630 research outputs found

    An examination of thermal features' relevance in the task of battery-fault detection

    Get PDF
    Uninterruptible power supplies (UPS), represented by lead-acid batteries, play an important role in various kinds of industries. They protect industrial technologies from being damaged by dangerous interruptions of an electric power supply. Advanced UPS monitoring performed by a complex battery management system (BMS) prevents the UPS from sustaining more serious damage due to its timely and accurate battery-fault detection based on voltage metering. This technique is very advanced and precise but also very expensive on a long-term basis. This article describes an experiment applying infrared thermographic measurements during a long term monitoring and fault detection in UPS. The assumption that the battery overheat implies its damaged state is the leading factor of our experiments. They are based on real measured data on various UPS battery sets and several statistical examinations confirming the high relevancy of the thermal features with mostly over 90% detection accuracy. Such a model can be used as a supplement for lead-acid battery based UPS monitoring to ensure their higher reliability under significantly lower maintenance costs.Web of Science82art. no. 18

    Detection of correlated galaxy ellipticities on CFHT data: first evidence for gravitational lensing by large-scale structures

    Get PDF
    We report the detection of a significant (5.5 sigma) excess of correlations between galaxy ellipticities at scales ranging from 0.5 to 3.5 arc-minutes. This detection of a gravitational lensing signal by large-scale structure was made using a composite high quality imaging survey of 6300 arcmin^2 obtained at the Canada France Hawaii Telescope (CFHT) with the UH8K and CFH12K panoramic CCD cameras. The amplitude of the excess correlation is 2.2\pm 0.2 % at 1 arcmin scale, in agreement with theoretical predictions of the lensing effect induced by large-scale structure.We provide a quantitative analysis of systematics which could contribute to the signal and show that the net effect is small and can be corrected for. We show that the measured ellipticity correlations behave as expected for a gravitational shear signal. The relatively small size of our survey precludes tight constraints on cosmological models. However the data are in favor of cluster normalized cosmological models, and marginally reject Cold Dark Matter models with (Omega=0.3, sigma_8<0.6) or (Omega=1, sigma_8=1). The detection of cosmic shear demonstrates the technical feasibility of using weak lensing surveys to measure dark matter clustering and the potential for cosmological parameter measurements, in particular with upcoming wide field CCD cameras.Comment: 19 pages. 19 Figures. Revised version accepted in A&

    A journey through computability, topology and analysis

    Get PDF
    This thesis is devoted to the exploration of the complexity of some mathematical problems using the framework of computable analysis and descriptive set theory. We will especially focus on Weihrauch reducibility, as a means to compare the uniform computational strength of problems. After a short introduction of the relevant background notions, we investigate the uniform computational content of the open and clopen Ramsey theorems. In particular, since there is not a canonical way to phrase these theorems as multi-valued functions, we identify 8 different multi-valued functions (5 corresponding to the open Ramsey theorem and 3 corresponding to the clopen Ramsey theorem) and study their degree from the point of view of Weihrauch, strong Weihrauch and arithmetic Weihrauch reducibility. We then discuss some new operators on multi-valued functions and study their algebraic properties and the relations with other previously studied operators on problems. These notions turn out to be extremely relevant when exploring the Weihrauch degree of the problem DS of computing descending sequences in ill-founded linear orders. They allow us to show that DS, and the Weihrauch equivalent problem BS of finding bad sequences through non-well quasi-orders, while being very "hard" to solve, are rather weak in terms of uniform computational strength. We then generalize DS and BS by considering Gamma-presented orders, where Gamma is a Borel pointclass or Delta11, Sigma11, Pi11. We study the obtained DS-hierarchy and BS-hierarchy of problems in comparison with the (effective) Baire hierarchy and show that they do not collapse at any finite level. Finally, we focus on the characterization, from the point of view of descriptive set theory, of some conditions involving the notions of Hausdorff/Fourier dimension and of Salem sets. We first work in the hyperspace K([0,1]) of compact subsets of [0,1] and show that the closed Salem sets form a Pi03-complete family. This is done by characterizing the complexity of the family of sets having sufficiently large Hausdorff or Fourier dimension. We also show that the complexity does not change if we increase the dimension of the ambient space and work in K([0,1]^d). We also generalize the results by relaxing the compactness of the ambient space, and show that the closed Salem sets are still Pi03-complete when we endow K(R^d) with the Fell topology. A similar result holds also for the Vietoris topology. We conclude by showing how these results can be used to characterize the Weihrauch degree of the functions computing the Hausdorff and Fourier dimensions

    Fitting the integrated Spectral Energy Distributions of Galaxies

    Full text link
    Fitting the spectral energy distributions (SEDs) of galaxies is an almost universally used technique that has matured significantly in the last decade. Model predictions and fitting procedures have improved significantly over this time, attempting to keep up with the vastly increased volume and quality of available data. We review here the field of SED fitting, describing the modelling of ultraviolet to infrared galaxy SEDs, the creation of multiwavelength data sets, and the methods used to fit model SEDs to observed galaxy data sets. We touch upon the achievements and challenges in the major ingredients of SED fitting, with a special emphasis on describing the interplay between the quality of the available data, the quality of the available models, and the best fitting technique to use in order to obtain a realistic measurement as well as realistic uncertainties. We conclude that SED fitting can be used effectively to derive a range of physical properties of galaxies, such as redshift, stellar masses, star formation rates, dust masses, and metallicities, with care taken not to over-interpret the available data. Yet there still exist many issues such as estimating the age of the oldest stars in a galaxy, finer details ofdust properties and dust-star geometry, and the influences of poorly understood, luminous stellar types and phases. The challenge for the coming years will be to improve both the models and the observational data sets to resolve these uncertainties. The present review will be made available on an interactive, moderated web page (sedfitting.org), where the community can access and change the text. The intention is to expand the text and keep it up to date over the coming years.Comment: 54 pages, 26 figures, Accepted for publication in Astrophysics & Space Scienc

    Discussing Changes in Historical Human–Environmental Dynamics Through Ecosystem Services Interactions and Future Scenarios in a Rural-Mining Region of Central Appalachians

    Get PDF
    The aim of this dissertation was to investigate how recent processes of land-change induced by humans contributed to the shaping and alteration of the current landscape in a headwater system of Central Appalachians in West Virginia (US), to understand the interactions and tradeoffs among ecosystems services and address potential solutions for targeting more sustainable human-environment interactions in a region that is deeply grounded on extractive economies. The multitiered objective was addressed through different research phases in order to unfold and disentangle a series of complex problems that the study area presents. Three main phases were used; they corresponded to distinct chapters within this study. The first paper analyzed land-cover transitions, from 1976 to 2016, using Multi-Level Intensity Analysis and Difference Components methods. Two land cover classifications were derived explicitly for this study using remote sensing methods and obtained with segmentation analysis and machine learning algorithms from historical high-resolution aerial images (1-2 meters) and ancillary data. Results allowed the author to distinguish between surface mining areas produced before and after the enactment of the Surface Mining Control and Reclamation Act (SMCRA, 1977), discuss differences among distinct socio-technical phases, and differentiate the main drivers and outcomes of landscape change processes in the area. The historical information and knowledge gained in the first step were used to inform the second chapter, whose objective was to analyze the interactions among ecosystem services and derive their bundles. Ecosystem services models were obtained using InVEST, and a custom model was explicitly defined to link water quality changes to freshwater ecosystem services. The results identified significant losses of carbon sequestration, habitat quality, and freshwater ecosystem services in areas subjected to Mountaintop Removal mining. The findings spatially located different ecosystem services bundles characterized by distinct human-environment relationships and complex anthropogenic drivers not limited to coal mining processes. The study identified the appropriate spatial scale for targeting specific management actions and implementing conservation, as well as development-restoration strategies, in areas characterized by similar social-ecological processes and deeply altered ecosystems. In the third essay, the identification of ecosystem services bundles allowed the author to delineate two distinct social-ecological systems characterized by surface coal extraction and reclamation processes produced during different historical phases. These areas were discussed as separate case studies within a time interval of seventy years, from the recent past (1976) to future scenarios (2045). The scenarios were based on a backcasting approach integrated by ecosystem services models and the analysis of functional changes within the two social-ecological units analyzed. The results highlighted differences in the flow of ecosystem services due to the intensity of mining and the different and incremental reclamation approaches used in the scenarios. The comparison of threats and opportunities within each scenario, identified, in the discussion section, a range of plausible hypotheses and solutions the stakeholders and communities of the region should face if they want to rehabilitate the social and ecological conditions to promote a more sustainable approach for the future of these places

    Algorithmic Randomness

    Get PDF
    We consider algorithmic randomness in the Cantor space C of the infinite binary sequences. By an algorithmic randomness concept one specifies a set of elements of C, each of which is assigned the property of being random. Miscellaneous notions from computability theory are used in the definitions of randomness concepts that are essentially rooted in the following three intuitive randomness requirements: the initial segments of a random sequence should be effectively incompressible, no random sequence should be an element of an effective measure null set containing sequences with an “exceptional property”, and finally, considering betting games, in which the bits of a sequence are guessed successively, there should be no effective betting strategy that helps a player win an unbounded amount of capital on a random sequence. For various formalizations of these requirements one uses versions of Kolmogorov complexity, of tests, and of martingales, respectively. In case any of these notions is used in the definition of a randomness concept, one may ask in general for fundamental equivalent definitions in terms of the respective other two notions. This was a long-standing open question w.r.t. computable randomness, a central concept that had been introduced by Schnorr via martingales. In this thesis, we introduce bounded tests that we use to give a characterization of computable randomness in terms of tests. Our result was obtained independently of the prior test characterization of computable randomness due to Downey, Griffiths, and LaForte, who defined graded tests for their result. Based on bounded tests, we define bounded machines which give rise to a version of Kolmogorov complexity that we use to prove another characterization of computable randomness. This result, as in analog situations, allows for the introduction of interesting lowness and triviality properties that are, roughly speaking, “anti-randomness” properties. We define and study the notions lowness for bounded machines and bounded triviality. Using a theorem due to Nies, it can be shown that only the computable sequences are low for bounded machines. Further we show some interesting properties of bounded machines, and we demonstrate that every boundedly trivial sequence is K-trivial. Furthermore we define lowness for computable machines, a lowness notion in the setting of Schnorr randomness. We prove that a sequence is low for computable machines if and only if it is computably traceable. Gacs and independently Kucera proved a central theorem which states that every sequence is effectively decodable from a suitable Martin-Löf random sequence. We present a somewhat easier proof of this theorem, where we construct a sequence with the required property by diagonalizing against appropriate martingales. By a variant of that construction we prove that there exists a computably random sequence that is weak truth-table autoreducible. Further, we show that a sequence is computably enumerable self-reducible if and only if its associated real is computably enumerable. Finally we investigate interrelations between the Lebesgue measure and effective measures on C. We prove the following extension of a result due to Book, Lutz, and Wagner: A union of Pi-0-1 classes that is closed under finite variations has Lebesgue measure zero if and only if it contains no Kurtz random real. However we demonstrate that even a Sigma-0-2 class with Lebesgue measure zero need not be a Kurtz null class. Turning to Almost classes, we show among other things that every Almost class with respect to a bounded reducibility has computable packing dimension zero
    corecore