2 research outputs found

    An environment for sustainable research software in Germany and beyond: current state, open challenges, and call for action

    Get PDF
    Research software has become a central asset in academic research. It optimizes existing and enables new research methods, implements and embeds research knowledge, and constitutes an essential research product in itself. Research software must be sustainable in order to understand, replicate, reproduce, and build upon existing research or conduct new research effectively. In other words, software must be available, discoverable, usable, and adaptable to new needs, both now and in the future. Research software therefore requires an environment that supports sustainability. Hence, a change is needed in the way research software development and maintenance are currently motivated, incentivized, funded, structurally and infrastructurally supported, and legally treated. Failing to do so will threaten the quality and validity of research. In this paper, we identify challenges for research software sustainability in Germany and beyond, in terms of motivation, selection, research software engineering personnel, funding, infrastructure, and legal aspects. Besides researchers, we specifically address political and academic decision-makers to increase awareness of the importance and needs of sustainable research software practices. In particular, we recommend strategies and measures to create an environment for sustainable research software, with the ultimate goal to ensure that software-driven research is valid, reproducible and sustainable, and that software is recognized as a first class citizen in research. This paper is the outcome of two workshops run in Germany in 2019, at deRSE19 - the first International Conference of Research Software Engineers in Germany - and a dedicated DFG-supported follow-up workshop in Berlin

    Link-based approach to study scientific software usage: the case of VOSviewer

    Get PDF
    Scientific software is a fundamental player in modern science, participating in all stages of scientific knowledge production. Software occasionally supports the development of trivial tasks, while at other instances it determines procedures, methods, protocols, results, or conclusions related with the scientific work. The growing relevance of scientific software as a research product with value of its own has triggered the development of quantitative science studies of scientific software. The main objective of this study is to illustrate a link-based webometric approach to characterize the online mentions to scientific software across different analytical frameworks. To do this, the bibliometric software VOSviewer is used as a case study. Considering VOSviewer's official website as a baseline, online mentions to this website were counted in three different analytical frameworks: academic literature via Google Scholar (988 mentioning publications), webpages via Majestic (1,330 mentioning websites), and tweets via Twitter (267 mentioning tweets). Google scholar mentions shows how VOSviewer is used as a research resource, whilst mentions in webpages and tweets show the interest on VOSviewer's website from an informational and a conversational point of view. Results evidence that URL mentions can be used to gather all sorts of online impacts related to non-traditional research objects, like software, thus expanding the analytical scientometric toolset by incorporating a novel digital dimension.Merit, Expertise and Measuremen
    corecore