2κ. As PVer(stj2 , ω
(i)
j2

) = 0, we have,

VRFverifypki(rnd, σ
′
i, π
′
i) = 1 and σ′i > c2κ. Thus, we have σi 6= σ′i. This contradict the

uniqueness property of the VRF.

Pool quality. We prove that the fraction of honest selected clients is proportional to

the fraction of honest clients. Here, the VRFs guarantee that the qualified clients are

uniformly selected. Then, we can follow the same proofs as in Subsection 5.3.2 to

prove the pool quality of protocol CoSeP.

We first show that the VRFs guarantee the randomness in selecting the qualified

clients. This is given since the VRF output is pseudo random.

242



Lemma 86. For any client i ∈ U , we have

|Pr[xi = 1]− c| < eΩ(κ). (5.2)

Proof. First, we prove that Pr[xi = 1] > c− eΩ(κ). Assume toward contradiction that

there exists there exists a non-negligible number p such that

Pr[xi = 1] < c− p.

Let ski be the private key for VRF of the client i and (σi, πi) := VRFproveski(rnd).

We have,

Pr [σi < c2κ] < c− p

We will construct an adversary A that is given query to the oracle VRFproveski

as follows.

• Set x = rnd and send x to the prover.

• Upon receiving yb from the prover.

• If yb < c2κ, return b′ = 1. Otherwise, return b′ = 0.

We have,

Pr[b = b′] =
1

2
(Pr [y0 ≥ c2κ] + Pr [y1 < c2κ])

=
1

2
(Pr [σi ≥ c2κ] + c)

>
1

2
(1− c+ p+ c) =

1

2
(1 + p) .

This contradicts the pseudorandomness property of VRF.

243



Similarly, we can prove that Pr[xi = 1] < c+ eΩ(κ). Thus, we can conclude that

|Pr[xi = 1]− c| < eΩ(κ).

Follow the same proof as in Lemma 82, we can show the pool quality of protocol

CoSeP.

Lemma 87 (Pool quality). Let H be the set of honest clients in the set of selected

clients P. For ε > 0, we have,

Pr[
H ∩ P
P

≥ α(1− ε)] ≥ 1− e−Ω(nc) − e−Ω(κ),

where n is the number of clients, α = 1 − β is the fraction of honest clients, and c

is the selection probability.

Anti-targeting. Based on Lemma 86, we can follow the same proof as in Lemma 95

to show the anti-targeting property of protocol CoSeP.

Lemma 88 (Anti-targeting). For any honest client i,

|Pr[i ∈ P ]− c| ≤ e−Ω(κ),

where c is the selection probability.

Together, lemmas 85, 87, 88 yield the security proof CoSeP of the protocol in

semi-malicious settings.

Theorem 89. The client selection protocol achieves pool quality, pool consistency,

and anti-targeting properties in the presence of a semi-malicious adversary.

244



5.3.4 Communication complexity

We summarize the communication complexity of protocols SeP, CoSeP, and

CoSeP+ in Table 3.

Protocols
Semi-malicious setting Active setting

SeP CoSeP CoSeP+

Client O(τb+ nc) O(τ) O(τ)

Server O(τb+ nc) O(τb+ nc) O(τb+ nc(1 + d))

Miner O(τb+ nc) O(τb) O(τb+ ncd)

Table 3.: Summary of the communication complexity of 3 protocols. Here, n is the

number of clients, c is the probability that a client is selected in each training round,

τ = Ω(κ) (where κ is the security parameter) is the length (in block height) of each

training round, b is the size of each block, and d is the fraction of the dispute clients.

Let b be the average size of a block1 without including the transactions of the

client selection protocol. We have the follow lemmas.

Lemma 90 (Communication complexity of protocol SeP). In each training round of

the protocol SeP, the communication complexity of each client, the server, each miner

are O(τb+ nc).

Proof. In each training round of the protocol SeP, all qualified clients will submit a

transaction to the blockchain. Hence, the average transaction for each training round

is nc. As each training round last for 2τ blocks, the total size of the blockchain for

each training round is 2τb + nc. As everyone need to download the blockchain, the

total communication complexity of each node is 2τb+ nc.

1If the blockchain is only used for the client selection protocol, we have b = O(1).

245



Lemma 91 (Communication complexity of protocol CoSeP). In each training round

of the protocol CoSeP, the communication complexity of each client, the server, each

miner are O(τ), O(τb+ nc), and O(τb), respectively.

Proof. In the protocol CoSeP, the server and the clients do not submit any transaction

to the blockchain. Thus, the total size of the blockchain for each training round is

2τb. The communication complexity of each miner is 2τb. The server also receives

the VRF proof from nc qualified clients. Hence, the communication complexity of the

server is 2τb + nc. For the clients, they only need to maintain the header of blocks.

As the size of each header is O(1), the communication complexity of each client is

2τ .

Let d ∈ (0, 1) be the fraction of dispute clients. We show the communication

complexity of protocol CoSeP+ as follows.

Lemma 92 (Communication complexity of protocol CoSeP+). In each training round

of the protocol CoSeP+, the communication complexity of each client, the server, each

miner are O(τ), O(τb+ nc(1 + d)), and O(τb+ ncd), respectively.

Proof. In the protocol CoSeP, the server submit 2 transactions and each dispute client

submit one transaction to the blockchain. Thus, the total size of the blockchain for

each training round is 3τb + ncd. The communication complexity of each miner is

3τb + ncd. The server also receives the VRF proof from nc qualified clients. Hence,

the communication complexity of the server is 3τb+ nc(d+ 1). For the clients, they

only need to maintain the header of blocks. As the size of each header is O(1), the

communication complexity of each client is 3τ .

246



5.4 Defending against active adversaries

We now consider an active setting where the adversary can divert from the pro-

tocol. We extend the protocol CoSeP to design a new protocol, called CoSeP+ (Sub-

section 5.4.1), in active setting . Then, in Subsection 5.4.2, we provide the security

analysis of the protocol CoSeP+.

5.4.1 Protocol CoSeP+

Algorithm 12: Protocol CoSeP+ in active settings with three additional

steps

1 Registration phase, steps 1 and 2, and block height settings are the same as those
in Algorithm 11.

2 Step 3 (BH `+ τ): Initial selection commitment.

3 The server proceeds as follows.
4 Upon receiving a proof (σi, πi, pki) from client i
5 If Verifypki(σi, πi) = 1 and σi < c2κ then

6 Add pki to Pt
7 Compute the Merkle tree root MRoot(Pt)
8 Submit MRoot(Pt) to the blockchain
9 For each pki ∈ Pt do

10 Send MProof(pki
?
∈ Pt) to client i

11 Step 4 (BH `+ τ): Dispute.

12 Each qualified client i proceeds as follows
13 If i does not receive the proof from the server then
14 Submit a dispute transaction that consists of (σi, πi, pki) to blockchain.
15 Step 5 (BH `+ 2τ): Final selection commitment.

16 The server proceeds as follows.
17 For each dispute transaction (σi, πi, pki) do
18 Add pki to Pf
19 Compute the Merkle tree root MRoot(Pf )
20 Submit MRoot(Pf ) to the blockchain

We extend the protocol CoSeP to design a protocol CoSeP+ in an active setting.

As the active adversary can divert from the protocol, it can instruct the server to

exclude some public keys of the qualified clients when computing the Merkle tree

247



root. Thus, we may not be able to guarantee that all qualified clients are selected.

Hence, we add extra steps to the protocol to allow the qualified clients to dispute if

the server does not include them in the Merkle tree root.

Further, an active adversary can also try to manipulate the public randomness

on the blockchain. Fortunately, by using the VRF, given any randomness, the ad-

versary cannot predict which honest clients are selected. Hence, it cannot affect the

selection of honest clients. Plus, based on the security properties of the blockchain,

the adversary can only try a bounded number of randomness. Hence, the effect on

the selection of colluding clients is bounded. Together, we can guarantee the security

of the client selection protocol.

In the registration phase, the server will submit a commitment (i.e., the Merkle

tree root) of the client set. As the server may divert from the protocol, the miners

will need to verify if the server submits the correct commitment before including the

commitment to the blockchain.

As shown in Algorithm 12, protocol CoSeP+ is extended from protocol CoSeP

by adding three new steps: (3) initialize the selection commitment, and (4) dispute

and (5) dispute the selection commitment. In step 3, the server composes a list of

selected clients and commits the list to the blockchain. In step 4, a qualified client

can submit a dispute transaction if s/he is not properly included in the initial list,

forcing the server to include her/him in the dispute selection in step 5. By adding

those steps, we can guarantee that all honest qualified clients are selected.

Protocol CoSeP+ is executed in 3τ block heights instead of 2τ block heights. For

a training round started at BH `, protocol CoSeP+ is executed between block heights

` and `+ 3τ . Steps 1 and 2 are the same as in protocol CoSeP.

Step 3: Initial selection commitment. Let Pt be the set of public keys of qualified

clients that are verified by the server. The server submits a selection transaction that

248



consists of the Merkle tree root MRoot(Pt) to the blockchain.

Step 4: Dispute. If a qualified client i ∈ U does not receive any Merkle proof from the

server, or finds any discrepancy between the Merkle root obtained from the server to

the one that the server submitted to the blockchain, it will start a dispute process.

The client will submit proof of qualification directly to the blockchain to force its

inclusion of itself into the pool. More concretely, at block height ` + τ , the client

can submit a transaction containing the tuple (σi, πi, pki) to the blockchain. The

client i also includes the Merkle proof MProof(pki
?
∈ U) to show that its public key is

registered.

Step 5: Final selection commitment. At block height `+2τ , the server submits a final

selection transaction that contains the information of all dispute transactions. Let Pf

be the set of the public keys of dispute clients, i.e., the clients who submitted dispute

transactions. Then, similar to the initial selection, the server constructs a Merkle tree

Merklef based on Pf . The server submits a final selection transaction that consists of

the Merkle tree root MRoot(Pf ) and sends a Merkle proof MProof(pki
?
∈ Pf ) to each

client i ∈ U . Here, before adding the final selection transaction to the blockchain, the

miners verify that all public keys of the dispute clients are included in the MRootf .

The correctness will be enforced through smart contracts, executed by all miners in

the blockchain.

Proof of membership. We modify the proof of membership in protocol CoSeP to

include the selection transaction and dispute selection transaction.

Pool membership verification function. For each client j with the state stj, the func-

tion PVer(stj, ω
(i)
j ) extracts the blockchain Cj from the local state stj and then pro-

ceeds as follows. The function extract the randomness rnd as in step 1 and verifies

VRFverifypki(rnd, σi, πi) = 1. It also verifies if the selection transaction and the dis-

pute transaction are included in the header blockchain Cj. If those conditions do not

249



hold, it returns ⊥. If all conditions hold, i.e., the proof ω
(i)
j is valid, the function

extracts MRoot and MRootf from the selection transaction and the dispute transac-

tion, respectively. Then, the function verifies (1) σi < c2κ, and (2) pki is included

in MRoott or in MRootf . If those conditions hold, it returns 1, i.e., the client i is

selected. Otherwise, the function returns 0, i.e., the client i is not selected.

5.4.2 Security analysis

Pool consistency. In protocol CoSeP, a client is selected if 1) it is qualified, i.e.,

its VRF output on the randomness is smaller than the given threshold and 2) its

public key is either included in the Merkle tree roots of the initial or dispute selection

transactions. Similar to the analysis in Subsection 5.3.2, we can show that all honest

clients obtain the same value of the randomness. Plus, we can show that the honest

clients have the same view on the initial and dispute selection transactions. Indeed,

those transaction are included before block height ` + 2τ . Thus, at the end of the

client selection protocol (block height ` + 2τ), the selection transaction included to

the ledgers of the honest clients. Based on persistency property, we can guarantee

that all honest clients have the same view on those transactions.

Lemma 93 (Pool consistency). For any client i ∈ U , and any honest clients j1, j2,

we have,

Pr

 ∃ ω(i)
j1
, ω

(i)
j2

PVer(stj1 , ω
(i)
j1

) = 1∧

PVer(stj2 , ω
(i)
j2

) = 0

 ≤ e−Ω(κ).

Proof. Consider two honest clients j1, j2, let I(j1, j2) be the event where the views of

250



j1 and j2 on the set of selected clients are different, i.e.,

Pr[I(j1, j2)] = Pr

 ∃ ω(i)
j1
, ω

(i)
j2

PVer(stj1 , ω
(i)
j1

) = 1∧

PVer(stj2 , ω
(i)
j2

) = 0

 .
Assume toward contradiction that there exists a non-negligible number p such

that

Pr[I(j1, j2)] > p.

Let S be the event where the blockchain protocol is secure, i.e., it achieves chain

growth, chain quality, common prefix, persistency, and liveness properties. Similar to

proof in Lemma 85, we have,

Pr[I(j1, j2) | S] > p− e−Ω(κ) = p′

where p′ is a non-negligible number.

Given the event when the blockchain protocol is secure, we consider the case

such that there exists ω
(i)
j1
, ω

(i)
j2

such that PVer(stj1 , ω
(i)
j1

) = 1 and PVer(stj2 , ω
(i)
j2

) = 0.

First, we show that the clients j1 and j2 obtain the same selection transaction at

the end of the client selection protocol. Indeed, the selection transaction is included

at block height ` + τ . Thus, at the end of the client selection protocol (block height

` + 2τ), the selection transaction included to the ledgers of j1 and j2. Based on the

persistence property, the clients j1 and j2 have the same view on this transaction.

Hence, the selection transaction in ω
(i)
j1
, ω

(i)
j2

must be the same. Otherwise, either

PVer(stj1 , ω
(i)
j1

) or PVer(stj2 , ω
(i)
j2

) will return ⊥.

Similar to Lemma 81, given the event S, i.e., the blockchain protocol is secure,

we have both j1 and j2 obtain the same randomness rnd.

Let MRoott be the Merkle tree root in the selection transaction. Let pki is the

251



public key of the client i. Since PVer(stj1 , ωi) = 1, pki is included in MRoott

We obtains (σi, πi) from ω
(i)
j1

and (σ′i, π
′
i) from ω

(i)
j2

. As PVer(stj1 , ω
(i)
j1

) = 1, we

have, VRFverifypki(rnd, σi, πi) = 1 and σi < c2κ. As PVer(stj2 , ω
(i)
j2

) = 0, we have,

VRFverifypki(rnd, σ
′
i, π
′
i) = 1 and σ′i > c2κ. Thus, we have σi 6= σ′i. This contradict the

uniqueness property of the VRF.

Pool quality. In contrast with the semi-malicious adversary, the active adversary can

try different values of randomness. If a corrupted miner generates the last block of

the first τ blocks in a training round, it will compute the randomness value and decide

whether or not to publish the block based on the selection of colluding clients. Based

on the security properties of the blockchain, we can bound the number of randomness

values that the adversary can try. Hence, we can show that the adversary can only

slightly increase the chances that colluding clients are qualified. On the other hand,

as the adversary cannot predict the VRF outputs of the honest clients, it cannot

affect the probability that an honest client is selected.

Since the adversary can also try to exclude the public keys of honest clients, the

dispute mechanism in steps 4 and 5 is to ensure that all transactions from honest

clients will be included eventually. Thus, our protocol can still achieve the pool

quality property in the presence of an active adversary.

Given a randomness rnd, for a client i ∈ U , let x
(rnd)
i be the Bernoulli random

variable that represents where or not the client i is qualified, i.e.,

x
(rnd)
i =


1 if i is qualified given that rnd is the randomness,

0 otherwise.

Follow the same proof as Lemma 86, given a randomness rnd, for any client i ∈ U ,

252



we have,

|Pr[x
(rnd)
i = 1]− c| < eΩ(κ). (5.3)

Plus, the adversary cannot increase or decreases the chance that an honest client

get qualified. For any ppt algorithm AR that returns a randomness rnd, for any

honest client i, we have,

|Pr[rnd← AR : x
(rnd)
i = 1]− c| < eΩ(κ).

This is given since the VRF outputs of honest clients are pseudorandom and cannot

be predicted by the adversary.

We show the pool quality property as follows.

Lemma 94 (Pool quality). Let H be the set of honest clients in the set of selected

clients P. For ε > 0, we have,

Pr[
H ∩ P
P

≥ α(1− ε)] ≥ 1− e−Ω(nc−log κ) − e−Ω(κ).

where n is the number of clients, α = 1 − β is the fraction of honest clients, and c

is the selection probability.

Proof. We prove the pool quality property by bounding the number of honest qualified

clients. Then, we will show that all honest qualified clients will be selected. Plus, all

selected clients must be qualified. Thus, we can bound the fraction of honest clients.

Let P ′ be the set of qualified clients. Let H′ and M′ be the set of honest and

colluding clients in P ′, respectively.

Consider a randomness rnd′, letMrnd′ be the set of colluding qualified clients with

the randomness rnd′. Using the Chernoff bound on the set of nβ colluding clients U ′,

253



for any ε′′ > 0, we have,

Pr[|M(rnd′)| ≥ (1 + ε′′)nβc(1 + ε′)] ≤ e−Ω(nc).

Consider the event where the blockchain protocol is secure. Based on the chain

quality property, the adversary can create at most κ blocks among the last blocks

used for creating the randomness. Thus, the adversary can try at most κ randomness

values. Using the union bound, we have,

Pr[|M′| ≥ (1 + ε′)nβc | S] ≤ κe−Ω(nc)

= e−Ω(nc−log κ).

Let rnd be the randomness the honest clients obtained from the step 1 of Algo-

rithm 11. Using the Chernoff bound on the set of nα honest clients U \ U ′, for any

ε′′ > 0, we have,

Pr[|H′| ≤ (1− ε′)nαc(1− ε′)] ≤ e−Ω(nc).

By choosing ε such that ε = 1− (1−ε′)(1−ε′′)
(1+ε′)(1+ε′′)

, we have,

Pr

[
|H′|
|M′|

≤ α

β
(1− ε)

]
≤ e−Ω(nc−log κ).

Consider the event where the blockchain protocol is secure. From the chain

quality property, from block height `+ τ to block height `+ 2τ , there is at least one

honest block that will include all selection transactions. As all honest qualified clients

will always submit the selection transactions, all honest qualified clients are selected,

i.e., H = H′

Further, the selected clients must be qualified, i.e., |P| ≤ |P ′|. Hence, we have

254



|H′|
|P ′| ≥

|H|
|P| . Therefore, we have,

Pr

[
|H|
|P|
≥ α(1− ε)

]
> 1− e−Ω(nc log κ) − e−Ω(κ).

Anti-targeting. Since all honest qualified clients are selected, the probability that

an honest client is selected is the same as the probability that an honest client is

qualified. We can prove the anti-targeting property as follows.

Lemma 95 (Anti-targeting). Considering an honest client i, for a selection proba-

bility c, we have

|Pr[i ∈ P ]− c| = e−Ω(κ).

Together, Lemmas 93, 94, and 95 yield the security proof of protocol CoSeP+ in

active settings.

Theorem 96. The client selection protocol CoSeP+ achieves pool quality, pool con-

sistency, and anti-targeting properties in the presence of an active adversary.

5.5 Experiments

We implement prototypes of our proposed protocols, namely SeP, CoSeP, and

CoSeP+, and conduct various experiments to assess their performance in semi-malicious

and active adversary settings. The evaluation aims to provide insights into their se-

curity properties and performance. From the results, we argue the feasibility and

practicality of our solution.

255



5.5.1 Experimental settings.

The instantiation of the cryptographic blocks is as follows. For the imple-

mentation of VRF on clients and server, we use the Libsodium cryptographic li-

brary2. The VRF verification on the blockchain smart contract is implemented using

vrf-solidity3. As regards the cryptographic hash function, we use the SHA256

compression function which maps inputs of arbitrary length to 256-bit outputs.

Our protocols are evaluated using the following metrics:

• Error probability : The upper-bounded error probability of the security guaran-

tees (in Sections 5.3 and 5.4.2).

• Communication overhead : The total amount of sent/received data incurred by

the protocols.

• Blockchain cost : We measure both communication (the total size of the trans-

actions) and computation (the total amount of gas needed to execute the trans-

actions on the blockchain) overhead to maintain the blockchain.

We provide the error probability for each training round and the blockchain cost and

the communication overhead for an FL process that consists of 100 training rounds.

All of the experiments in this section are conducted on a single-threaded machine

equipped with an Intel(R) Xeon(R) CPU E7-8894 v4 2.40GHz running CentOS. The

implementation of the clients and server is in C++ while the blockchain smart contract

is in Solidity.

2https://github.com/algorand/libsodium/tree/draft-irtf-cfrg-vrf-03
3https://github.com/witnet/vrf-solidity

256

https://github.com/algorand/libsodium/tree/draft-irtf-cfrg-vrf-03 
https://github.com/witnet/vrf-solidity


5.5.2 Experiments results

Security properties. Figure 36 shows the impact of the parameter τ on the security

error of the three properties: pool consistency, pool quality, and anti-targeting. Later,

Figure 37 illustrates the communication overhead of the proposed protocols as a

function of τ for both the server and the clients. As can be seen, the parameter τ

imposes a trade-off in which higher τ makes the protocol more secure but results in

more transmitted data.

Unlike pool consistency and anti-targeting which are invariant to the number of

clients, the security of pool quality depends on the number of clients (as analyzed in

Sections 5.3 and 5.4.2). Increasing the number of selected clients per round reduces

the security error, thereby tightening the guarantee of pool quality.

100 200 300

10 8

10 5

Er
ro

r p
ro

ba
bi

lit
y Pool consistency

Anti-targeting
Pool quality (100 selected clients)
Pool quality (200 selected clients)
Pool quality (500 selected clients)

Figure 36: Security error of the protocols on pool consistency, pool quality, and anti-

targeting. The result of pool consistency, anti-targeting, and pool quality (with 500

selected client) are identical.

Communication overhead. We measure the communication overhead of the server

and each client of the protocols that use public or private blockchain. A private

blockchain is dedicated to the FL process, i.e., the blockchain only accepts the trans-

actions from the client selection protocols. On the other hand, the public blockchain

257



can accept other transactions. For the public blockchain, we consider an average

block size (excluding the transactions from the client selection protocols) of 52, 101

bytes4. We show the communication overhead of the server and each client in Figure

37.

100 200 300
102

104

106

Co
m

m
un

ica
tio

n 
(K

B)

SeP (Public BC)
CoSeP (Public BC)
CoSeP +  (Public BC)

SeP (Private BC)
CoSeP (Private BC)
CoSeP +  (Private BC)

(a) Server.

100 200 300
102

104

106

Co
m

m
un

ica
tio

n 
(K

B)

SeP (Public BC)
CoSeP (Public BC)
CoSeP +  (Public BC)

SeP (Private BC)
CoSeP (Private BC)
CoSeP +  (Private BC)

(b) Each client.

Figure 37: Communication overhead of the server and each client. The communica-

tion overhead of the server in the protocols that use public blockchains is identical.

Regardless of whether public or private blockchain is used, the communication over-

head of the client in CoSeP and CoSeP+ are identical.

Sever. The communication overhead of the protocols that use the public blockchain

are almost identical; since the cost to download the blocks is the dominating factor.

For the protocols that use the private blockchain, protocols CoSeP and CoSeP+ have

a significantly lower communication overhead, compared to protocol SeP.

Client. The communication overhead of each client in protocol SeP is identical to the

server (since the clients also need to maintain for full blockchain). For the protocols

CoSeP and CoSeP+, since the clients only need to maintain the lightweight header

chain, the communication cost of the client is significantly reduced. Plus, the com-

4https://polygonscan.com/chart/blocksize. Accessed Nov 15, 2022

258

https://polygonscan.com/chart/blocksize


munication cost of the client is independent of the size of the blockchain. Specifically,

for τ = 300, the communication cost of a client in protocols CoSeP and CoSeP+ is

less than 1MB.

Blockchain cost. We compare the size of transactions and gas cost of the blockchain

between the protocols SeP, CoSeP, and CoSeP+ in Figure 38. For protocol CoSeP+,

we consider the case where there is no dispute client. The protocol CoSeP has the

lowest blockchain cost, as it only submits one transaction to the blockchain in the reg-

istration phase. Compared with protocol CoSeP, the protocol CoSeP+ has a higher

blockchain cost since it has 3 extra steps in each training round to defend against

active adversaries. Compared with protocol SeP, the CoSeP+ protocol substantially

reduces both the size of transactions and the gas cost, due to its efficiency in com-

municating with the blockchain. In particular, in CoSeP+ protocol, the total size of

transactions for an FL process with 100 training rounds is 14KB.

5 104 105

Number of clients

100

102

104

Co
m

m
un

ica
tio

n 
(K

B)

SeP CoSeP CoSeP +

(a) Blockchain’s communication over-
head.

5 104 105

Number of clients
105

107

109

1011

Ga
s

SeP CoSeP CoSeP +

(b) Blockchain’s computation cost.

Figure 38: The size of transactions and computation costs on the blockchain for the

pool selection.

We also measure the blockchain cost when some clients do the dispute in each

training round (see Figure 39). We consider a scenario in which the number of clients

259



is 100, 000, and we vary the portion of clients submitting disputes from 1% to 10% of

the total number of clients. As the portion of clients increase, the blockchain cost for

the protocol CoSeP+ also increases. However, comparing with the protocol SeP, the

blockchain cost of protocol CoSeP+ is still significantly lower. Specifically, the size

of transactions in CoSeP+ protocol 7MB when the dispute clients account for 10% of

the total clients. The number in protocol SeP is 31MB.

Blockchain cost in an active setting. In an active setting, the clients in CoSeP+ pro-

tocol may not be included in step 3 and need to do the dispute. We show the dispute

cost of the CoSeP+ protocol in Figure 39. We consider a scenario in which the number

of clients is 100, 000, and we vary the portion of clients submitting disputes from 1%

to 10% of the total number of selected clients. As the portion of clients increases,

the blockchain cost for the protocol CoSeP+ also increases. However, compared with

the protocol SeP, the blockchain cost of protocol CoSeP+ is still significantly lower.

Specifically, the size of transactions in CoSeP+ protocol 7MB when the dispute clients

account for 10% of the total clients. The number in protocol SeP is 31MB.

Summary. Overall, our proposed CoSeP and CoSeP+ protocols, run fast and gen-

erate minimal data (we note that the CoSeP and CoSeP+ protocols are used for

semi-malicious and active adversaries, respectively). Specifically, the communication

overhead of each client is less than 1MB for an FL process with 100 training rounds.

Therefore, it demonstrates that our solution is lightweight for clients and can be used

efficiently in practical FL applications. Furthermore, both the blockchain storage and

the gas cost are minimal. Thus, our protocols will run efficiently on most blockchain

platforms, such as Ethereum and Solana.

260



5 10
Percentage of dispute clients

102

104
Co

m
m

un
ica

tio
n 

(K
B)

SeP
CoSeP + (Total)

CoSeP + (Server)
CoSeP + (Dispute client)

(a) Blockchain’s communication over-
head.

5 10
Percentage of dispute clients

109

1011

Ga
s

SeP
CoSeP + (Total)

CoSeP + (Server)
CoSeP + (Dispute client)

(b) Blockchain’s computation cost.

Figure 39: The size of transactions and computation costs on the blockchain for

dispute. There is no dispute clients in protocol SeP and CoSeP. We plot their result

for comparison.

5.6 Related work

Secure aggregation in FL. With local model updates being the vector for various

privacy attacks from the FL server [96, 95], recent research focuses on concealing the

local updates from the server. This is achieved via secure aggregation which is a

protocol that enables the server to compute the average of the clients’ local models

without learning anything about each individual local model. Bonawitz et al. [17] is

the first work to propose a secure aggregation method from secret sharing and random

masking techniques, and then use it to privately aggregate client-provided model

updates. Leveraging homomorphic encryption, the authors in [5] and [106] devise a

protocol to blindly aggregate the model updates into global models. These secure

aggregation protocols can scale up to millions of devices and are robust to clients

dropping out. On the other hand, generic SMC protocols that securely compute any

function among multiple parties [33, 12, 72] can also be used as secure aggregation

in FL. However, they are not scalable enough due to the high complexity of both

261



computation and communication.

Although these protocols provide strong security guarantees with respect to con-

cealing the local model updates from the server, they assume that the server honestly

follows the random client selection, which is not practical. Our paper exposes a new

attack vector in the client selection process that can be manipulated by the server

to bypass the secure aggregation and learn the local model update of a targeted

client. We further devise a verifiable random selection protocol as a countermeasure

to prevent the server from conducting such attacks, thereby maintaining the security

guarantees of secure aggregation protocols.

Integration of Blockchain and FL. Integrating the immutability and transparency

properties of blockchain into FL has been a trending research topic in recent years.

Bao et al. [9] propose FLChain which is an auditable and decentralized FL system

that can reward honest clients and detect malicious ones. Zhang et al. [108] propose a

blockchain-based federated learning approach for IoT device failure detection. Kang

et al. [62] develop a reputation management scheme using blockchain to manage and

select reliable clients, thereby avoiding unreliable model updates. In [66, 77], the

authors utilize blockchain for the exchange and aggregation of local model updates

without a central server.

The above-mentioned systems are susceptible to our proposed attack as it does

not protect the client selection process from manipulation. Additionally, they are

not compatible to be used with a secure aggregation protocol. Our approach to

integrating blockchain with FL is different in a way that we use blockchain as a

source of randomness for the client selection protocol, such that it enforces the random

selection of clients, rendering the client selection attack infeasible.

262



5.7 Conclusion

In this paper, we have shown that using the secure aggregation protocols alone is

not adequate to conceal the local model updates from the server. Through unveiling

a new attack vector in the client selection process, we have demonstrated that the

server can manipulate the selection to bypass the security guarantees of the secure

aggregation protocols and obtain the local updates of clients. We have discussed two

strategies to conduct such the proposed client selection attack and analyzed their

impact on client privacy. To counter this attack and uphold the security guarantees

of secure aggregation protocol, we have proposed a verifiable client selection protocol

using blockchain as a source of randomness. As a result, it enforces a random selection

of clients in each training round, thereby preventing the server from manipulating

the client selection process. We have proven its security against the proposed attack

and analyzed its computation cost with Ethereum Solidity to show that it imposes

negligible overhead on FL.

263



Appendix A

ABBREVIATIONS

VCU Virginia Commonwealth University

PoW Proof-of-Work

PoS Proof-of-Stake

FL Federated learning

SCS Secure client selection

264



REFERENCES

[1] https://www.blockchain.com/pools, accessed 11/27/2021.

[2] NXT whitepaper. 2014. https://www.dropbox.com/s/cbuwrorf672c0yy/

NxtWhitepaper_v122_rev4.pdf.

[3] EOS whitepaper. 2018. https://github.com/EOSIO/Documentation/blob/

master/TechnicalWhitePaper.md.

[4] R. Ahlswede, N. Cai, S.-Y. Li, and R. W. Yeung. Network information flow.

IEEE Transactions on information theory, 46(4):1204–1216, 2000.

[5] Y. Aono, T. Hayashi, L. Wang, S. Moriai, et al. Privacy-preserving deep learn-

ing via additively homomorphic encryption. IEEE Transactions on Information

Forensics and Security, 13(5):1333–1345, 2017.

[6] C. Badertscher, P. Gazi, A. Kiayias, A. Russell, and V. Zikas. Ouroboros

genesis: Composable proof-of-stake blockchains with dynamic availability. In

D. Lie, M. Mannan, M. Backes, and X. Wang, editors, ACM CCS 2018, pages

913–930. ACM Press, Oct. 2018.

[7] V. Bagaria, A. Dembo, S. Kannan, S. Oh, D. Tse, P. Viswanath, X. Wang, and

O. Zeitouni. Proof-of-stake longest chain protocols: Security vs predictability.

arXiv preprint arXiv:1910.02218, 2019.

[8] V. K. Bagaria, S. Kannan, D. Tse, G. C. Fanti, and P. Viswanath. Prism:

Deconstructing the blockchain to approach physical limits. In L. Cavallaro,

J. Kinder, X. Wang, and J. Katz, editors, ACM CCS 2019, pages 585–602.

ACM Press, Nov. 2019.

265

https://www.blockchain.com/pools
https://www.dropbox.com/s/cbuwrorf672c0yy/NxtWhitepaper_v122_rev4.pdf
https://www.dropbox.com/s/cbuwrorf672c0yy/NxtWhitepaper_v122_rev4.pdf
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md


[9] X. Bao, C. Su, Y. Xiong, W. Huang, and Y. Hu. Flchain: A blockchain for

auditable federated learning with trust and incentive. In 2019 5th International

Conference on Big Data Computing and Communications (BIGCOM), pages

151–159. IEEE, 2019.

[10] S. Basu, I. Eyal, and E. Sirer. Falcon. https://www.falcon-net.org/.

[11] M. Bellare and S. K. Miner. A forward-secure digital signature scheme. In M. J.

Wiener, editor, CRYPTO’99, volume 1666 of LNCS, pages 431–448. Springer,

Heidelberg, Aug. 1999.

[12] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for

non-cryptographic fault-tolerant distributed computation. In Providing Sound

Foundations for Cryptography: On the Work of Shafi Goldwasser and Silvio

Micali, pages 351–371. 2019.

[13] I. Bentov, A. Gabizon, and A. Mizrahi. Currencies without proof of work. In

Bitcoin Workshop, 2016.

[14] A. Biryukov, D. Khovratovich, and I. Pustogarov. Deanonymisation of clients

in bitcoin p2p network. In Proceedings of the 2014 ACM SIGSAC conference

on computer and communications security, pages 15–29, 2014.

[15] Bitcointalk. Proof of stake instead of proof of work. July 2011. Online

post by QuantumMechanic, available at https://bitcointalk.org/index.

php?topic=27787.0.

[16] E. Blum, A. Kiayias, C. Moore, S. Quader, and A. Russell. The combinatorics

of the longest-chain rule: Linear consistency for proof-of-stake blockchains. In

S. Chawla, editor, 31st SODA, pages 1135–1154. ACM-SIAM, Jan. 2020.

266

https://www.falcon-net.org/
https://bitcointalk.org/index.php?topic=27787.0
https://bitcointalk.org/index.php?topic=27787.0


[17] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan, S. Patel,

D. Ramage, A. Segal, and K. Seth. Practical secure aggregation for privacy-

preserving machine learning. In proceedings of the 2017 ACM SIGSAC Confer-

ence on Computer and Communications Security, pages 1175–1191, 2017.

[18] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing.

In C. Boyd, editor, ASIACRYPT 2001, volume 2248 of LNCS, pages 514–532.

Springer, Heidelberg, Dec. 2001.

[19] J. Brown-Cohen, A. Narayanan, A. Psomas, and S. M. Weinberg. Formal bar-

riers to longest-chain proof-of-stake protocols. In Proceedings of the 2019 ACM

Conference on Economics and Computation, pages 459–473, 2019.

[20] V. Buterin. Understanding serenity, part 2: Casper. 2015. https://blog.

ethereum.org/2015/12/28/understanding-serenity-part-2-casper/.

[21] R. Canetti. Security and composition of multiparty cryptographic protocols.

Journal of Cryptology, 13(1):143–202, Jan. 2000.

[22] C. L. Canonne. A short note on poisson tail bounds. Retrieved from the website:

http://www. cs. columbia. edu/ ccanonne, 2017.

[23] J. Chen and S. Micali. Algorand. In arXiv:1607.01341, May 2017. http:

//arxiv.org/abs/1607.01341.

[24] M. Chen, M. Ponec, S. Sengupta, J. Li, and P. A. Chou. Utility maximization

in peer-to-peer systems. ACM SIGMETRICS Performance Evaluation Review,

36(1):169–180, 2008.

[25] T. Ching, D. S. Himmelstein, B. K. Beaulieu-Jones, A. A. Kalinin, B. T. Do,

G. P. Way, E. Ferrero, P.-M. Agapow, M. Zietz, M. M. Hoffman, et al. Op-

267

https://blog.ethereum.org/2015/12/28/understanding-serenity-part-2-casper/
https://blog.ethereum.org/2015/12/28/understanding-serenity-part-2-casper/
http://arxiv.org/abs/1607.01341
http://arxiv.org/abs/1607.01341


portunities and obstacles for deep learning in biology and medicine. Journal of

The Royal Society Interface, 15(141):20170387, 2018.

[26] D. M. Chiu, R. W. Yeung, J. Huang, and B. Fan. Can network coding help in

p2p networks? In 2006 4th International Symposium on Modeling and Opti-

mization in Mobile, Ad Hoc and Wireless Networks, pages 1–5. IEEE, 2006.

[27] K.-M. Chung, H. Lam, Z. Liu, and M. Mitzenmacher. Chernoff-hoeffding

bounds for markov chains: Generalized and simplified. arXiv preprint

arXiv:1201.0559, 2012.

[28] M. Corallo. Bitcoin relay network.

[29] M. Corallo. Compact block relay. https://github.com/bitcoin/bips/blob/

master/bip-0152.mediawiki.

[30] S. Coretti, A. Kiayias, C. Moore, and A. Russell. The generals scuttlebutt:

Byzantine-resilient gossip protocols. CCS, 2022:541, 2022.

[31] R. Dahlberg, T. Pulls, and R. Peeters. Efficient sparse merkle trees. In Nordic

Conference on Secure IT Systems, pages 199–215. Springer, 2016.

[32] P. Daian, R. Pass, and E. Shi. Snow white: Robustly reconfigurable consensus

and applications to provably secure proof of stake. In I. Goldberg and T. Moore,

editors, FC 2019, volume 11598 of LNCS, pages 23–41. Springer, Heidelberg,

Feb. 2019.

[33] I. Damg̊ard, V. Pastro, N. Smart, and S. Zakarias. Multiparty computation

from somewhat homomorphic encryption. In Annual Cryptology Conference,

pages 643–662. Springer, 2012.

268

https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki


[34] B. David, P. Gazi, A. Kiayias, and A. Russell. Ouroboros praos: An adaptively-

secure, semi-synchronous proof-of-stake blockchain. In J. B. Nielsen and V. Rij-

men, editors, EUROCRYPT 2018, Part II, volume 10821 of LNCS, pages 66–98.

Springer, Heidelberg, Apr. / May 2018.

[35] B. David, P. Gaži, A. Kiayias, and A. Russell. Ouroboros praos: An adaptively-

secure, semi-synchronous proof-of-stake blockchain. In Annual International

Conference on the Theory and Applications of Cryptographic Techniques, pages

66–98. Springer, 2018.

[36] S. Deb, S. Kannan, and D. Tse. Posat: Proof-of-work availability and unpre-

dictability, without the work. FC 2021,, 2020.

[37] C. Decker and R. Wattenhofer. Information propagation in the bitcoin net-

work. In Peer-to-Peer Computing (P2P), 2013 IEEE Thirteenth International

Conference on, pages 1–10. IEEE, 2013.

[38] A. Dembo, S. Kannan, E. N. Tas, D. Tse, P. Viswanath, X. Wang, and

O. Zeitouni. Everything is a race and nakamoto always wins. In J. Ligatti,

X. Ou, J. Katz, and G. Vigna, editors, ACM CCS 20, pages 859–878. ACM

Press, Nov. 2020.

[39] J. Dillon. Bitcoin-development mailinglist: Protecting bitcoin against network-

wide dos attack, 2018.

[40] Y. Dodis and A. Yampolskiy. A verifiable random function with short proofs

and keys. In S. Vaudenay, editor, PKC 2005, volume 3386 of LNCS, pages

416–431. Springer, Heidelberg, Jan. 2005.

[41] Y. Dodis and A. Yampolskiy. A verifiable random function with short proofs

269



and keys. In International Workshop on Public Key Cryptography, pages 416–

431. Springer, 2005.

[42] D. Dolev. The byzantine generals strike again. Journal of algorithms, 3(1):14–

30, 1982.

[43] R. Dorfman. A formula for the gini coefficient. The review of economics and

statistics, pages 146–149, 1979.

[44] L. H. Fowl, J. Geiping, W. Czaja, M. Goldblum, and T. Goldstein. Robbing

the fed: Directly obtaining private data in federated learning with modified

models. In International Conference on Learning Representations, 2021.

[45] A. Frieze and M. Karoński. Introduction to random graphs. Cambridge Univer-

sity Press, 2016.

[46] J. Garay, A. Kiayias, and N. Leonardos. The bitcoin backbone protocol: Anal-

ysis and applications. In Annual international conference on the theory and

applications of cryptographic techniques, pages 281–310. Springer, 2015.

[47] J. A. Garay, A. Kiayias, and N. Leonardos. The bitcoin backbone protocol:

Analysis and applications. In E. Oswald and M. Fischlin, editors, EURO-

CRYPT 2015, Part II, volume 9057 of LNCS, pages 281–310. Springer, Heidel-

berg, Apr. 2015.

[48] J. Geiping, H. Bauermeister, H. Dröge, and M. Moeller. Inverting gradients-

how easy is it to break privacy in federated learning? Advances in Neural

Information Processing Systems, 33:16937–16947, 2020.

[49] A. E. Gencer, S. Basu, I. Eyal, R. van Renesse, and E. G. Sirer. Decentralization

in bitcoin and ethereum networks. arXiv preprint arXiv:1801.03998, 2018.

270



[50] A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis, H. Ritzdorf, and S. Capkun.

On the security and performance of proof of work blockchains. In Proceedings of

the 2016 ACM SIGSAC conference on computer and communications security,

pages 3–16, 2016.

[51] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich. Algorand: Scaling

byzantine agreements for cryptocurrencies. In SOSP, 2017. https://eprint.

iacr.org/2017/454.

[52] M. Goemans. Chernoff bounds, and some applications. https: // math. mit.

edu/ ~ goemans/ 18310S15/ chernoff-notes. pdf , 2015.

[53] O. Goldreich. Foundations of Cryptography: Basic Applications, volume 2.

Cambridge University Press, Cambridge, UK, 2004.

[54] S. Goldwasser and R. Ostrovsky. Invariant signatures and non-interactive zero-

knowledge proofs are equivalent (extended abstract). In E. F. Brickell, editor,

CRYPTO’92, volume 740 of LNCS, pages 228–245. Springer, Heidelberg, Aug.

1993.

[55] T. Hanke, M. Movahedi, and D. Williams. Dfinity technology overview series,

consensus system. arXiv preprint arXiv:1805.04548, 2018.

[56] E. Heilman, A. Kendler, A. Zohar, and S. Goldberg. Eclipse attacks on bitcoin’s

peer-to-peer network. In J. Jung and T. Holz, editors, USENIX Security 2015,

pages 129–144. USENIX Association, Aug. 2015.

[57] C. C. Heyde. On a property of the lognormal distribution. Journal of the Royal

Statistical Society: Series B (Methodological), 25(2):392–393, 1963.

271

https://eprint.iacr.org/2017/454
https://eprint.iacr.org/2017/454
https://math.mit.edu/~goemans/18310S15/chernoff-notes.pdf
https://math.mit.edu/~goemans/18310S15/chernoff-notes.pdf


[58] F. Hjalmarsson, G. K. Hreioarsson, M. Hamdaqa, and G. Hjalmtysson.

Blockchain-based e-voting system. In 2018 IEEE 11th international conference

on cloud computing (CLOUD), pages 983–986. IEEE, 2018.

[59] T. Ho, M. Médard, R. Koetter, D. R. Karger, M. Effros, J. Shi, and B. Leong.

A random linear network coding approach to multicast. IEEE Transactions on

Information Theory, 52(10):4413–4430, 2006.

[60] J. Huang, D. He, M. S. Obaidat, P. Vijayakumar, M. Luo, and K.-K. R. Choo.

The application of the blockchain technology in voting systems: A review. ACM

Computing Surveys (CSUR), 54(3):1–28, 2021.

[61] J. R. Jensen, V. von Wachter, and O. Ross. An introduction to decentralized

finance (defi). Complex Systems Informatics and Modeling Quarterly, (26):46–

54, 2021.

[62] J. Kang, Z. Xiong, D. Niyato, Y. Zou, Y. Zhang, and M. Guizani. Reliable fed-

erated learning for mobile networks. IEEE Wireless Communications, 27(2):72–

80, 2020.

[63] A. Kiayias and G. Panagiotakos. Speed-security tradeoffs in blockchain proto-

cols. Cryptology ePrint Archive, Report 2015/1019, 2015. https://eprint.

iacr.org/2015/1019.

[64] A. Kiayias, S. Quader, and A. Russell. Consistency of proof-of-stake blockchains

with concurrent honest slot leaders. arXiv preprint arXiv:2001.06403, 2020.

[65] L. Kiffer, R. Rajaraman, and a. shelat. A better method to analyze blockchain

consistency. In D. Lie, M. Mannan, M. Backes, and X. Wang, editors, ACM

CCS 2018, pages 729–744. ACM Press, Oct. 2018.

272

https://eprint.iacr.org/2015/1019
https://eprint.iacr.org/2015/1019


[66] H. Kim, J. Park, M. Bennis, and S.-L. Kim. Blockchained on-device federated

learning. IEEE Communications Letters, 24(6):1279–1283, 2019.

[67] V. King and J. Saia. From almost everywhere to everywhere: Byzantine agree-

ment with õ(n3/2) bits. In International Symposium on Distributed Computing,

pages 464–478. Springer, 2009.

[68] R. Kumar, Y. Liu, and K. Ross. Stochastic fluid theory for p2p streaming

systems. In IEEE INFOCOM 2007-26th IEEE International Conference on

Computer Communications, pages 919–927. IEEE, 2007.

[69] R. Kumar and K. W. Ross. Peer-assisted file distribution: The minimum

distribution time. In Hot Topics in Web Systems and Technologies, 2006.

HOTWEB’06. 1st IEEE Workshop on, pages 1–11. IEEE, 2006.

[70] J. Kwon. Tendermint: Consensus without mining. 2014. https://

tendermint.com/static/docs/tendermint.pdf.

[71] J. Li, P. A. Chou, and C. Zhang. Mutualcast: An efficient mechanism for

one-to-many content distribution. In ACM Sigcomm Asia Workshop. Citeseer,

2005.

[72] Y. Lindell, B. Pinkas, N. P. Smart, and A. Yanai. Efficient constant round

multi-party computation combining bmr and spdz. In Annual Cryptology Con-

ference, pages 319–338. Springer, 2015.

[73] C.-D. Liu-Zhang, C. Matt, U. Maurer, G. Rito, and S. E. Thomsen. Prac-

tical provably secure flooding for blockchains. In Advances in Cryptology–

ASIACRYPT 2022: 28th International Conference on the Theory and Appli-

cation of Cryptology and Information Security, Taipei, Taiwan, December 5–9,

273

https://tendermint.com/static/docs/tendermint.pdf
https://tendermint.com/static/docs/tendermint.pdf


2022, Proceedings, Part I, pages 774–805. Springer, 2023.

[74] C.-D. Liu-Zhang, C. Matt, and S. E. Thomsen. Asymptotically optimal mes-

sage dissemination with applications to blockchains. Cryptology ePrint Archive,

2022.

[75] D. S. Lun, N. Ratnakar, M. Médard, R. Koetter, D. R. Karger, T. Ho,

E. Ahmed, and F. Zhao. Minimum-cost multicast over coded packet networks.

IEEE Transactions on information theory, 52(6):2608–2623, 2006.

[76] A. Lysyanskaya. Unique signatures and verifiable random functions from the

DH-DDH separation. In M. Yung, editor, CRYPTO 2002, volume 2442 of

LNCS, pages 597–612. Springer, Heidelberg, Aug. 2002.

[77] C. Ma, J. Li, M. Ding, L. Shi, T. Wang, Z. Han, and H. V. Poor. When federated

learning meets blockchain: A new distributed learning paradigm. arXiv preprint

arXiv:2009.09338, 2020.

[78] Y. Marcus, E. Heilman, and S. Goldberg. Low-resource eclipse attacks on

ethereum’s peer-to-peer network. IACR Cryptol. ePrint Arch., 2018:236, 2018.

[79] C. Matt, J. B. Nielsen, and S. E. Thomsen. Formalizing delayed adaptive

corruptions and the security of flooding networks. In Advances in Cryptology–

CRYPTO 2022: 42nd Annual International Cryptology Conference, CRYPTO

2022, Santa Barbara, CA, USA, August 15–18, 2022, Proceedings, Part II,

pages 400–430. Springer, 2022.

[80] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas.

Communication-efficient learning of deep networks from decentralized data. In

Artificial intelligence and statistics, pages 1273–1282. PMLR, 2017.

274



[81] S. Micali, M. O. Rabin, and S. P. Vadhan. Verifiable random functions. In 40th

FOCS, pages 120–130. IEEE Computer Society Press, Oct. 1999.

[82] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008. https:

//bitcoin.org/bitcoin.pdf.

[83] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Decentralized

Business Review, page 21260, 2008.

[84] G. Naumenko, G. Maxwell, P. Wuille, A. Fedorova, and I. Beschastnikh. Erlay:

Efficient transaction relay for bitcoin. In L. Cavallaro, J. Kinder, X. Wang, and

J. Katz, editors, ACM CCS 2019, pages 817–831. ACM Press, Nov. 2019.

[85] G. Naumenko, G. Maxwell, P. Wuille, S. Fedorova, and I. Beschast-

nikh. Bandwidth-efficient transaction relay for bitcoin. arXiv preprint

arXiv:1905.10518, 2019.

[86] K. Nayak, S. Kumar, A. Miller, and E. Shi. Stubborn mining: Generalizing

selfish mining and combining with an eclipse attack. In 2016 IEEE European

Symposium on Security and Privacy (EuroS&P), pages 305–320. IEEE, 2016.

[87] D. C. Nguyen, M. Ding, P. N. Pathirana, A. Seneviratne, J. Li, and H. V.

Poor. Federated learning for internet of things: A comprehensive survey. IEEE

Communications Surveys & Tutorials, 23(3):1622–1658, 2021.

[88] R. Pass, L. Seeman, and a. shelat. Analysis of the blockchain protocol in

asynchronous networks. In J.-S. Coron and J. B. Nielsen, editors, EURO-

CRYPT 2017, Part II, volume 10211 of LNCS, pages 643–673. Springer, Hei-

delberg, Apr. / May 2017.

275

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf


[89] R. Pass and E. Shi. Hybrid consensus: Efficient consensus in the permission-

less model. In 31st International Symposium on Distributed Computing (DISC

2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

[90] R. Pass and E. Shi. The sleepy model of consensus. In T. Takagi and T. Peyrin,

editors, ASIACRYPT 2017, Part II, volume 10625 of LNCS, pages 380–409.

Springer, Heidelberg, Dec. 2017.

[91] N. Rieke, J. Hancox, W. Li, F. Milletari, H. R. Roth, S. Albarqouni, S. Bakas,

M. N. Galtier, B. A. Landman, K. Maier-Hein, et al. The future of digital

health with federated learning. NPJ digital medicine, 3(1):1–7, 2020.

[92] P. R. Rizun. Subchains: A technique to scale bitcoin and improve the user

experience. Ledger, 1:38–52, 2016.

[93] M. Saad, A. Anwar, S. Ravi, and D. Mohaisen. Revisiting nakamoto consen-

sus in asynchronous networks: A comprehensive analysis of bitcoin safety and

chainquality. In Proceedings of the 2021 ACM SIGSAC Conference on Com-

puter and Communications Security, pages 988–1005, 2021.

[94] M. Saad and D. Mohaisen. Three birds with one stone: Efficient partitioning

attacks on interdependent cryptocurrency networks. In 2023 IEEE Symposium

on Security and Privacy (SP), pages 1404–1418. IEEE Computer Society, 2022.

[95] A. Salem, Y. Zhang, M. Humbert, P. Berrang, M. Fritz, and M. Backes. Ml-

leaks: Model and data independent membership inference attacks and defenses

on machine learning models. arXiv preprint arXiv:1806.01246, 2018.

[96] R. Shokri, M. Stronati, C. Song, and V. Shmatikov. Membership inference

attacks against machine learning models. In 2017 IEEE Symposium on Security

276



and Privacy (SP), pages 3–18. IEEE, 2017.

[97] R. Sweha. Angels: In-network support for minimum distribution time in p2p

overlays. Technical report, Boston University Computer Science Department,

2009.

[98] M. Takemiya and B. Vanieiev. Sora identity: Secure, digital identity on the

blockchain. In 2018 ieee 42nd annual computer software and applications con-

ference (compsac), volume 2, pages 582–587. IEEE, 2018.

[99] P. Vasin. Blackcoin’s proof-of-stake protocol v2. 2014. http://blackcoin.

co/blackcoin-pos-protocol-v2-whitepaper.pdf.

[100] Y. Wang and R. Wattenhofer. Asynchronous byzantine agreement in incomplete

networks. In Proceedings of the 2nd ACM Conference on Advances in Financial

Technologies, pages 178–188, 2020.

[101] S. M. Werner, D. Perez, L. Gudgeon, A. Klages-Mundt, D. Harz, and

W. J. Knottenbelt. Sok: Decentralized finance (defi). arXiv preprint

arXiv:2101.08778, 2021.

[102] G. Wolfond. A blockchain ecosystem for digital identity: improving service

delivery in canada’s public and private sectors. Technology Innovation Man-

agement Review, 7(10), 2017.

[103] K. Wüst and A. Gervais. Ethereum eclipse attacks. Technical report, ETH

Zurich, 2016.

[104] M. Yin, D. Malkhi, M. K. Reiter, G. Golan-Gueta, and I. Abraham. HotStuff:

BFT consensus with linearity and responsiveness. In P. Robinson and F. Ellen,

editors, 38th ACM PODC, pages 347–356. ACM, July / Aug. 2019.

277

http://blackcoin.co/blackcoin-pos-protocol-v2-whitepaper.pdf
http://blackcoin.co/blackcoin-pos-protocol-v2-whitepaper.pdf


[105] D. A. Zetzsche, D. W. Arner, and R. P. Buckley. Decentralized finance. Journal

of Financial Regulation, 6(2):172–203, 2020.

[106] C. Zhang, S. Li, J. Xia, W. Wang, F. Yan, and Y. Liu. Batchcrypt: Efficient

homomorphic encryption for cross-silo federated learning. In 2020 {USENIX}

Annual Technical Conference ({USENIX}{ATC} 20), pages 493–506, 2020.

[107] T. Zhang, C. He, T. Ma, L. Gao, M. Ma, and S. Avestimehr. Federated learning

for internet of things. In Proceedings of the 19th ACM Conference on Embedded

Networked Sensor Systems, pages 413–419, 2021.

[108] W. Zhang, Q. Lu, Q. Yu, Z. Li, Y. Liu, S. K. Lo, S. Chen, X. Xu, and L. Zhu.

Blockchain-based federated learning for device failure detection in industrial

iot. IEEE Internet of Things Journal, 8(7):5926–5937, 2020.

[109] H. Zhong, Y. Sang, Y. Zhang, and Z. Xi. Secure multi-party computation

on blockchain: An overview. In Parallel Architectures, Algorithms and Pro-

gramming: 10th International Symposium, PAAP 2019, Guangzhou, China,

December 12–14, 2019, Revised Selected Papers 10, pages 452–460. Springer,

2020.

278



VITA

Phuc Thai received his BS in Computer Science from Vietnam National University

in 2016. He joined the Doctor of Philosophy program at Virginia Commonwealth

University, Richmond, Virginia in 2018. He is currently working as a research assistant

under the supervision of Dr. Thang Dinh and Dr. Hong-Sheng Zhou. His research

interests are in developing secure blockchain protocols and its applications.

279


	Blockchain security and applications
	Downloaded from

	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	 Introduction  
	Research Scopes, Objectives, and Motivations of the Dissertation
	The network layer
	Reliable dissemination
	Fast synchronization

	The consensus layer
	The application layer

	Contributions of the Dissertation
	The network layer
	Reliable dissemination
	Fast synchronization

	The consensus layer
	The application layer

	Organization of the Dissertation

	 The network layer: reliable dissemination
	Consensus Models for Sparse Networks
	Sparse network model (SNM)
	Security Properties
	Consensus in Sparse Network

	Protocol Design
	Protocol design
	Epoch-based configuration
	Core selection
	Core-periphery topology construction

	Security components
	Verifiable random connections
	Confidentiality of core nodes

	Complexity
	Discussions

	Security analysis
	Security properties
	Step i-A: Achieving the security properties from reliable dissemination
	 Step i-B: Achieving reliable dissemination from the security properties

	Network sparsity
	Main theorem

	Weakly Adaptive security
	M-adaptive security
	S-adaptive security
	S-adaptive "426830A ,"526930B  security

	Numerical Studies
	Setup 
	Costs of attacks
	Sybil attacks
	Double-spending attacks

	CoSpaN in different security settings
	Network characteristics

	Conclusion
	Supplemental materials
	Nakamoto’s protocol Nak
	Verifiable Random Functions
	Chernoff bound


	 The network layer: Fast synchronization
	Model
	Theoretical limit of the blockchain network
	Propagation Scheme in Heterogeneous Networks
	ProSHeN: A Propagation Scheme in Heterogeneous Networks
	Overview
	Assignment of Links to Trees
	Broadcast Trees Construction
	Transmission Schedule

	ProSHeN+: Distributed Data Distribution scheme
	Topology construction
	Propagation method


	Analysis
	Near-optimal throughput
	O(logn) latency
	Sparsity constraint

	Experiments
	The setup for experiments
	Experiment results


	 The consensus layer
	Security Model
	Blockchain protocol executions
	Chain growth, common prefix, and chain quality
	Unpredictability

	An Impossibility Result
	Single-extension proof-of-stake protocols
	Impossibility result for single-extension proof-of-stake protocols
	Distinct-context-extension
	Achieving the best possible unpredictability via distinct-context-extension
	Breaking the common prefix property via distinct-context-extension

	Greedy Strategies: How to overcome the impossibility
	Multi-extension proof-of-stake protocols
	Greedy strategies
	The protocol 
	A new tiebreak rule for our multi-extension protocol
	Addressing the tradeoff on security and performance

	Security Analysis: Overview
	Chain Growth in Multi-Extension: A New Analysis Framework
	Defining a Markov chain
	Chain growth property for a multi-extension protocol

	Chain Growth in Multi-Extension: Security analysis details
	A hybrid experiment: Ignoring the adversarial extension
	Analyzing the chain growth property via a simplified Markov chain
	Depth-based subsets in the set of best chains in the execution
	The simplified Markov chain for D = 1
	The simplified Markov chain for a general D

	Analyzing the chain growth via an augmented Markov chain
	Depth-distance-based subsets in the set of best chains in the execution
	The augmented Markov chain for D = 2
	The augmented Markov chain for a general D

	Achieving chain growth

	Common Prefix in Multi-Extension: A New Analysis Framework
	Virtual block-sets and virtual chains
	Unique signature scheme
	Common prefix property w.r.t. virtual chains
	From common prefix w.r.t. virtual chains, to the standard common prefix property

	Chain quality and best possible unpredictability
	Chain quality
	Best possible unpredictability

	Extensions
	Full-fledged blockchain
	Blockchain in the non-flat model
	Defending against adaptive registration

	Related Work
	Proof-of-stake protocols
	Security analysis for Bitcoin-like PoS protocols

	Supplemental materials
	Predictability-based attacks
	Existing single-extension proof-of-stake protocols


	 The application layer
	Federated Learning and Secure Client Selection Problem
	Federated Learning
	Secure client selection (SCS) problem

	Defending against semi-malicious adversaries
	Secure protocol (SeP) for SCS problem
	Communication-efficient and secure protocol (CoSeP) for SCS problem

	Security Analysis
	Security of Bitcoin protocol in garay2015bitcoin
	Security analysis of protocol SeP
	Security analysis of protocol CoSeP
	Communication complexity

	Defending against active adversaries
	Protocol CoSeP+
	Security analysis

	Experiments
	Experimental settings.
	Experiments results

	Related work
	Conclusion

	Appendix  Abbreviations
	 References
	Vita

