68 research outputs found

    New scalable machine learning methods: beyond classification and regression

    Get PDF
    Programa Oficial de Doutoramento en Computación . 5009V01[Abstract] The recent surge in data available has spawned a new and promising age of machine learning. Success cases of machine learning are arriving at an increasing rate as some algorithms are able to leverage immense amounts of data to produce great complicated predictions. Still, many algorithms in the toolbox of the machine learning practitioner have been render useless in this new scenario due to the complications associated with large-scale learning. Handling large datasets entails logistical problems, limits the computational and spatial complexity of the used algorithms, favours methods with few or no hyperparameters to be con gured and exhibits speci c characteristics that complicate learning. This thesis is centered on the scalability of machine learning algorithms, that is, their capacity to maintain their e ectivity as the scale of the data grows, and how it can be improved. We focus on problems for which the existing solutions struggle when the scale grows. Therefore, we skip classi cation and regression problems and focus on feature selection, anomaly detection, graph construction and explainable machine learning. We analyze four di erent strategies to obtain scalable algorithms. First, we explore distributed computation, which is used in all of the presented algorithms. Besides this technique, we also examine the use of approximate models to speed up computations, the design of new models that take advantage of a characteristic of the input data to simplify training and the enhancement of simple models to enable them to manage large-scale learning. We have implemented four new algorithms and six versions of existing ones that tackle the mentioned problems and for each one we report experimental results that show both their validity in comparison with competing methods and their capacity to scale to large datasets. All the presented algorithms have been made available for download and are being published in journals to enable practitioners and researchers to use them.[Resumen] El reciente aumento de la cantidad de datos disponibles ha dado lugar a una nueva y prometedora era del aprendizaje máquina. Los éxitos en este campo se están sucediendo a un ritmo cada vez mayor gracias a la capacidad de algunos algoritmos de aprovechar inmensas cantidades de datos para producir predicciones difíciles y muy certeras. Sin embargo, muchos de los algoritmos hasta ahora disponibles para los científicos de datos han perdido su efectividad en este nuevo escenario debido a las complicaciones asociadas al aprendizaje a gran escala. Trabajar con grandes conjuntos de datos conlleva problemas logísticos, limita la complejidad computacional y espacial de los algoritmos utilizados, favorece los métodos con pocos o ningún hiperparámetro a configurar y muestra complicaciones específicas que dificultan el aprendizaje. Esta tesis se centra en la escalabilidad de los algoritmos de aprendizaje máquina, es decir, en su capacidad de mantener su efectividad a medida que la escala del conjunto de datos aumenta. Ponemos el foco en problemas cuyas soluciones actuales tienen problemas al aumentar la escala. Por tanto, obviando la clasificación y la regresión, nos centramos en la selección de características, detección de anomalías, construcción de grafos y en el aprendizaje máquina explicable. Analizamos cuatro estrategias diferentes para obtener algoritmos escalables. En primer lugar, exploramos la computación distribuida, que es utilizada en todos los algoritmos presentados. Además de esta técnica, también examinamos el uso de modelos aproximados para acelerar los cálculos, el dise~no de modelos que aprovechan una particularidad de los datos de entrada para simplificar el entrenamiento y la potenciación de modelos simples para adecuarlos al aprendizaje a gran escala. Hemos implementado cuatro nuevos algoritmos y seis versiones de algoritmos existentes que tratan los problemas mencionados y para cada uno de ellos detallamos resultados experimentales que muestran tanto su validez en comparación con los métodos previamente disponibles como su capacidad para escalar a grandes conjuntos de datos. Todos los algoritmos presentados han sido puestos a disposición del lector para su descarga y se han difundido mediante publicaciones en revistas científicas para facilitar que tanto investigadores como científicos de datos puedan conocerlos y utilizarlos.[Resumo] O recente aumento na cantidade de datos dispo~nibles deu lugar a unha nova e prometedora era no aprendizaxe máquina. Os éxitos neste eido estanse a suceder a un ritmo cada vez maior gracias a capacidade dalgúns algoritmos de aproveitar inmensas cantidades de datos para producir prediccións difíciles e moi acertadas. Non obstante, moitos dos algoritmos ata agora dispo~nibles para os científicos de datos perderon a súa efectividade neste novo escenario por mor das complicacións asociadas ao aprendizaxe a grande escala. Traballar con grandes conxuntos de datos leva consigo problemas loxísticos, limita a complexidade computacional e espacial dos algoritmos empregados, favorece os métodos con poucos ou ningún hiperparámetro a configurar e ten complicacións específicas que dificultan o aprendizaxe. Esta tese céntrase na escalabilidade dos algoritmos de aprendizaxe máquina, é dicir, na súa capacidade de manter a súa efectividade a medida que a escala do conxunto de datos aumenta. Tratamos problemas para os que as solucións dispoñibles teñen problemas cando crece a escala. Polo tanto, deixando no canto a clasificación e a regresión, centrámonos na selección de características, detección de anomalías, construcción de grafos e no aprendizaxe máquina explicable. Analizamos catro estratexias diferentes para obter algoritmos escalables. En primeiro lugar, exploramos a computación distribuída, que empregamos en tódolos algoritmos presentados. Ademáis desta técnica, tamén examinamos o uso de modelos aproximados para acelerar os cálculos, o deseño de modelos que aproveitan unha particularidade dos datos de entrada para simplificar o adestramento e a potenciación de modelos sinxelos para axeitalos ao aprendizaxe a gran escala. Implementamos catro novos algoritmos e seis versións de algoritmos existentes que tratan os problemas mencionados e para cada un deles expoñemos resultados experimentais que mostran tanto a súa validez en comparación cos métodos previamente dispoñibles como a súa capacidade para escalar a grandes conxuntos de datos. Tódolos algoritmos presentados foron postos a disposición do lector para a súa descarga e difundíronse mediante publicacións en revistas científicas para facilitar que tanto investigadores como científicos de datos poidan coñecelos e empregalos

    Inferring Facial and Body Language

    Get PDF
    Machine analysis of human facial and body language is a challenging topic in computer vision, impacting on important applications such as human-computer interaction and visual surveillance. In this thesis, we present research building towards computational frameworks capable of automatically understanding facial expression and behavioural body language. The thesis work commences with a thorough examination in issues surrounding facial representation based on Local Binary Patterns (LBP). Extensive experiments with different machine learning techniques demonstrate that LBP features are efficient and effective for person-independent facial expression recognition, even in low-resolution settings. We then present and evaluate a conditional mutual information based algorithm to efficiently learn the most discriminative LBP features, and show the best recognition performance is obtained by using SVM classifiers with the selected LBP features. However, the recognition is performed on static images without exploiting temporal behaviors of facial expression. Subsequently we present a method to capture and represent temporal dynamics of facial expression by discovering the underlying low-dimensional manifold. Locality Preserving Projections (LPP) is exploited to learn the expression manifold in the LBP based appearance feature space. By deriving a universal discriminant expression subspace using a supervised LPP, we can effectively align manifolds of different subjects on a generalised expression manifold. Different linear subspace methods are comprehensively evaluated in expression subspace learning. We formulate and evaluate a Bayesian framework for dynamic facial expression recognition employing the derived manifold representation. However, the manifold representation only addresses temporal correlations of the whole face image, does not consider spatial-temporal correlations among different facial regions. We then employ Canonical Correlation Analysis (CCA) to capture correlations among face parts. To overcome the inherent limitations of classical CCA for image data, we introduce and formalise a novel Matrix-based CCA (MCCA), which can better measure correlations in 2D image data. We show this technique can provide superior performance in regression and recognition tasks, whilst requiring significantly fewer canonical factors. All the above work focuses on facial expressions. However, the face is usually perceived not as an isolated object but as an integrated part of the whole body, and the visual channel combining facial and bodily expressions is most informative. Finally we investigate two understudied problems in body language analysis, gait-based gender discrimination and affective body gesture recognition. To effectively combine face and body cues, CCA is adopted to establish the relationship between the two modalities, and derive a semantic joint feature space for the feature-level fusion. Experiments on large data sets demonstrate that our multimodal systems achieve the superior performance in gender discrimination and affective state analysis.Research studentship of Queen Mary, the International Travel Grant of the Royal Academy of Engineering, and the Royal Society International Joint Project

    Regularized approximate policy iteration using kernel for on-line reinforcement learning

    Get PDF
    By using Reinforcement Learning (RL), an autonomous agent interacting with the environment can learn how to take adequate actions for every situation in order to optimally achieve its own goal. RL provides a general methodology able to solve uncertain and complex decision problems which may be present in many real-world applications. RL problems are usually modeled as a Markov Decision Processes (MDPs) deeply studied in the literature. The main peculiarity of a RL algorithm is that the RL agent is assumed to learn the optimal policies from its experiences without knowing the parameters of the MDP. The key element in solving the MDP is learning a value function which gives the expectation of total reward an agent might expect at its current state taking a given action. This value function allows to obtain the optimal policy. In this thesis we study the capacity of SVR using kernel methods to adapt and solve complex RL problems in large or continuous state space. SVR can be studied using a geometrical interpretation in terms of optimal margin or can be seen as a regularization problem given in a Reproducing Kernel Hilbert Space (RKHS) SVR have good properties over the generalization ability and as they are based a on convex optimization problem, they do not suffer from sub-optimality. SVR are non-parametric showing the ability to automatically adapt to the complexity of the problem. Accordingly, applying SVR to approximate value functions sounds to be a good approach. SVR can be solved both in batch mode when the whole set of training sample are at disposal of the learning agents or incrementally which enables the addition or removal of training samples very effectively. Incremental SVR finds the appropriate KKT conditions for new or updated data by modifying their influences into the regression function maintaining consistence in the KKT conditions for the rest of data used for learning. In RL problems an incremental SVR should be able to approximate the action value function leading to the optimal policy. Accordingly, computation load should be lower, learning speed faster and generalization more effective than other existing method The overall contribution coming from of our work is to develop, formalize, implement and study a new RL technique for generalization in discrete and continuous state spaces with finite actions. Our method uses the Approximate Policy Iteration (API) framework with the BRM criterion which allows to represent the action value function using SVR. This approach for RL is the first one we know using SVR compatible to the agent interaction- with-the-environment framework of RL which shows his power by solving a large number of benchmark problems, including very difficult ones, like the bicycle driving and riding control problem. In addition, unlike most RL approaches to generalization, we develop a proof finding theoretical bounds for the convergence of the method to the optimal solution under given conditions.Mediante el uso de aprendizaje por refuerzo (RL), un agente autónomo interactuando con el medio ambiente puede aprender a tomar adecuada acciones para cada situación con el fin de lograr de manera óptima su propia meta. RL proporciona una metodología general capaz de resolver problemas de decisión complejos que pueden estar presentes en muchas aplicaciones del mundo real. Problemas RL usualmente se modelan como una Procesos de Decisión de Markov (MDP) estudiados profundamente en la literatura. La principal peculiaridad de un algoritmo de RL es que el agente es asumido para aprender las políticas óptimas de sus experiencias sin saber los parámetros de la MDP. El elemento clave en resolver el MDP está en el aprender una función de valor que da la expectativa de recompensa total que un agente puede esperar en su estado actual para tomar una acción determinada. Esta función de valor permite obtener la política óptima. En esta tesis se estudia la capacidad del SVR utilizando núcleo métodos para adaptarse y resolver problemas RL complejas en el espacio estado grande o continua. RVS puede ser estudiado mediante un interpretación geométrica en términos de margen óptimo o puede ser visto como un problema de regularización dado en un Reproducing Kernel Hilbert Space (RKHS). SVR tiene buenas propiedades sobre la capacidad de generalización y ya que se basan en una optimización convexa problema, ellos no sufren de sub-optimalidad. SVR son no paramétrico que muestra la capacidad de adaptarse automáticamente a la complejidad del problema. En consecuencia, la aplicación de RVS para aproximar funciones de valor suena para ser un buen enfoque. SVR puede resolver tanto en modo batch cuando todo el conjunto de muestra de entrenamiento están a disposición de los agentes de aprendizaje o incrementalmente que permite la adición o eliminación de muestras de entrenamiento muy eficaz. Incremental SVR encuentra las condiciones adecuadas para KKT nuevas o actualizadas de datos modificando sus influencias en la función de regresión mantener consistencia en las condiciones KKT para el resto de los datos utilizados para el aprendizaje. En los problemas de RL una RVS elemental será capaz de aproximar la función de valor de acción que conduce a la política óptima. En consecuencia, la carga de cálculo debería ser menor, la velocidad de aprendizaje más rápido y generalización más efectivo que el otro método existente La contribución general que viene de nuestro trabajo es desarrollar, formalizar, ejecutar y estudiar una nueva técnica de RL para la generalización en espacio de estados discretos y continuos con acciones finitas. Nuestro método utiliza el marco de la Approximate Policy Iteration (API) con el criterio de BRM que permite representar la función de valor de acción utilizando SVR. Este enfoque de RL es el primero que conocemos usando SVR compatible con el marco de RL con agentes interaccionado con el ambiente que muestra su poder mediante la resolución de un gran número de problemas de referencia, incluyendo los muy difíciles, como la conducción de bicicletas y problema de control de conducción. Además, a diferencia de la mayoría RL se acerca a la generalización, desarrollamos un hallazgo prueba límites teóricos para la convergencia del método a la solución óptima en condiciones dadas.Postprint (published version

    Local selection of features and its applications to image search and annotation

    Get PDF
    In multimedia applications, direct representations of data objects typically involve hundreds or thousands of features. Given a query object, the similarity between the query object and a database object can be computed as the distance between their feature vectors. The neighborhood of the query object consists of those database objects that are close to the query object. The semantic quality of the neighborhood, which can be measured as the proportion of neighboring objects that share the same class label as the query object, is crucial for many applications, such as content-based image retrieval and automated image annotation. However, due to the existence of noisy or irrelevant features, errors introduced into similarity measurements are detrimental to the neighborhood quality of data objects. One way to alleviate the negative impact of noisy features is to use feature selection techniques in data preprocessing. From the original vector space, feature selection techniques select a subset of features, which can be used subsequently in supervised or unsupervised learning algorithms for better performance. However, their performance on improving the quality of data neighborhoods is rarely evaluated in the literature. In addition, most traditional feature selection techniques are global, in the sense that they compute a single set of features across the entire database. As a consequence, the possibility that the feature importance may vary across different data objects or classes of objects is neglected. To compute a better neighborhood structure for objects in high-dimensional feature spaces, this dissertation proposes several techniques for selecting features that are important to the local neighborhood of individual objects. These techniques are then applied to image applications such as content-based image retrieval and image label propagation. Firstly, an iterative K-NN graph construction method for image databases is proposed. A local variant of the Laplacian Score is designed for the selection of features for individual images. Noisy features are detected and sparsified iteratively from the original standardized feature vectors. This technique is incorporated into an approximate K-NN graph construction method so as to improve the semantic quality of the graph. Secondly, in a content-based image retrieval system, a generalized version of the Laplacian Score is used to compute different feature subspaces for images in the database. For online search, a query image is ranked in the feature spaces of database images. Those database images for which the query image is ranked highly are selected as the query results. Finally, a supervised method for the local selection of image features is proposed, for refining the similarity graph used in an image label propagation framework. By using only the selected features to compute the edges leading from labeled image nodes to unlabeled image nodes, better annotation accuracy can be achieved. Experimental results on several datasets are provided in this dissertation, to demonstrate the effectiveness of the proposed techniques for the local selection of features, and for the image applications under consideration

    Dynamic adversarial mining - effectively applying machine learning in adversarial non-stationary environments.

    Get PDF
    While understanding of machine learning and data mining is still in its budding stages, the engineering applications of the same has found immense acceptance and success. Cybersecurity applications such as intrusion detection systems, spam filtering, and CAPTCHA authentication, have all begun adopting machine learning as a viable technique to deal with large scale adversarial activity. However, the naive usage of machine learning in an adversarial setting is prone to reverse engineering and evasion attacks, as most of these techniques were designed primarily for a static setting. The security domain is a dynamic landscape, with an ongoing never ending arms race between the system designer and the attackers. Any solution designed for such a domain needs to take into account an active adversary and needs to evolve over time, in the face of emerging threats. We term this as the ‘Dynamic Adversarial Mining’ problem, and the presented work provides the foundation for this new interdisciplinary area of research, at the crossroads of Machine Learning, Cybersecurity, and Streaming Data Mining. We start with a white hat analysis of the vulnerabilities of classification systems to exploratory attack. The proposed ‘Seed-Explore-Exploit’ framework provides characterization and modeling of attacks, ranging from simple random evasion attacks to sophisticated reverse engineering. It is observed that, even systems having prediction accuracy close to 100%, can be easily evaded with more than 90% precision. This evasion can be performed without any information about the underlying classifier, training dataset, or the domain of application. Attacks on machine learning systems cause the data to exhibit non stationarity (i.e., the training and the testing data have different distributions). It is necessary to detect these changes in distribution, called concept drift, as they could cause the prediction performance of the model to degrade over time. However, the detection cannot overly rely on labeled data to compute performance explicitly and monitor a drop, as labeling is expensive and time consuming, and at times may not be a possibility altogether. As such, we propose the ‘Margin Density Drift Detection (MD3)’ algorithm, which can reliably detect concept drift from unlabeled data only. MD3 provides high detection accuracy with a low false alarm rate, making it suitable for cybersecurity applications; where excessive false alarms are expensive and can lead to loss of trust in the warning system. Additionally, MD3 is designed as a classifier independent and streaming algorithm for usage in a variety of continuous never-ending learning systems. We then propose a ‘Dynamic Adversarial Mining’ based learning framework, for learning in non-stationary and adversarial environments, which provides ‘security by design’. The proposed ‘Predict-Detect’ classifier framework, aims to provide: robustness against attacks, ease of attack detection using unlabeled data, and swift recovery from attacks. Ideas of feature hiding and obfuscation of feature importance are proposed as strategies to enhance the learning framework\u27s security. Metrics for evaluating the dynamic security of a system and recover-ability after an attack are introduced to provide a practical way of measuring efficacy of dynamic security strategies. The framework is developed as a streaming data methodology, capable of continually functioning with limited supervision and effectively responding to adversarial dynamics. The developed ideas, methodology, algorithms, and experimental analysis, aim to provide a foundation for future work in the area of ‘Dynamic Adversarial Mining’, wherein a holistic approach to machine learning based security is motivated

    Applications of Artificial Intelligence in Medicine Practice

    Get PDF
    This book focuses on a variety of interdisciplinary perspectives concerning the theory and application of artificial intelligence (AI) in medicine, medically oriented human biology, and healthcare. The list of topics includes the application of AI in biomedicine and clinical medicine, machine learning-based decision support, robotic surgery, data analytics and mining, laboratory information systems, and usage of AI in medical education. Special attention is given to the practical aspect of a study. Hence, the inclusion of a clinical assessment of the usefulness and potential impact of the submitted work is strongly highlighted

    Machine learning for automatic analysis of affective behaviour

    Get PDF
    The automated analysis of affect has been gaining rapidly increasing attention by researchers over the past two decades, as it constitutes a fundamental step towards achieving next-generation computing technologies and integrating them into everyday life (e.g. via affect-aware, user-adaptive interfaces, medical imaging, health assessment, ambient intelligence etc.). The work presented in this thesis focuses on several fundamental problems manifesting in the course towards the achievement of reliable, accurate and robust affect sensing systems. In more detail, the motivation behind this work lies in recent developments in the field, namely (i) the creation of large, audiovisual databases for affect analysis in the so-called ''Big-Data`` era, along with (ii) the need to deploy systems under demanding, real-world conditions. These developments led to the requirement for the analysis of emotion expressions continuously in time, instead of merely processing static images, thus unveiling the wide range of temporal dynamics related to human behaviour to researchers. The latter entails another deviation from the traditional line of research in the field: instead of focusing on predicting posed, discrete basic emotions (happiness, surprise etc.), it became necessary to focus on spontaneous, naturalistic expressions captured under settings more proximal to real-world conditions, utilising more expressive emotion descriptions than a set of discrete labels. To this end, the main motivation of this thesis is to deal with challenges arising from the adoption of continuous dimensional emotion descriptions under naturalistic scenarios, considered to capture a much wider spectrum of expressive variability than basic emotions, and most importantly model emotional states which are commonly expressed by humans in their everyday life. In the first part of this thesis, we attempt to demystify the quite unexplored problem of predicting continuous emotional dimensions. This work is amongst the first to explore the problem of predicting emotion dimensions via multi-modal fusion, utilising facial expressions, auditory cues and shoulder gestures. A major contribution of the work presented in this thesis lies in proposing the utilisation of various relationships exhibited by emotion dimensions in order to improve the prediction accuracy of machine learning methods - an idea which has been taken on by other researchers in the field since. In order to experimentally evaluate this, we extend methods such as the Long Short-Term Memory Neural Networks (LSTM), the Relevance Vector Machine (RVM) and Canonical Correlation Analysis (CCA) in order to exploit output relationships in learning. As it is shown, this increases the accuracy of machine learning models applied to this task. The annotation of continuous dimensional emotions is a tedious task, highly prone to the influence of various types of noise. Performed real-time by several annotators (usually experts), the annotation process can be heavily biased by factors such as subjective interpretations of the emotional states observed, the inherent ambiguity of labels related to human behaviour, the varying reaction lags exhibited by each annotator as well as other factors such as input device noise and annotation errors. In effect, the annotations manifest a strong spatio-temporal annotator-specific bias. Failing to properly deal with annotation bias and noise leads to an inaccurate ground truth, and therefore to ill-generalisable machine learning models. This deems the proper fusion of multiple annotations, and the inference of a clean, corrected version of the ``ground truth'' as one of the most significant challenges in the area. A highly important contribution of this thesis lies in the introduction of Dynamic Probabilistic Canonical Correlation Analysis (DPCCA), a method aimed at fusing noisy continuous annotations. By adopting a private-shared space model, we isolate the individual characteristics that are annotator-specific and not shared, while most importantly we model the common, underlying annotation which is shared by annotators (i.e., the derived ground truth). By further learning temporal dynamics and incorporating a time-warping process, we are able to derive a clean version of the ground truth given multiple annotations, eliminating temporal discrepancies and other nuisances. The integration of the temporal alignment process within the proposed private-shared space model deems DPCCA suitable for the problem of temporally aligning human behaviour; that is, given temporally unsynchronised sequences (e.g., videos of two persons smiling), the goal is to generate the temporally synchronised sequences (e.g., the smile apex should co-occur in the videos). Temporal alignment is an important problem for many applications where multiple datasets need to be aligned in time. Furthermore, it is particularly suitable for the analysis of facial expressions, where the activation of facial muscles (Action Units) typically follows a set of predefined temporal phases. A highly challenging scenario is when the observations are perturbed by gross, non-Gaussian noise (e.g., occlusions), as is often the case when analysing data acquired under real-world conditions. To account for non-Gaussian noise, a robust variant of Canonical Correlation Analysis (RCCA) for robust fusion and temporal alignment is proposed. The model captures the shared, low-rank subspace of the observations, isolating the gross noise in a sparse noise term. RCCA is amongst the first robust variants of CCA proposed in literature, and as we show in related experiments outperforms other, state-of-the-art methods for related tasks such as the fusion of multiple modalities under gross noise. Beyond private-shared space models, Component Analysis (CA) is an integral component of most computer vision systems, particularly in terms of reducing the usually high-dimensional input spaces in a meaningful manner pertaining to the task-at-hand (e.g., prediction, clustering). A final, significant contribution of this thesis lies in proposing the first unifying framework for probabilistic component analysis. The proposed framework covers most well-known CA methods, such as Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), Locality Preserving Projections (LPP) and Slow Feature Analysis (SFA), providing further theoretical insights into the workings of CA. Moreover, the proposed framework is highly flexible, enabling novel CA methods to be generated by simply manipulating the connectivity of latent variables (i.e. the latent neighbourhood). As shown experimentally, methods derived via the proposed framework outperform other equivalents in several problems related to affect sensing and facial expression analysis, while providing advantages such as reduced complexity and explicit variance modelling.Open Acces

    Domain Adaptation in remote sensing: increasing the portability of land-cover classifiers

    Get PDF
    Among the types of remote sensing acquisitions, optical images are certainly one of the most widely relied upon data sources for Earth observation. They provide detailed measurements of the electromagnetic radiation reflected or emitted by each pixel in the scene. Through a process termed supervised land-cover classification, this allows to automatically yet accurately distinguish objects at the surface of our planet. In this respect, when producing a land-cover map of the surveyed area, the availability of training examples representative of each thematic class is crucial for the success of the classification procedure. However, in real applications, due to several constraints on the sample collection process, labeled pixels are usually scarce. When analyzing an image for which those key samples are unavailable, a viable solution consists in resorting to the ground truth data of other previously acquired images. This option is attractive but several factors such as atmospheric, ground and acquisition conditions can cause radiometric differences between the images, hindering therefore the transfer of knowledge from one image to another. The goal of this Thesis is to supply remote sensing image analysts with suitable processing techniques to ensure a robust portability of the classification models across different images. The ultimate purpose is to map the land-cover classes over large spatial and temporal extents with minimal ground information. To overcome, or simply quantify, the observed shifts in the statistical distribution of the spectra of the materials, we study four approaches issued from the field of machine learning. First, we propose a strategy to intelligently sample the image of interest to collect the labels only in correspondence of the most useful pixels. This iterative routine is based on a constant evaluation of the pertinence to the new image of the initial training data actually belonging to a different image. Second, an approach to reduce the radiometric differences among the images by projecting the respective pixels in a common new data space is presented. We analyze a kernel-based feature extraction framework suited for such problems, showing that, after this relative normalization, the cross-image generalization abilities of a classifier are highly increased. Third, we test a new data-driven measure of distance between probability distributions to assess the distortions caused by differences in the acquisition geometry affecting series of multi-angle images. Also, we gauge the portability of classification models through the sequences. In both exercises, the efficacy of classic physically- and statistically-based normalization methods is discussed. Finally, we explore a new family of approaches based on sparse representations of the samples to reciprocally convert the data space of two images. The projection function bridging the images allows a synthesis of new pixels with more similar characteristics ultimately facilitating the land-cover mapping across images

    A Systematic and Comprehensive Survey of Recent Advances in Intrusion Detection Systems Using Machine Learning: Deep Learning, Datasets, and Attack Taxonomy

    Get PDF
    Recently, intrusion detection systems (IDS) have become an essential part of most organisations’ security architecture due to the rise in frequency and severity of network attacks. To identify a security breach, the target machine or network must be watched and analysed for signs of an intrusion. It is defined as efforts to compromise the confidentiality, integrity, or availability of a computer or network or to circumvent its security mechanisms. Several IDS have been proposed in the literature to efficiently detect such attempts exploiting different characteristics of cyberattacks. These systems can provide with timely sensing the network intrusions and, subsequently, notifying the manager or the responsible person in an organisation. Important actions are then carried out to reduce the degree of damage caused by the intrusion. Organisations use such techniques to defend their systems from the network disconnectivity and increase reliance on the information systems by employing intrusion detection. This paper presents a detailed summary of recent advances in IDS from the literature. Nevertheless, a review of future research directions for detecting malicious operations and launching different attacks on systems is discussed and highlighted. Furthermore, this study presents detailed description of well-known publicly available datasets and a variety of strategies developed for dealing with intrusions
    corecore