30 research outputs found

    Goodbye, ALOHA!

    Get PDF
    ©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The vision of the Internet of Things (IoT) to interconnect and Internet-connect everyday people, objects, and machines poses new challenges in the design of wireless communication networks. The design of medium access control (MAC) protocols has been traditionally an intense area of research due to their high impact on the overall performance of wireless communications. The majority of research activities in this field deal with different variations of protocols somehow based on ALOHA, either with or without listen before talk, i.e., carrier sensing multiple access. These protocols operate well under low traffic loads and low number of simultaneous devices. However, they suffer from congestion as the traffic load and the number of devices increase. For this reason, unless revisited, the MAC layer can become a bottleneck for the success of the IoT. In this paper, we provide an overview of the existing MAC solutions for the IoT, describing current limitations and envisioned challenges for the near future. Motivated by those, we identify a family of simple algorithms based on distributed queueing (DQ), which can operate for an infinite number of devices generating any traffic load and pattern. A description of the DQ mechanism is provided and most relevant existing studies of DQ applied in different scenarios are described in this paper. In addition, we provide a novel performance evaluation of DQ when applied for the IoT. Finally, a description of the very first demo of DQ for its use in the IoT is also included in this paper.Peer ReviewedPostprint (author's final draft

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    Wireless Sensor Networks

    Get PDF
    The aim of this book is to present few important issues of WSNs, from the application, design and technology points of view. The book highlights power efficient design issues related to wireless sensor networks, the existing WSN applications, and discusses the research efforts being undertaken in this field which put the reader in good pace to be able to understand more advanced research and make a contribution in this field for themselves. It is believed that this book serves as a comprehensive reference for graduate and undergraduate senior students who seek to learn latest development in wireless sensor networks

    Computing on evolving social networks

    Get PDF
    Over the past decade, participation in social networking services has seen an exponential growth, so that nowadays most individuals are “virtually” connected to others anywhere in the world. Consistently, analysis of human social behavior has gained momentum in the computer science research community. Several well-known phenomena in the social sciences have been revisited in a computer science perspective, with a new focus on phenomena of emerging behavior, information diffusion, opinion formation and collective intelligence. Furthermore, the recent past has witnessed a growing interest in the dynamics of these phenomena and that of the underlying social structures. This thesis investigates a number of aspects related to the study of evolving social networks and the collective phenomena they mediate. We have mainly pursued three research directions. The first line of research is in a sense functional to the other two and concerns the collection of data tracking the evolution of human interactions in the physical space and the extraction of (time) evolving networks describing these interactions. A number of available datasets describing different kinds of social networks are available on line, but few involve physical proximity of humans in real life scenarios. During our research activity, we have deployed several social experiments tracking face-to-face human interactions in the physical space. The collected datasets have been used to analyze network properties and to investigate social phenomena, as further described below. A second line of research investigates the impact of dynamics on the analytical tools used to extract knowledge from social networks. This is clearly a vast area in which research in many cases is in its early stages. We have focused on centrality, a fundamental notion in the analysis and characterization of social network structure and key to a number of Web applications and services. While many social networks of interest (resulting from “virtual” or “physical” activity) are highly dynamic, many Web information retrieval algorithms were originally designed with static networks in mind. In this thesis, we design and analyze decentralized algorithms for computing and maintaining centrality scores over time evolving networks. These algorithms refer to notions of centrality which are explicitly conceived for evolving settings and which are consistent with PageRank in important cases. A further line of research investigates the wisdom of crowds effect, an important, yet not completely understood phenomenon of collective intelligence, whereby a group typically exhibits higher predictive accuracy than its single members and often experts. Phenomena of collective intelligence involve exchange and processing of information among individuals sharing some common social structure. In many cases of interest, this structure is suitably described by an evolving social network. Studying the interplay between the evolution of the underlying social structure and the computational properties of the resulting process is an interesting and challenging task. We have focused on the quantitative analysis of this aspect, in particular the effect of the network on the accuracy of prediction. To provide a mathematical characterization, we have revisited and modified a number of models of opinion formation and diffusion originally proposed in the social sciences. Experimental analysis using data collected from some of the social experiments we conducted allowed to test soundness of the proposed models. While many of these models seem to capture important aspects of the process of opinion formation in (physical) social networks, one variant we propose achieves higher predictive accuracy and is also robust to the presence of outliers

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    Towards end-to-end security in internet of things based healthcare

    Get PDF
    Healthcare IoT systems are distinguished in that they are designed to serve human beings, which primarily raises the requirements of security, privacy, and reliability. Such systems have to provide real-time notifications and responses concerning the status of patients. Physicians, patients, and other caregivers demand a reliable system in which the results are accurate and timely, and the service is reliable and secure. To guarantee these requirements, the smart components in the system require a secure and efficient end-to-end communication method between the end-points (e.g., patients, caregivers, and medical sensors) of a healthcare IoT system. The main challenge faced by the existing security solutions is a lack of secure end-to-end communication. This thesis addresses this challenge by presenting a novel end-to-end security solution enabling end-points to securely and efficiently communicate with each other. The proposed solution meets the security requirements of a wide range of healthcare IoT systems while minimizing the overall hardware overhead of end-to-end communication. End-to-end communication is enabled by the holistic integration of the following contributions. The first contribution is the implementation of two architectures for remote monitoring of bio-signals. The first architecture is based on a low power IEEE 802.15.4 protocol known as ZigBee. It consists of a set of sensor nodes to read data from various medical sensors, process the data, and send them wirelessly over ZigBee to a server node. The second architecture implements on an IP-based wireless sensor network, using IEEE 802.11 Wireless Local Area Network (WLAN). The system consists of a IEEE 802.11 based sensor module to access bio-signals from patients and send them over to a remote server. In both architectures, the server node collects the health data from several client nodes and updates a remote database. The remote webserver accesses the database and updates the webpage in real-time, which can be accessed remotely. The second contribution is a novel secure mutual authentication scheme for Radio Frequency Identification (RFID) implant systems. The proposed scheme relies on the elliptic curve cryptography and the D-Quark lightweight hash design. The scheme consists of three main phases: (1) reader authentication and verification, (2) tag identification, and (3) tag verification. We show that among the existing public-key crypto-systems, elliptic curve is the optimal choice due to its small key size as well as its efficiency in computations. The D-Quark lightweight hash design has been tailored for resource-constrained devices. The third contribution is proposing a low-latency and secure cryptographic keys generation approach based on Electrocardiogram (ECG) features. This is performed by taking advantage of the uniqueness and randomness properties of ECG's main features comprising of PR, RR, PP, QT, and ST intervals. This approach achieves low latency due to its reliance on reference-free ECG's main features that can be acquired in a short time. The approach is called Several ECG Features (SEF)-based cryptographic key generation. The fourth contribution is devising a novel secure and efficient end-to-end security scheme for mobility enabled healthcare IoT. The proposed scheme consists of: (1) a secure and efficient end-user authentication and authorization architecture based on the certificate based Datagram Transport Layer Security (DTLS) handshake protocol, (2) a secure end-to-end communication method based on DTLS session resumption, and (3) support for robust mobility based on interconnected smart gateways in the fog layer. Finally, the fifth and the last contribution is the analysis of the performance of the state-of-the-art end-to-end security solutions in healthcare IoT systems including our end-to-end security solution. In this regard, we first identify and present the essential requirements of robust security solutions for healthcare IoT systems. We then analyze the performance of the state-of-the-art end-to-end security solutions (including our scheme) by developing a prototype healthcare IoT system

    Tecnologias IoT para pastoreio e controlo de postura animal

    Get PDF
    The unwanted and adverse weeds that are constantly growing in vineyards, force wine producers to repeatedly remove them through the use of mechanical and chemical methods. These methods include machinery such as plows and brushcutters, and chemicals as herbicides to remove and prevent the growth of weeds both in the inter-row and under-vine areas. Nonetheless, such methods are considered very aggressive for vines, and, in the second case, harmful for the public health, since chemicals may remain in the environment and hence contaminate water lines. Moreover, such processes have to be repeated over the year, making it extremely expensive and toilsome. Using animals, usually ovines, is an ancient practice used around the world. Animals, grazing in vineyards, feed from the unwanted weeds and fertilize the soil, in an inexpensive, ecological and sustainable way. However, sheep may be dangerous to vines since they tend to feed on grapes and on the lower branches of the vines, which causes enormous production losses. To overcome that issue, sheep were traditionally used to weed vineyards only before the beginning of the growth cycle of grapevines, thus still requiring the use of mechanical and/or chemical methods during the remainder of the production cycle. To mitigate the problems above, a new technological solution was investigated under the scope of the SheepIT project and developed in the scope of this thesis. The system monitors sheep during grazing periods on vineyards and implements a posture control mechanism to instruct them to feed only from the undesired weeds. This mechanism is based on an IoT architecture, being designed to be compact and energy efficient, allowing it to be carried by sheep while attaining an autonomy of weeks. In this context, the thesis herein sustained states that it is possible to design an IoT-based system capable of monitoring and conditioning sheep’s posture, enabling a safe weeding process in vineyards. Moreover, we support such thesis in three main pillars that match the main contributions of this work and that are duly explored and validated, namely: the IoT architecture design and required communications, a posture control mechanism and the support for a low-cost and low-power localization mechanism. The system architecture is validated mainly in simulation context while the posture control mechanism is validated both in simulations and field experiments. Furthermore, we demonstrate the feasibility of the system and the contribution of this work towards the first commercial version of the system.O constante crescimento de ervas infestantes obriga os produtores a manter um processo contínuo de remoção das mesmas com recurso a mecanismos mecânicos e/ou químicos. Entre os mais populares, destacam-se o uso de arados e roçadores no primeiro grupo, e o uso de herbicidas no segundo grupo. No entanto, estes mecanismos são considerados agressivos para as videiras, assim como no segundo caso perigosos para a saúde pública, visto que os químicos podem permanecer no ambiente, contaminando frutos e linhas de água. Adicionalmente, estes processos são caros e exigem mão de obra que escasseia nos dias de hoje, agravado pela necessidade destes processos necessitarem de serem repetidos mais do que uma vez ao longo do ano. O uso de animais, particularmente ovelhas, para controlar o crescimento de infestantes é uma prática ancestral usada em todo o mundo. As ovelhas, enquanto pastam, controlam o crescimento das ervas infestantes, ao mesmo tempo que fertilizam o solo de forma gratuita, ecológica e sustentável. Não obstante, este método foi sendo abandonado visto que os animais também se alimentam da rama, rebentos e frutos da videira, provocando naturais estragos e prejuízos produtivos. Para mitigar este problema, uma nova solução baseada em tecnologias de Internet das Coisas é proposta no âmbito do projeto SheepIT, cuja espinha dorsal foi construída no âmbito desta tese. O sistema monitoriza as ovelhas enquanto estas pastoreiam nas vinhas, e implementam um mecanismo de controlo de postura que condiciona o seu comportamento de forma a que se alimentem apenas das ervas infestantes. O sistema foi incorporado numa infraestrutura de Internet das Coisas com comunicações sem fios de baixo consumo para recolha de dados e que permite semanas de autonomia, mantendo os dispositivos com um tamanho adequado aos animais. Neste contexto, a tese suportada neste trabalho defende que é possível projetar uma sistema baseado em tecnologias de Internet das Coisas, capaz de monitorizar e condicionar a postura de ovelhas, permitindo que estas pastem em vinhas sem comprometer as videiras e as uvas. A tese é suportada em três pilares fundamentais que se refletem nos principais contributos do trabalho, particularmente: a arquitetura do sistema e respetivo sistema de comunicações; o mecanismo de controlo de postura; e o suporte para implementação de um sistema de localização de baixo custo e baixo consumo energético. A arquitetura é validada em contexto de simulação, e o mecanismo de controlo de postura em contexto de simulação e de experiências em campo. É também demonstrado o funcionamento do sistema e o contributo deste trabalho para a conceção da primeira versão comercial do sistema.Programa Doutoral em Informátic

    Kablosuz sensör ağlarinda yönlü antenlerle enerji̇ veri̇mli̇ yönlendi̇rme

    Get PDF
    Without measurements, sustainable development effort can not progress in the right direction. Wireless sensor networks are vital for monitoring in real time and making accurate measurements for such an endeavor. However small energy storage in the sensors can become a bottleneck if the wireless sensor network is not optimized at the hardware and software level. Directional antennas are such optimization technologies at the hardware level. They have advantages over the omnidirectional antennas, such as high gain, less interference, longer transmission range, and less power consumption. In wireless sensor networks, most of the energy is consumed for communication. Considering the limited energy in small scale batteries of the sensors, energy efficient (aware) routing, is one of the most important software optimization techniques. The main goal of the technique is to improve the lifetime of the wireless sensor networks. In the light of these observations, it is desirable to do a coupled design of directional antennas with network software, for fully exploiting the advantages offered by directional antenna technology. In this thesis, the possibilities of doing such integrated design are surveyed and improvements are suggested. The design of the proposed microstrip patch antenna array is discussed and the performance characteristics are assessed through simulations. In the benchmarks, the proposed routing method showed improvements in energy usage compared to the existing approaches.Ölçümler olmadan sürdürülebilir kalkınma çabaları doğru yönde ilerleyemez. Bu tür çabalar için, kablosuz sensör ağları, gerçek zamanlı olarak izleme ve kesin ölçümler yapmak için vazgeçilemez unsurdur. Ancak, sensör ağı, donanım ve yazılım düzeylerinde optimize edilmemişse, sensörlerde enerji yetersizliği görülebilinir. Yönlü antenler, donanım düzeyinde uygulanan optimizasyon teknolojilerinden biri olmakla birlikte, çok yönlü antenlerden farklı olarak, yüksek kazanç, daha az parazit, daha uzun iletim mesafesi ve daha az güç tüketimi sağlarlar. Kablosuz sensör ağlarında enerjinin çoğu iletişim için tüketilir. Sensörlerdeki limitli enerjili küçük ölçekli piller göz önüne alındığında, yazılım düzeyindeki önemli metodlardan biri olan enerji verimli (duyarlı) yönlendirme protokolü, kablosuz sensör ağının genel enerji kullanımını optimize etmek ve ömrünü uzatmak için gereklidir. Bu gözlemlerin ışığında, yönlü anten teknolojisinin sunduğu potansiyel avantajlardan tam olarak yararlanmak için, yönlü antenlerin ağ yazılımıyla birlikte entegre tasarımını yapmak arzu edilir. Bu tezde, böyle bir entegre tasarımın yapılma olasılıkları araştırılmış ve iyileştirmeler önerilmiştir. Tezde, küçük şeritli yamalı anten dizisinin tasarımı tartışılmış ve performans karakteristikleri simulasyonlarla ölçülmüştür. Önerilen yönlendirme algoritması, diğer yönlendirme algoritmaları ile karşılaştırıldığında, enerji kullanımında iyileştirmeler göstermiştirM.S. - Master of Scienc

    State-of-the-Art Sensors Technology in Spain 2015: Volume 1

    Get PDF
    This book provides a comprehensive overview of state-of-the-art sensors technology in specific leading areas. Industrial researchers, engineers and professionals can find information on the most advanced technologies and developments, together with data processing. Further research covers specific devices and technologies that capture and distribute data to be processed by applying dedicated techniques or procedures, which is where sensors play the most important role. The book provides insights and solutions for different problems covering a broad spectrum of possibilities, thanks to a set of applications and solutions based on sensory technologies. Topics include: • Signal analysis for spectral power • 3D precise measurements • Electromagnetic propagation • Drugs detection • e-health environments based on social sensor networks • Robots in wireless environments, navigation, teleoperation, object grasping, demining • Wireless sensor networks • Industrial IoT • Insights in smart cities • Voice recognition • FPGA interfaces • Flight mill device for measurements on insects • Optical systems: UV, LEDs, lasers, fiber optics • Machine vision • Power dissipation • Liquid level in fuel tanks • Parabolic solar tracker • Force sensors • Control for a twin roto
    corecore