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Zusammenfassung

Wir betrachten algorithmische Zufälligkeit im Cantorraum C der unendlichen
Binärfolgen. Durch ein algorithmisches Zufälligkeitskonzept wird eine Menge
von Elementen von C bestimmt, denen jeweils die Eigenschaft zugeordnet wird,
zufällig zu sein. Solche Konzepte werden unter Verwendung von verschiedenen be-
rechenbarkeitstheoretischen Begriffen definiert und gehen im Wesentlichen auf die
folgenden drei intuitiven Anforderungen an zufällige Folgen zurück: Die Anfangs-
stücke einer zufälligen Folge sollen effektiv inkomprimierbar sein, keine zufällige
Folge soll in einer effektiven Nullmenge von Folgen mit einer “Ausnahmeeigen-
schaft” enthalten sein, und schließlich soll für ein Wettspiel, in welchem die
Bits einer Folge nacheinander geraten werden, bei einer zufälligen Folge keine
effektive Strategie dem Spieler unbeschränkt viel Kapital verschaffen. Für ver-
schiedene Formalisierungen dieser Anforderungen werden jeweils Versionen von
Kolmogorov-Komplexität, Tests und Martingalen verwendet. Wird einer dieser
drei Begriffe in der Definition eines Zufälligkeitskonzepts benutzt, so stellt sich
generell die Frage nach grundlegenden äquivalenten Definitionen, in denen die
jeweils anderen beiden Begriffe verwendet werden. Diese Frage blieb für das zen-
trale Konzept der berechenbaren Zufälligkeit, welches von Schnorr unter Verwen-
dung von Martingalen eingeführt worden war, lange unbeantwortet.

Wir geben in dieser Arbeit eine Charakterisierung der berechenbaren Zufäl-
ligkeit unter Verwendung von Tests an, wobei wir die von uns eingeführten be-
schränkten Tests benutzen. Unser Ergebnis wurde unabhängig von der zuvor von
Downey, Griffiths und LaForte angegebenen Testcharakterisierung der berechen-
baren Zufälligkeit durch die von ihnen eingeführten abgestuften Tests erzielt.

Gestützt auf beschränkte Tests definieren wir beschränkte Maschinen und mit
diesen eine Version der Kolmogorov-Komplexität, mit deren Hilfe wir eine weitere
Charakterisierung der berechenbaren Zufälligkeit beweisen. Auf Grund dieses Er-
gebnisses ist es möglich, wie in analogen Fällen interessante Lowness- und Trivia-
litätseigenschaften einzuführen, die grob gesagt “Anti-Zufälligkeitseigenschaften”
sind. Wir definieren und untersuchen die Begriffe Lowness für beschränkte Ma-
schinen und beschränkte Trivialität. Mit Hilfe eines Satzes von Nies lässt sich
zeigen, dass nur die berechenbaren Folgen low für beschränkte Maschinen sind.
Ferner zeigen wir neben interessanten Eigenschaften der beschränkten Maschi-
nen, dass die beschränkt trivialen Folgen K-trivial sind. Des Weiteren definieren
wir Lowness für berechenbare Maschinen, einen Lowness-Begriff im Kontext der
Schnorr-Zufälligkeit. Wir beweisen, dass eine Folge genau dann low für berechen-
bare Maschinen ist, wenn sie computably traceable ist.

Nach einem zentralen Satz, den Gács und Kučera unabhängig voneinander
bewiesen haben, ist jede Folge effektiv aus einer geeigneten Martin-Löf zufälligen
Folge dekodierbar. Wir geben einen etwas einfacheren Beweis dieses Satzes an,
wobei wir eine zufällige Folge mit der geforderten Eigenschaft dadurch konstruie-
ren, dass wir gegen geeignete Martingale diagonalisieren. Mit Hilfe einer Variante



jener Konstruktion beweisen wir, dass eine berechenbar zufällige Folge existiert,
die schwach truth-table autoreduzierbar ist. Ferner zeigen wir, dass eine Folge
genau dann aufzählbar selbstreduzierbar ist, wenn die entsprechende reelle Zahl
aufzählbar ist.

Schließlich untersuchen wir Zusammenhänge zwischen dem Lebesguemaß und
effektiven Maßen auf C. Wir beweisen die folgende Erweiterung eines Ergebnis-
ses von Book, Lutz und Wagner: Eine gegen endliche Varianten abgeschlossene
Vereinigung von Π0

1-Klassen hat genau dann Lebesguemaß null, wenn sie keine
Kurtz-zufällige Folge enthält. Wir zeigen jedoch, dass sogar eine Σ0

2-Klasse mit
Lebesguemaß null keine Kurtz-Nullklasse zu sein braucht. Anschließend wenden
wir uns Almost-Klassen zu und beweisen unter anderem, dass bezüglich einer be-
schränkten Reduzierbarkeit jede Almost-Klasse berechenbare Packing-Dimension
null hat.



Abstract

We consider algorithmic randomness in the Cantor space C of the infinite binary
sequences. By an algorithmic randomness concept one specifies a set of elements
of C, each of which is assigned the property of being random. Miscellaneous
notions from computability theory are used in the definitions of randomness
concepts that are essentially rooted in the following three intuitive randomness
requirements: the initial segments of a random sequence should be effectively
incompressible, no random sequence should be an element of an effective mea-
sure null set containing sequences with an “exceptional property”, and finally,
considering betting games, in which the bits of a sequence are guessed succes-
sively, there should be no effective betting strategy that helps a player win an
unbounded amount of capital on a random sequence. For various formalizations
of these requirements one uses versions of Kolmogorov complexity, of tests, and
of martingales, respectively. In case any of these notions is used in the definition
of a randomness concept, one may ask in general for fundamental equivalent def-
initions in terms of the respective other two notions. This was a long-standing
open question w.r.t. computable randomness, a central concept that had been
introduced by Schnorr via martingales.

In this thesis, we introduce bounded tests that we use to give a character-
ization of computable randomness in terms of tests. Our result was obtained
independently of the prior test characterization of computable randomness due
to Downey, Griffiths, and LaForte, who defined graded tests for their result.

Based on bounded tests, we define bounded machines which give rise to a
version of Kolmogorov complexity that we use to prove another characteriza-
tion of computable randomness. This result, as in analog situations, allows for
the introduction of interesting lowness and triviality properties that are, roughly
speaking, “anti-randomness” properties. We define and study the notions low-
ness for bounded machines and bounded triviality. Using a theorem due to Nies,
it can be shown that only the computable sequences are low for bounded ma-
chines. Further we show some interesting properties of bounded machines, and
we demonstrate that every boundedly trivial sequence is K-trivial. Furthermore
we define lowness for computable machines, a lowness notion in the setting of
Schnorr randomness. We prove that a sequence is low for computable machines
if and only if it is computably traceable.

Gács and independently Kučera proved a central theorem which states that
every sequence is effectively decodable from a suitable Martin-Löf random se-
quence. We present a somewhat easier proof of this theorem, where we construct
a sequence with the required property by diagonalizing against appropriate mar-
tingales. By a variant of that construction we prove that there exists a com-
putably random sequence that is weak truth-table autoreducible. Further, we
show that a sequence is computably enumerable self-reducible if and only if its
associated real is computably enumerable.



Finally we investigate interrelations between the Lebesgue measure and ef-
fective measures C. We prove the following extension of a result due to Book,
Lutz, and Wagner: A union of Π0

1-classes that is closed under finite variations
has Lebesgue measure zero if and only if it contains no Kurtz random real. How-
ever we demonstrate that even a Σ0

2-class with Lebesgue measure zero need not
be a Kurtz null class. Turning to Almost classes, we show among other things
that every Almost class with respect to a bounded reducibility has computable
packing dimension zero.
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Wolfgang Merkle, Hans-Christian Neis, Gert H. Müller, Jan Reimann, Sasha
Rubin, Ted Slaman, and Frank Stephan.

I am grateful to Rod Downey who was a wonderful host during my visit
to Wellington. While in Wellington, I had the pleasure to work with Rod
Downey, Noam Greenberg, and André Nies.
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3.2 Computable Randomness via Bounded Martin-Löf Tests . . . 32
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Chapter 1

Introduction

1.1 Algorithmic Randomness

The theory of algorithmic randomness has evolved from the quest for an ax-
iomatic foundation of probability theory. In 1919 von Mises [48] introduced
Kollektivs, a concept designated to capture an intuitive, general notion of
randomness and of probability. Since the work of Wald [50] and Church [10]
it has become common practice to represent those Kollektivs that serve as
a basis for algorithmic randomness concepts by infinite binary sequences
which satisfy a certain “randomness” property as specified by von Mises.
We call an infinite binary sequence X = X(0)X(1) . . . random in the sense
of von Mises if the following condition is satisfied. For i = 0, 1 there is a
real pi such that for any infinite subsequence X(k0)X(k1) . . . which is chosen
according to an “admissible selection procedure”, the limit

lim
n

|{m < n : X(km) = i}|
n

(1.1)

exists and is equal to pi. We stress that in particular, a selection procedure
resulting in kn = n for all n is admissible. Needless to say, von Mises
interprets the value pi as the probability of i.

Von Mises [48] did not specify the meaning of “admissible selection pro-
cedure” rigorously, which was met with criticism. Based on a more precise
formulation that von Mises [49] gave in a monograph in 1931, we interpret a
selection procedure as a total function f from the set of finite binary strings
to {0, 1} such that the mapping f composed with n 7→ X(0) . . . X(n − 1)
yields the characteristic function of {k0, k1, . . .}, where k0, k1, . . . is an in-
creasing sequence of numbers (resulting in the subsequenceX(k0)X(k1) . . .).
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Now according to von Mises, a selection procedure is admissible if it is
given by a “rule”. But there remains a gap as von Mises did not define the
term “rule”. Note that by a straightforward argument, in the nontrivial
case pi 6= 0, 1 there exists no random sequence in the sense of von Mises
if one imposes no restrictions on the selection procedures at all. Wald [50]
proved the existence of random sequences in the sense of von Mises for any
countable set of admissible selection procedures. Subsequently Church [10]
suggested that an admissible selection procedure “should be represented
mathematically, not as a function, or even as a definition of a function,
but as an effective algorithm for the values of a function”. Here Church
refers to an effectivity notion in the sense of the three equivalent concepts
λ-definability, µ-recursiveness, and (Turing) computability.

The contributions of Wald and Church now add up to rigorously defined
randomness concepts, which are often referred to as (instances of) stochas-
ticity. For the definitions of the stochasticity notions we confine ourselves to
the most prominent case of p0 = p1 = 1/2. Taking up the work of Wald, we
say that for any countable set F of selection procedures, an infinite binary
sequence X(0)X(1) . . . is F -stochastic if for i = 0, 1 and for any selection
procedure f ∈ F resulting in an infinite subsequence X(k0)X(k1) . . ., the
limit (1.1) exists and is equal to 1/2. In the special case suggested by Church,
where F is the set of computable functions, the F -stochastic sequences are
called computably stochastic.

Ville [47] showed the inadequacy of stochasticity as a formalization of
any reasonable intuitive notion of randomness in 1939, six years after Kol-
mogorov’s ground-breaking measure theoretical foundation of probability
theory [24]. In Kolmogorov’s framework, we consider the Lebesgue measure
on the Cantor space 2ω of all infinite binary sequences, where by Lebesgue
measure we mean the probability measure which is equal to the infinite
product measure resulting from fair coin tossing. Now with probability 0, a
sequence X = X(0)X(1) . . . ∈ 2ω satisfies

(∀n ∈ ω)
|{m < n : X(m) = 1}|

n
≥ 1

2
, (1.2)

which is e.g. a consequence of the law of the iterated logarithm. Certainly
any randomness concept C should be such that no C-random sequence X
satisfies (1.2). However Ville [47] constructed for any countable set of selec-
tion procedures F an F -stochastic sequence X such that (1.2) is satisfied.

The next important algorithmic randomness concept, that did away with
the just described inadequacy of stochasticity, was introduced by Martin-Löf
in 1966. A probability-one law is an assertion which, for some property P ,
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states that the class of infinite binary sequences satisfying P has Lebesgue
measure 1. If a sequence satisfies P then it obeys the probability-one law,
otherwise it violates the law. While stochastic sequences are defined in a
way such that they obey the strong law of large numbers, Ville’s example
showed that there is a stochastic sequence X which violates the law of the
iterated logarithm. Now Martin-Löf calls a sequence random if it obeys a
certain class of effective probability-one laws (including, for example, the law
of the iterated logarithm). In this sense, one describes a random sequence
by saying that it is “typical”.

While Martin-Löf’s definition of randomness is still the most prominent
one today, it has also been criticized, most notably by Schnorr who has pro-
posed further randomness concepts. Some of Schnorr’s main contributions
were obtained in the framework of Ville’s investigations on martingales,
which are generalizations of selection procedures. Martingales are the basis
for the betting game approach to algorithmic randomness, which requires
that a random sequence be “unpredictable”. In a nutshell, a sequence X is
unpredictable if in the limit one cannot accumulate an unbounded amount
of capital when playing a betting game where one bets successively on the
single bits of X. Schnorr considered effective versions of martingales and
used these e.g. to give a characterization of the random sequences in the
sense of Martin-Löf.

Besides the requirements that a random sequence be “typical” and “un-
predictable”, there is a third main approach which requires, roughly, that
the initial segments of a random sequence be “incompressible”. These ap-
proaches along with the above-mentioned contributions of Martin-Löf and
of Schnorr are reviewed briefly for further use in Chapter 2. For a com-
prehensive account we refer e.g. to Ambos-Spies and Kučera [1] and to the
monograph of Li and Vitányi [29]. The forthcoming monographs of Downey
and Hirschfeldt [15] and of Nies [33] are extensive presentations of algorith-
mic randomness in the realm of computability theory.

1.2 Definitions and Notation

We review some standard definitions and notation. For details see e.g.
Odifreddi [36] and Soare [43].

Numbers, sets, sequences, classes, and quantifiers. We let ω,Q,
and R denote the set of natural numbers, of rational numbers, and of real
numbers, respectively. Furthermore, we will use Q+ and R+ to denote the
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set of positive rationals and of positive reals, respectively. The term 2ω

denotes the Cantor space, i.e., the class of the countably infinite binary
sequences equipped with the product topology which is derived from the
discrete topology on {0, 1}. An element of 2ω is called a sequence and
is usually denoted by one of the letters X, Y , and Z. A sequence X =
X(0)X(1) . . . is identified with the set A ⊆ ω where n ∈ A iff X(n) = 1. We
shall use 0ω to denote the sequence that consists only of 0s. If not stated
otherwise, number means natural number, set means set of numbers, and
class means set of sequences. The relative complement of a class C in 2ω is
denoted by C.

We let q0, q1, . . . denote the nonnegative rationals, ordered according to
an effective representation. A computable sequence of rational numbers is
a sequence qi0 , qi1 , . . . where k 7→ ik is a computable function.

The quantifiers ∃,∀,∃∞, and ∀∞ denote respectively: there exists, for
all, there exist infinitely many, and for almost every.

Strings, finite sets of strings, initial segments X � n, cones [σ]. A
string is a finite binary sequence, usually denoted by ρ, σ, or τ . We denote
the set of all strings by 2<ω, and the empty string by ε. We write |σ| for
the length of a string σ. The (i+ 1)st bit of a string σ is denoted by σ(i),
so we have σ = σ(0) . . . σ(|σ| − 1). We identify numbers and strings by
the following bijection from ω to 2<ω. Let σ0, σ1, . . . be the sequence of all
strings ordered by the length-lexicographical ordering. Then a number n
is mapped to the nth string σn. If V = {σi1 , . . . , σik} is some finite set of
strings then 2i1 + . . . + 2ik is the canonical index of V . We let Dm denote
the finite set of the strings with the canonical index m, where D0 denotes
the empty set.

For any strings σ and τ , the term στ denotes the concatenation of σ
and τ , and σ � τ means that σ is a prefix of τ . In this case, if σ 6= τ , then σ
is a proper prefix of τ . Further, ifX is a sequence then σX is the sequence Y ,
where Y (i) = σ(i) if i < |σ| and Y (i) = X(i − |σ|) otherwise. Similarly,
σ � X means that σ(i) = X(i) for all i < |σ|. The initial segment X � n of
a sequence X of length n is the string σ of length n such that σ � X.

We call the basic open classes of 2ω cones. I.e., a cone is a class C ⊆ 2ω

such that there is a string σ with C = {X ∈ 2ω : σ � X}. In this case, C is
called the cone generated by σ and is denoted by [σ]. If A is a set of strings
then let [A] = ∪σ∈A [σ].

A set of strings A ⊆ 2<ω is called prefix-free if for any two distinct strings
σ, τ ∈ A, we have that σ 6� τ .
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Lebesgue measure µ. Throughout this thesis, the letter µ denotes the
Lebesgue measure on 2ω, where by Lebesgue measure we mean the proba-
bility measure which is equal to the countably infinite product measure of
the uniform probability measure on {0, 1}. For σ a string and A a set of
strings, we write µ [σ] and µ [A] instead of µ([σ]) and µ([A]), respectively.

Partial computable functions, computably enumerable sets. We
fix a standard listing {ϕe}e∈ω of the partial computable functions from ω
to ω. Accordingly, W0,W1, . . . is a standard listing of the computably enu-
merable (c.e.) sets, where by definition, eachWe is the domain domϕe of ϕe.
If the eth Turing machine on input x halts after less than s computation
steps and outputs y then we write ϕe,s(x) = y provided that x, y, e < s. If
such a y exists, i.e., if ϕe,s(x) converges, then we write ϕe,s(x) ↓; otherwise
ϕe,s(x) ↑ denotes that ϕe,s(x) diverges. For every e, s let We,s = domϕe,s.

For every e, x we write ϕe(x) ↓ if there is an s such that ϕe,s(x) ↓. Let
ϕ,ψ be partial computable functions. Then for any x, ϕ(x) ' ψ(x) means
that ϕ(x) ↓⇔ ψ(x) ↓, and that ϕ(x) = ψ(x) in case ϕ and ψ both converge
on x. Furthermore, ϕ ' ψ means that ϕ(x) ' ψ(x) for all x ∈ ω.

By the identification of numbers and strings, partial computable func-
tions are also viewed as functions from strings to strings, and accordingly,
the c.e. sets are viewed as sets of strings as well.

Reducibilities. Recall that the partial computable functions can be rel-
ativized to any sequence X. Roughly, an oracle Turing machine M with
oracle X works like an ordinary Turing machine except that it has an ad-
ditional input tape on which the characteristic sequence of X is written.
During the computation, M may ask a query n ∈ ω, i.e., M reads the or-
acle tape at position n and checks whether X(n) = 0 or X(n) = 1. Let
Q(M,X, x, s) be the set of queries occurring during the first s computa-
tion steps of the computation of M on input x with oracle X. Similarly, we
let Q(M,X, x) be the set of queries occurring during the entire computation
of M . If M on input x with oracle X outputs y then we write M(X,x) = y
or MX(x) = y.

We fix a standard listing M0,M1, . . . of all oracle Turing machines. The
eth machine Me computes a partial functional Φe : 2ω × ω → ω that we
call the eth Turing functional. As above we may also write ΦX

e (x) = y
instead of Φe(X,x) = y. Similar to above, we write ΦX

e,s(x) = y if x, y, e < s
and if the eth oracle machine Me with oracle X on input x outputs y in
less than s computation steps. Further, we let WX

e,s = dom ΦX
e,s and WX

e =

5



dom ΦX
e . The use functions of a machine Me with oracle X are the functions

uX
Me,s (s ∈ ω) and uX

Me
, defined as follows. We let uX

Me,s(x) and uX
Me

(x)
be the maximum number in {0} ∪ Q(Me, X, x, s) and {0} ∪ Q(Me, X, x),
respectively. Note that for all X, e, x, y, s we have uX

Me,s(x) < s.
A sequence X is Turing-reducible to a sequence Y if there is an oracle

Turing machine M such that M(Y, x) = X(x) for all x. The definition
of truth-table-reducibility is basically the same, except that in addition we
require that M is total, i.e., for all oracles Z and for all inputs x, the
computation of M(Z, x) eventually terminates. By a result due to Nerode
and to Trakhtenbrot [36, Proposition III.3.2], for any {0, 1}-valued total
oracle Turing machine there is an equivalent one that is again total and
queries its oracle nonadaptively (i.e., M computes a list of queries that are
asked simultaneously and after receiving the answers, M is not allowed to
access the oracle again). A sequence X is weak truth-table-reducible to a
sequence Y if X is Turing-reducible to Y by an oracle Turing machine M
and if there is a computable function g such that for every oracle X the
use of M with oracle X is bounded by g. A sequence X is computably
enumerable in a sequence Y if there is an oracle Turing machine M such
that M(Y, x) = 1 in case x ∈ X and M(Y, x) is undefined otherwise. For r
in {tt, wtt, T, c.e.}, we say X is r-reducible to Y , or X ≤r Y for short,
if X is reducible to Y with respect to truth-table, weak truth-table, Turing,
or computably enumerable reducibility, respectively. By the above it is
immediate that

X ≤tt Y =⇒ X ≤wtt Y =⇒ X ≤T Y =⇒ X ≤c.e. Y ,

and in fact it can be shown that all these implications are strict.
We shall also consider reductions of a sequence to itself. Of course,

reducing a sequence to itself is trivial if there are no further restrictions
on the oracle Turing machine performing the reduction. This leads to the
concepts of autoreducibility and self-reducibility.

A sequence is T-autoreducible if it can be reduced to itself by an oracle
Turing machine that is not allowed to query the oracle at the current input,
and a sequence is T-self-reducible if it can be reduced to itself by an oracle
Turing machine that may only query the oracle at places strictly less than
the current input. For reducibilities other than Turing reducibility, the
concepts of auto- and self-reducibility are defined in the same manner. E.g.,
a sequence is wtt-autoreducible if it is T-autoreducible by an oracle Turing
machine with a computable bound on its use, and a sequence X is c.e.-self-
reducible if there is an oracle Turing machine that on input x queries its
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oracle only at places z < x and such that M(X,x) = 1 in case x ∈ X and,
otherwise, M(X,x) is undefined.

Σ0
n-classes, Π0

n-classes. A class C ⊆ 2ω is a Σ0
1-class if C = [W ] for some

computably enumerable set W . Moreover, if e ∈ ω is such that C = [We]
then e is called an index of C. The complement of a Σ0

1-class C is called
a Π0

1-class, and it has the same indices as C. Σ0
1- and Π0

1-classes are also
called “effectively open” and “effectively closed”, respectively. In general,
the complement of a Σ0

n-class C is called a Π0
n-class and it has the same

indices as C. Further, a class C ⊆ 2ω is a Σ0
n+1-class if it is an effective

union of Π0
n-classes, i.e., if C is a union of Π0

n-classes D0,D1, . . . such that
there is a computable function g which maps each n to an index of Dn. In
this situation, an index of the function g is called an index of C.

1.3 Thesis Outline and Bibliographical Notes

Throughout this thesis, “sequence” means infinite binary sequence, unless
stated otherwise.

Chapter 2. We recapitulate the definitions of Martin-Löf randomness,
of computable randomness, and of Schnorr randomness. Along the way, we
review the three main approaches to algorithmic randomness. These rely
on effective measures, betting games, and incompressibility, which in turn
are based on the respective notions of tests, martingales, and Kolmogorov
complexity.

Chapter 3. Martin-Löf randomness is defined in terms of tests [30]. Two
central results in the theory of algorithmic randomness were the character-
izations of Martin-Löf randomness in terms of martingales and in terms of
Kolmogorov complexity due to Schnorr. Computable randomness was in-
troduced by Schnorr [41] using martingales. We give a positive answer to a
question of Ambos-Spies and Kučera, who have asked whether computable
randomness can be characterized in terms of tests [1, Open Problem 2.6].
Namely, we introduce bounded Martin-Löf tests and we prove that a se-
quence is computably random if and only if it withstands every bounded
Martin-Löf test. We note that a solution to the question of Ambos-Spies
and Kučera was obtained independently and earlier by Downey, Griffiths,
and LaForte [12] (see the bibliographical notes below).

Chapter 4. Inspired by the test characterization of computable ran-
domness in terms of bounded Martin-Löf tests, we define a version of Kol-
mogorov complexity by introducing bounded machines. That version is used
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to characterize computable randomness in a similar fashion as Martin-Löf
randomness was characterized via Kolmogorov complexity by Schnorr. The
latter result allowed for a study of certain lowness notions in the Martin-
Löf setting (lowness for K and K-triviality). Based on our characterization
result, we investigate the corresponding lowness notions w.r.t. computable
randomness. Namely, we prove some results on lowness for bounded ma-
chines and bounded triviality. As a chronological remark, we note that the
results in this chapter were obtained after the results in Chapter 5.

Chapter 5. Downey and Griffiths [13] introduced computable machines
and gave a characterization of Schnorr randomness via a version of Kol-
mogorov complexity which they defined in terms of computable machines.
They initiated the study of Schnorr triviality as an analog of K-triviality
(see above). In this chapter, we define lowness for bounded machines as an
analog of lowness for K. We prove that a sequence is low for computable
machines if and only if it computably traceable. Consequently, by results
of Terwijn and Zambella [45], and of Kjos-Hanssen, Nies, and Stephan [23],
lowness for bounded machines is equivalent to lowness for Schnorr random-
ness and to lowness for Schnorr tests.

Chapter 6. For every sequence X there is a Martin-Löf random se-
quence Y such that X is effectively decodable from Y . This is a central
result obtained independently by Gács [21] and Kučera [25]. Using ideas
from their proofs, that are formulated in terms of tests, we present a some-
what simpler proof in terms of martingales. More precisely, a sequence Y
as above is constructed by diagonalizing against appropriate martingales.
By a variant of that construction, we prove that there exists a computably
random sequence that is weak truth-table autoreducible. Further, we show
that a sequence is computably enumerable self-reducible if and only if its
associated real is computably enumerable.

Chapter 7. Book, Lutz, and Wagner [4] show that any union of Π0
1-

classes that is closed under finite variation is a Lebesgue null class if and
only if it contains no Martin-Löf random sequence. We extend this result
by showing that any union of Π0

1-classes that is closed under finite variation
is a Lebesgue null class if and only if it contains no Kurtz random sequence,
where Kurtz randomness is another randomness concept that is weaker than
Martin-Löf randomness. For any randomness concept C, we consider C-null
classes, which are effective versions of Lebesgue null classes (on the Cantor
space 2ω). While for Σ0

2-classes being a Schnorr null class is equivalent to
being a Lebesgue null class, we show that the corresponding assertion for
“Kurtz null class” instead of “Schnorr null class” is false. Finally, we prove
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two results on “Almost” classes. We demonstrate that every Almost class
with respect to a bounded reducibility has computable packing dimension
zero. We further show, given a bounded reducibility R that is upwards
closed under finite variation, that a sequence is contained in the respective
Almost class if and only if it is computable and not R-deep.

Bibliographical Notes

The first characterization of computable randomness in terms of tests is
due to Downey, Griffiths, and LaForte [12]. Later and independently, the
characterization result presented in Chapter 3 was obtained together with
Merkle and Slaman. It is part of an article [32] that was published in the
journal Theory of Computing Systems.

Chapter 5 is joint work with Downey, Greenberg, and Nies, and will be
published in the proceedings of the conference Computational Prospects of
Infinity [11].

The results of Chapter 6, which were obtained together with Merkle,
were published in the Journal of Symbolic Logic [31].

The material presented in Chapter 7 is joint work with Merkle.
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Chapter 2

Fundamental Randomness
Notions

The three main approaches to define a concept of an algorithmically random
sequence rely on effective measures, betting games, and incompressibility.
In this chapter, we recapitulate these approaches as well as the respective
fundamental notions of tests, martingales, and Kolmogorov complexity. Af-
ter recalling the definition of Martin-Löf randomness in terms of tests, we
review characterizations of Martin-Löf randomness via martingales and via
Kolmogorov complexity. These fundamental results due to Schnorr show
that Martin-Löf randomness is a robust notion. In addition to Martin-Löf
randomness, we review computable randomness and Schnorr randomness,
two central concepts which were introduced by Schnorr.

2.1 Tests and Randomness due to Martin-Löf

The most prominent randomness concept has been introduced by Martin-
Löf [30] using measure theory. As pointed out in Section 1.1, stochasticity
has been considered an inadequate randomness concept because of a con-
struction due to Ville, which shows that for any countable set F of selection
procedures there is an F -stochastic sequence X which violates the law of
the iterated logarithm. Now Martin-Löf’s approach was to identify the ran-
dom sequences with those sequences which obey all probability-one laws of a
certain collection (that contains more than just the strong law of large num-
bers). In this sense, a random sequence is often called “typical”. Clearly, no
sequence can obey all probability-one laws since for each sequence X, the
class 2ω \ {X} has Lebesgue measure 1. Martin-Löf introduced an effective
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version of probability-one laws, or rather an effective version of null classes,
nowadays called Martin-Löf null classes, that are interpreted as the classes
of sequences which violate some effectively given probability-one law. Con-
sequently, a sequence is random in the sense of Martin-Löf if it does not
belong to any Martin-Löf null classes.

The basis for the definition of effective null classes is the following classi-
cal characterization. A class C is a Lebesgue null class if and only if there is
a sequence of classes A0,A1, . . . such that each An is an open covering of C,
i.e., a union of basic open classes with C ⊆ An, such that µ(An) ≤ 2−n. We
note w.r.t. this classical characterization, that instead of the sequence 2−n

for the measure bounds one may choose any sequence that converges to 0.
In what follows, we recall the definition of Martin-Löf’s randomness con-

cept which is nowadays referred to as Martin-Löf randomness.

As stated in section 1.2, W0,W1, . . . denotes a standard listing of the
computably enumerable sets. Recall that a uniformly computably enumer-
able sequence of sets is a sequence of sets A0, A1, . . . such that there is a
computable function g with An = Wg(n) for all n.

Definition 2.1 (Martin-Löf [30]). (i) A Martin-Löf test is a uniformly
computably enumerable sequence of sets A0, A1, . . . such that µ [An] ≤
2−n for each n.

(ii) A class of reals C is a Martin-Löf null class if there is a Martin-Löf
test A0, A1, . . . such that C ⊆ ∩n[An]. In this case, we say that C is
covered by A0, A1, . . . and if, moreover, C is the singleton {X} then
we also say that X is covered by A0, A1, . . . .

(iii) A sequence X is Martin-Löf random if X is not covered by any Martin-
Löf test.

Convention. We shall use the following bit of terminology. A real X
withstands a Martin-Löf test A0, A1, . . . if X is not covered by A0, A1, . . ..

Obviously, a sequence is Martin-Löf random if and only if it does not
belong to any Martin-Löf null class.

The measure bounds 20, 2−1, . . . in the first item of Definition 2.1 could
be replaced by any other suitable sequence of measure bounds without
changing the resulting concepts as we show next.

Remark 2.2. (i) As stated in Section 1.2, q0, q1, . . . is an (effective) se-
quence of the nonnegative rational numbers. For any computable function
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f : ω → ω where limn qf(n) = 0, we call a sequence of reals r0, r1, . . . effec-
tively f-converging with limit r if r = limn rn and for all n, |r− rn| ≤ qf(n).
Now suppose r0, r1, . . . is effectively f -converging with limit r and g is any
computable function with limn qg(n) = 0. Then it is not hard to see that
one can compute effectively a sequence of indices n0, n1, . . . such that the
subsequence rn0 , rn1 , . . . is effectively g-converging with limit r.

(ii) By the above, note that instead of the measure bounds 20, 2−1, . . .
in the first item of Definition 2.1 we could choose qf(0), qf(1), . . . for any
computable function f such that limn qf(n) = 0, without changing the null
class and the randomness concept. C

To explain the term “test”, we note that Martin-Löf motivates his def-
inition of randomness by statistical tests for randomness, which rely on
probability-one laws. We give a sketch of these ideas following the original
account of Martin-Löf [30]. First we discuss tests which accept or reject
strings, and later we shall extend the arguments to acceptance and rejec-
tion of sequences. Fix a probability-one law, say the strong law of large
numbers, and consider a test which rejects (a string) if the ratio of 1s differs
“too much from 1/2”. We restrict our attention to “levels of significance”
δ = 1/2, 1/4, 1/8 . . .. Again, this choice is arbitrary (see Remark 2.2). Now
the test may be given by the following “prescription”: Given a string σ of
length m,

“reject the hypothesis of randomness on the level δ = 2−n

provided ∣∣∣∣∣2
( ∑

i=0...m−1

σ(i)

)
−m

∣∣∣∣∣ > f(n,m),

where f is determined by the requirement that the number of
strings of length m for which the inequality holds should be
≤ 2m−n. Further, it should not be possible to diminish f without
violating this condition.” (Cited with slight adaptions from [30].)

To each level δ = 2−n, the set of strings Un for which the hypothesis of
randomness is rejected is called a “critical region”. Martin-Löf requires
that a test have “nested” critical regions, i.e., Uk ⊆ Un for all k ≥ n.

Now we turn our attention to sequences. Fix a probability-one law
and let N denote the (Lebesgue null) class of all sequences violating that
law. Martin-Löf considers a (classical) open covering Un of N with, say,
µ(Un) ≤ 2−n and a set Un = {σ ∈ 2<ω : [σ] ⊆ Un}. Then Un is interpreted
as the critical region of a test on the level δ = 2−n. Martin-Löf argues that
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a uniformly c.e. sequence of nested critical regions as above is the right for-
malization of the tests used in statistics. We note that, as in Definition 2.1,
one can abandon the requirement that the critical regions be nested without
changing the null class concept.

It is readily verified that the concept of a Martin-Löf null class is an
effective version of the classical concept of a Lebesgue null class. In par-
ticular, every Martin-Löf null class has Lebesgue measure zero. Then by
σ–additivity of measures, the union N of all Martin-Löf null classes also
has Lebesgue measure zero. A remarkable fact about N is stated in the
following theorem, analogs of which are not true in general for other ran-
domness concepts that are defined or characterized by a stricter test notion.

Theorem 2.3 (Martin-Löf [30]). There is a universal Martin-Löf test, i.e.,
there is a Martin-Löf test U0, U1, . . . such that for each class C ⊆ 2ω, we have
that C is a Martin-Löf null class if and only if C is covered by U0, U1, . . ..

Proof. First we give an effective list of all Martin-Löf tests. To this end, we
uniformly enumerate sets Ak,n with k, n ∈ ω as follows. At stage s, enumer-
ate for every k, n < s with ϕk,s(n) ↓ all elements of Wϕk(n),s \Wϕk(n),s−1

into Ak,n provided that µ
[
Wϕk(n),s

]
≤ 2−n. We denote the approxima-

tion of Ak,n at the end of stage s by As
k,n. Now the nth component of

the list’s kth Martin-Löf test Ak,0, Ak,1, . . . is defined as a union of finite
sets Ak,n = ∪sA

s
k,n. One can easily verify that via the above construction,

exactly the Martin-Löf tests are listed in an effective way. Let

Un =
⋃
k

Ak, k+n+1.

U0, U1, . . . is a Martin-Löf test because

µ [Un] ≤
∑

k

µ [Ak, k+n+1] ≤
∑

k

2−(k+n+1) ≤ 2−n.

To complete the proof we note that by construction, if a class C is covered
by the kth Martin-Löf test of our list, i.e., if C ⊆ ∩n [Ak,n], then C is covered
by U0, U1, . . ., too.

2.2 Martingales

One of the major approaches to randomness is via betting games (see Sub-
section 2.2.1). Betting games are based on betting strategies which can be
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coded into martingales. The concept of a martingale was, in a more general
context, introduced by Levy. A characterization of Lebesgue null classes in
terms of martingales was obtained by Ville [47]. Schnorr [40, 41, 42] consid-
ered effective versions of martingales and, in particular, gave a character-
ization of Martin-Löf randomness in terms of subcomputable martingales
(see Definition 2.12 and Theorem 2.13).

Definition 2.4. A martingale is a function d : 2<ω → R+ ∪ {0} such that
for all σ ∈ 2<ω,

d(σ) =
d(σ0) + d(σ1)

2
. (2.1)

Equation (2.1) is called the fairness condition, which is motivated by
the subsequent discussion on betting games.

2.2.1 Betting Games

We give the following description of a betting game. A player successively
places bets on the individual bits of an unknown sequence X ∈ 2ω. The
betting proceeds in rounds i = 1, 2, . . .. During round i, the player receives
as input the length i − 1 prefix of X and then, first, decides whether to
bet on the ith bit being 0 or 1 and, second, determines the stake that shall
be bet. The stake might be any fraction between 0 and 1 of the capital
accumulated so far, i.e., in particular, the player is not allowed to incur
debts. Formally, a player can be identified with a betting strategy

b : 2<ω → [−1, 1]

where on input σ the absolute value of b(σ) is the fraction of the current
capital that shall be at stake. Further, if b(σ) is negative then the bet is
placed on the next bit being 0. Otherwise, i.e., if b(σ) is nonnegative then
the bet is placed on the next bit being 1. We note that betting strategies
are generalizations of the selection procedures discussed in Section 1.1 (see
e.g. [1]).

We call the betting game fair because of how the capital is calculated
after each round, which we shall show next. This will also explain the term
“fairness condition” for (2.1). The player starts with strictly positive, finite
capital db(ε). At the end of each round, in case the current guess has been
correct, the capital is increased by this round’s stake and, otherwise, is
decreased by the same amount. So given a betting strategy b and the initial
capital, we can inductively determine the corresponding payoff function db
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by applying the equations

db(σ0) = db(σ)− b(σ) · db(σ)

and
db(σ1) = db(σ) + b(σ) · db(σ).

Intuitively speaking, the payoff db(σ) is the capital the player accumulates
until the end of round |σ| by betting on a sequence that has the string σ as
a prefix. Adding up the two equations, one gets that the payoff function db

is a martingale.
Conversely, any martingale d determines an initial capital d(ε) and a

betting function b (where we let b(σ) = 0 in case d(σ) = 0). By the preceding
discussion it follows for games as described above that for any martingale
there is an equivalent betting strategy and vice versa.

2.2.2 Succeeding Martingales and Randomness

Considering some arbitrary class B of betting strategies, a common intu-
ition would be to call a sequence X random with respect to B iff in the
limit, one cannot accumulate an unbounded amount of capital when play-
ing with any strategy b ∈ B against X. In this sense, one also says that
a random sequence has to be “unpredictable”. Since during the game the
capital is described by a martingale and since there is a 1-1 correspondence
between betting strategies and martingales, one usually considers certain
classes of martingales to define randomness concepts and omits an explicit
consideration of the underlying betting strategies.

Definition 2.5. A martingale d succeeds on a sequence X ∈ 2ω if

lim sup
n→∞

d(X � n) = ∞ .

A martingale d succeeds on a class C ⊆ 2ω if d succeeds on every sequence
in C.

As described above we shall choose a class of admissible martingales M
and call a sequence X random with respect to M if no martingale d ∈
M succeeds on X. Clearly, we cannot choose M to be the class of all
martingales since for any sequence X there is a trivial betting strategy
which doubles its capital in every round when applied to a game against X.
To get algorithmic randomness concepts we shall consider (several) classes
of effective martingales.
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As we shall see below the Martin-Löf random sequences are exactly
those sequences on which no subcomputable martingale succeeds. But first
we note some useful properties of martingales and we recall the notion of a
computably enumerable real.

Remark 2.6. If d is a martingale, σ a string, and n a natural number, then

d(σ) =
1
2n

∑
τ∈{0,1}n

d(στ). (2.2)

This can be proved with an easy inductive argument that uses the fairness
condition (2.1). Conversely, (2.1) is a special case of (2.2) where n = 1. C

Remark 2.7. For every set of strings A there is a subset B ⊆ A such that B
is prefix-free and [A] = [B]. Such a set B consists of all strings in A that
do not have a proper prefix in A. C

We will state an effective version of the above remark in Proposition 4.2.

Lemma 2.8 (Ville [47]). Let d be a martingale.

(i) For any prefix-free set A ⊆ 2<ω and any string σ ∈ 2<ω,∑
{τ∈A : σ�τ}

2−|τ |d(τ) ≤ 2−|σ|d(σ) . (2.3)

(ii) Let Succn(d) = {σ : d(σ) ≥ n} for any n ∈ ω. Then

µ [Succn(d)] ≤ d(ε)
1
n
. (2.4)

Inequality (2.4) is called Kolmogorov’s inequality.

Proof. (i) It suffices to consider finite setsA only. Letm = max {|τ | : τ ∈ A}.
Then, by applying (2.2) in the first and last line below,∑

{τ∈A : σ�τ}

2|σ|−|τ |d(τ) ≤
∑

{τ∈A : σ�τ}

∑
ξ∈{0,1}m−|τ |

2|σ|−|τ |−(m−|τ |)d(τξ)

=
∑

{ρ∈{0,1}m−|σ| : ∃τ∈A (σ�τ�σρ)}

2|σ|−md(σρ)

≤
∑

ρ∈{0,1}m−|σ|

2−(m−|σ|)d(σρ)

= d(σ).
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(ii) By Remark 2.7, let A ⊆ Succn(d) be prefix-free such that [A] =
[Succn(d)]. Then by (i),

nµ [A] = n
∑
σ∈A

2−|σ| ≤
∑
σ∈A

2−|σ|d(σ) ≤ d(ε).

Definition 2.9. (i) A computably enumerable real, c.e. real for short,
is a real that is the limit of a nondecreasing computable sequence of
rational numbers.

(ii) A uniformly c.e. sequence of reals is a sequence of reals r0, r1, . . . such
that there is a computable function f in two arguments which satisfies
the following condition: for each n, the sequence qf(n,0), qf(n,1), . . .
witnesses that rn is a c.e. real.

In the literature, sequences are also called sets or reals. The former alter-
native is due to the identification of sequences and sets of natural numbers
as discussed in Section 1.2. On the other hand, one can view a sequence as
a binary expansion of a real in the unit interval [0, 1) and vice versa, where
in order to get a bijection, one considers e.g. only sequences with infinitely
many 0s. In this sense, we can assign properties that we have defined w.r.t.
sequences, like “being Martin-Löf random”, to reals (in the unit interval),
too.

Note that the measures of the components of a Martin-Löf test are a
uniformly c.e. sequence of reals. To make a brief digression on uniformly c.e.
sequences of reals, we note without proof the following result on universal
Martin-Löf tests and its converse below.

Theorem 2.10 (Kučera and Slaman [26]). If U0, U1, . . . is a universal
Martin-Löf test then µ [U0] ,µ [U1] , . . . is a uniformly c.e. sequence of Martin-
Löf random reals.

Theorem 2.11 (Merkle, Mihailović, and Slaman [32]). Let r0, r1, . . . be
a uniformly c.e. sequence of Martin-Löf random reals with rn ≤ 2−n for
every n. Then there is a universal Martin-Löf test U0, U1, . . . such that for
each n, µ [Un] = rn.

Now we turn to the martingale characterization of Martin-Löf random-
ness.
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Definition 2.12 (Schnorr [41]). A subcomputable martingale is a mar-
tingale d such that d(ε), d(0), d(1), d(00), . . . is a uniformly c.e. sequence of
reals.

Theorem 2.13 (Schnorr [41]). A class C ⊆ 2ω is a Martin-Löf null class
if and only if there is a subcomputable martingale that succeeds on C. In
particular, a sequence is Martin-Löf random if and only if no subcomputable
martingale succeeds on it.

Proof. Suppose that d is a subcomputable martingale that succeeds on a
class C. We may assume that the initial capital d(ε) of d is less than or equal
to 1. For every n, let An = Succ2n

(d) where the sets Succ0(d),Succ1(d), . . .
are defined in Lemma 2.8 (ii), i.e., let

An = Succ2n
(d) = {σ ∈ 2<ω : d(σ) ≥ 2n}. (2.5)

We claim that the sequence A0, A1, . . . is a Martin-Löf test. Indeed, it is
obviously uniformly c.e. and by Kolmogorov’s inequality (2.4), µ [An] ≤
2−n for each n. Moreover, A0, A1, . . . covers C because, by construction, a
sequence X is covered by A0, A1, . . . if and only if d succeeds on X.

For the converse direction, assume that C is a Martin-Löf null class. For
every string σ, let dσ be the martingale with initial capital 2−|σ| that doubles
along σ, i.e., dσ has the value 2|τ |−|σ| on any prefix τ of σ, the value 1 on
any extension of σ, and the value 0 otherwise. If we pick any Martin-Löf
test A0, A1, . . . which covers C, then d defined by

d(ξ) =
∑

{σ : σ∈∪nAn}

dσ(ξ)

is a subcomputable martingale that succeeds on C.

Corollary 2.14. There is a universal subcomputable martingale, i.e., there
is a subcomputable martingale which succeeds on all sequences which are not
Martin-Löf random.

Proof. In order to obtain a martingale as desired, it suffices to apply the
construction from the proof of Theorem 2.13 to the Martin-Löf null class of
all sequences that are not Martin-Löf random.

The following will turn out useful in constructions of random sequences
in Chapter 6.
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Definition 2.15. A martingale d succeeds on a sequence X by unbounded
limit inferior if

lim inf
n→∞

d(X � n) = ∞.

Remark 2.16. There is a subcomputable martingale d that succeeds by
unbounded limit inferior on every sequence that is not Martin-Löf random.

For a proof, it suffices to note that the universal subcomputable mar-
tingale as constructed in the proof of Corollary 2.14 already has the desired
property. C

2.3 Kolmogorov Complexity

We briefly review prefix-free Kolmogorov Complexity as a basis for the
incompressibility approach to algorithmic randomness.

Definition 2.17. (i) A prefix-free machine is a Turing machine M such
that the domain of M is a prefix-free set.

(ii) Given a prefix-free machine M , the M -complexity KM (σ) of a string σ
is defined by

KM (σ) = min {|τ | : M(τ) = σ},

where KM (σ) = ∞ in case σ is not in the range of M .

Theorem 2.18. There is a universal prefix-free machine U , i.e., for all
prefix-free machines M ,

(∃c ∈ ω)(∀σ ∈ 2<ω) KU (σ) ≤ KM (σ) + c. (2.6)

Such a machine U is for example given by the following specification:
U converges on an input ρ if and only if ρ = 1e0τ for some e ∈ ω and
τ ∈ 2<ω such that M = ϕe converges on τ . In this case U outputs M(τ).
In particular, we have

(∀e ∈ ω)(∀τ ∈ 2<ω) U(1e0τ) ' ϕe(τ). (2.7)

Definition 2.19. We fix a universal machine U as above and define the
prefix-free Kolmogorov complexity K of a string σ by K(σ) = KU (σ).

Prefix-free Kolmogorov complexity is a version of the “plain Kolmogorov
complexity”. This concept is defined similary where one abandons the re-
quirement that the considered machines be prefix-free. Plain Kolmogorov
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complexity was introduced in the 1960s pairwise independently by Chaitin,
Kolmogorov, and Solomonoff. In particular, they proved a result for the
plain complexity notion which Theorem 2.18 is an analog of. The history
of the development of plain Kolmogorov complexity is rather convoluted,
see Li and Vitányi [29, Sect. 1.13] who give a detailed account of that mat-
ter. Prefix-free Kolmogorov complexity was introduced independently by
Levin [28], Gács [20], and Chaitin [8] in 1974 and 1975, see also Li and
Vitányi [29, Sect. 3.10].

Note that if M is a prefix-free machine, then for the halting probability
µ [domM ] of M we have µ [domM ] =

∑
{2−|σ| : σ ∈ domM} ≤ 1. Further-

more, observe that µ [domM ] is a c.e. real. The halting probability of any
universal prefix-free machine is a natural example of a Martin-Löf random
c.e. real. Such a real is called a Chaitin’s Ω number.

The idea underlying the approach to algorithmic randomness via Kol-
mogorov complexity can be briefly described as follows. Informally, it is
required that the initial segments of a random sequence should not be “sig-
nificantly compressible”, i.e., their Kolmogorov complexity should not be
“significantly” low. It is a remarkable result that by a suitable incompress-
ibility requirement we can characterize the Martin-Löf random sequences.

Theorem 2.20 (Schnorr1). A sequence X is Martin-Löf random if and
only if

(∃c ∈ ω)(∀n ∈ ω) K(X � n) ≥ n− c. (2.8)

By variations of (2.8) one obtains characterizations of other randomness
concepts, see Downey and Hirschfeldt [15] for a comprehensive account.
E.g., one could change the complexity notion by considering different classes
of machines. Furthermore, the constant c might be replaced by a suitable
function of the length n, and finally one may alter the requirement “for all
lengths” to “for infinitely many lengths”.

For future reference we present a proof of the ‘only if’ part of Theo-
rem 2.20, omitting a proof of the more difficult ‘if direction’. (For a proof
of the ‘if direction’ see for example [29].) So for all m ∈ ω, let

Am =
{
σ ∈ 2<ω : K(σ) ≤ |σ| −m

}
. (2.9)

1Li and Vitányi [29, Section 3.10] report on the following: In the original submission
of [8], Chaitin proposed to call a sequence X random if X satisfies (2.8). Acting as a
referee of that paper, Schnorr showed the equivalence to Martin-Löf randomness.
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Note that the sequence (Am)m∈ω is uniformly c.e. and for each m,

µ [Am] ≤
∑

σ∈Am

2−|σ| ≤ 2−m,

where the last inequality holds because M is a prefix-free machine. Conse-
quently, (Am)m∈ω is a Martin-Löf test. Now assume that for a real X, (2.8)
does not hold. Then for all m there is an n such that K(X � n) < n −m.
Hence X is covered by the Martin-Löf test (Am)m∈ω. This concludes the
proof of the ‘only if’ part of the theorem.

2.4 Two Concepts due to Schnorr

In a series of papers [38, 39, 40, 41] and a monograph [42] Schnorr indicated
possible deficiencies of Martin-Löf randomness and argued in favor of a
randomness concept which is weaker than Martin-Löf randomness. The
concept he introduced is referred to as Schnorr randomness today. Aside
from this notion, Schnorr [41] defined an intermediate concept which is
nowadays known as computable randomness.

2.4.1 Computable Randomness

Schnorr [41] raises an objection to Martin-Löf randomness as follows. By
Theorem 2.13, the Martin-Löf random sequences are exactly those sequences
on which no subcomputable martingale succeeds. Now Schnorr considers
martingales that we shall refer to as supercomputable martingales. While
the range of subcomputable martingales is uniformly approximable from
below, the supercomputable martingales are defined similarly by requiring
that the range be uniformly approximable from above. Schnorr [41] calls
a sequence “(2)-random” if no supercomputable martingale succeeds on it
and he shows that this randomness concept is not equivalent to Martin-Löf
randomness. He argues that this asymmetry is a deficiency of Martin-Löf
randomness, and with computable randomness he aims at “developing a
concept of randomness based on martingales whose algorithmic structure is
symmetrical”.

After defining two versions of computable martingales we review Schnorr’s
result [42] by which both versions are equivalent, i.e., give rise to the same
null classes.

For the following definitions see Remark 2.2.
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Definition 2.21. (i) An effectively converging sequence of rationals with
limit q is a sequence of rationals qi1 , qi2 , . . . such that q = limn qin and
for all n, |q − qin | ≤ 2−n.

(ii) A computable real is a real r such that there is a computable func-
tion f = ϕe with qf(0), qf(1), . . . being an effectively converging se-
quence of rationals with limit r. In this case r is computable via f .

(iii) A uniformly computable sequence of reals is a sequence of reals r0, r1, . . .
such that there is computable function g with rn being computable
via ϕg(n) for each n.

Definition 2.22. (i) An R-computable martingale is a martingale d such
that d(ε), d(0), d(1), d(00), . . . is a uniformly computable sequence of
reals.

(ii) A Q-computable martingale is a martingale d such that there is a
computable function h with d(σ) = qh(σ) for each string σ.

Observe that, trivially, a martingale d is R-computable if and only if
there is a computable function D : 2<ω → ω such that d(σ) is computable
via ϕD(σ) for each string σ.

Proposition 2.23 (Schnorr [42]). For every R-computable martingale d
there is a Q-computable martingale d̃ such that for all sequences X, d suc-
ceeds on X if and only if d̃ succeeds on X.

Proof (cf. [33]). Consider the function f(σ) = d(σ0) − d(σ). Note that
d(σ1)− d(σ) = −f(σ) and so

d(σb) = d(σ) + (−1)bf(σ) for b = 0, 1.

Consequently for all strings σ,

d(σ) = d(ε) +
|σ|−1∑
n=0

(−1)σ(n)f(σ � n).

Let D be a computable function such that each value d(σ) is computable
via ϕD(σ). Define a function f̃ by

f̃(σ) = qϕD(σ0)(|σ|+4) + qϕD(σ)(|σ|+4).

Then ∣∣∣f(σ)− f̃(σ)
∣∣∣ ≤ 2 · 2−(|σ|+4) = 2−|σ|−3.
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Define d̃ inductively as follows. Choose d̃(ε) such that d(ε) + 1/4 ≤ d̃(ε) ≤
d(ε) + 3/4. Then ∣∣∣∣d(ε) +

1
2
− d̃(ε)

∣∣∣∣ ≤ 1
4
.

Now suppose d̃ is already defined on a string σ. Then let

d̃(σb) = d̃(σ) + (−1)bf̃(σ) for b = 0, 1.

Obviously, d̃ satisfies the fairness condition (2.1). Furthermore,∣∣∣∣d(σ) +
1
2
−d̃(σ)

∣∣∣∣
≤
∣∣∣∣d(ε) +

1
2
− d̃(ε)

∣∣∣∣+
∣∣∣∣∣∣
|σ|−1∑
n=0

(−1)σ(n+1)
(
f(σ � n)− f̃(σ � n)

)∣∣∣∣∣∣
≤ 1

4
+ 2−3

|σ|−1∑
n=0

2−n

≤ 1
2
.

It follows that d(σ) ≤ d̃(σ) ≤ d(σ) + 1 for all strings σ, and so the
Q-computable martingale d̃ succeeds on exactly those sequences which d
succeeds on.

Convention. We let computable martingale be short for Q-computable
martingale.

Definition 2.24. (i) A computable null class is a class C such that there
is a computable martingale which succeeds on C.

(ii) A computably random sequence is a sequence X such that no com-
putable martingale succeeds on X.

The following remark is an analog of Remark 2.16 and will also be useful
in the constructions of random sequences in Chapter 6.

Remark 2.25. For every computable martingale there is another com-
putable martingale d that succeeds on exactly the same sequences as the
first martingale such that d succeeds by unbounded limit inferior on any
sequence on which it succeeds at all. The construction of the martingale d
is well-known and works, intuitively speaking, by putting aside one unit of
capital every time the capital reaches a certain threshold, while from then
on using the remainder of the capital in order to bet according to the initial
martingale. C
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2.4.2 Schnorr Randomness

In his arguments against Martin-Löf randomness and in favor of Schnorr
randomness, Schnorr refers to the approaches via measure theory and via
betting games. As to the measure theory approach, Schnorr claims that
Martin-Löf tests cannot be interpreted as effective tests,

“[...] because for a Martin-Löf test A0, A1, . . . the values

µ ([An] ∩ [σ]) 2|σ| (σ ∈ 2<ω, n ∈ ω) (2.10)

cannot be computed effectively in general. The above value is
the probability that a sequence starting with σ is contained in
the open neighborhood [An] of ∩n [An]. It reveals to what extent
[...] σ complies with the probability-one law which corresponds
to the null class covered by (An)n∈ω.”2

To overcome the possible disadvantage Schnorr described, he proposed
a notion of null classes with stronger constructivity properties. What he in-
troduced as “total rekursive Sequentialtests” and “total rekursive Nullmen-
gen” is nowadays referred to “Schnorr tests” and “Schnorr null classes”.
Schnorr [38] remarked that his null class concept corresponds to the null
class concept that had been studied by Brouwer [5] in the context of intu-
itionism.

Definition 2.26 (Schnorr [38]). (i) A Schnorr test is a Martin-Löf test
A0, A1, . . . such that µ [A0] ,µ [A1] , . . . is a uniformly computable se-
quence of reals.

(ii) A class of sequences is a Schnorr null class if there is a Schnorr test
which covers it.

(iii) A sequence is Schnorr random if it withstands every Schnorr test.

We note that often Schnorr tests are defined by requiring that the
Martin-Löf test A0, A1, . . . satisfies µ [An] = 2−n for each n. Both defi-
nitions give rise to the same null classes, though.

Note that if (An)n is a Schnorr test then all the values in (2.10) are
uniformly computable. Indeed, fix σ and n, and consider an approxi-
mation ∪sAn,s of An by finite sets An,s. To get an approximation of
µ ([An] ∩ [σ]) 2|σ| to within 2−k let s0 be the least s such that

µ [An]− µ [An,s] ≤ 2−|σ|−k.

2Taken from [42] and translated with adaptions to our terminology and notation. See
also the discussion on tests below Definition 2.1.
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Then µ ([An,s0 ] ∩ [σ]) 2|σ| approximates µ ([An] ∩ [σ]) 2|σ| to within 2−k.

Aside from Martin-Löf randomness, Schnorr argued that computable
randomness is not adequate, either. He argued that in order to recognize
a sequence X as nonrandom based on the martingale approach it does not
suffice that for a computable martingale d the sequence {d(X � n) : n ∈ ω}
is unbounded. Because “the growth of this sequence could be so slow that
it is not recognizable to an observer who disposes only of effective methods”
(cited from [42]). These remarks lead to the following definition.

Definition 2.27 (Schnorr [40]). A computable martingale d succeeds i.o.–
strongly on a sequence X if there is a computable nondecreasing unbounded
function h such that for infinitely many n, d(X � n) > h(n).

It turns out that the Schnorr random sequences are exactly those se-
quences on which no computable martingale succeeds i.o.– strongly.

Theorem 2.28 (Schnorr [40]). A sequence X is Schnorr random if and
only if no computable martingale succeeds i.o.– strongly on X.

Finally, Downey and Griffiths gave a characterization of Schnorr ran-
domness via incompressibility. To this end, they introduced computable
machines, and showed a characterization of the Schnorr random sequences
which is similar to the corresponding characterization of the Martin-Löf
random sequences (Theorem 2.20).

Definition 2.29 (Downey and Griffiths [13]). A computable machine is a
prefix-free machine M such that the halting probability of M ,

∑
σ∈dom M 2−|σ|,

is a computable real.

Theorem 2.30 (Downey and Griffiths [13]). A sequence X is Schnorr ran-
dom if and only if for all computable machines M ,

(∃c ∈ ω)(∀n ∈ ω) KM (X � n) ≥ n− c.

Note that in contrast to Theorem 2.20, a quantification over computable
machines is needed in Theorem 2.30 because there exists no “universal com-
putable machine”.

A version of the following technical remark will be applied in Chapter 5.

Remark 2.31. Let M = Me be a computable machine. Then there is a
strictly increasing, computable function f such that

µ
[
We,f(0)

]
,µ
[
We,f(1)

]
, . . .
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is a nondecreasing, effectively converging sequence of rationals with limit
µ [domM ]. Indeed, suppose that h is a computable function such that
qh(0), qh(1), . . . is an effectively converging sequence of rationals with limit
µ [domM ]. Then a function f as above can be defined for example as
follows, beginning with f(0) = 0. For each n > 0, let f(n) be the least
s > f(n − 1) such that µ [We,s] is at least qh(n+2) − 2−(n+1). It is easily
verified that f is as required. C

2.5 Interrelations

In the following two theorems we summarize some of the characterization
results cited above.

Theorem 2.32 (Schnorr [41]). For every sequence X the following are
equivalent:

(i) X is Martin-Löf random, i.e., X withstands a universal Martin-Löf
test.

(ii) No (universal) subcomputable martingale succeeds on X.

(iii) (∃c ∈ ω)(∀n ∈ ω) K(X � n) ≥ n− c.

Theorem 2.33 (Schnorr [40]; Downey and Griffiths [13]). For every se-
quence X the following are equivalent:

(i) X is Schnorr random, i.e., X withstands every Schnorr test.

(ii) No computable martingale succeeds i.o.– strongly on X.

(iii) For every computable machine M ,

(∃c ∈ ω)(∀n ∈ ω) KM (X � n) ≥ n− c.

Similar to the above characterizations of Martin-Löf and Schnorr ran-
domness we will obtain a “test characterization” and a “machine character-
ization” of computable randomness in Chapters 3 and 4, respectively.

Note that the following implications are an immediate consequence of
the above theorems:

X Martin-Löf random ⇒ X computably random ⇒ X Schnorr random.

Further, the first implication cannot be reversed as shown by Schnorr [41],
and the second one cannot be reversed as shown by Wang [52]. For the
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following theorem recall that a sequence X (interpreted as a set) is high if
X ′ ≥T ∅′′, where ′ denotes the jump operator.

Theorem 2.34 (Nies, Stephan, and Terwijn [35]). For every sequence X
the following are equivalent:

(i) X is high.

(ii) ∃Y ≡T X, Y is computably random but not Martin-Löf random.

(iii) ∃Z ≡T X, Z is Schnorr random but not computably random.

Furthermore, the same equivalence holds if one considers c.e. reals.

Referring to personal communication, Nies, Stephan, and Terwijn [35]
remark that the fact that Schnorr and computable randomness can be seper-
ated by c.e. reals was independently proven by Downey and Griffiths.
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Chapter 3

A Test Characterization of
Computable Randomness

For both Martin-Löf and Schnorr randomness, which are defined via Martin-
Löf and Schnorr tests, respectively, there are characterizations in terms
of martingales and Kolmogorov complexity as shown in Theorems 2.32
and 2.33. In this chapter, we consider computable randomness, which is
defined via martingales and we ask for a characterization in terms of (some
suitably restricted class of) Martin-Löf tests.

In the first section, we review related work of Downey, Griffiths, and
LaForte and we introduce bounded Martin-Löf tests.

Subsequently, we show in Section 3.2 that computable null classes are
exactly thoses classes which are covered by bounded Martin-Löf tests. As a
consequence, a sequence is computably random if and only if it withstands
every bounded Martin-Löf test, which gives a positive answer to a question
of Ambos-Spies and Kučera, who have asked whether computable random-
ness can be characterized in terms of Martin-Löf tests [1, Open Problem
2.6].

3.1 Related Work and Bounded Martin-Löf Tests

The first characterization of computable randomness in terms of tests is due
to Downey, Griffiths, and LaForte [12], who introduced computably graded
Martin-Löf tests and showed that a sequence is computably random if and
only if it withstands all computably graded Martin-Löf tests. Later and
independently, Merkle, Mihailović, and Slaman [32] found a similar char-
acterization result which is formulated in different terms, though. They
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introduced bounded Martin-Löf tests and proved a characterization of com-
putable randomness via bounded Martin-Löf tests. Below we shall present
the latter result, but first we review the characterization due to Downey,
Griffiths, and LaForte [12].

Definition 3.1 (Downey, Griffiths, and LaForte [12]). A Martin-Löf test
(An)n∈ω is computably graded if there is a computable function f : 2<ω ×
ω → R such that, for any n ∈ ω, σ ∈ 2<ω, and any prefix-free set of strings
{σi}i≤I with ∪I

i=0 [σi] ⊆ [τ ], the following conditions are satisfied:

(i) µ([An] ∩ [σ]) ≤ f(σ, n);

(ii)
∑I

i=0 f(σi) ≤ 2−n;

(iii)
∑I

i=0 f(σi) ≤ f(τ, n).

Theorem 3.2 (Downey, Griffiths, and LaForte [12]). A sequence is com-
putably random if and only if it withstands all computably graded Martin-Löf
tests.

Now we turn to the definition of bounded Martin-Löf tests [32].

Definition 3.3. A martingale d has the effective savings property if there
is a computable function f : 2<ω → Q+ ∪ {0} such that

(i) f(σ) ≤ d(σ) for all strings σ,

(ii) f is nondecreasing, i.e., if σ � τ then f(σ) ≤ f(τ),

(iii) for any sequence X, d succeeds on X if and only if f is unbounded on
the initial segments of X.

Remark 3.4. For every computable martingale d there is a computable
martingale d̃ with initial capital d̃(ε) = 1 such that

– d̃ succeeds on exactly the same sequences as d and

– d̃ has the effective savings property.

Note that a martingale d̃ as required can be constructed by using the con-
struction method that is sketched in Remark 2.25. C

Definition 3.5. (i) A mass distribution on Cantor space is a mapping
ν : 2<ω → R such that for any string σ, ν(σ) = ν(σ0) + ν(σ1).
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(ii) A mass distribution ν is computable if it is rational-valued and there
is a computable function D such that ν(σ) = qD(σ) for each string σ.

(iii) A probability distribution (on Cantor space) is a mass distribution ν
where ν(ε) = 1.

Formally, mass distributions and martingales are quite similar concepts
(see Schnorr [40]) where the additivity condition ν(σ) = ν(σ0) + ν(σ1) cor-
responds to the fairness condition (2.1). Observe that given a mass distri-
bution ν, the function σ 7→ 2|σ|ν(σ) is a martingale with initial capital ν(ε)
and conversely, given a martingale d, the function σ 7→ d(σ)/2|σ| is a mass
distribution.

Definition 3.6. A sequence (An)n∈ω of sets of strings is a bounded Martin-
Löf test if it is uniformly computably enumerable and if there is a computable
probability distribution ν such that for any n ∈ ω and for any string σ,

µ
(
[An] ∩ [σ]

)
≤ ν(σ)

2n
. (3.1)

To verify that a bounded Martin-Löf test is a Martin-Löf test indeed,
simply let σ in (3.1) be the empty string.

Consider the values in (2.10), each of which Schnorr interprets as prob-
ability that a sequence with initial segment σ is contained in [An]. These
conditional probabilities are uniformly computable for Schnorr tests, while
for bounded Martin-Löf tests they have the following property. Given a
Martin-Löf test A0, A1, . . . which is bounded via ν, if we let d(σ) = 2|σ|ν(σ)
for all strings σ then by the above discussion, d is a martingale. Conse-
quently, dn = 2−nd is a martingale for each n. Consider for every n the
function πn defined by

πn(σ) = µ
(
[An] ∩ [σ]

)
2|σ|,

where these values are the conditional probabilities in (2.10). It is easy to
see that for all n ∈ ω, σ ∈ 2<ω

πn(σ) =
1
2
πn(σ0) +

1
2
πn(σ1),

hence each πn is a martingale. By (3.1), every πn is uniformly bounded
from above by the computable martingales dn.
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3.2 Computable Randomness via Bounded Martin-
Löf Tests

Theorem 3.7. A class of sequences is a computable null class if and only
if it is covered by a bounded Martin-Löf test. In particular, a sequence is
computably random if and only if it withstands every bounded Martin-Löf
test.

Proof. First assume we are given a computable null class C ⊆ 2ω. By
Remark 3.4, pick a computable martingale d with initial capital 1 which
succeeds on C and has the effective savings property via some computable,
nondecreasing function f . In order to obtain a bounded Martin-Löf test
(An)n∈ω via some probability distribution ν as required, let for all n

An =
{
σ ∈ 2<ω : f(σ) ≥ 2n

}
(see (2.5)). Note that the sequence (An)n∈ω is uniformly computably enu-
merable. Consider the sets Succ0(d),Succ1(d), . . . defined in Lemma 2.8 (ii).
Then obviously for each n, An ⊆ Succ2n

(d). By Kolmogorov’s inequality,
µ [An] ≤ 2−n and consequently, (An)n∈ω is a Martin-Löf test. In order to
prove that C is covered by (An)n∈ω, fix any sequence X in C. Then d suc-
ceeds on X and, in particular, f is unbounded on the initial segments of X;
hence for all n ∈ ω there is some prefix of X in An and X is contained in
the intersection of the [An].

In order to prove that the Martin-Löf test (An)n∈ω is bounded, let for
every string σ

ν(σ) =
d(σ)
2|σ|

.

The mapping ν is a probability distribution, which follows immediately from
the fairness condition (2.1). Fix any index n ∈ ω and string σ. We have to
show that (3.1) holds. First assume that σ has some prefix σ0 in An. In
this case (3.1) holds because by construction and choice of f , we have

2n ≤ f(σ0) ≤ f(σ) ≤ d(σ)

and hence

µ([An] ∩ [σ]) = µ [σ] = 2−|σ| =
ν(σ)
d(σ)

≤ ν(σ)
2n

. (3.2)

Next consider the case where σ does not have a prefix in An. Let Aσ
n be a

prefix-free subset of {τ ∈ An : σ � τ} such that [Aσ
n] = [{τ ∈ An : σ � τ}]
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(see Remark 2.7). Then (3.1) holds because

µ([σ] ∩ [An]) =
∑

τ∈Aσ
n

2−|τ | ≤
∑

τ∈Aσ
n

ν(τ)
2n

≤ ν(σ)
2n

,

where the latter two inequalities hold by (3.2) and by Lemma 2.8 (i), re-
spectively.

For the converse direction, assume that we are given a Martin-Löf test
(An)n∈ω which is bounded via some probability distribution ν. By the dis-
cussion following Definition 3.5, the function σ 7→ ν(σ)2|σ| is a computable
martingale which succeeds on any sequence in C because by assumption any
such sequence is contained in the intersection of the [An], i.e., has prefixes
in all the An, where for all strings σ in An we have ν(σ)2|σ| ≥ 2n according
to (3.1).
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Chapter 4

Computable Randomness
and Lowness Properties

We define a version of Kolmogorov complexity by introducing bounded ma-
chines, which is inspired by the test characterization of computable ran-
domness via bounded Martin-Löf tests (Theorem 3.7). Using this result
we show a machine characterization of computable randomness. In other
words, we prove a characterization of the computably random sequences as
to their initial segment complexities, similar to Theorems 2.20 and 2.30 for
Martin-Löf and Schnorr randomness, respectively. More precisely, we show
in Theorem 4.5 that a sequence X is computably random if and only if for
every bounded machine M ,

(∃c ∈ ω) (∀n ∈ ω) KM (X � n) ≥ n− c.

Such machine characterizations regarding other randomness notions allowed
for a study of certain lowness properties. We mention lowness for K and K-
triviality in the setting of Martin-Löf randomness; for Schnorr randomness
the analog concepts are lowness for computable machines (cf. Chapter 5)
and Schnorr triviality. In Sections 4.2 and 4.3, we define and study analog
notions in the setting of computable randomness: lowness for bounded ma-
chines and bounded triviality. We argue that lowness for bounded machines
implies lowness for computable randomness. By a result due to Nies [34], a
sequence is low for computable randomness if and only if it is computable.
Hence, a sequence is low for bounded machines if and only if it is computable
(Theorem 4.9).

Turning to bounded triviality, we observe some properties of bounded
machines which may seem surprising. It turns out that there is a bounded
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machine that has for each string 0n a program that is not longer than the
shortest program for 0n with respect to a universal (unbounded) prefix-
free machine. Further, bounded machines behave quite differently from
both prefix-free machines and computable machines with respect to differ-
ent representations of natural numbers (see Remarks 4.11 and 4.17). These
observations suggest to study another notion: weakly boundedly trivial se-
quences. We show that these sequences form a superclass of the boundedly
trivial sequences and a subclass of the K-trivials (Theorem 4.19).

4.1 A Characterization of Computable Random-
ness in terms of Bounded Machines

Inspired by the bounded tests defined in Section 3.1, we introduce bounded
machines and we show a machine characterization of computable random-
ness in terms of bounded machines. As discussed in Section 3.1, Downey,
Griffiths, and LaForte [12] gave a first test characterization of computable
randomness in terms of graded tests. We remark that in the introductory
section of [12] Downey, Griffiths, and LaForte note that their test charac-
terization of computable randomness “could be turned into a machine one
also”, yet without elaborating this further.

The following lemma is a standard tool, that can be applied in a variety
of situations; for examples of applications that are similar to ours see the
machine characterizations of Schnorr and of Kurtz randomness by Downey
and Griffiths [13] and by Downey, Griffiths, and Reid [14], respectively. A
proof of Lemma 4.1 can be found for instance in the forthcoming monograph
of Downey and Hirschfeldt [15]. The latter authors attribute the lemma in
its effective version (which we use) to Levin and Chaitin.

Lemma 4.1 (Kraft-Chaitin Theorem). Let 〈d0, σ0〉, 〈d1, σ1〉, . . . be a com-
putably enumerable set of “axioms”, where an axiom denotes a pair 〈d, σ〉
consisting of a number d (called length) and a string σ. Furthermore suppose
that

∑
i 2

−di ≤ 1 (in this case the list of axioms is called a Kraft-Chaitin
set). Then there is a prefix-free machine M with domM = {τ0, τ1, . . .} such
that |τi| = di and M(τi) = σi for each i.

For further use, we note some well-known facts in the following propo-
sition.

Proposition 4.2. One can pass effectively from any Martin-Löf test (An)n∈ω

to a Martin-Löf test (Bn)n∈ω such that for each n,
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– the component Bn is prefix-free,

– |σ| ≥ n for all σ ∈ Bn,

– and [An] = [Bn].

Proof. First note that we may assume that each An contains no string of
length less than n. (Otherwise, instead of enumerating a string σ of length
less than n into An, put all strings σ′ � σ of length n into An.) Now
it suffices to argue that there is an effective procedure which, given an
index e of a c.e. set A = We containing only strings of length n or greater,
enumerates a prefix-free set B = ∪sBs such that [A] = [B]. We may
assume that |Wn,s+1 − Wn,s| ≤ 1 for all n, s. Let B0 = We,0. If, for
s > 0, We,s − We,s−1 = ∅ then simply let Bs = Bs−1. Otherwise let σ
denote the single element in We,s−We,s−1 and consider the following three
cases. In the first case σ is incomparable to any element of Bs−1; then let
Bs = Bs−1 ∪ {σ}. We have the second case if there is an element of Bs−1

which is a prefix of σ; here we let Bs = Bs−1. For the remaining case
consider the maximal length ` of the (finitely many) strings in Bs−1 and let
Bs = Bs−1 ∪ {τ ∈ 2` : τ � σ and no string in Bs−1 is a prefix of τ}.

Remark 4.3. It is straightforward that if (An)n∈ω is a Martin-Löf test
which is bounded via a computable probability distribution ν, then the test
(Bn)n∈ω constructed in Proposition 4.2 is also bounded via ν. C

If M is a prefix-free machine, let SM
n for n ∈ ω denote the set containing

every string whose length exceeds its M -complexity by at least n, i.e.,

SM
n =

{
σ ∈ 2<ω : KM (σ) ≤ |σ| − n

}
.

Note that the sets SM
n are similar to the components of the test which is

constructed to characterize Martin-Löf random sequences by their initial
segment complexity, see (2.9). Observe that for any given M , the sets SM

n

are uniformly computably enumerable. Further,

µ
[
SM

n

]
≤

∑
σ∈SM

n

µ [σ] =
∑

σ∈SM
n

2−|σ| ≤ 1
2n

because M is a prefix-free machine.

Definition 4.4. A bounded machine is a prefix-free machine M such that
there is a computable probability distribution ν satisfying

(∀σ ∈ 2<ω) (∀n ∈ ω)
[
µ
([

SM
n

]
∩ [σ]

)
≤ ν(σ)

2n

]
. (4.1)
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In other words, a prefix-free machine M is a bounded machine iff the
family of the sets SM

n = {σ ∈ 2<ω : KM (σ) ≤ |σ| − n} is a bounded Martin-
Löf test.

Theorem 4.5. A sequence X is computably random if and only if for each
bounded machine M ,

(∃c ∈ ω) (∀n ∈ ω)
[
KM (X � n) ≥ n− c

]
. (4.2)

Proof. We show that a sequence X withstands all bounded Martin-Löf tests
if and only if (4.2) holds for every bounded machine. For the If part,
suppose that (An)n is a Martin-Löf test which is bounded via a computable
probability distribution ν such that X ∈ ∩n[An]. By Proposition 4.2 and
Remark 4.3 we may assume that each An is a prefix-free set ∪i∈In{σn,i},
where In is some (finite or infinite) set of numbers, such that |σn,i| ≥ n for
each i ∈ In. We enumerate a list of axioms which, by the Kraft-Chaitin
Theorem, ensures that there is a prefix-free machine M that, for each n
and i, outputs σ2(n+1),i on some input of length |σ2(n+1),i| − n. Indeed, the
enumerated list of axioms {〈|σ2(n+1),i| − n, σ2(n+1),i〉 : n ∈ ω, i ∈ In} is a
Kraft-Chaitin set because∑

n∈ω,i∈In

2−(|σ2n+2,i|−n) =
∑

n

(
2n
∑

i

2−|σ2n+2,i|
)

=
∑

n

2nµ[A2n+2]

≤
∑

n

2n2−(2n+2) ≤ 1
2
.

To show that the machine M is bounded note that for each n, we have

SM
n =

⋃
k≥1

⋃
i∈In

{σ2(n+k),i}

and thus for each σ and n,[
SM

n

]
∩ [σ] =

⋃
k≥1

⋃
i∈In

[
σ2(n+k),i

]
∩ [σ] =

⋃
k≥1

[
A2(n+k)

]
∩ [σ].

Hence

µ
([

SM
n

]
∩ [σ]

)
≤
∑
k≥1

µ
( [
A2(n+k)

]
∩ [σ]

)
≤
∑
k≥1

ν(σ)
22(n+k)

≤ ν(σ)
22n

∑
k≥1

2−2k ≤ ν(σ)
2n

.
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This shows that (4.1) is satisfied, so M is bounded. In order to argue
that (4.2) does not hold let a number c be given. By choice of X there is a
(unique) i such that X ∈

[
σ2(c+2),i

]
. If n = |σ2(c+2),i| then by construction

we have KM (X � n) ≤ n− (c+ 1), hence (4.2) does not hold.
For the converse direction, suppose M is a bounded machine via a com-

putable probability distribution ν such that (∀c)(∃n)[KM (X � n) < n− c].
We define a bounded Martin-Löf test (Ak)k which covers X by letting Ak

be equal to SM
k for each k. Indeed, if σ ∈ 2<ω then, by (4.1),

µ ([Ak] ∩ [σ]) = µ
([

SM
k

]
∩ [σ]

)
≤ ν(σ)

2k

for each k, hence (Ak)k is a bounded Martin-Löf test. Furthermore, by
hypothesis, for all k there exists an n such that X � n ∈ SM

k , and thus
X ∈ ∩k[Ak].

We remark that there is no universal bounded machine, i.e., there is no
bounded machine M such that for all bounded machines N ,

(∃c ∈ ω) (∀σ ∈ 2<ω) KM (σ) ≤ KN (σ) +O(1).

If such a universal bounded machine existed, one could obtain a universal
computable martingale from it, i.e., a computable martingale that succeeds
on all sequences which are not computably random. It is known, though,
that no universal computable martingale exists. Hence, contrary to the
Martin-Löf case (Theorem 2.20) but similar to the Schnorr case with com-
putable machines (Theorem 2.30), a quantification over bounded machines
is necessary in Theorem 4.5.

4.2 Lowness for Bounded Machines

Recall from the Section 2.3 that U denotes the universal prefix-free ma-
chine with respect to which the prefix-free Kolmogorov complexity K is
defined. If U may use an oracle X, we get a relativized version KX of K
(see Subsection 4.2.1 for definitions). A sequence X is called low for K if
K(σ) ≤ KX(σ) + O(1) for every string σ. In a central set of results, Nies
and Hirschfeldt prove the equivalence of lowness for K with further lowness
properties (see Theorem 4.12).

Lowness for computable machines as an analog of lowness for K in the
setting of Schnorr randomness was studied by Downey, Greenberg, Mi-
hailović, and Nies [11] (see Chapter 5).

In Subsection 4.2.2 we investigate lowness for bounded machines.
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4.2.1 Relativized Kolmogorov Complexity

Similar to Definition 2.17, we say that an oracle Turing machine M is prefix-
free if for all oracles X ∈ 2ω, the domain of MX is a prefix-free set. In this
case let the MX-complexity of a string σ be

KX
M (σ) = min {|τ | : MX(τ) = σ}.

We define a universal prefix-free oracle machine U by requiring, similar
to (2.7), that

(∀e ∈ ω)(∀X ∈ 2ω)(∀τ ∈ 2<ω) UX(1e0τ) ' Φe(X, τ).

Further, on inputs which do not have the form 1e0τ as above, U will diverge
for all oracles. We call the machine U universal because for every prefix-free
oracle machine M ,

(∃c ∈ ω)(∀X ∈ 2ω)(∀σ ∈ 2<ω) KX
U (σ) ≤ KX

M (σ) + c

(see (2.6)). Note that the coding constant c does not depend on the oracle.
Now we fix a universal prefix-free oracle machine U as above and we define
the prefix-free Kolmogorov complexity KX(σ) relative to an oracle X of a
string σ by KX(σ) = KX

U (σ).

4.2.2 No Noncomputable Sequence is Low for Bounded Ma-
chines

If X is a sequence, then an X-bounded machine is a prefix-free oracle Turing
machine M such that there is an X-computable probability distribution ν
with

(∀σ ∈ 2<ω) (∀n ∈ ω)
[
µ
([

SMX

n

]
∩ [σ]

)
≤ ν(σ)

2n

]
.

Definition 4.6. A sequence X is low for bounded machines if for all X-
bounded machines M there is a bounded machine N such that for all σ ∈
2<ω, KN (σ) ≤ KX

M (σ) +O(1).

Given an X-bounded machine M , it is not true in general that M is
Y -bounded for every oracle Y . Indeed, suppose M is divergent on all in-
puts given any oracle X with X(0) = 1; on the other hand, if Y (0) = 0
then let MY behave like the universal prefix-free machine U . While for all
oracles X of the former type, M is trivially X-bounded, we have that MY

is not Y -bounded for Y = ∅. For if otherwise, Martin-Löf randomness and
computable randomness would be equivalent by Theorems 2.20 and 4.5.
Nevertheless we have the following proposition.
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Proposition 4.7. For every sequence X and for every X-bounded ma-
chine M there is an oracle Turing machine M̃ such that MX ' M̃X and
M̃ is a Y -bounded machine for every oracle Y .

Proof sketch. LetM be a machine which isX-bounded via anX-computable
probability distribution ν. We may assume that MY is prefix-free for every
oracle Y . Let N be an oracle machine such that N with oracle X com-
putes ν. Let νY denote the partial function computed by the machine N
with oracle Y . Now for any oracle Y , the machine M̃Y on input x executes
the following instructions. At stage t, wait for νY to converge on all strings σ
of length t. Then check if all of the following conditions are satisfied:

– In case t = 0: νY (ε) = 1.

– In case t > 0, for all τ of length t− 1: νY (τ) = νY (τ0) + νY (τ1).

– Let SMY
t

n = {τ ∈ 2<ω : there is a ρ, |ρ| ≤ |τ | − n such that MY on
input ρ outputs τ in at most t steps}. Then

(∀σ, |σ| ≤ t) (∀n ≤ t) µ

([
SMY

t
n

]
∩ [σ]

)
≤ νY (σ)

2n
.

If the preceding conditions are not all satisfied then let the computation
diverge. Else simulate t many steps of the computation of MY on input x.
If this simulated computation converges then output MY (x) and halt, else
move to stage t+ 1.

In connection with Theorems 4.8 and 4.9 we recall the definitions of X-
computably random sequences and of lowness for computable randomness.
A sequence is X-computably random if no X-computable martingale suc-
ceeds on it. X is called low for computable randomness if each computably
random sequence is X-computably random.

Theorem 4.8 (Nies [34]). A sequence is low for computable randomness if
and only if it is computable.

Theorem 4.9. A sequence is low for bounded machines if and only if it is
computable.

Proof Idea. We can verify that Theorem 4.5 relativizes, where we make use
of a relativized version of the Kraft-Chaitin Theorem (Lemma 4.1). So a
sequence Z is X-computably random if and only if for each X-bounded
machine M , for all n, KX

M (Z � n) ≥ n − O(1). Therefore, if a sequence is
low for bounded machines then it is low for computable randomness. The
proof is completed by applying Theorem 4.8.
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4.3 Triviality

The prefix-free Kolmogorov complexity K was defined on strings but it is
also common to write K(n) for numbers n. Here we identify as usual the
nth string σn in the length-lexicographic ordering of all strings with the
number n, and so we have K(n) = K(σn).

However, there are several ways to define K(n), depending on the way
one wishes to represent numbers by strings. Another possibility is for ex-
ample to consider K(0n). The two possibilities do not differ substantially
since

K(n) ≤ K(0n) +O(1) ≤ K(n) +O(1), (4.3)

and we do not care about additive constants here. For other representations
one gets similar relations which is a consequence of the following well-known
lemma.

Lemma 4.10. If g is a computable function from strings to strings then
K(g(σ)) ≤ K(σ) +O(1) for each string σ.

Remark 4.11. It is easy to verify that the following analog of Lemma 4.10
for computable machines is true: If g is a computable function from strings
to strings and if M is a computable machine, then there is a computable
machineN such that KN (g(σ)) ≤ KM (σ)+O(1) for each string σ. Hence the
choice of the representation of numbers does not matter in the computable
machine setting, either. For further reference, we mention that in particular
we have the following analog of (4.3).

For each computable machine M there is a computable machine N
such that (∀n ∈ ω) KN (n) ≤ KM (0n) +O(1). (4.4)

C

By definition, a sequence X is K-trivial if for all n, K(X � n) ≤ K(n) +
O(1). I.e., all initial segments of X have minimal prefix-free complexity
(within an additive constant). The class of K-trivials was introduced by
Chaitin [9]. A central set of results in the theory of algorithmic randomness
were proved by Nies and Hirschfeldt. They show the equivalence of a number
of “anti-randomness” properties, including the property of being K-trivial.
To define another such property called lowness for Martin-Löf randomness,
one considers Martin-Löf tests relative to an oracle. Namely, a sequence of
sets A0, A1, . . . is called a Martin-Löf test relative to an oracle X if there is a
computable function g such that for each n, An = WX

g(n) and µ [An] ≤ 2−n.
Further, a sequence Y is Martin-Löf random relative to an oracle X if Y
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withstands every Martin-Löf test relative to X, i.e., if for for every Martin-
Löf test AX

0 , A
X
1 , . . . relative to X, we have that Y 6∈ ∩n

[
AX

n

]
. Now a

sequence X is called low for Martin-Löf randomness if each Martin-Löf
random sequence is Martin-Löf random relative to X.

Theorem 4.12 (Nies and Hirschfeldt [34]). For every sequence X ∈ 2ω,
the following are equivalent:

– X is low for K.

– X is K-trivial.

– X is low for Martin-Löf randomness.

We briefly mention K-reducibility. A sequence X is K-reducible to a
sequence Y if for all n, K(X � n) ≤ K(Y � n) + O(1); in this case we write
X ≤K Y . Then X is K-trivial iff X ≤K 0ω.

An analog of K-triviality in the case of Schnorr randomness was in-
troduced by Downey and Griffiths [13]. They define Schnorr reducibility
as follows. A sequence X is Schnorr reducible to a sequence Y if for ev-
ery computable machine M there is a computable machine N such that
KN (X � n) ≤ KM (Y � n)+O(1). Now a sequence X is Schnorr trivial if X
is Schnorr reducible to 0ω. For results on Schnorr triviality see [12, 13, 19].
We study an analog triviality concept based on bounded machines.

Definition 4.13. (i) A sequence X is boundedly reducible to a sequence Y
if for every bounded machine M there is a bounded machine N such
that

(∃c ∈ ω)(∀n ∈ ω)
[
KN (X � n) ≤ KM (Y � n) + c

]
.

In this case we write X ≤bnd Y .

(ii) A sequence X is boundedly trivial if X ≤bnd 0ω.

As the following proposition shows, there is a characterization of bounded
triviality where the prefix-free Kolmogorov complexity K is involved. As for
the proof, we recall that the letter U denotes the universal prefix-free ma-
chine relative to which the prefix-free Kolmogorov complexity K = KU is
defined.

Proposition 4.14. (i) There is a bounded machine Ub such that

KUb
(0n) ≤ K(n) +O(1).
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(ii) A sequence X is boundedly trivial if and only if there is a bounded
machine N such that

(∃c ∈ ω)(∀n ∈ ω)
[
KN (X � n) ≤ K(n) + c

]
.

Proof. Clearly, (ii) follows from (i). To prove (i), we define a prefix-free
machine Ub by letting Ub(τ) = 0|U(τ)| for all τ ∈ dom(U). Obviously, Ub

is bounded via the probability measure ν which is given by ν(0n) = 1 for
each n. By construction, we have KUb

(0n) ≤ K(0n) ≤ K(n) + O(1) for
all n.

Corollary 4.15. Every computable sequence is boundedly trivial.

Proof. Suppose X is computable. Similar to the proof of Proposition 4.14,
we define a bounded machine N as follows. For all τ ∈ dom(U), determine
the number n such that U(τ) is the nth string in 2<ω, and let N(τ) = X � n.
Clearly, N is bounded via the probability distribution ν given by ν(σ) = 1
for all σ ≺ X, and we have KN (X � n) ≤ K(n) +O(1).

The next corollary follows from Proposition 4.14 (ii) but will also be an
immediate consequence of Theorem 4.19.

Corollary 4.16. Every boundedly trivial sequence is K-trivial.

Remark 4.17. There exists no bounded machine M such that

KM (n) ≤ K(n) +O(1).

Otherwise, by Theorem 4.5 we would have that a sequence is computably
random if and only if it is Martin-Löf random. Hence there is no bounded
machineN such that KN (n) ≤ KUb

(0n)+O(1) for all n, where Ub denotes the
bounded machine from Proposition 4.14 (i). It follows that an analog of (4.4)
is not true for bounded machines, and therefore an analog of Lemma 4.10
for bounded machines is also false (see Remark 4.11). C

The above remark suggests the following definition.

Definition 4.18. A sequence X is weakly boundedly trivial if for every
bounded machine M there is a bounded machine N such that

(∃c ∈ ω)(∀n ∈ ω)
[
KN (X � n) ≤ KM (n) + c

]
.

In the following theorem, an interesting relation to the K-trivial se-
quences is established.
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Theorem 4.19. (i) Every boundedly trivial sequence is weakly boundedly
trivial.

(ii) Every weakly boundedly trivial sequence is K-trivial.

Lemma 4.20 (folklore). For every sequence X, if a0, a1, . . . is an increas-
ing and unbounded computable sequence of numbers, and if K(X � an) ≤
K(an) +O(1), then X is K-trivial.

Proof. We define a prefix-free machine M as follows. If M finds a τ ∈
dom(U), it checks whether there is an index n such that an = |U(τ)|. If
there exists such an n, which by hypothesis is not greater than an, the
machine M outputs U(τ) � n. It follows that for all n

K(X � n) ≤ K(X � an) +O(1) ≤ K(an) +O(1) ≤ K(n) +O(1).

Proof of Theorem 4.19. Item (i) is an immediate consequence of Proposi-
tion 4.14 (ii). We prove item (ii). Considering our standard representation
of numbers by strings, where the nth string σn in the length-lexicographic
ordering is identified with the number n, we let a0, a1, a2, a3 . . . denote
the numbers that correspond to the strings λ, 0, 02, 03 . . .. Now let Ub de-
note the machine from Proposition 4.14 (i). If X is a weakly boundedly
trivial sequence, then there is a bounded machine N such that for all n,
KN (X � n) ≤ KUb

(n) +O(1). So we have

K(X � an) ≤ KN (X � an) +O(1) ≤ KUb
(an) +O(1) ≤ K(an) +O(1).

Hence by Lemma 4.20, X is K-trivial.
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Chapter 5

Schnorr Randomness:
Lowness for Computable
Machines

By Theorems 4.5 and 2.30, computably random sequences and Schnorr ran-
dom sequences can be characterized w.r.t. their initial segment complexities
via bounded and computable machines, respectively. While in Section 4.2,
a lowness notion for bounded machines was investigated, we define in this
chapter a lowness notion for computable machines. We show that the se-
quences which are low for computable machines are exactly the computably
traceable sequences. Thus by known results, lowness for computable ma-
chines is equivalent to other lowness notions with respect to Schnorr ran-
domness. Namely, a sequence X is low for computable machines iff X is low
for Schnorr tests iff X is low for Schnorr randomness. The latter two proper-
ties and the definition of computable traceability are reviewed in Section 1,
where we also introduce lowness for computable machines. In Section 2,
we prove the above mentioned coincidence of the class of sequences which
are low for computable machines and the class of computably traceable
sequences.

5.1 Lowness Notions for Schnorr Randomness

Below Remark 4.11, we reviewed the definition of lowness for Martin-Löf
randomness via relativizations of Martin-Löf tests and of Martin-Löf ran-
domness. In what follows, we recapitulate similar lowness notions for Schnorr
randomness, and we introduce lowness for computable machines.
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In the following definition we use a straightforward relativized version
of uniformly computable sequences of reals (see Definition 2.21).

Definition 5.1. Let X ∈ 2ω.

(i) A Schnorr test relative to X is a Martin-Löf test AX
0 , A

X
1 , . . . rela-

tive to X such that µ
[
AX

0

]
,µ
[
AX

1

]
. . . is a uniformly X-computable

sequence of reals.

(ii) A sequence is Schnorr random relative to X if it withstands every
Schnorr test relative to X.

Definition 5.2. A sequence X is low for Schnorr tests if for every Schnorr
test AX

0 , A
X
1 . . . relative to X there is a Schnorr test B0, B1, . . . such that

∩n

[
AX

n

]
⊆ ∩n [Bn].

Recall from Subsection 1.2 that for each n ∈ ω, Dn denotes the finite
set whose canonical index is n.

Definition 5.3 (Terwijn and Zambella [45]). A sequence X ∈ 2ω is com-
putably traceable if there is a computable function h such that the following
condition is satisfied. For all functions g ≤T X, there is a computable func-
tion r such that for the finite sets Dr(n) we have that |Dr(n)| ≤ h(n) and
g(n) ∈ Dr(n).

We remark that, as noticed by Terwijn and Zambella, ifX is computably
traceable then for the witnessing function h we can choose any computable,
nondecreasing and unbounded function.

Theorem 5.4 (Terwijn and Zambella [45]). A sequence X is low for Schnorr
tests if and only if X is computably traceable.

We note that while all K-trivials are ∆0
2 by a result of Chaitin [9], the

computably traceable sequences are all of hyperimmune-free degree, and
there are 2ℵ0 many of them.

Definition 5.5. A sequence X is low for Schnorr randomness if each Schnorr
random sequence is Schnorr random relative to X.

It is not hard to see that if a sequence is low for Schnorr tests then it
is also low for Schnorr randomness. Whether the converse also holds was
an open question of Ambos-Spies and Kučera [1]. It was answered in the
affirmative by Kjos-Hanssen, Nies, and Stephan.
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Theorem 5.6 (Kjos-Hanssen, Nies, and Stephan [23]). A sequence is low
for Schnorr randomness if and only if it is low for Schnorr tests.

Note that if we consider an analog notion of lowness for Martin-Löf tests
then the equivalence of that notion to lowness for Martin-Löf randomness
is easy to prove. One direction is trivial as above in the Schnorr case. The
other direction is a consequence of the following fact which is an analog of
Theorem 2.3: Given some sequence X there is a Martin-Löf test UX

0 , U
X
1 , . . .

relative to X which is universal for all Martin-Löf tests relative to X, i.e.,
if AX

0 , A
X
1 , . . . is a Martin-Löf test relative to X then ∩n

[
AX

n

]
⊆ ∩n

[
UX

n

]
.

We shall introduce another lowness notion for Schnorr randomness which
is an analog of K-triviality in the setting of Martin-Löf randomness. For
any X ∈ 2ω, an X-computable machine is a prefix-free Turing machine M
such that µ [domM ] is an X-computable real.

Definition 5.7. A sequence X ∈ 2ω is low for computable machines if for
all X-computable machines M there is a computable machine N such that
for all n,

KN (n) ≤ KX
M (n) +O(1).

Similar to the reasoning before Proposition 4.7, we can argue that an X-
computable machine M need not be Y -computable for all oracles Y . How-
ever we have the following proposition, the proof of which uses a straight-
forward relativized version of Remark 2.31.

Proposition 5.8. For every sequence X and for every X-computable ma-
chine M there is an oracle Turing machine M̃ such that MX ' M̃X and
M̃ is a Y -computable machine for every oracle Y .

Proof sketch. Let X be a sequence and let M = Me be an X-computable
machine. We may assume that for every oracle Y , MY is prefix-free, i.e.,
W Y

e is a prefix-free set. We define the oracle Turing machine M̃ as follows.
Let F : 2ω×ω → ω be a partial computable functional with F (Y, 0) = 0 for
all Y ∈ 2ω such that for every n > 0, F (X,n) is defined and greater than
F (X,n− 1), and

µ
[
domMX

]
− µ

[
WX

e,F (X,n)

]
≤ 2−n.

Now for any oracle Y , the machine M̃Y on input x executes the following
instructions. At stage n > 0, first wait for F (Y, n) to converge. If F (Y, n) <
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F (Y, n − 1) then let the computation diverge. Else continue as follows. If
the condition

(∀m < n) µ
[
W Y

e,F (Y,n)

]
− µ

[
W Y

e,F (Y,m)

]
≤ 2−m (5.1)

is satisfied then do the following: If x ∈ W Y
e,F (Y,n) then output MY (x)

and stop, else move to stage n + 1. (Note that x < F (Y, n) whenever
x ∈ W Y

e,F (Y,n).) On the other hand, if (5.1) is not satisfied then let the
computation diverge. Note that the construction is uniform in M,F but
not in M alone.

Recall that a sequence X is Schnorr trivial if for every computable
machine M there is a computable machine N such that for all n,

KN (X � n) ≤ KM (n) +O(1)

(see page 43). This notion was initially explored by Downey and Grif-
fiths [13] and Downey, Griffiths and LaForte [12], who showed that this
class does not coincide with the sequences that are low for Schnorr random-
ness. For instance, there are Turing complete Schnorr trivial sequences.

In the next section we show that unlike the situation for triviality, the
coincidence of the sequences low for Martin-Löf randomness and the low
for K ones carries over to the Schnorr case (cf. Theorem 4.12).

5.2 Equality of Three Lowness Classes

Theorem 5.9. A sequence X is low for computable machines if and only
if X is computably traceable.

Corollary 5.10 (Franklin [19]). If a sequence is low for Schnorr random-
ness then it is Schnorr trivial.

Proof. LetN be a computable machine. Let L be anX-computable machine
such that for all n, KX

L (X � n) = KN (n) (for all x, if N(x) = n then let
L(x) = X � n.) Then there is some computable machine M such that for all
x, KM (x) ≤ KX

L (x) + O(1); M is as required to witness that X is Schnorr
trivial.

To argue that the Only If direction of Theorem 5.9 is true, we note
that a relativized version of the Kraft-Chaitin Theorem (Lemma 4.1) can
be used to show that Theorem 2.30 relativizes. Namely, we have that Y is
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X-Schnorr random if and only if for all X-computable machines M and for
all n ∈ ω,

KX
M (Y � n) ≥ n−O(1).

Therefore, every sequence X that is low for computable machines is low for
Schnorr randomness, and by Theorems 5.4 and 5.6 it follows further that X
is low for Schnorr tests and thus is computably traceable.

The following remark is straightforward.

Remark 5.11. If we enumerate a Kraft-Chaitin set 〈d0, σ0〉, 〈d1, σ1〉, . . .
such that

∑
i 2

−di is a computable real, then the machine produced by the
Kraft-Chaitin Theorem (Lemma 4.1) is computable. C

Proof of the If direction of Theorem 5.9. Let X be a computably traceable
sequence and let h be a computable function as in Definition 5.3. Fix a
computable, decreasing sequence of positive rationals p0, p1, . . . such that∑

n∈ω h(n)pn is finite; moreover, we want the convergence to be quick, say
for every m ∈ ω, ∑

n≥m

h(n)pn < 2−m. (5.2)

Let M = Me be an X-computable machine and let f be a strictly increasing,
X-computable function such that µ

[
WX

e,f(n)

]
approximates µ

[
domMX

]
to

within 2−n. For each n ∈ ω, let kn be the least number such that 2−kn < pn,
and let tn be equal to f(kn). Consequently, we have

µ
[
domMX

]
− µ

[
WX

e,tn

]
< pn.

We let W = WX
e,t0 and for n ∈ ω, we let Vn = WX

e,tn+1
\WX

e,tn . Further,
define partial functions ϕ and ψn (n ∈ ω) by

ϕ = {(τ, σ) : τ ∈W & MX(τ) = σ}

and
ψn = {(τ, σ) : τ ∈ Vn & MX(τ) = σ}.

The domain Vn of each function ψn is finite, and so ψn has a natural number
code that we denote by g(n). Now the sequence (tn)n is X-computable, and
so the sequences (Vn)n and (ψn)n, and the function g are X-computable,
too. We note further that for all n ∈ ω, µ [domψn] < pn.

By hypothesis on X, there is a sequence of finite sets (Fn)n such that
the following conditions are satisfied:
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– There is a computable function r such that Fn = Dr(n) for all n,

– |Fn| ≤ h(n) for each n ∈ ω,

– and g(n) ∈ Fn for each n ∈ ω.

By cancelling elements, we may assume that for every n ∈ ω, each element
of F (n) is (the code for) a finite function ψ such that

domψ is prefix-free and µ [domψ] < pn. (5.3)

Enumerate a Kraft-Chaitin set L as follows. Let 〈d, σ〉 ∈ L if there is
some τ such that |τ | = d, and one of the following holds:

– (τ, σ) ∈ ϕ,

– for some n and for some ψ ∈ Fn, (τ, σ) ∈ ψ.

The set L is computably enumerable. Further, the sum of the axiom
lengths

∑
〈d,σ〉∈L 2−d is a computable real since by (5.2) and (5.3), we have

that for any m,∑
{2−|τ | : (∃n ≥ m)(∃ψ ∈ Fn)[τ ∈ domψ]} ≤

∑
n≥m

h(n)pn ≤ 2−m.

By Remark 5.11 we get a computable machine N such that for some
constant c, if 〈d, σ〉 ∈ L, then KN (σ) ≤ d + c. On the other hand, it
follows from the construction that 〈KX

M (σ), σ〉 ∈ L whenever σ is in the
range of MX . Thus N is as required.
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Chapter 6

Oracle Power versus
Randomness

To construct a Martin-Löf random sequence Y , one may consider a uni-
versal Martin-Löf test U0, U1, . . . and build the sequence Y such that it is
not contained in the intersection of the cones [Un]. Along the way of con-
structing Y , one may be able to make sure that Y has some additional
property. This approach was used by Gács [21] and Kučera [25], who ob-
tained independently the following celebrated result. For every sequence X
there is a Martin-Löf random sequence Y such that X is Turing reducible
to Y . The proofs of Gács and Kučera are quite different from each other,
but interestingly, while their results are stated for Turing reducibility, the
reductions constructed in both proofs are indeed already weak truth-table
(wtt-) reductions [44, Section 6.1].

In Section 1, we present a comparatively simple proof of the above result
that every sequence X wtt-reduces to a Martin-Löf random sequence Y by
making use of the martingale characterization of Martin-Löf randomness.
Namely, our construction works by diagonalizing against a universal sub-
computable martingale. Building on the latter construction idea, we obtain
in a second construction a more efficient coding of X into Y . Namely, we
arrange that not more than m+ o(m) bits of Y are needed in order to code
the first m bits of X. This result and the corresponding construction are
implicit in the work of Gács, while our account in terms of martingales is
again less involved than the original one in terms of Martin-Löf tests.

By a variant of our basic construction, we obtain in Section 2 a com-
putably random sequence that is weak truth-table autoreducible. Further,
we observe that there is a Martin-Löf random sequence that is computably
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enumerable self-reducible. The existence of such a sequence follows by the
fact that a sequence is computably enumerable self-reducible if and only if
it is computably enumerable and by the known fact that the leftmost real
in the complement of any given component of a universal Martin-Löf test is
computably enumerable and Martin-Löf random.

The mentioned results on auto- and selfreducibility do not extend to
slightly less powerful reducibilities. More precisely, no computably random
sequence is truth-table autoreducible and no Martin-Löf random sequence
is Turing-autoreducible. The latter assertion is due to Trakhtenbrot [46],
while both assertions can be obtained as corollaries to work of Ebert, Merkle,
and Vollmer [17], who demonstrate that such autoreductions are not even
possible in the more liberal setting where one just requires that in the limit
the reducing machine computes the correct value for a constant nonzero
fraction of all places, while signalling ignorance about the correct value for
the other places.

6.1 Every Sequence is Reducible to a Martin-Löf
Random Sequence

The following technical remark is crucial to the constructions of random
sequences in this and the next section.

Remark 6.1. Given a rational p > 1 and a natural number k, we can
compute a length `(p, k) such that for any martingale d and any string σ,∣∣∣{τ ∈ {0, 1}`(p,k) : d(στ) ≤ pd(σ)

}∣∣∣ ≥ k.

That is, for any martingale d and for any interval I of length `(p, k) there
are (at least) k assignments τ on I on any of which d increases its capital
by at most a factor of p while betting on I, no matter how the restriction σ
of the unknown sequence to the places to the left of I looks like.

For a proof, observe that by the generalized fairness condition (2.2) and
by Kolmogorov’s inequality (2.4)∣∣{τ ∈ {0, 1}` : d(στ) > pd(σ)

}∣∣
2`

<
1
p
.

By p > 1, we have 1 − 1/p > 0, hence it suffices to choose `(p, k) so large
that (1− 1/p)2`(p,k) is at least k, i.e., it suffices to let

`(p, k) ≥ log
k

1− 1
p

= log
kp

p− 1
= log k + log p− log(p− 1) . (6.1)
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Theorem 6.2 (Gács [21], Kučera [25]). Every sequence is wtt-reducible to
a Martin-Löf random sequence.

Proof. Fix a decreasing sequence p0, p1, . . . of rationals with pi > 1 for all i
such that the sequence q0, q1, . . . converges where

qs =
∏
i≤s

pi .

In addition, assume that given i we can compute an appropriate represen-
tation of pi. For s = 0, 1, . . ., let `s = `(ps, 2), where `(., .) is the function
from Remark 6.1. Partition the natural numbers into consecutive inter-
vals I0, I1, . . . of length `0, `1, . . ., respectively. For further use note that by
choice of the `s, for any string σ and any martingale d, there are at least
two strings τ of length `s such that

d(στ) ≤ psd(σ) . (6.2)

Let X be any sequence. We construct a sequence Y to which X is wtt-
reducible, where the construction is done in stages s = 0, 1, . . .. During
stage s we specify the restriction of Y to Is. We ensure that Y is Martin-
Löf random as follows. According to Remark 2.16, fix a subcomputable
martingale d that succeeds by unbounded limit inferior on all sequences that
are not Martin-Löf random. Observe that by appropriately normalizing d
we can assume d(ε) < 1. At stage s, call a string τ of length `s an admissible
extension in case s = 0 if d(τ) ≤ q0 and in case s > 0 if

d(στ) ≤ qs where σ = Y |(I0 ∪ . . . ∪ Is−1) .

During each stage s, we let Y |Is be equal to some admissible extension.
Since the qs are bounded this implies that d does not succeed on Y by
unbounded limit superior, hence Y is Martin-Löf random.

We will argue in a minute that at each stage there are at least two
admissible extensions. Assuming the latter, the sequence X can be coded
into Y as follows. During stage s let Y |Is be equal to the greatest admissible
extension in case s is in X, and let Y |Is be equal to the least admissible
extension otherwise. An oracle Turing machine M that wtt-reduces X to Y
works as follows. On input s, M queries its oracle in order to obtain the
restrictions σs and τs of the oracle to the sets I0 ∪ . . .∪ Is−1 and Is, respec-
tively. Then M runs two subroutines in parallel. Subroutine 0 simulates in
parallel enumerations of d(σsτ) for all τ < τs and terminates if the simu-
lation shows that d(σsτ) > qs for all these τ , i.e., Subroutine 0 terminates
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if the simulation shows that no such τ is an admissible extension of σs.
Subroutine 1 does the same for all τ > τs.

In case Subroutine i terminates before Subroutine 1 − i, then M out-
puts i. By construction, with oracle Y for every s exactly one of the sub-
routines terminates and M computes X(s) correctly.

It remains to show that at each stage there are at least two possible
extensions to choose from. For stage s = 0, this follows by d(ε) < 1 and the
choice of I0. For any stage s > 0 assume by induction that the restriction σs

of Y to the intervals I0 through Is−1 could be defined by choosing admissible
extensions at the previous stages and that hence we have d(σs) ≤ qs−1. Then
by (6.2) there are at least two strings τ of length ls where

d(σsτ) ≤ psd(σs) ≤ psqs−1 = qs ,

i.e., at stage s there are at least two admissible extensions.

Remark 6.3. Let r0, r1, . . . be a sequence of nonnegative reals, let pi = 1+ri
and let qs =

∏
i≤s pi. Then the sequence q0, q1, . . . converges if and only if

the sum
∑
ri converges (see, for example, Apostol [2, Theorem 8.52]). C

By Remark 6.3, in the proof of Theorem 6.2 we could for example
choose pi to be equal to 1 + (i + 1)−2. For this choice, by (6.1), we then
have `i ≥ log(i+1), i.e., in the limit we use more and more bits of Y in order
to code a single bit of X. The next remark shows that with the current con-
struction this cannot be avoided by choosing a different sequence p0, p1, . . ..

Remark 6.4. The construction in the proof of Theorem 6.2 requires in the
limit an unbounded number of bits of Y in order to code a single bit of X.

In the proof of Theorem 6.2, a single bit X(i) has been coded into `i
bits of Y , where by construction and (6.1), the number `i was chosen to be
at least

`(pi, 2) ≥ 1 + log pi − log(pi − 1) .

Furthermore, the construction required that the nondecreasing sequence
q0, q1, . . ., where qs =

∏
i≤s pi, is bounded and hence converges. By Re-

mark 6.3, this implies that the sequence of the values pi − 1 goes to 0, and
thus the values of − log(pi − 1) and the `i go to infinity. C

Next we give a slightly more involved construction that allows to code
an arbitrary sequence X into a Martin-Löf random sequence Y such that
in the limit in order to code the first m bits of X only m+ o(m) bits of Y
are required. This result and the corresponding construction are implicit in
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the work of Gács [21] and, in particular, the procedure used to define the
strings τi is due to him. However, the account in terms of martingales is
again less involved than the original one in terms of Martin-Löf tests [7, 21].

Definition 6.5. A sequence X is wtt-reducible to a sequence Y with van-
ishing relative redundancy if X is wtt-reducible to Y by a Turing machine M
such that the use of M is bounded by a nondecreasing computable function g
where

lim sup
x→∞

g(x)
x

≤ 1.

Theorem 6.6. Every sequence is wtt-reducible to a Martin-Löf random
sequence with vanishing relative redundancy.

Proof. We assume that we are given a sequence X and construct a Martin-
Löf random sequence Y such thatX wtt-reduces to Y with vanishing relative
redundancy. The construction of Y is similar to the one used in the proof of
Theorem 6.2, however, instead of coding single bits of X individually into
intervals of Y , now we partition the natural numbers into consecutive in-
tervals J0, J1, . . . of appropriate lengths m0,m1, . . . and code the restriction
of X to Js in one pass. The coding works again by extending the already
constructed part of Y by an appropriate admissible extension, where now
we have to require that there is an admissible extension for each of the 2ms

possible assignments on Js.
For the moment, let p0, p1, . . . and q0, q1, . . . be any sequences that satisfy

the specifications given in the proof of Theorem 6.2. Recall the definition
of the function `(., .) from Remark 6.1 and partition the natural numbers
into consecutive intervals I0, I1, . . . where interval Is has length

`s = `(ps, 2ms) .

By Remark 2.16, choose a universal subcomputable martingale d that suc-
ceeds by unbounded limit inferior on any sequence that is not Martin-Löf
random; as before we can assume d(ε) < 1. Fix a computable function d̃(., .)
witnessing that d is subcomputable, i.e., for all strings σ, the sequence
d̃(σ, 0), d̃(σ, 1), . . . is nondecreasing and converges to d(σ).

The construction of the Martin-Löf random sequence Y , to which X is
wtt-reducible, is done in stages s = 0, 1, . . .. During stage s, we let the
restriction of Y to Is be equal to an admissible extension, where admissible
extension is defined as in the proof of Theorem 6.2, i.e., a string τ is an
admissible extension of the already constructed prefix σ of Y if d(στ) ≤ qs.
Again, we can argue that by choosing an admissible extension at each stage,
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the sequence Y will be Martin-Löf random. Furthermore, as before, an easy
induction argument shows that by choice of the interval lengths `s, during
the construction at each stage s, there are at least 2ms admissible extensions.

At stage s, let σs denote the restriction of Y to I0 ∪ . . . ∪ Is−1. We
proceed in substages t = 0, 1, . . ., where during substage t we define 2ms

strings
τ̃1(t), τ̃2(t), . . . , τ̃2ms (t)

of length ls. At substage 0, we let τ̃i(0) through τ̃2ms (0) be equal to the 2ms

least strings of length `s. At any substage t > 0, for i = 1, . . . , 2ms we
successively define τ̃i(t) where we let

τ̃i(t) = τ̃i(t− 1) in case d̃(σsτ̃i(t− 1), t) ≤ qs.

Otherwise, i.e., in case the approximation d̃(., t) to d reveals that τ̃i(t−1) is
not admissible, we let τ̃i(t) be equal to the least unused string of length ls,
where a string is unused if it differs from all strings τ̃i′(t′) that have been
defined so far during stage s.

For all i, the sequence τ̃i(.) does not contain two distinct admissible
extensions, because by construction

if τ̃i(t) is defined and admissible, then τ̃i(t) = τ̃i(t+ 1) = . . . . (6.3)

Suppose that eventually the construction reaches a point where there are no
unused strings left. Then in particular the at least 2ms admissible extensions
have already been used, hence these strings must have appeared in pairwise
different sequences τ̃i(.). Consequently, in each such sequence an admissible
extension has appeared, thus by (6.3), from this point on there will be no
attempt to assign an unused string to any τ̃i(t). In summary, the τ̃i(t) are
all defined.

Next we argue that each sequence τ̃i(.) converges to an admissible exten-
sion τi. By (6.3), it suffices to show that in each such sequence eventually
some admissible extension appears. So fix i. By construction and because
all τ̃i(t) are defined, for any substage t such that τ̃i(t) is not admissible,
there is a substage t′ > t where τ̃i(t′) is set equal to the least unused string.
The latter cannot happen more often than there are strings of length ms,
hence eventually an admissible extension must appear in the sequence τ̃i(t).

In order to code the restriction X|Js of the sequence X to the interval Js

into the sequence Y , determine i such that X|Js is the ith string in the
lexicographic ordering of all strings of length ms, then let Y |Is be equal
to τi. Observe in this connection that a straightforward induction on t
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shows that the strings τ̃1(t) through τ̃2ms (t) and hence also their limits τ1
through τ2ms are mutually distinct.

The following oracle Turing machine M wtt-reduces X to Y . On in-
put x, the machine computes the index s = s(x) such that the interval Js

contains x. Then M queries its oracle in order to obtain the restrictions σ
and τ of the oracle to the sets I0 ∪ . . . ∪ Is−1 and Is, respectively. The
Turing machine successively simulates the substages t = 0, 1, . . . of stage s
in order to compute the strings τ̃1(t), . . . , τ̃2ms (t). If the oracle is indeed Y ,
then τ must eventually appear among the computed strings, i.e., τ = τ̃i(t)
for some i and t. Due to the way X has been coded into Y , this means that
the restriction of X to Js is equal to the ith string in the lexicographic or-
dering of all strings of length ms, hence M can simply look up the bit X(x)
in the latter string.

It remains to show that we can arrange that the reduction from X to Y
has vanishing relative redundancy. On input x, the Turing machine M
queries the restriction of the oracle to the sets I0 through Is(x) where s(x)
is the index such that the interval Js(x) contains x. Therefore, the use of M
on input x is bounded by the nondecreasing computable function

g(x) = `0 + . . .+ `s(x) . (6.4)

For all s, let zs be the the least number in the interval Js. Note that on
each interval Js, the function x 7→ g(x)/x attains its maximum at zs, hence

r := lim sup
x→∞

g(x)
x

= lim sup
s→∞

g(zs)
zs

. (6.5)

Next we argue that the sequence p0, p1, . . . and the ms and `s can be chosen
such that r = 1. First, let ps = 1 + (s + 1)−2 for all s ≥ 0. Then by
Remark 6.3 the sequence q0, q1, . . . converges as required. By Remark 6.1,
we can assume that for all s > 0,

`s ≤ ms +O(log s) . (6.6)

For any s ≥ 1 we have zs = m0 + . . .+ms−1 and s(zs) = s, hence by (6.4)
and (6.6) we obtain

g(zs)
zs

=
`0 + . . .+ `s

m0 + . . .+ms−1
≤ 1 +

ms

m0 + . . .+ms−1
+

O(s log s)
m0 + . . .+ms−1

.

Therefore, if we choose for example ms = s+1, it follows by (6.5) that r = 1
and the constructed reduction has vanishing relative redundancy.
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It appears to us that compared to the original proofs by Gács and
Kučera, the proofs of Theorems 6.2 and 6.6 are somewhat more intuitive
and require less technical machinery and that this is mainly due to the fact
that the latter proofs work by diagonalizing against a universal martingale,
whereas the former ones are formulated in terms of Martin-Löf tests. How-
ever, the ideas underlying the original and the current proofs are essentially
the same; in particular, the procedure for defining the strings τ̃i(t) in the
proof of Theorem 6.6 is taken from Gács. Note in this connection that,
similar to the original proofs given by Gács and Kučera, the oracle Turing
machines we have constructed in order to wtt-reduce a given sequence X
to a Martin-Löf random sequence Y do not depend on the sequence X,
i.e., there is a single machine that wtt-reduces any given sequence to some
Martin-Löf random sequence.

Hertling [7, 22] investigates general assumptions on a class C that imply
that the result of Gács and Kučera as stated in Theorems 6.2 and 6.6 holds
with C in place of the class of Martin-Löf random sequences. He introduces
concepts of effectively growing Cantor classes and proves along the lines of
Gács’ work [21] that the result of Gács and Kučera goes through for any
class C that is constructively closed and contains an effectively growing Can-
tor class of appropriate type. For ease of reference, we sketch in Remark 6.8
a proof of his result that uses our terminology and is based on the proof
of Theorem 6.6. Before, we state in Remark 6.7 a straightforward charac-
terization of the concept of effectively closed class. Recall from Section 1.2
that a subclass C of Cantor space is effectively closed (or a Π0

1-class) if C is
the complement of a class of the form [W ] where the set W is computably
enumerable. For the scope of Remarks 6.7 and 6.8 and with an arbitrary
class C understood, say a string σ is an admissible prefix if it is a prefix of
a sequence in C.

Remark 6.7. Let C be any class. Then C is effectively closed if and only if
the two following conditions are satisfied.

(i) The set of strings that are not admissible prefixes is computably enu-
merable.

(ii) Any sequence that extends infinitely many admissible prefixes is al-
ready in C.

First assume that C is effectively closed and let W be a computably
enumerable set such that C is equal to the complement of [W ]. Then a
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string σ is not admissible if and only if the cones [ρ] with ρ in W cover the
cone above σ. In the latter situation, by compactness of Cantor space [36],
the cone above σ is already covered by finitely many of these cones. Hence by
enumeratingW we will eventually detect all strings σ that are not admissible
and (i) follows. In order to show (ii), it suffices to observe that any sequence
not in C has a prefix ρ in W and hence extends only finitely many admissible
prefixes.

Next, assume that C satisfies (i) and (ii) and let V be the set of strings
that are not admissible prefixes. Then V is computably enumerable by (i)
and C is equal to the complement of [V ] by (ii), hence C is effectively closed.

C

Remark 6.8. Let C be an effectively closed class and assume that there are
computable sequences `0, `1, . . . and m0,m1, . . . of nonzero natural numbers
such that

(iii) for every s, any admissible prefix of length `0 + . . . + `s−1 can be
extended in 2ms different ways to an admissible prefix of length `0 +
. . .+ `s.

Then any sequence X is wtt-reducible to a sequence Y in C, where the
reduction can be chosen such that for any s, the prefix of X of length m0 +
. . . + ms can be computed from the prefix of Y of length `0 + . . . + `s.
(Condition (iii) is essentially the same as Hertling’s condition on effectively
growing Cantor classes.)

We omit the details of the proof, which is very similar to the correspond-
ing part of the proof of Theorem 6.6. The proof exploits that by Remark 6.7
the effectively closed class C satisfies (i) and (ii). The sequence Y is again
constructed in stages, where during stage s we extend an admissible prefix
of length `s−1 to an admissible prefix of length `s, hence by (ii) the con-
structed sequence Y is indeed in C. Furthermore, we can argue that by (i)
and (iii) the procedure that computes the τ̃i(t) can be defined as before. C

In the proofs of Theorem 6.2 and 6.6 an analogue of assumption (iii)
has been obtained from Remark 6.1 on martingales. While Gács uses a
similar argument formulated in terms of measure, the approach of Kučera
is different. In his proof, the interval lengths `s are not specified in advance
but are computed by an inductive process, which exploits an interesting
technical lemma [25, Lemma 8]. The lemma asserts that there is a com-
putable, rational-valued function b such that µ [Cσ] > b(σ) > 0 whenever the
class Cσ has nonzero measure, where Cσ is the intersection of the cone [σ]
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with the complement of any fixed class
[
Wg(i)

]
from some specific universal

Martin-Löf test.

6.2 Self- and Autoreductions of Random Sequences

Recall from Section 1.2 the concepts of self- and autoreducibility. The bits
of a sequence that is self- or autoreducible depend on each other in an effec-
tive way and one might be tempted to assume that in the case of a random
sequence such dependencies cannot exist. However, for example we obtain
autoreducible random sequences if we consider a concept of reducibility
where the underlying model of computation is powerful enough to simply
compute a random sequence. This indicates that when asking whether ran-
dom sequences may be autoreducible we have to be more specific about
the types of random sequence and reducibility. In what follows, we inves-
tigate the question of how powerful a model of computation is required in
order to be able to autoreduce Martin-Löf random and computably random
sequences.

First, in the proof of Theorem 6.9, we use techniques similar to the
ones employed in the proof of Theorem 6.2 in order to construct a com-
putably random sequence that is wtt-autoreducible. Subsequently, in Corol-
lary 6.12, we argue that there are Martin-Löf random sequences that are
c.e.-selfreducible. Finally, in Remark 6.14, we observe that the two latter
results cannot be extended to slightly less powerful reducibilities because
it is known that computably random sequences cannot be tt-autoreducible
and that Martin-Löf random sequences cannot be T-autoreducible.

Theorem 6.9. There is a sequence that is computably random and wtt-
autoreducible.

Proof. A sequence Y as required can be obtained by a construction similar
to the one used in the proof of Theorem 6.2. Choose p0, p1, . . . and q0, q1, . . .
as in that proof and let rs = (ps−1)/2. Again, partition the natural numbers
into consecutive intervals I0, I1, . . ., however now interval Is has length

`s = ` (1 + rs, 3) .

Let d0, d1, . . . be an appropriate effective enumeration of all partial com-
putable functions from 2<ω to the rational numbers and let

E = {e : de is a (total) martingale with initial capital de(ε) = 1} .
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For the sake of simplicity we assume that 0 is in E. Furthermore, let

d̄s =
∑

{e∈E: e≤s}

cede where ce =
re

2l0+...+le
.

The sequence Y is constructed in stages s = 0, 1, . . . where during stage s
we specify the restriction of Y to the interval Is. At stage s call a string τ
of length `s an admissible extension if s = 0 or if s > 0 and we have

d̄s−1(στ) ≤ (1 + rs) d̄s−1(σ) where τ = Y |I0 ∪ . . . ∪ Is−1.

Again at every stage s we will let Y |Is be equal to some admissible ex-
tension and we argue that this way the sequence Y automatically becomes
computably random. For a proof of the latter it suffices to show that for
all s we have

d̄s(Y |I0 ∪ . . . ∪ Is) ≤ qs. (6.7)

If there were some dj that succeeds on Y , then by Remark 2.25 there would
be some di that succeeds on Y by unbounded limit inferior. But the latter
contradicts (6.7) because the qi are bounded and because d̄s ≥ cidi for s ≥ i.

Inequality (6.7) follows by an inductive argument. For s = 0 we have

d̄0(Y |I0) = c0d0(Y |I0) ≤ c02`0 = r0 ≤ p0 = q0.

In the induction step, let σ and τ be the restriction of Y to I0 ∪ . . . ∪ Is−1

and to Is, respectively. By the definition of admissible extension and by the
induction hypothesis, we have

d̄s−1(στ) ≤ (1 + rs) d̄s−1(σ) ≤ (1 + rs) qs−1 .

By definition, the values of d̄s−1(στ) and of d̄s(στ) are the same in case s
is not in E, while otherwise they differ by

csds(στ) ≤ cs2|στ | ≤ rs ,

where the inequalities follow because a martingale can at most double at
each step and by the definition of cs. In summary, we have

d̄s(στ) ≤ (1 + rs) qs−1 + rs ≤ (1 + 2rs) qs−1 = psqs−1 = qs .

It remains to show that we can arrange that Y is wtt-autoreducible. At
stage s, let (τ0, τ1) be the least pair of admissible extensions such that τ0
and τ1 differ at least at two places. Then let the restriction of Y to Is
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be equal to τ0 in case s /∈ E and be equal to τ1 otherwise. Observe that
there is always such a pair because by choice of `s there are at least three
admissible extensions, hence there are at least two admissible extensions
that differ in at least two distinct places. (Indeed, given any three mutually
distinct strings ρ, ρ′, ρ′′ of the same length, then if ρ and ρ′ differ only at
one place, ρ′′ must differ from ρ′ at some other place, hence ρ′ and ρ′′ or ρ
and ρ′′ differ in at least two places.)

The sequence Y is wtt-autoreducible by an oracle Turing machine M
that works as follows. For simplicity, we describe the behavior of M for the
case where its oracle is indeed Y and omit the straightforward considerations
for other oracles; anyway it should be clear from the description that M is
of wtt-type.

On input x, first M determines the index s such that x is in Is. Then M
queries the oracle at all places in I0∪. . .∪Is except at x; this way M obtains
in particular the restrictions σ0, . . . , σs−1 of Y to I0, . . . , Is−1, respectively,
and, up to one bit, the restriction τ of Y to Is. Next M successively com-
putes E(j) for j = 1, . . . , s − 1; this can be done because given the σi and
the values E(0) through E(j − 1), it is possible to compute the admissible
strings and the strings τ0 and τ1 of stage j, and by comparing the two latter
strings to τj one can then compute E(j). Finally, M determines Y (x) by
computing the strings τ0 and τ1 of stage s and by comparing them to the
known part of τ . The last step exploits that τ0 and τ1 differ at least at two
places and thus differ on Is \ {x}.

Next we argue that there is a Martin-Löf random sequence that is c.e.-
self-reducible. In order to demonstrate this assertion, it suffices to review
the known fact that there are computably enumerable reals that are Martin-
Löf random and to observe that a sequence is c.e.-self-reducible if and only
if its associated real is computably enumerable.

The real associated with a sequence X is 0.b0b1 . . . where bi = X(i). A
real is called Martin-Löf random if it is associated to a Martin-Löf random
sequence.

In Remark 6.10, we review the well-known fact that there are reals
that are c.e. and Martin-Löf random. Note that a real has the two latter
properties if and only if it is a Chaitin Ω number, i.e., is equal to the halting
probability of some universal prefix-free Turing machine — see page 21.
For a proof of this equivalence and for references see Calude [6], where the
equivalence is attributed to work of Calude, Hertling, Khoussainov, and
Wang, of Chaitin, of Kučera and Slaman, and of Solovay.
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Remark 6.10. There is a c.e. real that is Martin-Löf random.
For a proof, consider any component

[
Wg(i)

]
of a universal Martin-Löf

test and let Y be the leftmost, i.e., lexicographically least, sequence in the
complement of this component. Note that the sequence Y and thus also
its associated real are Martin-Löf random. Furthermore, let ρs = ρs

1 . . . ρ
s
s

be the lexicographically least string ρ of length s such that the cone [ρ]
is not contained in the union of the cones [σ] over the first s strings σ
that are enumerated into W . Then it can be shown that Y is the limit of
the nondecreasing computable sequence formed by the rationals 0.ρs

1 . . . ρ
s
s,

hence the real associated to Y is c.e. C

Proposition 6.11. A sequence is c.e.-self-reducible if and only if its asso-
ciated real is computably enumerable.

Proof. Fix any sequence Y = b0b1 . . .. The equivalence asserted in the
proposition is immediate in case the sequence of bits of Y is eventually
constant, i.e., if bj = bj+1 = . . . for some j. So assume otherwise.

First let Y be c.e.-self-reducible by an oracle Turing machine M . We
define inductively a computable sequence Y0, Y1, . . . of rational numbers that
converges nondecreasingly to Y and where Ys can be written in the form

Ys = 0.bs0 . . . b
s
s, bij ∈ {0, 1}.

Let Ms(Z, x) be the approximation to M(Z, x) obtained by running M for s
steps on input x and oracle Z; i.e., Ms(Z, x) = M(Z, x) if M terminates
within s computation steps, and Ms(Z, x) is undefined otherwise. For a
start, let b00 = 0, i.e., Y0 = 0. In order to define Ys for s > 0, we distinguish
two cases. In case for some j < s, we have

bs−1
j = 0 and Ms(bs−1

0 . . . bs−1
j−10

ω, j) = 1,

then let js be the least such j and let

Ys = 0.bs−1
0 . . . bs−1

js−110s−js .

In case there is no such j, let

Ys = 0.bs−1
0 . . . bs−1

s−10.

By construction, the sequence Y0, Y1, . . . is nondecreasing. Further-
more, an easy induction argument shows that bs0b

s
1 . . . converges pointwise

to b0b1 . . . as s goes to infinity, and consequently the Ys converge to Y .
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Next assume that the real Y = 0.b0b1 . . . is computably enumerable.
Let Y0, Y1, . . . be a computable sequence of rationals that converges nonde-
creasingly to Y . Then Y is c.e.-self-reducible by an oracle Turing machineM
that works as follows. On input s, M queries its oracle in order to obtain
the length s prefix c0 . . . cs−1 of the oracle. Then M checks successively for
i = 0, 1, . . . whether

Yi > 0.c0 . . . cs−11; (6.8)

if eventually such an index i is found, M outputs 1 while otherwise, if there
is no such i, M does not terminate.

Now suppose that M is applied to oracle Y and any input s. If bs = 0,
then (6.8) is false for all i, hence M does not terminate. On the other hand,
if bs = 1 then Y is strictly larger than the righthand side of (6.8) because
by case assumption there is some j > s such that bj = 1. Hence (6.8) is
true for almost all i and M eventually outputs 1.

By Remark 6.10 and Proposition 6.11, the following corollary is now
immediate.

Corollary 6.12. There is a sequence that is Martin-Löf random and c.e.-
self-reducible.

Remark 6.13 gives an alternate direct proof of Corollary 6.12, which is
derived from the proof of Theorem 6.2.

Remark 6.13. In the proof of Theorem 6.2, we have constructed a Martin-
Löf random sequence where bit X(i) of the given sequence X has been
coded into interval Ii by choosing either the least or the greatest admissible
extension. If we adjust the construction such that in each interval simply the
least admissible extension is chosen, we obtain a sequence that is Martin-Löf
random and c.e.-self-reducible.

The construction in the proof of Theorem 6.2 yields a Martin-Löf random
sequence in case the chosen extensions are always admissible. Thus it suffices
to show that the sequence Y that is obtained by always choosing the least
admissible extension is c.e.-self-reducible. A machine M witnessing that Y
is c.e.-self-reducible works as follows. On input x, first M queries its oracle
at all places strictly less than x and receives as answer the length x prefix ρx

of its oracle. Then M computes the index s such that x is in the interval Is,
and lets σs be the prefix of ρx of length `0+ . . .+`s−1. Note that Y (x) = 1 if
and only if during stage s of the construction there has been no admissible
extension τ such that σsτ extends ρx0 and recall that an extension τ is
admissible if d(σsτ) ≤ qs. So M may simply try to prove d(σsτ) > qs for
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all τ where σsτ extends ρx0 by approximating d from below, then outputting
a 1 in case of success. C

By Theorem 6.9 and Corollary 6.12, there are computably random se-
quences that are wtt-autoreducible and Martin-Löf random sequences that
are c.e.-selfreducible. By the following remark, these results do not extend
to the less powerful T-reducibility and tt-reducibility, respectively, i.e., no
computably random sequence is tt-autoreducible [17] and no Martin-Löf
random sequence is T-autoreducible [17, 46].

Remark 6.14. Consider the following, more liberal variant of T-autoreduci-
bility. A sequence Z is infinitely often (i.o.) T-autoreducible if there is an
oracle Turing machine that on input x eventually outputs either the correct
value Z(x) or a special symbol that signals ignorance about the correct
value; in addition, the correct value is computed for infinitely many inputs.
The concept of i.o. tt-autoreducibility is defined accordingly, i.e., we require
in addition that the machine performing the reduction is total.

Ebert [16] showed that every Martin-Löf random sequence is i.o. tt-
autoreducible. By results of Ebert, Merkle, and Vollmer [17], any Martin-
Löf random sequence can be i.o.-tt-autoreduced such that the fraction of cor-
rectly computed places up to input x exceeds r(x) where r is any given com-
putable rational-valued function that goes nonascendingly to 0; on the other
hand, no Martin-Löf random sequence Y is i.o. T-autoreducible in such a
way that in the limit the fraction of places where Y (x) is computed correctly
is a nonzero constant and the latter assertion remains true with Martin-
Löf random and i.o. T-autoreducible replaced by computably random and
i.o. tt-autoreducible. In particular, no Martin-Löf random sequence is T-
autoreducible and no computably random sequence is tt-autoreducible. C
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Chapter 7

Lebesgue Measure versus
Effective Measures

By definition, each Martin-Löf null class is a Lebesgue null class. Book,
Lutz, and Wagner [4] show that for Π0

1-classes the converse direction also
holds. This result is used in [4] to show that any union of Π0

1-classes that is
closed under finite variation is a Lebesgue null class if and only if it contains
no Martin-Löf random sequence.

In the first section, we recall the definition of Kurtz null classes and
of Kurtz random sequences, among other things. In Section 2, we extend
the results of Book, Lutz, and Wagner [4] cited above by showing that
“Martin-Löf null class” and “Martin-Löf random sequence ” can be replaced
by “Kurtz null class” and “Kurtz random sequence ”, respectively. While
for Σ0

2-classes being a Schnorr null class is equivalent to being a Lebesgue
null class, we show that the corresponding assertion for “Kurtz null class”
instead of “Schnorr null class” is false.

In the last section, we demonstrate that every Almost class with respect
to a bounded reducibility R has computable packing dimension zero. Fur-
thermore we show, given a bounded reducibility R which is upwards closed
under finite variation, that a sequence is contained in the respective Almost
class if and only if it is computable and not R-deep.
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7.1 Introduction

Languages and Reducibilites

In this chapter, a sequence X is occasionally viewed as a language L, i.e.,
as a set of strings, where the nth string σn in the length-lexicographical or-
dering of all strings is contained in L iff X(n) = 1. As usual, let M0,M1, . . .
be a standard listing of all oracle Turing machines. If the eth machine with
oracle X computes a total {0, 1}-valued function then L(MX

e ) denotes the
language accepted by MX

e , where σ ∈ L(MX
e ) iff MX

e (σ) = 1. In case X is
the empty set, we also write L(Me) instead of L(MX

e ).

A class C ⊆ 2ω is computably presentable if C = ∅ or if there is a
computable function g such that Mg(n) is total for every n ∈ ω and C =
∪n∈ω{L(Mg(n))}. In the latter case g is called a computable presentation
of C.

A reducibility in the language setting is a binary relation on 2ω such
that there is a set I ⊆ ω satisying the following condition: X ≤R Y iff there
is an i ∈ I such that X = L(MY

i ). Moreover, a reducibility is bounded if
there is a computable function g with g(ω) = I and if for every oracle X
and for every i ∈ I, the machine MX

i is total. In this case g is called a
computable presentation of ≤R.

Given a reducibility R, we shall consider the upper R-cone R−1(X) of
a sequence X which is defined by R−1(X) = {Y : X ≤R Y }. A sequence
X is a finite variation of a sequence Y , written X =∗ Y , if X and Y
differ at most at finitely many places. A reducibility R is upwards closed
under finite variation if for all sequences X,Y0, and Y1 with Y0 =∗ Y1 we
have that X ≤R Y0 if and only if X ≤R Y1. Similarly, a reducibility R is
downwards closed under finite variation if for all sequences X0, X1, and Y
with X0 =∗ X1 we have that X0 ≤R Y if and only if X1 ≤R Y .

Kurtz Randomness

Similar to Martin-Löf, Kurtz required that a random sequence obey all ef-
fective probability-one laws. Yet the basis for Kurtz’s definition of random-
ness is not to specify effective null classes, which contain sequences violating
probability-one laws. With his randomness concept, Kurtz rather directly
considers those sequences which obey probability-one laws.
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Definition 7.1 (Kurtz [27]). A Kurtz test is a Σ0
1-class which has Lebesgue

measure 1. A sequence X is Kurtz random if for all Kurtz tests U , X ∈ U .
We let KR denote the class of the Kurtz random sequences.

We remark that Kurtz referred to the above concept as “weak random-
ness”.

Kurtz randomness can be characterized in terms of tests covering null
classes, similar to the randomness concepts we have considered before.

Definition 7.2 (Wang [51]). A Kurtz null test is a sequence of finite sets
(Vn)n∈ω such that the following properties hold:

(i)
∑

σ∈Vn
2−|σ| ≤ 2−n for all n.

(ii) There is a computable function g such that g(n) is the canonical index
of Vn for each n.

In this case (Vn)n∈ω is the Kurtz null test given by g.

Theorem 7.3 (Wang [51]). A sequence is Kurtz random if and only if it
withstands every Kurtz null test.

Finally, there is also a martingale characterization of Kurtz randomness.

Definition 7.4. A computable martingale d succeeds strongly on a se-
quence X if there is a computable nondecreasing unbounded function h such
that for all but finitely many n, d(X � n) > h(n).

Theorem 7.5 (Wang [51]). A sequence X is Kurtz random if and only if
no computable martingale succeeds strongly on X.

Note that a Kurtz null test is a Martin-Löf test. Thus we say that a
class C ⊆ 2ω is a Kurtz null class if it is covered by a Kurtz null test.

Notation. If C is a Kurtz null class then we write µKurtz(C) = 0.

Some Fundamental Theorems

Theorem 7.6 (Lebesgue Density Theorem). Let C ⊆ 2ω be a measurable
class with µ(C) > 0. Then for every nonnegative rational ε < 1 there is a
string σ such that µ(C ∩ [σ])2|σ| ≥ ε.
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Below we shall make use of a standard technique where the Lebesgue
Density Theorem is used in order to obtain a “probability amplification”.

A class C ⊆ 2ω is closed under finite variation if for any X ∈ C the
following holds true:

(∀Y ∈ 2ω)
[
X =∗ Y =⇒ Y ∈ C

]
.

Theorem 7.7 (Kolmogorov’s 0-1-Law). If C is a measurable class of se-
quences which is closed under finite variation then either µ(C) = 0 or
µ(C) = 1.

Definition 7.8. Let σ be a finite partial 0-1-valued function.

(i) The σ-patch X(σ) of a sequence X is the sequence Y which agrees
with σ on arguments in domσ and agrees with X, otherwise.

(ii) The σ-patch Γ(σ) of a functional Γ is defined by Γ(σ)(X) = Γ(X(σ)).

Theorem 7.9 (Sacks [37]). For every noncomputable sequence X the upper
Turing-cone T−1(X) is a Lebesgue null class.

In fact, the preceding theorem holds for any reducibility. To argue that
the latter assertion is true, suppose that R is a reducibility and X is a
sequence such that µ(R−1(X)) > 0. Then by σ-additivity of µ, there is an i
such that for Γ = Mi we have µ({Y : X = ΓY }) > 0. By the Lebesgue
density theorem there is a partial 0-1-valued function σ with finite domain
such that for all n, µ({Y : X(n) = ΓY

(σ)(n)}) > 3/4, and consequently, X is
computable.

7.2 Results on Null Classes

Above we introduced the term µKurtz(C) = 0 to denote that a class C is a
Kurtz null class. Similarly, we denote Schnorr, computable, and Martin-
Löf null classes by substituting µKurtz above by µSchnorr, µcomp, and µML,
respectively.

It is straightforward from the various characterizations of Schnorr ran-
domness and Kurtz randomness that the former implies the latter. We also
note that obviously every Kurtz null class is a Schnorr null class. Hence for
any measurable class C ⊆ 2ω,

µKurtz(C) = 0 ⇒ µSchnorr(C) = 0 ⇒ µcomp(C) = 0 ⇒
µML(C) = 0 ⇒ µ(C) = 0,
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where in general none of the implications can be reversed. Suitable choices
for C such that the last implication can be reversed, are presented in the
following lemma due to Book, Lutz, and Wagner.

Lemma 7.10 (Book, Lutz, and Wagner [4]). If C is a Π0
1-class with µ(C) = 0

then C is a Martin-Löf null class.

It is easy to modify the proof of Lemma 7.10 to get a proof of the
following stronger result.

Lemma 7.11. If C is Π0
1-class with µ(C) = 0, then C is a Kurtz null class.

Proof. Let C be a Π0
1-class with µ(C) = 0. Then by definition there is

a computably enumerable set A = Wi such that C = [A]. Let f be a
computable function such that A = rng f and let Aj = {f(0), . . . , f(j)}.
Define for each n,

j(n) = min
{
j : µ [Aj ] ≥ 1− 2−n

}
.

The function j(.) is total because by hypothesis on C we have that µ [A] = 1;
furthermore, j(.) is obviously computable. To define a Kurtz null test
V0, V1 . . ., which covers C, consider for each n the maximal length m(n)
of the strings contained in Aj(n). Now let

Vn = {σ ∈ 2m(n) : σ has no prefix in Aj(n)}

for each n. It is straightforward to define a computable function g such that
for all n, g(n) is the canonical index for Vn. Furthermore it is immediate
from the construction that µ[Vn] ≤ 2−n and C ⊆ [Vn] for every n.

Corollary 7.12 (of the proof of Lemma 7.11). From an index i where
C = [Wi] is a Lebesgue null class, one can compute an index k such that the
Kurtz null test given by g = ϕk covers C.

The following theorem is a straightforward strengthening of a result due
to Book, Lutz, and Wagner [4] which is based on Lemma 7.10. They show,
in particular, that for each union C of Π0

1-classes which is closed under
finite variation µ(C) = 1 is equivalent to C containing a Martin-Löf random
sequence. The theorem below is based on Lemma 7.11 whence we get a
strengthening from Martin-Löf randomness to Kurtz randomness.

Theorem 7.13. (i) Let C be a union of Π0
1-classes that is closed under

finite variation. Then

µ(C) = 1 ⇐⇒ C ∩ KR 6= ∅.
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(ii) Let C be an intersection of Σ0
1-classes that is closed under finite vari-

ation. Then
µ(C) = 1 ⇐⇒ KR ⊆ C.

Proof. “⇒” for (i) and “⇐” for (ii) are immediate from µ(KR) = 1. For
the converse direction of (i), assume µ(C) < 1. By hypothesis on C we can
apply the Kolmogorov 0-1-Law, so µ(C) = 0. By Lemma 7.11, C is a union
of Kurtz null classes, hence C has emtpy intersection with KR. To show
“⇒” for (ii), assume KR 6⊆ C, whence C ∩ KR 6= ∅. Note that C is a union
of Π0

1-classes as in the hypothesis of (i), so it follows that µ(C) = 0.

By Kolmogorov’s 0-1-Law, item (i) of the above theorem implies the
following: a union C of Π0

1-class which is closed under finite variation has
Lebesgue measure zero if and only if C contains no Kurtz random sequence.
While the latter is the same as saying that for each sequence X ∈ C there is
some Kurtz null test which covers X, it does not mean that µKurtz(C) = 0
in general. If we weaken the latter condition to µSchnorr(C) = 0 then this
new condition is equivalent to µ(C) = 0 for certain unions C of Π0

1-classes,
namely for Σ0

2-classes.

Theorem 7.14. For every Σ0
2-class C,

µ(C) = 0 ⇐⇒ µSchnorr(C) = 0. (7.1)

The theorem can be proved by using Lemma 7.11 and by observing that
an effective union of Π0

1- Schnorr null classes is a Schnorr null class.
As we show next, the assertion of Theorem 7.14 becomes false if we

replace µSchnorr by µKurtz in (7.1).

Theorem 7.15. There is a Σ0
2-class which is a Lebesgue null class (and

hence a Schnorr null class) but not a Kurtz null class.

Proof. We construct a Σ0
2-class C =

⋃
i∈ω

[
Wh(i)

]
where each Π0

1-class
[
Wh(i)

]
either is the empty set or consists of exactly one computable sequence such
that we meet all of the following requirements Re by which we diagonalize
against (a superclass of) the Kurtz null tests.

Re : If (∃x ∈ ω)
[
x ≥ 1 & ϕe(x) ↓ & µ

[
Dϕe(x)

]
≤ 2−x

]
then (∃i ∈ ω)

[[
Wh(i)

]
∩
[
Dϕe(x)

]
= ∅
]
.
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The construction is done in stages s = 0, 1, . . . where at the end of stage s
we define h(s). Say that a requirement Re at stage s with e ≤ s requires
attention if we have not yet met Re and if there is an x such that

1 ≤ x ≤ s & ϕe,s(x) ↓ & µ
[
Dϕe,s(x)

]
≤ 2−x. (7.2)

At stage s, if there is no Re requiring attention then let h(s) be equal to
some index such that

[
Wh(s)

]
= 2ω. Otherwise, consider the least e such

that Re requires attention and meet Re as follows. Fix the least x such
that (7.2) is satisfied. Let h(s) be such that

[
Wh(s)

]
contains only the

computable sequence X which is lexicographically least in the complement
of
[
Dϕe,s(x)

]
. Obviously, by the above procedure we meet all requirements

and moreover, the constructed Σ0
2-class has Lebesgue measure 0.

Book, Lutz, and Wagner [4] show that given a bounded reducibility ≤R,
the upper ≤R-cone of a computable sequence is a union of Π0

1-classes. In
fact, as is implicit in their proof, the following stronger result is true.

Lemma 7.16. Suppose R is a bounded reducibility and Y is a computable
sequence. Then the upper ≤R-cone of Y is a Σ0

2-class.

Proof. Let g be a computable presentation of R and for each i, let

R−1
i (Y ) = {X : Y = L(MX

g(i))}.

Then R−1(Y ) =
⋃

i∈ω R
−1
i (Y ), and we shall prove that each R−1

i (Y ) is a
Π0

1-class. Equivalently, we show that each complement Ci = 2ω − R−1
i (Y )

is a Σ0
1-class. Let mX

i denote the use function of MX
i for any X ∈ 2ω

and i ∈ ω. We define a partial computable function hi on pairs of strings
as follows. For any strings σ and τ ,

let hi(σ, τ) = τ if Y (σ) 6= M τ0ω

g(i) (σ) and mτ0ω

g(i)(σ) ≤ |τ |.

Otherwise let hi(σ, τ) be undefined. For every X ∈ 2ω, we obviously have

X ∈ Ci ⇐⇒ (∃n)X � n ∈ rng hi ⇐⇒ X ∈ [rng hi] .

Thus Ci is a Σ0
1-class for each i. Furthermore, it is obvious from the above

definition of the functions hi that indices of these functions can be produced
in an effective way. Hence R−1(Y ) =

⋃
i∈ω R

−1
i (Y ) is a Σ0

2-class.
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7.3 Almost Classes and Computable Depth

By definition, the Almost class with respect to some reducibility R is the
class of sequences X such that the upper R-cone of X has Lebesgue mea-
sure 1. Book, Lutz, and Wagner [4] use Almost classes to give character-
izations of complexity classes in terms of Martin-Löf random sequences.
We show that Almost classes w.r.t. bounded reducibilites have computable
packing dimension 0. This result is obtained by showing that every Almost
class w.r.t. a bounded reducibility is contained in a computably presentable
class, and by showing that every computably presentable class has com-
putable packing dimension 0.

Subsequently we consider computably deep sequences which were intro-
duced by Fenner, Lutz, Mayordomo, and Reardon [18]. For any bounded
reducibility that is upwards closed under finite variation, we show that a
sequence is contained in the respective Almost class if and only if it is com-
putable and not R-deep.

Definition 7.17. Let R be a reducibility. Then the Almost class with re-
spect to R is AlmostR = {X : µ({Y : X ≤R Y }) = 1}.

We note that every sequence in AlmostR is computable. This is an
immediate consequence of the generalized version of Sacks’ theorem, as dis-
cussed below Theorem 7.9.

Theorem 7.18. (i) For every bounded reducibility ≤R, AlmostR is con-
tained in a computably presentable class.

(ii) Let ≤R be a bounded reducibility that is upwards and downwards closed
under finite variation. Then AlmostR is a computably presentable
class.

Proof. For a proof of (i), let g be a computable presentation of ≤R and
suppose we have a bijective function from ω × 2<ω to ω that is a natural
coding which takes each pair consisting of a number and a string to a code
number. For each s ∈ ω, we define a sequence Xs as follows. Suppose s
codes a pair (e, σ) consisting of a number e and a string σ. In order to
determine Xs(n) for an n ∈ ω, we check whether for all m ≤ n there is a
bit bs,m such that for Γ = Mg(e) we have

µ

({
Y : bs,m = ΓY

(σ)(m)
})

>
3
4
, (7.3)
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where Γ(σ) is the σ-patch of Γ. If this property is satisfied then we let
Xs(n) = bs,n, else Xs(n) = 0. Now consider some computable function h
which takes each s to an index of a machine that computes the characteristic
function of Xs. We claim that h is a computable presentation of a class C
which contains AlmostR. Indeed, suppose X ∈ AlmostR. Then by σ-
additivity of µ, there is an ε > 0 and an i such that we have µ({Y : X =
L(MY

g(i))}) > ε. By the Lebesgue Density Theorem there is a string σ such
that for Γ = Mg(i) we have that µ({Y : X = L(ΓY

(σ))}) > 3/4. Hence by
construction, X is an element of the sequence X0, X1, . . . and thus X is
contained in C.

To prove (ii), first note that AlmostR is closed under finite variation
because ≤R is downwards closed under finite variation. It suffices to change
the definition of the sequences X0, X1, . . . in the proof of (i) as follows.

Suppose Z ∈ AlmostR. Then for any s coding some pair (e, σ), and
for any n, check whether for all m ≤ n there is a bit bs,m such that for
Γ = Mg(e) we have

µ

 ⋂
m≤n

{
Y : bs,m = ΓY

(σ)(m)
} >

3
4
.

If this condition is satisfied then let Xs(n) = bs,n else Xs(n) = Z(n).
Now consider the resulting class C as in the proof of (i). We claim

that C = AlmostR. As in the previous proof, we can argue that C ⊇
AlmostR. Conversely, suppose X ∈ C. If µ(R−1(X)) = 0 then for any
(e, σ), by continuity of the reductions, from some number on X will contain
exactly the same elements as Z, so X and Z differ at most at finitely
many places. Since AlmostR is closed under finite variation, it follows
that X ∈ AlmostR. On the other hand, suppose µ(R−1(X)) > 0. Now
R−1(X) is closed under finite variation because by hpothesis, ≤R is upwards
closed under finite variation. Hence by Kolmogorov’s 0-1-Law we get that
µ(R−1(X)) = 1, i.e., X ∈ AlmostR. It follows C = AlmostR as desired.

In the next two theorems we show measure and dimension properties of
computably presentable classes.

Theorem 7.19. There exists a computably presentable class which is not a
Kurtz null class.

The theorem follows easily from the proof of Theorem 7.15. Just observe
that the classes

[
Wh(s)

]
form a computably presentable class.
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For the next theorem we recall the definition of computable packing
dimension that was introduced by Athreya, Hitchcock, Lutz, and Mayor-
domo [3].

Definition 7.20. (i) For any s ≥ 0, we say that a computable martin-
gale d is strongly s-successful on a class C ⊆ 2ω if for each sequence
X ∈ C,

(∀∞n) d(X � n) ≥ 2(1−s)n. (7.4)

(ii) The computable packing dimension of a class C is defined by

dimcomp
P C = inf{s : some computable martingale d

is strongly s-successful on C}.

Theorem 7.21. Every computably presentable class has computable packing
dimension 0.

Proof. Let g be a computable presentation of some arbitrary computably
presentable class C ⊆ 2ω and pick some s > 0. We present a computable
betting strategy b such that the corresponding computable martingale d
with initial capital d(ε) = 1 is s-successful on C. During the game, the
strategy b computes a nondecreasing sequence of numbers k0 = 0, k1, k2, . . .
and places bets as follows. On input σ with |σ| = n > 0, kn is set to the
least k such that

kn−1 ≤ k ≤ n & L(Mg(k)) � n = σ,

if such a k exists. Otherwise, kn is set equal to kn−1. Now we specify the
bets. If the input is the empty string, then no bet is placed. Otherwise,
the total amount of d(σ)− 2−(n+1) is placed on a bet on the next bit being
equal to L(Mg(kn))(n). Note that the resulting martingale d is total on all
sequences. If the betting strategy is applied to a sequence X ∈ C, then the
sequence k0, k1, . . . will eventually not change any more. Say for some i0
we have that ki0 = kj for all j ≥ i0. Then d is increased by the respective
stakes on all inputs of length at least i0, and thus we have that (7.4) is
satisfied for all s > 0.

The following theorem is an immediate consequence of Theorems 7.18
and 7.21.

Theorem 7.22. For every bounded reducibility ≤R, AlmostR has com-
putable packing dimension 0.
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Now we turn to computably deep sequences as defined by Fenner, Lutz,
Mayordomo, and Reardon [18].

Definition 7.23. Let ≤R be a bounded reducibility. A sequence X is com-
putably R-deep if µcomp(R−1(X)) = 0.

Theorem 7.24. Let ≤R be a bounded reducibility which is upwards closed
under finite variation. Then a sequence X is contained in AlmostR if and
only if X is computable and not R-deep.

Proof. First we note that AlmostR is contained in the class of computable
sequences by the discussion following Definition 7.17. By Lemma 7.16,
the upper ≤R-cone of a computable sequence X is a Σ0

2-class. Hence by
Theorem 7.14 a computable sequence X is computably R-deep if and only
if the upper ≤R-cone of X has Lebesgue measure 0. Now the upper ≤R-
cone of X is closed under finite variation since by hypothesis, ≤R is upwards
closed under finite variation. Thus by Kolmogorov’s 0-1-Law a computable
sequence Y is not computably R-deep if and only if Y ∈ AlmostR.
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[29] Ming Li and Paul Vitányi. An Introduction to Kolmogorov Complexity
and its Applications. Graduate Texts in Computer Science. Springer-
Verlag, New York, second edition, 1997.
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