32 research outputs found

    Stability and inference in discrete diffusion scale-spaces

    Get PDF
    Taking averages of observations is the most basic method to make inferences in the presence of uncertainty. In late 1980's, this simple idea has been extended to the principle of successively average less where the change is faster, and applied to the problem of revealing a signal with jump discontinuities in additive noise. Successive averaging results in a family of signals with progressively decreasing amount of details, which is called the scale-space and further conveniently formalized by viewing it as a solution to a certain diffusion-inspired evolutionary partial differential equation (PDE). Such a model is known as the diffusion scale-space and it possesses two long-standing problems: (i) model analysis which aims at establishing stability and guarantees that averaging does not distort important information, and (ii) model selection, such as identification of the optimal scale (diffusion stopping time) given an initial noisy signal and an incomplete model. This thesis studies both problems in the discrete space and time. Such a setting has been strongly advocated by Lindeberg [1991] and Weickert [1996] among others. The focus of the model analysis part is on necessary and sufficient conditions which guarantee that a discrete diffusion possesses the scale-space property in the sense of sign variation diminishing. Connections with the total variation diminishing and the open problem in a multivariate case are discussed too. Considering the model selection, the thesis unifies two optimal diffusion stopping principles: (i) the time when the Shannon entropy-based Liapunov function of Sporring and Weickert [1999] reaches its steady state, and (ii) the time when the diffusion outcome has the least correlation with the noise estimate, contributed by Mrázek and Navara [2003]. Both ideas are shown to be particular cases of the marginal likelihood inference. Moreover, the suggested formalism provides first principles behind such criteria, and removes a variety of inconsistencies. It is suggested that the outcome of the diffusion should be interpreted as a certain expectation conditioned on the initial signal of observations instead of being treated as a random sample or probabilities. This removes the need to normalize signals in the approach of Sporring and Weickert [1999], and it also better justifies application of the correlation criterion of Mrázek and Navara [2003]. Throughout this work, the emphasis is given on methods that enable to reduce the problem to that of establishing the positivity of a quadratic form. The necessary and sufficient conditions can then be approached via positivity of matrix minors. A supplementary appendix is provided which summarizes a novel method of evaluating matrix minors. Intuitive examples of difficulties with statistical inference conclude the thesis.reviewe

    Multiresolution image models and estimation techniques

    Get PDF

    Dynamical Systems

    Get PDF
    Complex systems are pervasive in many areas of science integrated in our daily lives. Examples include financial markets, highway transportation networks, telecommunication networks, world and country economies, social networks, immunological systems, living organisms, computational systems and electrical and mechanical structures. Complex systems are often composed of a large number of interconnected and interacting entities, exhibiting much richer global scale dynamics than the properties and behavior of individual entities. Complex systems are studied in many areas of natural sciences, social sciences, engineering and mathematical sciences. This special issue therefore intends to contribute towards the dissemination of the multifaceted concepts in accepted use by the scientific community. We hope readers enjoy this pertinent selection of papers which represents relevant examples of the state of the art in present day research. [...

    Backpropagation Beyond the Gradient

    Get PDF
    Automatic differentiation is a key enabler of deep learning: previously, practitioners were limited to models for which they could manually compute derivatives. Now, they can create sophisticated models with almost no restrictions and train them using first-order, i. e. gradient, information. Popular libraries like PyTorch and TensorFlow compute this gradient efficiently, automatically, and conveniently with a single line of code. Under the hood, reverse-mode automatic differentiation, or gradient backpropagation, powers the gradient computation in these libraries. Their entire design centers around gradient backpropagation. These frameworks are specialized around one specific task—computing the average gradient in a mini-batch. This specialization often complicates the extraction of other information like higher-order statistical moments of the gradient, or higher-order derivatives like the Hessian. It limits practitioners and researchers to methods that rely on the gradient. Arguably, this hampers the field from exploring the potential of higher-order information and there is evidence that focusing solely on the gradient has not lead to significant recent advances in deep learning optimization. To advance algorithmic research and inspire novel ideas, information beyond the batch-averaged gradient must be made available at the same level of computational efficiency, automation, and convenience. This thesis presents approaches to simplify experimentation with rich information beyond the gradient by making it more readily accessible. We present an implementation of these ideas as an extension to the backpropagation procedure in PyTorch. Using this newly accessible information, we demonstrate possible use cases by (i) showing how it can inform our understanding of neural network training by building a diagnostic tool, and (ii) enabling novel methods to efficiently compute and approximate curvature information. First, we extend gradient backpropagation for sequential feedforward models to Hessian backpropagation which enables computing approximate per-layer curvature. This perspective unifies recently proposed block- diagonal curvature approximations. Like gradient backpropagation, the computation of these second-order derivatives is modular, and therefore simple to automate and extend to new operations. Based on the insight that rich information beyond the gradient can be computed efficiently and at the same time, we extend the backpropagation in PyTorch with the BackPACK library. It provides efficient and convenient access to statistical moments of the gradient and approximate curvature information, often at a small overhead compared to computing just the gradient. Next, we showcase the utility of such information to better understand neural network training. We build the Cockpit library that visualizes what is happening inside the model during training through various instruments that rely on BackPACK’s statistics. We show how Cockpit provides a meaningful statistical summary report to the deep learning engineer to identify bugs in their machine learning pipeline, guide hyperparameter tuning, and study deep learning phenomena. Finally, we use BackPACK’s extended automatic differentiation functionality to develop ViViT, an approach to efficiently compute curvature information, in particular curvature noise. It uses the low-rank structure of the generalized Gauss-Newton approximation to the Hessian and addresses shortcomings in existing curvature approximations. Through monitoring curvature noise, we demonstrate how ViViT’s information helps in understanding challenges to make second-order optimization methods work in practice. This work develops new tools to experiment more easily with higher-order information in complex deep learning models. These tools have impacted works on Bayesian applications with Laplace approximations, out-of-distribution generalization, differential privacy, and the design of automatic differentia- tion systems. They constitute one important step towards developing and establishing more efficient deep learning algorithms

    Statistical Diffusion Tensor Imaging

    Get PDF
    Magnetic resonance diffusion tensor imaging (DTI) allows to infere the ultrastructure of living tissue. In brain mapping, neural fiber trajectories can be identified by exploiting the anisotropy of diffusion processes. Manifold statistical methods may be linked into the comprehensive processing chain that is spanned between DTI raw images and the reliable visualization of fibers. In this work, a space varying coefficients model (SVCM) using penalized B-splines was developed to integrate diffusion tensor estimation, regularization and interpolation into a unified framework. The implementation challenges originating in multiple 3d space varying coefficient surfaces and the large dimensions of realistic datasets were met by incorporating matrix sparsity and efficient model approximation. Superiority of B-spline based SVCM to the standard approach was demonstrable from simulation studies in terms of the precision and accuracy of the individual tensor elements. The integration with a probabilistic fiber tractography algorithm and application on real brain data revealed that the unified approach is at least equivalent to the serial application of voxelwise estimation, smoothing and interpolation. From the error analysis using boxplots and visual inspection the conclusion was drawn that both the standard approach and the B-spline based SVCM may suffer from low local adaptivity. Therefore, wavelet basis functions were employed for filtering diffusion tensor fields. While excellent local smoothing was indeed achieved by combining voxelwise tensor estimation with wavelet filtering, no immediate improvement was gained for fiber tracking. However, the thresholding strategy needs to be refined and the proposed model of an incorporation of wavelets into an SVCM needs to be implemented to finally assess their utility for DTI data processing. In summary, an SVCM with specific consideration of the demands of human brain DTI data was developed and implemented, eventually representing a unified postprocessing framework. This represents an experimental and statistical platform to further improve the reliability of tractography

    Generalized averaged Gaussian quadrature and applications

    Get PDF
    A simple numerical method for constructing the optimal generalized averaged Gaussian quadrature formulas will be presented. These formulas exist in many cases in which real positive GaussKronrod formulas do not exist, and can be used as an adequate alternative in order to estimate the error of a Gaussian rule. We also investigate the conditions under which the optimal averaged Gaussian quadrature formulas and their truncated variants are internal

    MS FT-2-2 7 Orthogonal polynomials and quadrature: Theory, computation, and applications

    Get PDF
    Quadrature rules find many applications in science and engineering. Their analysis is a classical area of applied mathematics and continues to attract considerable attention. This seminar brings together speakers with expertise in a large variety of quadrature rules. It is the aim of the seminar to provide an overview of recent developments in the analysis of quadrature rules. The computation of error estimates and novel applications also are described

    Methods for Online UAV Path Planning for Tracking Multiple Objects

    Get PDF
    Unmanned aerial vehicles (UAVs) or drones have rapidly evolved to enable carrying various sensors such as thermal sensors for vision or antennas for radio waves. Therefore, drones can be transformative for applications such as surveillance and monitoring because they have the capability to greatly reduce the time and cost associated with traditional tasking methods. Realising this potential necessitates equipping UAVs with the ability to perform missions autonomously. This dissertation considers the problems of online path planning for UAVs for the fundamental task of surveillance comprising of tracking and discovering multiple mobile objects in a scene. Tracking and discovering an unknown and time-varying number of objects is a challenging problem in itself. Objects such as people or wildlife tend to switch between various modes of movements. Measurements received by the UAV’s on-board sensors are often very noisy. In practice, the on-board sensors have a limited field of view (FoV), hence, the UAV needs to move within range of the mobile objects that are scattered throughout a scene. This is extremely challenging because neither the exact number nor locations of the objects of interest are available to the UAV. Planning the path for UAVs to effectively detect and track multi-objects in such environments poses additional challenges. Path planning techniques for tracking a single object are not applicable. Since there are multiple moving objects appearing and disappearing in the region, following only certain objects to localise them accurately implies that a UAV is likely to miss many other objects. Furthermore, online path planning for multi-UAVs remains challenging due to the exponential complexity of multi-agent coordination problems. In this dissertation, we consider the problem of online path planning for UAV-based localisation and tracking of multi-objects. First, we realised a low cost on-board radio receiver system on aUAV and demonstrated the capability of the drone-based platform for autonomously tracking and locating multiple mobile radio-tagged objects in field trials. Second, we devised a track-before-detect filter coupled with an online path planning algorithm for joint detection and tracking of radio-tagged objects to achieve better performance in noisy environments. Third, we developed a multi-objective planning algorithm for multi-agents to track and search multi-objects under the practical constraint of detection range limited on-board sensors (or FoV limited sensors). Our formulation leads to a multi-objective value function that is a monotone submodular set function. Consequently, it allows us to employ a greedy algorithm for effectively controlling multi-agents with a performance guarantee for tracking discovered objects while searching for undiscovered mobile objects under practical constraints of limited FoV sensors. Fourth, we devised a fast distributed tracking algorithm that can effectively track multi-objects for a network of stationary agents with different FoVs. This is the first such solution to this problem. The proposed method can significantly improve capabilities of a network of agents to track a large number of objects moving in and out of the limited FoV of the agents’ sensors compared to existing methods that do not consider the problem of unknown and limited FoV of sensors.Thesis (Ph.D.) -- University of Adelaide, School of Computer Science, 202
    corecore