
UNIVERSITY OF A CORUÑA

FACULTY OF INFORMATICS

Department of Computer Science

Ph.D. Thesis

New scalable machine learning methods:
Beyond classification and regression

Author: Carlos Eiras-Franco
Advisors: Amparo Alonso Betanzos

Bertha Guijarro Berdiñas
Antonio Bahamonde

A Coruña, October 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio da Universidade da Coruña

https://core.ac.uk/display/288875259?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

6 de noviembre de 2019
UNIVERSITY OF A CORUÑA

FACULTY OF INFORMATICS
Campus de Elviña s/n
15071 - A Coruña (Spain)

Copyright notice:
No part of this publication may be reproduced, stored in a re-
trieval system, or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording and/or other-
wise without the prior permission of the authors.

“The strength of the team is each individual member. The strength of each

member is the team.” – Phil Jackson

Acknowledgements

Working on this thesis has really made apparent for me how much of a collaborative

effort research is. Consider this page to be a non-exhaustive list of people that helped

me on this effort.

Five years ago, after spending several years working as a software developer, I

realized that what I most enjoyed was searching for solutions to difficult problems and

started to consider pursuing a career in research. My first contacts with the university

were somewhat discouraging, given the scarcity of funding for scientific research in

Spain. However, when I knocked on Amparo’s door it flung wide open and I received

nothing but encouragement and help. The LIDIA research group has been incredibly

welcoming and is the most nurturing place I could hope for my research. My sincerest

gratitude must be, consequently, first shown to the LIDIA group and Amparo as its

leader.

Possibly the most important factor in completing this work successfully is the ama-

zing job done by my supervisors Amparo, Bertha and Antonio. I was lucky enough to

have not one but three extremely accomplished and experienced supervisors that stee-

red my efforts in the right direction, so they deserve a great deal of the credit for this

work. They always found time in their very busy lives to work on this thesis and did

so while making me feel welcome and appreciated, for which I am immensely grateful.

In this five years I have had the good fortune of working alongside very talented

colleagues that ended up being co-authors of some of the papers that originated from

this thesis. In no particular order, Verónica, David, Sabela, Jorge, Juan, Leslie and

César offered their expertise and work which helped make this thesis much better. I

thank all of them for their effort. I have encountered many other talented colleagues

in this time that have enriched my understanding of the field with their ideas. In this

category, I would like to thank my fellow LIDIA members who not only shared their

knowledge but also made the non-research hours much more entertaining.

i

This work also greatly benefited from my two research stays abroad. I would like

to thank Professor John Shawe-Taylor for being so kind to invite me to the University

College of London for a month early in this endeavour. David and Leslie were kind

enough to get me up to speed with part of their research and they were also very

welcoming, for which I thank them. Later on, Professor Paulo Novais was also very

generous for offering me to stay at the ISLab of the Universidade do Minho for two

months. I thank him and Tiago and Marco for going out of their way to make my

stay more pleasant and particularly Marco for the effort put in the research that we

conducted at the moment which, although it unfortunately did not yield any publishable

results, helped me better understand the problem at hand.

On the technical side, the nature of the research presented in this thesis required

many computational resources. I have to thank both the Centro de Supercomputación

de Galicia (CESGA) and Pluton Cluster of the Computer Architecture Group of the

Universidade da Coruña and their respective staffs for the assistance they offered.

I would also like to thank my family. My parents and my brother instilled in me a

love for knowledge and a work ethic that were instrumental in this endeavor and their

support has been unwavering. Finally, my lovely wife has always shared my love for

science and has been by my side every step of the way in this task, as in life. The love,

support and joy that she and my son bring to my life help make the most difficult

problems much more solvable and I can’t thank them enough.

Carlos Eiras Franco

ii

Abstract

The recent surge in data available has spawned a new and promising age of machine

learning. Success cases of machine learning are arriving at an increasing rate as some

algorithms are able to leverage immense amounts of data to produce great complicated

predictions. Still, many algorithms in the toolbox of the machine learning practitioner

have been render useless in this new scenario due to the complications associated with

large-scale learning. Handling large datasets entails logistical problems, limits the com-

putational and spatial complexity of the used algorithms, favours methods with few or

no hyperparameters to be configured and exhibits specific characteristics that compli-

cate learning. This thesis is centered on the scalability of machine learning algorithms,

that is, their capacity to maintain their effectivity as the scale of the data grows, and

how it can be improved. We focus on problems for which the existing solutions struggle

when the scale grows. Therefore, we skip classification and regression problems and

focus on feature selection, anomaly detection, graph construction and explainable ma-

chine learning. We analyze four different strategies to obtain scalable algorithms. First,

we explore distributed computation, which is used in all of the presented algorithms.

Besides this technique, we also examine the use of approximate models to speed up

computations, the design of new models that take advantage of a characteristic of the

input data to simplify training and the enhancement of simple models to enable them

to manage large-scale learning. We have implemented four new algorithms and six

versions of existing ones that tackle the mentioned problems and for each one we re-

port experimental results that show both their validity in comparison with competing

methods and their capacity to scale to large datasets. All the presented algorithms

have been made available for download and are being published in journals to enable

practitioners and researchers to use them.

iii

iv

Resumen

El reciente aumento de la cantidad de datos disponibles ha dado lugar a una nueva y

prometedora era del aprendizaje máquina. Los éxitos en este campo se están sucediendo

a un ritmo cada vez mayor gracias a la capacidad de algunos algoritmos de aprovechar

inmensas cantidades de datos para producir predicciones dif́ıciles y muy certeras. Sin

embargo, muchos de los algoritmos hasta ahora disponibles para los cient́ıficos de datos

han perdido su efectividad en este nuevo escenario debido a las complicaciones aso-

ciadas al aprendizaje a gran escala. Trabajar con grandes conjuntos de datos conlleva

problemas loǵısticos, limita la complejidad computacional y espacial de los algoritmos

utilizados, favorece los métodos con pocos o ningún hiperparámetro a configurar y

muestra complicaciones espećıficas que dificultan el aprendizaje. Esta tesis se centra en

la escalabilidad de los algoritmos de aprendizaje máquina, es decir, en su capacidad de

mantener su efectividad a medida que la escala del conjunto de datos aumenta. Pone-

mos el foco en problemas cuyas soluciones actuales tienen problemas al aumentar la

escala. Por tanto, obviando la clasificación y la regresión, nos centramos en la selección

de caracteŕısticas, detección de anomaĺıas, construcción de grafos y en el aprendizaje

máquina explicable. Analizamos cuatro estrategias diferentes para obtener algoritmos

escalables. En primer lugar, exploramos la computación distribuida, que es utilizada en

todos los algoritmos presentados. Además de esta técnica, también examinamos el uso

de modelos aproximados para acelerar los cálculos, el diseño de modelos que aprove-

chan una particularidad de los datos de entrada para simplificar el entrenamiento y la

potenciación de modelos simples para adecuarlos al aprendizaje a gran escala. Hemos

implementado cuatro nuevos algoritmos y seis versiones de algoritmos existentes que

tratan los problemas mencionados y para cada uno de ellos detallamos resultados expe-

rimentales que muestran tanto su validez en comparación con los métodos previamente

disponibles como su capacidad para escalar a grandes conjuntos de datos. Todos los

algoritmos presentados han sido puestos a disposición del lector para su descarga y

se han difundido mediante publicaciones en revistas cient́ıficas para facilitar que tanto

investigadores como cient́ıficos de datos puedan conocerlos y utilizarlos.

v

vi

Resumo

O recente aumento na cantidade de datos dispoñibles deu lugar a unha nova e pro-

metedora era no aprendizaxe máquina. Os éxitos neste eido estanse a suceder a un

ritmo cada vez maior gracias a capacidade dalgúns algoritmos de aproveitar inmensas

cantidades de datos para producir prediccións dif́ıciles e moi acertadas. Non obstante,

moitos dos algoritmos ata agora dispoñibles para os cient́ıficos de datos perderon a súa

efectividade neste novo escenario por mor das complicacións asociadas ao aprendiza-

xe a grande escala. Traballar con grandes conxuntos de datos leva consigo problemas

lox́ısticos, limita a complexidade computacional e espacial dos algoritmos empregados,

favorece os métodos con poucos ou ningún hiperparámetro a configurar e ten complica-

cións espećıficas que dificultan o aprendizaxe. Esta tese céntrase na escalabilidade dos

algoritmos de aprendizaxe máquina, é dicir, na súa capacidade de manter a súa efecti-

vidade a medida que a escala do conxunto de datos aumenta. Tratamos problemas para

os que as solucións dispoñibles teñen problemas cando crece a escala. Polo tanto, dei-

xando no canto a clasificación e a regresión, centrámonos na selección de caracteŕısticas,

detección de anomaĺıas, construcción de grafos e no aprendizaxe máquina explicable.

Analizamos catro estratexias diferentes para obter algoritmos escalables. En primeiro

lugar, exploramos a computación distribúıda, que empregamos en tódolos algoritmos

presentados. Ademáis desta técnica, tamén examinamos o uso de modelos aproximados

para acelerar os cálculos, o deseño de modelos que aproveitan unha particularidade dos

datos de entrada para simplificar o adestramento e a potenciación de modelos sinxelos

para axeitalos ao aprendizaxe a gran escala. Implementamos catro novos algoritmos e

seis versións de algoritmos existentes que tratan os problemas mencionados e para cada

un deles expoñemos resultados experimentais que mostran tanto a súa validez en com-

paración cos métodos previamente dispoñibles como a súa capacidade para escalar a

grandes conxuntos de datos. Tódolos algoritmos presentados foron postos a disposición

do lector para a súa descarga e difund́ıronse mediante publicacións en revistas cient́ıfi-

cas para facilitar que tanto investigadores como cient́ıficos de datos poidan coñecelos e

empregalos.

vii

viii

Contents

1. Introduction 1

2. Parallel computation: Multithreaded and Spark parallelization of fea-

ture selection filters 7

2.1. Introduction . 7

2.2. Feature selection . 9

2.2.1. Feature selection methods . 10

2.3. Distributed computing approaches . 12

2.3.1. Multithreaded processing . 12

2.3.2. Parallelization with Apache Spark 12

2.4. Implemented algorithms . 14

2.4.1. ReliefF algorithm . 14

2.4.2. InfoGain algorithm . 16

2.4.3. CFS algorithm . 18

2.4.4. SVM-RFE algorithm . 22

2.5. Experimental results . 24

2.5.1. On the preprocessing of the datasets: Parallelization of a dis-

cretization algorithm . 26

2.5.2. Analysis of the ReliefF implementations 28

2.5.3. Analysis of the InfoGain implementations 30

2.5.4. Analysis of the CFS implementations 32

2.5.5. Analysis of the SVM-RFE implementations 32

2.6. Conclusions . 33

3. Approximate models: Scalable kNN Graph construction with Locality

Sensitive Hashing 35

3.1. Introduction . 35

3.2. Related work . 36

3.2.1. kNNG using Locality-Sensitive Hashing 37

3.3. Implementing the Algorithm . 39

3.3.1. Hyperparameter tuning . 42

3.3.1.1. Resolution . 42

ix

3.3.1.2. Hyperparameters for Euclidean distance as a similarity

measure . 43

3.3.1.3. CMAX and desiredSize 44

3.4. Experimental design and Results . 46

3.4.1. Handling CMAX and desiredSize 47

3.4.2. Performance of the method . 50

3.4.3. Scalability of the method . 53

3.5. Conclusions . 55

4. Approximate FS: Scalable feature selection using ReliefF aided by

Locality Sensitive Hashing 57

4.1. Introduction . 57

4.2. Related work . 58

4.3. Proposed algorithm . 59

4.4. Experimental settings . 62

4.4.1. Equipment and datasets . 63

4.4.2. Methodology . 64

4.5. Experimental results . 66

4.5.1. Regression and binary classification 66

4.5.2. Multiclass datasets . 67

4.5.3. Scalability . 70

4.6. Conclusions . 70

5. Ad-hoc models: Large Scale Anomaly Detection in Mixed Numerical

and Categorical Input Spaces 73

5.1. Introduction . 73

5.2. Related work . 75

5.3. Basic formulation . 77

5.3.1. Numerical part . 78

5.3.2. Categorical part . 79

5.4. Maximum likelihood parameter estimation 79

5.5. Experimental settings and results . 80

5.5.1. Methodology . 81

5.5.1.1. Real datasets . 83

5.5.1.2. Synthetic dataset generator 84

5.5.2. Results and discussion . 86

5.6. Conclusions . 91

6. Speculative computation: Explaining large-scale dyadic data 95

x

6.1. Introduction . 95

6.2. Related work . 97

6.3. Definitions . 99

6.4. Proposed algorithm . 101

6.5. Experimental setup . 102

6.5.1. Dataset transformation . 105

6.6. Results . 110

6.6.1. Effect of the λ hyperparameter 110

6.6.2. Suitability of the method . 110

6.6.3. Analysis of the explanations . 112

6.6.4. Scalability of the method . 113

6.7. Conclusions . 115

7. Conclusions and future work 117

I. Best hyperparameters for anomaly detection methods 121

II. Additional results of the scalable dyadic data explanator 127

III.Publications supporting this thesis 131

Bibliography 133

xi

xii

CHAPTER 1
Introduction

Recent years have seen the production of data increase at breakneck pace. Fueled

by the low price of storage and sensors, the deployment of the Internet of Things [9],

the ubiquity of smart devices and the sensorization of many industrial activities all

contribute to the production of data in volumes previously unseen. The size of the

datasets being generated, stored and analyzed has been steadily growing. Taking the

datasets posted in the popular LibSVM Database [37] as a reference, their size has

increased five hundredfold.

This phenomenon has sparked the interest in machine learning. The goal of this

field is the development of methods and algorithms to transform raw data into useful

insights by identifying patterns and using inference [19]. Machine learning algorithms

rely exclusively in data to learn to perform a task and require no knowledge to be

explicitly coded. Historically, the capacity of these methods to learn complex tasks was

limited by the scarcity of data. Thanks to the mentioned increase in the data available,

the bottleneck has shifted to the capacity of algorithms, that is, the complexity of the

learned tasks is now limited by the ability of the machine learning method to extract

the relevant patterns [25]. The capacity of algorithms to gracefully handle a growing

amount of work is called scalability [24]. Increasing it allows the learning of more

complex tasks.

Several success cases show that this abundance of data is an opportunity of which

machine learning can take great advantage. An spectacular example is the case of

neural networks, particularly of learning deep artificial neural network models or Deep

Learning (DL) for short. These models had been studied for decades but only gained

great popularity in the last decade, when the increase in the size of datasets allowed

them to achieve state-of-the-art and even superhuman performance in a wide range of

problems. It has been estimated that a DL model requires training on 5,000 labeled

samples per category to achieve acceptable performance and that it can only reach

human-level performance when the dataset reaches 10 million examples [98]. Having

1

Chapter 1. Introduction

abundant data to train on has allowed the once minority field of DL to achieve remark-

able success in computer vision, machine translation, speech recognition and other

important problems.

However, the opportunity that large datasets bring comes associated with a host of

problems that complicate the use of machine learning algorithms. As a result, many

popular techniques are rendered useless in the context of large-scale learning. Several

factors can contribute to this effect:

1. Algorithms with a high computational complexity can require impractical

execution times to process a large dataset. In the case of datasets with a very

large number n of examples, the computational complexity of an algorithm should

not exceed O(n). Conversely, if the data has a large number d of variables, then

complexity should be O(d) or below. Algorithms with a higher complexity require

using mitigation techniques that are not feasible in every case.

2. Similarly, a high spatial complexity can render an algorithm useless in the

context of large-scale learning. The same rule of thumb as in the case of com-

putational complexity applies to find the maximum spatial complexity that is

manageable in such contexts. Again, algorithms that have a higher complexity

demand memory at such a rate that special measures need to be applied, although

they are not always available.

3. Moreover, a well-known complication with datasets that have many variables is

the curse of dimensionality . This term was coined by Bellman [16] to refer to

the difficulty to optimize in high-dimensional spaces due to the impossibility of

exhaustive enumeration, the mentioned computational and spatial demands and

structural problems like the concentration of distances [157].

4. Simply handling large datasets poses logistical problems that need to be ad-

dressed in order to apply a machine learning method. Storing a large amount of

data in a manner that allows quick access constitutes a challenge.

5. Finally, algorithms that have many hyperparameters to be tuned require sev-

eral cross-validated training steps to obtain the best combination of hyperparame-

ters. In the context of large-scale learning, performing each of those training steps

can be costly, forcing the practitioner to choose between an expensive well-tuned

accurate result and a more inaccurate inexpensive one.

2

The machine learning literature contains many efforts to address these problems in-

dividually, although there is no silver bullet that solves all of them. In particular,

numerous techniques can be used when dealing with high-dimensional datasets, which

can have a large number of examples, many attributes describing each element or both

characteristics. In the specific case of datasets with a large number of variables it is

advisable to apply dimensionality reduction techniques to improve the performance of

learning methods. The options available for data scientists facing this situation include

feature extraction (FE), that transforms the input set of variables in a new, smaller set

in which each attribute is the result of applying a function to various input variables,

or feature selection (FS), that consists in obtaining a subset of features that describes

the problem properly by discarding irrelevant or redundant variables from the input

variable set [66]. Having a reduced set of variables facilitates the comprehension of

the dataset and can also improve the effectiveness of learning methods applied to it.

However, it is important to note that, paradoxically, many of the most popular FE

and FS techniques suffer from some of the problems mentioned above and can not be

applied to large-scale datasets.

The increase in the size of datasets has, therefore, created a environment in which

the algorithms that are less affected by the associated problems and more able to take

advantage of data abundance have thrived, while other popular and effective algorithms

have been relegated to handling small datasets. In particular, models with parameters

that can be optimized using Gradient Descent (such as DL models) generally show

good scalability, and increasing the complexity of these models manages to learn a

more complex task given enough data and provided that convergence is obtained in a

reasonable time [26]. Besides those, tree based models are also popular in large-scale

learning since they can be processed in parallel, increasing the speed of computation.

Many other approaches that were popular and successful in small-scale learning have

struggled to gracefully scale to the size of current datasets.

The goal of this thesis is to explore solutions to the mentioned problems associated

with large-scale datasets that increase the scalability of machine learning algorithms

which in their original form can not handle those large datasets. To achieve that, we ex-

plore several complementary approaches that alleviate one or various of the mentioned

problems. For each of these approaches we have either studied a specific algorithm

and obtained a more scalable version or proposed a novel algorithm that leverages the

described solution. Namely, we have explored:

3

Chapter 1. Introduction

1. Parallel execution of operations that are independent. This is arguably the

most widespread and successful technique for handling large datasets. It con-

sists in finding operations in the learning process that have no dependencies and

executing them in parallel in several computational units to speed up the compu-

tation. A particular case of this approach is the use of GPUs to perform several

matrix operations in a single step, which is essential to the scalability of DL meth-

ods. However, this is restricted to methods that rely heavily in matrix operations.

In this thesis we explore the more general idea of using computer clusters to dis-

tribute the computational load across multiple computers. This has the added

benefit that, in many cases, the storage demands can also be shared among the

involved machines. Chapter 2 introduces the distributed computation framework

Apache Spark and explores its use to provide scalability to popular feature selec-

tion algorithms, comparing it to using a single machine with several computing

threads for the same task. All of the methods presented in this thesis are designed

so that their independent operations can be executed in parallel using distributed

computation to increase their scalability.

2. The use of approximate models to alleviate the computational load that some

algorithms require when the data is very numerous. This approach originates from

the observation that obtaining an approximate solution often achieves results

comparable to the exact solution, while requiring significantly less effort. In

Chapter 3 we detail this line of action and we present a method that uses Locality

Sensitive Hashing to obtain an approximate k nearest neighbors graph, a data

structure used in many machine learning problems. In Chapter 4 we propose

an adaptation of the popular ReliefF feature selection algorithm that uses that

approximate k nearest neighbors graph instead of the exact one and we report

experiments which highlight that using an approximation does not significantly

affect accuracy while greatly improving scalability.

3. Designing ad-hoc models that take advantage of a characteristic of the input

data to simplify learning, which can lead to efficient algorithms for that specific

type of data. In Chapter 5 we present an anomaly detection method that works

on input data that has both numeric and categorical variables. The proposed

method leverages this characteristic to compose two simple models into a more

complex one that can be learned much more easily.

4. The enhancement of simple models with speculative computation enabled

by the parallel execution provided with distributed computation. This idea is

explored in Chapter 6 were we present a method to obtain an explanation of

4

the relationships encoded in a dyadic dataset by building a modified decision

tree. The accuracy of the obtained model is increased by speculatively comput-

ing many versions of the decision tree in parallel using distributed computation,

effectively exploring a larger fraction of the solution space while requiring the

same computational time.

In addition to exploring several lines of action to mitigate the problems derived from

large datasets, we tried to obtain algorithms that tackle problems that have few solu-

tions in the context of large-scale learning. Specifically, we present adapted versions

of several feature selection algorithms to address the shortage of implementations of

feature selection methods in large-scale computation platforms. Moreover, we intro-

duce a novel anomaly detection algorithm in mixed numerical-categorical input spaces

to provide an scalable algorithm for a problem that has few solutions that work with

large datasets. Finally, we explore the nascent field of Explainable Artificial Intelli-

gence (XAI) which aims to solve one of the main problems with the complex models

needed to learn from large datasets: the difficulty that human supervisors encounter

when trying to understand the rationale for the outputs and the information encoded

in such models.

5

Chapter 1. Introduction

6

CHAPTER 2
Parallel computation: Multithreaded and Spark

parallelization of feature selection filters

2.1. Introduction

The ability to collaborate and organize large groups of individuals to accomplish a

task that would be unachievable individually is one of the trademarks of the human

species. Perhaps because of that, when we are faced with a large endeavor one of our

first instincts is to try and split it into simpler tasks that can be shared among several

participants. This gives rises to all sorts of organization and synchronization problems,

which are greatly simplified when the simple tasks originated can be performed inde-

pendently; it is in those cases that this approach is more suited. Hence, it is no surprise

that, when dealing with large-scale machine learning, data scientists quickly resorted

to this strategy.

Parallel computing is arguably the single most effective line of action for handling

machine learning at large scale. Computer hardware has long been capable of perform-

ing several calculations simultaneously, with CPUs packing up to 32 computing cores

that can operate in parallel. Also, methods that rely on the optimization of parameters

involved in matrix operations are very well suited to computation on special hard-

ware called GPUs. These computational units were initially designed to perform the

matrix operations needed to generate high quality computer graphics, but were later

repurposed to deal with the matrix operations necessary in machine learning model

optimization. Their effectiveness is behind every success case of deep learning, as well

as many other machine learning methods. However, in this thesis we will focus on

another approach for obtaining parallel computation: distributed computing. It can

be used in conjunction with GPU learning and is also behind every major success in

machine learning in recent years. Distributed computing consists of dividing the work

at hand across multiple computational units, which can be processor cores on a single

7

Chapter 2. Parallel computation: Multithreaded and Spark parallelization of feature selection
filters

machine or the processors of several machines in a computer cluster. Distributing the

computation accelerates the response process and spreads the storage load. This ap-

proach gained significant traction with the introduction of the Map Reduce paradigm

[46], an abstraction presented by Google in 2008 that facilitates the distribution of com-

putations as long as they conform to two very general types of processing, namely, Map

and Reduce operations. An open-source implementation of this idea was soon launched

under the name Apache Hadoop [68]. This software platform enables the repurposing

of various units of consumer hardware into computer clusters that can process vast

amounts of data. Later on, more specialised frameworks were developed, among which

Apache Spark [153] is probably the most popular. It was developed with the objec-

tive of maintaining reusable data in memory for as long as possible and providing a

flexible programmer API. The success of these frameworks and its suitability for data

science led to the creation of powerful libraries such as Mahout [111] for Hadoop and

MLLib [114] for Spark, that contain distributed implementations of machine learning

algorithms.

However, although these libraries contain a wide variety of machine learning algo-

rithms, they are still lacking in certain aspects. The gradual increase in the dimensions

of datasets has spawned a number of techniques designed to deal with such data. This

dimensionality can refer to samples, features or both. In the case in which we confront

with datasets containing numerous features, feature selection techniques are manda-

tory. Feature selection consists in the process of determining the relevant features and

trying to remove as much irrelevant and redundant information as possible, without

leading to a degradation in classification performance.

The go-to solution for many data scientists when performing feature selection is

the Weka (Waikato Environment for Knowledge Analysis) suite [69], which has been

downloaded over six million times. It can be used as a stand-alone application or

imported as a library from the user’s code. Feature selection is among its functionalities

with several algorithms available to the user. This ample range of algorithms included

in Weka makes its use widespread among data scientists for data analysis and for the

development and testing of new algorithms. In addition, the fact that Weka runs on

Java and is designed with single-machine setups in mind, makes it very suitable for

the average user. Nevertheless, some of the implementations in Weka struggle when

processing large datasets, requiring very long execution times, effectively limiting the

size of the datasets that can be analyzed with it. An improvement in the time efficiency

of these algorithms will enable its many users to process large datasets that up to now

were out of reach for these implementations.

8

2.2 Feature selection

As mentioned above, Spark is designed for distributed computing and can achieve

great performance processing large amounts of data, but few implementations of feature

selection algorithms are available. Moreover, to be able to use the Mahout or MLlib

libraries, the user needs to have a Hadoop or Spark installation and, although they can

run on single-machine environments, a cluster of computers would be needed to fully

exploit these libraries, which is not always available for regular users. A more viable

solution for these users is the use single-machine software such as Weka.

In this work, which was published in the Journal of Computational Science [54],

we will present new implementations of four popular feature selection algorithms and

a discretization algorithm that are able to tackle sizable problems in different environ-

ments. We will also compare two alternatives for parallel execution and find out the

suitability of these implementations to different amounts of computing resources1. To

this end, multithreaded implementations for Weka and distributed versions in Spark

will be proposed. This will allow users to analyze larger datasets in shorter times and

choose the most adequate implementation for the resources available to them.

This chapter is organized as follows: Sections 2.2 and 2.3 are an overview of feature

selection and parallelization approaches respectively. Section 2.4 describes the algo-

rithms that are the object of this chapter. The results of our tests are presented in

Section 2.5 and in Section 2.6 we discuss our conclusions.

2.2. Feature selection

Feature selection is the name given to the process that analyzes a dataset, detects

relevant features and discards those that are redundant or irrelevant. The goal of this

technique is to obtain a subset of features that has minimum degradation of performance

when used by a classifier while describing the given problem properly. It simplifies the

dataset both in size and in complexity of understanding [23], which leads to simpler

and faster classification algorithms, better problem comprehension and reduced storage

requirements.

1The implementations can be downloaded from http://www.lidiagroup.org/index.php/en/materials-
en.html

9

Chapter 2. Parallel computation: Multithreaded and Spark parallelization of feature selection
filters

2.2.1. Feature selection methods

Feature selection methods can be classified into two categories: individual evaluators

or subset evaluators. Individual evaluators are also called rankers and they assign

a weight to each attribute that represents its relevance. Subset evaluators, on the

contrary, employ a search strategy to determine a candidate subset of features and

have the advantage of removing redundant attributes at the cost of being more complex.

According to the relationship with the learning method used, feature selection methods

can also be divided as follows [65]:

Filters are methods that are applied independently of the induction process.

They are, in general, computationally inexpensive.

Wrappers use the induction algorithm as a black box to evaluate the fitness

of each candidate subset. This results in algorithms that are computationally

demanding but more accurate.

Embedded methods perform feature selection in the process of training and

are typically specific to given learning algorithms.

In this work, three of the most commonly used filter methods (InfoGain, ReliefF

and CFS) and an embedded method (SVM-RFE) were selected for reimplementation

using a parallel approach. The first two filters are rankers that return an order for the

features to be discarded below a threshold of the user’s choice and they are included

in the Weka suite:

Information Gain (InfoGain) [125] is a filter that computes the mutual infor-

mation of the different features with respect to the class and provides an ordered

ranking of all the features according to this value.

ReliefF [89] is a heuristic estimator built upon the Relief algorithm [88] that deals

efficiently with noisy and incomplete datasets and with multiclass problems. It

works by locating the nearest neighbors for each instance from the same and

opposite class and updating the weights of each feature accordingly.

The remaining two algorithms are subset evaluators. To perform feature selection

10

2.3 Distributed computing approaches

Table 2.1: Theoretical computational complexity of the four feature selection methods

focus of this work (where n is the number of examples and d is the number of attributes)

Method Complexity

InfoGain dn

ReliefF dn2

CFS d2n

SVM-RFE max(d, n)n2

they search through the space of all possible attribute combinations for the set that

offers a better score according to a heuristic method that depends on the algorithm.

CFS [70] is a subset evaluator independent from the induction process that tries

to identify correlations between attributes and the class.

SVM-RFE [67], which stands for Support Vector Machine Recursive Feature

Elimination is an embedded method that filters the attributes iteratively using a

SVM at each stage to rank them.

The choice of these algorithms was made to obtain a set of tools that are well suited

to a wide range of datasets. CFS and InfoGain perform well when the data has a large

number of attributes when compared to the number of instances and are very fast, but

they do not perform as well when there is noise in the inputs. ReliefF is very good at

eliminating redundant and correlated features, even when there is noise in the inputs

and attributes are non-linear, but it is much slower and does not perform well when

few examples are available. Lastly, SVM-RFE detects correlation and redundancy even

with few examples, but it performs poorly when there is noise in the inputs and is very

time consuming [23].

Table 2.1 shows the theoretical computational complexity of the four methods de-

scribed above.

11

Chapter 2. Parallel computation: Multithreaded and Spark parallelization of feature selection
filters

2.3. Distributed computing approaches

The main purpose of this work is to parallelize the standard implementations of Re-

liefF, InfoGain, CFS and SVM-RFE. In order to empower Weka users, multithreaded

implementations are proposed. Furthermore, to enable users that can access computa-

tional clusters, we developed and tested Spark versions of the algorithms.

2.3.1. Multithreaded processing

Multithreading allows users to take advantage of multicore systems without im-

posing the overhead of creating multiple processes and providing direct access to a

common address space. However the creation and management of threads introduces

a computational overhead that makes the use of threads suboptimal when the tasks

parallelized have low complexity.

Java provides parallel programming support in the core of the language. This fea-

ture enables programmers to write code that exploits multithreading without the need

to use any external libraries. Since Weka is written in Java, we use this support to im-

plement our multithreaded parallel version. We divide the feature selection algorithms

in tasks that can be performed in parallel, which allows us to exploit the computational

power of multicore machines.

2.3.2. Parallelization with Apache Spark

To alleviate the difficulties of developing distributed programs, a team of Google

engineers developed the MapReduce framework [46] that handles the common aspects

of distributed programs, providing the programmer with a tool to run parallel programs

and handle large files without having to worry about anything but the implementation

of the algorithm.

The programming paradigm introduced by MapReduce requires the tasks to be

divided in two separate steps: the Map phase, that applies a function given by the user

to every element; and the Reduce phase, that combines the resulting values. Oftentimes

elements consist of key-value pairs and the Reduce phase merges results that have the

12

2.4 Implemented algorithms

same key, although this is not mandatory. The abstraction resulting of decomposing a

job in simple Map and Reduce functions allows the framework to divide both data and

code across the computing nodes, a task performed by a master node. Typically, the

framework splits the data in as many chunks as nodes are available and distributes it

among them so that each node can apply the Map function to the assigned elements.

The results are then rearranged by the master node, using a key partitioning scheme,

and distributed again back to the nodes so that they perform the Reduce phase.

MapReduce was implemented in the open-source framework Hadoop [68] and rapidly

achieved great popularity for its reliability and scalability. Still, this direct implementa-

tion left room for an important improvement that was later implemented by the Spark

[153] framework: the transition between the Map and Reduce phase requires data to

be shuffled by the master node and redistributed to the nodes, in a time-consuming

process that is unnecessary when several Map transformations need to be applied be-

fore the Reduce phase or in iterative algorithms. By avoiding unneeded data movement

and introducing other optimizations Spark performs several times faster than Hadoop

for certain applications [153].

Spark allows the programmer to manage work distribution by means of using Re-

silient Distributed Datasets (RDDs), an abstraction that represents a read-only set of

objects that is distributed across multiple machines. RDDs can be transformed, per-

forming an operation on each element, which can be done in parallel in each node, and

they can be reduced, combining elements to obtain a result. Only this step requires

that the whole dataset is shuffled and redistributed to the nodes in a time-consuming

process. Additionally, data can be sent to the nodes to work with by using broad-

cast variables, and the worker nodes can write increments to special variables named

accumulators.

We decomposed the feature selection algorithms in independent tasks to obtain a

Spark implementation that will allow the user to take advantage of a computer cluster

to process large datasets in reduced time.

13

Chapter 2. Parallel computation: Multithreaded and Spark parallelization of feature selection
filters

Table 2.2: Summary of algorithms in this work

Algorithm Multithreaded Weka Spark implementation

ReliefF New implementation New implementation

InfoGain New implementation Available in Spark

packages

CFS Included in Weka New implementation

SVM-RFE New implementation New implementation

2.4. Implemented algorithms

Four algorithms (listed in Table 2.2) were the object of this work. Of the 8 possible

implementations (a Weka multithreaded and a Spark version for each algorithm), 2

were already available and 6 were developed as part of this work.

2.4.1. ReliefF algorithm

The original ReliefF algorithm [89] loops through a set of instances D finding for

each instance I its k nearest neighbors from the same class, called nearest hits H, and

the k nearest neighbors from each different class, which are denoted as nearest misses

Mc. When all neighbors are found, the weight for each attribute W [a] is updated

by subtracting the weighted average distance (computed with the diff function, that

returns the Manhattan distance between two instances) of each hit H and adding, for

each class c other than that of I, the weighted average of the distance to each miss Mc.

When computing averages, distances are weighted by the probability P of the class and

divided by the total number of instances n.

Regarding the multithreaded implementation, the job is divided into as many tasks

as threads we want to use, then a thread is created for each task. This approach

avoids the need for a thread pooler to manage the execution of threads. This process

is detailed in Algorithm 1.

The process of finding the nearest neighbors for each instance (by means of the loop

14

2.4 Implemented algorithms

described between Lines 2 and 7 of Algorithm 1) is very time consuming since it requires

comparing it with all other instances. This search can be executed independently for

each instance and therefore it can be performed in parallel with no synchronization

issues.

Algorithm 1: Pseudo-code for multithreaded ReliefF

Input: D ←Set of instances with attributes A classified in classes C

Output: W ← vector storing the weight of each attribute

1 set all weights W[A]← 0

2 for i← 1 to THREADS AVAILABLE do in parallel

3 Di ← disjoint subset of instances

4 foreach I in Di do

5 I.H ← findKNearestHitsIn(Di)

6 foreach c ε C / c 6= I.class do

7 I.Mc ← findKNearestMissesOfClassIn(c,Di)

end

end

end

8 foreach a in A do

9 foreach I in D do

10 W[a]←W[a]−
k∑
j=1

diff(a,I,I.H(j))
m∗k +

∑
c 6=I.class

[
P (c)

1−P (I.class)

k∑
j=1

diff(a,I,I.Mc(j))
m∗k

]
end

end

In our Spark implementation the work is split in the same way: each node computes

the nearest neighbors to a subset of the examples. Every possible pairing of example

indices is generated and stored in a Spark RDD, which is then distributed to the nodes.

The whole dataset is sent to the nodes as a broadcast variable, so that they use it as

a lookup table. This approach obtains a considerable speed gain, but effectively limits

the size of the dataset to the maximum size a Spark broadcast variable can handle.

15

Chapter 2. Parallel computation: Multithreaded and Spark parallelization of feature selection
filters

2.4.2. InfoGain algorithm

The InfoGain algorithm assigns the weight (W) of each attribute (a) by contrasting

its information gain with respect to the class. To calculate this value, the entropy (H)

of each class given the attribute in question is subtracted from the entropy of that class:

InfoGain(Class,Attribute) =

H(Class)−H(Class|Attribute)
(2.1)

Entropy of a variable is defined as −
∑

i p(i) ∗ log(p(i)), where i loops through every

possible value of the variable. The observed probability of a variable taking a value is

represented by p(i), and it is calculated as the ratio of cases where the variable takes

that value divided by the total number of appearances of the given variable. If the

variables are not discrete, the dataset needs to be preprocessed as described in further

detail in Section 2.5.1.

Weka implements this calculation by looping through the entire dataset counting

the number of appearances of every possible value for each attribute, storing the counts

in an array. Then this array is used to compute the information gain of each attribute.

This process has linear complexity.

In our proposed multithreaded solution, detailed in Algorithm 2, the counting of

every possible value is performed in parallel for a subset of the samples (Line 4). This

requires an additional step, described in Line 7, that combines the counts of each

thread into a global count. Since this division is performed on the number of instances,

it will be more effective when the dataset has numerous instances. For small datasets,

the additional accumulative step can take more time than is gained from counting

in parallel, but for large datasets the time required to add up the partial counts is

negligible when compared to the counting process.

Lastly, the process of obtaining the information gain values from the counts can

also be performed independently for each attribute, therefore it can be computed in

parallel (Line 11). The functions Entropy and ConditionalEntropy shown in Line

14 represent the calculation of H(Class) and H(Class|Attribute) respectively.

Again, the use of a thread pooler was avoided by creating as many tasks as threads

16

2.4 Implemented algorithms

Algorithm 2: Pseudo-code for multithreaded InfoGain

Input: D ←Set of instances with attributes A classified in classes C

Output: W ← vector storing the weight of each attribute

1 set all counts← 0

2 for t← 1 to THREADS AVAILABLE do in parallel

3 Dt ← disjoint subset of instances

4 foreach I in Dt do

5 foreach a in A do

6 partial countst,a,I.a,I.class ← partial countst,a,I.a,I.class + I.weight

end

end

end

7 for t← 1 to THREADS AVAILABLE do

8 foreach a in A do

9 foreach v in valuesa do

10 foreach c in C do

countsa,v,c += partial countst,a,v,c

end

end

end

end

11 for t← 1 to THREADS AVAILABLE do in parallel

12 At ← disjoint subset of attributes

13 foreach a in At do

14 W [a]← entropy(countsa)− conditionalEntropy(countsa)

end

end

17

Chapter 2. Parallel computation: Multithreaded and Spark parallelization of feature selection
filters

are available.

The InfoGain algorithm is already included in the Spark Infotheoretic Feature Se-

lection package [6] that implements several algorithms that share a common structure

by the use of a framework [31]. This was the version tested in this work.

2.4.3. CFS algorithm

CFS is a subset evaluator that uses the correlation between attributes to obtain a

score for a group of attributes. The computational cost for this algorithm is greatly

influenced by the need to obtain the matrix that contains the Pearson product-moment

correlation coefficients between every possible pair of attributes. The time complexity

of this process grows quadratically with the number of attributes and linearly with the

amount of samples, and results in most of time of the CFS algorithm being spent in

this process. Once the correlation matrix and the standard deviations of each attribute

have been computed, CFS searches the space containing every possible attribute subset

looking for one that obtains the highest score in its evaluation method.

The search algorithms used can vary in their complexity, from simple greedy al-

gorithms as the one described in Algorithm 3 that simply adds to the set the best

candidate at each step, to more complex backtracking ones like BestFirst, listed in Al-

gorithm 4. This search method keeps a list with every candidate set that it encounters

ordered by their score in the evaluating function. For each candidate, it explores every

possible addition to the set, adding the resulting new set to the candidate list if its score

is high enough. This process goes on until the examination of candidate sets renders

no new candidates for a given number of iterations (named MAX STALE in Line 4 of

Algorithm 4).

The evaluation function used by CFS is described in Algorithm 5. It increases when

the attributes are highly correlated with the class and it decreases when any attribute

is highly correlated with other attributes that are already in the set.

In the existing Weka implementation, which is included by default in the Weka

suite, the computation of the correlation matrix is performed in parallel by several

threads, although this only occurs when the user chooses to precompute the correlation

matrix. Otherwise the matrix is computed in an on-demand basis, which offers better

18

2.4 Implemented algorithms

Algorithm 3: Greedy stepwise search used in CFS

Input: A ←Set of all possible attributes

Input: S ←Previously selected attributes

Input: previous merit←Merit of S

Output: S out← Selected attributes

1 best merit← previous merit

2 best set← S

3 for a← A do in parallel

set merit← computeMerit(S, a)

4 if set merit > best merit then

5 best merit← set merit

6 best set← (S, a)

end

end

7 if best set ! = S then

8 return greedyStepwise(A, best set, best merit)

end

else

9 return best set

end

19

Chapter 2. Parallel computation: Multithreaded and Spark parallelization of feature selection
filters

Algorithm 4: Best-first search used in CFS

Input: A ←Set of all possible attributes

Output: S ← Selected attributes

1 candidates← new OrderedList((∅, 0))

2 merit cache← ∅, best set← ∅

3 stale← 0, best merit← 0

4 while candidates.hasElements() and stale < MAX STALE do

5 S, S Merit← candidates.popFirst()

6 added← false

7 for a← A do in parallel

8 if (S, a) in merit cache then

set merit← merit cache.getMerit(S, a)

end

else

set merit← computeMerit(S,a)

merit cache.storeMerit((S, a), set merit)

end

9 if set merit > S merit then

10 candidates.push((S, a), set merit)

11 if set merit > best merit then

12 added← true, stale← 0

13 best merit← set merit

14 best set← (S, a)

end

end

end

15 if not added then

16 stale← stale+ 1

end

end

20

2.4 Implemented algorithms

Algorithm 5: Subset evaluation in CFS

Input: A ← Subset of attributes

Input: C ← Matrix containing the correlation between the ith and jth

attributes in C[i][j]

Input: SDev ←Array containing the standard deviation for each attribute

Output: M ← Merit of subset

1 numerator ← 0

2 denominator ← 0

3 for a← A do

4 numerator ← numerator + C[a][class] ∗ SDev[a]

5 denominator ← denominator + SDev[a]2

6 for b← A where b < a do

7 denominator ← denominator + 2 ∗ SDev[a] ∗ 2 ∗ SDev[b] ∗ C[a][b]

end

end

8 M ← numerator√
denominator

21

Chapter 2. Parallel computation: Multithreaded and Spark parallelization of feature selection
filters

performance.

Our proposed Spark implementation first performs the correlation matrix compu-

tation in parallel and then the search process (either BestFirst or GreedyStepwise) is

performed, evaluating the different candidate subsets also in parallel.

2.4.4. SVM-RFE algorithm

To perform feature selection, the SVM Recursive Feature Elimination (SVM-RFE)

algorithm makes use of support vector machine classifiers to assign a weight to each

attribute. Starting with the whole set of attributes, an SVM is trained to classify

binary datasets. The weights assigned to the features by the SVM are then examined

and those with the lowest absolute value are removed from the set and added to the

ranking in the lowest positions, as shown in Line 14 of Algorithm 6 (the number of

elements added at each iteration can be configured with the STEP variable). Then

the process is repeated for the remaining attributes until the ranking is complete (Line

10).

In order to work with multiclass datasets, a different ranking is obtained for each

class (Line 3) using a one-vs-all approach, that is, assuming that those elements per-

taining to a class other than the one being analyzed are negative examples. Then those

rankings are combined by looping through them and adding to the final ranking the

best of each list, then the second best and so on, in a loop described in Line 4. The

process for obtaining the ranking for each class can be done in parallel, and this is

the approach taken in our multithreaded Weka implementation. This allows the new

version to take much less time when processing multiclass datasets, while not hindering

the performance when used with binary datasets.

In the Spark implementation, by contrast, it is the process of training the SVMs

that is done in parallel, allowing to save time both on multiclass and binary datasets.

This can be done by using the existing SVM with stochastic gradient descent (SGD)

implementation in Spark’s MLlib library. SGD is an incremental algorithm that is

well suited for parallelization. Weka employs Sequential Minimal Optimization (SMO

[123]), an analytical method that is generally faster, but much harder to parallelize.

This change in the nature of the SVM training algorithm results in a selected set of

features that can be different from that obtained with Weka.

22

2.5 Experimental results

Algorithm 6: Pseudo-code for multithr. SVM-RFE

Input: D ←Set of instances with attributes A classified in classes C

Output: ordered← Ordered attributes

1 attributeScoresByClass← ∅, ordered← ∅

2 for c← C do in parallel

3 attributeScoresByClass[c]← RankBySVM(c,D)

end

4 for a← A do

5 foreach c in C do

6 if not ordered.contains(attributeScoresByClass[c][a]) then

7 ordered.add(attributeScoresByClass[c][a])

end

end

end

8 return ordered

function rankBySVM(c, D)

9 numAttrs← empty stack // Number of attributes ranking

10 while numAttrs > 0 do

11 weights ← new SVMClassifier(D,c).weights

12 foreach w in weights do

13 weights[w] = weights[w]2

end

14 for i← 0 to STEP do

15 worstAttr ← findWorst(weights)

16 D.removeAttr(worstAttr), ranking.add(worstAttr)

end

end

17 return ranking

end

23

Chapter 2. Parallel computation: Multithreaded and Spark parallelization of feature selection
filters

2.5. Experimental results

The goal of this work is to take advantage of multithreaded and distributed process-

ing to speed up feature selection. Hence, the features selected and the weights assigned

by the new versions of the algorithms are the same as those obtained with the original

versions, excluding any differences that may arise due to rounding or numeric process-

ing (except in the case of SVM-RFE that obtains different results in Spark due to the

change of the nature of the underlying SVM). Consequently, these new versions do not

modify the classification accuracy, but aim at being able to perform feature selection

in a reasonable, shorter time.

It is worth mentioning that the time complexity of the studied algorithms is very

variable. Furthermore, their impact on the total time needed for the whole feature

selection process can also be significantly different. Since one of the goals of this work

is to provide a reference guide to help users select one implementation, we have decided

to list the total execution time instead of just the time invested in the part of the

algorithm that actually performs feature selection because this will give users a more

accurate idea of what to expect from a certain implementation. There may be some

use cases where the algorithm is used in a different context (for instance, loading a

dataset once and then performing several iterations of a feature selection algorithm),

that take more advantage from the gain associated with the parallel implementation.

Nonetheless, the most common use case is performing feature selection on a dataset

contained in a file.

In order to provide a variety of scenarios to test the proposed Weka and Spark im-

plementations, seven high dimensional datasets were chosen (see their characteristics

in Table 2.3). We used the Higgs dataset, which consists of 11,000,000 instances with

28 numerical attributes that represent kinematic properties of particles detected in an

accelerator [79]. The second dataset used, from here on called Epsilon, was artificially

created in 2008 for the Pascal Large Scale Learning Challenge [139]. A preprocessed

version available on the LibSVM dataset repository [100] was used. This dataset con-

sists of 500,000 instances that have 2,000 numerical features each. Since both datasets

mentioned above are binary datasets, one additional dataset with several classes was

selected, KDD99 [78]. It contains close to 5 million samples of 41 computer network

connection parameters each that are categorized in 23 different classes. Also, SVMs

require that datasets have numeric attributes only, so any non-numeric attribute needs

to be transformed. Therefore, three multiclass datasets with numeric features were

24

2.5 Experimental results

Table 2.3: Dataset description

Dataset Features Instances Classes

Higgs 28 11,000,000 2

Epsilon 2,000 500,000 2

KDD99 41 4,898,430 23

Isolet 617 7,900 27

USPS 256 7,291 10

Poker 10 1,025,010 10

KDDB 29,890,095 19,264,097 2

chosen: Isolet [101] consists of almost 8,000 instances with 617 attributes each, divided

in 27 classes. USPS [82] is a dataset containing over 7,000 examples of elements with

256 attributes, representing handwritten characters, with 10 different labels. Lastly,

the Poker dataset contains over a million elements with 10 features each, classified in

10 different classes, representing possible hands in the poker card game. An additional

larger dataset named KDDB consisting of 19 million samples with 30 million attributes

was included as an example of very high dimensionality [142].

The experiments were run on up to 8 nodes of a computer cluster. Each node has

the specifications described in Table 2.4. The Weka version used was 3.7.12 running on

OpenJDK 1.7.0 55. The OS installed in this machine was Rocks 6.1, based on CentOS

6.x. Spark applications were run using the MapReduce Evaluator (MREv) tool, that

unifies the configuration of various distributed computing environments [146].

To measure the performance of the new versions of the algorithms comparatively

to the original implementations we used the speed-up measure, defined as the ratio

between the original sequential time and the parallel one.

25

Chapter 2. Parallel computation: Multithreaded and Spark parallelization of feature selection
filters

Table 2.4: Computer cluster description

16 nodes consisting of:

Processor: 2 × Intel Xeon E5-2660 Sandy Bridge-EP

at 2.20Ghz

Cores: 8 per processor (16 per node)

Threads: 2 per core (total of 32 threads per node)

Hard drive: 1 × SSD 480GB SATA3

RAM: 64 GB DDR3 1600 MHz

Network: InfiniBand FDR & Gigabit Ethernet

2.5.1. On the preprocessing of the datasets: Parallelization of a dis-

cretization algorithm

Some feature selection algorithms, such as InfoGain, require the attributes of the

dataset to be discrete. This specification often forces the user to preprocess the dataset

in order to obtain a modified version with discrete features. Weka provides an imple-

mentation of the Fayyad-Irani Minimum Descriptive Length (MDL) algorithm [59] that

fulfills that purpose, although this process can be very time consuming. The goal of

this algorithm is to transform real-valued attributes to discrete ones while maintaining

as much information as possible. To achieve this, real values need to be assigned to

different bins that cover the whole range of values of the attribute. The size, number,

and distribution of the bins is decided by the algorithm in a long process that is per-

formed independently for each attribute. This allows us to obtain better performance

by using separate threads to compute different attributes, as described in Algorithm

7. A similar parallelization with Spark has not been addressed in this section as it was

already available in Spark packages [140]. Table 2.5 shows the execution times for the

sequential implementation compared to the multithreaded one when run on a 16 core

machine using the three more general datasets (with and without numerical features,

as explained at the beginning of this section).

Although the computing process is independent for each thread, a separate copy

of the dataset needs to be allocated for each task, since its first step is to order it by

the attribute being examined. The overhead created by copying the dataset can be

26

2.5 Experimental results

Algorithm 7: Fayyad-Irani discretization

Input: A ← List of attributes

Input: D ← dataset

1 for a← A do in parallel

2 orderedD ← D.orderBy(a)

3 bins[a]← computeCutPoints(orderedD, a)

// computeCutPoints uses mutual information to obtain the bins

in which to discretize the values for attribute a.

end

4 for i← 1 to THREADS AVAILABLE do in parallel

5 Si ← disjoint subset of instances

6 foreach I in Si do

7 for a← A do

8 Si[a]← bins[a].transform(Si[a])

end

end

end

27

Chapter 2. Parallel computation: Multithreaded and Spark parallelization of feature selection
filters

Table 2.5: Execution times of the discretization algorithm implementations

Runtime (s)

1 core 16 cores Speed-up

Higgs 1585 1709 0.93

KDD99 316 196 1.61

Epsilon 1976 881 2.24

quite large if the dataset is sizable, but in most cases it is not as large as the gain

obtained by computing in parallel. In our experiments all datasets but one obtained a

favorable speed-up, independently of their size. The new version performed worse than

the sequential one for the Higgs dataset, due to its large size and few attributes, which

amounts to costly copies of the dataset and less parallelism.

2.5.2. Analysis of the ReliefF implementations

The good adaptability of ReliefF to a parallel environment (which is often referred

to as being “embarrassingly parallel”) translates into significant decreases in terms of

execution time. Despite this improvement, ReliefF’s complexity grows quadratically

with the number of samples and linearly with the number of features and this still

makes it yield long times when the number of instances of the dataset is very high.

However, our multithreaded implementation can take advantage of machines with a

large number of cores, decreasing computational times.

In order to be able to make a comparison with the sequential version, we have used

reduced versions of the largest general datasets (with numerical and non-numerical

features) when analyzing the ReliefF implementation. For the Epsilon and the KDD99

datasets the top 10% of the instances were used, amounting to a total of 50,000 and

almost 500,000 instances, respectively. The Higgs dataset had to be further trimmed,

using the top 4%, consisting of 440,000 instances.

We performed tests with different number of threads processing the same datasets

in order to illustrate the relation between the execution time and the number of threads

employed. The results of these experiments are shown in Figure 2.1. The node used

28

2.5 Experimental results

2 4 8 16 32

2

4

6

8

10

12

14

16

Number of threads

S
p

ee
d

-u
p

re
la

ti
ve

to
se

q
u

en
ti

al
v
er

si
on

Higgs (4%)

KDD99 (10%)

Epsilon (10%)

Figure 2.1: Speed-up vs number of threads for ReliefF

to run the benchmarks offered 16 cores, each one capable of running two threads using

HyperThreading. When 16 threads are used, they are mapped to different cores with

exclusive use of resources, obtaining maximum performance. On the contrary, when we

request the use of 32 threads, they are placed two on each core, competing for the core

resources [128]. This results in a degradation of performance that, in our best case,

barely improves on the use of 16 threads. Therefore, all subsequent experiments were

made using just the 16 cores.

The left part of Table 2.6 lists the execution times of sequential and multithreaded

Weka implementations. The multithreaded version was executed using the 16 cores

available. A significant performance increase exists for all datasets. When the dataset

being analyzed is large, the time taken to manage threads becomes irrelevant in com-

parison to the time gained by making computations in parallel. The multithreaded

version of the algorithm was able to process the large datasets between 12.6 and 16.7

times faster than the sequential one. The good adaptability of this algorithm to a

parallel paradigm reflects in the superlinearity of the speed-up obtained for the Higgs

dataset.

For comparison purposes, Table 2.6 also shows the Spark execution times for dif-

ferent amount of cores. The Epsilon dataset was chosen for this comparison since its

29

Chapter 2. Parallel computation: Multithreaded and Spark parallelization of feature selection
filters

Table 2.6: Execution times of ReliefF implementations2

Runtime (s)

Weka Spark

cores 1 16 Speed-up 16 32 64 128 Speed-up ⇑

Higgs (4%) 105443 6328 16.7 - - - - - -

KDD99 (10%) 154305 10517 14.7 - - - - - -

Epsilon (10%) 84149 6678 12.6 5382 2840 1076 608 8.85 10.98

execution time was high on Weka and its size was suitable for the Spark implementa-

tion. As discussed in Section 2.4.1, the Spark implementation of ReliefF requires that

the entire dataset is broadcast to all nodes. Good scalability is observed when more

nodes are added and, even with one node (16 cores), the Spark implementation is more

efficient than the Weka one. To assess the advantage of using Spark and a computer

cluster vs Weka on a single machine, the speed-up shown as ⇑ is the best Spark result

vs the multithreaded Weka result.

2.5.3. Analysis of the InfoGain implementations

The Weka implementation of the InfoGain feature selection algorithm requires the

attributes to be discrete, so it performs a discretization process when needed before

the feature selection is started. This discretization is independent from the InfoGain

algorithm so, to eliminate its impact in the execution time and obtain a more accurate

comparison of the two versions of the algorithm, all datasets used to test the Info-

Gain feature selector were discretized beforehand using the same algorithm employed

by Weka [59]. This resulted in datasets that, in some cases, had several attributes

with constant value. Additionally, to speed up this process for users, a multithreaded

implementation of this algorithm is provided, as described in Section 2.5.1.

The left part of Table 7 shows the comparison of the Weka execution times between

both versions of the algorithm (sequential and multithreaded using 16 cores) when run

on the different datasets that have been previously discretized.

30

2.5 Experimental results

Table 2.7: Execution times of InfoGain implementations2

Runtime (s)

Weka Spark

cores 1 16 Speed-up 16 32 64 128 Speed-up ⇑

Higgs 204 192 1.06 578 375 353 173 3.34 1.11

Epsilon 458 424 1.08 1067 642 448 335 3.19 1.27

KDD99 145 140 1.04 - - - - - -

KDDB 200 192 1.04 631 500 384 407 1.55 0.47

When put in relation with the whole execution time, the speed improvement is

negligible. Nevertheless, a deeper analysis of the implementation reveals that most of

the time needed to perform InfoGain feature selection in Weka is spent getting the

dataset ready, first reading it from disk and then checking that the attributes are fit for

the algorithm. The feature selection process itself takes a short time when compared

to the total execution time, so even a dramatic improvement in the time efficiency of

the algorithm would lead to modest speed-ups for datasets that take a long time to

process. Nevertheless, as discussed earlier, some use cases may take advantage of the

speed-up obtained when just comparing the time devoted to the algorithm which, in

the Weka implementation we are presenting, is close to the number of cores employed,

around 16 in this case.

The Spark implementation tested was the one included in the InfoTheoretic Feature

Selection Spark package [6]. Results can be seen in right part of Table 2.7. Instead

of the KDD99 dataset, KDDB was used to illustrate how this method is capable of

handling very high dimensional datasets.

Although performance increases when adding more cores, for the same number

of cores the existing Spark implementation performs much worse than Weka. This

results in the need of more nodes to achieve the same times than in Weka, being highly

inefficient in terms of resources. For this particular algorithm and datasets it would

be more advisable to use Weka on a single machine rather than the existing Spark

implementation.

2Speed-ups listed are 16 cores vs 1 core for Weka and 128 cores vs 16 cores for Spark. ⇑ indicates the
speed-up for 128 cores using Spark vs 16 cores using Weka, that is, the gain of the parallel approach.

31

Chapter 2. Parallel computation: Multithreaded and Spark parallelization of feature selection
filters

Table 2.8: Execution times of CFS implementations2

Runtime (s)

Weka Spark

cores 1 16 Speed-up 16 32 64 128 Speed-up ⇑

Higgs 1350 1173 1.15 110 98 95 91 1.21 12.89

Epsilon 7183 8642 0.83 579 438 356 324 1.79 26.67

2.5.4. Analysis of the CFS implementations

The existing multithreaded implementation of the CFS algorithm included in Weka

does not offer a significant improvement over the sequential one, being even slower in

some cases. This is a result of the parallelization approach used, that requires that the

entire correlation matrix is precomputed beforehand, in contrast with the sequential

version, that only calculates each value when needed. Since the search method does

not try every possible combination of attributes, oftentimes only a small fraction of

the correlation matrix needs to be computed. Avoiding to compute these unnecessary

values saves significant time that, in some cases, results in smaller computation times

than the ones obtained by precomputing the entire correlation matrix with several

cores. Our Spark implementation computes the entire correlation matrix every time,

but it is still much more time-efficient than the Weka one, as shown in Table 2.8. The

computation time decreases as more nodes are added which, when combined with the

much better performance than the Weka algorithm obtained for the same number of

cores, results in high speed-ups.

2.5.5. Analysis of the SVM-RFE implementations

Since the parallelization approach taken for the multithreaded Weka implementation

divides the work along classes, multiclass datasets were needed for this experiment.

Execution times are shown in Table 2.9 (please note that in this case times marked with

− are executions that take more than three days). The different SVM training algorithm

used in Weka and Spark makes a real difference regarding the kind of dataset that can

be tackled with each implementation. The Weka version (and thus our multithreaded

32

2.6 Conclusions

Table 2.9: Execution times of SVM-RFE implementations2

Runtime (s)

Weka Spark

cores 1 16 Speed-up 16 32 64 128 Speed-up ⇑

Isolet 86730 15415 5.63 - - - - - -

USPS 10098 2508 4.03 - - - - - -

Poker - - - 1229 1536 1220 1447 0.85 -

Poker (20 %) 28621 10280 2.78 530 520 472 465 1.14 22.11

version), which uses SMO (see Section 2.4.4), performs really well when there is a large

number of attributes and, therefore, the SVM training process has to be repeated a

large number of times. In this case the approach used by the Spark version takes

much longer, as for every new training process the data needs to be shuffled. This, in

some cases, makes its use unfeasible (for instance, for Isolet and USPS datasets). On

the contrary, when datasets have fewer attributes (such as Poker), the SVM training

process is repeated fewer times and SGD can be leveraged to train the model with a large

number of examples in a much smaller time than SMO. This clearly differentiates both

implementations in terms of the datasets that they handle efficiently. Table 2.9 shows

how SGD is suitable for datasets with a large number of attributes and few instances

(Isolet and USPS), whereas SMO performs better when there is a large number of

instances and fewer attributes (such as Poker).

2.6. Conclusions

This chapter has explored new implementations of four popular feature selection

algorithms. We have proposed new versions for their use in Weka that take advantage

of multithreaded processing to speed up the computation, and also distributed versions

that use Apache Spark, enabling users to tackle bigger datasets in a reasonable time.

For those implementations that already existed (see Table 2.2), tests were performed to

assess their suitability for different kinds of datasets. In doing so, we show the usefulness

of distributed computing to increase the ability of machine learning algorithms to tackle

33

Chapter 2. Parallel computation: Multithreaded and Spark parallelization of feature selection
filters

large-scale datasets.

The experimental results obtained show a significant improvement in execution

time for the ReliefF algorithm, achieving even superlinear speed-ups for large real-

world datasets on a 16 core node, and scaling well in number of nodes for Spark. A

considerable improvement was also obtained for a new distributed CFS implementation

in Apache Spark that largely outperforms the existing multithreaded version included

in Weka, and scales well when more cores are added. A new multithreaded InfoGain

implementation was developed and compared to the existing Spark one, finding that its

short execution times make the time gain obtained using a cluster less relevant, therefore

advising the use of our proposed implementation on a single computer. Lastly, a new

SVM-RFE multithreaded implementation enables users to process multiclass datasets

up to four times faster than the sequential counterpart included in Weka, and a new

Spark version allows the analysis of datasets that because of their dimensions could not

be processed by Weka.

As future work, it would be interesting to explore different sampling techniques and

their effects on the features selected for a variety of datasets, since this approach may

offer a way to use algorithms that are computationally demanding on reduced versions of

large datasets. Also, approximate methods could be used to alleviate the computational

cost of the most expensive algorithms. Chapter 4 explores this possibility and describes

a ReliefF implementation with Spark that can handle larger datasets than the ones at

reach for the implementation presented in this chapter.

34

CHAPTER 3
Approximate models: Scalable kNN Graph

construction with Locality Sensitive Hashing

3.1. Introduction

Some machine learning models demand a computational effort that exceeds the

available resources even with the use of techniques like distributed computing. This

situation often leads to the dismissal of the model in favour of a simpler one, although

in some cases an approximation of the model that can be computed at a much inferior

cost will offer better performance. That is the situation that we will explore in this

chapter.

We will focus on a popular data structure that is widely used in machine learning but

missing from distributed computing libraries. The k nearest neighbors graph (kNNG)

is a representation of all elements of a dataset D as a directed graph in which for n

data points, D = {x1,x2, ...xn}, edges (xi,xj) indicate that xj is amongst the k most

similar elements to the point xi under a specified similarity measure σ(xi,xj). This

data structure allows one to easily navigate elements that are similar to each other.

This is useful in areas such as data mining [45], computer graphics [129] and machine

learning, specifically outlier detection [83], feature selection [89] and classification [41].

Despite being a conceptually simply idea, the computational cost necessary to obtain

the kNNG by brute force is high, since it requires performing n(n − 1)/2 pairwise

comparisons, which amounts to O(n2) time complexity. As a result, there have been

attempts to obtain algorithms that compute this graph at a lower cost.

In this chapter we present a novel approach to compute an approximate version of

the kNNG that is based on Locality Sensitive Hashing (LSH) [8] schemes. A preliminary

version of this work was presented in the 25th European Symposium on Artificial Neu-

35

Chapter 3. Approximate models: Scalable kNN Graph construction with Locality Sensitive
Hashing

ral Networks, Computational Intelligence and Machine Learning. LSH is a technique

designed to speed up the retrieval of points in a dataset that are similar to a query point

by pre-building a data structure. The main idea behind LSH is that if two points are

close in the original space, they will continue to be so after a projection, which is used

to group points that are similar. Therefore, we developed an algorithm that leverages

the locality sensitive property to compute an approximate kNNG. Additionally, taking

advantage of the structure of the algorithm, we provide a distributed implementation

in Apache Spark which can use a computer cluster to apply this algorithm to very large

datasets. Our experimental results show that the proposed algorithm outperforms the

current state-of-the-art alternative algorithms, both in terms of kNN graph accuracy

and computational cost.

In Section 3.2 we discuss the state of the art in the field, in Section 3.3 we describe

the presented algorithm, while in Section 3.4 we report the experiments performed to

assess the validity of our proposal. Finally in Section 3.5 we summarize our conclusions

and we reflect on which future developments of the algorithm could be made.

3.2. Related work

The great number of applications of the kNNG and the complexity of its calculation

has motivated researchers to obtain efficient variations of the kNN algorithm. The

literature reflects solutions that are computationally effective under certain conditions.

When the dimensionality of the input space is small, the use of multidimensional binary

search trees named k-d trees has been proven fast [17], but this solution rapidly becomes

inefficient as the dimension of the input space grows (curse of dimensionality). An

effective approach has also been proposed for when the similarity metric used is the

cosine similarity [7], which first computes an approximation of the graph and then

refines it by using the theoretic properties of this particular similarity measure.

However, so far the only way to cope with general metrics and high dimensional

datasets at a reasonable computational cost is to build an approximate version of the

kNNG, introducing a tradeoff between the computational effort invested and the accu-

racy of the obtained graph with respect to its exact counterpart. Different approaches

have been proposed using a number of techniques to reduce computational complexity.

The divide-and-conquer based approaches include the use of recursive inexpensive bi-

36

3.2 Related work

section steps [38, 147] that still amount to a high, although reduced with respect to the

original, computational complexity. Local search approaches that take advantage of the

fact that the neighbor of a neighbor is likely to also be a neighbor, such as NN-Descent

[50] are a good option, with a reported complexity of O(n1.14) for k=20, but yet again

their results suffer when the dataset has high intrinsic dimensionality. Moreover, the

complexity increases greatly for larger values of k. Several modifications of NN-Descent

have been proposed to address these shortcomings [29], but so far none of them has

given a universal solution. Finally, the use of LSH enables a generic strategy for ap-

proximating the kNNG under any similarity measure [155]. Since this approach is the

base of our proposal, we will analyze both its theoretical foundations and the existing

methods that use it in the next subsection.

3.2.1. kNNG using Locality-Sensitive Hashing

The use of LSH for the construction of the kNN graph is based on its ability to

group elements that are similar. In particular, the main idea underlying LSH is that

if two points are similar, they will continue to be so after a projection. This idea is

used to reduce the search space for a given query point, that is, given a data point x,

when trying to retrieve its k nearest neighbors the use of LSH allows to search only

points that are likely to be similar to x instead of the whole of D. This is accomplished

with a Locality-Sensitive Hash function, that is, a function that maps elements from a

high-dimensional space, which is generally sparse, to a lower-dimensional more dense

space and does so in a manner such that elements that are close in the input space are

mapped to the same point of the image space with a high probability. A family of hash

functions H is called (r; cr;P1;P2)-sensitive with respect to a given similarity measure

σ if for any two points p,q ∈ <d:

σ(p,q) ≤ r −→ Pr(h(p) = h(q)) ≥ P1 (3.1)

σ(p,q) > cr −→ Pr(h(p) = h(q)) ≤ P2 (3.2)

with h ∈ H. Specifically, given p,q ∈ <d if σ(p,q) ≤ r they will be considered

similar and the random hash function h will produce a collision, that is, assign them

the same value, with a probability at least P1. Conversely, if σ(p,q) > cr p and q

will not be considered similar and the probability of h assigning them the same value

will be lower than P2. If P1 >> P2 then those points that are given the same hash

value will be very likely to be similar in the input space. Moreover, if a point is

given a hash value h(x) then most elements similar to x will be given the same hash

37

Chapter 3. Approximate models: Scalable kNN Graph construction with Locality Sensitive
Hashing

value. These two characteristics make LSH very useful for reducing the search space

to elements that are similar to the query. In some cases P1 is just slightly larger than

P2; a common approach to increase this difference consists in concatenating several

hash function values [8]. Additionally, in order to increase the number of collisions it is

also a common practice to generate several hash keys for each point using various hash

functions from H.

As mentioned above, this technique was originally used to perform similarity queries

in sublinear time [8, 40] by constructing a data structure that organizes the input data

according to the values assigned by the LSH function. Specifically, a group of hash

functions is computed and the hash values of existing points in the dataset are stored.

For a given query point, only those elements of the dataset that share the same hash

value (i.e. very likely to be similar) are compared to it, greatly reducing the number of

pairwise comparisons and, therefore, reducing the computational complexity. Despite

this being the usual approach to leveraging LSH, there is still some degree of uncertainty

given its dependence on probabilities P1 and P2. The data structures and the query

methods used in LSH are an active area of research [40]. As a result, the optimal way

of exploiting LSH remains an open problem.

The described scheme is used to tackle two problems closely related to kNNG con-

struction. The first one is named nearest neighbor search [147], which consists in

retrieving the k nearest neighbors in a dataset D to a query point p not present in the

dataset, has been successfully used in fields such as search engines [73], computational

linguistics [126] and computational biology [32]. The second one is spherical range

reporting [122, 2], that requires retrieving all points x ∈ D such that σ(x,p) < r for

a given query point p not in D and a threshold value r. Still, computing the kNNG

entails a different set of restrictions from the aforementioned problems. Mainly, the

focus for approximate kNNG algorithms is obtaining a graph as accurate as possible

in the least possible amount of time so that additional processing can be done using

it as a starting point. The data structure built in the process is discarded, which is

a contrast to nearest neighbor search and spherical range reporting, in which besides

accuracy, both the size of the resulting data structure and the speed of each query

answer (i.e. the effectiveness of the data structure) need to be taken into account,

but the time invested in computing the structure is not crucial. Therefore, it may

be advisable in such problems to invest some more time in computing a finely tuned

data structure. These differences make the adaptation of algorithms that solve nearest

neighbor search or spherical range reporting to tackle kNNG construction non-trivial.

Up to the authors knowledge, so far only one work, by Zhang et al. [155], has used

38

3.3 Implementing the Algorithm

LSH to compute the kNNG. This algorithm first splits data into groups of similar el-

ements using LSH, then computes the pairwise similarities of the elements in each of

these groups, which are used to build a partial graph for each group. These partial

graphs are finally merged, producing the final approximate kNNG. Still, this algorithm

has many dataset-dependent hyperparameters that need to be tuned which complicates

the obtention of good results, which is a common theme to LSH methods [51]. Ad-

ditionally, datasets that have very uneven density of elements in different regions can

cause poor performance.

Our approach is based on the algorithm proposed by Zhang et al., but it addresses

the mentioned shortcomings. We take advantage of the structure of the algorithm,

which can be implemented following the MapReduce paradigm to leverage parallel

computation. Also, we provide an implementation in the distributed computation

framework Apache Spark, which can use a cluster of computers to perform the compu-

tation, amounting to a great scalability of the method.

3.3. Implementing the Algorithm

We present Variable Resolution LSH (VRLSH)2, an algorithm that uses LSH repeat-

edly to explore groups of similar points that increase size at each step. Additionally, the

points that have been sufficiently explored are removed from the dataset at each step.

This iterative approach is a major difference with the existing LSH based algorithm

[155], and it enables the proposed algorithm to adapt to datasets with uneven densities

without affecting the computational cost.

VRLSH works as described in Algorithm 8. First, every element x of the dataset

D is given a hash value h(x) using a LS hash function that will produce collisions for

elements with a similarity value larger than a given resolution. After that, elements with

the same value of h(x) are grouped, forming buckets of points with a high probability

of being similar. A kNN subgraph is computed for each of these buckets by computing

all possible pairwise distances and linking each element in the bucket to its k nearest

neighbors. Afterwards, overlapping subgraphs are merged, forming an approximate

kNNG. At this step, all points that have already been involved in a fixed number of

pair-wise computations (CMAX in Algorithm 8) are removed from the dataset. The line

2Spark implementation available for download at https://github.com/eirasf/KNiNe

39

Chapter 3. Approximate models: Scalable kNN Graph construction with Locality Sensitive
Hashing

of reasoning for this step is that, since all points that have been compared to a given

one, x, are very likely to be similar to it, thanks to the LSH filtering performed, once a

point has been involved in a large number of such comparisons, it will be very probable

that all of its k nearest neighbors will have already been compared to it. Moreover, all

points for which x is one of their k nearest neighbors will be very likely to have also

been involved in those pairwise comparisons and one can, therefore, remove said point

x from the dataset. Finally, the resolution is decreased in the following iteration, which

lowers the similarity threshold. In consequence, points that were not considered to be

similar in the current step because they are too different may be considered to be similar

with a lower resolution. The process is then repeated on until the simplified dataset

D′ is empty or has very few elements or all of its elements end in the same bucket.

After that, the elements that ended up in the graph with less than k neighbors are

returned to the dataset. This can occur when an element is removed from the dataset

for having been involved in more than CMAX comparisons; CMAX is always selected

to be larger than k, but since the elements involved in the comparisons can not be

recorded, some comparisons can be repeated, and, in rare cases, this can amount to a

number of relevant comparisons lesser than k. A final step is performed in the algorithm

if needed, for the rare cases when very few points are left in the simplified dataset. In

this case, instead of continuing the hashing process which would, presumably, yield

few meaningful collisions, it is preferable to compare these points to the neighbors of

its neighbors in the partial approximated graph, that is, perform a local search using

neighbor descent, step that is described from line 10 on.

Managing the resolution of the similarity function as described allows the algorithm

to process mostly small buckets of elements that are very likely to be close, avoiding

performing numerous unnecessary pairwise comparisons. The mentioned dataset sim-

plification step manages to keep the number of elements in each bucket small when

the resolution is decreased. Using these two innovations, VRLSH manages to compare

each point x to points that are very likely to be near neighbors, which works towards

the accuracy of the approximated kNNG, while maintaining the number of pairwise

comparisons low, which leads to low computational cost.

The resulting algorithm is a good fit for parallel computation, which transforms it

in a very scalable solution. The hashing step can be performed in parallel across sev-

eral computing units, then the data can be distributed so that each computating node

calculates the subgraph for a subset of the resulting buckets. This parallel processing

speeds up the computation substantially. The addition of a registry that records the

pairwise distances that have already been computed would allow the avoidance of dupli-

40

3.3 Implementing the Algorithm

Algorithm 8: Pseudo-code for VRLSH algorithm.

Input: D,k ←Set of points, Number of neighbors to be obtained

Input: R0 ← Initial resolution

Input: CMAX ←Max number of comparisons per element

Output: G ← Graph containing the k nearest neighbors for each point

1 G← ∅ , D′ ← D, R← R0

2 while |D′| > k and |buckets| > 1 do

3 hashElems← LShash(D′, R)

4 buckets← hashElems.groupByHash()

5 foreach b in buckets do

6 if (b.size > 1) then G← G ∪ exactKNN(b.elems, k) end

end

7 D′ ← D′ −G.getNodesWithAtLeastComparisons(CMAX)

8 decrease R

end

9 D′ ← D′ ∪G.getNodesWithFewerNeighborsThan(k)

10 if |D′| > 1 then

11 foreach p in D′ do

12 if |p.neighbors| = 0 then

13 p.neighbors← randomSample(D, k)

end

else

14 p.neighbors← topK(k, p.neighbors ∪ neighborDescent(p,G))

end

end

end

41

Chapter 3. Approximate models: Scalable kNN Graph construction with Locality Sensitive
Hashing

cate calculations, but it would also impact the memory usage and, more importantly, it

would diminish the suitability for distributed computation, so we opted not to include

it.

3.3.1. Hyperparameter tuning

As mentioned in Section 3.2, state-of-the-art LSH methods are hindered by the

number of hyperparameters that need to be tuned for the LSH scheme to be efficient.

The optimal value for these hyperparameters varies with the dataset, which further

complicates its obtention. This constitutes a problem for all LSH algorithms. Although

there has been some work aimed at tuning the hyperparameters in the particular case

of nearest neighbor search problems [15, 51], the current research in the field offers

no general solution for this problem. The process of hyperparameter tuning is even

more important in the case of kNNG construction since, as stated in Section 3.2, it is a

one-shot algorithm that attempts to speed up a computationally costly process and any

time devoted to hyperparameter tuning decreases the temporal efficiency of the method,

making the algorithm less valuable. This is a contrast to LSH algorithms tackling

nearest neighbor search for which the main goal is speed and accuracy at query time

and, consequently, those algorithms can spend more time in hyperparameter tuning.

We present a fast hyperparameter tuning process that performs a guided search of the

hyperparameter space until finding a suitable set of values. In the next subsections we

describe how each hyperparameter is managed and we detail the complete process.

3.3.1.1. Resolution

Although in many cases setting an initial resolution of 0.1 is a valid value that

will trigger the creation of aptly-sized buckets [56], this may not be the case for some

datasets, which may end up creating buckets with too many (or too few) elements, which

would amount to a great number of unnecessary pairwise comparisons (or unnecessary

iterations of the algorithm), resulting in extra computational cost. To address this

problem, we added a quick estimation procedure that, given a desired initial bucket

size, obtains a suitable R0 value. First, with R0 set to 0.1, the whole dataset is hashed

and the size of the resulting buckets is checked. If they contain too few or too many

elements, the resolution is halved or doubled, respectively, and the process is repeated.

42

3.3 Implementing the Algorithm

If two R0 values are found to be one too small and the other too large then a binary

search is performed. This process is stopped as soon as a suitable R0 value is found.

Although this procedure may require a sizeable number of hashing and grouping steps,

it can be performed rapidly since these operations are carried out in parallel across

the computing nodes. The resulting execution time of this procedure is very small,

compared to the total execution time of the kNNG computation, and the impact of

using a R0 of the correct size in the total time of the algorithm can be considerable.

Therefore the use of this tuning procedure is very advisable.

3.3.1.2. Hyperparameters for Euclidean distance as a similarity measure

Also, in the particular case of using the Euclidean distance as a similarity mea-

sure, the family of locality sensitive hash functions that is normally used is based on

performing random projections of the datapoints. In this case, hash keys are vectors

calculated using Equation 3.3. For a given sample x ∈ <d each component c of the key

is calculated as the integer part of the dot product x · wc + bc where wc is a vector

with d components randomly sampled from a N(0, 1) and bc is a scalar bias sampled in

the same way. For ease of notation, the corresponding α w vectors and α biases that

determine a hash are joined into a matrix M
(d+1)×α

|mi,j ∼ N (0, 1). Equation 3.3 can be

interpreted as projecting the samples onto a random hyperplane and segmenting the

projected vectors according to their length.

hashi(x) = floor ((x, 1) ·Mi ·R) (3.3)

A fixed number β of such hashes are calculated for each element, as described in

Equation 3.4, to ensure that there are enough meaningful collisions.

Keys(x) = {hash0(x),hash1(x), . . . ,hashβ(x)} (3.4)

This formulation introduces two additional hyperparameters: α (or key length),

representing the length of the hashes, and β (or number of tables) which accounts for

the number of hashes generated per element. The effect of these hyperparameters in the

performance of the algorithm can be characterized as follows: α affects the size of the

43

Chapter 3. Approximate models: Scalable kNN Graph construction with Locality Sensitive
Hashing

buckets since it dictates how many projections determine a hash. A large α will produce

hashes that are very specific and, therefore, generate fewer collisions than a small α,

although the elements assigned to the same bucket will have a higher probability of

being similar for larger values of α. We would, then, prefer to use the largest value of α

that produces a suitable number of collisions. The effect of β is increasing the number

of collisions by assigning several hashes to each element.

In order to tune these hyperparameters with the initial resolution, we use a pro-

cedure described in Algorithm 9, that extends the above-mentioned. We empirically

discovered that setting the β hyperparameter to a fixed constant value and then tuning

α and R was the more suitable choice. When providing a value for β we should take into

account the fact that high dimensional spaces are more sparse than low dimensional

spaces and, consequently, a higher β is needed in order to produce enough collisions as

the dimension of the space grows. Therefore, we opted for a simple logarithmic formula

depending on the input dimension d and set β = (log2 d)2. Additionally, a suitable

value for the α hyperparameter is estimated as α0 = ceil
(
log2

(
n
d

))
+ 1, formula in-

spired by the work of Zhang et al. [155]. Then a binary search for a suitable α is

performed in the range [α0/2, α0 ∗ 1.5], selected to tolerate some variation in the found

α while maintaining it close to α0. This search corresponds to the loop on line 4. To

conduct this search, R is set to R = 0.1 and the hashing and counting procedures de-

scribed for the resolution hyperparameter tuning are performed. If any α value in that

range produces buckets of the desired size, then all three hyperparameters have been

set. Otherwise, a suitable R is searched using the procedure described at the beginning

of this section (which is represented in the pseudocode by the function findResolution)

and once that value is set, the search for α in the aforementioned range is repeated.

This procedure yields a combination of the three hyperparameters that configures LSH

to produce buckets of the desired size, and does so without having much impact in the

execution time of the method, since the operations involved are much less costly than

the numerous pairwise distance measurements involved in the iterations of the main

algorithm.

3.3.1.3. CMAX and desiredSize

Finally, the algorithm has another hyperparameter named CMAX that represents

the number of comparisons in which an element of the dataset should be involved for

it to be removed from the dataset in a simplification step. This ensures that every

44

3.3 Implementing the Algorithm

Algorithm 9: Pseudo-code for the hyperparameter tuning procedure.

Input: D,k ←Set of points, Number of neighbors to be obtained

Input: desiredSize←Desired bucket size

Output: R0 ← Initial resolution

Output: α, β ←Euclidean distance LSH hyperparameters.

1 R← 0.1 , β ← (log2(D.dimension))2

2 minS ← desiredSize ∗ 0.5 , maxS ← desiredSize ∗ 1.5

3 α0 ← ceil(log2(|D|/D.dim)) + 1 , leftα← α0 ∗ 0.5 , rightα← α0 ∗ 1.5

4 while True do

5 currentα← (leftα+ rightα)/2

6 hashElems← EucLShash(D, R, α, β)

7 sizes← hashElems.countByHash()

8 if sizes.max ∈ [minS,maxS] then

9 return R, currentα, β

end

else

10 if sizes.max < minS then

11 rightα← currentα

end

else

12 leftα← currentα

end

13 if leftα >= rightα then

14 R← findResolution(currentα, β,minS,maxS)

15 leftα← α0 ∗ 0.5 , rightα← α0 ∗ 1.5

end

end

end

45

Chapter 3. Approximate models: Scalable kNN Graph construction with Locality Sensitive
Hashing

Dataset Features Instances

Audio 192 54387

Shape 544 28775

Corel 14 662317

Table 3.1: Datasets used in the study.

element in the final graph will be compared to, at least, CMAX other elements. The

closely related desiredSize hyperparameter indicates how large the buckets generated

by the LSH procedure should be. In Section 3.4 we detail the experiments performed

in order to determine how to handle these two hyperparameters.

3.4. Experimental design and Results

In order to verify the validity of our approach we performed various sets of exper-

iments on three real-world datasets, listed in Table 3.1. These datasets, representing

audio signals, 3D shapes and images, respectively, were selected because they were

employed by other authors in previous works to benchmark the approximate kNNG-

building algorithm NN-Descent [50] and an LSH approach to the nearest neighbor seach

problem [51].

We used three performance measures in our experiments. The first one is related to

the accuracy of the computed graph for which we employed the recall measure, defined

as the ratio of common edges between the approximate and the exact graphs with re-

spect to the total number of edges. This metric is the most usual when assessing the

quality of the retrieved k nearest neighbors [10]. Secondly, we gauged the performance

of the algorithm by counting the number of pairwise computations performed and di-

viding that number by the number of pairwise computations that the näıve algorithm

would use, which is n(n− 1)/2 where n is the number of elements of the dataset. This

metric, known as scan rate, is also very commonly used in the literature. Finally, to

measure more precisely the quality of the approximate graphs by making a difference

between graphs containing the same number of mistakes, we added an additional mea-

sure that quantifies those mistakes: the mean error (ME) in the distance of the retrieved

46

3.4 Experimental design and Results

neighbors, defined as

ME =

∑n
i=0

∑k
j=0 σ(pi, n(pi)j)− σ(pi, n

∗(pi)j)

n · k
(3.5)

where n(p)k represents the k-th neighbor of p in the approximate graph and n∗(p)k

represents the k-th neighbor of p in the exact graph.

3.4.1. Handling CMAX and desiredSize

As mentioned in Subsection 3.3.1, CMAX establishes a threshold to the number of

comparisons per element. Once an element is compared to candidate neighbors more

than CMAX times, it will be removed from the dataset, working on the assumption

that it has been compared to enough elements as to have a high probability of having

encountered its k nearest neighbors. To observe the effect of CMAX in the obtained

recall and scan rate we ran the algorithm using different values of CMAX for the Audio

and Shape datasets. The results of these experiments are showed in Figure 3.1.

The recall of the obtained graphs has a positive dependence on CMAX . As CMAX

grows, the recall grows linearly in both datasets. This is consistent with the expected

effect: the larger CMAX is, the more accurate the resulting graph will be, since there

are more possibilities of finding the k nearest neighbors in a larger set of elements, but

also the costlier the computation will be, since a larger number of pairwise comparisons

will be performed. This can be appreciated in the plots that represent the Scan rate

vs CMAX . Moreover, this dependency is superlinear, that is, the scan rate grows at

an increasing and faster rate than CMAX . It can be seen, in consequence, that this

parameter manages the balance between accuracy and computational cost that is in-

trinsic to this problem. It is important to note that since CMAX has a stronger effect

on the scan rate than on the recall of the graph, it is not advisable to use large values

for CMAX since the computational cost would become too large. We decided to allow

the user to modify this hyperparameter to manage the balance between precision and

speed of computation, but we have, nonetheless, provided a default value CMAX = 10·k
(truncated to a max of 250 except for k > 225 in which case it is CMAX = 1.1 ·k) which

we empirically found to offer a suitable balance.

On the other hand, the desiredSize hyperparameter, which is highly related to

CMAX , indicates how large the buckets created in the LSH steps should be. Its rela-

tion with CMAX determines how many hashing steps will most elements in the dataset

47

Chapter 3. Approximate models: Scalable kNN Graph construction with Locality Sensitive
Hashing

16 32 64 128 256
0

0.2

0.4

0.6

0.8

1

CMAX

R
ec

al
l

Audio

16 32 64 128 256
0

0.2

0.4

0.6

0.8

1

CMAX

R
ec

al
l

Shape

k = 2
k = 4
k = 8
k = 16
k = 32
k = 64

16 32 64 128 256
0

0.1

0.2

0.3

0.4

0.5

CMAX

S
ca

n
ra

te

Audio

k = 2
k = 4
k = 8
k = 16
k = 32
k = 64

16 32 64 128 256
0

0.1

0.2

0.3

0.4

0.5

CMAX

S
ca

n
ra

te

Shape

Figure 3.1: Recall vs CMAX for Audio and Shape datasets and Scan rate vs CMAX for

those same datasets, using desiredSize = 4 · CMAX in both cases.

48

3.4 Experimental design and Results

16 32 64 128 256
0

0.2

0.4

0.6

0.8

1

CMAX

R
ec

al
l

Audio

16 32 64 128 256
0

0.2

0.4

0.6

0.8

1

CMAX

R
ec

al
l

Shape

k = 2
k = 4
k = 8
k = 16
k = 32
k = 64

16 32 64 128 256
0

0.1

0.2

0.3

0.4

0.5

CMAX

S
ca

n
ra

te

Audio

k = 2
k = 4
k = 8
k = 16
k = 32
k = 64

16 32 64 128 256
0

0.1

0.2

0.3

0.4

0.5

CMAX

S
ca

n
ra

te
Shape

Figure 3.2: Recall vs CMAX for Audio and Shape datasets and Scan rate vs CMAX for

those same datasets, using desiredSize = 0.8 · CMAX in both cases.

endure. If desiredSize is much smaller than CMAX , elements will need to be hashed

several times until they reach the necessary number of comparisons. Conversely, if

desiredSize is larger than CMAX , many elements will undergo a single hashing and

grouping step. To analyze this behaviour we ran the mentioned experiment with

two values for desiredSize, representing two different configurations: desiredSize =

4 ·CMAX , which should force many elements to be discarded for having enough compar-

isons after a single hashing step, depicted in Figure 3.1 and desiredSize = 0.8 ·CMAX ,

shown in Figure 3.2, which should keep elements for a longer number of iterations of

the hashing step before removing them in a simplifying step.

These experiments show that using desiredSize = 4·CMAX offers predictable results

in terms of scan rate, while the computational effort required for building the graph

49

Chapter 3. Approximate models: Scalable kNN Graph construction with Locality Sensitive
Hashing

becomes much more variable when desiredSize = 0.8 · CMAX . Moreover, the scan

rates are slightly higher when desiredSize = 0.8 ·CMAX , but contrary to the expected

behaviour, this increase in computational effort does not revert in higher recall values;

on the contrary, the recall values for the graphs obtained are slightly lower than those

obtained when desiredSize = 4 · CMAX . These results can be explained because the

increased number of iterations required for each element when desiredSize = 0.8·CMAX

results in more comparisons σ(p,q) being repeated for the same values of p and q, as

described in Section 3.3, resulting in turn in more elements accumulating purposeless

repeated computations that count towards the CMAX threshold and amount to more

elements being left without k neighbors after the LSH loop. These points need to be

added for completion in the final steps of the algorithm, in the process described from

line 9 on in Algorithm 8. Since these steps are more costly and do not benefit from

the locality-sensitive reduced search space generated with the LSH steps, the scan rate

increases without a significant improvement of the recall. Therefore, we decided to set

desiredSize = 4 · CMAX , to ensure the predictability of the results and optimize the

use of the LSH steps.

3.4.2. Performance of the method

In order to establish the fitness of the proposed method compared to the current

state of the art for this problem, we performed another set of experiments in which the

results obtained by VRLSH were compared to those obtained with NN-Descent [50]3,

which was selected for being the best alternative for computing an approximate kNNG

on high dimensional datasets using generic distance metrics, in particular using the

Euclidean distance, as discussed in Section 3.2.

The measurements of the computational cost shown in Table 3.2 demonstrate that

the scan rate used by VRLSH remains nearly constant regardless of the number of

neighbors, in clear contrast with NN-Descent which requires a scan rate that grows

very fast as the number of neighbors is incremented, making its use unadvisable for

large values of k. This constitutes an important advantage for VRLSH when the value

of k is large (k > 16). In terms of the graph accuracy, the results shown on Table

3.3, demonstrate that for small values of k, the accuracy of the graph computed by

VRLSH is significantly higher than that obtained by NN-Descent. In particular, when

k = 2 VRLSH obtains graphs with recall values between 0.82 and 0.89, compared to

3Implementation available at https://code.google.com/archive/p/nndes/

50

3.4 Experimental design and Results

Data Method
k

2 4 8 16 32 64

Audio
VRLSH 0.031 0.024 0.025 0.025 0.025 0.028

NNDES 0.001 0.007 0.022 0.067 0.214 0.762

Shape
VRLSH 0.029 0.029 0.026 0.028 0.046 0.030

NNDES 0.002 0.014 0.039 0.120 0.382 1.471

Corel
VRLSH 0.003 0.003 0.003 0.002 0.003 0.003

NNDES 0.000 0.001 0.002 0.007 0.023 0.077

Table 3.2: Scan rate required by VRLSH and NNDES while calculating the kNNG with

different values of k on the studied datasets. The best results for each configuration

are highlighted in boldface.

the nearly 0 obtained by NN-Descent. As k grows, the quality of the computed graph

decreases for VRLSH while it increases for NN-Descent. For instance, when k = 64

the recall of NN-Descent is almost perfect in all cases, while VRLSH obtains values

ranging from 0.57 to 0.63. Nevertheless, as mentioned above, NN-Descent obtains these

superior results at the expense of the scan rate, which in some cases exceeds 1, which

means that the number of pairwise measurements performed is larger than what the

näıve algorithm to obtain the exact kNNG would require, rendering the NN-Descent

approach invalid in such cases. In contrast, the scan rate used by VRLSH remains

in the range [0.003 − 0.03]. Moreover, if we analyze the mean error of the calculated

kNNG, listed in Table 3.4, it becomes apparent that although the recall obtained with

VRLSH descends as k grows, the mean error does not grow as fast, indicating that the

retrieved neighbors are close to the exact kNN, constituting a good approximation.

For the cases when such approximation is not enough, we propose adding to the

computation an additional stage of refinement of the graph consisting of a single neigh-

bor descent step, that is, for each element in the graph, looking for nearest neighbors

among the neighbors of its calculated nearest neighbors in the approximate kNNG.

This can be done at an additional cost O(n · k), which is a reasonable addition to the

reduced scan rate required to compute the kNNG with VRLSH, especially for large

datasets. We will refer to this method hereafter as VRLSH+. Figure 3.3 shows that

the results obtained with this method are very satisfactory, since it greatly increases

the recall obtained by VRLSH while keeping the scan rate well below 1. Namely, in

51

Chapter 3. Approximate models: Scalable kNN Graph construction with Locality Sensitive
Hashing

Data Method
k

2 4 8 16 32 64

Audio
VRLSH 0.825 0.756 0.716 0.663 0.608 0.569

NNDES 0.002 0.429 0.892 0.982 0.998 1.000

Shape
VRLSH 0.891 0.836 0.794 0.732 0.748 0.599

NNDES 0.003 0.641 0.958 0.994 0.998 0.999

Corel
VRLSH 0.879 0.898 0.821 0.740 0.683 0.633

NNDES 0.000 0.419 0.950 0.996 0.999 0.999

Table 3.3: Recall of the approximate kNNG calculated by VRLSH and NNDES with

different values of k on the studied datasets. The best results for each configuration

are highlighted in boldface.

Data Method
k

2 4 8 16 32 64

Audio
VRLSH 0.015 0.032 0.041 0.055 0.075 0.093

NNDES 0.852 0.109 0.009 0.001 0.000 0.000

Shape
VRLSH 0.001 0.001 0.002 0.003 0.004 0.008

NNDES 0.102 0.007 0.000 0.000 0.000 0.000

Corel
VRLSH 0.001 0.001 0.003 0.006 0.010 0.016

NNDES 0.892 0.022 0.000 0.000 0.000 0.000

Table 3.4: Mean distance error of the approximate kNNG calculated by VRLSH and

NNDES with different values of k on the studied datasets. The best results for each

configuration are highlighted in boldface.

52

3.4 Experimental design and Results

the aforementioned case of k = 64 the recall grows from [0.57 − 0.63] in VRLSH to

[0.93 − 0.99] in VRLSH+, with the scan rate growing only moderately, resulting in

values ranging from 0.07 to 0.3, depending on the dataset, as opposed to 0.21 to 1.64

scored by NN-Descent. It is worth noting that the scan rate is a measure relative to the

square of the number of elements in the dataset, so a percent point in scan rate rep-

resents an amount of computation that depends on the dataset size. This means that

for large datasets, a difference of a single percent point can represent significant time,

while for small datasets the scan rate can approach 1 even for approximate methods.

This effect can be noticed on the scan rates measured, which are significantly larger

in the case of the smallest dataset (Shape) compared to the largest dataset (Corel).

Moreover, in small datasets the scan rate of an approximate method can become larger

than 1, which implies that it would be advisable to use the näıve method to compute

the exact graph. For such small datasets we recommend calculating the exact graph

and we provided a multithreaded implementation of the näıve method in our code.

Conversely, for the large datasets that this method is intended for, the advantage in

terms of scan rate that our method offers becomes very significant since it represents a

great amount of calculations.

3.4.3. Scalability of the method

Finally, to measure the scalability of the method and the provided distributed im-

plementation in Apache Spark, we performed the same computation while varying the

number of computing nodes. These experiments were run in a computer cluster formed

by 8 machines with 12 computing cores each. The technical specifications of each node

are listed on Table 3.5. The Spark version used was 2.4.0, on Hadoop 3.0.0-cdh6.1.0.

The operating system of the machines was CentOS Linux release 7.4.1708.

To ascertain the suitability of the method for processing large datasets, we used a

dataset with more examples for this experiment. In particular, we selected the Higgs

dataset4 [12], which describes measurements of particle collisions and consists of 11

million examples with 28 attributes. With such a large number of elements, calculating

the exact kNNG is completely out of reach, and calculating an approximation is the

only option. To measure the scalability of our algorithm, we calculated the approxi-

mate 4NNG for the Higgs dataset several times using a growing number of computing

nodes and recorded the execution time invested in the calculation. For all these exper-

4Available for download at https://archive.ics.uci.edu/ml/datasets/HIGGS

53

Chapter 3. Approximate models: Scalable kNN Graph construction with Locality Sensitive
Hashing

2 4 8 16 32 64
0

0.5

1

1.5

2

S
ca

n
ra

te

Audio

VRLSH
VRLSH+

NN-Descent

2 4 8 16 32 64
0

0.5

1

1.5

2

Shape

2 4 8 16 32 64

0

2

4

6

8

·10−2 Corel

2 4 8 16 32 64
0

0.2

0.4

0.6

0.8

1

R
ec

al
l

2 4 8 16 32 64
0

0.2

0.4

0.6

0.8

1

2 4 8 16 32 64
0

0.2

0.4

0.6

0.8

1

2 4 8 16 32 64

0

0.2

0.4

0.6

0.8

k

M
ea

n
er

ro
r

2 4 8 16 32 64

0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

k

2 4 8 16 32 64

0

0.2

0.4

0.6

0.8

k

Figure 3.3: Scan rate / Recall / Mean error vs number of neighbors plots for Audio,

Shape and Corel datasets.

Table 3.5: Computer cluster overview:

8 nodes with the following characteristics:

Processor: 2 × Intel Xeon E5-2620 v3 at 2.40Ghz

Cores: 6 per processor (12 per node)

Threads: 2 per core (24 total per node)

Storage: 12 × 2TB NL SATA 6Gbps 3.5” G2HS

RAM: 64 GB

Network: 1x10Gbps + 2x1Gbps

54

3.5 Conclusions

VRLSH

units Time (s) Scan rate Ops/s Speed-up

1 6778 1.95 ·10−4 1.74 ·106 1.00

2 3571 1.91 ·10−4 3.23 ·106 1.86

4 1868 2.06 ·10−4 6.68 ·106 3.83

VRLSH+

units Time (s) Scan rate Ops/s Speed-up

1 7390 1.98 ·10−4 1.62 ·106 1.00

2 3972 1.93 ·10−4 2.94 ·106 1.82

4 2045 2.09 ·10−4 6.17 ·106 3.81

Table 3.6: Scalability vs number of computational units for the computation of the

approximate 4NNG for the Higgs dataset. The speed-up listed is the ratio between the

operations per minute obtained and the operations per minute performed with a single

computational unit (12 cores).

iments we used CMAX = 32. The results, listed on Table 3.6, show that the distributed

implementation provided manages to harness the computational power of the available

machines, obtaining almost linear speed-up, that is, accelerating the execution in pro-

portion to the number of cores available. This feature enables the user to analyze very

large datasets in a reasonable time as long as enough computational units are available.

3.5. Conclusions

In this chapter we explore the use of an approximate solution as a means to adapt

complex models to large-scale scenarios. In particular, we tackle the problem of con-

structing a kNNG, for which obtaining an exact solution is extremely costly for very

large datasets, due to the quadratic computational complexity of the available gen-

eral algorithms. We present VRLSH (implementation in Apache Spark available for

download at https://github.com/eirasf/KNiNe), a kNNG approximation algorithm

which produces high recall graphs using a low scan rate irrespective of the number of

neighbors selected. Taking advantage of the reduced scan rate, the obtained kNNG

55

Chapter 3. Approximate models: Scalable kNN Graph construction with Locality Sensitive
Hashing

can be further refined with a single step of neighbor descent improving the recall of the

obtained graph while maintaining the scan rate at manageable values. Additionally,

we provide a distributed implementation of this algorithm in Apache Spark, which ex-

ploits the structure of the algorithm to provide a distributed solution that can handle

datasets with a large number of elements in manageable times by using several com-

putational units. This enables practitioners to tackle large datasets that are out of

reach of other state-of-the-art methods. We also present a method for estimating the

hyperparameters of the algorithm and, additionally, those required by the Euclidean

distance similarity measure, which is very commonly used. This solves the problem

of hyperparameter tuning common to other LSH-based solutions. Our tests show that

our method outperforms the currently preferred method for kNNG computation.

In the future we will explore the possibility of using memory-efficient registers such

as Bloom filters [21] to keep track of the pairwise computations that have been per-

formed, thus helping avoid the repetition of computations. Adapting this algorithm to

similar problems such as nearest neighbor search and spherical range reporting is also a

research avenue of great interest. Also, advances in automated parameter tuning over

a Pareto frontier by implementing multi objective genetic algorithms [150, 14] can be

used to further optimize the parameters of the proposed algorithms to improve both

the accuracy and the speed.

As mentioned in Section 3.1, the kNNG is used in many machine learning fields.

Exploring the possibilities opened by the increased efficiency of this computation al-

gorithm in each of those fields is a promising research line that may yield significant

advances. As an example, in Chapter 4 we show how VRLSH can be used to further

increase the scalability of ReliefF, the popular feature selection algorithm that was one

of the subjects of Chapter 2.

56

CHAPTER 4
Approximate FS: Scalable feature selection using

ReliefF aided by Locality Sensitive Hashing

4.1. Introduction

The previous chapter showed how helpful it is to obtain a fast approximate solu-

tion for kNNG computation. The obtained graph reproduces the exact solution with

good accuracy with only a small fraction of the computational effort. As mentioned,

the kNNG is used in a variety of machine learning problems that can benefit from the

increased speed of the approximate calculation. Still, the effect that the small inaccu-

racies contained in the approximate kNNG can have in the solution of each of these

problems needs to be studied.

In this work we focus on the use of the approximate kNNG for feature selection

and we present an adaptation of the popular feature selection algorithm ReliefF that

reduces its computational complexity. ReliefF relies heavily on the nearest neighbor

graph which needs to be calculated in a process that accounts for most of its computa-

tional load. In order to reduce this computational complexity, unsuitable for Big Data,

we substituted the graph building process with our VRLSH implementation. This ap-

proach, which achieved good preliminary results [55], is fully developed and thoroughly

tested. The resulting algorithm, which now allows multiclass datasets and requires no

manual hyperparameter tuning, also vastly reduces computational complexity. This so-

lution is implemented in Apache Spark to take advantage of distributed computation,

since many of its computations can be performed in parallel. Consequently, it allows

the processing of datasets that are far out of reach for the original ReliefF. Also, our

method can be applied to any dataset that the original ReliefF can process, in contrast

with the existing alternatives.

57

Chapter 4. Approximate FS: Scalable feature selection using ReliefF aided by Locality
Sensitive Hashing

In Section 4.2 of this chapter we describe ReliefF and list the alternatives that

attempt to increase its scalability. Section 4.3 describes the adapted algorithm that we

present. In Section 4.4 we detail the experiments performed while in Section 4.5 we

list the obtained results. Finally, Section 4.6 presents the conclusions reached from this

work.

4.2. Related work

Relief is a feature ranking method that factors in the relevance of each feature

for classification [88]. It is a supervised method that returns a list of the features

sorted according to their importance, which is then used to perform feature selection

by setting a threshold so that features with an importance score less than that value

are dismissed. The core idea is assigning a weight to each attribute according to its

ability to differentiate elements that are very close together. To do this for classification

datasets Relief searches, for each example, for the nearest element within the same class

(nearest hit) and the closest element of a different class (nearest miss) and updates the

weight of each attribute A proportionally to the difference of its value in the example

and in the nearest hit and nearest miss, respectively. The final weight W of attribute

A has, therefore, a probabilistic interpretation since, given an example x, it is an

approximation of the following difference of conditional probabilities:

W [A] = P (x(A) <> nearest miss(A)|nearest miss)

−P (x(A) <> nearest hit(A)|nearest hit)
(4.1)

Its good performance led to the development of extensions that are able to deal with

multiclass problems and examples affected by noise or incomplete [89]. One of these

extensions was named ReliefF and ended up being more popular than the original

algorithm, with numerous implementations of it available in libraries and machine

learning software. Later on, specializations of the algorithm were presented [145],

adapting it to regression problems [127], multilabel datasets [141, 137] or taking into

account the cost of obtaining each attribute [22]. Work has also been done to optimize

the algorithm to enable its use on large datasets. In addition to the use of distributed

computing [54, 120], as described in Chapter 2, sampling [58] and random k-d -trees

have been used to approximate the nearest neighbor graph [152], but the applicability

58

4.3 Proposed algorithm

of these algorithms to large-scale datasets is still limited. Of these alternatives, the

most efficient work is DiReliefF [120], which computes an approximation of the ReliefF

attribute ranking. To do so, it uses a sampling scheme to greatly reduce the number of

calculated neighbors. DiReliefF also provides a distributed implementation in Apache

Spark that makes the handling of large datasets easier.

4.3. Proposed algorithm

The aim of this work is obtaining an algorithm that approximates the result of

ReliefF with less computational effort and is able to replicate the most popular imple-

mentation of ReliefF [127], being capable to handle multiclass and regression datasets.

Most of the computational effort in this algorithm is devoted to obtaining the nearest

hits and misses for each element, which requires computing the kNN-graph. Therefore,

we propose replacing the computation of the exact kNN-graph in the ReliefF algorithm

with an approximation of the kNN-graph obtained by VRLSH [56], which greatly re-

duces the computational effort. The VRLSH algorithm can be used as it is by ReliefF

for regression as, in this type of problems, it is not required to make a distinction be-

tween hits and misses, but it needs to be modified for the obtained graph to be used

by ReliefF when computing the weights W of each attribute for classification datasets.

The graph obtained by VRLSH contains a single list of neighbors for each element in

the dataset, but for classification datasets ReliefF needs to make a distinction between

hits and misses, so VRLSH needs to be modified to keep several lists of neighbors, one

for each class, for every element in the dataset.

Also, the simplification of the original dataset D along the VRLSH process (see line

7 in Algorithm 8) needs to be revised to handle classification problems. For a given

element xi, the count of pairwise comparisons, which we will call count xi, determines

when a point should be removed from the dataset (when count xi > CMAX). This scalar

count needs to be expanded to a vector of separate count xji of pairwise comparisons

with elements of each class cj . With this change, an element should only be removed

from the dataset when it has been involved in at least CMAX comparisons for every

possible class, i.e. count xji > CMAX∀cj ∈ C where C is the set of possible classes.

Moreover, depending on the distribution of the classes in the input space, it can be

possible that some points are distant from a given class ck and for them to be involved

in CMAX pairwise comparisons requires maintaining them in the dataset for a large

59

Chapter 4. Approximate FS: Scalable feature selection using ReliefF aided by Locality
Sensitive Hashing

number of iterations. This situation can lead to such points accumulating a number

of pairwise comparisons much larger than CMAX for some classes, i.e. count xji >>

CMAX for some j 6= k, and constitutes a challenge to the ability of the method to

reduce the number of pairwise calculations. To alleviate this problem, we propose a

variation of the bucketing step that avoids comparing points xi with points of class cj

if count xji > CMAX . To ease notation we will say that point xi requests class cj if

count xji < CMAX , i.e. it still needs to be compared to elements of class cj before being

removed. To achieve the mentioned behaviour an additional component hr is added

to every hash that effectively splits, according to the requested classes, the buckets of

similar elements originated by the LSH function. Therefore, a given point xi of class

cj that is given hash h by the LSH function, will have an updated set of hashes H ′

computed as described in Algorithm 10.

Algorithm 10: Hashing procedure modification for multiclass problems

Input: h← Hash given to xi by the LSH function

Input: cj ← Class of xi

Input: count xi ← Pairwise comparisons of xi to elements of each class.

Output: H’ ← Set of modified hashes for xi

1 H ′ ← (h, cj)

2 if count xki < CMAX∀ck ∈ C then

3 H ′.append((h,∅))

end

4 else

5 foreach ck in C do

6 if count xki < CMAX then

7 H ′.append((h, ck))

end

end

end

First, H ′ will always contain the hash (h, cj), as described in Line 1, intended

to make the xi available to other elements that request class cj . Then, there is an

alternative: if xi requests all possible classes Line 3 ensures that xi is compared to any

element in the same situation; otherwise Line 7 adds to H ′ a hash for every requested

60

4.3 Proposed algorithm

class. This process originates two types of buckets that need to be processed according

to their characteristics, rendering the bucketing step in VRLSH (corresponding to the

loop in Line 5 of Algorithm 8) invalid and demanding an updated version, which is

detailed in Algorithm 11.

Algorithm 11: Updated bucket processing procedure

Input: G← Graph containing the computed nearest neighbors for each point

Input: buckets ← Buckets of points that received the same hash value

Output: G← Updated graph

1 foreach ((h, hr), points) in buckets do

2 if hr = ∅ then

3 G← G ∪ exactKNN(points, k)

end

else

4 targets← ∅ , requesters← ∅

5 foreach p in points do

6 if (hr = p.class) then targets.append(p) end

7 if (hr 6= p.class or p.counts[p.class] < CMAX) then

requesters.append(p) end

end

8 G← G ∪ pairKNN(requesters, targets, k)

end

end

In this modified procedure, which is depicted in Figure 4.1, buckets of elements

with the same hash are processed according to the modifier component hr added to

their hash. On the one hand, Line 3 processes buckets of elements that request all

classes performing every possible pairwise comparison of the elements in the bucket,

as occured in Algorithm 8. This ensures that such elements get compared to every

point that the LSH function deems similar to them, rapidly finding neighbors of all

classes nearby. On the other hand, the buckets containing elements that either request

a class or belong to a requested class are processed differently. Lines 6 and 7 divide

each bucket with hash (h, hr) into two sets: the points that request hr (requesters)

and the points of class hr (targets). Then, in Line 8 the function pairKNN compares

61

Chapter 4. Approximate FS: Scalable feature selection using ReliefF aided by Locality
Sensitive Hashing

Figure 4.1: Modified hashing and bucketing scheme. xi are assumed to be similar

enough to receive the same hash value h. Also, the hasher only emits a single hash per

element, which is later augmented with the hr value.

each requester to every target and obtains the corresponding subgraph. This avoids

performing requester -requester and target-target comparisons, which, added to the fact

that appending hr to the hash divides the bucket in more specific and smaller buckets,

greatly reduces the number of operations needed.

For a given dataset of size n × d, where n is the number of elements and d is

the number of variables, if the hasher generates t hashes of length l for each element,

the memory requirements of the algorithm are O(nlt). This impact on memory is

overcome with the distribution of the computation. Moreover, since the dimension d of

the dataset is not a direct factor of the memory complexity, the space required by the

hashes and the dataset are on par for high dimensional data. This makes the memory

overhead smaller for high dimensional datasets, which are our focus.

We provide an implementation of the resulting algorithm, named ReliefF-LSH, in

the distributed computing framework Apache Spark that can be downloaded from

https://github.com/eirasf/ReliefF-LSH.

4.4. Experimental settings

In order to assess the validity of the presented method, two sets of experiments

were carried out. We compared the performance of our method with the exact Reli-

62

4.4 Experimental settings

efF and also with the recent approximated method DiReliefF, which is the comparable

method that offers better performance [120], as discussed in Section 4.2. First, the

execution time needed to calculate the weights using ReliefF in real datasets was mea-

sured and compared to that needed by ReliefF-LSH and DiReliefF. Since ReliefF-LSH

and DiReliefF are both approximate methods, the accuracy of the results obtained was

determined by comparing the rankings calculated by each method to the ground truth.

The second set of experiments aimed at studying the scalability of Relief-LSH. To that

end, we measured the execution times of applying ReliefF-LSH to the same dataset

using varying amounts of computational cores.

4.4.1. Equipment and datasets

All experiments were performed in a computer cluster formed by machines with

12 computing cores. The description of each cluster node is shown in Table 4.1. The

Apache Spark version used for Relief-LSH was 2.4.0, on Hadoop 3.0.0-cdh6.1.0 while the

Apache Spark version used for DiReliefF was 1.6.1, running on Hadoop 2.7.1.2.4.2.0-

258, since the available implementation required it. The operating system used by these

machines is CentOS Linux release 7.4.1708.

Table 4.1: Cluster description

32 nodes with the following specifications:

Processor: 2 × Intel Xeon E5-2620 v3 a 2.40Ghz

Cores: 6 per processor (12 per node)

Threads: 2 per core (24 total per node)

Storage: 12 × 2TB NL SATA 6Gbps 3.5” G2HS

RAM: 64 GB

Network: 1x10Gbps + 2x1Gbps

Nine real-world high-dimensional datasets were selected to perform these experi-

ments. These datasets and their characteristics are listed on Table 4.2. We selected

these datasets to represent all problems that ReliefF is capable of handling, namely,

regression (Yearsmall) and binary (Higgs [12], Higgssmall, Epsilonsmall) and multiclass

classification (KDD99small, CTsmall, Cifar10 [95], SVHN [117], Sensorless [52]). They

63

Chapter 4. Approximate FS: Scalable feature selection using ReliefF aided by Locality
Sensitive Hashing

Table 4.2: Dataset description

Dataset Features Instances Classes

Yearsmall 90 46.371 -

Higgs 28 11.000.000 2

Higgssmall 28 55.000 2

Epsilonsmall 2.000 50.000 2

KDD99small 41 48.984 23

CTsmall 54 58.101 7

Cifar10 3.072 50.000 10

SVHN 3.072 73.257 10

Sensorless 84 58.509 11

cover various problems such as intrusion detection or computer vision5. In some cases,

the high number of elements in some datasets places them out of reach for the ReliefF

original version, since their processing would take several weeks even using 12 com-

puting cores. As a result, we used reduced versions of the large datasets for our first

experiment which compares the execution times of the original ReliefF with ReliefF-

LSH and DiReliefF. We reduced these datasets by taking only their top N elements. In

particular, Yearsmall is the top 10% of the YearPredictionMSD [52] dataset, Higgssmall

contains the top 0.5% of the Higgs dataset (55.000 samples), Epsilonsmall consists of the

top 10% (50.000 elements) of Epsilon [139], KDD99small contains the top 1% (48.984

elements) of KDD99 [99] and CTsmall is the top 10% of the CoverType [52] dataset.

Nonetheless, to assess the suitability of our method for processing large datasets, we

used the full Higgs dataset in our second experiment.

4.4.2. Methodology

The first experiment consisted in comparing the results obtained with ReliefF-LSH

with those obtained by DiReliefF and with the ReliefF exact version. We used three

5All datasets are publicly available for download at https://www.csie.ntu.edu.tw/~cjlin/

libsvmtools/datasets/ except KDD99, which can be downloaded from http://kdd.ics.uci.edu/

databases/kddcup99/kddcup99.html

64

4.4 Experimental settings

different measures for this purpose. First, to gain insight on the time efficiency of each

method, we measured the execution time needed to process each dataset. Then we set to

establish the accuracy of the obtained results. To assess how exact the retrieved ranking

of attributes is, we used the recall measure at various thresholds. Since the final purpose

of the ReliefF ranking is obtaining a subset of attributes that are relevant, comparing

the obtained subsets gives a clear account of the effectivity of the approximate method.

Given a selection level t, a ranking E of attributes calculated by the exact ReliefF and

a ranking A of attributes calculated by the approximate algorithm, we define the recall

as:

recall(t) =
|E .first(t) ∩ A.first(t)|

t
(4.2)

where X .first(t) represents the first t elements in list X . Additionally, to further

explore the accuracy of the obtained rankings, a distinction between sets of attributes

that contain the same number of wrong selections need to be made. Due to the nature

of ReliefF, the selection is made by sorting the attributes by weight and selecting the

top N . Depending on the characteristics of the dataset, many attributes may have

similar weights, and selecting one of these similar attributes will not have as adverse an

effect as selecting an attribute with a much smaller weight. To quantify the importance

of the mistakes made at each selection level we used a difference in total weight of the

selected attributes, defined as

WD(t) = −(
∑

a∈E.first(t)

E(a)−
∑

a∈A.first(t)

E(a)) (4.3)

where E represents the attribute ranking computed by the exact ReliefF, A represents

the attribute ranking computed by the approximate method being measured and E(a)

represents the weight assigned to attribute a by the exact ReliefF. The sign change is a

merely esthetic choice to obtain a positively valued measure that should be minimized.

Additionally, both DiReliefF and ReliefF-LSH contain aleatory steps and, therefore,

yield non-deterministic results, that is, the rankings obtained can differ between runs.

To dampen the effect of randomness in the measurements we represent the average

value over four separate executions for both methods. In the case of ReliefF-LSH,

the random process included in VRLSH makes its execution time also vary slightly in

different runs, but this is also mitigated by listing the average execution time over four

separate executions for both methods.

Finally, DiReliefF defines how exact the computed ranking will be by establishing a

sampling level which is selected by the user. We used 1000 samples in all experiments

65

Chapter 4. Approximate FS: Scalable feature selection using ReliefF aided by Locality
Sensitive Hashing

with DiReliefF, in an attempt to obtain the most precise ranking possible without using

more time than the exact ranking computation in any case.

4.5. Experimental results

As stated in Section 4.3, VRLSH needed to be modified to be able to tackle classi-

fication problems and ensure that all elements are linked to their k nearest neighbors

of each class. This constitutes a challenge for the original algorithm that is magnified

when the number of classes grows. For this reason we split our first set of experi-

ments in two groups: 1) regression and binary classification datasets and 2) multiclass

classification datasets.

4.5.1. Regression and binary classification

First we compared the execution times taken to process each dataset, which are

depicted in Figure 4.2. Notice that DiReliefF does not support regression datasets and

therefore no results are listed for DiReliefF for the Yearsmall dataset. It is apparent

that the execution times of ReliefF-LSH are always dramatically lower than those of its

exact counterpart. When compared to DiReliefF, the execution time of ReliefF-LSH is

significantly lower for the dataset with higher dimensionality, while it is slightly higher

for the Higgssmall dataset, which only has 28 attributes. This effect, exclusive to small

datasets, can be explained because the overhead created by the hashing and grouping

steps in VRLSH is noticeable only in small and low dimensional datasets, as is the case

with Higgssmall, but becomes negligible in real life scenarios when the dataset is high

dimensional and therefore each pairwise comparison is more costly or when the dataset

contains a high number of elements, and the time saved by the number of pairwise

comparisons avoided by ReliefF-LSH greatly surpasses the mentioned overhead.

Figures 4.3 and 4.4 depict the recall and weight error, respectively, at various thresh-

old selection levels for both the approximate algorithms. The results obtained by

ReliefF-LSH are clearly superior to those achieved by DiReliefF on both Epsilonsmall

and Higgssmall. It is worth noting that in the case of Epsilonsmall the time invested

in computing the ranking was notably smaller when using ReliefF-LSH and still the

results obtained are clearly superior. The results for ReliefF-LSH on the regression

66

4.5 Experimental results

Yea
r
sm

al
l

Eps
ilo

n
sm

al
l

H
ig
gs

sm
al
l

0

0.5

1

1.5
·104

T
im

e
(s

)

ReliefF DiReliefF ReliefF-LSH

Figure 4.2: Execution times of ReliefF, DiReliefF and ReliefF-LSH for datasets

Yearsmall, Epsilonsmall, Higgssmall

dataset are also good, recalling perfectly the first 5 attributes and retrieving the rest

of the list with good accuracy (the least accurate recall is obtained when selecting 15

attributes and is a still high value of 0.82, i.e. 12 or 13 correct attributes out of 15

depending on the execution, with a weight error of only 5 ∗ 10−5).

4.5.2. Multiclass datasets

In the case of multiclass datasets, the execution times shown in Figure 4.5 re-

flect that ReliefF-LSH is significantly faster than the exact version except in the case

of the smaller datasets, for which the previouly mentioned overhead introduced by

ReliefF-LSH becomes apparent, but these cases should be considered a product of us-

ing small datasets for this experiment. As the dataset size and/or dimensionality grows,

the time reduction becomes larger. In constrast with the case of binary classification

datasets, DiReliefF is clearly faster than ReliefF for the smaller datasets, showing that

the multiclass scenario requires more effort of ReliefF-LSH. Nevertheless, the available

implementation of DiReliefF is unable to process Cifar10 and SVHN, which are more

computationally intensive, because its approach requires more memory than is available

67

Chapter 4. Approximate FS: Scalable feature selection using ReliefF aided by Locality
Sensitive Hashing

0 20 40
0

0.5

1

of selected attributes

R
ec

al
l

Yearsmall

0 20 40
0

0.5

1

of selected attributes

Epsilonsmall

0 10 20
0

0.5

1

of selected attributes

Higgssmall

DiReliefF
ReliefF-LSH

Figure 4.3: Recall obtained for datasets Yearsmall, Epsilonsmall and Higgssmall.

0 20 40
0

0.5

1

·10−3

of selected attributes

W
ei

gh
t

er
ro

r

Yearsmall

0 20 40
0

0.5

1

·10−3

of selected attributes

Epsilonsmall

0 20 40
0

0.5

1

·10−3

of selected attributes

Higgssmall

DiReliefF
ReliefF-LSH

Figure 4.4: Weight error for datasets Yearsmall, Epsilonsmall and Higgssmall.

68

4.5 Experimental results

K
D
D
99

sm
al
l

C
T

sm
al
l

C
ifa

r1
0

SV
H
N

Se
ns

or
le
ss

0

2

4

6

·104

T
im

e
(s

)

ReliefF DiReliefF ReliefF-LSH

Figure 4.5: Execution times of ReliefF, DiReliefF and ReliefF-LSH for datasets

KDD99small, CTsmall, Cifar10, SVHN and Sensorless.

in the computational nodes, regardless of the number of partitions of the distributed

task used. In terms of accuracy, Figures 4.6 and 4.7 show that the results obtained by

ReliefF-LSH are very good, although in the case of CTsmall DiReliefF obtains better

results for selection levels between 3 and 30.

0 20 40
0

0.5

1

attributes

R
ec

al
l

KDD99small

0 20 40
0

0.5

1

attributes

CTsmall

0 20 40
0

0.5

1

attributes

Cifar10

0 20 40
0

0.5

1

attributes

SVHN

0 20 40
0

0.5

1

attributes

Sensorless

DiReliefF
ReliefF-LSH

Figure 4.6: Recall obtained for datasets KDD99small, CTsmall, Cifar10, SHVN and

Sensorless.

69

Chapter 4. Approximate FS: Scalable feature selection using ReliefF aided by Locality
Sensitive Hashing

0 20 40
0

0.5

1

·10−2

attributes

W
ei

gh
t

er
ro

r

KDD99small

0 20 40
0

0.5

1

·10−2

attributes

CTsmall

0 20 40
0

0.5

1

·10−2

attributes

Cifar10

0 20 40
0

0.5

1

·10−2

attributes

SVHN

0 20 40
0

0.5

1

·10−2

attributes

Sensorless

DiReliefF
ReliefF-LSH

Figure 4.7: Weight error for datasets KDD99small, CTsmall, Cifar10, SVHN and Sen-

sorless.

4.5.3. Scalability

Finally, we performed an experiment to study the scalability of ReliefF-LSH. To

this end, we used the full version of the Higgs dataset, containing 11 million elements,

and computed the attribute ranking repeatedly, using for each execution a growing

number of computing cores. The resulting execution times listed in Table 4.3 show

that ReliefF-LSH is able to handle datasets that are completely out of reach for the

exact version of the algorithm. While the exact ReliefF needed 5.550 seconds to process

Higgssmall (i.e. 0.5% of the examples in the full Higgs), ReliefF-LSH was able to process

the whole dataset (200 times larger) in only 48.283 seconds using the same amount of

computing cores. It is worth noting that, since the computational complexity of the

original ReliefF is quadratic, the expected execution time would be of the order of

107 seconds, which is unusable in practice. These results also show that, thanks to

the fact that many of the calculations performed by ReliefF-LSH can be performed

independently in parallel, the computational nodes that are involved in the calculation

are efficiently used, which results in an inversely proportional relation with slope close

to -1 between the number of nodes and the execution time, as desired.

4.6. Conclusions

This chapter presents an adaptation of the popular feature selection algorithm Reli-

efF to allow the processing of large datasets, demonstrating the usefulness of computing

approximate data structures as a means to increase the scalability of machine learn-

ing algorithms. The currently available alternatives to the exact ReliefF are either

unable to handle large-scale datasets or are restricted to a particular type of input

70

4.6 Conclusions

units Time (s) Scan rate Ops/s Speed-up

1 48,283 2.42 ·10−3 3.03 ·106 1.00

2 19,864 1.71 ·10−3 5.19 ·106 1.72

4 15,402 2.54 ·10−3 9.96 ·106 3.29

Table 4.3: Scalability vs number of computational units for applying ReliefF-LSH on

the full Higgs dataset. The speed-up listed is the ratio between the operations per

minute obtained and the operations per minute performed with a single computational

unit (12 cores).

data. In our approach, the costly step of computing the kNN graph is approximated

using the a variation of the VRLSH algorithm, greatly reducing execution time while

maintaining accuracy. The resulting algorithm, called ReliefF-LSH, is implemented in

the distributed computing framework Apache Spark and available for download. We

report experiments that demonstrate the adequacy of the method and its scalability.

These experiments show that ReliefF-LSH can be used to process datasets that are out

of reach for the exact ReliefF and that it shows superior performance when compared

to the available approximate alternative, DiReliefF. Moreover, the memory efficiency

of ReliefF-LSH allows it to handle very high dimensional datasets that are out of reach

for DiReliefF. Also, ReliefF-LSH does not impose restrictions on the data that it can

handle and supports regression datasets, so it is an apt substitute for ReliefF in any

problem, in contrast with the previously available alternatives. Furthermore, the lack

of additional hyperparameters of our method avoids the need for tuning steps that are

very costly for large datasets. Finally, ReliefF-LSH can be configured to prioritize pre-

cision over execution time or vice versa, enabling the users to obtain results according

to their needs.

As future work, the behaviour of the algorithm when processing datasets containing

several classes could be further analyzed in order to explore any possible improvements

that could lead to a reduction of the computational effort needed.

71

Chapter 4. Approximate FS: Scalable feature selection using ReliefF aided by Locality
Sensitive Hashing

72

CHAPTER 5
Ad-hoc models: Large Scale Anomaly Detection in

Mixed Numerical and Categorical Input Spaces

5.1. Introduction

In this chapter we will explore how algorithms can be created to be scalable by

design. This approach is more complex than the previously analyzed alternatives since

it does not rely in a pre-existing algorithm or data structure. Instead, what is required

is designing a model that can be trained efficiently regardless of the dataset size.

To test this approach we will focus on the problem of anomaly detection. An

anomaly or outlier can be defined as “an observation which deviates so much from other

observations as to arouse suspicions that it was generated by a different mechanism”[74].

Detecting anomalies is an old discipline for statisticians [53], denominated outlier de-

tection. Since those days, this type of method has become increasingly important.

Anomaly detection is especially useful in practical situations where the dataset is both

numerous and contains unexpected events that carry the most important information.

Several challenges stand in the way of developing a general technique for anomaly de-

tection: the growing number of domains of application (detection of intrusions [96],

surveillance [138], fraud [5], machine faults [44, 60, 112]) adds high variability to the

proposed solutions, while the scarcity of labeled data from real-world processes [33, 36]

makes it difficult to test the generalization of new solutions. Additionally, the data

available in practice for building the model is usually unlabeled [36, 57, 136]. In ad-

dition, the regions of the input space that are likely to contain only non-anomalous

elements can be very complex in nature. Therefore, deciding a prior shape for this

region through the choice of a specific distribution or geometric shape is a potentially

difficult task that can introduce bias, preventing the generation of a meaningful model.

73

Chapter 5. Ad-hoc models: Large Scale Anomaly Detection in Mixed Numerical and
Categorical Input Spaces

Another major difficulty, on which we focus here, is the type of input data. The

introduction of mixed numerical/categorical data can complicate the modeling of cor-

relations between input variables. This means that many of the popular anomaly

detection techniques: (a) can only deal with categorical or numerical data [144, 43, 4],

(b) leave to the practitioner the responsibility of dealing with this issue through (non-

formal) bespoke processes, or (c) introduce heuristic criteria to deal with mixed nature

data [62, 119].

With this research, which was published in Information Sciences, we aim to ex-

plore a strategy to model anomaly detection problems in which the data are numerous

and contain categorical and numerical input variables. We leverage that characteristic

to design a model composed of two smaller parts, which reduces the computational

requirements, therefore enhancing the scalability of the algorithm. We adopt a prob-

abilistic view of the problem and deal with each kind of variable individually in order

to approximate the joint probability measure function with a parametric model. This

approach differs from the state of the art in this field in that, instead of departing di-

rectly from a heuristic concept of outlierness in mixed categorical/numerical spaces, it

starts from a formal formulation of the problem in terms of a joint probability measure

function approximation and adopts a parametric structure that makes this feasible to

compute. This makes the proposed algorithm both theoretically and technically sound.

The whole model is trained through a maximum likelihood objective function optimized

with stochastic gradient descent. Therefore, the algorithm lends itself well to parallel

computation, which allows the model to scale up to large datasets, both in terms of fea-

tures and number of instances, making it an appealing option for big data applications.

To demonstrate this, an implementation of the algorithm (denominated Anomaly De-

tector for Mixed Numerical and Categorical inputs, ADMNC) in the popular cluster

computing framework Apache Spark is provided.6

Section 5.2 reviews related work in this area. Section 5.3 presents the formal frame-

work and Section 5.4 introduces the parametric formulation of the problem. Section 5.5

reports a collection of experiments that show the properties of the proposed method

in real datasets, as well as the definition of a synthetic dataset generator and further

experiments with the resulting datasets. Section 5.6 summarizes the main conclusions

and future work.

6The implementation of ADMNC in Apache Spark is available for download at http://github.

com/eirasf/ADMNC/.

74

5.2 Related work

5.2. Related work

Numerous anomaly detection techniques have been developed, either from an appli-

cation specific or a more general-purpose point of view. Anomaly detection application

domains impose restrictions which dramatically determine the design of the algorithms.

Consequently, the research in this area has yielded only a few general algorithms in re-

cent years [86].

Anomaly detection approaches can be classified according to the nature of the input

data. We have assumed that each instance can be described using a set of attributes.

These can be of different types, such as binary, categorical or numerical. The nature of

the attributes determines the applicability of anomaly detection techniques. Different

statistical models and algorithms have been designed for numerical and categorical data

[35]. Some anomaly detection models can only deal with categorical data [144, 43, 4],

whereas numerical variables have been treated mainly through statistical parametric

and non-parametric models [131, 19], geometrical approximations [112], using binary

trees [105] and autoencoder neural networks [75, 61, 118]. In addition, there have been

numerous efforts to deal with the problem of mixed numerical/categorical anomaly

detection. Current approaches in this last group can be classified in one of the following

abstract strategies:

Categorical space techniques. These algorithms build an anomaly detection model

specially devised for categorical variables and transform any numerical variable

into a categorical space through a previous discretization phase. In this group

we can find HOT [149], in which the set of outliers in a dataset is detected

using a specially devised data structure called a hypergraph and a local test for

outliers based on a frequent itemset counting strategy, and OutRank [115] that

detects anomalies using random walks on an adjecency graph. Another approach

consists in tackling the the problem using information theory concepts [76, 151]

but, again, only categorical attributes are considered and numerical attributes

need to be circumvented through discretization.

Metric-centered techniques. These methods define an anomaly as a point which

lies in a low density region in comparison with its neighborhood. They rely on a

function that calculates the similarity between elements in the input space and

so can be extended to the mixed numerical/categorical case and other types of

structured data [132] through a tailored similarity function. LOF (Local Outlier

75

Chapter 5. Ad-hoc models: Large Scale Anomaly Detection in Mixed Numerical and
Categorical Input Spaces

Factor) [30] can be considered the seminal work in this area. The basic criteria of

these methods has also inspired subsequent improvements for high dimensional

spaces [97] and improved density criteria such as [84]. LOCI (LOcal Correlation

Integral) is a similar technique that improves on LOF, as it is able to detect out-

liers and also groups of outliers without user-required cut-offs [121]. These tech-

niques present challenges in (a) devising effective similarity measures for mixed

numerical/categorical input spaces and (b) scalability, since the similarity matrix

needs to be computed before moving on to the detection phase.

Mixed-criteria techniques. This group of algorithms tackles the nature of nu-

merical and categorical data separately, by trying to design a criterion which

encompasses the analysis of an element in both spaces. Solutions that tackle this

problem using adaptations of supervised learning techniques like AdaBoost have

been described [81], although its requirement for labeled samples prevents its

use in the most common use cases. In this group we can also classify LOADED

[62], which blends categorical-categorical, categorical-numerical and numerical-

numerical correlations in a single criterion using frequent itemset concepts and

local correlation matrices. This algorithm has the drawback of high execution

times for high dimensional datasets, because although its computational com-

plexity scales linearly with the number of data points, it scales quadratically with

the number of numerical attributes, and grows even more computationally costly

with the number of categorical attributes. Although a more efficient version

named RELOADED was introduced in [119], this still requires more computa-

tional effort than more recent methods like ODMAD [92], which first identifies

elements with an anomalous categorical part by finding unusual values or combi-

nations of values, and then, for the elements not deemed as anomalies, computes

the pairwise similarity of their numerical part to that of points sharing the same

categorical values. This takes into account the relationship of the numerical part

with each of the categorical values, but disregards any possible dependence on a

combination of categorical values. Moreover, its computational complexity, even

though less than that of the aforementioned RELOADED, still scales exponen-

tially with the number of categorical attributes, limiting its use to datasets with

few such variables. Another algorithm in this category is POD [154], but its re-

liance on k-nearest neighbor distances entails a computational complexity that

renders it unsuitable for large datasets. There have also been efforts to provide

a statistical foundation to this problem, like MITRE [107], which uses a gen-

eralized linear model with additional latent variables to model correlations and

error. Large magnitudes of the error are then used to identify anomalies. Despite

76

5.3 Basic formulation

being a sound model, its inference is computationally costly [49], particularly

when the number of correlations modeled is high. Moreover, the method relies

on the user providing the domain knowledge to identify explanatory and depen-

dent variables; the alternative of assuming all variables to be dependent would

drive the execution time up. These characteristics limit its scalability. Finally,

the use of deep belief networks for anomaly detection has been proposed in a

method named MIXMAD [49] but, although this method scales well in terms of

number of variables, its computational complexity makes it unfit for processing

large datasets.

In this research we focused on devising a probabilistic strategy able to solve anomaly

detection problems, where input elements belong to an input space which mixes numeri-

cal and categorical variables. The proposed algorithm is closely related to mixed-criteria

techniques in the sense that correlations between categorical and numerical variables

are explicitly modeled. In addition, the method overcomes the scalability problems of

previous approaches, and can tackle both large-scale and high-dimensional problems.

5.3. Basic formulation

We aim to obtain the best fit of a probability measure function for the data under

normal conditions. In subsequent monitoring of new data elements, these are assigned

a score and those whose score does not reach a pre-specified threshold are considered

anomalies. Formally, given a dataset D =
{
x0, . . . ,x|D|

}
, we need to estimate P(x).

If we have a homogeneous set of variables, this problem can be reduced to probability

density function (pdf) parameter learning. For instance, if all the variables under

normal conditions can be well represented by a Gaussian, we can directly elicit the

moments of a complete Gaussian from a dataset by maximizing the likelihood of the

data, or alternatively, follow a Bayesian approach with an adequate prior.

However, in many situations, datasets have a mix of categorical and numerical

variables. For ease of reference we rewrite the dataset as

D =
{

(x0,y0) . . . , (x|D|,y|D|)
}
,

where xi is the numerical or continuous component, and yi is the categorical or nominal

77

Chapter 5. Ad-hoc models: Large Scale Anomaly Detection in Mixed Numerical and
Categorical Input Spaces

counterpart of the i-th instance of the dataset.

In this case, the model should individually take into account the nature of the two

types of variables. In this work, we propose the following heuristic factorization of the

pdf:

P (y,x) = P (y|x)P (x). (5.1)

With this partition of the pdf, we can adopt a suitable technique for estimating the pa-

rameters of each part independently, while accounting for possible interactions between

the two parts.

It was previously mentioned that an incorrect assumption about the shape of the

underlying distribution could induce bias that could harm the accuracy of the model.

Nevertheless, since we have to make that decision, we try to adopt the most flexible

model that is still computable in a closed form. We heuristically adopt a flexible

parametric approach for both the conditioned probability of the categorical variables

and the marginal probability of the numerical variables. In Section 5.5 we test the

adequacy of these heuristic assumptions with results obtained in experiments on several

datasets.

Below we describe the models used for each part of the proposed factorization.

5.3.1. Numerical part

Mixture models are the most flexible parametric option for estimating this marginal.

The Gaussian mixture model (GMM) is the first appealing option due to its closed

form parameter update formulas. In particular, we used the existing implementation of

GMM available in Apache Spark, which uses the expectation-maximization algorithm

to induce the maximum-likelihood model for the given set of samples. Since GMM is

very sensitive to the initial values of the means of the Gaussians, we first performed

KMeans clustering on a small sample from the dataset. We then used the resulting

centroids as the initial values for these means and computed the empirical standard

deviations of the clusters to obtain the initial diagonal covariance matrix. For the

KMeans algorithm we used the default implementation included in Spark [11].

78

5.4 Maximum likelihood parameter estimation

5.3.2. Categorical part

The categorical part of each element in the dataset can be assumed, without any

loss of generality, to be a binary vector

y = (y0, . . . , yk), yj ∈ {0, 1}

which can be obtained by one-hot encoding of the categorical variables of the element.

With this in mind, we can estimate P (y|x) as

P (y|x,w) =
k∏
j=0

P (Y = yj |(x,mj),w) (5.2)

where mj is just the one-hot representation of “j”, and w is a parameter to be learned

from the dataset using a logistic regression (LR) model. Specifically, the LR model

computes the conditional probability by means of

P (Y = yj |(x,mj),w) =
1

1 + e−(2y
j−1)〈w,(x,mj)〉

(5.3)

where the notation 〈x,y〉 represents the dot product of x and y. Thus, the learning

process is reduced to obtaining the optimal parameters for both the LR model (which

approximates the conditional probability of the categorical part of the elements) and

the mixture model (for the marginal pdf of the numerical part of the elements). In the

next section we show how a maximum likelihood strategy can effectively carry out the

optimal parameter search.

5.4. Maximum likelihood parameter estimation

Let D be a dataset of points (x,y). Taking into account the expression (Eq. 5.1)

for the factorization of the joint pdf, the data log-likelihood has the following form:

logL(D) =

|D|∑
i=1

logP (yi|xi,w) +

|D|∑
i=1

logP (xi) (5.4)

It is important to note that, since the first part of the data log-likelihood is com-

pletely independent of the parameters of the second addend, both optimization pro-

cesses can be run in parallel and so exploit the structure of each problem separately.

This can be achieved separately for each part and then combined in a unified algorithm.

79

Chapter 5. Ad-hoc models: Large Scale Anomaly Detection in Mixed Numerical and
Categorical Input Spaces

Using the first term of (Eq. 5.4), we aim to obtain the parameters w∗ that maximize

w∗ = argmax
w

{ |D|∑
i=1

logP (yi|xi,w)− νw
2

2

}
(5.5)

where ν is a hyperparameter that controls an optional regularization term that is pro-

portional to the norm of the parameter vector, added to cope with possible overfitting

issues.

This is a well-known convex optimization problem that can be solved using a

stochastic gradient descent algorithm [25].

For the implementation of SGD in our experiments, at each iteration t, we updated

the learning rate, as it is usually done, according to this formula:

λt =
λ0

1 + λs(t− 1)
(5.6)

Therefore, controlling the constants λ0 and λs it is possible to tune the convergence of

the algorithm, which is crucial in order to obtain a good model.

The implementation in Apache Spark parallelizes the minibatch step in the SGD

process, potentially accelerating the whole process if there are several computational

units available. The code is available for download at http://github.com/eirasf/

ADMNC.

5.5. Experimental settings and results

In this Section we describe a set of experiments comparing our algorithm with other

state-of-the-art methods in terms of both accuracy and time. The first subsection

describes methodological issues related to how we measured the scores of the anomaly

detection algorithms and the datasets and algorithms used in the experiments. We also

describe a synthetic dataset generator and introduce the synthetic datasets used in our

experiments. We then report performance results obtained with real world datasets

and next make a comparison of the scalability of all algorithms. Finally, we report

the results of experiments that show the effect of the complexity of the dataset on the

results obtained by each algorithm.

80

5.5 Experimental settings and results

5.5.1. Methodology

To measure the performance of the different methods we tried to simulate a real

world environment. Thus, the learning algorithms were trained using only non-anomalous

samples. The models thus obtained were then tested with a mixture of anomalous and

non-anomalous samples. The performance scores were measured computing the area

under the ROC (Receiving Operator characteristic) curve (AUC).

We account for the fact that in real situations we typically do not have anomalous

samples to train learning algorithms. Additionally, this setup allows the use of datasets

with an arbitrary fraction of anomalies, which is useful for experimental purposes given

the scarcity of datasets. Therefore, we were able to use binary classification tasks,

selecting one of the classes as anomalous, as is common practice [118, 92, 107, 49].

With this transformation, the obtained anomalies comply with the definition given in

the Introduction.

To test the strength of our algorithm, we compared the scores with those achieved

by the following state-of-the-art algorithms. First, we considered two algorithms that

make a differential treatment of numerical and categorical variables: the well-known

LOF and LOCI algorithms using Euclidean, Jaccard and Hamming distances, for which

we used a Matlab implementation7. Additionally, we compared the results with other

anomaly detection algorithms that do not differentiate between numerical and categori-

cal variables. For this purpose we selected one-class support vector machine (OC-SVM)

(with a radial basis function—RBF— and linear kernels), for which we used the Matlab

interface of LibSVM8. It is worth noting that the complexity of this family of algo-

rithms approaches quadratic time regarding the number of samples in favorable cases

[27]; this makes them poor candidates for handling large amounts of data. Therefore,

we also tested DOC-SVM [34], which is a distributed version of the same algorithm

that can handle large datasets by splitting them, also implemented in Matlab9. Fi-

nally, we included in testing the recent iForest [105], implemented in R10; and PA-I

[113]11, also written in Matlab. For those algorithms that do not make a distinction

7https://github.com/jeroenjanssens/lof-loci-occ
8https://www.csie.ntu.edu.tw/ cjlin/libsvm/#matlab
9To the best of the authors knowledge, there are no other implementations of OC-SVM that can

use non-linear kernels with a time complexity inferior to O(n2).
10https://sourceforge.net/projects/iforest/
11We tried to include LOADED in the comparison but despite our best efforts we could not find an

implementation; also, the code obtained by strictly following the description provided by the authors
resulted in an algorithm that performed very poorly.

81

Chapter 5. Ad-hoc models: Large Scale Anomaly Detection in Mixed Numerical and
Categorical Input Spaces

Table 5.1: Hyperparameters explored for each algorithm in the experiments reported

in this section

Algorithm Hyperparameter range

LOF P ∈ {0.01, 0.03, 0.05}, K ∈ {2, 3, 5, 10},

(only Jaccard and Hamming) λ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}

LOCI α ∈ {0.1, 0.3, 0.5},

(only Jaccard and Hamming) λ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}

OC-SVM ν ∈ {0.01, 0.05, 0.1, 0.3},

(only RBF) γ ∈ {0.01, 0.05, 0.1, 1, 3, 10}

iForest rFactor ∈ {0.01, 0.1, 0.5, 0.8, 1},

Row Samples ∈ {0.01, 0.025, 0.05, 0.1}

PA-I σ ∈ {1, 2, 3, 4, 5}, C ∈ {0.01, 0.025, 0.05, 0.1},

R ∈ {0.97, 0.99}

ADMNC ν ∈ {0.1, 1, 10, 100, 1000},

λ0 = 1

λs ∈ {0.0001, 0.001, 0.01, 0.1, 1}

Number of gaussians ∈ {2, 4}

between categorical and numerical variables, the categorical variables in the datasets

were transformed using one-hot encoding.

The algorithms used for comparisons typically have several hyperparameters. To

find the best combination for each dataset, we performed a cross-validation (CV) with

5 folds for each possible set of hyperparameter values. For each fold, the algorithm

was trained with the non-anomalous examples from the training set and evaluated on

all the samples of the test set. The hyperparameters explored are listed in Table 5.1.

The scores discussed in Subsection 5.5.2 are the best average AUC obtained in the CV

procedure.

Below we describe the datasets employed in the experiments.

82

5.5 Experimental settings and results

Table 5.2: Real datasets used for the comparative study. The Anomaly ratio is the quo-

tient of anomalous examples over the number of examples. The numbers of numerical

/ categorical features are in parentheses.

Dataset # Features(N/C) # Instances Anomaly ratio

Arrhythmia (Arrhyth) 278 (271/7) 420 0.4357

German Credit (GC) 20 (7/13) 1000 0.3000

Abalone 1-8 (Ab. 1) 10 (7/3) 4177 0.3368

Abalone 9-11 (Ab. 9) 10 (7/3) 4177 0.3167

Abalone 11-29 (Ab. 11) 10 (7/3) 4177 0.3464

CoverType (CT) 12 (10/2) 286048 0.0096

KDD99 (full) (KDD) 41 (32/8) 4898431 0.8000

KDD99 (10%) (KDD10) 41 (32/8) 494021 0.8000

KDD99 (http) (KDDh) 40 (32/7) 623091 0.0065

KDD99 (smtp) (KDDs) 40 (32/7) 96554 0.0123

IDS 27 (8/19) 2071657 0.0333

5.5.1.1. Real datasets

As stated above, it is very difficult to come by real-world datasets with labeled

anomalies. Thus, the datasets used are commonly employed for classification tasks,

but re-purposed for anomaly detection. They were downloaded from the UCI Machine

Learning Repository [102].

The datasets are reported in Table 5.2, where we distinguish between two groups.

The first group includes small-medium sized datasets: Arrhythmia (Arrhyth), German

Credit (GC), and 3 versions of Abalone. These versions were built choosing different

classes as anomalous and non-anomalous; thus, Abalone 1-8 (Ab. 1), Abalone 9-11 (Ab.

9) and Abalone 11-29 (Ab. 11) were obtained using, respectively, classes 1, 9 and 11

as non-anomalous and classes 8, 11 and 29 as anomalous.

The second group of datasets, with a larger number of samples, contains versions of

CoverType [20] and KDD99 [78] datasets. To transform CoverType (CT), instances of

83

Chapter 5. Ad-hoc models: Large Scale Anomaly Detection in Mixed Numerical and
Categorical Input Spaces

class 2 were assumed to be normal, while instances of class 4 were selected as anomalies.

With respect to KDD99 it should be noted that, although there has been some criticism

that it does not accurately represent an intrusion detection task, those discrepancies

have no impact on the validity of the dataset for our purposes. Although the anomaly

condition of the elements that are labeled as such may be disputed with the argument

that the dataset constitutes a biased sample, our aim is to identify a minority set of

instances that were generated by a different process than the rest. Note also that this

dataset has been used extensively for anomaly detection [33, 62, 119, 105, 81, 130]. For

this research we transformed KDD99 into an anomaly detection dataset by assuming

that attacks of any class are anomalies. To cope with the lack of labeled large datasets,

as has been done in similar studies [105] three additional datasets were obtained by

transforming the full KDD99. Thus, (1) KDD99 (10%) is the reduced dataset available

at the UCI Repository, which contains only 10% of the instances, (2) KDD99 (http) is

the result of filtering the full dataset to keep only http connections, and, analogously,

(3) KDD99 (smtp) only contains smtp connections.

Finally, we used the IDS 2012 dataset [135], which covers the same domain as

KDD99 but solving its weak points. Again, we consider any sort of attack as an

anomaly, as opposed to normal traffic.

5.5.1.2. Synthetic dataset generator

In order to be able to exhaustively test the anomaly detection methods on datasets

of diverse sizes and difficulty levels, we decided to create a synthetic dataset generator

that could be parametrized. Previous works in the field, which have stated the need

for such a publicly available generator to provide the data on which to perform ex-

periments, have resorted to devising their own ad-hoc generators [92, 107], a situation

which complicates comparisons across studies. Our configurable generator (available

for download at http://github.com/eirasf/ADMNC/) offers that capability to data

science practitioners and it can be used by researchers in the field to construct bench-

marks.

The data generated by this method, while inspired by the data that would be

created by a set of users interacting with a set of documents, was simplified to achieve

a more general dataset. Each element of the dataset consists of a random binary vector,

which symbolizes a bag-of-words representation of a document. Another binary vector

84

5.5 Experimental settings and results

and a numerical vector are generated from the existing random vector using a set of

rules that account for statistics regarding the viewers of said document. Note that in

a dataset designed this way, the numerical variables depend on the binary variables,

which is the opposite assumption of our model that the categorical variables depend

on the numerical variables. This design choice is intended to test the reliability of our

model in detecting dependencies between the variables.

To obtain the dataset first we must choose the size of the vectors. The generator

then creates two sets of random rules, one used to produce a binary vector and the

other used to produce a numerical vector. Lastly, generated for the dataset are as many

elements as requested by the user, each of which consists of a random binary vector

together with the vectors resulting from the application of the mentioned sets of rules.

In the equations, the generated dataset D is described as a set of vectors over a set

of indices

D = {(ui, bi,ni) | i ∈ I} (5.7)

where ui is a binary vector generated at random with uniform probability for each

component and where the jth component in bi is generated from ui by a function fj

bij = fj(ui) (5.8)

which assigns 1 with a probability proportional to the fraction of conditions of the rule

rj satisfied by ui

fj(x) : {0, 1}n → 0, 1 = a | a ∼ Be
(
〈rj ,x〉
|rj |

)
(5.9)

where Be(x) is a Bernoulli distribution with probability x. The jth component in ni

is sampled from a normal distribution whose mean and standard deviation are dictated

by a function gj

nij ∼ N
(
gj((ui, bi)),

1

1 + gj((ui, bi))

)
(5.10)

which simply indicates the fraction of conditions in rule sj that the concatenation of

ui and bi meets:

gj(x) : {0, 1}n → R =
〈sj ,x〉
|sj |

(5.11)

The rule sets R and S are randomly generated at the beginning of the generation

process and kept constant for all elements. R must hold a vector rj for each component

85

Chapter 5. Ad-hoc models: Large Scale Anomaly Detection in Mixed Numerical and
Categorical Input Spaces

Table 5.3: Families of synthetic datasets used for the comparative study. NV represents

the number of variables affected by each anomaly. In Synth1 and Synth2, the number

of samples and NV vary, respectively, with the values i ∈ |0, 5|

Dataset # Samples |u| |b| |n| NV Anomaly ratio

Synth1 100 ∗ 5i 20 10 100 4 0.5

Synth2 500 20 10 100 2i 0.5

in b and, analogously, S must contain as many rules as components are desired in n.

Each rule simply consists of a binary vector as long as u and (ui, bi), respectively,

indicating which components are affected by the rule.

After D is generated, a fraction of the elements are turned into anomalies by altering

a number of its randomly selected components. Binary components are altered by

flipping their value, while numerical components are incremented with a value randomly

sampled from a standard normal distribution. When the dataset is constructed this way,

the number of variables affected by an anomaly acts as a proxy for dataset difficulty:

intuitively, the fewer components that are altered by an anomaly, the more difficult it

is to spot it.

With this methodology, we created two datasets for our experiments, as described on

Table 5.3: in the first dataset we left the number of variables affected by an anomaly

as a parameter, to study the effect of dataset difficulty on the algorithms; while in

the second dataset we varied the number of elements to analyze the scalability of the

different methods.

5.5.2. Results and discussion

The results obtained for the small-medium sized datasets are shown in Table 5.4.

It is hard to draw a conclusion from this table regarding the best algorithm. In fact,

using the Nemenyi post-hoc test [47] with α = 0.05, the scores achieved by ADMNC

cannot be significantly differentiated from those for any of the other algorithms; see

Figure 5.1. Consequently, we expanded on the study of these algorithms with further

experiments.

86

5.5 Experimental settings and results

Table 5.4: AUC of the proposed approach (ADMNC) compared with LOF and LOCI

algorithms (using Euclidean (E), Hamming (H) and Jaccard (J) distances), OC-SVM

using linear (SVM-L) and RBF (SVM-R) kernels, DOC-SVM, iForest and PA-I. The

best results for each dataset are highlighted in boldface.

Arrhyth GC Ab. 1 Ab. 9 Ab. 11

LOF (E) 0.6670 0.5847 0.6936 0.6029 0.5927

LOF (H) 0.6983 0.5646 0.6936 0.6029 0.5927

LOF (J) 0.7010 0.5681 0.6936 0.6029 0.5927

LOCI (E) 0.6735 0.5917 0.8524 0.6756 0.7155

LOCI (H) 0.7141 0.5709 0.8526 0.6856 0.7155

LOCI (J) 0.7144 0.5663 0.8512 0.6874 0.7159

SVM-L 0.6794 0.5697 0.7944 0.6140 0.7670

SVM-R 0.7479 0.6452 0.8121 0.6756 0.7448

DOC-SVM (RBF) 0.6530 0.5419 0.5561 0.5748 0.5502

iForest 0.7133 0.5792 0.6519 0.5966 0.5984

PA-I 0.6932 0.6216 0.8498 0.6511 0.7113

ADMNC 0.6140 0.6276 0.8453 0.6120 0.7930

Figure 5.1: Nemenyi test with the scores for Table 5.4. ADMNC is in the group of the

best algorithms, although no algorithm is significantly better than the others.

87

Chapter 5. Ad-hoc models: Large Scale Anomaly Detection in Mixed Numerical and
Categorical Input Spaces

A few larger datasets were also used. Here the fact that LOCI and LOF are

quadratic algorithms regarding the number of examples makes them far more compu-

tationally costly than the other algorithms, and thus unable to manage large datasets.

LOF and LOCI were therefore excluded from this comparison. Therefore, in the context

of large-scale learning only ADMNC and algorithms that make no distinction between

categorical and numerical variables can be used.

The results obtained with these larger datasets are shown in Table 5.5. To overcome

computational difficulties, we performed these experiments using only 2 folds instead of

5. In addition, for all algorithms the best parameters for KDD and IDS were determined

for their respective variants with only 10% of elements and those same values were used

for all the variants. Four of the algorithms struggled with the two largest datasets:

(1) the implementation of iForest in R could not handle the memory requirements of

KDD or IDS, (2) PA-I took more than 10 hours to explore a single hyperparameter

combination with KDD, (3) OC-SVM (RBF) required quadratic memory space (in

terms of number of samples), which made handling the full KDD or IDS datasets

impossible, and (4) even though the distributed nature of DOC-SVM allows it to process

arbitrarily large datasets, the reliance on Java of its Matlab implementation meant it

failed when trying to split a large dataset and, consequently, it could not process any of

these datasets. With those methods unable to handle large datasets, OC-SVM with a

linear kernel and ADMNC rendered results very favorable to our method. Additionally,

the parallel implementation of ADMNC made handling large datasets much easier. It is

worth noting that, for the largest datasets OC-SVM-L took several hours to compute,

while ADMNC took just a few minutes. Even though they are implemented in different

platforms, we illustrate this difference in scalability with our next experiment.

Since there was great disparity in the computational costs of the tested algorithms,

we performed additional experiments to more thoroughly assess their scalability in

terms of dataset size. To be able to adequately run this test and due to the aforemen-

tioned lack of real datasets with the necessary characteristics, we used the synthetic

datasets described in Section 5.5.1.2 to allow us to control the size and difficulty of the

dataset. The process used to generate these datasets is described in Section 5.5.1.2.

The results of testing the algorithms on the Synth1 family of datasets, shown in

Figure 5.2, show that our method is clearly superior in terms of scalability of the

dataset size. Since the compared algorithms are implemented in diverse platforms and,

therefore, their absolute times cannot be compared, times are presented as the ratio

between the time taken to process 100 elements with that algorithm and the time

88

5.5 Experimental settings and results

Table 5.5: AUC of the proposed approach (ADMNC) compared with OC-SVM using

linear (SVM-L) and RBF (SVM-R) kernels, iForest, and PA-I for large datasets. In

all cases “-” indicates that results could not be obtained due to excessive time and/or

memory requirements.

CT KDD10 KDD KDDh KDDs IDS

SVM-L 0.9975 0.8712 0.8806 0.9139 0.9959 0.7300

SVM-R 0.9988 0.9965 - 0.9961 0.9859 -

iForest 0.9652 - - - - -

PA-I 0.9989 - - - 0.9903 -

ADMNC 0.9763 0.9968 0.9975 0.9993 0.9972 0.9254

taken for a given dataset size, which allows us to get an idea of the time complexity

of each method. The time reported is the average execution time per fold for the

algorithm using all the hyperparameter combinations described in Table 5.1, except

when the execution time was too high, when just one hyperparameter combination

was used and where the time therefore corresponds to a single execution. Even with

this simplification, for some methods the absolute times were unmanageable for the

largest versions of the dataset, so times could only be measured for the smaller versions.

While the times of LOF and LOCI approach cubic complexity, PA-I displays quadratic

complexity, OC-SVM exhibits super-linear complexity that approaches quadratic when

the dataset is large, and DOC-SVM presents linear complexity, although its current

implementation does not allow the use of large datasets. The time complexity of iForest

approaches linear when the dataset is large. Our method exhibits clearly sub-linear

complexity, which makes it the only candidate for very large datasets. Moreover, the

ADMNC complexity increase is stopped when the dataset reaches 12500 elements. This

is because most of the complexity is due to the KMeans initialization step described

in Section 5.3.1 which, once the dataset is large enough, works only with a fixed-size

sample, therefore limiting the impact of dataset size on execution time. It is worth

noting that, although the parallel implementation of our method potentially allows

for additional speed-up using more computing cores, the scalability shown in these

experiments does not stem from the addition of more computing cores. All experiments

reported in this chapter were executed using 12 computing cores on a single machine.

89

Chapter 5. Ad-hoc models: Large Scale Anomaly Detection in Mixed Numerical and
Categorical Input Spaces

50 51 52 53 54 55

100

101

102

103

104

105

Number of elements (×102)

R
el

at
iv

e
ti

m
e

LOF
LOCI

SVM (Linear)

SVM (RBF)
DOC-SVM

PA-I
iForest

ADMNC

O(n3)

O(n2)

O(n)

Figure 5.2: Execution time for each algorithm on datasets of incrementing size (Synth1).

Times are presented as a ratio of the time taken for a given execution and the time

for the same algorithm on a 100-element dataset. Both axes are represented using a

logarithmic scale.

90

5.6 Conclusions

Finally, we compared the performance of each algorithm on Synth2, a family of

datasets with an ascending order of difficulty. Since the three variants of LOF and LOCI

offered very similar results, only the best performer for each method is reported. Results

shown in Figure 5.3 indicate that our method outperforms the rest of algorithms when

the dataset is very complicated, while as the difficulty decreases the results even out.

It is worth noting that the fact that the dataset is constructed with numerical variables

depending on the binary variables is no obstacle to the performance of ADMNC, even

though it models the probability the other way around, that is, the categorical variables

depend on the numerical variables. It is also interesting to highlight that the methods

with a comparable AUC to ADMNC (LOF, LOCI, SVM-L and SVM-R) all have time

complexity O(n2) or superior, which makes their results unavailable for large datasets.

This leaves our method as the clearly superior option for those datasets.

5.6. Conclusions

In this chapter the use of an ad-hoc method to perform scalable anomaly detection

is described. We present a new method capable of handling large datasets and high

dimensionality scenarios and of dealing with data having both categorical and continu-

ous variables. This characteristic of the input space, which complicates the problem, is

transformed into an advantage by using it to split a complicated model into two simpler

ones. The resulting algorithm constitutes a useful tool for an emerging problem that

currently lacks capable solutions.

The approach presented uses a probabilistic perspective. The continuous part is

modeled using a Gaussian mixture model, while the categorical part is estimated using

a logistic model that uses a maximum likelihood approach optimized with a stochastic

gradient descent algorithm. The whole method is thus scalable to large datasets which

is further enhanced by its distributed computing implementation.

Several experiments show that this method obtains better or similar results than

those of state-of-the-art anomaly detection methods for small-medium datasets and

that it performs well with datasets that are beyond the reach of other methods because

of their computational demands. These favorable results would point to the viability

of further research on the capabilities of this method as new datasets become available

in the future. To facilitate further research we provide a working implementation of

91

Chapter 5. Ad-hoc models: Large Scale Anomaly Detection in Mixed Numerical and
Categorical Input Spaces

1 2 4 8 16 32

0.5

0.75

1

Variables affected by anomalies

A
U

C

LOF
LOCI

SVM (Linear)

SVM (RBF)
DOC-SVM

PA-I
iForest

ADMNC

Figure 5.3: Area under the ROC curve obtained on the Synth2 dataset. The number of

variables affected by anomalies acts as a proxy for difficulty (a higher number indicates

an easier dataset). The X axis is represented using a logarithmic scale.

92

5.6 Conclusions

the algorithm in the popular Apache Spark framework.

In real world applications, and especially in the case of recent large datasets, the

existence of missing data points is relatively common. Thus, and as future work, we

plan to extend our probabilistic model to deal with these situations. We will also

explore the interpretability of this model and the possibility of justifying each example

labeled as an anomaly to users.

93

Chapter 5. Ad-hoc models: Large Scale Anomaly Detection in Mixed Numerical and
Categorical Input Spaces

94

CHAPTER 6
Speculative computation: Explaining large-scale

dyadic data

6.1. Introduction

Dyadic data [80] hold information regarding the interaction of two entities of any

kind. They are pervasive in a variety of popular problems such as recommender sys-

tems [90], social science application analysis, market segmentation [91], computational

linguistics, information retrieval, and preference learning [108], but also in more spe-

cific areas, such as automatic exam grading [109]. The large number of elements of

each entity in such datasets yields an immense number of possible pair-wise interac-

tions that is much larger than the recorded data. The sparsity of measurements can be

overcome by using available data points to learn a utility function that generalizes the

recorded data and predicts the outcome of each possible interaction. The very common

problem associated with the learning of this utility function has usually been resolved

using matrix factorization [90]. However, this procedure usually results in thousands of

parameters and, despite the prediction accuracy for any given pair of elements, offers

little insight into the nature of the relationship between two entities. A major prob-

lem in dealing with dyadic data therefore consists of identifying groups of entities with

similar behaviour, so as to obtain a high-level model of the studied environment. For

instance, when analysing data from a book recommender system, a data scientist could

look for groups of books that attract similar groups of readers with common reading

interests. Characterizing such groups in terms of relevant information is a problem of

great commercial interest since information on such small homogeneous groups would

enable the development of more effective strategies tailored to specific groups. Such

information, highly coveted by companies, is a difficult to obtain in practice, even when

there is abundant data to analyse. The algorithms used to process this data should be

computationally efficient in their capacity to handle large amounts of data, yet should

95

Chapter 6. Speculative computation: Explaining large-scale dyadic data

be accurate enough to retrieve meaningful information and to yield results that are

actionable and comprehensible for decision makers.

On a different note, as the complexity of machine learning models grows, predic-

tions are becoming more accurate, yet these models are often hard to interpret and

do not provide global actionable information. It is therefore becoming increasingly

important that the results of machine learning algorithms can be understood by a hu-

man supervisor. In some cases this is even required by law, as in the case of the right

to explanation included in the new General Data Protection Regulation (GDPR) of

the European Union12. The goal of Explainable Artificial Intelligence (XAI) (appar-

ently the most common moniker, although sometimes also called Interpretable AI13 or

Transparent AI) is to obtain models that ideally should [103]:

1. Allow supervisors to interpret results so that it can be confirmed that the model

goals are aligned with the desired goals (for instance, a credit rating system should

not have gender or racial biases).

2. Justify predictions so as to enable a supervisor to formulate hypotheses that

can be later verified, thereby excluding mere correlations due to randomness or

dependence on some external factor,

3. Explain outputs in such a way that their generalizability can be established.

4. Be informative, that is, it should offer the supervisor new information regarding

the studied variables.

Interpretability can be achieved in one of two ways: (1) in the form of a transparent

model that allows the supervisor to follow the “logic” behind every prediction, as in the

case of production rules, or (2) as post-hoc interpretability, which consists of justifying

a prediction through similar cases or through visualizations or other methods that

identify the input features that led to a prediction. While post-hoc interpretability is

the most common approach, it is limited to explaining individual cases and does not

provide the supervisor with new general information about the modelled environment.

Finally, scalability is also a problem in this context. Despite the immense amount of

data available in some cases holding a great amount of valuable information, processing

12https://ec.europa.eu/info/law/law-topic/data-protection en
13Although some authors [63] make a distinction between the terms interpretability and explainability,

in this work we use them interchangeably.

96

6.2 Related work

this data can be challenging because of its sheer volume. As a result, there is a need

for scalable algorithms that can deal with very large datasets.

This work, which was published in Decision Support Systems, explores the use of the

techniques used to create scalable algorithms to increase the efficacy of simple models

by increasing the amount of search space that is explored. In particular, distributed

computing is used to perform independent parallel explorations of the search space,

increasing the probabilities of finding a good solution.

The presented approach tackles the formal problem of obtaining relevant informa-

tion from a utility function that codes the relationships existing between entities in a

dyadic dataset. The proposed method splits the actors into easily interpretable groups

with homogeneous behaviour. This high-level summary of the data explains existing

relationships and provides supervisors with meaningful information that will improve

decision making processes. Moreover, the implementation in the Apache Spark scalable

distributed computing framework [153] enables the processing of large amounts of data

to obtain relevant information within a reasonable timeframe.

The rest of the chapter is structured as follows. Section 6.2 gives an account of

existing methods in this field, Section 6.3 contains definitions of key concepts used in

the proposed system, Section 6.4 describes the algorithm, Section 6.5 describes how the

experiments performed to assess the suitability of the method were designed, Section

6.6 reports on and comments the results, and, finally, Section 6.7 summarizes the

conclusions drawn and indicates future lines of research.

6.2. Related work

Although XAI is a nascent field, the number of proposed methods is increasing

rapidly as shown in the latest survey papers [64, 63, 116]. The goal of obtaining an

alternative to an opaque predictor, called the Open the Black Box problem, can be

tackled in four different ways according to Guidotti et al. [64]:

1. Transparent box design consists of obtaining a classifier that uses a logic or

methodology that can be directly interpreted by the supervisor.

2. Model explanation obtains a surrogate interpretable predictor that mimics the

97

Chapter 6. Speculative computation: Explaining large-scale dyadic data

behaviour of the opaque model as closely as possible for any input.

3. Outcome explanation yields an explanation for a particular prediction of the clas-

sifier, offering post-hoc explainability.

4. Model inspection manipulates black box inputs to assess the magnitude of the

effect of each variable in the prediction.

Our proposed method can be classified as either a model explanation of the utility

function that predicts the nature of the relationship between any possible pair of actors,

or as a transparent box design approach that obtains a grouping of the actors in a

dyadic dataset. The resulting model is a shallow decision tree easily interpreted by the

supervisor. Decision trees, along with rule systems and linear models, are considered to

be easily interpreted, and using a single decision tree model as a surrogate for the black

box model requiring explanation is a popular approach that started with the classic

Trepan algorithm [42]. While several authors have iterated this approach [94, 28, 13, 85],

none of their algorithms can be used to explain dyadic data.

For dyadic data, the most widely used methods to identify large-scale trends are

segmentation and clustering techniques. Often problem-specific, they span market seg-

mentation, document clustering and topic modelling, web user clustering and similar

related fields. Our problem has been tackled using clustering algorithms [18, 106], self-

organizing maps [87, 71], dimensionality reduction algorithms [110], evolutionary algo-

rithms [1] and co-clustering algorithms [134]. Regarding interpretability, the mentioned

algorithms have varying features. While evolutionary algorithms and co-clustering

methods are not entirely suitable if interpretability is a goal, self-organizing maps and

dimensionality reduction algorithms, although they do offer post-hoc explanations to

the supervisor, do not clearly reveal links between the input variables that describe

each entity, which reduces their effectiveness in motivating predictions and explaining

outputs.

Lastly, a number of works have tackled explainability in the context of dyadic

data. The importance of providing explanations for recommendations in the context of

recommender systems has been established, and the effectiveness of different forms of

explanation has been studied [77, 93]. An algorithm to obtain explainable clusters of

users in the specific context of short text streams has been proposed [156], as a specific

version of the topic modelling problem that cannot be used for generic dyadic data.

Finally, the most similar work to our own is TEM [148] which consists of an embedding

98

6.3 Definitions

model enhanced with a classification tree in order to obtain explainable outputs. The

algorithm uses an attention network to highlight the most relevant embeddings, which

are then explained using the classification tree. However, TEM is limited to obtaining

post-hoc explanations since the attentive embedding precludes the attainment of global

explanations.

In conclusion, although the analysis of dyadic data is a popular field with many

different approaches in the literature, the interpretable methods available are limited

to post-hoc explanations of outputs. When tasked with obtaining an explanation of

the relationships encoded in a utility function, the only possibility available to the

practitioner is to use a generic clustering algorithm and then open the black box with

an interpretable predictor.

6.3. Definitions

Dyadic data X describe interactions between two entities U and I. Each data point

x ∈ X is a (u, i, v) tuple, where u ∈ U and i ∈ I are the elements of each entity involved

in the interaction and v is a value that informs of some characteristic of that interaction.

For every u, i there is a data point x describing their relationship (x can be observed or

predicted). Consequently, X can be represented with a function f : (U , I)→ {−1,+1},
commonly called a utility function. Note that v can take any value, but here we simplify

the problem by transforming v to -1 or 1. Obtaining a prediction of this utility function

is a very common problem that has usually been solved in the literature using matrix

factorization [90, 104]. In addition, we define a clustering Cl(U) over a dataset U as a

set of m disjoint groups that contain every element in U . The formulation is as follows:

Cl(U) = {Clu1, . . . , Clum} . (6.1)

The homogeneity of the utility function inside each group Cluk can be used to establish

the fitness of the clustering [48]. With this goal, we define the ratio p of positive elements

in a group k for a given ij that represents the j -th element in I as:

pkj = Pr(+1|Cluk, ij) =
| {u ∈ Cluk : f(u, ij) = +1} |

|Cluk|
(6.2)

A group Cluk is said to be consistent when there is good agreement in the values of f

for the elements contained in the group, that is, p approaches 0 or 1. To measure that

99

Chapter 6. Speculative computation: Explaining large-scale dyadic data

consistency as intended, we use the entropy of p.

H(p) = −p log2(p)− (1− p) log2(1− p). (6.3)

H(pkj) measures the consistency of a single group Cluk with respect to ij . To extend

this measure to the whole clustering Cl(U), every group and every element in I must

be taken into account. Formally, we define the weighted entropy (WE) of a clustering

Cl(U) as:

WE(Cl(U)) =
∑
k,j

|Cluk|
|U||I|

H(pkj). (6.4)

Bearing in mind the interpretability characteristics described in Section 6.1, here

we focus on the ability of algorithms to motivate their predictions in an interpretable

way using the input variables. We must therefore add a value to the fitness measure

to evaluate the complexity of the explanation required to define each group, which we

will estimate with the number of variables that describe the group. Consequently, we

define the quality of a clustering as:

quality(Cl(U)) = −WE(Cl(U))− λ
∑

Cluk∈Cl(U)

NV (Cluk). (6.5)

where NV represents the number of variables needed to describe Cluk and λ is a

hyperparameter that allows the supervisor to balance the entropy of the clustering

with its interpretability. It can be shown that we can intuitively expect a balance

between the complexity of the explanation and the precision of the obtained clustering.

Thus, to obtain very uniform groups one will generally need to form a large number

of such groups which, in turn, will require a larger number of variables; however,

both requirements decrease the interpretability of the clustering. Managing the trade-

off between interpretability and accuracy is a desirable feature that avoids obtaining

misleadingly oversimplified explanations while keeping interpretability at acceptable

levels [63]. Hyperparameter λ allows the supervisor to manage this trade-off. This idea

of factoring in both model accuracy and complexity is reminiscent of the well-known

Akaike information criterion [3] and the Bayesian information criterion [133], although

with significant differences that generalize the model to allow dyadic data handling and

explainability through trees.

It is worth noting that it is irrelevant that the quality measure is a negative number.

The goal of the algorithm is maximizing its value to approach 0. This general quality

measure can be applied in any clustering built with whatever method for a dyadic

dataset.

100

6.4 Proposed algorithm

6.4. Proposed algorithm

We describe a new explanatory algorithm for dyadic data that obtains groups that

are as homogeneous as possible and that are simultaneously explained using as few of

the input variables as possible. To achieve this, a binary decision tree is built and a

clustering Cl(U) is defined by considering each leaf node as a separate group that is

described by the variables that lead to that node. Note that this contrasts the available

alternative, which is to use separate models for the clustering and the explanation tree,

producing inferior results. It is also worth noting that the obtained groups are described

with a varying number of attributes and the result can therefore be considered as a

subspace clustering of the data.

The main process consists of finding the tree that maximizes the quality of the

resulting clustering defined using Eq. 6.5. Certain simplifications are needed in order

to efficiently explore the solution space. First, as mentioned above, the decision tree

is binary because only dichotomous splits are contemplated (a common simplification

when building decision trees). Also, to facilitate the calculation of the quality of a

clustering, given that the number of elements in I can prevent accurate calculation in

a reasonable time, a significant random sample of I is considered instead of the entire I
set. This is done by performing a previous clustering on I using a standard algorithm

such as K-Means and using centroids cij as representative points; in the event that

the input space structure does not allow for K-Means to be computed, any sampling

procedure that obtains a reduced number of representatives of I could be used. Once

the representatives are computed, the ratio p is estimated using a variation of Eq.

6.2 where ij includes only the selected representatives rather than each possible item.

Analogously, addends in Eq. 6.4 are computed for each representative and divided by

the number of items belonging to the represented cluster.

In addition, since exploring every possible decision tree built as described is unfea-

sible, a search strategy is mandatory. First, to prevent the tree from splitting at any

possible value of each input variable, the number of split points must be reduced. A

maximum number of split points is therefore established for each variable. In the case

of numerical variables these points are determined using discretization. We modelled

the search procedure after the C4.5 algorithm [124], adapting the entropy calculation

to a multi-label context. Our implementation differs from existing multi-label versions

of C4.5 [39] in that the weighted entropy measure that we use factors in the size of the

groups directly.

101

Chapter 6. Speculative computation: Explaining large-scale dyadic data

A single tree of LMAX levels is built by performing a greedy search in which, for

each node, the candidate with the best weighted entropy is selected. This process is

recursively repeated for the new groups obtained after the split, until a given LMAX

level is reached, as previously selected by the user. To expand the reach of this solution

space exploration and so increase the possibilities of achieving a good solution, at each

step the proposed algorithm explores not only the candidate with the best weighted

entropy but the N best candidates. This spawns N possible trees that, when exploring

the next level, will each generate 2 ∗N different possibilities. This process makes the

number of explored trees grow exponentially with LMAX . For this reason, the selected

values for the N and LMAX hyperparameters should be low. Once all possible trees are

generated, the tree that defines the clustering with the highest quality is selected. The

resulting clustering defined by this tree will consist of a maximum of 2LMAX groups.

This entire process is described in Algorithm 12.

Lastly, in some cases the clustering defined by the retrieved tree may have less

quality than the clustering defined by a subset of that tree. To address this, pruning

is implemented; nodes are examined from level LMAX − 1 to the root and any splits

that do not have a positive impact on the overall quality are removed, as described in

Algorithm 13.

This algorithm consists of calculations that can be performed in parallel since they

are independent of each other, so, to take advantage of this feature, the algorithm was

implemented in the Apache Spark distributed computing framework. By leveraging dis-

tributed computing, the scalability of the algorithm is greatly increased, which, in turn,

enables the analysis of large datasets in manageable times. The Apache Spark imple-

mentation of the clustering algorithm and all data transformation procedures are avail-

able for download from https://github.com/eirasf/Dyadic-Explanation-Tree.

6.5. Experimental setup

To assess the validity of the algorithm we performed two sets of experiments. We

applied the method first to two real-world large datasets, measured the quality of the

obtained explanation and compared the results with those for an alternative approach

consisting of using two separate models: a generic clustering algorithm and an inter-

102

6.5 Experimental setup

Algorithm 12: Explanatory tree construction algorithm.
Data: U , LMAX , N

Result: Decision tree that determines the clustering.

function buildTree(U , level, splitPs, LMAX , N) → best

if level > LMAX then

return ∅

end

candidates← sorted list with capacity N;

for (variable, value) ∈ splitPs do

1 left← {u ∈ U : u[variable] < value};

right← {u ∈ U : u[variable] > value};

if WE(left)∗left.size+WE(right)*right.size < candidates.max then

2 candidates.add((variable, value));

end

end

best← ∅;

for (variable, value) ∈ candidates do

3 left← {u ∈ U : u[variable] < value};

4 right← {u ∈ U : u[variable] > value};

5 leftTree← buildTree(left, level + 1, splitPs, LMAX , N);

6 rightTree← buildTree(right, level + 1, splitPs, LMAX , N);

7 newTree← (variable, value, leftTree, rightTree);

8 if WE(newTree) > WE(best) then

9 best = newTree;

end

end

return best;

end

splitPs← list of split points for every variable;

return buildTree(U , 0, splitPs, LMAX , N);

103

Chapter 6. Speculative computation: Explaining large-scale dyadic data

Algorithm 13: Pruning algorithm.

Data: tree, λ

Result: Pruned tree.

function prune(tree,λ) → tree

1 if isLeaf(tree) then

2 return tree;

end

3 left←prune(tree.leftBranch, λ);

4 right←prune(tree.rightBranch, λ);

5 splitEntropy ← left.entropy∗|left|+right.entropy∗|right|
|tree| ;

6 ∆E = splitEntropy − tree.entropy;

7 ∆NV = left.numV ars+ right.numV ars− tree.numV ars;

if −∆E − λ∆NV <= 0 then

8 tree.leftBranch← ∅;

9 tree.rightBranch← ∅;

return tree;

end

104

6.5 Experimental setup

pretable predictor that opens the black box (see Section 6.2). We selected K-Means and

a single CART tree with entropy as the impurity measure, to ensure that the obtained

results achieved a quality measure as high as possible. Another experiment was per-

formed to measure the effect on execution time of adding further computational nodes

to the distributed calculation; this was done to test the scalability of the presented

algorithm in the implementation in Apache Spark.

The first dataset we selected was one published by the advertising company Out-

brain, made public as the subject of a competition hosted in the popular machine

learning site Kaggle.com. Outbrain suggests new news content that may be of interest

to readers. The dataset14 records the page views of a number of users in a variety of

news-related websites over the span of 14 days and, since the documents refer to cur-

rent issues, the recorded views vary in terms of topic at different times; consequently,

it was advisable to split the dataset into smaller parts that covered a shorter time

span. For the purposes of this research, we used some 1,450,000 records consisting of

667 variables that were collected on the first day. Our second choice was the popular

MovieLens 20M dataset [72], commonly used to test recommendation systems. This

dataset reflects interactions, in the form of some 20 million ratings, between 138,000

users and 27,000 movies. After the required transformations (described in the next

subsection), the dataset contained some 20 million examples with 2,154 variables. The

dimensions of the datasets are summarized in Table 6.1.

6.5.1. Dataset transformation

In order to apply the algorithms, the datasets needed to be formatted appropriately

so that each sample represents an interaction between an element u in an entity U and all

the representatives cij of the opposing entity I. Therefore, each sample contained the

variables that characterize u, which we refer to as explanatory variables, and a vector

of values (r(u, ci0), . . . , r(u, cij)) where r(u, cij) ∈ {−1, 1} qualifies the relationship

between u and representative cij , which we call defining variables.

The Outbrain dataset consists of elements that represent a page view by a user

and that contain information about the user, the viewed document and the result of

the interaction between the user and the offered sponsored links referring to other

documents. While documents are characterized by numerous variables, including the

14Available for download from https://www.kaggle.com/c/outbrain-click-prediction

105

Chapter 6. Speculative computation: Explaining large-scale dyadic data

Table 6.1: Dataset description.

Original datasets

Dataset Features Instances

Outbrain DAY1 667 1,445,196

MovieLens 20M 2,154 20,000,263

Transformed datasets

Dataset Explanatory Defining Samples

Outbrain DAY1 667 100 1,445,196

UsersEx 1005 100 138,493

UsersExWithPrediction 1005 100 138,493

MoviesEx 1149 100 10,369

publisher, category, topics covered and entities mentioned, users are solely described

by their position (latitude and longitude) and the type of device used. To overcome

the lack of information regarding users, we used the transformed dataset obtained by

Luaces et al. [48] in which the attributes of the viewed document are added to the

characterization of the user. Also, although the aim of the original Outbrain competi-

tion was to predict the most effective sponsored links in a given situation, the problem

tackled here is different, namely, to obtain an explanation of the relationships between

the user-document pairs and the sponsored links.

The user-document pairs were thus grouped according to their behaviour in order to

obtain a high-level summary. Records corresponding to two consecutive page views by

the same user were located and the preference of the user for one document over others

was recorded so as to obtain preference tuples. These tuples conformed the dyadic

dataset from which the utility function learned using matrix factorization [48]. The

interactions of each tuple with a set of document representatives were selected to form

the defining vector. These document representatives were the centroids of a k = 100

K-Means of the documents. This process is represented in Figure 6.1.

The MovieLens 20M dataset consists of a large number of ratings that directly

describe relationships between users and movies. Movies are characterized by the year

of release, a vector of 20 possible non-exclusive genres and a vector of 1,128 tags,

106

6.5 Experimental setup

Figure 6.1: Transformation performed to obtain the Outbrain DAY1 dataset.

totalling 1,149 variables per movie. Users, in contrast, are only identified with an

ID. To solve this problem of a lack of user information, we represented users with a

vector containing their ratings of the most popular movies, considering popular movies

to be those rated at least 5,000 times. This yielded a total of 1,005 popular movies.

Users u were therefore described by a vector spanning 1,005 components of the form

{−1, 0, 1} where −1 represents a negative rating for a movie, 0 represents no rating

and 1 represents a positive rating m. We modelled the utility function f(u,m) that

predicts ratings to be of the form

f(u,m,W, V) = σ(< Wu, V m >) =
1

1 + e−<Wu,V m>
(6.6)

where W,V are parameter matrices to be learned that project users and movies in a

common space with fewer dimensions than the input space; in this case we selected a

space with a dimension equal to 200. By establishing a cost function:

J(W,V) =
∑

(u,m)∈X

− log σ(r(u,m)<̇Wu, V m >) (6.7)

where r(u,m) ∈ {−1, 1} is the rating given to movie m by user u, the parameter

matrices can be learnt using stochastic gradient descent, a very common approach to

this problem analogous to that used in similar works [48].

This approach can be used with any dyadic dataset for which there is little or no

information describing one of the entities. Nevertheless, in some cases, for datasets

where the data available is sparse, the number of zeros in the user coding vector can

become too large, increasing the similarity between users and complicating the decision

tree task. To circumvent this problem, the user coding can be used to learn the utility

107

Chapter 6. Speculative computation: Explaining large-scale dyadic data

Figure 6.2: Example demonstrating the two options regarding the codification of a user.

function and can then be substituted by the predicted ratings for the most popular

movies for that user. For a given popular movie pmi, the user u coding vector will be 1

in component i if f(u, pmi) > 0.5 and −1 otherwise. Both options are compared in Fig.

6.2 and their effectiveness for this particular dataset was tested as reported in Section

6.6.

Once users were coded and the utility function was learned, the projected movies

V m were clustered using K-Means with k = 100, yielding 100 movie representatives.

A dataset, named UsersEx, was constructed by appending to the coding for each user

(explanatory) their rating of each movie representative (defining). Once the users

were coded using the prediction, the dataset obtained using the same procedure was

called UsersExWithPrediction. Analogously, 100 user representatives were obtained

by clustering the projected users Wu using K-Means with k = 100. A third dataset,

named MoviesEx, was constructed by appending, to the coding of each movie, the

utility of each projected user representative. Both these datasets allowed us to obtain

two complementary explanations of the data, as will be further explained in Section

6.6. The complete pipeline is depicted in Fig. 6.3.

The datasets resulting from the transformations are described in Table 6.1. Note

that the number of movies was reduced to 10,369, since many of them did not have any

ratings in the dataset. Also, although the number of explanatory variables depends on

the number of attributes characterizing each entity, the number of defining variables

was always 100 since in all cases we used the relationship of each element with 100

representatives of the opposing entity to characterize behaviour.

108

6.6 Results

Figure 6.3: Transformations performed to convert the MovieLens 20M dataset in the

MoviesEx and UsersEx datasets.

109

Chapter 6. Speculative computation: Explaining large-scale dyadic data

6.6. Results

In our first set of experiments we undertook the construction of an explanatory

tree for the datasets and compared its quality to that of the explanation obtained by

using a clustering algorithm and a separate model explainer. In order to perform these

experiments, the values of hyperparameters λ, N and LMAX needed to be set. We

used N = 5 and LMAX = 5, which originated a 5-level binary tree that, consequently,

described 32 clusters characterized by 5 variables each – considered to be a reasonable

upper threshold for the complexity of the explanatory tree.

6.6.1. Effect of the λ hyperparameter

Using N = 5 and LMAX = 5 in Eq. 6.5 we obtained NV = 160. As described in Sec-

tion 6.3, the λ hyperparameter regulates the pruning process, balancing the weighted

entropy, which measures the effectiveness of the clustering and is in the [0, 1] range,

with NV (Cl(U)), which was in the [0, 160] range. We selected λ = 0.001 for our com-

parisons so that the obtained trees would be highly pruned and so could be easily

represented. Nonetheless, this process is inexpensive enough to be performed rapidly

with hundreds of different λ values. Fig. 6.4 shows a plot of λ vs. the quality of the

explanation for dataset Outbrain DAY1. It can be seen that as λ grows, the quality of

the full tree decreases linearly, since the importance of the second component in Eq.

6.5 becomes larger. When λ is large enough, the pruning process can get rid of nodes

that do not decrease the weighted entropy sufficiently to offset the quality penalty as-

sociated with having more nodes. Consequently, the number of groups in the clustering

decreases, while the quality improves with respect to that of the full tree. Similar re-

sults were obtained for datasets MoviesEx, UsersEx and UsersExWithPrediction (see

the supplementary material). The λ hyperparameter allows the supervisor to control

the aggressiveness of the pruning process and, therefore, the complexity and accuracy

of the explanatory model.

6.6.2. Suitability of the method

The results listed in Table 6.2 show that the models obtained with our method were

both more accurate and more explainable than those obtained using the alternative

110

6.6 Results

0 1 2 3 4 5 6

·10−3

−1

−0.8

−0.6

−0.4

−0.2

λ

Q
u
al

it
y

Full tree
Pruned tree

0 1 2 3 4 5 6

·10−3

0

10

20

λ

#
cl

u
st

er
s

Figure 6.4: Pruned vs. original tree quality for the Outbrain DAY1 dataset (left).

Number of nodes in the resulting pruned tree (right).

Table 6.2: Results comparison for the experimental datasets. Best results are high-

lighted in bold face. λ = 0.001 was used for the quality measurements.

Dataset
ExplainTree Clustering+Explanation

WE Quality WE Quality

Outbrain DAY1 0.244 -0.331 0.359 -0.519

MoviesEx 0.260 -0.353 0.316 -0.476

UsersEx 0.290 -0.333 0.301 -0.461

UsersExWithPrediction 0.047 -0.091 0.027 -0.187

method. Only for dataset UsersExWithPrediction did the k = 32 K-Means+CART

build a model with smaller entropy (0.027) than our method (0.047), although it needed

more groups and so resulted in considerably inferior quality (-0.187) than our method (-

0.091). Note that our method yielded more homogeneous groups in most cases than the

alternative method, and this advantage was further enhanced when the explainability

of the model was taken into account. This highlights the superiority of our approach

that couples tree construction with a clustering process over the approach that uses

independent algorithms for each step.

111

Chapter 6. Speculative computation: Explaining large-scale dyadic data

6.6.3. Analysis of the explanations

The information that a supervisor can extract regarding the characteristics defin-

ing the behaviour of an Outbrain user reading a given document is limited by the

fact that the variables that characterize the user-document pair (topic, tags, etc.) are

anonymized and only referred to by identifiers. Without the variable names no conclu-

sions can be extracted from the explanatory tree. In contrast, the MovieLens dataset

contains known variables that help identify trends in the data. Fig. 6.5 shows the

explanatory tree for dataset MoviesEx and indicates which characteristics of a movie

best define how different user types will react to them. It is apparent that a movie

in a top list (variables “movielens top pick” and “imdb top 250”) was the most defin-

ing factor, after which certain movie qualities (variables “affectionate”, “earnest” or

“predictable”) determine different user group responses. This information would give

a supervisor insight into, for instance, what sort of movies should be added/removed

from a catalogue. Another relevant piece of information in Fig.5 is the fact that the

initial weighted entropy of the dataset (0.86) decreases greatly (to 0.3) with this clus-

tering, indicating both that the response of users to different movies was very diverse

and that the input variables allowed the uncertainty of the user response to a given

movie to be decreased; this reflects the high value of the information extracted. The

explanatory model for the UsersEx dataset represented in Fig. 6.5 offers additional

insights to the same data. The first piece of information that stands out is that the

weighted entropy of the full dataset is not very large (0.38), which indicates that users

are somewhat homogeneous in their behaviour towards movies. Moreover, clustering

does not manage to significantly decrease the weighted entropy of the data and, in

consequence, the pruning process was very aggressive, yielding only 6 nodes. This was

because, as stated in Section 6.5.1, the users are characterized by their rating (−1, 0, 1)

of the 1,005 most popular movies. However, for a given user, most movies are not rated,

so users are defined by very sparse vectors. The large number of coincidences between

users (most movies are unrated for a large set of users) made the task of the decision

tree a difficult one. Nonetheless, this information could still be used, for instance, to

rapidly determine the user type of a new user in a cold-start situation by simply asking

them to rate a few movies selected from this decision tree. Furthermore, more infor-

mation could be extracted from this approach by using the learned utility function to

eliminate undetermined values in the characterization of users, as described in Section

6.5.1. Using the predicted values, the clustering tree corresponding to dataset User-

sExWithPrediction, represented in Fig. 6.5, was much more effective and decreased the

weighted entropy to 0.05. Such a decision tree could be useful in a cold-start scenario,

112

6.7 Conclusions

Table 6.3: Computer cluster overview.

8 nodes with the following characteristics:

Processor: 2 × Intel Xeon E5-2620 v3 at 2.40Ghz

Cores: 6 per processor (12 per node)

Threads: 2 per core (24 total per node)

Storage: 12 × 2TB NL SATA 6Gbps 3.5” G2HS

RAM: 64 GB

Network: 1x10Gbps + 2x1Gbps

similar to that described above but in which one could expect an unambiguous rating

of each presented item, as could be the case when items can be rated on the spot.

6.6.4. Scalability of the method

We performed an experiment with the aim of measuring the scalability of the

method and of the Apache Spark distributed implementation. The same computa-

tion was performed for varying numbers of computing nodes. The experiments were

run in a computer cluster formed by 8 machines with 12 computing cores each. The

technical specifications for each node are provided in Table 6.3. The Spark version

used was 2.4.0, on Hadoop 3.0.0-cdh6.1.0. The operating system of the machines was

CentOS Linux release 7.4.1708.

The times invested to compute a three-level clustering tree for dataset Outbrain DAY1,

listed in Table 6.4, indicate that the Spark implementation takes advantage of the fact

that most calculations are mutually independent and can, therefore, be performed in

parallel. Consequently, the execution time decreased at a similar rate to the increase in

the number of computing nodes, which would be the ideal. The implementation allows

the processing of large amounts of data in a reasonable time, provided the user supplies

enough computing resources for the calculation.

113

Chapter 6. Speculative computation: Explaining large-scale dyadic data

(a) MoviesEx (b) UsersEx

(c) UsersExWithPrediction

Figure 6.5: Explanatory trees for the MovieLens datasets after pruning with λ = 0.001.

Each node shows, respectively, the proportion of elements that it represents w.r.t. the

full dataset (shown in blue), the weighted entropy at that node (shown in green) and

the variable used in the next split (black). Split values are shown next to each split

line. The root node also indicates (in blue) the weighted entropy of the whole dataset.

Table 6.4: Execution time for computing a three-level tree for varying numbers of

computing nodes.

Time (H:M:S)

cores 12 2x12 4x12

Outbrain DAY1 3:19:46 2:35:33 1:33:45

114

6.7 Conclusions

6.7. Conclusions

In this chapter we leverage the use of distributed computation to increase the efficacy

of the training of a simple model. We describe a method to obtain a global explanation

of the information encoded in a dyadic dataset. The computed model consists of a single

decision tree that partitions one of the entities into groups with homogeneous behaviour;

this decision tree is computed using an adaptation of a measure documented in the

literature. The presented method is formulated in such a way that it can be applied

to any dyadic dataset in any field that processes dyadic data. For instance, for data

representing interactions in a market it could be used to perform large-scale market

segmentation that provides supervisors with valuable insights for informed decision

making. It could also be used to identify global trends in the data corresponding to

recommender systems, topic modelling, social network analysis and other similar data

problems.

Also described is the implementation of the presented algorithm in the popular

Apache Spark distributed computing framework, which allows the processing of large

volumes of data. Our experiments point to both the validity and the scalability of

the approach, while also demonstrating various approaches to analysing diverse dyadic

data. A brief analysis of how the retrieved information can be used is also presented.

In the future we plan to adapt this algorithm so that it becomes incremental and

so it allows the use of a previously trained model to accelerate the calculation of an

updated version when new data becomes available. We also plan to revise the search

strategy used to build the tree so that the algorithm can be interrupted at any time

and still yield meaningful results.

115

Chapter 6. Speculative computation: Explaining large-scale dyadic data

116

CHAPTER 7
Conclusions and future work

There is great opportunity in this new world overflowing with data. The efficacy

of machine learning to produce accurate results on small datasets hinted great promise

with the increase in the volume of data. As a consequence, great expectations have been

placed in machine learning to play a crucial role in the advancement of the economy in

the next century. A “data revolution” with effects comparable to the industrial revo-

lution has been forecast, and machine learning is expected to revolutionize everything

from employment to sustainability and industrial processes. Certainly, success cases

are arriving at an increasing rate, with machine learning algorithms beating humans

at diverse tasks, but we are a long way away from delivering on the hope that society

has placed in machine learning.

Many of the most effective machine learning algorithms struggle when tasked with

analyzing large datasets. A variety of problems arise when dealing with such data, from

the more mundane logistical complications of handling heavy files to more structural

ones like the curse of dimensionality. Even other yet unknown difficulties that can

threaten the viability of a successful method. However, the factor that yields more

methods useless in the context of large-scale learning is computational and spatial

complexity. Methods that have computational or spatial complexity that exceeds O(n)

are guaranteed to struggle with a dataset large enough. Even the success cases of

state-of-the-art deep learning models, which can be learned with an effort that does

not exceed O(n), require using very large computational resources for an extended

time, which has great economic and environmental impact [143]. This high cost stifles

research progress since many researchers simply lack the resources needed to obtain

competitive results and it also negatively impacts the implantation of machine learning

solutions in industry. Much work is still needed in academia to obtain more cost efficient

and scalable methods.

In this thesis we have humbly attempted to contribute to tackling this problem by

exploring four different approaches that can be used to increase the scalability of ma-

117

Chapter 7. Conclusions and future work

chine learning algorithms. We have done so while focusing in problems other that the

heavily explored classification and regression and we have presented scalable algorithms

for feature selection, graph construction, anomaly detection and model explainability.

We have relied on the use of distributed computation for all of our algorithms, which

provides a solution to the logistical problems of handling large datasets while also

enabling the possibility of supplying additional computational resources that can be

taken advantage of with a careful rewriting of the algorithms. This solution and the

associated problems were studied in detail in Chapter 2 by obtaining distributed ver-

sions of various popular feature selection algorithms. A variety of strategies were used

to obtain implementations in which most of the effort can be performed in parallel

across several computational units. The experiments performed showed that the ob-

tained implementations have very good scalability and highlighted that this approach

is not only able to manage the handling of large-scale datasets to provide good scal-

ability to algorithms with linear complexity, but also can be applied to methods with

higher complexity, allowing them to handle the computational load associated with

large datasets by adding more computational units to the calculation. However, al-

though this trade-off of computation time for computational resources enables using

complex methods, the associated cost encourages the search for alternatives. With that

in mind, in Chapter 3 we explored the use of an approximation of the exact solution

as an alternative for methods that are computationally expensive. In particular, we

presented an algorithm that leverages Locality Sensitive Hashing to obtain an approx-

imate k nearest neighbors graph, greatly reducing the original quadratic complexity.

The development of this algorithm revealed the importance of obtaining a good set of

hyperparameters to achieve accurate results, and the relevance of tuning these hyper-

parameters with as little effort as possible in the context of large-scale learning. The

obtained algorithm, named VRLSH, quickly and automatically tunes these hyperpa-

rameters to obtain a very accurate approximate k-NN graph in a small fraction of the

time needed to calculate the exact one. The exploration of this approach was furthered

in Chapter 4 with the use of the obtained approximate k-NN graph in the calculations

involved in the ReliefF feature selection algorithm. Our experiments show that the use

of an approximate graph does not have significant impact in the accuracy of the results

and the resulting algorithm, which we called ReliefF-LSH, obtains this results much

quicker than the original ReliefF. Moreover, when compared to the existing alternative

approximations to ReliefF, our experiments point to the superiority of the results of

ReliefF-LSH, which, additionally, supports all data that ReliefF can manage, in con-

trast to the existing alternatives. Another course of action to deal with large-scale

learning that we studied is the design of specific models that take advantage of some

peculiarity of the data to obtain simpler and more effective models. To that effect,

118

in Chapter 5 we present an anomaly detection method that tackles the very common

case in which the input data consists of both numerical and categorical variables. Ex-

ploiting this structure we designed a model that factorizes the probability distribution

function of the data into two interrelated components that are learned using simple

models. The resulting combined model, implemented into the ADMNC algorithm, has

very good scalability that enables it to tackle datasets that are out of reach of the

existing alternatives, and our experiments show that it obtains state-of-the-art results

in terms of accuracy. Finally, we delved into the nascent field of Explainable AI to test

one last approach when dealing with large datasets: using the computational power of

distributed computing to enhance a simple method. In Chapter 6 we describe a new

method to obtain an explanation of the relationships encoded in dyadic data in the

form of a decision tree. The resulting tree effectively partitions one of the involved

entities in groups of homogeneous behaviour that are simply described in terms of the

input variables, constituting a high-level summary of the information encoded in the

data. The proposed algorithm can obtain an accurate result quickly and in a scalable

manner thanks to its use of distributed computation to broaden the exploration of the

search space.

The aim of this work was to explore lines of action that lead to an increase in the

scalability of algorithms. We studied four separate strategies and showed their viabil-

ity by using them to implement algorithms that we then tested experimentally to show

their fitness. But, in doing so, we also tried to obtain new scalable algorithms and

improved versions of existing ones that enable the practitioner to deal with the prob-

lems of large-scale learning. While intentionally leaving aside the much more explored

fields of classification and regression, we have presented in this thesis seven different

implementations of four feature selection algorithms that can be used in single machine

environments and in computer clusters, with an additional implementation of a popular

discretization method. We have also presented an algorithm that detects anomalies in

data that has a mix of numerical and categorical variables. This is a very common set-

ting for which few of the existing alternatives could be used to analyze large datasets.

Additionally, we developed a new method to compute the k nearest neighbors graph

for large datasets. This data structure needs to be computed in many machine learning

methods, and we proved its fitness by using it in an adaptation of the ReliefF feature

selection algorithm. Finally, we designed an explanation algorithm that can be used in

the analysis of dyadic data, a problem that has raised much interest in the industry.

All of the implementations of the methods are available for download. It is our hope

that our contributions enable practitioners to approach large-scale learning a bit better

prepared and that they can be used to further the research in this area.

119

Chapter 7. Conclusions and future work

This thesis can only explore a tiny fraction of the vast field of the scalability of

machine learning algorithms. Consequently, many interesting ideas were left unpur-

sued. Some of those we intend to explore in our future work and have been described

in each chapter. Additionally, in the explorations needed to complete this thesis we

have identified promising lines that we plan to research further. In particular, we have

obtained preliminary results that have encouraged us to explore the use of Locality

Sensitive Hashing to detect anomalies at large scale. Some effective anomaly detection

methods rely on the computation of the density distribution of the input space, but

this calculation is very computationally intensive. We intend to use LSH to obtain an

estimation of density at a fraction of the cost that can, hopefully, be useful in identify-

ing anomalies. Additionally, we want to research the possibilities of using VRLSH for

information retrieval, implementing a nearest neighbor search, and also for anomaly de-

tection by traversing the approximated kNNG. Finally, we would like to dedicate some

effort to finding new explainability algorithms that work at large scale. In this regard,

we have obtained promising preliminary results explaining the anomaly detections of

ADMNC by applying a similar approach to that described in Chapter 6. We believe

that XAI is a field that will gain relevance since it offers a much needed link between

machine learning and human reasoning.

However, we realize that the pervasiveness of the scalability problem and the vast-

ness of the machine learning field mean that our contributions can only get us so far.

In consequence, we have made a point of always making available for download working

implementations of our algorithms, hoping that they can be of use to the research com-

munity. The observation that “the ability to collaborate and organize large groups of

individuals to accomplish a task that would be unachievable individually is one of the

trademarks of the human species” led us in Chapter 2 to the exploration of distributed

computation solutions to complete immense tasks. Only our inherently human abil-

ity to collaborate at large scale can create a research community that brings mankind

closer to the extraordinary goal of creating machines that can think.

120

APPENDIX I
Best hyperparameters for anomaly detection

methods

This is the list of the best hyperparameter combination for each method for each

dataset in the experiments reported in Chapter 5. Hyperparameters for Synth1 are

not listed since they are not relevant for the execution time, which is the only measure

reported for that dataset family.

121

Appendix I. Best hyperparameters for anomaly detection methods

Table I.1: Best hyperparameters for LOF

E (K, P) H (K, P, λ) J (K, P, λ)

Arrhyth 10, 0.01 10, 0.01, 0.9 10, 0.01, 0.7

GC 10, 0.01 10, 0.01, 0.3 10, 0.01, 0.1

Ab. 1 10, 0.01 10, 0.01, 0.3 10, 0.01, 0.3

Ab. 9 10, 0.01 10, 0.01, 0.3 10, 0.01, 0.3

Ab. 11 10, 0.01 10, 0.01, 0.3 10, 0.01, 0.3

Synth1-100 5, 0.01 3, 0.01, 0.9 5, 0.01, 0.5

Synth1-500 10, 0.01 10, 0.01, 0.9 10, 0.01, 0.7

Synth1-2500 Single test repeating values above

Table I.2: Best hyperparameters for LOCI

LOCI

E (α) H (α, λ) J (α, λ)

Arrhyth 0.3 0.5, 0.9 0.3, 0.5

GC 0.3 0.1, 0.5 0.1, 0.1

Ab. 1 0.1 0.1, 0.7 0.1, 0.3

Ab. 9 0.3 0.1, 0.9 0.1, 0.7

Ab. 11 0.5 0.5, 0.7 0.5, 0.3

Synth1-100 0.3 0.1, 0.9 0.1, 0.9

Synth1-500 0.1 0.5, 0.9 0.3, 0.1

Synth1-2500 Single test repeating values above

122

Table I.3: Best hyperparameters for SVM

Linear (ν) RBF (γ, ν) DOC-SVM(γ, ν)

Arrhyth 0.3 1, 0.1 1

GC 0.01 1, 0.01 3

Ab. 1 0.01 1, 0.3 5

Ab. 9 0.05 10, 0.1 1

Ab. 11 0.3 3, 0.05 1

CT 0.3 1, 0.3 4

KDD 0.1 10, 0.01 2

Synth1-100 0.3 0.01, 0.1 0.01, 0.3

Synth1-500 0.01 0.01, 0.01 0.01, 0.3

Synth1-2500 0.01 0.05, 0.01 Same values

Synth1-12500 Single test repeating values above

Synth1-62500 Same values *

123

Appendix I. Best hyperparameters for anomaly detection methods

Table I.4: Best hyperparameters for PA-I and iForest.

PA-I iForest

σ C R rF rS

Arrhyth 1 0.01 0.97 1 0.2

GC 3 0.01 0.97 1 1

Ab. 1 5 0.01 0.97 0.1 0.01

Ab. 9 1 0.05 0.97 1 0.5

Ab. 11 1 0.01 0.97 0.8 0.01

CT 4 0.025 0.97 1 0.01

KDD 2 0.05 0.97 0.1 0.5

Synth1-100 4 0.05 0.97 0.5 0.025

Synth1-500 4 0.01 0.97 0.8 0.01

Synth1-2500 4 0.01 0.97 1 0.01

Synth1-12500 4 0.01 0.97 1 0.025

124

Table I.5: Best hyperparameters for ADMNC.

ν λs # gaussians

Arrhyth 1 1 4

GC 0.1 0.001 4

Ab. 1 100 0.01 4

Ab. 9 10 0.001 4

Ab. 11 0.1 0.001 4

CT 0.1 0.0001 4

KDD 1 0.1 2

IDS 1 0.1 4

Synth1-100 0.1 1 4

Synth1-500 1 1 4

Synth1-2500 10 1 4

Synth1-12500 10 0.001 4

Synth1-62500 100 0.1 4

Synth1-312500 1 0.1 4

125

Appendix I. Best hyperparameters for anomaly detection methods

126

APPENDIX II
Additional results of the scalable dyadic data

explanator

127

Appendix II. Additional results of the scalable dyadic data explanator

0 1 2 3 4 5 6

·10−3

−1.2

−1

−0.8

−0.6

−0.4

−0.2

λ

Q
u
al

it
y

Full tree
Pruned tree

0 1 2 3 4 5 6

·10−3

10

20

30

λ

#
cl

u
st

er
s

Figure II.1: Pruned vs. original tree quality for the MoviesEx dataset (left). Number

of nodes in the resulting pruned tree (right).

0 1 2 3 4 5 6

·10−3

−1.2

−1

−0.8

−0.6

−0.4

−0.2

λ

Q
u
al

it
y

Full tree
Pruned tree

0 1 2 3 4 5 6

·10−3

0

10

20

30

λ

#
cl

u
st

er
s

Figure II.2: Pruned vs. original tree quality for the UsersEx dataset (left). Number of

nodes in the resulting pruned tree (right).

0 1 2 3 4 5 6

·10−3

−1

−0.8

−0.6

−0.4

−0.2

0

λ

Q
u
al

it
y

Full tree
Pruned tree

0 1 2 3 4 5 6

·10−3

10

20

30

λ

#
cl

u
st

er
s

Figure II.3: Pruned vs. original tree quality for the UsersExWithPrediction dataset

(left). Number of nodes in the resulting pruned tree (right).

128

Figure II.4: Explanatory tree for the Outbrain dataset after pruning with λ = 0.001.

Each node shows, respectively, the proportion of elements that it represents w.r.t. the

full dataset (shown in blue), the weighted entropy at that node (shown in green) and

the variable used in the next split (black). Split values are shown next to each split

line. The root node also indicates (in blue) the weighted entropy of the whole dataset.

129

Appendix II. Additional results of the scalable dyadic data explanator

130

APPENDIX III
Publications supporting this thesis

Eiras-Franco, C., Bolón-Canedo, V., Ramos, S., González-Domınguez, J., Alonso-

Betanzos, A., & Tourino, J. (2015). Paralelización de algoritmos de selección de

caracterıticas en la plataforma weka. In CAEPIA (Vol. 2015, pp. 949-958).

Eiras-Franco, C., Bolón-Canedo, V., Ramos, S., González-Domı́nguez, J., Alonso-

Betanzos, A., & Tourino, J. (2016). Multithreaded and spark parallelization of

feature selection filters. Journal of Computational Science, 17, 609-619.

Eiras-Franco, C., Kanthan, L., Alonso-Betanzos, A., & Mart́ınez-Rego, D. (2017).

In 25th European Symposium on Artificial Neural Networks, Computational In-

telligence and Machine Learning, (pp.535-540).

Eiras-Franco, C., Guijarro-Berdiñas, B., Alonso-Betanzos, A., & Bahamonde, A.

(2018). Interpretable market segmentation on high dimension data. Multidisci-

plinary Digital Publishing Institute Proceedings, 2(18), 1171.

Eiras-Franco, C., Guijarro-Berdinas, B., Alonso-Betanzos, A., & Bahamonde, A.

Segmentacion de mercado explicable sobre datos de alta dimension. (2018). In

CAEPIA (Vol. 2018, pp. 1099-1104).

Eiras-Franco, C., Guijarro-Berdinas, B., Alonso-Betanzos, A., & Bahamonde,

A. Selección de caracteŕısticas escalable con ReliefF mediante el uso de Hashing

Sensible a la Localidad. (2018). In CAEPIA (Vol. 2018, pp. 1123-1128).

Eiras-Franco, C., Mart́ınez-Rego, D., Guijarro-Berdiñas, B., Alonso-Betanzos, A.,

& Bahamonde, A. (2019). Large scale anomaly detection in mixed numerical and

categorical input spaces. Information Sciences, 487, 115-127.

Eiras-Franco, C., Guijarro-Berdiñas, B., Alonso-Betanzos, A., & Bahamonde, A.

(2019). A scalable decision-tree-based method to explain interactions in dyadic

data. Decision Support Systems. (In press).

131

Appendix III. Publications supporting this thesis

132

Bibliography

[1] A. Fernandez O. C. F. M., M.J. del Jesus and Herrera. F. Evolutionary

fuzzy systems for explainable artificial intelligence: Why, when, what for, and

where to? IEEE Computational Intelligence Magazine 14(1), 69–81 (2019).

[2] Ahle T. D., Aumüller M., and Pagh R. Parameter-free locality sensitive

hashing for spherical range reporting. In “Proceedings of the Twenty-Eighth

Annual ACM-SIAM Symposium on Discrete Algorithms”, pages 239–256. SIAM

(2017).

[3] Akaike H. Information theory and an extension of the maximum likelihood

principle. In “2nd International Symposium on Information Theory”, pages 267–

281. Akademiai Kiado (1973).

[4] Akoglu L., Tong H., Vreeken J., and Faloutsos C. Fast and reliable

anomaly detection in categorical data. In “Proceedings 21st ACM Interna-

tional Conference on Information and Knowledge Management, CKIM 2012”,

New York, NY, USA (2012). ACM.

[5] Aleskerov E., Freisleben B., and Rao B. CARDWATCH: A neural network

based database mining system for credit card fraud detection. In “Proceedings

of the IEEE Conference on Computational Intelligence for financial engineering”,

pages 220–226 (1997).

[6] An infotheoretic feature selection framework for Apache

Spark. http://spark-packages.org/package/sramirez/

spark-infotheoretic-feature-selection. Accessed: 2016-04-19.

[7] Anastasiu D. C. and Karypis G. L2knng: Fast exact k-nearest neighbor

graph construction with l2-norm pruning. In “Proceedings of the 24th ACM

International on Conference on Information and Knowledge Management”, pages

791–800. ACM (2015).

[8] Andoni A. and Indyk P. Near-optimal hashing algorithms for approximate

nearest neighbor in high dimensions. In “Foundations of Computer Science, 2006.

FOCS’06. 47th Annual IEEE Symposium on”, pages 459–468. IEEE (2006).

133

[9] Atzori L., Iera A., and Morabito G. The internet of things: A survey.

Computer networks 54(15), 2787–2805 (2010).

[10] Aumüller M., Bernhardsson E., and Faithfull A. Ann-benchmarks: A

benchmarking tool for approximate nearest neighbor algorithms. In “Interna-

tional Conference on Similarity Search and Applications”, pages 34–49. Springer

(2017).

[11] Bahmani B., Moseley B., Vattani A., Kumar R., and Vassilvitskii S.

Scalable k-means++. Proceedings of the VLDB Endowment 5(7), 622–633 (2012).

[12] Baldi P., Sadowski P., and Whiteson D. Searching for exotic particles in

high-energy physics with deep learning. Nature communications 5, 4308 (2014).

[13] Basak J. and Krishnapuram R. Interpretable hierarchical clustering by con-

structing an unsupervised decision tree. IEEE Transactions on Knowledge and

Data Engineering 17(1), 121–132 (2005).

[14] Basios M., Li L., Wu F., Kanthan L., and Barr E. T. Darwinian data

structure selection. In “Proceedings of the 2018 26th ACM Joint Meeting on

European Software Engineering Conference and Symposium on the Foundations

of Software Engineering”, pages 118–128. ACM (2018).

[15] Bawa M., Condie T., and Ganesan P. Lsh forest: self-tuning indexes for

similarity search. In “Proceedings of the 14th international conference on World

Wide Web”, pages 651–660. ACM (2005).

[16] Bellman R. Dynamic programming. Science 153(3731), 34–37 (1966).

[17] Bentley J. L. Multidimensional binary search trees used for associative search-

ing. Communications of the ACM 18(9), 509–517 (1975).

[18] Berkhin P. A survey of clustering data mining techniques. In “Grouping mul-

tidimensional data”, pages 25–71. Springer (2006).

[19] Bishop C. “Pattern Recognition and Machine Learning (Information Science

and Statistics)”. Springer-Verlag New York, Inc., Secaucus, NJ, USA (2006).

[20] Blackard J. A. and Dean D. J. Comparative accuracies of artificial neural

networks and discriminant analysis in predicting forest cover types from car-

tographic variables. Computers and electronics in agriculture 24(3), 131–151

(1999).

134

[21] Bloom B. H. Space/time trade-offs in hash coding with allowable errors. Com-

munications of the ACM 13(7), 422–426 (1970).

[22] Bolón-Canedo V., Remeseiro B., Sánchez-Maroño N., and Alonso-

Betanzos A. mc-relieff-an extension of relieff for cost-based feature selection.

In “ICAART (1)”, pages 42–51 (2014).

[23] Bolón-Canedo V., Sánchez-Maroño N., and Alonso-Betanzos A. “Fea-

ture Selection for High-Dimensional Data”. Springer (2015).

[24] Bondi A. B. Characteristics of scalability and their impact on performance. In

“Proceedings of the 2nd international workshop on Software and performance”,

pages 195–203. ACM (2000).

[25] Bottou L. and Bousquet O. The tradeoffs of large scale learning. In Platt

J., Koller D., Singer Y., and Roweis S., editors, “Advances in Neural

Information Processing Systems”, volume 20, pages 161–168. NIPS Foundation

(http://books.nips.cc) (2008).

[26] Bottou L., Curtis F. E., and Nocedal J. Optimization methods for large-

scale machine learning. Siam Review 60(2), 223–311 (2018).

[27] Bottou L. and Lin C.-J. Support vector machine solvers. Large scale kernel

machines 3(1), 301–320 (2007).

[28] Boz O. Extracting decision trees from trained neural networks. In “Proceedings

of the eighth ACM SIGKDD International Conference on Knowledge discovery

and data mining”, pages 456–461. ACM (2002).

[29] Bratić B., Houle M. E., Kurbalija V., Oria V., and Radovanović M.

Nn-descent on high-dimensional data. In “Proceedings of the 8th International

Conference on Web Intelligence, Mining and Semantics”, page 20. ACM (2018).

[30] Breunig M., Kriegel H., Ng R., and Sander J. Lof: Identifying density-

based local outliers. SIGMOD Rec. 29(2), 93–104 (May 2000).

[31] Brown G., Pocock A., Zhao M.-J., and Luján M. Conditional likelihood

maximisation: a unifying framework for information theoretic feature selection.

The Journal of Machine Learning Research 13(1), 27–66 (2012).

[32] Buhler J. Efficient large-scale sequence comparison by locality-sensitive hash-

ing. Bioinformatics 17(5), 419–428 (2001).

135

[33] Campos G. O., Zimek A., Sander J., Campello R. J., Micenková B.,

Schubert E., Assent I., and Houle M. E. On the evaluation of unsupervised

outlier detection: measures, datasets, and an empirical study. Data Mining and

Knowledge Discovery 30(4), 891–927 (2016).

[34] Castillo E., Peteiro-Barral D., Berdiñas B. G., and Fontenla-

Romero O. Distributed one-class support vector machine. International journal

of neural systems 25(07), 1550029 (2015).

[35] Chandola V., Banerjee A., and Kumar V. Anomaly detection for discrete

sequences: A survey. IEEE Transactions on Knowledge and Data Engineering

24(5), 823–839 (2012).

[36] Chandola V., Banerjee A., and Kumar V. Anomaly detection: A survey.

ACM computing surveys (CSUR) 41(3), 15 (2009).

[37] Chang C.-C. and Lin C.-J. LIBSVM: a library for support vector machines.

ACM Transactions on Intelligent Systems and Technology (TIST) 2(3), 27 (2011).

[38] Chen J., Fang H.-r., and Saad Y. Fast approximate knn graph construction

for high dimensional data via recursive lanczos bisection. Journal of Machine

Learning Research 10(Sep), 1989–2012 (2009).

[39] Clare A. and King R. D. Knowledge discovery in multi-label phenotype

data. In “European Conference on Principles of Data Mining and Knowledge

Discovery”, pages 42–53. Springer (2001).

[40] Cormode G., Dasgupta A., Goyal A., and Lee C. H. An evaluation of

multi-probe locality sensitive hashing for computing similarities over web-scale

query logs. PloS one 13(1), e0191175 (2018).

[41] Cover T. and Hart P. Nearest neighbor pattern classification. IEEE trans-

actions on information theory 13(1), 21–27 (1967).

[42] Craven M. and Shavlik J. W. Extracting tree-structured representations of

trained networks. In “Advances in neural information processing systems”, pages

24–30 (1996).

[43] Das K. and Schneider J. Detecting anomalous records in categorical datasets.

In “Proceedings of the 13th ACM SIGKDD International Conference on Knowl-

edge Discovery and Data Mining”, KDD ’07, New York, NY, USA (2007). ACM.

136

[44] Das S., Matthews B. L., Srivastava A. N., and Oza N. Multiple kernel

learning for heterogeneous anomaly detection: Algorithm and aviation safety case

study. In “Proceedings of the 16th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining”, KDD ’10, pages 47–56, New York, NY,

USA (2010). ACM.

[45] Dasarathy B. V. Data mining tasks and methods: Classification: nearest-

neighbor approaches. In “Handbook of data mining and knowledge discovery”,

pages 288–298. Oxford University Press, Inc. (2002).

[46] Dean J. and Ghemawat S. MapReduce: simplified data processing on large

clusters. Communications of the ACM 51(1), 107–113 (2008).

[47] Demšar J. Statistical comparisons of classifiers over multiple data sets. Journal

of Machine Learning Research 7(Jan), 1–30 (2006).

[48] D́ıez J., Pérez P., Luaces O., and Bahamonde A. Readers segmentation

according to their preferences to click promoted links in digital publications.

Technical Report, Universidad de Oviedo (2018).

[49] Do K., Tran T., and Venkatesh S. Energy-based anomaly detection for

mixed data. Knowledge and Information Systems pages 1–23 (2018).

[50] Dong W., Moses C., and Li K. Efficient k-nearest neighbor graph construc-

tion for generic similarity measures. In “Proceedings of the 20th international

conference on World wide web”, pages 577–586. ACM (2011).

[51] Dong W., Wang Z., Josephson W., Charikar M., and Li K. Modeling

lsh for performance tuning. In “Proceedings of the 17th ACM conference on

Information and knowledge management”, pages 669–678. ACM (2008).

[52] Dua D. and Graff C. UCI machine learning repository (2017).

[53] Edgeworth F. On discordant observations. Phylosoph. Mag. 23(5), 364–375

(1887).

[54] Eiras-Franco C., Bolón-Canedo V., Ramos S., González-Doḿınguez

J., Alonso-Betanzos A., and Touriño J. Multithreaded and spark par-

allelization of feature selection filters. Journal of Computational Science 17,

609–619 (2016).

[55] Eiras-Franco C., Guijarro-Berdinas B., Alonso-Betanzos A., and Ba-

hamonde A. Seleccion de caracterısticas escalable con relieff mediante el uso de

137

hashing sensible a la localidad. In “XVIII Conferencia de la Asociación Española

para la Inteligencia Artificial” (2018).

[56] Eiras-Franco C., Kanthan L., Alonso-Betanzos A., and Martınez-

Rego D. Scalable approximate k-nn graph construction based on locality sen-

sitive hashing. In “25th European Symposium on Artificial Neural Networks,

Computational Intelligence and Machine Learning” (2017).

[57] Emmott A. F., Das S., Dietterich T., Fern A., and Wong W.-K. Sys-

tematic construction of anomaly detection benchmarks from real data. In “Pro-

ceedings of the ACM SIGKDD workshop on outlier detection and description”,

pages 16–21. ACM (2013).

[58] Eppstein M. J. and Haake P. Very large scale relieff for genome-wide asso-

ciation analysis. In “Computational Intelligence in Bioinformatics and Compu-

tational Biology, 2008. CIBCB’08. IEEE Symposium on”, pages 112–119. IEEE

(2008).

[59] Fayyad U. M. and Irani K. B. Multi-interval discretization of continuous-

valued attributes for classification learning. In “13th International Joint Confer-

ence on Artificial Intelligence”, pages 1022–1029 (1993).

[60] Fernández-Francos D., Mart́ınez-Rego D., O.Fontenla-Romero, and

Alonso-Betanzos A. Automatic bearing fault diagnosis based on one-class

nu-svm. Computers & Industrial Engineering 64(1), 357–365 (2013).

[61] Fiore U., Palmieri F., Castiglione A., and De Santis A. Network

anomaly detection with the restricted boltzmann machine. Neurocomputing 122,

13–23 (2013).

[62] Ghoting A., Otey M., and Parthasarathy S. Loaded: link-based outlier

and anomaly detection in evolving data sets. In “Data Mining, 2004. ICDM ’04.

Fourth IEEE International Conference on”, pages 387–390 (2004).

[63] Gilpin L. H., Bau D., Yuan B. Z., Bajwa A., Specter M., and Kagal

L. Explaining explanations: An overview of interpretability of machine learn-

ing. In “2018 IEEE 5th International Conference on Data Science and Advanced

Analytics (DSAA)”, pages 80–89. IEEE (2018).

[64] Guidotti R., Monreale A., Ruggieri S., Turini F., Giannotti F., and

Pedreschi D. A survey of methods for explaining black box models. ACM

Computing Surveys (CSUR) 51(5), 93 (2018).

138

[65] Guyon I. “Feature Extraction: Foundations and Applications”, volume 207.

Springer Science & Business Media (2006).

[66] Guyon I., Gunn S., Nikravesh M., and Zadeh L. A. “Feature extraction:

foundations and applications”, volume 207. Springer (2008).

[67] Guyon I., Weston J., Barnhill S., and Vapnik V. Gene selection for cancer

classification using support vector machines. Machine learning 46(1-3), 389–422

(2002).

[68] Apache Hadoop Project. http://hadoop.apache.org/. Accessed: 2016-04-19.

[69] Hall M., Frank E., Holmes G., Pfahringer B., Reutemann P., and

Witten I. H. The WEKA data mining software: an update. ACM SIGKDD

Explorations Newsletter 11(1), 10–18 (2009).

[70] Hall M. A. “Correlation-based Feature Selection for Machine Learning”. PhD

thesis, The University of Waikato (1999).

[71] Hanafizadeh P. and Mirzazadeh M. Visualizing market segmentation using

self-organizing maps and fuzzy delphi method–adsl market of a telecommunica-

tion company. Expert Systems with Applications 38(1), 198–205 (2011).

[72] Harper F. M. and Konstan J. A. The movielens datasets: History and

context. ACM Transactions on Interactive Intelligent Systems (TIIS) 5(4), 19

(2016).

[73] Haveliwala T., Gionis A., and Indyk P. Scalable techniques for clustering

the web. In “Third International Workshop on the Web and Databases” (2000).

[74] Hawkins D. M. “Identification of outliers”, volume 11. Springer (1980).

[75] Hawkins S., He H., Williams G., and Baxter R. Outlier detection using

replicator neural networks. In “International Conference on Data Warehousing

and Knowledge Discovery”, pages 170–180. Springer (2002).

[76] He Z., Deng S., and Xu X. An optimization model for outlier detection in

categorical data. In Huang D., X.P. Zhang G., and Huang, editors, “Ad-

vances in Intelligent Computing”, volume 3644 of “Lecture Notes in Computer

Science”, pages 400–409. Springer Berlin Heidelberg (2005).

[77] Herlocker J. L., Konstan J. A., and Riedl J. Explaining collaborative

filtering recommendations. In “Proceedings of the 2000 ACM conference on Com-

puter supported cooperative work”, pages 241–250. ACM (2000).

139

[78] Hettich S. and Bay S. KDD Cup 1999 data. The UCI KD Archive, Irvine,

CA: University of California, Department of Information and Computer Science

(1999).

[79] Higgs dataset at the UCI Machine Learning Repository. http://www.csie.ntu.

edu.tw/~cjlin/libsvmtools/datasets/. Accessed: 2016-04-19.

[80] Hofmann T., Puzicha J., and Jordan M. I. Learning from dyadic data. In

“Advances in Neural Information Processing Systems”, pages 466–472 (1999).

[81] Hu W., Hu W., and Maybank S. Adaboost-based algorithm for network

intrusion detection. IEEE Transactions on Systems, Man, and Cybernetics, Part

B (Cybernetics) 38(2), 577–583 (2008).

[82] Hull J. J. A database for handwritten text recognition research. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence 16(5), 550–554 (1994).

[83] Ismo K. et al.. Outlier detection using k-nearest neighbour graph. In “null”,

pages 430–433. IEEE (2004).

[84] JeffreyXu Y., Qian W., Hongjun L., and Aoying Z. Finding centric local

outliers in categorical/numerical spaces. Knowledge and Information Systems

9(3), 309–338 (2006).

[85] Johansson U. and Niklasson L. Evolving decision trees using oracle guides.

In “2009 IEEE Symposium on Computational Intelligence and Data Mining”,

pages 238–244. IEEE (2009).

[86] Khan S. S. and Madden M. G. One-class classification: taxonomy of study

and review of techniques. The Knowledge Engineering Review 29(03), 345–374

(2014).

[87] Kiang M. Y., Hu M. Y., and Fisher D. M. An extended self-organizing

map network for market segmentation—a telecommunication example. Decision

Support Systems 42(1), 36–47 (2006).

[88] Kira K. and Rendell L. A. A practical approach to feature selection. In

“Proceedings of the Ninth International Workshop on Machine Learning”, pages

249–256 (1992).

[89] Kononenko I. Estimating attributes: analysis and extensions of RELIEF. In

“Machine Learning: ECML-94”, pages 171–182. Springer (1994).

140

[90] Koren Y., Bell R., and Volinsky C. Matrix factorization techniques for

recommender systems. Computer 42(8) (2009).

[91] Kotler P. and Cox K. K. “Marketing management and strategy”. Prentice

Hall (1980).

[92] Koufakou A. and Georgiopoulos M. A fast outlier detection strategy for

distributed high-dimensional data sets with mixed attributes. Data Mining and

Knowledge Discovery 20(2), 259–289 (2010).

[93] Kouki P., Schaffer J., Pujara J., O’Donovan J., and Getoor L. Person-

alized explanations for hybrid recommender systems. In “Proceedings of the 24th

International Conference on Intelligent User Interfaces”, pages 379–390. ACM

(2019).

[94] Krishnan R., Sivakumar G., and Bhattacharya P. Extracting decision

trees from trained neural networks. Pattern recognition 32(12) (1999).

[95] Krizhevsky A. and Hinton G. Learning multiple layers of features from tiny

images. Technical Report, Citeseer (2009).

[96] Kumar V. Parallel and distributed computing for cybersecurity. IEEE Dis-

tributed Systems Online 6(10), 1–10 (2005).

[97] Lazarevic A. and Kumar V. Feature bagging for outlier detection. In “Pro-

ceedings of the eleventh ACM SIGKDD international conference on Knowledge

discovery in data mining”, pages 157–166. ACM (2005).

[98] LeCun Y., Bengio Y., and Hinton G. Deep learning. nature 521(7553), 436

(2015).

[99] Lee W. and Stolfo S. J. A framework for constructing features and models

for intrusion detection systems. ACM transactions on Information and system

security (TiSSEC) 3(4), 227–261 (2000).

[100] LibSVM dataset repository. http://www.csie.ntu.edu.tw/~cjlin/

libsvmtools/datasets/. Accessed: 2016-04-19.

[101] Lichman M. UCI machine learning repository (2013).

[102] Lichman M. UCI machine learning repository (2013). http://archive.ics.

uci.edu/mll [Last accessed April 2017].

141

[103] Lipton Z. C. The mythos of model interpretability. arXiv preprint

arXiv:1606.03490 (2016).

[104] Liu C., Yang H., Fan J., He L., and Wang Y. Distributed nonnegative

matrix factorization for web-scale dyadic data analysis on mapreduce. In “Pro-

ceedings of the 19th international conference on World wide web”, pages 681–690.

ACM (2010).

[105] Liu F. T., Ting K. M., and Zhou Z.-H. Isolation-based anomaly detection.

ACM Transactions on Knowledge Discovery from Data (TKDD) 6(1), 3 (2012).

[106] Liu J., Liao X., Huang W., and Liao X. Market segmentation: A multi-

ple criteria approach combining preference analysis and segmentation decision.

Omega (2018).

[107] Lu Y.-C., Chen F., Wang Y., and Lu C.-T. Discovering anomalies on mixed-

type data using a generalized student-t based approach. IEEE Transactions on

Knowledge and Data Engineering 28(10), 2582–2595 (2016).

[108] Luaces O., D́ıez J., Alonso-Betanzos A., Troncoso A., and Bahamonde

A. A factorization approach to evaluate open-response assignments in MOOCs

using preference learning on peer assessments. Knowledge-Based Systems 85,

322–328 (2015).

[109] Luaces O., D́ıez J., Alonso-Betanzos A., Troncoso A., and Bahamonde

A. Content-based methods in peer assessment of open-response questions to grade

students as authors and as graders. Knowledge-Based Systems 117, 79–87 (2017).

[110] Maaten L. v. d. and Hinton G. Visualizing data using t-sne. Journal of

Machine Learning Research 9(Nov), 2579–2605 (2008).

[111] Apache Mahout Project. http://mahout.apache.org/. Accessed: 2016-04-19.

[112] Martinez-Rego D., Castillo E., Fontenla-Romero O., and Alonso-

Betanzos A. A Minimum Volume Covering Approach with a Set of Ellipsoids.

Pattern Analysis and Machine Intelligence, IEEE Transactions on 35(12), 2997–

3009 (Dec 2013).

[113] Mart́ınez-Rego D., Fernández-Francos D., O.Fontenla-Romero, and

Alonso-Betanzos A. Stream change detection via passive-aggressive classifi-

cation and bernoulli CUSUM. Information Sciences 305, 130–145 (2015).

142

[114] Meng X., Bradley J., Yavuz B., Sparks E., Venkataraman S., Liu D.,

Freeman J., Tsai D., Amde M., Owen S., et al.. Mllib: Machine learning

in apache spark. The Journal of Machine Learning Research 17(1), 1235–1241

(2016).

[115] Moonesignhe H. and Tan P.-N. Outlier detection using random walks. In

“null”, pages 532–539. IEEE (2006).

[116] Murdoch W. J., Singh C., Kumbier K., Abbasi-Asl R., and Yu B. Inter-

pretable machine learning: definitions, methods, and applications. arXiv preprint

arXiv:1901.04592 (2019).

[117] Netzer Y., Wang T., Coates A., Bissacco A., Wu B., and Ng A. Y.

Reading digits in natural images with unsupervised feature learning. In “NIPS

Workshop on Deep Learning and Unsupervised Feature Learning 2011” (2011).

[118] Nicolau M., McDermott J., et al.. Learning neural representations for

network anomaly detection. IEEE transactions on cybernetics 49, 3074–3087

(2018).

[119] Otey M., Ghoting A., and Parthasarathy S. Fast distributed outlier

detection in mixed-attribute data sets. Data Mining and Knowledge Discovery

12(2-3), 203–228 (2006).

[120] Palma-Mendoza R.-J., Rodriguez D., and de Marcos L. Distributed

relieff-based feature selection in spark. Knowledge and Information Systems pages

1–20 (2018).

[121] Papadimitrou H., S.and Kitagawa, Gibbons P., and Faloutsos C. Loci:

Fast outlier detection using the local correlation integral. Technical report irp-

tr-02-09, Intel Research Laboratory (2002).

[122] Pham N. Hybrid lsh: Faster near neighbors reporting in high-dimensional space.

arXiv preprint arXiv:1607.06179 (2016).

[123] Platt J. et al.. Fast training of support vector machines using sequential

minimal optimization. Advances in Kernel Methods — Support Vector Learning

3 (1999).

[124] Quinlan J. R. “C4. 5: programs for machine learning”. Elsevier (2014).

[125] Quinlan J. R. Induction of decision trees. Machine Learning 1(1), 81–106

(1986).

143

[126] Ravichandran D., Pantel P., and Hovy E. Randomized algorithms and

nlp: using locality sensitive hash function for high speed noun clustering. In

“Proceedings of the 43rd annual meeting on association for computational lin-

guistics”, pages 622–629. Association for Computational Linguistics (2005).

[127] Robnik-Šikonja M. and Kononenko I. An adaptation of relief for attribute

estimation in regression. In “Machine Learning: Proceedings of the Fourteenth

International Conference (ICML’97)”, pages 296–304 (1997).

[128] Saini S., Chang J., and Jin H. Performance evaluation of the Intel Sandy

Bridge based NASA Pleiades using scientific and engineering applications. In

“High Performance Computing Systems. Performance Modeling, Benchmarking

and Simulation”, pages 25–51. Springer (2014).

[129] Sankaranarayanan J., Samet H., and Varshney A. A fast all nearest

neighbor algorithm for applications involving large point-clouds. Computers &

Graphics 31(2), 157–174 (2007).

[130] Sarasamma S. T., Zhu Q. A., and Huff J. Hierarchical kohonenen net for

anomaly detection in network security. IEEE Transactions on Systems, Man,

and Cybernetics, Part B (Cybernetics) 35(2), 302–312 (2005).

[131] Scholkopf B., Platt J., Shawe-Taylor J., Smola A., and Williamson

R. Estimating the support of a high-dimensional distribution. Neural Computa-

tion 13(7), 1443–1471 (2001).

[132] Schubert E., Zimek A., and Kriegel H. Local outlier detection reconsidered:

a generalized view on locality with applications to spatial, video, and network

outlier detection. Data Mining and Knowledge Discovery pages 1–48 (2012).

[133] Schwarz G. Estimating the dimension of a model. The annals of statistics 6(2),

461–464 (1978).

[134] Shan H. and Banerjee A. Bayesian co-clustering. In “Data Mining, 2008.

ICDM’08. Eighth IEEE International Conference on”, pages 530–539. IEEE

(2008).

[135] Shiravi A., Shiravi H., Tavallaee M., and Ghorbani A. A. Toward de-

veloping a systematic approach to generate benchmark datasets for intrusion

detection. computers & security 31(3), 357–374 (2012).

[136] Singh S., Tu H., Donat W., Pattipati K., and Willett P. Anomaly de-

tection via feature-aided tracking and hidden markov models. IEEE Transactions

144

on Systems, Man, and Cybernetics-Part A: Systems and Humans 39(1), 144–159

(2009).

[137] Slavkov I., Karcheska J., Kocev D., Kalajdziski S., and Džeroski S.

Relieff for hierarchical multi-label classification. In “International Workshop on

New Frontiers in Mining Complex Patterns”, pages 148–161. Springer (2013).

[138] Sodemann A., Ross M., and Borghetti B. A review of anomaly detection

in automated surveillance. IEEE Transactions on Systems, Man and Cybernetics

Part C: Applications and Reviews 42(6), 1257–1272 (2012).

[139] Sonnenburg S., Franc V., Yom-Tov E., and Sebag M. Pascal large

scale learning challenge. In “25th International Conference on Machine Learning

(ICML2008) Workshop”, volume 10, pages 1937–1953 (2008).

[140] Spark implementation of Fayyad’s discretizer based on Minimum Description

Length Principle (MDLP). http://spark-packages.org/package/sramirez/

spark-MDLP-discretization. Accessed: 2016-04-19.

[141] Spolaôr N., Cherman E. A., Monard M. C., and Lee H. D. Relieff for

multi-label feature selection. In “Intelligent Systems (BRACIS), 2013 Brazilian

Conference on”, pages 6–11. IEEE (2013).

[142] Stamper J., Niculescu-Mizil A., Ritter S., Gordon G., and Koedinger

K. Bridge to algebra data set from KDD Cup 2010 educational data mining

challenge (2010).

[143] Strubell E., Ganesh A., and McCallum A. Energy and policy considera-

tions for deep learning in nlp. arXiv preprint arXiv:1906.02243 (2019).

[144] S.Wu and Wang S. Parameter-free anomaly detection for categorical data. In

“Proceedings of the 7th International Conference on Machine Learning and Data

Mining, MLDM 2011. Lecture notes in Computer Science”, volume 6871, pages

112–126 (2011).

[145] Urbanowicz R. J., Meeker M., LaCava W., Olson R. S., and Moore

J. H. Relief-based feature selection: introduction and review. arXiv preprint

arXiv:1711.08421 (2017).

[146] Veiga J., Expósito R. R., Taboada G. L., and Touriño J. MREv: An

automatic mapreduce evaluation tool for big data workloads. Procedia Computer

Science 51, 80–89 (2015).

145

[147] Wang J., Wang J., Zeng G., Tu Z., Gan R., and Li S. Scalable k-nn graph

construction for visual descriptors. In “Computer Vision and Pattern Recognition

(CVPR), 2012 IEEE Conference on”, pages 1106–1113. IEEE (2012).

[148] Wang X., He X., Feng F., Nie L., and Chua T. Tem: Tree-enhanced

embedding model for explainable recommendation. In “Proceedings of the 2018

World Wide Web Conference on World Wide Web”, pages 1543–1552. Interna-

tional World Wide Web Conferences Steering Committee (2018).

[149] Wei L., Qian W., Zhou A., Jin W., and Yu J. Hot: Hypergraph-based

outlier test for categorical data. In Whang K., Jongwoo J., Shim K., and

Srivastava J., editors, “Advances in Knowledge Discovery and Data Mining”,

volume 2637 of “Lecture Notes in Computer Science”, pages 399–410. Springer

Berlin Heidelberg (2003).

[150] Wu F., Weimer W., Harman M., Jia Y., and Krinke J. Deep parameter

optimisation. In “Proceedings of the 2015 Annual Conference on Genetic and

Evolutionary Computation”, pages 1375–1382. ACM (2015).

[151] Wu S. and Wang S. Information-theoretic outlier detection for large-scale

categorical data. IEEE transactions on knowledge and data engineering 25(3),

589–602 (2013).

[152] Xu S., Li X., and Lu W. F. Randomized kd tree relieff algorithm for feature

selection in handling high dimensional process parameter data. In “Emerging

Technologies and Factory Automation (ETFA), 2016 IEEE 21st International

Conference on”, pages 1–8. IEEE (2016).

[153] Zaharia M., Chowdhury M., Franklin M. J., Shenker S., and Stoica I.

Spark: cluster computing with working sets. In “Proceedings of the 2nd USENIX

Conference on Hot Topics in Cloud Computing”, volume 10, page 10 (2010).

[154] Zhang K. and Jin H. An effective pattern based outlier detection approach

for mixed attribute data. In “Australasian Joint Conference on Artificial Intelli-

gence”, pages 122–131. Springer (2010).

[155] Zhang Y.-M., Huang K., Geng G., and Liu C.-L. Fast knn graph con-

struction with locality sensitive hashing. In “Joint European Conference on Ma-

chine Learning and Knowledge Discovery in Databases”, pages 660–674. Springer

(2013).

146

[156] Zhao Y., Liang S., Ren Z., Ma J., Yilmaz E., and de Rijke M. Explainable

user clustering in short text streams. In “Proceedings of the 39th International

ACM SIGIR conference on Research and Development in Information Retrieval”,

pages 155–164. ACM (2016).

[157] Zimek A., Schubert E., and Kriegel H.-P. A survey on unsupervised out-

lier detection in high-dimensional numerical data. Statistical Analysis and Data

Mining: The ASA Data Science Journal 5(5), 363–387 (2012).

147

148

Resumen extendido

El reciente aumento de la cantidad de datos disponibles ha dado lugar a una nueva

y prometedora era del aprendizaje máquina. La oleada de sensorización y de toma de

datos en todos los contextos, especialmente en el entorno web, han dado lugar a ingentes

cantidades de datos que están constituyendo un combustible con el que el aprendizaje

máquina está tomando gran velocidad. Los éxitos en este campo se están sucediendo a

un ritmo cada vez mayor gracias a la capacidad de algunos algoritmos de aprovechar

inmensas cantidades de datos para producir predicciones dif́ıciles y muy certeras. En

particular, el aprendizaje profundo o Deep Learning está obteniendo resultados que

en algunos casos superar las capacidades humanas para problemas tradicionalmente

considerados inasequibles para las máquinas. No obstante, estos progresos llegan con

un coste alto. La gran demanda computacional de estos algoritmos está convirtiendo la

investigación en este terreno en particular en un coto cerrado reservado a las entidades

con los grandes medios monetarios requeridos para el entrenamiento de este tipo de

modelos. Además, existe una creciente preocupación por los costes energéticos asociados

al uso de esta tecnoloǵıa. A mayores, muchos de los algoritmos hasta ahora disponibles

para los cient́ıficos de datos que ofrećıan grandes resultados han perdido su efectividad

en este nuevo escenario debido a las complicaciones asociadas al aprendizaje a gran

escala que han llevado a su abandono en favor de alternativas menos precisas pero que

śı pueden manejar estos volúmenes. Trabajar con grandes conjuntos de datos conlleva

problemas loǵısticos, dado que el manejo y almacenamiento de grandes cantidades de

datos se escapa de las capacidades de las tecnoloǵıas tradicionales. El aprendizaje a

gran escala también limita la complejidad computacional y espacial de los algoritmos

utilizados, siendo los algoritmos con coste lineal o menor los que mejor se prestan a

este escenario, frente a alternativas que ofrecen mejores resultados pero a un coste

computacional mayor. Este escenario también favorece los métodos con pocos o ningún

hiperparámetro a configurar, dado el alto coste que tiene realizar muchas iteraciones

de entrenamientos de prueba para ajustar dichos valores. Por último, el aprendizaje a

gran escala muestra complicaciones espećıficas que dificultan el aprendizaje tales como

la maldición de la dimensionalidad en el caso de conjuntos de datos con un gran número

de variables.

149

Existe, por tanto, una oportunidad en el estudio de algoritmos de aprendizaje

máquina que puedan realizar aprendizaje a gran escala. Tanto el mundo académico

como el empresarial se beneficiaŕıan de la existencia de nuevos algoritmos que se pue-

dan enfrentar a grandes conjuntos de datos. Se conoce como escalabilidad a la capacidad

de los algoritmos de mantener su efectividad a medida que la escala del conjunto de

datos aumenta. Esta tesis se centra en la escalabilidad de los algoritmos de aprendizaje

máquina y en ella exploraremos tanto modos de mejorar la escalabilidad de algoritmos

existentes como nuevos desarrollos de algoritmos que tienen la escalabilidad como meta

de diseño.

En el panorama actual del aprendizaje máquina, problemas clásicos como la pre-

dicción y la regresión cuentan con soluciones muy eficaces, generalmente basadas en

aprendizaje profundo, que además son capaces de tratar con grandes conjuntos de da-

tos. Es por ello que en esta tesis ponemos el foco en problemas cuyas soluciones actuales

tienen problemas al aumentar la escala. Por tanto, obviando las mencionadas clasifi-

cación y regresión, nos centramos en otros problemas. En particular, exploraremos la

selección de caracteŕısticas, definida como el estudio del valor predictivo de cada una

de las variables de entrada con el fin de desechar aquellas que sean redundantes y que-

darse con un subconjunto de variables con gran valor predictivo. También trataremos

la detección de anomaĺıas, es decir, la identificación de patrones de entrada que no

se ajustan a la distribución del resto de datos hasta el punto de hacer sospechar que

puedan haber sido generados por un proceso distinto al normal. Además trabajaremos

en la construcción de grafos, en particular del grafo de vecinos más cercanos, en su

uso en problemas de aprendizaje máquina y, en concreto, a la selección de caracteŕısti-

cas. Y, por último, haremos una incursión en el aprendizaje máquina explicable, que

está adquiriendo gran auge en tiempos recientes debido a las crecientes preocupaciones

respecto a la opacidad de los algoritmos de aprendizaje máquina tradicionales.

Analizamos el uso de cuatro estrategias diferentes para obtener los mencionados

algoritmos escalables nuevos o para transformar costosos algoritmos ya existentes para

dotarlos de mayor escalabilidad. En primer lugar, nos centramos en el procesamiento

distribuido, una tecnoloǵıa que se encuentra detrás de todos los avances recientes que

ha experimentado el aprendizaje máquina. La reestructuración de algoritmos para que

los cálculos que sean independientes entre śı se realicen simultáneamente es una manera

eficaz de acelerar el aprendizaje de modelos complejos, permitiendo tratar conjuntos

de datos mayores. El paradigma de programación Map Reduce facilita este proceso de

reestructuración de los algoritmos al homogeneizar la estructura. Plataformas de códi-

go abierto como Apache Hadoop o Apache Spark permiten al desarrollador centrarse

150

en la implementación del algoritmo, dejando los detalles loǵısticos de coordinación de

las máquinas que están realizando el cómputo, gestión de fallos, transferencia y al-

macenamiento de datos y demás a cargo de la plataforma. En esta tesis utilizaremos

procesamiento paralelo y presentamos implementaciones en Apache Spark de todos los

algoritmos tratados.

En el segundo caṕıtulo exploramos en detalle las ventajas del procesamiento dis-

tribuido frente al procesamiento paralelo en una sola máquina. Lo hacemos mediante

el desarrollo de nuevas alternativas escalables para la selección de caracteŕısticas. Al

centrarnos en este problema no solo podemos hacer la comparativa mencionada entre

implementaciones secuenciales, paralelas y distribuidas, sino que también portamos al

nuevo escenario de aprendizaje a gran escala herramientas que tradicionalmente hab́ıan

resultado muy útiles. Paradójicamente, existen pocas alternativas a la hora de realizar

selección de caracteŕısticas en conjuntos de grandes dimensiones, a pesar de que la

utilidad de estos métodos en dicho entorno es, si cabe, aún mayor que en problemas

de la escala tradicional. Es por ello que tomamos como objeto de estudio cuatro po-

pulares algoritmos de selección de caracteŕısticas que se incluyen en la plataforma de

aprendizaje máquina Weka con el objetivo de adaptarlos al nuevo escenario. La imple-

mentación secuencial provista por Weka, unida al alto coste computacional que tienen

estos algoritmos, limitan efectivamente el tamaño de los conjuntos de datos que pueden

ser procesados. Para los usuarios de Weka proponemos implementaciones paralelas de

los mismos algoritmos que se ejecutan en la máquina del usuario aprovechando toda

la capacidad computacional de la máquina, al utilizar todos los núcleos de compu-

tación disponible, acelerando sensiblemente el proceso. Para los usuarios con acceso

a un clúster de computación, presentamos implementaciones distribuidas de los mis-

mos algoritmos en Apache Spark, que permiten utilizar varias máquinas para poder

aśı enfrentarse a conjuntos de datos muy grandes en un tiempo razonable. Los resul-

tados experimentales detallados muestran que la implementación paralela ofrecen muy

notables ventajas respecto a la versión estándar disponible en Weka, mientras que la

implementación en Apache Spark ofrece aún mejores resultados para aquellos usuarios

que tengan acceso a los recursos computacionales necesarios.

El tercer caṕıtulo lo dedicamos a analizar la posibilidad de utilizar modelos apro-

ximados para acelerar cómputos costosos. La computación distribuida, mencionada

anteriormente, desplaza el alto coste temporal de los cómputos hacia unos mayores

requisitos de capacidad computacional, es decir, introduce una compensación del coste

temporal por coste de hardware. Sin embargo, y dado que la complejidad computacional

de algunos algoritmos es alta, incluso una implementación distribuida puede requerir

151

una capacidad computacional y un tiempo inasequibles. Por ello vale la pena explorar

la posibilidad de realizar cálculos que aproximen en poco tiempo el resultado exacto

buscado por el algoritmo original y comprobar su eficacia frente al uso del cómputo

exacto. Exploramos esta estrategia en el contexto del cómputo del grafo de vecinos más

cercanos, una estructura de datos utilizada en gran variedad de campos de la compu-

tación en general y del aprendizaje máquina en particular, que consiste en un grafo

dirigido donde cada puntos se enlaza con sus k vecinos más cercanos. El cálculo exacto

de este grafo en casos generales tiene un coste computacional del orden del cuadrado del

número de elementos del conjunto de datos, lo cual lo convierte en demasiado costoso

para conjuntos de datos grandes. Proponemos el algoritmo VRLSH (Variable Reso-

lution Locality Sensitive Hashing), que hace uso de Hashing Sensible a la Localidad

(LSH) para reducir esta ingente cantidad de datos, evitando mediciones de distancias

entre puntos para los que tenemos una probabilidad de vecindad muy baja. El LSH

consiste en la utilización de funciones construidas especialmente que env́ıan elementos

de un espacio de entrada de alta dimensión y generalmente muy disperso a un espacio

de dimensión mucho menor y con mucha mayor densidad. Al hacerlo, tienen la parti-

cularidad de que env́ıan al mismo punto de destino aquellos puntos que en el espacio

de entrada se encontraban cercanos. Este proceso nos permite obtener agrupaciones de

puntos cercanos entre los cuales realizar mediciones de distancia, evitando dicho cómpu-

to para puntos que sabemos distantes con alta probabilidad. El uso de LSH para este

problema también tiene la ventaja de que permite trabajar con medidas de distancia

muy variables, con el único requisito de que exista una función de hashing apropiada

para esa medida. No obstante, en este trabajo nos centraremos en el caso más popular,

que es el del uso de la medida de distancia eucĺıdea. La implementación propuesta,

que además aprovecha la estructura del problema para distribuir los cálculos para que

se puedan efectuar en paralelo, obtiene grafos muy coincidentes con grafo exacto y lo

hace utilizando tan solo una pequeña fracción del esfuerzo computacional. Detallamos

además experimentos que demuestran que esto es aśı para distintos conjuntos de datos

con caracteŕısticas muy variables y que la precisión y velocidad obtenidas superan a los

métodos alternativos.

Esta nueva implementación ha sido probada en un caso de uso aplicado al apren-

dizaje máquina, proceso que es detallado en el caṕıtulo cuarto. En él se explican las

modificaciones que se tuvo que hacer a VRLSH para poder aplicarlo al problema de

la selección de caracteŕısticas con el popular método ReliefF. Este algoritmo utiliza las

diferencias y similitudes entre las caracteŕısticas de vecinos más cercanos para estable-

cer qué atributos son más determinantes a la hora de diferenciar elementos de distintas

clases, estableciendo aśı un clasificación de las caracteŕısticas por orden de importancia

152

que se puede utilizar para desechar las menos relevantes. Para realizar este proceso,

ReliefF debe disponer primeramente del grafo de vecinos más cercanos de cada clase,

cuyo coste computacional cuadrático impide que ReliefF se pueda utilizar para selec-

cionar caracteŕısticas de conjuntos de datos muy numerosos. Presentamos, por tanto,

ReliefF-LSH, un algoritmo que utiliza una variante de VRLSH que respeta las distintas

clases de cada punto y obtiene una aproximación certera del deseado grafo de vecinos

más cercanos de cada clase en una pequeña fracción de tiempo requerido por la versión

original. Los resultados experimentales demuestran que, en una variedad de conjuntos

de datos muy diversos en sus dimensiones, las caracteŕısticas seleccionadas por ReliefF-

LSH difieren poco de las seleccionadas por el más costoso ReliefF, mientras que el

tiempo de computación se reduce sensiblemente. Además, ReliefF-LSH ofrece mejores

resultados que otros métodos de aproximar ReliefF, pudiendo, a diferencia de estos,

enfrentarse a todos los tipos de datos que se pueden procesar con la versión exacta de

ReliefF.

La tercera estrategia para aumentar la escalabilidad de los algoritmos consiste en

el diseño de modelos que aprovechan una particularidad de los datos de entrada para

simplificar el entrenamiento y se detalla en el caṕıtulo quinto. En particular, tratamos

el problema de la detección de anomaĺıas en el contexto particular en que los datos de

entrada son una mezcla de variables numéricas y categóricas, un caso muy frecuente.

Generalmente esta caracteŕıstica de los datos de entrada se obvia y se transforman los

datos de entrada a valores exclusivamente numéricos o, con menos frecuencia, a valores

exclusivamente categóricos. Los algoritmos que śı mantienen esa distinción entre tipos

de variables tienen un coste computacional que impide su uso en conjuntos de datos

grandes, tal como mostramos en la sección experimental del caṕıtulo. Proponemos un

algoritmo, llamado ADMNC (Anomaly Detection in Mixed Numerical and Categorical

inputs), que transforma esta complicación de los datos de entrada en una ventaja que

le permite desgranar el modelo a aprender en dos partes más sencillas. Para ello, se

propone una factorización de la probabilidad conjunta de las variables de entradas

en el producto de la probabilidad de las variables continuas por la probabilidad de

las variables categóricas condicionadas a las continuas, obteniendo para cada punto

un estimador que, tras establecer un umbral, se puede utilizar para detectar datos

anómalos. Para modelar la probabilidad de las variables numéricas se utiliza una mezcla

de gaussianas, mientras que para modelar la probabilidad de las variables categóricas

condicionadas a las numéricas se utiliza un modelo de regresión loǵıstica. Estos dos

modelos son sencillos y se pueden aprender con poco esfuerzo computacional, por lo que

el algoritmo resultante consigue mantener la distinción entre los dos tipos de variables

y escalar a grandes conjuntos de datos. Los experimentos realizados demuestran que

153

el algoritmo ofrece resultados comparables al estado del arte para conjuntos de datos

pequeños, mientras que en conjuntos de datos grandes obtiene resultados superiores a

las alternativas disponibles.

Finalmente, en el caṕıtulo seis detallamos la utilización de la computación espe-

culativa a la que da acceso la programación distribuida para mejorar la eficiencia de

modelos que, a priori, seŕıan demasiado sencillos para aplicar en contextos de aprendi-

zaje a gran escala. Aplicamos, además, esta idea en el floreciente campo del Aprendizaje

Máquina Explicable, que busca dotar a los algoritmos de aprendizaje máquina, hasta

ahora opacos a la hora de justificar sus predicciones, de caracteŕısticas que permitan

verificar que su comportamiento es el adecuado, que sus predicciones generalizan a da-

tos que divergen mucho de aquellos utilizados para entrenar, que les permitan ofrecer

información novedosa y que permitan formular hipótesis que luego se puedan verificar

experimentalmente. Estas caracteŕısticas no solo son de gran interés comercial por el

gran abanico de posibilidades que descubren, sino que incluso son un requisito legal

tras la implantación de normativas como el RGPD (Reglamento General de Protección

de Datos) de la Unión Europea, vigente desde hace algunos meses. Para atacar este

problema, Presentamos un algoritmo que proporciona una explicación a las prediccio-

nes realizadas por una función de utilidad que relaciona elementos de dos entidades

diferentes. Este tipo de datos, conocidos como datos diádicos, está presente en muchos

problemas de computación que son de gran interés no solo académico sino también

comercial. Obtener una explicación de estos datos es, por tanto, un objetivo codicia-

do para el cual exist́ıan pocas alternativas disponibles. El algoritmo presentado hace

uso de un árbol de decisión para obtener grupos de elementos de una entidad que se

comportan de manera homogénea con respecto a la otra entidad. Este planteamiento

consigue que los grupos se puedan describir con muy pocas variables de entrada, consti-

tuyendo, de facto, una explicación de la información codificada en la función de utilidad

que relaciona ambas entidades. La computación distribuida permite la exploración de

un gran número de posibles árboles de decisión en un tiempo razonable. Proponemos,

además, una medida de calidad que permite evaluar la idoneidad de una explicación

sobre datos diádicos teniendo en cuenta no solo su capacidad predictiva sino también

su explicabilidad. Los resultados experimentales muestran la superioridad de nuestro

método frente a las alternativas disponibles, aśı como apuntan a posibles casos de uso

de la información novedosa extráıda en el proceso.

Además, dado que la escalabilidad de los algoritmos de aprendizaje máquina es el

tema central de esta tesis, para todos los algoritmos presentados se ha llevado a cabo un

estudio de su tiempo de ejecución a medida que se añaden más máquinas al cómputo.

154

Estos experimentos están descritos y detallados en cada una de las secciones experi-

mentales de los distintos caṕıtulos y muestran, en todos los casos, que los algoritmos

obtenidos son altamente escalables, dado que el tiempo de ejecución desciende en la

misma proporción en que se añaden máquinas al cómputo. Esto faculta a los algoritmos

presentados para tratar con conjuntos de datos masivos, siempre y cuando se dispongan

de máquinas suficientes para llevar a cabo los cálculos en un tiempo razonable.

En el desarrollo de esta tesis hemos obtenido desarrollos que hemos puesto a dis-

posición de la comunidad académica y de cient́ıficos de datos. Hemos implementado

cuatro nuevos algoritmos y seis versiones de algoritmos existentes que tratan los pro-

blemas mencionados. Todos los algoritmos presentados han sido puestos a disposición

del lector para su descarga en repositorios de código. Además, los resultados se han

difundido mediante publicaciones en revistas cient́ıficas y presentaciones en congresos

nacionales e internacionales para facilitar que tanto investigadores como cient́ıficos de

datos puedan conocerlos y utilizarlos. A fecha de presentación de la tesis, dos de los

trabajos han sido publicados en revistas que se encuentran en el primer cuartil del

ı́ndice Journal Citation Records, mientras que otro trabajo ha sido publicado en una

revista que se encuentra en el segundo cuartil del mismo ı́ndice. Además, dos trabajos

adicionales están bajo revisión en revistas del primer cuartil, y otros cinco trabajos se

han presentado en congresos especializados, uno de ellos en un congreso internacional.

Esta tesis se cierra con un caṕıtulo donde se detallan las principales conclusiones

a las que se llegó tras el desarrollo de los trabajos que la componen. En particular,

se refrenda la validez de las estrategias exploradas y se indica aquéllas que ofrecen

mayores posibilidades de crecimiento. En ese sentido, también se listan las nuevas ĺıneas

de investigación abiertas y las posibles avenidas de crecimiento que todav́ıa no se han

comenzado a explorar pero que muestran indicios de tener potencial. Esto se une a la

sección de conclusiones de cada uno de los caṕıtulos individuales, donde se detallan las

mejoras previstas de cada uno de los algoritmos presentados.

En resumen, esta tesis es una exploración de los modos en que afrontar problemas

que inicialmente están más allá de las capacidades de un algoritmo mediante la colabo-

ración entre varias máquinas para aunar esfuerzos, entre otras estrategias. Aplicamos

esa misma filosof́ıa a la investigación y por ello proporcionamos implementaciones de

todos nuestros algoritmos, esperando que sean un granito de arena en el gran esfuerzo

colectivo de construir máquinas inteligentes.

155

156

