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Abstract

Taking averages of observations is the most basic method to make inferences in
the presence of uncertainty. In late 1980’s, this simple idea has been extended to
the principle of successively average less where the change is faster, and applied to
the problem of revealing a signal with jump discontinuities in additive noise.

Successive averaging results in a family of signals with progressively decreasing
amount of details, which is called the scale-space and further conveniently formal-
ized by viewing it as a solution to a certain diffusion-inspired evolutionary partial
differential equation (PDE). Such a model is known as the diffusion scale-space
and it possesses two long-standing problems: (i) model analysis which aims at
establishing stability and guarantees that averaging does not distort important
information, and (ii) model selection, such as identification of the optimal scale
(diffusion stopping time) given an initial noisy signal and an incomplete model.

This thesis studies both problems in the discrete space and time. Such a setting has
been strongly advocated by Lindeberg [1991] and Weickert [1996] among others.
The focus of the model analysis part is on necessary and sufficient conditions which
guarantee that a discrete diffusion possesses the scale-space property in the sense
of sign variation diminishing. Connections with the total variation diminishing
and the open problem in a multivariate case are discussed too.

Considering the model selection, the thesis unifies two optimal diffusion stop-
ping principles: (i) the time when the Shannon entropy-based Liapunov function
of Sporring and Weickert [1999] reaches its steady state, and (ii) the time when
the diffusion outcome has the least correlation with the noise estimate, contributed
by Mrázek and Navara [2003]. Both ideas are shown to be particular cases of the
marginal likelihood inference. Moreover, the suggested formalism provides first
principles behind such criteria, and removes a variety of inconsistencies. It is
suggested that the outcome of the diffusion should be interpreted as a certain ex-
pectation conditioned on the initial signal of observations instead of being treated
as a random sample or probabilities. This removes the need to normalize sig-
nals in the approach of Sporring and Weickert [1999], and it also better justifies
application of the correlation criterion of Mrázek and Navara [2003].

Throughout this work, the emphasis is given on methods that enable to reduce the
problem to that of establishing the positivity of a quadratic form. The necessary
and sufficient conditions can then be approached via positivity of matrix minors.
A supplementary appendix is provided which summarizes a novel method of eval-
uating matrix minors. Intuitive examples of difficulties with statistical inference
conclude the thesis.
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Preface

Above all, he [Quesalid] learned the ars magna of one of the shaman-
istic schools of the Northwest Coast: The shaman hides a little tuft
of down in a corner of his mouth, and he throws it up, covered with
blood, at the proper moment–after having bitten his tongue or made his
gums bleed–and solemnly presents it to his patient and the onlookers
as the pathological foreign body extracted as a result of his sucking and
manipulations.

While visiting the neighboring Koskimo Indians, Quesalid attends a
curing ceremony of his illustrious colleagues of the other tribe. To his
great astonishment he observes a difference in their technique. Instead
of spitting out the illness in the form of a “bloody worm” (the concealed
down), the Koskimo shamans merely spit a little saliva into their hands,
and they dare to claim that this is “the sickness”...

C. Lévi–Strauss (Anthropologie structurale, 1958, transl. by C.
Jacobson and B. Grundfest Schoepf)

This thesis deals with the analysis of the possibility to automate scale-space meth-
ods on a computer. It is a summary of work which has been carried out at the
Department of Information and Computer Science in the Faculty of Information
and Natural Sciences at Helsinki University of Technology under the ComMIT
grant 2002–2006. I am very grateful to Prof. Erkki Oja who made this work pos-
sible and more concrete. I am indebted to Doc. Jorma Laaksonen who has been
my direct instructor for years. I thank both of the reviewers, Prof. Keijo Ruot-
salainen and Prof. Samuli Siltanen, for their thorough and constructive comments.
A particular credit must be given to my parents, friends and colleagues for their
support. The story of two shamans I heard from Doc. Vitalij Nevdacha.

Following a famous phrase, there may exist a certain weakness for mathematics,
but no addiction to it. The text is not self-contained, and basic knowledge of
matrix theory and statistical inference is assumed from the reader. In order to
emphasize contributory aspects, known statements are not proven. The references
to the sources with their proofs are given instead. An unnecessary explosion of
citations is often prevented by stating a more recent work which contains references
to original sources.

In order to ease the reading, acronyms are not much used in the thesis. The
term ‘Shannon entropy’ may refer to ‘differential Shannon entropy’, ‘likelihood’ to
‘density likelihood’, and ‘covariance’ to ‘covariance function’, ‘covariance matrix’,
or ‘element in the covariance matrix’. When the terms are frequently referred to
and the context is clear, the explicit connotations become unnecessary.

Ramūnas Girdziušas

Otaniemi, 28th of January, 2008
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Chapter 1

About the Thesis

1.1 Introduction

This thesis aims at contributing to our understanding on the processing of infor-
mation. The goal is to discuss the interaction of such concepts as ‘stability’ and
‘incomplete knowledge’ by using mathematics. The work allows to better utilize
computers in automating model selection.

The basic operative setting is the method of taking (local) averages of observa-
tions, called smoothing. In this way, we remove unnecessary information (details)
and create a more robust representation of measurement, which we can already
call as knowledge. When data consists of dense observation sets residing in low-
dimensional spaces (time series, images), one can further average the observations
iteratively or successively and produce the so-called scale-space of signals with
progressively lesser details. The smallest amount of useful information can then
be attributed to such a member of the scale-space whose values are all constant
and equal to the average value of the given signal. Often, a certain optimal scale
will exist at which the member of the scale-space reveals some useful properties of
the observations. The principle of a scale-space is clarified in Fig. 1.1 as a space
of signals created by successively smoothing the observations.

One of the first and most studied scale-spaces can be attributed to the Fourier
model of heat flow, which is known as the linear diffusion model in a continuous
space and time. Many of its properties have been analyzed in different branches
of mathematics and physics. Utilization of diffusion in solving the problems of
‘signal in noise’ has been studied a lot especially from 1950 to 1970s and can be
found under the topic of ‘Wiener–Kolmogorov smoothing’.

In the late 1980s, numerous studies appeared on the implementation of the smooth-
ing paradigm ‘successively average less where signals change faster’. This type of
smoothing revealed the possibility of discontinuity formation and the recovery of
discontinuities from corrupted observations. A particular formalism that aims to
generalize a linear diffusion model has been independently discussed in a vari-

9
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Figure 1.1: The principle of the scale-space is to enrich a given signal u0 with a
family of its ‘versions’ us, s > 0. Each signal us is assumed to have less struc-
ture than us−1, and a large portion of scale-space analysis is devoted to a better
understanding of what ‘structure’ really means.

ety of fields: (i) image processing, i.e. [Perona and Malik, 1987], [Matsuba, 1988]
and [Gidas, 1989], (ii) physics, i.e. [Rosenau et al., 1989] and [Rosenau, 1990,
1992], and (iii) mathematical analysis, see e.g. [Bertsch and Dal Passo, 1989, 1992]
and [Barenblatt et al., 1993]. Image processing community considered ‘low level
vision’. Physicists studied finitely-fast propagating diffusions by unifying hyper-
bolic systems with their parabolic counterparts. Mathematicians dwelled deeper
into the nature of continuity and ill-posedness.

This work will focus on the setting of a finitely discrete space and time, which
is very much inspired by the works of Lindeberg [1990] and Weickert [1996].
A central tool in this work is an array of m rows and n columns of real-valued
entries, denoted as A ∈ Rm×n and called a matrix. The emphasis will be given on
the use of tridiagonal matrices which stand as discrete counterparts of continuous
Laplacian operators. There are numerous ways to set the elements of these matrices
in order to introduce useful ‘nonlinear effects’ into the smoothing. A variety of
such nonlinearities is summarized in [Teboul et al., 1998]. The work of Keeling
[2003] provides comparisons with such a simple smoothing method as the median
filter, and D’Almeida [2003] has released a stable numerical implementation of a
diffusion which uses a fast LU decomposition of the tridiagonal matrix and additive
operator splitting. The latter remains rather little known even among the experts
of the numerical analysis of partial differential equations (PDEs).

In this thesis, a discrete scale-space is used as a hypothesis space to make improve-
ments to the methodology of the optimal scale selection. The contributions of this
work are related to the model selection problem, which should be here considered
as a synonym to model identification, reasoning under uncertainty or information
incompleteness, statistical inference, parameter estimation, probabilistic comple-
tion and other related concepts.
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1.2 Contribution

This work contributes to the optimal scale selection. In general, such a scale may
not exist or it might be even better to utilize a variety of scales in order to obtain
optimal smoothing of signals. However, this type of remarks concerns with the
choice of a specific formalism. One can often reveal a single ‘effective scale’ when
performing model averaging or find out that both formalisms produce meaningful
results, but operate with incompatible assumptions.

Instead of summarizing philosophical debates between various schools, the thesis
focuses on two important examples which are the works of Sporring and Weick-
ert [1999] and Mrázek and Navara [2003]. It is shown how, on the idea level, a
heuristic reasoning in these papers automatically emerges as a byproduct of the
marginal likelihood inference. In particular, Propositions 3.6 and 3.7 unify two
seemingly different methods and eliminate a variety of inconsistencies. Essential
improvements can be mentioned:

1. Rényi’s entropies in [Sporring and Weickert, 1999] are known to increase
w.r.t. to increasing scale. However, this does not justify them as the opti-
mal scale locators. Models are developed and tested which: (i) support the
idea of entropy-based stopping theoretically, and (ii) further bring it to a
computational level.

2. It is a nasty habit to confuse probabilities with observations, which takes
place in the development of many iterative smoothing algorithms stated
in [Carasso, 1999], and the work of Sporring and Weickert [1999] is no ex-
ception. The latter introduces a conceptual confusion between stability and
inference, and it ignores the fact that probabilities are not physically mea-
surable quantities. As a result, unnecessary preprocessing of signals emerges
which fails against intuitive arguments of invariance. This difficulty is elim-
inated by suggesting the use of differential Shannon entropies whose mono-
tonicity w.r.t. increasing scale is established in Proposition 3.9.

3. Mrázek and Navara [2003] advocate the ‘decorrelation’ as the optimal selec-
tion criterion. It is simple and works well, but it lacks justification. In this
case, another source of misunderstandings becomes evident: Process sample
paths may be confused with conditional expectations taken over them. The
thesis provides explicit probabilistic justification of the principle ‘decorre-
late the model output with noise’ and further generalizes it to non-Gaussian
situations in Proposition 3.8.

The basic message is that a discrete diffusion-inspired scale-space can be seen as
an incomplete probabilistic statement which provides the knowledge at the level of
conditional means. The problem of optimal scale selection is seen as the presence
of unknown covariances. The thesis contributes with a nontrivial relationship
between the two layers of a statistical hierarchy.

During the probabilistic completion, a variety of technical difficulties are resolved.
However, model selection is not possible without model analysis. Stability of the
hypothesis space comes first, and probing the plausibility of a particular statement
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within such a space should be studied later. Thus, several known theorems of ma-
trix analysis are related in order to establish sufficient conditions for sign variation
diminishing and other stability criteria. This problem is reduced to characteriza-
tion of positive definiteness, which culminates with Proposition 2.13. Computer
simulations are provided in Chapter 4 and novel insights can also be found in
Appendix A.

1.3 Thesis Organization

Chapter 2 provides a brief introduction to a discrete scale-space model and dis-
cusses its stability. Two different approaches are outlined. The first one relies
on the majorization theorem and indicates when a discrete diffusion propagator is
doubly stochastic. The second one exploits the concept of the total positivity. The
principal contribution is Proposition 2.13 which states when the discrete propa-
gator is positive definite, which is essential in establishing the diminishing of a
variety of important quantities and the sign variation in particular.

Chapter 3 contains the essential contribution of the thesis. It poses the problem of
the optimal scale selection and puts it into the framework of an ‘incomplete prob-
abilistic statement’. The concept of incompleteness was especially emphasized
by Von Neumann [1955] and Jaynes [2003]. The latter sought for a consistent
principle of information conditioning. The approach taken here focuses on the
information completion from the level of conditional means to the level of con-
ditional covariances within the family of Gaussian models. Each section of this
chapter contributes with a novel insight to a discussed problem. The basic message
here is that the use of correlation and entropy should not be viewed as something
heuristic and mutually excluding, as both ideas are simplifications of the maximum
likelihood inference.

Chapter 4 provides numerical examples with an edge-enhancing nonlinear diffusion.
One will find a simple setting of a ‘signal in noise’ problem, the application of the
nonlinear diffusion and a further comparison of temporal evolutions of the optimal
stopping criteria. The results confirm the possibility of a successful scale selection.

Chapter 5 states several concluding remarks. It emphasizes the advantages of
utilizing Gaussian models and opposes them against other existing frameworks.
The importance of energies and variational descriptions is appraised in light of
critical remarks existing in the literature.

Appendix A is dedicated to findings which are less relevant to the main con-
tributions of the thesis. Section A.1 discusses novel ways of evaluating matrix
determinants, which indirectly characterizes positive definiteness. This could be a
starting of a program to investigate the sign variation diminishing in multivariate
cases, but it is also of an independent interest as indicated by several applications
stated therein. Section A.2 indicates some of the pitfalls that occur in statistical
inference. Several existing mistakes, which are sometimes committed even by the
great experts in the field, are spotted out and presented with resolutions. The
section also falls under the title ‘Something what everybody should know, but
probably does not’.
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Chapter 2

The Scale-Space Property

A scale-space can be understood as a space of signals with a similar informa-
tion content but with different ‘levels of details’. It consists of: (i) a signal to be
analyzed, and (ii) a way to ‘smooth’ it. The main theme in this chapter is quantifi-
cation of the ’scale-space property’ as discrete variation diminishing, which turns
out to be related to other notions of stability.

The basic model in focus is a discrete diffusion, which is defined via a succes-
sive multiplication (time-ordered product) of generalized Laplacian matrices. The
problem is to establish the conditions which guarantee that multiplying any given
vector by such matrices remains stable and possesses the scale-space property, i.e.
the diminishing (nonincrease) of sign changes present in a given vector.

The aim is to relate the scale-space property to other notions of stability, and
to ‘purify’ them out of lengthy and complex arguments of continuity. This will
also emphasize that many evolutions, irrespectively whether they are linear or
nonlinear, are ‘smoothing’ procedures if the propagator matrices satisfy structural
properties such as double stochasticity and (or) total positivity. Thus, it is rather
surprising to realize that in a finitely discrete space and discrete time, a nonampli-
fication of global extrema and numerous mathematical caricatures of the second
law of thermodynamics are: (i) related to the scale-space property, and (ii) can be
modeled via linear algebra, i.e. majorization and total positivity (sign regularity).

The principal contributions of this chapter are Propositions 2.5 and 2.13. They
state sufficient (and in some cases necessary) conditions when a discrete diffusion
satisfies a variety of stability results, and the scale-space property in particular.
Many concepts have their original appearance in continuous settings, and the text
draws some parallels with the continuous space. However, the essential statements
belong to a finitely discrete space, and there is no ambition to study the possible
equivalence of both worlds.

14
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2.1 Introduction to Diffusion Scale-Spaces

A classical linear scale-space consists of an initial signal u(x, 0) and its convolutions
u(x, t) with the Gaussian density of an increasing variance t, which is called ‘scale’.
This is known as the Gaussian scale-space which can be derived from the axioms
of linearity, separability along dimensions, and invariance w.r.t. spatial shifts,
scalings and rotations. Details and references to pioneering works of 1950s can be
found in [Weickert et al., 1999].

Gaussian scale-space is also frequently referred as diffusion scale space for the
reason that the Gaussian density is a fundamental solution to the parabolic PDE
which serves as the basic model of diffusive phenomena. However, the diffusion
scale-space is a more general family of models. They can be linear, but non-
Gaussian, see e.g. [Lindeberg, 1990] and [Duits, 2005], or nonlinear, such as in
edge-preserving diffusions.

One could mention that invariance-based derivations of the Gaussian density were
already published by J. Herschel (1850) and J. C. Maxwell (1860). A ‘backward’
derivation of the Gaussian density from a convolution can be attributed to V. D.
Landon (1941). References to these early works can be found in [Jaynes, 2003, p.
200–201].

A single concise definition of the scale-space does not exist. Often, the scale-space
analysis focuses either on the ‘geometry of smoothing’, see e.g. [Kuijper, 2002],
or the axiomatic formulations of various smoothing methods, clf. [Duits, 2005].
However, the basic problem revolves around the following question, clf. Lindeberg
[1990]:

“How should one create a multiresolution family of representations with the prop-
erty that a signal at a coarser level of scale never contains more structure than a
signal at a finer level of scale?”

The ‘structure’ can be thought as ‘information content’. An axiomatic derivation
of the Gaussian scale-space is interesting as it is based on weak global constraints
of symmetry which lead to a strict local smoothness requirement. However, a
common statement that Gaussian scale-space is the only smoothing paradigm that
does not distort information content (sometimes mistakenly called assumption-less
smoothing) is significantly overrated. In particular, a formal advocation of other
linear scale-spaces can be found in [Duits, 2005]. Many nonlinear methods, such
as the median filter, clf. [Bangham et al., 1996], have proven to be useful in the
presence of outliers or discontinuities.

When considering nonlinear models, one starting point is to assume that ‘no more
structure’ is equivalent to: (i) non-amplification of global and local extrema, and
(ii) non-creation of local extrema. Both properties should hold as the scale in-
creases. This requirement is sometimes referred as the principle of causality,
and it could also be associated with the concept of ‘irreversibility’. The non-
amplification of global extrema is known as the extremum principle. In the case
of nonlinear diffusions, this property has been established by means of the Gauss–
Green theorem independently by Weickert [1996] and Kawohl and Kutev [1998].
The non-amplification and non-creation of local extrema is called the property of
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monotonicity. The work of Harten [1983] has shown that monotonicity implies the
L1-norm contraction, and that monotonicity is equivalent to the total variation
diminishing.

In this chapter, the phrase ‘no more structure’ will be understood in the sense of
nonincreasing total or sign variation in a finitely discrete space of a single dimen-
sion. Before filling certain gaps in this topic, it is first good to introduce the basic
model.

One could begin with a ‘dynamical law’ of the Gaussian density, which is usually
demonstrated via Fourier analysis, see e.g. [Kolmogorov and Fomin, 1957]. This
requires a careful choice of function spaces and working with the field of complex
numbers. Simpler and more formal derivations can be given by using matrix
derivatives.

Let us specify a shortcut ‖a‖2
B
≡ aT Ba and define the Gaussian density as:

p(x) = |2πΣ|−1/2 exp

(

−
1

2
‖x − µ‖2

Σ−1

)

, x ∈ Rn. (2.1)

Furthermore, let us take the derivatives ∂p(x)/∂[Σ]ij and gather the results into
a matrix ∂p(x)/∂Σ:

∂p(x)

∂Σ
= −

1

2
p(x)|2πΣ|−1 ∂|2πΣ|

∂Σ
−

1

2
p(x)

∂

∂Σ

(
‖x − µ‖2

Σ−1

)
. (2.2)

The derivative of the determinant can be found in [Anderson, 1958, p. 347]:

∂|2πΣ|

∂Σ
= (2π)n|Σ|(2Σ−1 − I ◦ Σ−1), (2.3)

where ◦ denotes the Hadamard (element-wise) product. The derivative of the
second term can also be borrowed from [Anderson, 1958, p. 349]:

∂

∂Σ

(
‖x− µ‖2

Σ−1

)
= −2Σ−T (x − µ)(x − µ)T Σ−T +

+I ◦ Σ−T (x − µ)(x − µ)TΣ−T . (2.4)

Knowing that Σ−T = Σ−1, the gradient of the Gaussian density is given by:

∇p(x) = −p(x)Σ−1(x − µ) . (2.5)

The Hesse matrix then becomes:

∇∇T p(x) = −∇p(x)(x − µ)T Σ−T − p(x)∇
(

(x − µ)TΣ−T
)

(2.6)

= p(x)Σ−1(x − µ)(x − µ)TΣ−T − p(x)Σ−T . (2.7)

Verifying Eqs. (2.2)–(2.4) with Eq. (2.7) produces the identity:

∂p(x)

∂Σ
= ∇∇T p(x) −

I

2
◦ ∇∇T p(x). (2.8)

Following Jaynes [2003], a univariate case of this beautiful result can be attributed
to V. D. Landon (1941). Plackett [1954] was apparently the first one to state it in



2.1. Introduction to Diffusion Scale-Spaces 17

the matrix form, and Price [1958] generalized it to arbitrary functions and higher
orders of the derivatives.

If the elements of the covariance matrix Σ depend on the variable t ∈ R, then the
equivalence

∑n
i,j=1 AijBij = tr(ATB) = tr(BAT ) yields:

∂p(x)

∂t
= tr

(
∂Σ

∂t

(

∇∇T p(x) −
I

2
◦ ∇∇T p(x)

))

. (2.9)

A classical diffusion PDE can be obtained by setting ∂Σ/∂t = I:

∂p(x)

∂t
=

1

2
tr ∇∇T p(x) (2.10)

=
1

2
∇T∇p(x). (2.11)

Let us finally convolve the Gaussian density with any bounded function:

g(x) =

∫Rn

f(µ)p(x − µ)dµ (2.12)

The result is not a Gaussian density, and not even ‘density’, but it nevertheless
makes Eqs. (2.8) and (2.9) valid. The integral does not affect the derivatives w.r.t.
the elements of Σ and x.

If the elements of Σ depend on t in such a way that the Gaussian density becomes
the delta distribution as t → 0, the convolution at t = 0 then yields the function
f(x). Therefore, one of the solutions to Eq. (2.9) with an initial condition p(x) =
f(x) is given by Eq. (2.12).

Despite its historical significance, a continuous space and time setting is not the
only one to approach diffusion scale-spaces. For example, relevant studies of diffu-
sions on an infinite lattice can be found in [Lindeberg, 1990] and [Ignat, 2005], but
there are more such settings. Depending on whether the space or time is discrete
or continuous, and whether the domain is finite or infinite, one can obtain at least
sixteen different settings.

Thus, limiting oneself to a certain community seems to be inevitable, and the pref-
erence will here be given to a finitely discrete setting. Such a limitation results in
a loss of understanding of continuity, which, in a narrow sense, can be understood
as the stability w.r.t. a ‘decreasing grid size’ when the elements of the grid be-
come infinitesimal quantities. Many nonlinear diffusions are known which develop
jump discontinuities in the initially continuous signals, see e.g. [Perona and Malik,
1987], [Rosenau et al., 1989], [Bertsch and Dal Passo, 1989], Bertsch and Dal Passo
[1992] and [Barenblatt et al., 1993]. The use of mathematical techniques related
to continuous spaces is essential for thorough understanding of the formation of
discontinuities.

However, the problems of stability and statistical inference exist independently of
the question ‘what happens in an infinite limit’. In a finitely discrete case, matrix
theory allows to unify seemingly different notions of stability and view them as
consequences of simple postulates. Notably, numerous discrete counterparts of
nonlinear diffusions become ‘ill-posed’ only in an ‘infinite limit’, see e.g. [Catté
et al., 1992].
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The focus of this work is on two particular evolutions of a finite-dimensional vector
ut ∈ Rn in a discrete time t = 0, τ, . . . with τ > 0 being a known constant.

Definition 2.1 (Discrete diffusion scale-spaces). Let the matrix F ∈ Rn×(n+1) be
a bidiagonal forward-difference operator:

F =








−1 1
−1 1

. . .
. . .

−1 1







. (2.13)

Let the matrix D ∈ R(n+1)×(n+1) be diagonal with the elements dii ≡ bi(ut):

D(u) =








b1(u)
b2(u)

. . .

bn+1(u)







. (2.14)

These elements can be seen as the coordinates of some b(ut) ∈ Rn 7→ Rn+1.

Furthermore, let the generalized Laplacian matrix B(u) be:

B(u) ≡ FD(u)FT , (2.15)

The first diffusion scale-space, referred as semi-implicit, is given by:

ut+τ =
(
I − τB(ut)

)−1
ut, (2.16)

where each element bij(ut) : Rn 7→ R of the matrix B(ut) ∈ Rn×n is a function
of ut. The second evolution, which could be called explicit, is defined as:

ut+τ =
(
I + τB(ut)

)
ut . (2.17)

This equation retains the first two terms in the geometric series expansion of the
matrix in Eq. (2.16). The convergence holds if the spectral radius ρ(B(ut)) < 1.

The matrices
(
I− τB(ut)

)−1
and I+ τB(ut) will sometimes be referred as single-

step diffusion propagators, or simply propagators. The explicit dependence on ut

will frequently be dropped out in order to reduce the number of parentheses in
equations.

Throughout the work, the constraint b1 = bn+1 = 0 will be imposed and referred
as the von Neumann boundary conditions. The exceptions will be found in Sec-
tions 4.3 and 4.4, where numerical simulations will be performed with the Dirichlet
conditions b1 = −1 and bn+1 = 1, and the Robin conditions b1 = −1 and bn+1 = 0.

It is assumed that the matrix I − τB(ut) is nonsingular, which guarantees the
existence of the semi-implicit propagator. In order to put this statement to a
more computational level, it is good to emphasize the concept of the matrix minor
and two essential facts about. The first one will further quantify the existence of
inverses in the discrete space and time, whereas the latter will be subsequently
applied to the stability analysis of the diffusion scale-spaces.
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Let the determinant |A| be a function f(A) : Rn×n 7→ R which is multilinear and
skew-symmetric w.r.t. the columns of A, and satisfies the normalization condition
|A| = 1 when A = I is the identity matrix, see e.g. [Gantmacher, 1959]. Cullen and
Gale [1965] prefer the axiom |AB| = |A| |B| to a skew-symmetric multilinearity,
but their normalization condition becomes more complicated.

Definition 2.2 (Matrix minor). Let α be a strictly increasing sequence of k inte-
gers chosen from {1, 2, . . . , n}, e.g.

1 ≤ α1 < α2 < . . . < αk ≤ n. (2.18)

Following Ando [1987], let Qk,n denote the totality of such sequences. There are
(
n
k

)
of them in Qk,n. Given the set α ∈ Qk,n, its complementary set αc ≡

{1, 2, . . . , n}\α. Here and in what follows \ denotes a usual set minus, but αc must
be strictly increasing. A particular sequence will be denoted as α1:n = {α1, . . . , αn}.
The shortcuts γn ≡ {1, 2, . . . , n}, γi:j ≡ {i, i+ 1, . . . , j} (i < j), and Qn,n ≡ Qn

will frequently be employed. The k-th order minor of the matrix A is the determi-
nant

A(α|β) ≡

∣
∣
∣
∣
∣
∣
∣
∣
∣

aα1β1
aα1β2

. . . aα1βk

aα2β1
aα2β2

. . . aα2βk

...
...

. . .
...

aαkβ1
aαkβ2

. . . aαkβk

∣
∣
∣
∣
∣
∣
∣
∣
∣

, α,β ∈ Qk,n. (2.19)

The matrix A ∈ Rn×n has
(
n
k

)2
minors of order k and

∑n
k=1

(
n
k

)2
=
(
2n
n

)
minors in

total. The minors A(α|α) are called principal. There are
(
n
k

)
principal minors of

order k and
∑n

k=1

(
n
k

)
= 2n in total. The quantities A(γk|γk) are called successive

(ascending) principal minors. There are only n of them.

The primary importance of matrix minors lies in their ability to characterize:
(i) existence and uniqueness of LU-decomposition, i.e. the ability to solve linear
systems via Gaussian elimination, and (ii) positivity of quadratic forms.

Proposition 2.1 (Existence of LU-decomposition, see e.g. [Gantmacher, 1959]).
A matrix A ∈ Rn×n can be represented as the product of a lower triangular matrix
and an upper triangular matrix if and only if none of the successive principal
minors are equal to zero.

Thus, the existence of the semi-implicit propagator is established provided none
of the successive principal minors of the propagator are equal to zero. One can
characterize the elements bi which ensure that Eqs. (2.16) and (2.17) produce a
scale-space in the sense that the number of sign changes in a univariate signal at
discrete space locations does not increase w.r.t. an increasing scale. The focus
will be given on how the problem reduces to the characterization of positive def-
initeness when employing known results of the matrix theory related to double
stochasticity and total positivity. Here it is useful to remind the reader of the
following characterization.

Proposition 2.2 (Criterion of positive definiteness, see e.g. Gantmacher and Krein
[2002]). Let xT Ax =

∑

ij aijxixj be called a quadratic form, where aij is the ij-th
element of the matrix A, which will often be also denoted as [A]ij. The matrix is
positive definite (semidefinite), i.e. xT Ax > 0 (≥ 0) for all x 6= 0, if and only if
its successive principal minors are positive (all principal minors are nonnegative).
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This question whether diffusion is a scale-space has been asked before, but no
definite answer exist even in a linear case, see e.g. [Hummel and Moniot, 1989].
Partial studies appear numerously in a variety of contexts. Glashoff and Kreth
[1980] and Horváth [2000] study restrictions on the time stepping constant τ in
linear cases. Harten [1983] discovered the equivalence between the total variation
diminishing and monotonicity, and further designed numerical schemes for nonlin-
ear conservation laws. Lindeberg [1990] has applied the results of total positivity to
the Laplacian matrices which arise from linear models. Weickert and Benhamouda
[1997] and Mrázek et al. [2005] has finally focused on discrete nonlinear cases, but
the difference between the necessity and sufficiency is not investigated much.

2.2 Total Variation and Double Stochasticity

Discrete variation diminishing can be seen as a part of the Liapunov stability
which deals with the diminishing of other functions such as extrema of signals and
negative entropies, see e.g. Weickert and Benhamouda [1997]. Liapunov stability
can be established as the consequence of majorization.

Definition 2.3 (Total variation diminishing). The total variation ψtv(u) : Rn 7→R is

ψtv(u) ≡
n∑

i=1

|ui+1 − ui|, un+1 = u1 . (2.20)

The matrix A ∈ Rn×n is said to be total variation diminishing if the inequality
ψtv(Au) ≤ ψtv(u) holds for any u ∈ Rn.

Discrete total variation diminishing is a particular case of the p-norm diminishing:

‖u‖p ≡

(
n∑

i=1

|ui|
p

)1/p

. (2.21)

This can be seen by introducing the permutation matrix

P =








0 1 . . . 0
...

...
. . .

...
0 0 0 1
1 0 . . . 0







, (2.22)

and rewriting Eq. (2.20) as the 1-norm:

ψtv(u) = ‖Tu‖1, T = P − I . (2.23)

In turn, 1-norm diminishing can be seen as a consequence of double stochasticity.

Definition 2.4 (Double stochasticity). The matrix A ∈ Rn×n is row-stochastic
(or column-stochastic) if it is nonnegative, i.e. aij ≥ 0 for each pair of indices
(i, j) and

∑n
j=1 aij = 1 (or

∑n
i=1 aij = 1). A row and column-stochastic matrix is

called doubly-stochastic.
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Proposition 2.3 (Double stochasticity of I + τB). The matrix I + τB is doubly-
stochastic if and only if 0 ≤ b2 ≤ τ−1, 0 ≤ bi−1 + bi ≤ τ−1, for i = 3, . . . , n and
0 ≤ bn ≤ τ−1. It is doubly-stochastic if 0 ≤ bi ≤ (2τ)−1 for all i = 2, . . . , n.

Proof. Expanding Eq. (2.15) yields:

B = −










b2 −b2
−b2 b2 + b3 −b3

. . .
. . .

. . .

−bn−1 bn−1 + bn −bn
−bn bn










. (2.24)

The proof becomes a trivial application of Definition 2.4.

The case of sufficiency can be established to Eq. (2.16) by using the property of
M-matrix.

Proposition 2.4 (M-matrix definition and its properties, Berman and Plemmons
[1979]). Let A ∈ Rn×n be nonsingular and Z-matrix, where the latter states that
the off-diagonal elements are nonpositive. The following statements are equivalent:

1. A is an M-matrix.

2. A is positive definite, i.e. uTAu > 0 for any u 6= 0.

3. A−1 is nonnegative, i.e. each element is nonnegative.

4. A has all positive diagonal elements, and there exists a positive diagonal G ∈Rn×n such that AG is strictly diagonally-dominant, i.e. aiigi >
∑

j 6=i |aij |gj

for i = 1, . . . , n.

5. A is sign-preserving, i.e. [Au]i[u]i > 0 for [u]i 6= 0.

Proposition 2.5 (Double stochasticity of (I− τB)−1). The matrix (I− τB)−1 is
doubly-stochastic if bi ≥ 0 for i = 2, . . . , n.

Proof. Firstly, we borrow the argument in [Marshall and Olkin, 1979, p. 48].
For the vector 1 ∈ Rn whose all elements are equal to unity, (I − τB)1 = 1.
This implies that if (I − τB) is nonsingular, (I − τB)−11 = 1. Therefore, each
row of (I − τB)−1 sums to unity. Secondly, we resort to the fundamental result
of Gantmacher and Krein [2002], which states that (I − τB)−1 is Green’s matrix
which is symmetric when B is symmetric. Thus, each row of (I− τB)−1 equals to
its column, and therefore, each column sums to unity. Thirdly, the nonnegativity
(I − τB)−1 ≥ 0 can be established by requiring that I − τB should be an M-
matrix. Clearly, the nonnegativity bi ≥ 0 for i = 2, . . . , n enforces the Z-matrix
property. The fact that this nonnegativity is also sufficient to guarantee the positive
definiteness of I − τB will be proven in Proposition 2.13.

The necessity remains unclear. At least one element of bi, (i = 2, . . . , n) should be
positive. For if all the elements are nonpositive, then I− τB is doubly-stochastic,
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and each row and column of (I − τB)−1 sums to unity. However, except the
trivial case when B = 0, the matrix (I − τB)−1 cannot be nonnegative because
only permutation matrices and their inverses can be doubly-stochastic together,
clf. Marshall and Olkin [1979].

Definition 2.5 (Majorization, Marshall and Olkin [1979]). Let

x[1] ≥ x[2] ≥ . . . ≥ x[n] (2.25)

denote the components of x ∈ Rn arranged in a nonincreasing order. If for k =
1, 2, . . . , n− 1,

k∑

i=1

x[i] ≤
k∑

i=1

y[i], and
n∑

i=1

x[i] =
n∑

i=1

y[i], (2.26)

the vector x is said to be majorized by y, which is denoted as x ≺ y.

Proposition 2.6 (Double stochasticity and majorization, Marshall and Olkin
[1979]). A ∈ Rn×n is doubly stochastic if and only if Ax ≺ x for all x ∈ Rn.

The proof with pointers to generalizations can be found in [Marshall and Olkin,
1979, p. 20]. It becomes clear that successive multiplications by a doubly stochastic
matrix, which can be seen as a nonlinear evolution in a discrete time, do not
increase all the cumulative sums of nonincreasing rearrangement of any vector
x ∈ Rn. This is a powerful result with many consequences.

Definition 2.6 (Schur-convex function, Marshall and Olkin [1979]). A function
ψ : Rn 7→ R is called Schur-convex (isotone) if x ≺ y onRn ⇒ ψ(x) ≤ ψ(y).

The necessary and sufficient conditions of Schur-convexity, its preservation un-
der myriads of transformations and important particular cases are summarized
by Marshall and Olkin [1979]. In our case, it is vital to realize that any Schur-
convex function automatically becomes the Liapunov function in a discrete time,
and several specific examples deserve a brief discussion.

Proposition 2.7 (Examples of Schur-convex functions, Marshall and Olkin [1979]).
The following functions are Schur-convex:

1. f(u) = (
∑n

i=1 |ui|p)
1/p

, u ∈ Rn, p ≥ 1 including p→ ∞.

2. f(u) = max1≤i1<...<ik≤n (|ui1 | + . . .+ |uik
|), u ∈ Rn.

3. f(u) = (α − 1)−1 ln (
∑n

i=1 u
α
i ), u ∈ R+, α ≥ 0.

The p-norm is a particular case of the Schur-convex function known as a symmetric
gauge function. The special case p → ∞ establishes the extremum principle:
Global extrema do not amplify. This result has been established in [Weickert and
Benhamouda, 1997].

The second property states the diminishing of the mixed p = ∞/1 norm, which
can be seen as one generalization of the extremum principle in a discrete space and
time. The third case shows that negative Rényi’s entropies do not increase in a
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discrete time. A special case α = 1 corresponds to the Shannon entropy and can be
seen as a mathematical caricature of the second law of thermodynamics: entropy
increases in time. Sporring and Weickert [1999] speculate that Rényi’s entropies
can be useful in optimal scale selection when models are conditioned on data.
This question is discussed in Chapter 3, where a more advantageous utilization of
entropies is suggested.

In summary, in the case of a discrete diffusion with the propagator (I − τB)−1,
the positivity of the elements bi ≥ 0, for i = 2, . . . , n, guarantees diminishing of p-
norms, total variation and negative Rényi’s entropies. In essence, many instances
of the Liapunov stability take place simultaneously.

2.3 Sign Variation and Total Positivity

Sign variation turns out to be related to the total variation, but it can also be
approached via the concept of the total positivity. This is advantageous as both
sufficient and necessary conditions can be established.

Definition 2.7 (Sign variation diminishing). Let a sign variation ψs(u) : Rn 7→ R
count the number of sign changes along the elements of u ∈ Rn in the order
i = 1, 2, . . . , n:

ψs(u) =
1

2

n∑

i=1

| sgn(ui+1) − sgn(ui)| , un+1 = un. (2.27)

It is assumed that zero elements are discarded before employing Eq. (2.27). The ma-
trix A ∈ Rn×n is said to be sign variation diminishing if the inequality ψs(Au) ≤
ψs(u) holds for any u ∈ Rn.

Definition 2.8 (Sign regularity and total positivity, Karlin [1968]). A matrix
A ∈ Rm×n is called sign-regular of order r and abbreviated as SRr (strictly sign
regular, SSRr) if there exists a sequence of numbers ǫp each either +1 or −1 such
that for p = 1, 2, . . . , r ≤ min(m,n), ǫpA(α|β) ≥ 0, (> 0), α,β ∈ Qp,n. If
all ǫp ≥ 0 (> 0), then the matrix is said to be totally-positive (strictly totally
positive), which is denoted as TPr (STPr).

Sign regularity is known to be a necessary and sufficient condition for a matrix to be
sign variation diminishing. This deserves a brief historical appraisal. Pinkus [1996]
explains how a vague connection between the signature of the matrix minors and
sign variation diminishing has already been foreseen by Kellogg [1918]. The first
systematic investigation of totally positive matrices can be found in [Gantmacher
and Krein, 2002] which is a thoroughly revised edition of the famous work. The
pioneering formulation of sign variation diminishing is often attributed to the ideas
of I. J. Schoenberg, T. Motzkin and A. Whitney, see [Hirschman and Widder, 1955,
p. 97–103] for the references and a revised proof which is lengthy as it is based on
the elementary operations on matrix columns (rows). A more direct proof which
operates directly with minors was stated by Karlin [1968]. A complete departure
from the continuous space has been finally emphasized by Ando [1987] and several
new results related to discrete cases can also be found in [Gantmacher and Krein,
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2002]. There exist a third proof based on the bidiagonal decompositions, albeit
in a special case of square totally positive matrices. This is a suggestion of Fallat
[2001] realized rigorously by Dopico and Koev [2007].

The following statement is more restrictive, but also more relevant to the context
of this thesis. It is borrowed from the work of Gantmacher and Krein [2002]
which has also established the theory of tridiagonal (Jacobi) matrices by stating,
in particular, their explicit inverses and Sturmian theory of eigenvalues.

Proposition 2.8 (Sign variation diminishing, Gantmacher and Krein [2002]). For
A ∈ Rn×n and any u ∈ Rn, the sign variation diminishing holds, i.e. ψs(Au) ≤
ψs(u), and the vectors u and Au oscillate in the same way in the case of equality,
if and only if A ∈ TPn.

It is generally impossible to check the total positivity directly. There are simply
too many minors to consider. However, a tridiagonal M-matrix property reduces
the problem to evaluating only n minors! The following two propositions reduce
the problem of total positivity to the requirement of positive definiteness.

Proposition 2.9 (Total positivity of a tridiagonal matrix, Gantmacher and Krein
[2002]). Let A ∈ Rn×n be nonsingular and tridiagonal. The matrix is totally-
positive, i.e. A ∈ TPn if and only if its off-diagonal elements are nonnegative and
the successive principal minors are positive.

Proposition 2.10 (Totally positive, tridiagonal and M-matrices, Markham [1972],
Lewin [1980] and Peña [1995]). Let A ∈ Rn×n be nonsingular. Any two statements
listed below imply the third one:

• A is an M-matrix.

• A−1 ∈ TPn.

• A is tridiagonal.

Proposition 2.10 indicates a remarkable property of a nonsingular tridiagonal M-
matrix: Not only its inverse is positive, but it is also totally positive, and, moreover,
given a tridiagonal matrix, the M-matrix property is both, necessary and sufficient
to guarantee inverse total positivity.

It deserves to be mentioned that the sign and total variation were connected
by Karlin [1968] via the ‘Banach indicatrix’:

ψtv(u) =

∫R ψs(u − ρ1)dρ, (2.28)

where 1 is a vector of unity elements. Given that the matrix A is sign variation
diminishing, it will also be total variation diminishing if, in addition, each row
sums to unity. This can be seen from Au − ρ1 = A(u − ρ1) and diminishing of
the positive integrand in Eq. (2.28).
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2.4 Positive Definiteness

What remains to be shown are the conditions when the matrices I + τB and (I−
τB)−1 are positive definite. As the eigenvalues are difficult to obtain, the easiest
way to characterize positive definiteness seems to be the equivalent requirement of
the positivity of successive principal minors.

The determinant of a positive definite tridiagonal matrix can be computed via
the LU-decomposition in O(n) multiplications, but that does not provide an easy
access to the signature of the minors, it only gives a verification procedure for a
particular matrix. However, analytical computations can be performed by utilizing
the determinant of Rose [1969]:

∣
∣
∣
∣
∣
∣
∣
∣
∣

b1 + b2 −b2
−b2 b2 + b3 −b3

. . .
. . .

. . .

−bn bn + bn+1

∣
∣
∣
∣
∣
∣
∣
∣
∣

=
n+1∑

i=1

n+1∏

j=1
j 6=i

bj . (2.29)

The easiest way to arrive at this expression is to employ a well-known two-term
recurrence for the principal minors of the tridiagonal matrix, see e.g. [Kawasaki,
2001]:

A(γk|γk) = aiiA(γk−1|γk−1) − ai−1,iai,i−1A(γk−2|γk−2), (2.30)

where A(γ−1|γ−1) = 0 and A(γ0|γ0) = 1.

Explicit computation of the determinant for k = 1, 2, 3 reveals the pattern of
the expression in Eq. (2.29). The original derivation of Rose [1969] applies the
Cauchy–Binet theorem to Eq. (2.15). Notice that the determinant equals to zero
whenever any two elements bi and bj (i 6= j) equal to zero. Thus, it should be clear
that Laplacian will be a singular matrix if the von Neumann boundary conditions
b1 = bn+1 = 0 are imposed.

Here we can contribute a geometric insight to Eq. (2.29), which is shown in
Figs. 2.1a,b and stated below.

Proposition 2.11 (Geometry of Rose’s determinant). Rose’s determinant is a
squared volume of an n-dimensional parallelepiped defined as an intersection:

Pn ≡

{

b
−1/2
k xk ∈ [− 1

2 ,
1
2 ], k = 1, . . . , n+ 1,

∑n+1
k=1 b

−1/2
k xk = 0.

(2.31)

In particular, when n = 1, Rose’s determinant is a squared length of the edge, and
it becomes the squared area of the convex hexagon when n = 2.

Proof. It follows from Fig. 2.1a that Vol(ABCD) = Vol(KLMN), where Vol(ABCD)
here means the length of the edge, the area of the polygon, or generally ‘hypervol-
ume’. Clearly,

Vol(AC) =
Vol(ABCD)

Vol(PQ)
. (2.32)
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Figure 2.1: Geometric meaning of Rose’s determinant: (a) the determinant is a
squared length of the edge AC when n = 1, which equals to 5 when b1 = 1 and
b2 = 4, and (b) the determinant becomes the squared area of the convex hexagon
when n = 2, which is 49 when b1 = 1, b2 = 4, and b3 = 9.

The square of the quantity Vol(ABCD) is Grammian, clf. e.g. Gantmacher [1959]:

Vol(ABCD)2 =

∣
∣
∣
∣
∣
∣
∣
∣
∣

vT
1 v1 vT

1 v2 . . . vT
1 vn+1

vT
2 v1 vT

2 v2 . . . vT
2 vn+1

...
...

. . .
...

vT
n+1v1 vT

n+1v2 . . . vT
n+1vn+1

∣
∣
∣
∣
∣
∣
∣
∣
∣

, (2.33)

where vk = (0, 0, . . . , b
1/2
k , . . . , 0)T ∈ Rn. Therefore,

Vol(ABCD)2 =

n+1∏

k=1

bk . (2.34)

The quantity Vol(PQ) can be evaluated by means of the identity:

d =
|wT x0 + c|

‖w‖2
, (2.35)

where d is the shortest distance between the point x0 ∈ Rn to the hyperplane
wT x + c = 0. In our case, the space is Rn+1, the hyperplane is given by the
second line of Eq. (2.31) and from the case with n = 2 one infers that the distance
between the points P and Q equals twice the shortest distance between the point

(b
1/2
1 /2, 0) and the hyperplane. In general, (b

1/2
1 /2, 0) will be any point whose

position is determined by either of the vectors vk/2:

Vol(PQ)2 =

(

2(0 + 0 + . . .+ b
−1/2
k b

1/2
k /2 + 0 + . . .+ 0)

)2

∑n+1
k=1 (b

−1/2
k )2

=
1

∑n+1
k=1 b

−1
k

. (2.36)

Substituting Eqs. (2.34) and (2.36) to Eq. (2.32) produces Rose’s determinant:

Vol(AC)2 =

(
n+1∑

k=1

b−1
k

)
n+1∏

k=1

bk =

n+1∑

i=1

n+1∏

j=1
j 6=i

bj . (2.37)
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Proposition 2.12 (Determinant of the matrix I − τB).

|I − τB| = 1 +
n∑

k=1

τk
∑

ω∈Qk,n

r∏

s=1

νs+1∑

i=νs−1

νs+1∏

j=νs−1
j 6=i

bj , (2.38)

with ν0 = 1 and νr = k. The integer s denotes the s-th group of the connected
indices in ω ∈ Qk,n.

Proof. For any matrix A ∈ Cn×n,

|I + A| = 1 +
n∑

k=1

∑

ω∈Qk,n

A(ω|ω) , (2.39)

clf. Gantmacher and Krein [2002]. This demands explicit expressions for the minors
B(ω|ω). The way to derive them is best seen by example, say the case of ω ∈
Q5,20, and a particular sequence from this set such as ω = {3, 5, 6, 8, 9}. The
corresponding minor is:

B(ω|ω) =









b3 + b4 0 0 0 0
0 b5 + b6 −b6 0 0
0 −b6 b6 + b7 0 0
0 0 0 b8 + b9 −b9
0 0 0 −b9 b9 + b10









. (2.40)

The connected indices form ‘isles’ which are particular cases of Rose’s determinant.
The determinant of a block-diagonal matrix splits into a product of the block-
determinants. In general, one must divide any sequence ω ∈ Qk,n into r groups of
connected indices:

ω = {ω1, . . . , ων1
︸ ︷︷ ︸

1st group

, ων1+1, . . . , ων2
︸ ︷︷ ︸

2nd group

, . . . , ωνr−1+1, . . . , ωk
︸ ︷︷ ︸

r-th group

} . (2.41)

Each group has at least one integer, otherwise one does not form a group. The
result then follows immediately by applying Eq. (2.29).

Proposition 2.12 can now be directly applied not only to characterize variation
diminishing of the matrix-vector products with (I − τB)−1 and I + τB, but also
to complete the proof of Proposition 2.5.

Proposition 2.13 (Positive definiteness of the matrices (I− τB)−1 and I + τB).
The matrix (I − τB)−1 is positive definite if and only if

1 +

p
∑

k=1

τk
∑

ω∈Qk,p

r∏

s=1

νs+1∑

i=νs−1

νs+1∏

j=νs−1
j 6=i

bj > 0, (2.42)

for all p = 1, . . . , n, where the notations were explained previously in the proof of
Proposition 2.12. The matrix I + τB is positive definite if and only if

1 +

p
∑

k=1

τk
∑

ω∈Qk,p

r∏

s=1

νs+1∑

i=νs−1

νs+1∏

j=νs−1
j 6=i

(−bj) > 0, (2.43)

for all p = 1, . . . , n.
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Proof. A direct application of Proposition 2.12.

Notice that the first statement is satisfied if bi > 0 for i = 2, . . . , n, which completes
the proof of Proposition 2.5. The second statement is satisfied if 0 ≤ b2 ≤ τ−1,
0 ≤ bi−1 + bi ≤ τ−1, for i = 3, . . . , n and 0 ≤ bn ≤ τ−1. This follows from the
fourth property of Proposition 2.4 where one may set G = I. This has been proven
already in Bourgin [1939].

Proposition 2.13 reveals an interesting paradox. The positivity bi > 0 for i =
2, . . . , n is sufficient to guarantee sign variation diminishing of the map (I−τB)−1.
Naturally, the same is expected to hold for the map I+τB when τ is small because
it is close to (I−τB)−1 in the sense of any matrix norm. However, the map I+τB
is sign variation diminishing only if a nontrivial constraint, given by Eq. (2.43), is
satisfied.

As a simple example, consider the case n = 1 with the Laplacian

B =

(
−b2 b2
b2 −b2

)

. (2.44)

Given a fixed τ > 0, a positive definite (I− τB)−1 requires that b2 ≥ 0. However,
the matrix I + τB is positive definite if and only if 0 ≤ b2 < 0.5τ−1. Notice also
that I + τB is doubly-stochastic if and only if 0 ≤ b2 < τ−1, which confirms the
conclusion in Glashoff and Kreth [1980] that sign stability is more stringent than
a more conventional Liapunov stability.

2.5 Multivariate Diffusion

Characterizing variation diminishing in a multivariate setting is a much more dif-
ficult problem, but at least it can be posed explicitly. Consider a d-dimensional
array U with nm points in the m-th dimension of the array and n = n1 · · ·nd

number of points in total. Let vecm(Ut) ∈ Rn for m = 1, . . . , d be a vector which
is obtained by dividing the array into lexicographically arranged vectors along the
m-th dimension and stacking them together into a single-column vector. For ex-
ample, when d = 2, the column vectors vec1(U) and vec2(U) are the conventional
vec(U) and vec(UT ) operators, respectively.

In order to write the Laplacian matrix in a multivariate case, it is good to introduce
the permutation matrices Pij ∈ Rn×n for i, j = 1, . . . , d such that Pij vecj(U) =
veci(U), and Pii = I with I being the identity matrix. Let us choose any integer r
out of 1, 2, . . . , d. Given the vector vecr(U), the Laplacian in the coordinate space
of this vector becomes:

B =

d∑

m=1

PrmBmPmr . (2.45)

The matrix Bm is block-diagonal in the basis vecm(U). However, the sum does
no longer possess this property: Nontrivial sparsity patterns emerge.
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It is clear that characterizing matrices (I− τB)−1 and I + τB) becomes now con-
siderably more difficult. An interesting trick in avoiding a non-tridiagonal sparsity
is to apply the additive operator splitting, see e.g. [Fischer and Modersitzki, 2002],
which deserves some insights. The idea is to apply the first order expansion in the
von Neumann series:

(I − τB)−1 vecr(U) ≈ (I + τB) vecr(U) (2.46)

=

(

I + τ
d∑

m=1

PrmBmPmr

)

vecr(U) (2.47)

=
1

d

d∑

m=1

(I + d τPrmBmPmr) vecr(U) (2.48)

≈
1

d

d∑

m=1

(I − d τPrmBmPmr)
−1 vecr(U) (2.49)

=
1

d

d∑

m=1

Prm (I − d τBm)
−1

vecm(U). (2.50)

The approximation in Eq. (2.49) is rather unusual, but it stabilizes the expression
w.r.t. τ → ∞. The last equality is the most notable as it reduces the overall
matrix-vector product to the products with tridiagonal inverses! Another way of
thinking is to first write Eq. (2.46) for each r = 1, 2, . . . , d. After obtaining the
redundant set of equations, the trick is then to replace the m-th term PrmAmPmr

with Ar. The final approximation, given by Eq. (2.50), is obtained by summing d
such solutions re-permuted back to any fixed basis vecr(U).

Here one may see that the univariate analysis applies up to each term

(I − d τBm)−1 vecm(U) (2.51)

in Eq. (2.50). Univariate conditions simply guarantee that every such a vector for
m = 1, . . . , d does not increase the number of sign changes present in vecm(U).
The results about extrema and entropy functions apply as well. However, the
subsequent sum and permutation does no longer preserve the stability properties
of each component. The trick with the additive operator splitting is stated here
because establishing the total positivity and other relevant properties of the sum of
the matrices in Eq. (2.49) could be easier than working with the matrix (I−τB)−1

directly. It probably deserves to be mentioned that additive splitting is little
known. Fischer and Modersitzki [2002] state it in a general multivariate case, but
provide verifications only in a bivariate case.

This chapter can be concluded by providing a certain parallel with the analysis
in the continuous space and time. The interest lies in the possibility to show
that sampling the constraint for the extremum principle in a continuous space and
time may yield a different requirement compared to the previously discussed ones.
Precision with functional spaces is beyond the scope here. We do not solve any
nonlinear equations in a continuous space and time, and there is no equivalence
between the models in different modalities of the space and time.
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Consider the following PDE:

∂u(x, t)

∂t
= ∇ · v (∇u(x, t)) , (2.52)

where u(x, t) is defined on the domain Ω ⊂ Rn × R+. In what follows, all the
necessary quantities are assumed to be sufficiently measurable and continuous
enough to validate the equations (this is not the key point here).

Proposition 2.14 (Extremum principle, Weickert [1996], Kawohl and Kutev
[1998]). Let ‖u(t)‖Lp

denote the Lp(Ω) norm. For any p ∈ [1,∞), and t > 0,

‖u(t)‖Lp
≤ ‖u(0)‖Lp

if ∇u(x, t) · v(∇u(x, t)) > 0. (2.53)

Proof. We restate the proof of Kawohl and Kutev [1998] because it makes rather
transparent the fact that the proof does not depend whether the flux v(∇u(x, t))
is linear or nonlinear. In essence, this is, mutatis mutandis, derivation of Beck-
enbach and Bellman [1965, p. 149] and dates back to the work of Ladyzhenskaja
et al. [1968, p. 429]. Paradoxically, extensions of the same technique to a more
complicated problem of ‘gradient estimates’ appear earlier in [Kawohl, 1988].

One relies on the Gauss–Green theorem:
∫

Ω

∇ · g dx =

∫

∂Ω

g · ndx , (2.54)

where g : Ω 7→ Rd, n is outward normal to the boundary ∂Ω. Here and in what
follows the obvious dependence on the arguments x and t is suppressed for the sake
of brevity. The substitution of g = f v(∇u) into Eq. (2.54) provides an auxiliary
result:

∫

Ω

f∇ · v(∇u)dx =

∫

∂Ω

fv(∇u) · ndx −

∫

Ω

∇f · v(∇u)dx. (2.55)

The proof is first reduced to establishing a nondecreasing p-th power of the Lp-
norm:

∂

∂t
‖u‖Lp

=
1

p
‖u‖1−p

Lp

∂

∂t

∫

Ω

|u|p dx . (2.56)

A further use of Eq. (2.55) with f = |u|p−2u produces the following result:

∂

∂t

∫

Ω

|u|pdx = p

∫

Ω

|u|p−1 sgn(u)
∂u

∂t
dx , (2.57)

= p

∫

Ω

|u|p−2u∇ · v(∇u)dx (2.58)

= −p

∫

Ω

∇
(
|u|p−2u

)
· v(∇u)dx (2.59)

= −p(p− 1)

∫

Ω

|u|p−2∇u · v(∇u)dx . (2.60)

Substituting Eq. (2.60) into Eq. (2.56) establishes the nonincrease of the Lp norm
when the ‘if’ condition in Eq. (2.53) is satisfied. As p→ ∞, the Lp-norm becomes
the supremum norm which reveals the maximum value of |u(x, t)|, i.e. the global
extremum.



2.5. Multivariate Diffusion 31

Assume now a particular form of the flux:

v(∇u(x, t)) = ϕ(‖∇u(x, t)‖)∇u(x, t), ϕ : R 7→ R. (2.61)

Such an equation is common in the analysis of the edge-preserving diffusions,
clf. [Perona and Malik, 1987].

Furthermore, let us limit ourselves to a univariate case Ω = [0, 1] and consider a
formal transition towards a discrete space and time by employing the following
replacements:

u(xi, t) ↔ [ut]i, ∇u(xi, t) ↔
1

n
[Fu]i,

∫

x∈[0,1]

(·) dx ↔
1

n

n+1∑

i=1

, (2.62)

where F is the forward-difference matrix, clf. Eq. (2.13). The function ϕ can now
be seen as the map Rn 7→ R:

ϕ (|∇u(xi, t)|) ↔ ϕ

(
1

n
|[Fut]i|

)

≡ bi(ut). (2.63)

Eq. (2.60) would now tell us that the p-norm of ut does not increase if each
bi(ut) ≥ 0. This would imply that the generalized Laplacian B should be negative
semi-definite, clf. Eqs. (2.15) and (2.13). In other words, the adoption of the
condition on the Lp-norm diminishing to a discrete case requires that −B should
be positive semi-definite. This is more restrictive than the positive definiteness
of I − τB, and it also differs from the requirement of a positive definite I + τB.
Positive semi-definiteness of the negative Laplacian will become more important
in Chapter 3.



Chapter 3

Selection of Optimal Scale

Once stability is discussed, one may proceed towards automating the identification
(selection) of the model from data. Model selection will be viewed here as a prob-
lem of statistical inference. The latter puts an emphasis on consistent predictions
as opposed to stability, computational efficiency or invariance laws.

The theory of inference closest to this work is the classical maximum likelihood
estimation, see e.g. Anderson [1958], equipped with warnings of Jaynes [2003]. All
the philosophical aspects are delegated to discussions advocating the probability
system of Kolmogorov [1956] and the model selection of Jaynes [2003].

A discrete diffusion can be viewed as an information processing device capable of
revealing a signal in noise. If an initial condition is set to the signal of observations,
then an empirical evidence suggests that there is an optimal stopping time when
the diffused quantity is closest to an ideal signal assumed to exist in the noisy
observations. The need for optimal stopping criteria is summarized by Carasso
[1999]:

“Attentive viewing of a computer screen for quite long periods of time may be
necessary, and, because changes from one iteration to the next are usually imper-
ceptible, locating the optimal point at which to terminate the process becomes highly
elusive.”

The principal contribution of this chapter is the postulation of Gaussian models
which resolve several difficulties with the present optimal scale selection. Among
the main improvements one could list: (i) the removal of normalization require-
ments present in the entropies of Sporring and Weickert [1999], (ii) achievement
that in a linear case the entropies depend on the variance of noise and do not
depend on actual signals, (iii) explicit formulation of the Bayesian assumptions
behind the principle ‘orthogonalize the model output to noise’, which will here be
referred as the decorrelation of Mrázek and Navara [2003].

32
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3.1 Setting the Problem

An attempt will be made to unify two taste-specific but practical approaches which,
at the first glance, seem to be very different: (i) the correlation criterion which is
simple and stated as ‘near optimal’ by Mrázek and Navara [2003] and also analyzed
by Gilboa et al. [2006], and (ii) the idea of the starting time of the stationary
entropy change analyzed by Sporring and Weickert [1999].

It is first useful to recall Proposition 2.7 which states that the multiplication of any
vector by a doubly stochastic matrix diminishes the value of the negative entropy,
i.e. H(Au) ≥ H(u), where

H(w) ≡ −
n∑

i=1

wi lnwi, wi ∈ R+. (3.1)

Due to a tradition, the quantity H(w) will be called the entropy of Shannon [1948],
albeit it is well-known that his work is not the first investigation of the concept.
The Shannon entropy appears in earlier editions of the work of Von Neumann
[1955], and the research can be traced back to the masterpiece of L. Boltzmann
(1877) whose English translation can be found in [Roux, 2002].

If a discrete diffusion is a successive multiplication by the doubly stochastic ma-
trices, its steady state tends to a signal whose values equal to a constant. This
matches well with the following property of the Shannon entropy, clf. [Marshall
and Olkin, 1979]:

H(1, 0, . . . , 0) ≤ H(w) ≤ H(
1

n
,
1

n
, . . . ,

1

n
), (3.2)

where the components of the vector w sum to unity. This a simple mathematical
caricature of the second law of thermodynamics which states that heat flows from
hot to cold, which increases the entropy.

The quantity in Eq. (3.2) may serve as an inverse measure of information content,
in a spectral sense. The ‘delta-peak’ is richer than a constant signal in terms
of the frequency content. According to this view, a linear diffusion reduces the
information content of a signal, which conforms to the ‘scale-space’ idea where the
diffusion time acts as a characteristic length-scale of a signal variability.

The spectral notion of information content is useful, but is not general enough:

1. A nonlinear diffusion may develop jump discontinuities, but otherwise reduce
the variability of a signal. A spectral viewpoint becomes inconvenient.

2. The function in Eq. (3.2) applies to positive signals. It is unclear how to pre-
process any real signal without adjusting its information content. Eq. (3.2)
is already noninvariant w.r.t. the addition of a constant to a signal.

3. The entropy depends directly on the actual signal, but intuition suggests that
the amount of ‘uncertainty’ should depend only on certain characteristics of
noise present in the signal.
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Clearly, the use of the Shannon entropy in the above-outlined context is subopti-
mal, but its misuses are numerous. One frequently applies an ad hoc normalization
to an observed image in order to obtain a bivariate density function. Such ap-
proaches do exist because they often report a nontrivial mathematical statement,
and demonstrate its usefulness with an experiment. This includes a variety of
rather famous methods, such as those reported in [Meinel, 1986a], [Meinel, 1986b]
and [Carasso, 1999]. One of the reasons of their success is that probabilistic di-
versity measures can be useful as ‘smoothing energies’. However, there are better,
more systematic, ways to utilize probabilities.

Use of entropies with scale-spaces is motivated by aesthetic and historical reasons.
In essence, Sporring and Weickert [1999] attempt to import entropy production
principles of Prigogine [1967] to image analysis. Furthermore, they put forward
the statement which is presumably based on unreported experiments:

“This correspondence has focused on the maximal entropy change by scale to esti-
mate the size of image structures. The minimal change by scale, however, indicates
especially stable scales with respect to evolution time. We expect these scales to be
good candidates for stopping times in nonlinear diffusion scale-spaces.”

The idea is interesting as it relates the Liapunov stability to the second law of
thermodynamics and the maximum entropy inference. However, mixing the con-
cept of ‘observation’ with the ‘probability density’ raises unnecessary questions,
e.g.: Is Liapunov stability supposed to replace model selection? Is there any best
way to preprocess a given image, so that when viewed as a scalar-valued function
of the spatial coordinates, it would become a probability density? A current status
of the entropy-based stopping suggested by Sporring and Weickert [1999] remains
summarized in [Mrázek and Navara, 2003]:

“However, as the entropy can be stable on whole intervals, it may be difficult to
decide on a single stopping instant from that interval; we are unaware of their idea
being brought into practice in the field of image restoration.”

The approach of Mrázek and Navara [2003] is very simple. The authors view
the difference between the diffusion outcome and the initial signal of observations
as noise and suggest to optimally stop the diffusion at the time which gives the
smallest correlation between the diffusion outcome and the noise estimate. How-
ever, they indiscriminate between the concepts of ‘the sample of a random process
(chain)’ and the ‘conditional expectation under assumption of a given random pro-
cess (chain)’. Naturally, as in the case with the work of Sporring and Weickert
[1999], the methodology of Mrázek and Navara [2003] lacks explicit probabilistic
model too. It is rather evident that most of a critique directed against the entropy-
based stopping applies to the use of correlation as well. Moreover, the remark on
the ‘entropic stability’ in [Mrázek and Navara, 2003] pertains to rare cases in which
the correlation might have very shallow minimum as well, or no minima at all, as
indicated in [Gilboa et al., 2006].

However, neither entropy nor correlation-based stopping should be excluded by
the developments related to robust statistics. Entropy and correlation are fun-
damental concepts, and one can always find many ways to make improvements
in special cases. It is just wrong to advocate particular statistics as universally
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applicable scale selection methods. We suggest a unification which allows to: (i)
avoid unnecessary preprocessing of signals, (ii) arrive at a more general criterion,
which merges both ideas into a single equation and further clarifies their proba-
bilistic assumptions, and (iii) view the optimal diffusion stopping as an example
where Bayesian arguments simplify the likelihood inference, not vice versa, as is
commonly practiced.

3.2 Constructing Joint Probability Densities

A diffusion scale-space can be seen as the statement with the conditional expecta-
tion over some unknown probability measure. Knowledge of such a measure allows
to employ numerous methods of a statistical inference, and the likelihood method
is one of the simplest. The problem, however, is to first build such a density.

Let the scale-space be given by the following propagator:

um = P−1
θ u0 ≡

m−1∏

i=0

(I − τB(ui))
−1

u0, (3.3)

where the Laplacian matrices B(ui) have been discussed in Chapter 2. The sub-
script θ in the nonsingular symmetric propagator Pθ ∈ Rn×n marks its dependence
on the parameters, such as m, and the goal is to set the ‘first principles’ which will
latter enable to apply the statistical inference in the parameter identification. Con-
ceptually, from a statistical inference viewpoint, identifying the dynamical model
is the same as ‘fitting a line’ to observations, and let us further simplify the nota-
tion so that y ≡ u0 is the known vector of observations, and u ≡ um is the model
output which is a synonym to predictions or smoothing outcome.

Our first assumption is the existence of the discrete variational criterion which
allows to formally relate the model output u with the observations y. Eq. (3.3)
suggests defining the cost function 1

2‖u‖
2
Pθ

− uT y. The optimality conditions of
the first-order then lead to Eq. (3.3). However, it will prove to be useful to state
a more general form of the energy:

Eθ(u,y) =
1

2

(
u

y

)T (
A B

C D

)(
u

y

)

. (3.4)

Assuming that the matrix A ∈ Rn×n is nonsingular, the first-order optimality
leads to the following relationship:

u∗ = argmin
u
Eθ(u,y) (3.5)

= (A + AT )−1(B + CT )y. (3.6)

At this point, one is free in choosing the matrices A, B and C so that Eq. (3.6)
becomes formally equivalent to Eq. (3.3). A note of caution is in place. The
Laplacians B(u) depend on u in a nonlinear way. The energy minimization here
is not used to solve any nonlinear equations. Given the scale-space of signals
u0,u1, . . . ,um we simply construct the propagator matrix and the discrete diffu-
sion becomes linear a posteriori. The energy merely suggests an interpretation,



36 3. Selection of Optimal Scale

which latter allows to deduce the criteria for the selection of parameters θ. In a
linear case, the optimality conditions of the first order produce a formal relation-
ship between the two known quantities, i.e. the vectors u∗ ≡ um and y. In what
follows, the asterisk is dropped out to simplify the notations.

The second assumption is to consider a meaningful Gaussian density

p(u,y|θ) = |2πΣ|−1 exp (−Eθ(u,y)) , (3.7)

which further constrains the quadratic form. The matrix

Σ ≡

(
A B

C D

)−1

(3.8)

must now be symmetric. Here ‘meaningful’ does not necessarily imply that Eθ(u,y)
should be finite and positive, which requires a positive definite Σ. The transition
from a set of linear equations to the Gaussian density can be useful even if the latter
is not well-defined as subsequent changes can be made to remove singularities.

We shall now construct a particular model H1 for Σ, which will turn out to be
singular, and discuss a particular improvement, denoted as H2.

Definition 3.1 (Gaussian model). Assume that the values of a random variable
Z are the elements of the joint vector of the model outputs u ∈ Rn and the ob-
servations y ∈ Rn. Let Z be distributed according to N(0,Σ) with the covariance
matrix

Σ =

(
Σuu Σuy

ΣT
uy Σyy

)

. (3.9)

Here Σab ≡ Cov(A,B), where A and B are vector-valued and

Cov(A,B) ≡
〈
(A− 〈A〉)(B − 〈B〉)T

〉
. (3.10)

It is always implied that the elements of the covariance matrix in Eq. (3.9) depend
on model parameters θ.

Proposition 3.1 (Gaussian conditioning, clf. Anderson [1958]).

〈U |y,θ〉 = Σuy(θ)Σ−1
yy (θ)y, (3.11)

2 ln p(y|θ) = −‖y‖2
Σ

−1
yy (θ)

− ln |2πΣyy(θ)|, (3.12)

Cov (U |y,θ) = Σuu(θ) − Σuy(θ)Σ−1
yy (θ)ΣT

uy(θ). (3.13)

This proposition summarizes three important quantities of a statistical condition-
ing: (i) conditional mean which determines ‘model output’ or ‘predictions’, (ii)
marginal likelihood, which is useful in choosing the model parameters and will be
discussed in Section 3.3, and (iii) conditional covariance, which can sometimes be
associated with uncertainty of predictions. Notice that the vector y does not enter
the right hand side of Eq. (3.13) explicitly.

Proposition 3.2 (Additive uncorrelated Gaussian noise). If the observation Y =
U +N , where N is uncorrelated with U , then

Σyy = Σuu + Σnn. (3.14)
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Proof. By substituting the sum to Eq. (3.10), one can verify that

Σu+n = Σuu + 2Σun + Σnn. (3.15)

If the signals are uncorrelated, 〈UNT 〉 = 〈U〉〈NT 〉 and

Σun =
〈
(U − 〈U〉)(N − 〈N〉)T

〉
(3.16)

= 〈UNT 〉 − 〈U〉〈NT 〉 = 0. (3.17)

Proposition 3.3 (Variance-reducing conditioning). A further restriction Σuu =
Σuy = ΣT

uy guarantees that conditioning reduces variance:

Cov (U |y,θ) = Σuu − Σuu(Σuu + Σnn)−1Σuu (3.18)

= (Σ−1
uu + Σ−1

nn)−1 � Σuu . (3.19)

The operator A � B should be understood in the sense that B − A is positive
semidefinite. The dependence of the right hand sides on θ is suppressed for the
sake of brevity.

Proposition 3.4 (Model H1). Assumptions of the additive uncorrelated Gaussian
noise and variance-reducing conditioning restrict the Gaussian model in Defini-
tion 3.1 with the conditions Σuu = Σuy = Σyu and Σyy = Σuu + Σnn:

ΣH1
=

(
Σuu Σuu

Σuu Σuu + Σnn

)

. (3.20)

The joint probability density factors into

p(u|θ,H1) = N(0,Σuu), p(y|θ,H1) = N(0,Σuu + Σnn), (3.21)

p(y|θ,u,H1) = N(u,Σnn), p(u|y,θ,H1) = N(µu|y,Σu|y), (3.22)

where the conditional mean vector µu|y and the covariance matrix Σu|y are short-
cuts to 〈U |y,θ,H1〉 and Cov (U |y,θ,H1), respectively.

Proof. The exponential factor in the joint Gaussian density (total energy) is:

EH1
(u,y) =

1

2

(
u

y

)T (
Σuu Σuu

Σuu Σuu + Σnn

)−1(
u

y

)

. (3.23)

Application of Schur complements and the Sherman–Morrison–Woodbury identity
to the matrix in Eq. (3.20) results in:

(
Σuu Σuu

Σuu Σuu + Σnn

)−1

=

(
Σ−1

nn + Σ−1
uu −Σ−1

nn

−Σ−1
nn Σ−1

nn

)

. (3.24)

Separating variables u and y establishes the result.

Substitution of Eq. (3.24) to Eq. (3.23) yields Eq. (3.25). One could note that the
total energy can be expressed as the ‘regularization energy’:

EH1
(u,y) =

1

2

(

‖y − u‖2
Σ

−1
nn

+ ‖u‖2
Σ

−1
uu

)

. (3.25)
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This gives the extremal property of the conditional expectation, i.e. 〈U |y,H1〉 =
arg minuEH1

(u,y). This is so because the minimum of the total energy in Eq. (3.25)
is at Σuu(Σuu + Σnn)−1y, which coincides with Eq. (3.11).

The joint covariance matrix is now reduced to the matrix with two independent
quantities: (i) the signal covariance Σuu and the noise covariance Σnn. We can
now produce a stochastic picture of Eq. (3.3) by relating it to the conditional
expectation:

P−1
θ ≡ Σuu(Σuu + Σnn)−1. (3.26)

There still remain too many degrees of freedom in constructing the probability
density, but let us further assume that the noise is white, i.e. Σnn ≡ θ0. Then,

Σ−1
uu =

1

θ0
(Pθ − I). (3.27)

The concentration matrix Σ−1
uu will be nonsingular if and only if the propagator

has no eigenvalues qual to unity. When the Laplacians B(u) are singular, this is
the case indeed. Thus, the terms such as p(y|H1) have no meaning.

However, the model can be modified. Instead of adding the signal variable with
the covariance matrix Σuu to the uncorrelated noise variable with the covariance
matrix Σnn, it will prove useful to add the signal with Σ−1

nn to an uncorrelated
noise with Σ−1

uu . This trick motivates the model H2.

Proposition 3.5 (Model H2). Assume that the joint variable Z = (U, Y ) ∼
N(0,Σ) with

ΣH2
=

(
Σ−1

nn Σ−1
nn

Σ−1
nn Σ−1

nn + Σ−1
uu

)

. (3.28)

The joint probability density factors into

p(u|θ,H2) = N(0,Σ−1
nn), p(y|θ,H2) = N(0,Σ−1

uu + Σ−1
nn), (3.29)

p(y|θ,u,H2) = N(u,Σ−1
uu ), p(u|y,θ,H2) = N(µu|y,Σnn). (3.30)

Proof. The total energy of the model H2 is:

EH2
(u,y) =

1

2

(
u

y

)T (
Σ−1

nn Σ−1
nn

Σ−1
nn Σ−1

nn + Σ−1
uu

)−1(
u

y

)

. (3.31)

Application of Schur complements with the Sherman–Morrison–Woodbury identity
yields:

(
Σ−1

nn Σ−1
nn

Σ−1
nn Σ−1

nn + Σ−1
uu

)−1

=

(
Σuu + Σnn −Σuu

−Σuu Σuu

)

. (3.32)

Separating the quantities u and y produces the required decompositions.

The regularization alternative to EH2
(u,y) becomes:

EH2
(u,y) =

1

2

(
‖y − u‖2

Σuu
+ ‖u‖2

Σnn

)
. (3.33)

A minimum of the total energy in Eq. (3.33) is at Σ−1
nn(Σ−1

nn + Σ−1
uu )−1y, which

coincides with Eq. (3.11) applied to the model H2. This establishes the extremal
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property of the conditional expectation, which is 〈U |y,H2〉 = argminuEH2
(u,y).

Notice that 〈U |y,H1〉 = 〈U |y,H2〉, but EH1
(u,y) 6= EH2

(u,y).

The problem with the existence of the likelihood p(y|H2) is eliminated because the
density N(0,Σ−1

uu + Σ−1
nn) is finite and non-degenerate even when Σ−1

uu is singular.
This comes at the cost that the noise covariance is no longer white.

3.3 Marginal Likelihoods of the Models

The meaning of Eq. (3.12) allows to unify a variety of model selection ideas which
need not be derived by heuristic means. It will be shown that the unnormalized
correlation and entropy are particular cases of the marginal likelihood inference.
Historically, the concept of likelihood was considered already by C. F. Gauss in
1809 and named so by R. A. Fisher around 1922, clf. [Plackett, 1966]. The marginal
likelihood is often attributed to Robbins [1983], who has used it much earlier in
the statistical inference setting known as empirical Bayes. Modern uses of this
concept can be traced back to the work of Lejeune and Faulkenberry [1982] and
the comment given by Leonard [1982].

Given the parameters θ with the assumptions pertaining to either of the mod-
els Hi, where i = {1, 2}, let the joint probability density of observations y be
p(y|θ,Hi). When viewed as a function of the model parameters θ, the quantity
is called marginal likelihood. The word likelihood signifies that this function is not
a probability density function, and the marginal likelihood can be opposed to the
likelihood p(y|u,θ,Hi).

When the dependence on the argument y is emphasized, the probability with the
density p(y|Hi) is often called Bayesian evidence. Bayesian philosophers advise to
make inferences from data by using only the probabilities of quantities conditioned
on data, such as those obtainable from the density p(u,θ|y,Hi), clf. the famous
statement: ‘We do not analyze unseen data sets’. This means that marginalizing
probability density over the observation variables is strictly forbidden, but one is
free to integrate over parameters or even multiple hypothesis spaces.

Another, rather minor, Bayesian requirement is to postulate the probability den-
sities for the parameters θ too. However, in the applications to scale-spaces it is
easier to treat the quantities u and θ differently. If desired, probability densities
for the parameters θ could be incorporated by adding additional energy terms to
the likelihood or resorting to fiducial inference, see e.g. [Salomé, 1998].

Proposition 3.6 (Marginal likelihood p(y|θ,H1)). Assume a white covariance
Σnn = θ0I for some θ0 > 0. The marginal likelihood p(y|θ,H1) in Eq. (3.21)
decomposes into:

−2 lnp(y|θ,H1) =
1

θ0

(
‖y−µu|y‖

2+(y−µu|y)T µu|y

)
+ln |2π(Σuu + θ0I)| . (3.34)

Proof. The term p(y|θ,H1), given by Eq. (3.21), can be written in an expanded
form:

−2 ln p(y|θ,H1) = ‖y‖2
(Σuu+θ0I)−1 + ln |2π(Σuu + θ0I)| . (3.35)
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The first term splits into the squared Euclidean distance between the model pre-
diction and observations and the orthogonality of ‘noise’ to the model output:

‖y‖−1
Σuu+θ0I

= yT Σ−1
uuµu|y [use µu|y ≡ Σuu(Σuu + θ0I)

−1y] (3.36)

= θ−1
0 yT (y − µu|y) [rearrange Σ−1

uuµu|y = θ−1
0 (y − µu|y)] (3.37)

= θ−1
0 (‖y − µu|y‖

2 + (y − µu|y)T µu|y) , (3.38)

where Eq. (3.38) follows from its predecessor by adding and subtracting −yT µu|y+

µT
u|yµu|y.

When splitting Σuu +θ0I = θ0Σuu(θ−1
0 I+Σ−1

uu ) and using ln |2πΣx| = 2h(X)−n,
the term ln |2πΣuu + θ0I| can be written in two different ways, which results in an
interesting identity:

2h(Y |θ,H1) = 2h(U |θ,H1) − ln

∣
∣
∣
∣

Cov(U |θ,y,H1)

θ0

∣
∣
∣
∣
. (3.39)

Therefore, minimizing ln |2πΣuu +θ0I| reduces the uncertainty of the prior density
p(u|θ,H1) and maximizes the generalized signal-to-noise ratio (SNR).

Another way to understand the determinant term in Eq. (3.34) is to apply the
Sherman–Morrison–Woodbury identity and perform splitting into:

ln |2π(Σuu + θ0I)| = n ln 2πθ0 − ln
∣
∣I − Σuu(Σuu + θ0I)

−1
∣
∣ . (3.40)

Here it is useful to further apply the identity ln |A| = tr lnA. Furthermore, let
us utilize the Taylor series approximation of the matrix logarithm up to the first
order. The term tr

(
Σuu(Σuu + θ0I)

−1
)

can then be seen as the number of good
parameters. The second term in Eq. (3.40) resembles the number of noisy degrees
of freedom and when subtracted from the first term, it measures the number of
effective model parameters. However, the total energy of the system penalizes the
model complexity too.

Proposition 3.7 (Marginal likelihood p(y|θ,H2)). Assume a white covariance
Σnn = θ0I for some θ0 > 0. The marginal likelihood p(y|θ,H2) given by Eq. (3.29)
decomposes into

−2 lnp(y|θ,H2) = θ0
(
‖µu|y‖

2 + (y−µu|y)T µu|y

)
+ ln

∣
∣2π(Σ−1

uu + θ−1
0 I)

∣
∣ . (3.41)

Proof. The explicit form of the marginal likelihood p(y|θ,H2) in Eq. (3.29) reads:

−2 ln p(y|θ,H2) = ‖y‖2
(Σ−1

uu+θ−1
0 I)−1 + ln

∣
∣2π(Σ−1

uu + θ−1
0 I)

∣
∣ . (3.42)

Contrary to the model H1, the matrix Σ−1
uu is now allowed to be singular. A simple

identity yT (Σ−1
uu + θ−1

0 I)−1y = θ0y
T Σuu(Σuu + θ0I)

−1y rewrites the first term in
Eq. (3.42):

‖y‖2
(Σ−1

uu+θ−1
0 I)−1 = θ0y

T µu|y (3.43)

= θ0((y − µu|y)T µu|y + ‖µu|y‖
2) . (3.44)



3.4. Decorrelation Priors of the Models 41

One could note that the both models are related. For example, comparison of
Eqs. (3.38) and (3.44) reveals that

EH2
(µu|y,y) = θ20EH1

(µu|y,y). (3.45)

By noticing that Cov(Y |θ,H2) = (Cov(U |θ,y,H1))
−1, one may also discover that

h(Y |θ,H2) = n ln(2πe) − h(U |y,θ,H1). (3.46)

It is also possible to replace the inner-products with the determinants via the
identity 1 + uTv = |I + uvT |, but the reverse route seems to be more practical.
The latter is discussed in Section 3.5.

3.4 Decorrelation Priors of the Models

Mrázek and Navara [2003] have noticed that when the observations y present an
additive corruption with noise, and u is the outcome of the diffusion scale space,
the ‘correlation’ between the vector y−u and u evolves in time so that the location
of its minimum yields a practically approved values of the scale.

Propositions 3.6 and 3.7 indicate that minimizing the total energy of the system,
making the model output orthogonal to noise, maximizing the differential entropy
and generalized SNR need not be seen as heuristic ideas, but rather particular
principles stemming from the marginal likelihood framework. Let us clarify the
meaning of ‘decorrelation’.

Definition 3.2 (Correlation, clf. [Anderson, 1958]). The correlation ̺ ∈ [−1, 1]
between the two random variables X and Y is:

̺ =
tr Cov(X,Y )

√

tr Cov(X,X)
√

tr Cov(Y, Y )
, (3.47)

It is assumed that both variables take values in Rn.

Mrázek and Navara [2003] treat the diffusion outcome as if it were merely a stochas-
tic sample. The authors do not define the density p(y,u|θ), but simply substitute
the definitions of the covariance functions in terms of expectations and replace the
latter ones with a simple averaging, i.e.

trCov(X,Y ) →
n∑

i=1

(xi − x̄)(yi − ȳ), (3.48)

where x̄ = n−1
∑n

i=1 xi and ȳ is defined similarly.

Practice indicates that normalizing the criterion in Eq. (3.47) does not significantly
affect the optima, and in this case, the ‘decorrelation’ reduces to:

t∗ = argmin
t

(y − µu|y)T µu|y, (3.49)

where it is implicitly assumed that µu|y depends on the time t.

Treating the diffusion outcome in the same way as observations y is inconsistent
from a methodological viewpoint:
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1. The output of the diffusion scale space u can be seen as the result of comput-
ing the conditional expectation µu|y. This is not a vector of observations, and
should not be treated as a stochastic realization (sample of a discrete chain).
It is a part of our hypothesis space about y, and we seek for probabilistic
assignments to particular statements within a hypothesis space.

2. Justification of any statistics without the explicit noise model is always weak.

The criterion in Eq. (3.49) can also be further reconciled from a Bayesian per-
spective. The removal of the terms in the marginal likelihood can be seen as
the introduction of their ‘anti-terms’. This can be interpreted as multiplying the
marginal likelihood with the density density p(θ|H1) a priori. This picture is not
entirely Bayesian because the densities depend on data. However, they generalize
the situation in terms of the density functions which do not necessarily have to be
Gaussian.

Proposition 3.8 (Decorrelating priors). Minimizing the ‘unnormalized correla-
tion’ (y − µu|y)T µu|y is equivalent to the maximization of the marginal likelihood
with the models H1 and H2 when they are supplied with the following priors:

p(θ|H1) ∝ θ
−n/2
0 exp

(

− ln p(y|µu|y,θ,H1) + 〈ln p(Y |θ,H1)〉
)

, (3.50)

p(θ|H2) ∝ θ
+n/2
0 exp

(

− ln p(µu|y|θ,H2) + 〈ln p(Y |θ,H2)〉
)

. (3.51)

Proof. When uθ ≡ µu|y, in order to isolate the term (y − uθ)
Tuθ in Eq. (3.34),

one has to multiply the marginal likelihood with

p(θ|H1) ∝ exp

(
1

2θ0
‖y − µu|y‖

2 +
1

2
ln |2π(Σuu + θ0I)|

)

. (3.52)

The first term can be generalized by writing p(y|µu|y,θ,H1) = N(µu|y, θ0I), clf.
Eq. (3.22) with Σnn = θ0I, in an expanded form and taking logarithms of the both
sides. This results in

1

2θ0
‖y − µu|y‖

2 = −
n

2
ln(2πθ0) − ln p(y|µu|y,H1). (3.53)

Up to a constant, the second term in Eq. (3.52) is the entropy h(Y |θ,H1), and
when ignoring the terms that do not depend on θ, this leads to Eq. (3.50).

When changing the marginal likelihood of the model H2 to the unnormalized
correlation, Eq. (3.41) suggests the prior

p(θ|H2) ∝ exp

(
1

2θ−1
0

‖µu|y‖
2 +

1

2
ln
∣
∣2π(Σ−1

uu + θ−1
0 I)

∣
∣

)

. (3.54)

Consulting Eq. (3.29) with Σnn = θ−1
0 shows that p(µu|y|H2) = N(µu|y, θ

−1
0 I),

which allows to rewrite the first term in Eq. (3.54):

1

2θ−1
0

‖µu|y‖
2 = −

n

2
ln(2πθ−1

0 ) − ln p(|µu|y|H2). (3.55)

Again noticing that the second term up to a constant is the entropy h(Y,θ,H2),
and ignoring the terms that do not depend on θ, reveals Eq. (3.51).
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If one uses 〈ln p(Y |µu|y,θ,H1)〉 instead of ln p(y|µu|y,θ,H1), the prior p(θ|H1)

becomes a uniform prior because the term θ
−n/2
0 can then be conveniently intro-

duced to the exponent as the Gaussian entropy h(X |θ0). The exponent disappears
on the basis of the identity h(A) = h(B) + h(B|A). Likewise, p(θ|H2) becomes a
uniform prior when using 〈ln p(U |θ,H2)〉 instead of ln p(µu|y|θ,H2) in Eq. (3.51).

If for some reason the terms in the exponents sum to zero, the priors p(θ|H1) ∝

θ
−n/2
0 and p(θ|H2) ∝ θ

n/2
0 become Jeffreys’ priors for multinomial densities with

the parameters θ0 and θ−1
0 , respectively, clf. [Plackett, 1966].

3.5 Better Utilization of Shannon Entropy

Up to irrelevant constants, the logarithms of the determinants of the covariance
matrices in Eq. (3.34) and Eq. (3.41) are differential Shannon entropies of the
corresponding Gaussian densities. Optimizing these entropies alone can be seen
as making an adjustment to the maximization of the marginal likelihood. For
example, it is clear from Eq. (3.34) that the first term gives preference to small
stopping times. It is therefore expected that the entropy aims to counterbalance
this effect if the marginal likelihood does possess the maximum. Thus, the idea
of Sporring and Weickert [1999] now gets a proper justification. In summary:

1. Optimizing the entropy with an early stopping can be seen as part of the
marginal likelihood maximization.

2. Rényi entropies suggested in [Sporring and Weickert, 1999] should be re-
placed with the differential Shannon entropies defined over properly intro-
duced random variables, not signals. This change does not solve all the
problems related to an ‘invariant inference’, but at least the need to map
signals into positive quantities disappears. Moreover, differential entropies
depend only on the covariance (curvature) in the Gaussian case, which, to
some extent, allows to maintain invariance w.r.t. a constant component of
the signal.

3. Differential Shannon entropies do not depend on the actual signal in a linear
case, only on the variance of noise. This is important as the optimal stopping
time determines the amount of smoothing which, at least in a linear diffusion
case, seems to depend on the level of noise, but not on the actual signal in
noise.

Proposition 3.9 (Monotonicity of entropies in a discrete time). Let the propagator
be time-homogeneous, i.e. P = (I − B)m. The entropy is nondecreasing, i.e.

h(Y |m+ 1,H1) ≥ h(Y |m,H1), (3.56)

provided that the matrix −B is positive definite. If the propagator is nonlinear,
the following inequality is true:

h(Y |m+ 1,H2) ≥ h(Y |m,H2), (3.57)

provided that each matrix −B(um) is positive semidefinite for every m ∈ Z+ ∪ 0.
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Proof. The time-behavior of the entropy h(Y |m,H1) is determined by the term
ln |2π(Σuu+θ0I)| which, up to irrelevant constants, equals to − ln |I−P−1|. Let the
eigenvalues λ(−B) be denoted as λi for i = 1, . . . , n. The Taylor series expansion
leads to:

− ln |I − P−1
t | = −

n∑

i=1

ln
(
1 − (1 + λi)

−m
)

= −
n∑

i=1

(1 + λi)
−m + h.o.t. , (3.58)

which follows from ln(1−x) = −
∑∞

k=1 x
k/k. Clearly, if the matrix −B is positive

definite, then each λi > 0 and the entropy increases w.r.t. m. If we further assume
that the largest term, i.e. (1+λmin)

−(t+1) with λmin > 0, is dominating, the decay
of the negative entropy will be exponential in time.

It follows from Eq. (3.41) that, up to irrelevant constants, the entropy h(Y |θ,H2)
is determined by:

ln |P| =
n∑

i=1

ln(1 + λi)
m = m

n∑

i=1

ln(1 + λi). (3.59)

Therefore, the entropy h(Y |θ,H2) grows linearly in time, and B is allowed to be
singular. The nondecrease of h(Y |θ,H2) can be established for a general propa-
gator:

ln |P| =

m∑

k=0

ln |I − B(uk)| =

m∑

k=0

n∑

i=1

ln(1 + λi(k)) . (3.60)

Here each eigenvalue λi(k) ≥ 0 comes from the set λ(−B(uk)) and is now time-
dependent. The positivity of the eigenvalues guarantees that the term ln |P| is
nondecreasing, which proves the inequality in Eq. (3.57).

The smallest eigenvalue λmin determines the nondecrease of the entropy h(Y |θ,H1)
in the homogeneous case, whereas it is the maximal eigenvalue λmax which affects
the entropy h(Y |θ,H2). Convenient bounds follow from the Schur theorem dis-
cussed in [Marshall and Olkin, 1979]. It states that the eigenvalues of a Hermitian
matrix majorize its diagonal elements. As a special case, the following inequalities
are true:

λmin ≤ min
i∈{1,2,...,n}

(−bii), λmax ≥ max
i∈{1,2,...,n}

(−bii) , (3.61)

where bii are the diagonal elements of B, and they are typically negative.

The ideology of Sporring and Weickert [1999] now gets a proper justification.
Utilization of the differential entropy first establishes it as a model complexity
measure, and then proves that it is indeed a Liapunov function, whereas the orig-
inal connection with model selection is rather weak. In the model of Sporring
and Weickert [1999], the signal is assumed to be normalized in order to satisfy
the constraints of the probability density, which can be written such as um =
〈δ(U − u)|y,θ,H〉. However, the observations must be preprocessed in order to
validate this density, and the diffusions are restricted to positive evolutions. In
this thesis, um ≡ µu|y ≡ 〈U |y,θ,H1(2)〉 and y does not have to be preprocessed.

An insight to the differential Shannon entropies can be stated. The key observation
is that the logarithms of determinants can be expressed solely in terms of inner
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products. The entropies, as well marginal likelihoods, depend then only on the
conditional mean operator. This is relevant to simplifications based on the operator
splitting, which would allow one to avoid the nontridiagonal matrices in evaluating
the criteria.

Let us borrow well-known identities from [Barry and Pace, 1999]:

ln |I − A| = tr (ln(I − A)) = −
∞∑

k=1

tr(Ak)

k
, (3.62)

This expansion is valid if the spectral radius of the matrix A ∈ Rn×n does not
exceed unity.

The computation of the trace can be performed probabilistically:

1

n
tr(A) =

〈
XTAX

XTX

〉

, X ∼ N(0, I). (3.63)

Skilling [1993] states that when n is large, e.g. n = O(106), even a single point
can be useful in the approximate evaluation of trace. This is not very surprising,
clf. Section A.2.

The logarithmic term in Eq. (3.35) can be rewritten as:

ln |2π(Σuu + θ0I)| = n ln(2πθ0) + ln |P| − ln |P − I| , (3.64)

= n ln(2πθ0) − ln |I − P−1| . (3.65)

The application of Eqs. (3.62) and (3.63) results in:

ln |2π(Σuu + θ0I)| = n ln(2πθ0) +
∞∑

k=1

tr(P−k)

k
, (3.66)

= n ln(2πθ0) + n

∞∑

k=1

1

k

〈
XTP−kX

XTX

〉

. (3.67)

The product matrix-vector product P−kX is a k times iterated conditional expec-
tation. For example, when k = 3,

P−kX ≡ 〈U | 〈U |〈U |X,θ,H1〉,θ,H1〉 ,θ,H1〉 . (3.68)

Similar expressions can be provided for the entropy in the model H2. Eq. (3.27)
simplifies the logdet term in Eq. (3.42):

ln |2π(Σ−1
uu + θ−1

0 I)| = n ln 2πθ−1
0 + ln |P| . (3.69)

Writing P = I − (I − P) allows to apply Eq. (3.62), which further restricts the
eigenvalues of P to the interval (0, 2). This results in an expression with powers
(I − P)k which can be expanded by using the binomial theorem:

(I − P)k =

k∑

m=0

k!

m!(k −m)!
Pm. (3.70)
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Disentanglement of traces in Eq. (3.63) leads to:

ln
∣
∣2π(Σ−1

uu + θ−1
0 I)

∣
∣ = n ln(2πθ−1

0 ) +

∞∑

k=1

k∑

m=0

(k − 1)!

m!(k −m)!
tr(Pk), (3.71)

= n ln(2πθ−1
0 ) + n

∞∑

k=1

1

k

k∑

m=0

(k − 1)!

m!(k −m)!

〈
XTPkX

XTX

〉

.

(3.72)

The product PkX is now a successive application of the ‘inverse conditional ex-
pectation’. Both Eqs. (3.67) and Eqs. (3.72) can be seen as novel definitions of the
differential Shannon entropy.

Inner-products also allow to extend the applicability of the marginal likelihood
concept with infinite-dimensional systems. For example, one could substitute the
inner-product representations of the entropies to marginal likelihoods and then
multiply both sides of the equations with ‘∂Ω/|Ω| = 1/n’. A further use of the
mean value theorem and replacement of the inner-products with the Hilbert prod-
uct is one available research program. This aspect goes beyond the scope of this
work.



Chapter 4

Computational Analysis

Computational simulations will provide answers to the questions that are otherwise
difficult to obtain theoretically. The scale-space will be further narrowed down to
discrete edge-preserving diffusions, see e.g. [Weickert et al., 1998].

Section 4.1 explains a synthetic problem that will be analyzed in detail. This is a
classical problem of revealing a rectangular pulse corrupted with blur and additive
noise.

Section 4.2 studies the difference between a linear diffusion in a discrete and con-
tinuous modes of the space and time. It is shown that for achieving a linear depen-
dence of the maximal error on the decreasing size of the smallest spatial element,
one needs to perform more iterations than usually expected. A linear decrease of
the maximal error w.r.t. the size of the time step τ also requires increasing the
size of the grid.

Section 4.3 emphasizes the difference between the von Neumann and Dirichlet
boundary conditions when the model is extended beyond the conditional mean to
the level of covariances. The covariance matrix can be singular and nonunique
and at the same time the conditional expectation and the marginal likelihood may
yield a unique well-defined model output.

Section 4.4 further shows how boundary conditions affect the time evolution of
a nonlinear diffusion. Several useful-to-know difficulties with nonlinear diffusions
are emphasized with two particular examples. The first one shows a slow-down of
a diffusion near edges, which indicates that a nonlinear diffusion may take very
long simulation times. The second example restates a well-known stair-casing
phenomenon, clf. [Esedoglu, 2001, Lassas and Siltanen, 2004].

Section 4.5 provides an example of a successful stopping of a nonlinear diffusion
when the noise variance is very large and a linear diffusion is hopeless.

47
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4.1 Basic Setting

It is helpful to work with the simplest possible problem: Smoothing of a binary
signal in the additive Gaussian noise. Despite that this does not show all capacity
of the scale-spaces, a great advantage of such a setting is its transparency.

Consider a linear univariate diffusion PDE:
{

∂u
∂t = c∂2u

∂x2 on Ω = [0, 1],
∂u
∂x = 0 on ∂Ω.

(4.1)

Here c = const. The Fourier analysis helps to develop a semi-analytical solution
to this equation as an expansion in Fourier series. For this reason, let us define an
initial signal u(x, 0) ≡ u0 ≡ y according to

u(x, 0) =
a0

2
+

r∑

k=1

ak cos(2πkx), (4.2)

The exact solution to Eq. (4.1) introduces an exponential damping to Eq. (4.2),
clf. [Berg and McGregor, 1966]:

u(x, t) =
a0

2
+

r∑

k=1

ake
−(2πk)2ct cos(2πkx). (4.3)

For the sake of simplicity and a further analysis of a nonlinear diffusion it is good
to choose an initial signal as the Fourier series of a rectangular pulse of width 0.5
centered in the interval x ∈ [0, 1] as shown in Fig. 4.1. The Fourier coefficients are
easy to compute and are given by

a0 = 1, ak = −
2

πk
sin

πk

2
, k = 1, 2, . . . , r. (4.4)

Eqs. (4.3) and (4.4) allow to make sure that the discrete model approximates
its continuous counterpart in a linear case because an explicit solution is readily
available.

It will be assumed that an ideal signal is a rectangular pulse and the observations
u0 ≡ y include two distortions: (i) blur of edges, which is imposed by using a fixed
number r = 20 of Fourier components, and (ii) ringing near the edges, introduced
by the Wilbraham–Gibbs phenomenon. The latter has two meanings: (i) non-
disappearance of oscillatory jumps at the discontinuity even when the number of
Fourier components is infinite, and (ii) loss of (exponential) approximation accu-
racy w.r.t. the number of Fourier components away from discontinuity. Notably,
the Wilbraham–Gibbs phenomenon takes place when using the least squares pro-
jections even with discontinuous basis, e.g. [Foster and Richards, 1991], and one
might suspect its appearance even in the use of the random projections of Haupt
and Nowak [2006].

In addition to the distortion, the observations will be contaminated with a zero-
mean additive white Gaussian noise (AWGN) and the main challenge will be to
recover the rectangular pulse from a sample of its noisy observations.
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Figure 4.1: A signal specified according to Eqs. (4.3) and (4.4) with r = 20 and
r = 200. The discrepancies caused by the Wilbraham–Gibbs phenomenon are at
the locations of jump discontinuities: x = 0.25 and x = 0.75.

It is well known that both discrete diffusions of Definition 2.1 can be seen as
approximate solutions to Eq. (4.1) and the convergence is achieved when the size
of the matrix B tends to infinity and τ → 0, see e.g. [Babuška et al., 1966].
Linear models, however, cannot achieve a recovery of steep changes in a signal,
and therefore, we shall apply discrete diffusions with the following nonlinearity:

bi(u) ≡ 1 − exp

(

−
ν

(|[Fu]i|/λ)s

)

, i = 2, 3, . . . , n . (4.5)

Here the matrix F is the bidiagonal forward-difference operator given by Eq. (2.13).
The effect of the nonlinearity can be understood by treating the elements bi(u)
as the values of the function b(w) of a single scalar-valued variable w ≡ |[Fu]i|.
This variable possesses positive values whose magnitude indicates how large the
difference between the elements [u]i and [u]i+1 is. If this difference is small, w is
close to zero and b(w) is close to unity. If the difference is large, b(w) is close to
zero. The overall effect is best seen by referring to Eq. (2.17). Clearly, the rows
with small elements bi(ut) do not affect the corresponding coordinates of ut+τ

much. On the other hand, larger values of bi(ut) enforce the averaging of the
nearest neighbors. Thus, Eq. (4.5) introduces a spatially non-uniform smoothing:
Average less where the change is faster.

A particular value ν ≥ 0 can be set up by borrowing some arguments from the
analysis in a continuous space and time, but one should know that discrete non-
linear diffusions do not, generally, approximate their continuous counterparts. For
example, D’Almeida [2003] chooses the parameter ν in such a way that the deriva-
tive of the ‘flux’ wb(w) changes its sign at w = λ. The threshold λ ≥ 0 of a
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Figure 4.2: Maximal absolute deviation ε vs. the spatial grid resolution h and
the time step size τ . Despite the accuracy of the discrete projection of the second
derivative operator is o(h), the overall accuracy of the diffusion outcome is O(h)
at best. This can be seen in the case (a). Moreover, linear time stepping accuracy
o(τ) holds only until certain resolution thresholds, as can be seen in (b).

‘discrete gradient’, and the sharpness of nonlinearity s = 2, 4, . . ., need to be set
up experimentally. The use of Eq. (4.5) in the context of an optimal diffusion
stopping is suggested in [Mrázek and Navara, 2003].

4.2 Choosing Parameter τ

It is well-known that a discrete diffusion with a semi-implicit propagator, clf.
Definition 2.1, serves as a stable approximation to a linear continuous diffusion.
The error is known to depend linearly on the stepping size τ . Let us now introduce
another quantity, the size of the smallest grid element h = n−1, which is also an
inverse of the size of the Laplacian B. This section will emphasize the fact that
the accuracy of the semi-implicit diffusion is sublinear w.r.t. either h or τ when
one of them is fixed.

The following study was performed with a linear diffusion of a noiseless signal with
c = 1, t = 10−2, and a variety of the time steps τ and the spatial sizes h = 1/n, as
summarized in Fig. 4.2. The maximal absolute deviation ε of the solution w.r.t.
the ideal signal was chosen as the error measure. In a way, this choice might be too
pessimistic, but the worst case analysis allows to better reveal the effects that could
be hidden when using average errors. One could also note that when c is constant,
‘semi-implicit’ becomes equivalent to ‘implicit’. The semi-implicit iteration works
with any unbounded τ > 0. However, despite that computational requirements to
perform a single iteration grow linearly with the size of the problem, one needs
more iterations to achieve a linear accuracy O(h). Fig. 4.2a shows that when the
problem requires n = 1/h > 104 grid elements, an intuitively small time step
τ = 10−3 yields ε = O(10−2) error. In that case, one has to decrease the time step
down to τ = 10−5 to attain ε = O(10−4) error. This requires 100 times longer
simulation. Fig. 4.2b shows the same effect w.r.t. the decreasing time constant τ .
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In order to obtain O(τ)-accurate maximal error norm, one needs to increase the
size of the discrete Laplacian, i.e. decrease the spatial constant h.

Therefore, despite the fact that the semi-implicit iteration is often stated as O(h)
accurate w.r.t. the grid resolution h and O(τ) accurate w.r.t. the time step τ ,
the overall accuracy in the sense of the maximum error norm has certain barriers:
simply decreasing either h or τ when another is kept fixed is not enough.

In summary, the choice of the parameter h is typically dictated by the available
resolution of the observation-gathering device. However, the stepping constant τ
is a free parameter and its choice is up to the one who applies diffusion models.
In the case of a linear diffusion, it is possible to rely on the measure of how
closely the discrete model follows its continuous counterpart. In the presence
of nonlinearities, the convergence is no longer available, unless one deals with
particular nonlinearities and introduces careful regularizations as in [Catté et al.,
1992].

Weickert et al. [1998] studied numerically the implications of choosing the value of
τ to the preservation of a rotational invariance. Clearly, this is just one aspect of
the question: How many iterations should take place? This difficulty can also be
related to the choice of a minimal change of the scale in a scale-space. Presently,
it must be determined experimentally.

4.3 Singularity of Covariance Matrix Σuu

Before approaching a nonlinear diffusion, it is good to study the impact of the
singularity of the Laplacian B to the singularity of the covariance matrix Σuu.
Gaussian conditioning allows singular covariance matrices, but the marginal like-
lihood criterion is well-defined in a singular case only for the model H2.

A single iteration of a discrete linear diffusion can be given a probabilistic interpre-
tation by using Eqs. (3.27). Linearity implies the possibility to interpret a single
diffusion step as the Gaussian smoothing (regression analysis).

The relationship between the propagator and covariance matrices can be restated:

Σ−1
uu =

1

θ0
(Pθ − I), Pθ ≡ (I − τB)−1. (4.6)

It is interesting to inquire what the elements of the propagator P and the covariance
matrix Σuu look like and how they are affected by the boundary conditions. For
this reason, let us introduce the following functions, which are uniformly sampled
in x ∈ [0, 1]:

k(xi, xj) ≡ [Σuu]ij , (4.7)

g(xi, xj) ≡ [Pθ]ij . (4.8)

The covariance functions k(xi, xj) can also be referred as kernels, and g(xi, xj)
are also known as Green’s functions. Fig. 4.3 indicates the difference between the
kernels read from the matrix Σuu and discrete Green’s functions in the case of a
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Figure 4.3: Kernel and Green’s functions on Ω = [0, 1]: (a),(b) Brownian motion,
(c),(d) Brownian bridge. The Green’s functions are shown in the case of strong
smoothing with h = 10−3 and τ = 10−1. They get narrower if τ is smaller. In
both cases the relationship between the kernel function and Green’s function is
unique.

linear diffusion iteration with θ0 = τ . Two boundary conditions are considered: (i)
the Robin conditions b1 = −1 and bn+1 = 0, which correspond to Fig. 4.3a,b, and
(ii) the Dirichlet conditions b1 = −1 and bn+1 = 1, which correspond to Fig. 4.3c,d.

The interested reader may check that a single step of a linear diffusion with the
boundary conditions b1 = −1 and bn+1 = 0 corresponds to the Gaussian smooth-
ing with the assumption of Brownian motion, i.e. k(xi, xj) = min(xi, xj). The
conditions b1 = −1 and bn+1 = 1 implement the assumption of Brownian bridge,
i.e. k(xi, xj) = min(xi, xj) − xixj . We do not study continuous space-scales in
this thesis, but certain constraints are inspired from the diffusions in a continuous
world, which deserves to be mentioned. It is, however, essential that the covari-
ance and Green matrices are positive definite and there is a unique relationship
between them, given that the value of θ0 is known.

If one imposes the von Neumann boundary conditions, i.e. b1 = bn+1 = 0, the
Laplacian B becomes singular, clf. remarks given below Eq. (2.30). The covariance
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Figure 4.4: Kernels k(xi, x) and Green’s functions g̃(xi, x) = 103 · g(xi, x) in the
case of the Robin boundary conditions which approach the von Neumann boundary
conditions as ǫ → ∞: (a),(d) A1(ǫ), (b),(e) A2(ǫ), and (c),(f) A3(ǫ). Here ǫ =
10−2. Up to the error of O(10−3) all the Green’s functions are the same, yet the
covariance functions are different.

matrix Σuu becomes singular too because the propagator has the eigenvalue equal
to unity. A single iteration of a linear diffusion has no unique equivalent of the
Gaussian smoothing with an AWGN assumption.

Fig. 4.4 shows that a slight perturbation of the von Neumann boundary conditions
determines a unique kernel for Green’s function. Here we consider three different
boundary conditions. The first one is given by:

A1(ǫ) : b1 = hǫ(1 − ǫ− hǫ)−1, bn+1 = 0. (4.9)

These conditions approach the von Neumann conditions as ǫ → 0. A specific
expression for the element b1 also ensures that if ǫ = 1, then b1 = −1. Thus, the
Robin condition would be ‘Dirichlet–von Neumann’ when ǫ = 1.

The second conditions bears the same idea, but reverses the conditions for the
indices i = 1 and i = n+ 1:

A2(ǫ) : b1 = 0, bn+1 = hǫ(1 − ǫ+ hǫ)−1. (4.10)

The Robin boundary conditions would become ‘von Neumann–Dirichlet’ for ǫ = 1.

The third condition is made to be symmetrical:

A3(ǫ) : b1 = hǫ(1 − ǫ− hǫ)−1, bn+1 = hǫ(1 − ǫ+ hǫ)−1. (4.11)

The Robin boundary conditions are ’Dirichlet–Dirichlet’ when ǫ = 1.

The von Neumann boundary conditions, i.e. ǫ = 0, result in a singular kernel
matrix, but Green’s matrix remains positive definite. Slightly perturbed boundary
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conditions yield positive definite kernel matrices with unique Green’s matrices.
The maximal difference between Green’s functions is only O(10−6) and, as can
be seen in Figs. 4.4d–f, they are nearly indistinguishable. Therefore, it does not
matter which of the covariance functions of Fig. 4.4a,b,c is used as an assumption
of the Gaussian process in AWGN, the conditioning always gives approximately
the same answer.

4.4 Nonlinear Phenomena

This section reveals several peculiarities of a univariate discrete diffusion with the
nonlinearity given by Eq. (4.5).

Fig. 4.5 compares the outcomes of linear and nonlinear diffusions with three bound-
ary conditions and at particular time instants. The values of the parameters
τ = 10−3 and h = 10−2 were chosen in order to maintain convenient computation
times while achieving a reasonably small O(10−2) maximal error, clf. Fig. 4.2.
There is quite a variety of nonlinear diffusions that one can generate by imposing
different values of the gradient norm threshold λ and the sharpness of nonlinearity
s in Eq. (4.5). Here they are chosen so that a nonlinear diffusion is close to linear.
In this way, one can better see both the effect of boundary conditions and the edge
preservation.

An essential observation is that the boundary conditions are less significant in a
nonlinear case: Blocking of a diffusion across the edge propagates globally. This
becomes even more prominent when the sharpness of nonlinearity s is further
increased, clf. Fig. 4.6. In this case, the diffusion slow-down near edges appears
immediately in a few iterations and the diffusion converges to a nontrivial steady
state independently of the boundary conditions. This result indicates that the
nonlinear diffusivity cannot be too sharp, otherwise the diffusion does not take
place.

Another example can be given to show how a diffusion slow-down near edges pro-
duces undesired ‘outliers’ in the solution. Figs. 4.7a,b show 500 observations of the
blurred rectangular pulse which are further contaminated with AWGN of moder-
ately large variance. The gradient threshold λ = 28.3709666 and the sharpness
s = 8 are the same as in the experiment summarized in Fig. 4.6. The nonlinear
diffusion almost perfectly recovers the edges, but the peculiarities of time evolution
are notable. After t = 100 iterations the outcome of the nonlinear diffusion pro-
duces two outliers close to the edge at x = 0.75. This is caused by the fact that the
relevant elements bi(ut) are very small in the vicinity of the edges. This particular
parameter setting and noise realization dramatically slow down the diffusion in
the vicinity of the right edge: It takes 700 iterations more to achieve convergence
to the true signal.

Contrary to the previous example of Fig. 4.6, this setting with Gaussian noise is not
so sensitive to the value of the gradient threshold λ, but changing the parameters
of the time stepping requires adjusting the threshold value. A faster advancement
in global time units (but not in the computational speed) can be achieved with
τ = 0.01, t = 2000 iterations and λ = 35. The steady state of a constant signal
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Figure 4.5: Example of linear and nonlinear diffusion filtering: (a),(b) von Neu-
mann, (c),(d) Dirichlet and (d),(e) Robin boundary conditions. Here τ = 10−3

and the nonlinear diffusion is simulated with the gradient norm threshold λ =
28.3709666 and the sharpness of nonlinearity s = 8,clf. Eq. (4.5). The gradient
threshold value is critical: λ = 28.3709667 puts the diffusion into a linear regime.
Maintaining a nonlinear diffusion close to its linear counterpart allows to better
visualize the dynamics and the asymmetry caused by the boundary conditions.
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Figure 4.6: The result of nonlinear diffusion filtering (a) and its details (b) when
the sharpness of the nonlinearity is increased up to s = 20 in Eq. (4.5). This edge-
preserving outcome does not depend on the boundary conditions. No smoothing
of the gradient was applied.
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Figure 4.7: A long convergence time to the steady state when θ0 = 0.25, τ = 0.1,
m = 8, λ = 28.3709666. The stopping time (a) t = 100τ and (b) t = 800τ . It takes
700 iterations more just to smooth two points of the signal correctly. In both cases
the sharpness of nonlinearity s = 8. No smoothing of the gradient was applied.

emerges after about t = 105 iterations in this setting.

Finally, it is important to emphasize that a qualitatively different behavior emerges
when the size of the matrix B (a spatial grid size) changes. Figs. 4.8a,b show that
in addition to a nontrivial steady state, the appearance of jumps depends on the
gradient threshold λ and the spatial grid size n. Significant differences can be
seen already when doubling the values, i.e. the parameters vary as λ = 1, 2 and
n = 500, 1000. This phenomenon is known as the stair-casing, see e.g. [Esedoglu,
2001, Lassas and Siltanen, 2004]. The effect is shown here to warn the reader who
wants to view the nonlinear diffusion as a ‘black-box’ filter.
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Figure 4.8: The stair-casing phenomenon when (a) λ = 1 and (b) λ = 2. Choosing
a different size of a grid results in a qualitatively different diffusion.

4.5 Simulations With Large-Variance AWGN

This section demonstrates the ability of an optimally stopped diffusion to recover
the edges of a blurred signal which is completely hidden in noise. This setting
could be opposed to conventional simulations which utilize the AWGN with ‘toy-
variance’, see e.g. [Osher and Fedkiw, 2003, Haupt and Nowak, 2006]. A relevant
real-world example of smoothing nuclear magnetic resonance measurements of the
rock strata can be found in [Ruanaidh and Fitzgerald, 1996]. That is a rare
example of smoothing real data with jump discontinuities, but it is still a toy
problem: Outliers are clearly visible and the noise variance is very small.

A synthetic problem is indicated in Fig. 4.9 where a true signal, whose range
is [0, 1], is hardly visible in the noisy values scattered in [−30, 30]. During the
simulation, n, the number of observations, is one million elements.

After preliminary experiments, the following five stopping criteria were chosen: (i)
the marginal likelihood p(y|t,H2), (ii) the entropy h(Y |t,H2), (iii) the ‘orthogo-
nality’ term (y − µu|y)T µu|y, (iv) the correlation of Mrázek and Navara [2003],
and (v) the mean absolute error between the true signal (a rectangular pulse) and
the diffusion outcome. The entropy criteria of Sporring and Weickert [1999] have
a merit of simplicity, but they have been discarded here for the reason that they
require a proper normalization, which is inconvenient as it introduces additional
degrees of freedom into the problem. The mean of the absolute error values was
chosen as a true measure because the mean of the squared errors has a rather
shallow minimum.

The result of the nonlinear diffusion stopped at t = 10τ is indicated in Figs. 4.10a,b.
The locations of the recovered edges are not exactly at x = 0.25 and x = 0.75,
and the levels of the recovered signal do not change from 0 to 1 and vice versa
as it should happen in the ideal algorithm. Nevertheless, the result rather well
approximates the true signal considering that the noise attains values which are
approximately 30 times larger than the true signal. Recovering signals in a very
large AWGN is possible only with very dense observation sets, and the nonlinear
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Figure 4.9: A signal specified according to Eqs. (4.3) and (4.4) with r = 20 and
denoted here as ū, is further contaminated with an AWGN whose variance θ0 = 25.
The goal is to recover a rectangular pulse without loosing the location of its edges.
Here only a sample of 2000 noisy observations out of the set of n = 106 elements
is visualized. The actual range of the observations is [−30, 30].
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Figure 4.10: Nonlinear diffusion with n = 106, θ0 = 25, τ = 0.025, m = 8, λ = 200,
σ = 1000, t = 10τ : (a) restored left front and (b) restored right front. Here ū
denotes a noiseless blurred rectangular pulse obtained by using its Fourier approx-
imation with r = 20 components, and ut is its recovery from the observations of ū
in a very large-variance noise.

diffusion is an especially efficient device to apply as it demands linear computa-
tional resources w.r.t. the size of the grid. The selection of the optimal stopping
time can thus be automated. However, the choice of the diffusivity function and
time stepping parameters requires manual tuning.



4.5. Simulations With Large-Variance AWGN 59

Iterations

-Loglikelihood

Entropy

Orthogonality

Correlation

Mean Abs. Error

100 101 102

0

0.2

0.4

0.6

0.8

1

Figure 4.11: Time evolution of the criteria for optimal stopping.

Fig. 4.11 summarizes the evolution of the mean absolute error and the four applied
criteria that are useful in determining the optimal stopping time. All criteria are
normalized by subtracting their minimal values and dividing them by their range.
According to the least mean absolute error criterion, the optimal stopping appears
at t = 5τ , but a visual inspection of signals would reveal that the outcome is
not very sensitive to the range t = 4τ . . . 10τ . The maximum likelihood criterion
with t = 3τ underestimates the stopping time, but its simplifications are helpful
indeed. The unnormalized correlation estimator, which is simply an inner product
(y−u)T u, evolves similarly to the correlation used by Mrázek and Navara [2003].
The first distinct minima of both criteria is located at t = 5τ . The entropy criterion
reaches the steady state one iteration later, i.e. at t = 6τ .

The evolutionary patterns of all the stopping criteria seem to remain stable during
a variety of simulations and produce approximately equivalent behavior of the
criteria w.r.t. their optimal stopping times. It is rather notable that the correlation
criteria possess multiple minima, and one chooses the minimum with the smallest
time value because it is typically the most pronounced. The temporal evolution
of the entropy, as a matter of fact, is at least as useful indicator of the optimal
stopping (scale) as the correlation criteria.



Chapter 5

Conclusions

In this thesis, it has been shown how the discrete diffusion scale-space can be
seen as an incomplete probabilistic statement. The idea of the optimal entropy-
based stopping, proposed by [Sporring and Weickert, 1999], and the strategy
of decorrelating noise with the model output, suggested by [Mrázek and Navara,
2003], have been unified, and methodologically improved.

One could emphasize that despite the existing general guidelines of statistical
inference, see e.g. [Cramér, 1945], [Anderson, 1958] or [Jaynes, 2003], it is always
a great challenge to choose a right formalism and design models that achieve both
correct predictions and simplicity, i.e. they pass Occam’s razor. Of the two,
simplicity is more subjective and extremely immune to axiomatic approaches. Let
us emphasize the role of variational (energy) representations and Gaussian model
space explored in this work, and defend the philosophy of the undertaken path
against the opposing arguments.

The use of Gaussian models should not be seen as a statistical limitation. It
follows from the desire to keep the inference transparent. This choice expresses
the only fact that one prefers to work with symmetric positive definite matrices.
The principle of information conditioning then reduces to the application of Schur
complements. This is not an assumption, but a choice of convenient mathemat-
ical objects, namely, matrices. Probabilistic completion then proceeds from the
postulate of the conditional mean towards the determination of the conditional
covariance. The thesis has aimed to demonstrate that such a transition is by no
means trivial and allows to discover a variety of model selection criteria.

This work has advocated the idea that there is no need, in principle, to con-
sider probabilities explicitly. One seldom knows them a priori, can never measure
them, and they are definitely very hard to estimate – if their estimation in high-
dimensional spaces ever makes any sense. In brief, they represent a certain ideal-
ization of knowledge. Total failures of applying ‘powerful’ inference methods with
an inadequately postulated probability space are becoming numerous. The levels
of means and covariances already account for uncertainties, where probabilities
enter equations implicitly through expectations.
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From the model selection perspective, there is no difference between linear or non-
linear, spatiotemporal or completely homogeneous propagators. These modalities
represent technical details which must be considered when establishing the stabil-
ity of the model. They also have an impact on dealing with the non-singularity
and positive definiteness of the covariance matrices in Gaussian models. However,
the essential difficulty lies in reducing ‘information incompleteness’. It is sup-
posed to meaningfully decrease when one moves away from the statement with the
conditional expectation towards the descriptions with the conditional covariance,
likelihood, entropies, marginal and conditional densities, and finally arrives at an
ultimate Utopia with a completely specified joint probability.

According to the strategy presented in Section 3.2, one must first relate the ob-
servations with the model outcome. A posteriori, when all the signals in the
scale-space are known, we are free to remove the dependence of the propagator on
the signal. All the matrix entries which have been dependent on the signal at the
previous time instant, are simply known.

Examples of the probabilistic models with nonlinear energies can be found in Fessler
et al. [2000] and [Champagnat and Idier, 2004]. One first writes a variational en-
ergy for the problem and later interprets it as a negative exponent of a hypotheti-
cal probability density. The Euler–Lagrange equation of the variational functional
can be viewed as a nonlinear transformation which relates the observation variable
Y , postulated as a Gaussian random variable, to the diffusion outcome variable
U . Fessler et al. [2000] obtain analytical expression for the density of U |y, but it
is ‘exact’ only w.r.t. the postulated nonlinear relation and Gaussianity of Y . The
question is whether one should think of the non-Gaussianity of the probability
density function, which is a significant mathematical complication, as a necessary
tool in a better understanding of the scale-spaces. Gaussian densities are simpler.

Here one could emphasize that there are many ways to complete the scale-space
model, and simplicity is probably the only guiding principle. The first problem
emerges already at the level of variational interpretations. For example, Newton
equations of motion can be seen as Euler–Lagrange equations of many possible La-
grangians. There are many ‘least action’ principles, and an extension of knowledge
to probabilities (stochastic quantization) introduces further degrees of freedom.

However, this does not seem obvious for those who are used to certain invariance
principles and always deal with a particular energy (Lagrangian). Moreover, his-
torically, the use of Green’s theorem often presented a reformulation with a weaker
requirement on the continuity classes of the solutions. Thus, variational formu-
lations are often thought as more ‘fundamental’. In order to further stimulate a
discussion, consider the following remark of Finlayson and Scriven [1967]:

“Apart from self-adjoint, linear systems, which are comparatively rare, there is
no practical need for variational formalism. When approximate solutions are in
order the applied scientist and engineer are better advised to turn immediately to
direct approximation methods for their problems, rather than search for or try to
understand quasi-variational formulations and restricted variational principles.”

According to [Finlayson and Scriven, 1967], the true ‘energy formulation’ should
allow one to reduce the continuity requirements. This has an impact on experi-
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ments as taking derivatives of measurements always increases errors.

Finlayson and Scriven [1967] were ignorant about the fact that quasi-variational
formulations may induce probabilistic models. This is not very surprising because
they discussed the variational calculus in the fluid dynamics setting. Contrary to
the scale-space models, the ‘fluid propagator’ is either much more complex, or is
simply not explicitly available because of the presence of a more complicated dy-
namics and constraints. The identifiability of properties such as incompressibility
is in jeopardy as the latter does not directly relate to ‘smoothing’ in the sense of
removing additive noise, whereas the scale does.

Seeking for a consistent probability density that meaningfully improves an initially
incomplete knowledge of the problem helps to remove the proliferation of seemingly
unrelated arguments and an explosion of model selection criteria. This goal is
about building shorter, more systematic descriptions of smoothing, which should
fit well with the axiomatic nature of research on scale-spaces. The thesis concludes
that marginal likelihood inference allows to achieve this goal in the optimal scale
selection.
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D. Salomé. Statistical inference via fiducial methods. Ph. d. thesis, Rijksuniversiteit
Groningen, 1998.

C. E. Shannon. A mathematical theory of communication. Bell Sys. Tech. J., 27:
379–423, 1948.

J. Skilling. Bayesian numerical analysis. In Physics and Probability, pages 207–221.
Cambridge Univ. Press, 1993.

J. Sporring and J. Weickert. Information measures in scale spaces. IEEE Trans.
Inf. Theory, 45(3):1051–1058, 1999.
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Appendix A

More Technical and

Philosophical Findings

A.1 Novel Method of Evaluating Determinants

It can be seen from Chapter 2 that determining singularity and positivity of a
quadratic form is a fundamental problem that has a lot of implications to physics
and engineering. It is important to work with the concept of matrix minor (deter-
minant), which provides well-known conditions of necessity and sufficiency.

This section contributes with a novel way of evaluating matrix determinants. An
inspiration comes from Section 2.5 which states an open problem for characterizing
discrete multivariate diffusions which are sign variation diminishing. This calls for
methods of evaluating minors with nontrivial sparsity patterns. The essential
discoveries of this chapter do not solve this problem, but it is believed that this
could be a helpful path.

The idea is to first reduce the matrix to the one whose structure is well-known,
i.e. its determinant and inverse can be expressed explicitly. The principal result is
the expansion given in Proposition A.2, which should be seen as an improvement
to the method of Bourgin [1936]. Everything before Proposition A.2 should be
considered as an introductory text, and the material that follows it is novel.

The method should be useful when the application of Taylor series makes sense.
Thus, the focus is not on the efficiency of a numerical evaluation of determinants
of large matrices. Instead, the aim is to provide simple approximate expansions
for nontrivial quantities which are of relevance to the diffusion scale-spaces.

Bourgin [1936] noticed an original way to reveal explicit dependencies of the ma-
trix determinant on its specific elements. If arbitrary matrix elements are given
multipliers ν, thereby resulting in the matrix A(ν) with an obvious relationship
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A ≡ A(1), the determinant can be approached via Taylor series:

|A(ν)| = |A(0)| +
n∑

m=1

νm

m!

∂m|A(0)|

∂νm
, (A.1)

where it should be obvious that ∂m|A(0)|/∂νm is ∂m|A(ν)|/∂νm at ν = 0.

When applying the product-derivative rule to the determinant, written as a sum
of signed permutations, the derivative of a determinant can be expressed as:
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∂ν
. (A.2)

A specific multiplication pattern in A(ν) was called a diagram, and, in words
of Bourgin [1936]: “The diagram provides a classification and suggests a direction
for further systematic investigation of determinants and their expansions”. Appar-
ently, this idea has not been much investigated. A direct way of taking derivatives
produces

∑n
k=0 n

k of such terms, which already equals to 40 when n = 3.

Whenever the group of elements in a matrix can be identified as a single parameter,
Eq. (A.1) can produce a simple approximation, an exact analytical expression, an
insight to symmetry, a novel inequality, or a less usual presentation of an already
existing identity.

It will prove to be useful to apply the Faà di Bruno formula for the derivative of
the composite function. The formula allows to express the Taylor series of a given
function via the Taylor series of a simpler one.

Proposition A.1 (The Faà di Bruno formula). Assuming that all functions are
differentiable a sufficient number of times, the m-th derivative of the composite
function h(t) = g(f(t)) at t = a equals to, clf. [Charalambides, 2002, p. 420],

hm =
m∑

k=0

gkBm,k(f1, f2, . . . , fm−k+1), (A.3)

where

hm ≡
∂mh(t)

∂tm

∣
∣
∣
t=a

, gm ≡
∂mg(w)

∂wm

∣
∣
∣
w=f(a)

, fm ≡
∂mf(t)

∂tm

∣
∣
∣
t=a

, (A.4)

and Bm,k is the exponential partial Bell polynomial.

When gk does not depend on k, the sum of exponential partial Bell polynomials
yields the exponential Bell polynomial Bm(x), which can be expressed as the
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determinant of the Hessenberg matrix, see e.g. [Johnson, 2002]:

Bm(x) ≡ Bm(x1, x2, . . . , xm)

≡
m∑

k=0

Bm,k(x1, x2, . . . , xm−k+1)

=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(
m−1

0

)
x1 −1 0 . . . 0 0

(
m−1

1

)
x2

(
m−2

0

)
x1 −1 . . . 0 0

(
m−1

2

)
x3

(
m−2

1

)
x2

(
m−3

0

)
x1 . . . 0 0

...
...

...
. . .

...
...

(
m−1
m−2

)
xm−1

(
m−2
m−3

)
xm−2

(
m−3
m−4

)
xm−3 . . .

(
1
0

)
x1 −1

(
m−1
m−1

)
xm

(
m−2
m−2

)
xm−1

(
m−3
m−3

)
xm−2 . . .

(
1
1

)
x2

(
0
0

)
x1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

. (A.5)

The recurrence between the successive principal minors of a general Hessenberg
matrix is known. If A ∈ Rn×n is such that aij = 0 for j− i > 1, then the identities
in [Vein and Dale, 1998, p. 91] along with |A| = |AT | yield:

A(γ1:n|γ1:n) = (−1)n−1
n−1∑

k=0

(−1)kan,k+1

n−1∏

s=k+1

as,s+1 A(γ1:k|γ1:k), (A.6)

where A(γ1:0|γ1:0) ≡ 0, and
∏n−1

s=k+1 as+1,s ≡ 1 for k = n− 1.

It deserves to be mentioned that Eq. (A.6) is a special case of the Jacobi equation
whose general form has been stated by Kawasaki [2001]. Beautiful connections of
this discrete equation to Jacobi’s conjugate point theory, the Riccati equation and
‘global analysis’ were first discussed by Gelfand and Yaglom [1960], and Gelfand
and Fomin [1963].

The essential mathematical result of this section can now be established. A re-
maining material will provide some of its applications.

Proposition A.2 (Main identity). Given A ∈ Rn×n, multiply any of its elements
by ν. The following is true:

|A(ν)| = |A(0)|
n∑

m=0

νm

m!
Bm(x), (A.7)

where B0(x) ≡ 1 and the components of x are:

xi = (−1)i−1(i− 1)! tr

((

A−1(0)
∂A(0)

∂ν

)i
)

, i = 1, 2, . . . , n. (A.8)

Proof. The cofactor expansion leads to a well-known formula, see e.g. [Magnus and
Neudecker, 1999]:

∂|A(ν)|

∂ν
= |A(ν)| tr

(

A−1(ν)
∂A(ν)

∂ν

)

. (A.9)

Here one may suspect that the logarithm of the determinant is more amenable to
successive differentiation. The derivatives of the higher order require evaluating
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∂A−1(ν)/∂ν. Applying the product derivative rule to A(ν)A−1(ν) = I results in:

∂A−1(ν)

∂ν
= −A−1(ν)

∂A(ν)

∂ν
A−1(ν). (A.10)

A successive differentiation of the log-determinant with the use of Eq. (A.10) yields:

∂i ln |A(ν)|

∂νi
= (−1)i−1(i− 1)! tr

((

A−1(ν)
∂A(ν)

∂ν

)i
)

, i ∈ Z+. (A.11)

At this stage, it is useful to conclude the following:

1. There is a finite number of nonzero derivatives ∂i|A(ν)|/∂νi in the Taylor
series of A(ν), but they are not easily computable.

2. There is an infinite number of nonzero terms ∂i| lnA(ν)|/∂νi in the Taylor
series of lnA(ν), but each of them is easy to compute.

The suggestion is to expand each derivative ∂i|A(ν)|/∂νi in ∂k| lnA(ν)|/∂νi with
k = 0, 1, . . . i by means of the Faà di Bruno formula. Applying h(t) = ef(t) with
Eq. (A.3) expresses the derivatives of h(t) as the functions whose arguments are
the derivatives of f(t) = lnh(t). In this case, g(w) = ew and gk(w) = g(w) for all
k. One may set h(ν) = |A(ν)|, and gk = g(f(0)) = |A(0)| is constant. Therefore,

∂m|A(ν)|

∂νm
= |A(0)|

m∑

k=0

Bm,k(x1, x2, . . . , xm−k+1), (A.12)

where the quantities xi (i = 1, 2, . . . ,m) are provided by Eq. (A.11). A substitution
to Eq. (A.12) establishes the result.

Computation of |A| reduces to the computation of |A(0)| and the trace in Eq. (A.8),

which largely depends on the chosen zero pattern. There are 2n2−1 such patterns
when A ∈ Rn×n, which gives a freedom in explorations.

Another invariance property emerges from Eq. (A.10):

A(ν)
∂A−1(ν)

∂ν
= −

∂A(ν)

∂ν
A−1(ν). (A.13)

This identity allows to obtain a logical statement. Consider the matrix B ∈
{0, 1}n×n which consists of only binary elements, and let Bc ∈ {0, 1}n×n denote
its complement in the sense that the zero-unity pattern of B corresponds to the
unity-zero pattern in Bc. Setting ν = 0 in Eq. (A.13) then indicates that

(A ◦ B)(A−1 ◦ Bc) = −(A ◦ Bc)(A
−1 ◦ B). (A.14)

Thus, Proposition A.2 states that any matrix and its inverse complement each
other when contributing to the matrix determinant. Given that there is at least
one multiplier, there can be no elements of the matrix and its inverse present in
the expansion such that they would share the same set of indices.
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As an example, consider one of the simplest diagrams (ν-patterns):

A(ν) =








a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

an1 an2 . . . νann







. (A.15)

When writing the first equations for s = 1, 2, 3, . . ., one may notice that

(

A(0)−1 ∂A(0)

∂ν

)s

=
(

0n×(n−1) ∆s
n×1

)
, (A.16)

where the elements of the vector ∆s are:

∆s
i ≡ [A−1(0)]i,nann

(
[A−1(0)]nnann

)s−1
(A.17)

The application of Proposition A.2 allows to expand |A| as a multivariate polyno-
mial of the variables xs = (−1)s−1(s− 1)!∆s

n:

B1 = x1 = ∆n, (A.18)

B2 =

∣
∣
∣
∣

x1 −1
x2 x1

∣
∣
∣
∣
= x2

1 + x2 = ∆2
n − ∆2

n = 0, (A.19)

B3 =

∣
∣
∣
∣
∣
∣

x1 −1 0
2x2 x1 −1
x3 x2 x1

∣
∣
∣
∣
∣
∣

= x3
1 + 3x1x2 + x3 = ∆3

n − 3∆2
n∆n + 2!∆3

n = 0 . (A.20)

One may see that all Bm(x) = 0 for m ≥ 2.

Thus, Eq. (A.7) simplifies to:

|A(ν)| = |A(0)|(1 + ν∆n), (A.21)

where ∆n = [A−1(0)]nnann.

Furthermore, the Laplace expansion of the matrix determinant into the cofactors
of the last column (row) indicates that

|A(ν)| = |A(0)| + νannA(γ1:n−1|γ1:n−1). (A.22)

Upon eliminating the determinant |A(0)| from Eqs. (A.21) and (A.22):

|A| =
(
ν[A−1(0)]−1

nn + ann

)
A(γ1:n−1|γ1:n−1), (A.23)

where [·]−1
ij is equivalent to 1/[·]ij .

On the other hand, let us divide the matrix into four blocks:

A =

(
An−1 a1

aT
2 ann

)

. (A.24)

If An−1 ≡ A(γ1:n−1|γ1:n−1) is nonsingular, then:

[A−1]−1
nn = ann − aT

2 A−1
n−1a1. (A.25)
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A simple identity [A−1(1)]−1
nn = [A−1(0)]−1

nn + ann now emerges, and one finally
arrives at:

|A| = [A−1]−1
nnA(γ1:n−1|γ1:n−1). (A.26)

This is the Schur complement formula for the determinant of a partitioned matrix.
It was derived in this section by employing Proposition A.2 with a specific pattern
in Eq. (A.15).

An example can be given when the second Bell polynomial is the only one which
is nonzero. For this purpose, let A ∈ Rn×n be tridiagonal such that

A(ν) =

















a11 a12

a21 a22 a23

. . .
. . .

. . .

ai,i−1 aii νai,i+1

νai+1,i ai+1,i+1 ai+1,i+2

. . .
. . .

. . .

an−1,n an−1,n−1 an−1,n

an,n−1 an,n

















.

(A.27)
The matrix |A(0)| becomes block-diagonal. Therefore,

|A(0)| = A(γ1:i|γ1:i)A(γi+1:n|γi+1:n). (A.28)

The matrix C ≡ A−1(0)∂A(0)/∂ν have only four nonzero elements:

ci−1,i+1 = [A−1(0)]i−1,iai,i+1, ci+1,i = [A−1(0)]i+1,i+1ai+1,i, (A.29)

ci,i+1 = [A−1(0)]i,iai,i+1, ci+2,i = [A−1(0)]i+2,i+1ai+1,i. (A.30)

Thus, trC = 0. For the odd s, this nonzero pattern will be preserved, whereas
when s is even, the only nonzero elements are ci−1,i, ci,i, ci+1,i+1 and ci+2,i+1.

A recursion between different matrix powers is very simple. For the even s,

[Cs]i+1,i+1 = [Cs−1]i+1,ici,i+1, [Cs]i−1,i = [Cs−1]i−1,i+1ci+1,i, (A.31)

[Cs]i+2,i+1 = [Cs−1]i+2,ici,i+1, [Cs]i,i = [Cs−1]i,i+1ci+1,i. (A.32)

When s is odd,

[Cs]i−1,i+1 = [Cs−1]i−1,ici,i+1, [Cs]i+1,i = [Cs−1]i+1,i+1ci+1,i, (A.33)

[Cs]i,i+1 = [Cs−1]i,ici,i+1, [Cs]i+2,i = [Cs−1]i+2,i+1ci+1,i. (A.34)

It follows from Eqs. (A.29)–(A.34) that

trCs =

{

2(ci+1,ici,i+1)
s/2 if s is even,

0 if s is odd.
(A.35)

The reader may now check that all the exponential Bell polynomials in Eq. (A.7)
are equal to zero, except

B2(x1, x2) = x2 + x2
1 = x2 = −2ci+1,ici,i+1. (A.36)
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Therefore,

|A(ν)| = A(γ1:i|γ1:i)A(γi+1:n|γi+1:n)

·
(
1 − ν2ai,i+1ai+1,i[A

−1(0)]i,i[A
−1(0)]i+1,i+1

)
. (A.37)

A rather complex formula is now reduced to a simple equation which reveals how
the elements ai,i+1ai+1,i contribute to the matrix determinant. One could no-
tice that in the case of a positive definite matrix, the term in the parentheses in
Eq. (A.37) should be positive, which provides a novel criterion of positive definite-
ness.

Eq. (A.37) can also be rewritten by using a simplified case of a general Jacobi
identity, clf. [Gantmacher and Krein, 2002]:

[A−1]ij =
(−1)i+jA(γn\j|γn\i)

A(γn|γn)
. (A.38)

This is also known as ‘Cramer’s rule’. Substituting expressions for the elements
[A−1(0)]i,i and [A−1(0)]i+1,i+1 allows to obtain the statement with matrix minors:

|A(ν)| = A(γ1:i|γ1:i)A(γi+1:n|γi+1:n)

− ν2ai,i+1ai+1,iA(γ1:i−1|γ1:i−1)A(γi+2:n|γi+2:n). (A.39)

This expression should also be positive when the matrix A(ν) is positive definite.
Notice the resemblance of Eq. (A.39) with the equation for the determinant of a
2 × 2 matrix.

Consider now a tridiagonal matrix A ∈ Rn×n and let us multiply all the elements
lying on the sub- and super-diagonals adjacent to the main diagonal by ν:

A(ν) =










a11 νa12

νa21 a22 νa23

. . .
. . .

. . .

νan−1,n an−1,n−1 νan−1,n

νan,n−1 an,n










. (A.40)

Clearly, |A(0)| =
∏n

i=1 aii and C ≡ A−1(0)∂A(0)/∂ν is tridiagonal with the main
diagonal of zero entries, the super-diagonal is given by:

a−1
11 a12, a−1

22 a23, . . . a−1
n−1,n−1an−1,n, (A.41)

whereas the sub-diagonal is:

a−1
22 a21, a−1

33 a32, . . . a−1
n,nan,n−1. (A.42)

The evaluation of trCs can be performed by using a general algorithm of Chu
[1985], but one expects simpler calculations when the main diagonal is zero.

An example of the diagram-based method to solve this problem is shown in Fig. A.1
when C ∈ R6×6.

One first plots a rectangular grid on the axis whose vertical-side indicates the s-th
power of the matrix and the horizontal axis marks the i-th index of the cii-th
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[C6]44c34 c54
6

5

1 2

4

3 4 6 i

c43c23 c45 c65

[C4]44c12 c22 c34 c54 c56

3
c43c23c21 c45 c65

2

[C2]44c32 c34 c54 c56

1

5

c43 c45

0
1

s

Figure A.1: A diagram for the calculation of [C6]44.

element of the matrix C. In order to obtain a symbolic expansion for the i-th
diagonal element [Cs]ii, one marks all the possible paths with diagonal edges that
enable the point (0, i) to be connected to the point (s, i). The diagram is then
read from top to bottom where each edge denotes a multiplication and an empty
circle splits products into sums, e.g.:

[C2]44 = c43c34 + c45c54, (A.43)

[C4]44 =
(
[C2]44c43 + c43c32c23

)
c34

+
(
[C2]44c45 + c45c56c65

)
c54. (A.44)

In order to evaluate the trace, one must: (i) construct n diagrams, (ii) write down
the expressions for the diagonal elements, and (iii) sum them.

A complete list of diagrams for the computation of the 4-th order trace when
C ∈ R5×5 is shown in Fig. A.2. Each of them summarizes a symbolic computation
of the elements [Cs]ii in an easier way than writing algebraic expressions such as
Eqs. (A.43) and (A.44).

Moreover, a number of qualitative properties can be read directly from the dia-
grams:

1. trCs = 0 for any positive odd integer s.

2. If A = AT , then trCs ≥ 0.

3. trCs requires at most O(ns2) multiplications.

By looking at the tabulation of the partial exponential Bell polynomials in [Char-
alambides, 2002, p. 417], one can notice that the first property greatly simplifies
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[C4]11

c21

c12 c32

c21
c23

c12

1

[C4]22

c12 c32

c21
c23 c43

c12 c32
c34

c21
c23

1

[C4]33

c23 c43

c32c12
c34 c54

c21
c23 c43

c45

c32
c34

1

[C4]44

c34 c54

c43c23
c45

c32
c34 c54

c43
c45

1

c45

c34 c54

c43
c45

[C4]55

c54

1

Figure A.2: Diagrams for the evaluation of the diagonal elements of C4.

Eq. (A.7): (i) each polynomial Bm,k(x) = 0 for the odd m, and (ii) Bm,k(x) is
nonzero only for k = 1, 2, . . .m/2.

For example, the determinant of a tridiagonal matrix A ∈ R10×10 reads:

|A(ν)| =
n∏

i=1

aii

(

1 −
ν2

2!
trC2 +

ν4

4!

(
−3! trC4 + 3 tr2 C2

)

+
ν6

6!

(
−5! trC6 + 15 · 3! trC2 trC4 − 15 tr3 C2

)

+
ν8

8!

(
− 7! trC8 + 28 · 5! trC2 trC6 + 35(3!)2 tr2 C4

− 210 · 3! tr2 C2 trC4 + 105 tr4 C2
)

+
ν10

10!

(
− 9! trC10 + 45 · 7! trC2 trC8 + 210 · 3! · 5! trC4 trC6

− 630 · 5! tr2 C2 trC6 − 1575(3!)2 trC2 tr2 C4

+ 3150(3!) tr3 C2 trC4 − 945 tr5 C2
))

. (A.45)

Here trs(·) ≡ (tr(·))s. One could note that a general case of Eq. (A.7), written
with the terms ranging up to the 10-th order, would barely fit into a single page.

Eq. (A.45) provides a combinatorial method of evaluating Taylor series. As an
example, consider the determinant in [Itzykson and Zuber, 1980]:

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 −ν
−ν 1 −ν

. . .
. . .

. . .

−ν 1 −ν
−ν 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
n×n

=
λn+1

+ (ν) − λn+1
− (ν)

λ+(ν) − λ−(ν)
, (A.46)

where

λ± =
1

2

(

1 ±
√

1 − 4ν2
)

. (A.47)

This determinant occurs in the analysis of the harmonic oscillator, Brownian mo-
tion, discrete cosine transform, etc. It is first essential to observe that since all the
nonzero elements of the matrix C equal to a unity (in modulus), the evaluation of



78 A. More Technical and Philosophical Findings

traces reduces to the number of paths which join the starting and ending points
in the diagrams such as those shown in Fig. A.2.

Consider first evaluating trC2. For an even size of the matrix n, there are

• 1 diagram of type [C2]11.

• n− 2 diagrams of type [C2]22.

• 1 diagram of type [C2]nn.

Counting the number of paths in these diagrams yields:

trC2 = 1 + 2 · (n− 2) + 1 = 2n− 2. (A.48)

In the case of trC4 and even size n, Figs. A.1 and A.2 with their description allow
to deduce that there are:

• 1 diagram of type [C4]11.

• 1 diagram of type [C4]22.

• n− 4 diagrams of type [C4]33.

• 1 diagram of type [C4]n−1,n−1.

• 1 diagram of type [C4]nn.

Counting paths produces the following result:

trC4 = 2 + 5 + 6 · (n− 4) + 5 + 2 = 6n− 10. (A.49)

Substituting Eqs. (A.48) and (A.49) into Eq. (A.45), truncated up to the fourth
order, yields the perturbative expansion of the determinant:

|A(ν)| = 1 − (n− 1)ν2 +
1

4
(2n2 − 7n+ 7)ν4 + . . . (A.50)

If ν = c/n with a constant c chosen so that the determinant is real, then, asymp-
totically, |A(ν)| ∼ 1 with O(n−1) error as n→ ∞.

Another example is Hill’s determinant method in quantum mechanics. By substi-
tuting an ‘ansatz’ into the Schrödinger equation, one first obtains an infinite, but
discrete, set of linear equations. The resulting eigenvalue problem of a discrete
system can then be studied numerically by truncating its order up to a finite num-
ber. There exist a rich literature which discusses how Hill’s determinant allows to
estimate energy levels of a quantum-mechanical system.

In the case of the anharmonic oscillator with the coupling constant ν, Hill’s deter-
minant reads, see e.g. [Biswas et al., 1971]:

A(ν) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a1 b1
0 a2 b2
−ν 0 a3 b3

. . .
. . .

. . .
. . .

−ν 0 an−1 bn−1

−ν 0 an

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

, (A.51)
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where ak = ǫ− 1 − 4k, and bk = 2k(2k − 1).

Biswas et al. [1971] apply the recurrence relationship to the determinant of the
Hessenberg matrix and further perform numerical studies. Let us provide an an-
swer to the following question: What is the coefficient in front of the term νm

when expanding |A(ν)| in Taylor series at ν = 0?

The determinant an upper triangular matrix is the product of its diagonal elements:

|A(0)| =
n∏

i=1

ai . (A.52)

The matrix A(0) is bidiagonal, and its inverse is upper-triangular, whose elements
have been derived by Chatterjee [1974]:

[A−1(0)]ij =







a−1
i

∑j−1
k=i(−a

−1
k+1bk) if i < j,

a−1
i if i = j,

0 if i > j.

(A.53)

The matrix C ≡ A−1(0)∂A(0)/∂ν becomes such that its elements below the sec-
ond subdiagonal are zeroes. More explicitly,

[C]ij =

{

−[A−1(0)]i,j+2 if i ≤ j + 2,

0 if i > j + 2.
(A.54)

Therefore, the m-th coefficient in the Taylor series expansion of Hill’s determinant
equals to Bm(x)/m!, where the i-th component of x ∈ Rm is:

xi = (−1)i−1(i− 1)! trCi (A.55)

= (−1)i−1(i− 1)!

n∑

s1,s2,...,si=1

csi,s1
cs1,s2

· · · csi−1,si
. (A.56)

This ‘reduces’ the determinant of a sparse Hessenberg matrix in Eq. (A.51) to the
evaluation of the polynomials Bm which now include many determinants of non-
sparse Hessenberg matrices. However, these determinants are no longer dependant
on the parameter ν. They can be precomputed up to a high accuracy for moderate
values of m and Taylor series can then be applied in establishing the positivity of
Hill’s determinant.

A.2 Some Difficulties With Statistical Inference

This section presents simple examples of difficult topics. This includes: (i) a
probabilistic result on the asymptotic disappearance of the randomness of p-norms,
which is supported by a novel unique feature of the Euclidean norm stated in
Eqs. (A.58) and A.59, (ii) discussion of nonidentifiable parameters, (iii) integrating
property of expectations, and (iv) counterexample which shows that the diagonal
elements of the conditional covariance do not serve as a measure of confidence.
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The first example deals with a conceptual problem of drawing the line between
what is ‘random’ and ‘deterministic’. Let Xi ∼ N(0, σ2) be independent identically
distributed (i.i.d.) normal random variables. Define the p-norm variable according
to:

Dp ≡

(
n∑

i=1

Xp
i

)1/p

. (A.57)

This seems to be a random quantity whose mean and variance are:

〈Dp〉 = c1(p)n
1
pσ +O(n

1
p
−1σ), (A.58)

Var(Dp) = c2(p)n
2
p
−1σ2 +O(n

2
p
−2σ2). (A.59)

The functions ci(p) depend only on p and their exact expressions are irrelevant
here. A complete derivation of this result takes about three pages and is left as an
exercise to the reader. It suffices to state that one should apply the marginalization
property of probability densities and Taylor series of the function f(x) ≡ ‖x‖p.

The case p = 2 is a ‘miracle’: asymptotically, the variance becomes independent
of the space dimension. To be more precise, c2(2) = 1/2, and Var(D2) = σ2/2 +
O(n−1σ2), whereas c1(2) = 2 and 〈D2〉 = n1/2σ. This is a unique feature of the
Euclidean norm.

It is common to discuss the ratio
√

Var(D2
2)/〈D

2
2〉 ∼ O(n−1/2) as a measure of

randomness, see e.g. [D. Landau and M. Lifshitz, 1958]. The mean 〈D2
2〉 ∼ O(n)

grows faster than the deviation
√

VarD2
2 ∼ O(n1/2), and, in a way, the variable

becomes less random with a growing n. The ratio
√

Var(D2)/〈D2〉 ∼ O(n−1) is
even more striking, as the deviation becomes constant when n is large.

The maximum norm D∞ cannot be studied similarly. Cramér [1945] ingeniously
used the binomial variables to state the following asymptotic result for the vector
of zero-mean Gaussian components with the unity variance:

lim
n→∞

Prob

(
D∞ − b(n)

a(n)
< x

)

= e−e−x

, x ∈ R, (A.60)

where the parameters b(n) ∼ O(lnn) and a(n) ∼ O((ln n)−1) can be interpreted
as location and scale. The probability distribution in Eq. (A.60) produces a finite
mean and variance values for the random variable (D∞ − b(n))/a(n). Thus, one
can draw the conclusion that VarD∞ ∼ O((lnn)−1) which becomes negligible,
and 〈D∞〉 ∼ O(lnn), which grows slower than 〈D2〉 ∼ O(n1/2). This is not as
slow as one might expect when fixing a large value of n and using 〈Dp〉 ∼ O(n1/p)
as p → ∞. In summary, the randomness of the norm of the vector with random
components diminishes as n→ ∞.

As a second difficulty, suppose that one models the observations as a random
process given by:

Y (t) = S(t) +N(t), (A.61)

where the signal S(t) is the Gaussian process of zero mean with

Cov(S(ti), S(tj)) = exp (−ǫ|ti − tj |
γ), (A.62)
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and the noise N(t) is the Gaussian process of zero mean with

Cov(N(ti), N(tj)) = σ2δ(ti − tj), (A.63)

Given the observations of Y (t), the problem of estimating the process S(t) is known
as the Wiener–Kolmogorov smoothing, see e.g. [Bode and Shannon, 1950].

Let us further neglect the effects of continuity and causality and further restrict
the problem to obtaining the conditional expectation 〈F |y, ǫ, γ, σ2〉 at the times
t1, t2, . . ., tn with the available observations Ŷ (t1), Ŷ (t2), . . ., and Ŷ (tn) which
are gathered into a single vector y ∈ Rn. The solution becomes, clf.[Foster, 1961]:

〈F |y, ǫ, γ, σ2〉 = Σss(Σss + Σnn)−1y. (A.64)

Here Σss ∈ Rn×n is the covariance matrix whose elements are Cov(S(ti), S(tj))
and the noise covariance Σnn = σ2I.

Experience shows that the parameters ǫ and σ2 are identifiable if the correlation
length-scale of S(t) is larger than that of N(t). Despite the warnings in [Dietrich,
1991], the maximum likelihood methodology is very useful.

The parameter γ affects the mean square continuity of the process sample paths:

lim
∆→0

〈

(N(t+ ∆) −N(t))2
〉

∼

{

O(∆) if γ = 1,

O(∆2) if γ = 2.
(A.65)

This difference has a very small impact on the smoothing quality in the sense of
reducing the variance of N(t) at the discrete set of the locations of observations.
The identifiability of γ is in question.

An interesting clue to the choice of γ can be found by comparing the eigenvalues
of the corresponding covariance matrices on the equidistantly mesh. For ǫ → 0+

and k = 2, 3, . . . , n, Cox and Chapman [1995] show that

λk(ǫ) =

{

O(ǫ) if γ = 1,

O(ǫk−1) if γ = 2.
(A.66)

Thus, γ = 1 yields a better conditioned covariance, but there would be more to be
gained from γ = 2 when using approximate rank reductions, see e.g. [Anderson,
1958]. It is also notable that the choice γ = 1 yields a tridiagonal inverse covariance
matrix, which is computationally advantageous when n is large.

Another difficult point is a seemingly trivial extension of Eq. (A.64) via the ‘Rep-
resenter theorem’, clf. [Maruyama et al., 1992]:

〈F |y, ǫ, γ, σ2〉 =

n∑

i=1

ciCov(S(t), S(ti)), (A.67)

where ci = [(Σss + Σnn)−1y]i. The equation simply states that the conditional
expectation is spanned in a finite basis of the covariance functions.

Considering the definition of the covariance function as the ‘dot-product between
the sample paths’, an interesting paradox emerges. The continuity classes of the
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covariance function and its sample paths can be different. The two basic notions
of the sample path continuity are: (i) the almost sure continuity and (ii) the mean
square or L2 continuity. Considering smoothing, one almost always assumes the L2

continuity of the process paths which, at least in a stationary case, is equivalent to
the continuity of a covariance function, clf. [Banerjee and Gelfand, 2003]. However,
the continuity class may change as indicated in the following example.

Let the basis consist of sign functions sgn(x − z) indexed with a continuous pa-
rameter z ∈ [0, 1]. A direct Hilbert product yields, see e.g. [Minka, 2000]:

∫ 1

0

sgn(xi − z)sgn(xj − z)dz = 1 − 2|xi − xj |. (A.68)

Any piecewise-constant function can be spanned by the basis of sign functions, but
only a piecewise-linear function will be spanned by the corresponding Hilbert’s
dot product. Therefore, if a signal at the point x0 has a jump discontinuity,
postulating the process with the piecewise-constant paths will result in the loss of
jump discontinuities when smoothing according to Eq. (A.67).

One example of a commonly misused Gaussian model deserves to be mentioned.
Consider the process whose sample paths are spanned in a polynomially decaying
Fourier basis:

S(t) =

m∑

d=1

wdφd(t), wd ∼ N (0, d−γ). (A.69)

The value of γ ≥ 1 determines the continuity of the process path. The larger its
value, the smoother it will be. It is a mistake to assume that this could be useful in
recovering the step function from its sampled observations in white noise. One can
apply the maximum likelihood estimation to find out the ‘optimal’ decay γ∗ which
may exist, but is hardly meaningful. The continuity class of the covariance func-
tions is determined by the Hilbert product of weighted Fourier components, which
does not include the functions with jump discontinuities. Even when m → ∞,
these covariance functions would suffer from the Wilbraham–Gibbs phenomenon.
The model is not suitable for the recovery of jump discontinuities.

Use of confidence intervals often becomes another major source of confusion. If
the conditional expectation produces the outcome of the smoothing, it seems like
a sound idea to utilize the conditional covariance as a measure of confidence or
accuracy of the result. However, this can be very misleading.

The conditional covariance of a general Gaussian model in Eq. (A.61) is, clf. An-
derson [1958]:

Cov (U |y) = Σuu − Σuu(Σuu + Σnn)−1Σuu (A.70)

= (Σ−1
uu + Σ−1

nn)−1 . (A.71)

Let us further assume that the process S(t) is the Brownian motion in the interval
t ∈ [0, 1] with the covariance [Σss]ij = min(i, j). Let the noise be white with a
variance σ2. The smoothing is considered on a finite grid of samples in t ∈ [0, 1],
which makes all the matrices finite dimensional.

It is obvious that the conditioning reduces the process variance in the sense that
(Σ−1

ss + Σ−1
nn)−1 − Σss is generally negative semidefinite. However, the increasing
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pattern w.r.t. indices i and j carries to [Cov (U |y,θ)]ij . The diagonal entries of
this matrix are variances, which increase w.r.t. to i = 1, 2, . . . , n. That, however,
does not imply that we are less confident with the smoothing outcome located
further away from the origin.

The problem can be ‘fixed’ by replacing the assumption of the Brownian motion
with that of the Brownian bridge, whose covariance matrix [Σss]ij = min(i, j) −
ij. The variance does no longer increase in time. However, does one increase
‘confidence’ of the smoothing outcome?

Firstly, it is essential to observe that both models of smoothing are discrete counter-
parts of a linear boundary value problem with the second order differential opera-
tor. The Gaussian model gives a stochastic (call it Monte Carlo or Feynman–Kac)
interpretation. The assumption of the Brownian motion corresponds to mixed
Dirichlet–von Neumann conditions. This is the constraint that the smoothing out-
come will have a zero value at t = 0 and its derivative at t = 1 should be zero too.
The assumption of the Brownian bridge corresponds to the Dirichlet boundary
conditions of zero outcome at the both ends of the interval. It should now be clear
that the conditional variance has little to do with ‘confidence’.

Despite its apparent simplicity, this example leaves several open questions. Ex-
periments would show that the maximum likelihood technique is useful in the
automatic identification of noise variance σ2. However, it is unclear whether it is
applicable in the automatic choice of the boundary conditions. If the smoothing
outcome is such that it has both, zero value at t = 1 and its derivative w.r.t. t is
zero there too, then the difference between the two models is rather small. The as-
sumption of Brownian bridge allows to remove white noise after the conditioning,
with a slight side effect of pulling the solution towards zero values everywhere. So
does the model with the assumption of the Brownian motion, and in the case of
small variances of noise it is hard to discriminate between the two models.

Finally, it is also worth to emphasize certain ambiguities in probabilistic modeling.
There is always a possibility of close alternatives which give similar conditioning
on observations, but are not necessarily models with an additive noise.

Interestingly, Eqs. (3.11) and (3.12) define the smoothing outcome (on the level of
conditional means), but they do not depend on the covariance matrix Σuu. One
is free to choose it. In addition, it is possible to define the models which would
produce similar predictions in the sense that the conditional expectation Eq. (3.11)
will remain the same and the criterion for the model parameters θ in Eq. (3.11)
might possess similar optima.

As an example, let us now take the covariance matrix of the signal from the model
H1, i.e. Σuu ≡ Kθ and consider the joint covariance matrices with the structure
which pertains to a non-additive noise:

Σ =

(
P−1

θ I

I Pθ

)

, Pθ = I + θ0K
−1
θ . (A.72)

One may check that Eq. (3.11) would yield the same conditional mean 〈U |y,θ〉 as
the models H1 and H2. The marginal likelihoods in Eq. (3.12) are not in general
identical, but they can produce qualitatively similar parameter estimates. Accord-
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ing to the model H1, the covariance matrix of the osbservations is Σyy = Kθ +θ0I,
whereas Eq. (A.72) produces Σyy = I+ θ0K

−1
θ . They are seemingly different, but

one should notice that the covariance is inverted twice in the Eq. (3.12).

The application of Schur complements to Eq. (A.72) reveals a certain curiosity.
The inverse of the joint covariance matrix in Eq. (A.72) does not exist and the
conditional covariance matrix in Eq. (3.13) has only zero entries, yet this proba-
bilistic model supplies a well-defined marginal likelihood for the selection of the
model parameters θ.

As the model in Eq. (A.72) can be ruled out due to the defect in its covariance
matrix, consider a better proposition:

Σ =

(
Cθ Aθ

Aθ C−1
θ

)

, Cθ = Kθ + θ0I, Aθ = (CθPθ)
−1, (A.73)

Again, the conditional means remain the same. The marginal likelihood is now
determined by the covariance Σyy = (Kθ + θ0I)

−1, which is an inverse of the one
given by the model H1. Again, the behavior w.r.t. to the smoothing parameter is
expected to be similar. This model is also a legitimate alternative in the sense that
the diagonal elements of the conditional covariance matrix, given by Eq. (3.13),
reduce under the conditioning.

One could also state the model which matches the conditional mean of the models
H1 and H2, possesses a well-defined covariance matrix, but at the same time
introduces bias in the parameter estimation:

Σ =

(
P−α+2

θ P−α−1
θ

P−α−1
θ P−α

θ

)

, α = Z+. (A.74)

For large α ≫ 1, the term P−α
θ y is a repetitive conditioning of the observations.

It tends towards the steady state u∗
∞ which is typically a constant signal and can

be independent of the model parameters θ. Thus, the first term in Eq. (3.12) can
be constant independently of the scale θ = m. On the other hand, the constant α
would now multiply the logarithm of the determinant in Eq. (3.12). The preference
would be given to a smaller value of the stopping time.

Formally, all of the above-presented alternatives, including the last one with a
small parameter such as α = 1, do not impose an additive noise assumption, yet
the predictions will be similar if the argument based on the presence of ‘double
inverse’ in Eq. (3.12) is valid.


