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Abstract

Unmanned aerial vehicles (UAVs) or drones have rapidly evolved to enable carrying

various sensors such as thermal sensors for vision or antennas for radio waves.

Therefore, drones can be transformative for applications such as surveillance and

monitoring because they have the capability to greatly reduce the time and cost

associated with traditional tasking methods. Realising this potential necessitates

equipping UAVs with the ability to perform missions autonomously. This dissertation

considers the problems of online path planning for UAVs for the fundamental task of

surveillance comprising of tracking and discovering multiple mobile objects in a scene.

Tracking and discovering an unknown and time-varying number of objects is a

challenging problem in itself. Objects such as people or wildlife tend to switch between

various modes of movements. Measurements received by the UAV’s on-board sensors

are often very noisy. In practice, the on-board sensors have a limited field of view

(FoV), hence, the UAV needs to move within range of the mobile objects that are

scattered throughout a scene. This is extremely challenging because neither the exact

number nor locations of the objects of interest are available to the UAV.

Planning the path for UAVs to effectively detect and track multi-objects in such

environments poses additional challenges. Path planning techniques for tracking a

single object are not applicable. Since there are multiple moving objects appearing and

disappearing in the region, following only certain objects to localise them accurately

implies that a UAV is likely to miss many other objects. Furthermore, online path

planning for multi-UAVs remains challenging due to the exponential complexity of

multi-agent coordination problems.

In this dissertation, we consider the problem of online path planning for UAV-based

localisation and tracking of multi-objects. First, we realised a low cost on-board radio

receiver system on a UAV and demonstrated the capability of the drone-based platform

for autonomously tracking and locating multiple mobile radio-tagged objects in field

trials. Second, we devised a track-before-detect filter coupled with an online path

planning algorithm for joint detection and tracking of radio-tagged objects to achieve

better performance in noisy environments. Third, we developed a multi-objective

planning algorithm for multi-agents to track and search multi-objects under the
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Abstract

practical constraint of detection range limited on-board sensors (or FoV limited

sensors). Our formulation leads to a multi-objective value function that is a monotone

submodular set function. Consequently, it allows us to employ a greedy algorithm

for effectively controlling multi-agents with a performance guarantee for tracking

discovered objects while searching for undiscovered mobile objects under practical

constraints of limited FoV sensors. Fourth, we devised a fast distributed tracking

algorithm that can effectively track multi-objects for a network of stationary agents

with different FoVs. This is the first such solution to this problem. The proposed

method can significantly improve capabilities of a network of agents to track a large

number of objects moving in and out of the limited FoV of the agents’ sensors

compared to existing methods that do not consider the problem of unknown and

limited FoV of sensors.
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Chapter 1

Introduction

This chapter introduces the motivation for the problems considered in this

dissertation and discusses the challenging nature of the problems. This

chapter provides a summary of the contributions made in the following

chapters and provides an overview of the structural organisation of the

dissertation to help readers.
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1.1 Introduction

FoV
FoV

FoV

FoV FoV

Team of UAVs

Wildlife conservation Search and rescue

Figure 1.1. Examples of using a team of UAVs. UAVs can be deployed to monitor wildlife

activities (left) or to search for victims during disasters (right). Each UAV comprises of a field of

view (FoV) limited sensor to survey the environment and gather surveillance data.

1.1 Introduction

Arguably, one of the emerging disruptive technologies of the 21st century is what

the Harvard Business Review (Anderson, 2017) has recently coined the “Internet of

Flying Things”, referring to the latest generation of consumer-grade drones or UAVs,

capable of carrying imaging, thermal or even chemical/radiation/biological sensors.

UAVs are touted to be transformational for tasks from wildlife monitoring, agricultural

inspection, building inspection, to threat detection, as they have the potential to

dramatically reduce both the time and cost associated with a traditional manual

tasking based on human operators (Chung et al., 2018). Furthermore, falling unit cost

prices have significantly reduced the entry barriers to employing commercial drones

for solving real-world applications. However, achieving the full potential of UAVs

demands us to consider autonomous UAVs for tasks.

This dissertation concentrates on a broad class of problems related to achieving

autonomous UAVs (or so-called agents) with limited field of view (FoV) sensors for

the task of tracking multiple mobile objects of interest in a scene. Such problems

are ubiquitous in real-world applications such as wildlife tracking (Kays et al.,

2011; Thomas, Holland and Minot, 2012; Cliff et al., 2015), and search and rescue

missions (Gerasenko et al., 2001; Murphy et al., 2008). While a single UAV has limited

competences such as FoV and endurance, employing a team of UAVs can significantly
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improve the field of view, task success, and reliability. As illustrated in Figure 1.1,

a team of UAVs can be deployed to monitor activities of endangered radio-tagged

wildlife in a survey scene, or to search for victims in a disaster response (Beck et al.,

2018). However, to realise autonomous UAVs for tracking dynamic objects in a scene

requires solving two challenging problems jointly:

• Multi-object tracking (MOT) with limited FoV sensors,

• Online path planning for controlling UAVs to track mobile objects.

The objective of MOT is to estimate an unknown and time-varying number of object

trajectories from noisy sensor measurements. MOT is a general problem for various

applications such as radar (Blackman and Popoli, 1999), robotics (Mullane et al., 2011),

computer vision (Cox and Hingorani, 1996), traffic monitoring (Munz, Mählisch and

Dietmayer, 2010; Reuter et al., 2017), cell biology (Hoseinnezhad et al., 2012), and

sensor networks (Battistelli et al., 2013). Despite development of various tracking

algorithms, MOT is still a challenging problem because sensor measurements are

often noisy and non-linear wherein the measurement functions of object states are

usually modelled by non-linear equations with noise terms. Additionally, the noisy

measurements lead to false-alarms, misdetections and data association uncertainty1.

Further, the number of objects can be time-varying because objects can appear (birth)

or disappear (death) in the surveillance area at any time (Mahler, 2007b).

For multi-agent MOT, the problems can be investigated under centralised or

distributed approaches. Centralised multi-agent MOT is challenging wherein

the complexities of exact solutions are combinatorial in the number of agents

because of unknown data associations (i.e., object to measurement assignments)

that lead to combinatorial complexity when updating objects’ belief densities with

measurements (Mahler, 2014). Moreover, the centralised approach is prone to a single

point of failure. Recently, distributed multi-agent MOT approaches have gained

more interest because of its reliability, scalability and flexibility (Luo et al., 2006).

However, fusing distributed information among agents is a challenging problem

where optimal distributed fusion is only possible if the correlations between agents

(e.g., double-counting of information) are completely known (Mahler, 2000). Therefore,

optimal distributed fusion can only be employed in a few restricted scenarios (e.g.,

1The data association uncertainty is the uncertainty in determining the relationship between

measurements and objects, or so-called the objects-measurements assignment uncertainty.
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synchronous and tree-connected networks where an oracle is assumed to constantly

keep track of the full network’s state) (Üney, Clark and Julier, 2013). Consequently,

robust (likely sub-optimal) distributed fusion algorithms have been proposed in

various literature under the assumption of sensors without FoV limitations (Mahler,

2000; Battistelli et al., 2013; Wang et al., 2016; Fantacci et al., 2018). The problem is

increasingly more complex in case of limited FoV sensors, wherein resolving the object

identities (labels) from multiple limited FoV observations of the same object leads

to label or identity inconsistencies between agents, the so-called label inconsistency

problems (Li et al., 2018).

Online path planning to compute optimal control actions for a team of UAVs is

essential in MOT since the measurement’s quality depends considerably on the

travelling paths taken by the UAVs. However, computing such optimal control actions

in an online manner in the context of MOT where the state (such as location) of

objects cannot be directly observed presents additional challenges. In practice, the

on-board sensors need to be lightweight to reduce the impact of flight times on a UAV

while sensors themselves are constrained in the surveillance region by limited FoVs.

Hence, it is critical to not only track the movements of discovered objects of interest

but also search for undiscovered objects. Consequently, the overall team’s objectives

in path planning arise as a natural multi-objective optimisation problem, where

several competing objectives (i.e., tracking and discovering) need to be simultaneously

achieved. However, multi-agent planning to achieve multiple competing objectives

remains a challenging problem because of the complex interactions between agents

leading to combinatorial optimisation problems (Wai et al., 2018). Most critically, the

computation of optimal control actions must be online for MOT applications.

The aim of this dissertation is to consider the aforementioned challenging problems of

UAV path planning for multi-object tracking (MOT) to realise real-world autonomous

aerial robotic systems to track multiple mobile objects with noisy and limited FoV

sensor measurements where an object’s state cannot be directly observed by the agents.

1.2 Summary of Original Contributions

This dissertation comprises of several original contributions to the fields of multi-object

tracking, especially with multiple-agents, and online path planning for controlling

UAVs to track and locate multiple mobile objects. These are described as follows:
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1. A new autonomous aerial vehicle system for simultaneously tracking and

localising multiple mobile radio-tagged animals is proposed. This is based

on exploiting the simplicity of range-only measurements. Our realisation of a

lightweight UAV platform— under 2 kg—makes the technology more accessible

in jurisdictions, such as Australia, where systems under 2 kg can be flown

without a pilot licence. We formulate a joint tracking and path planning

problem to realise a real-time and online autonomous system. Further, our

formulation considers the trade-offs between location accuracy and resource

constraints of the UAV, its manoeuvrability, and power constraints to develop

a practical solution. We validate our method through extensive simulations and

field experiments with mobile, very high frequency (VHF) radio-tags commonly

used by conservation biologists for radio-tagging animals. To the best of our

knowledge, ours is the first demonstration of an autonomous online aerial robot

system for tracking and locating multiple mobile VHF radio-tags in real-time.

This work has been published in the Journal of Field Robotics under the title of

“TrackerBots: autonomous unmanned aerial vehicle for real-time localization

and tracking of multiple radio-tagged animals” (Nguyen et al., 2019a).

2. The problem of online path planning for joint detection and tracking of

multiple unknown radio-tagged objects is considered. We propose an online

path planning algorithm with joint detection and tracking because signal

measurements from these objects are inherently noisy. We derive a partially

observable Markov decision process (POMDP) with a random finite set (RFS)

track-before-detect (TBD) multi-object filter, which also maintains a safe distance

between the UAV and the objects of interest using a void probability constraint.

We show that, in practice, the multi-object likelihood function of raw signals

received by the UAV in the time-frequency domain is separable and results in a

numerically efficient multi-object TBD filter. We derive a TBD filter with a jump

Markov system (JMS) to accommodate manoeuvring objects capable of switching

between different dynamic modes. Our evaluations demonstrate the capability

of the proposed approach to handle multiple radio-tagged objects subject to

birth, death, and motion modes. Moreover, this online planning method with

the TBD-based filter outperforms its detection-based counterparts in detection

and tracking, especially in low signal-to-noise ratio (SNR) environments. This

work has been published in the IEEE Transactions on Signal Processing under the
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title “Online UAV path planning for joint detection and tracking of multiple

radio-tagged objects” (Nguyen et al., 2019b).

3. A framework for multiple agents to jointly plan, search and track a time-varying

number of objects using a novel multi-objective information-based value function

formulation is proposed. Our multi-objective value function captures the

competing objectives of planning for tracking and discovery. We adopt the

RFS model for the collection of objects of interest to account for the random

appearance and disappearance of objects and their dynamics. Our proposed

multi-objective value function maximises information gain over a look-ahead

horizon for both discovered and undiscovered objects. Most importantly,

our multi-objective value function is proven to be a monotone submodular

set function; thus, we can cope with the intractability of the multi-objective

optimisation problem (MOP) by employing a greedy algorithm. Our ability to

use a greedy algorithm facilitates the computation of approximately optimal

control actions with linear complexity in the number of agents for realising

an online planning method. This work has been accepted by The 34th AAAI

Conference on Artificial Intelligence under the title “Multi-objective multi-agent

planning for jointly discovering and tracking mobile objects” (Nguyen et al.,

2020b).

4. A fast and efficient fusion algorithm in distributed multi-sensor networks with

limited computational resources for tracking multiple objects under limited FoV

sensors is developed. In particular, a novel fusion strategy is conducted on

local multi-object trajectory estimates instead of local multi-object densities. As

a result, the proposed fusing algorithm is significantly faster than traditional

densities-based fusion algorithms. Moreover, the tracking accuracy is improved

by directly examining the multi-object tracking errors using the optimal

sub-pattern assignment (OSPA) metric. Experimental results demonstrate that

our proposed method can perform in real-time and substantially outperforms

the state-of-the-art fusion rules such as generalised covariance intersection (GCI)

in terms of speed and accuracy in challenging scenarios with limited FoV sensors.

This work is prepared to submit to the IEEE Transactions on Signal Processing

under the title “Distributed multi-sensor multi-object tracking under limited field

of view sensors” (Nguyen et al., 2020a).
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Figure 1.2. Outline of the dissertation.

1.3 Dissertation Structure

The dissertation structure is outlined in Figure 1.2, and is described as follows.

1. Chapter 1 and Chapter 2 provides a brief introduction and background in

tracking and planning tasks. We also discuss the challenges and opportunities

of using autonomous UAVs to track multiple objects under limited FoV sensors.
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2. Chapter 3 focuses on developing a received signal strength indicator

(RSSI)-based aerial platform to track radio-tagged wildlife. A low cost and

lightweight payload system that can be mounted on a commercial UAV is

developed. Additionally, an autonomous and online planning algorithm for

a UAV under a POMDP framework to track multiple radio-tagged objects is

implemented and verified through extensive field experiments.

3. Chapter 4 considers a challenging problem of online UAV planning for

tracking unknown and time-varying number of radio-tagged objects under

noisy environments. An efficient TBD filter for on-off-keying signals used

in radio-tagged transmitters is derived. Additionally, a JMS is implemented

with the TBD filter to accommodate manoeuvring objects capable of switching

between different dynamic modes. Furthermore, an online planning method for

the UAV using a void probability functional for situational awareness to maintain

a safe distance to objects of interest is investigated.

4. Chapter 5 investigates a problem of searching and tracking multiple objects

using multiple UAVs under range-limited on-board sensors. A multi-objective

value function considers both tracking and searching objectives simultaneously

is proposed and proved to be a monotone set function. Hence, a greedy algorithm

to control multiple UAVs in a centralised manner can be implemented with a

performance bound.

5. Chapter 6 examines a problem of tracking a time-varying number of mobile

objects using a network of distributed stationary agents or so-called nodes. This

work derives an efficient and fast fusion algorithm for distributed nodes under

practical constraints of unknown data association measurements and limited FoV

sensors.

6. Chapter 7 gives a conclusive summary for all of the completed work in this

dissertation, and discuss the potential work in the future.
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Chapter 2

Fundamentals of Tracking
and Planning

Our applications are based on the problems of online path planning for

UAVs to track an unknown and time-varying number of objects. In this

chapter, we provide a general concept of single-object and multi-object

tracking under the Bayesian paradigm. Further, we provide a brief

background on online path planning for UAVs under the partially

observable Markov decision process (POMDP) framework. We also

provide the definitions for the metrics used to quantify our results.
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2.1 Notations

2.1 Notations

For notational consistency, we use lowercase letters ( e.g., x) for single-object states;

capital letters (e.g., X) represent the multi-object states; bold letters (e.g., x, X) are used

for labelled states; blackboard letters (e.g., X) denote state spaces. Let 1A(·) denote

the inclusion function of a given set A, and F (A) denote the class of finite subset of

A. If X = {x}, for convenience, write 1A(x) instead of 1A({x}). For simplicity, albeit

with a slight abuse of notation, we use the symbol f (·|·) to denote the single-object

and multi-object transition kernels, and the symbol g(·|·) to denote the single-object

and multi-object measurement likelihood functions.

2.2 Bayesian Filtering

The Bayesian filtering approach is an online estimation method dealing with the

problem of inferring knowledge about the unobserved state of a dynamic system,

which changes over time, from a sequence of noisy observations. In a standard

Bayesian filter when the number of objects is fixed and known, the object states

and observations are commonly modelled as random vectors with fixed dimensions.

Formally, suppose xk is the state of an object at time k, which generates an observation

zk based on the observation model:

zk = hk(xk, wk), (2.1)

where wk denotes the observation noise. In general, the observation can be

characterised by a likelihood function gk(zk|xk), which is the probability of observing

the measurement zk given the state xk. Further, the object state xk evolves over time

based on the transition model:

xk = fk−1(xk−1, vk−1), (2.2)

where vk−1 denotes the process noise. Generally, the object state can also be

characterised by the transition kernel fk|k−1(xk|xk−1), which is the probability of

transitioning to the object state xk, given its previous state xk−1.

The objective of the filtering problem is to estimate the belief density πk(xk|z1:k) based

on the history of observation data z1:k from time 1 to time k. Using the Bayes recursion

roles, from the initial density π0, the belief density can be calculated sequentially using
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the prediction and update steps as follows:

πk|k−1(xk|z1:k−1) =
∫

fk|k−1(xk|x)πk−1(x|z1:k−1)dx, (2.3)

πk(xk|z1:k) =
gk(zk|xk)πk|k−1(xk|z1:k−1)∫
gk(zk|x)πk|k−1(x|z1:k−1)dx

. (2.4)

The prediction step (2.3) is also called a Chapman-Kolmogorov equation, while the

update step (2.4) is a well-known Bayes rule.

2.2.1 Kalman filters and beyond

Kalman filter (KF), firstly introduced in 1960 by Rudolph E. Kalman in (Kalman, 1960),

is the simplest form of the Bayesian filters, when states and measurement variables are

linear and have Gaussian distributions, given by:

xk = Fk−1xk−1 + qk−1,

zk = Hkxk + rk.
(2.5)

Here, qk−1 ∼N (0, Qk−1) is the process noise and rk ∼N (0, Rk) is the measurement

noise, Fk−1 is the state transition matrix and Hk is the observation matrix with the

initial distribution is Gaussian x0 ∼ N (m0, P0), such that:

fk|k−1(xk|xk−1) = N (xk; Fk−1xk−1, Qk−1),

gk(zk|xk) = N (zk; Hkxk, Rk).
(2.6)

Assume at k− 1 time step, the state belief density is:

πk−1(xk−1|z1:k−1) = N (xk−1; mk−1, Pk−1). (2.7)

Substituting (2.7) and (2.6) into (2.3) results in the predicted belief density at time k,

πk|k−1(xk|z1:k−1) = N (xk; mk|k−1, Pk|k−1), (2.8)

where mk|k−1 = Fk−1mk−1, Pk|k−1 = Fk−1Pk−1FT
k−1 + Qk−1.

Substitute (2.8) and (2.6) into (2.4) results in the filtering belief density at time k:

πk(xk|z1:k) =
gk(zk|xk)πk|k−1(xk|z1:k−1)∫
gk(zk|x)πk|k−1(x|z1:k−1)dx

,

∝ N (zk|Hkxk, Rk)N (xk|mk|k−1, Pk|k−1),

∝ N (xk|mk, Pk),

(2.9)
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where
mk = mk|k−1 + Pk|k−1HT

k (HkPk|k−1HT
k + Rk)

−1(zk − Hkmk|k−1),

= mk|k−1 + Kk(zk − Hkmk|k−1),

Pk = Pk|k−1 − Pk|k−1HT
k (HkPk|k−1HT

k + Rk)
−1HkPk|k−1,

= (I − KkHk)Pk|k−1,

Sk = Rk + HkPk|k−1HT
k ,

Kk = Pk|k−1HT
k S−1

k .

(2.10)

Here, Kk is called a Kalman gain, (zk− Hkmk|k−1) is called an innovation, and Sk is called

an innovation covariance.

Beyond Kalman filters: Although Kalman filter is the optimal solution for linear

problems with Gaussian distributions, it cannot be implemented in several real

world scenarios because most practical filtering problems are non-linear, non-Gaussian

problems. Consequently, a more general scenario of non-linear systems is often

considered, i.e.,
xk = fk−1(xk−1) + qk−1,

zk = hk(xk) + rk.
(2.11)

When dynamic and measurement models are somewhat non-linear, two popular

approximation solutions are extended Kalman filter (EKF) (Bar-Shalom, 1987;

Jazwinski, 2007) and unscented Kalman filter (UKF) (Julier, Uhlmann and

Durrant-Whyte, 2000; Julier and Uhlmann, 2004).

Extended Kalman Filter: The EKF filter applies Taylor series to approximate the

non-linear function fk−1(·) and hk(·) in (2.11) where the Taylor series is usually

pruned at the first linear term, so-called first-order EKF filter. By linearisation, the

EKF filter has the same form as KF filter, wherein the transition function fk−1(·) and

measurement function hk(·) are replaced by its corresponding Jacobian matrix F̂k−1

and Ĥk, given by

F̂k−1 =
∂ fk−1

∂x

∣∣∣
x=mk−1

, Ĥk =
∂hk
∂x

∣∣∣
x=mk|k−1

. (2.12)

Unscented Kalman Filter: Unlike the EKF filter which approximates the fk−1(·) and

hk(·) functions through Taylor series expansion, the UKF filter instead captures

the mean and covariance of the filtering belief distribution πk(xk|z1:k) through the

deterministically chosen sample points (or so-called sigma points) (Julier, Uhlmann and

Durrant-Whyte, 2000). For an n-dimensional state variable with assumed Gaussian
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distribution: xk−1 ∼ N (mk−1, Pk−1), form a set of 2n + 1 sigma points X (i) with

corresponding weight W(i) for ith point as follow:

X (0)
k−1 = mk−1, W(0) = κ/(n + κ),

X (i)
k−1 = mk−1 +

(√
(n + κ)Pk−1

)
i
, W(i) = 1/2(n + κ),

X i+n
k−1 = mk−1 −

(√
(n + κ)Pk−1

)
i
, W i+n = 1/2(n + κ),

(2.13)

where κ ∈ R,
(√

(n + κ)Pk−1

)
i
is the ith row of the matrix square root L of (n + κ)Pk−1

such that (n + κ)Pk−1 = LT L.

Using the sampled set in (2.13), the UKF filter procedure follows:

• Propagate predicted sigma points: X (i)
k|k−1 = f (X (i)

k−1), i = 0, 1, 2, ..., 2n.

• Compute predicted mean and covariance:

mk|k−1 = ∑2n
i=0 W(i)X (i)

k|k−1, Pk|k−1 = ∑2n
i=0 W(i)(X (i)

k|k−1 −mk|k−1)(X
(i)
k|k−1 −mk|k−1)

T + Qk−1.

• Compute predicted measurement: ẑk|k−1 = ∑2n
i=0 W(i)hk(X

(i)
k|k−1).

• Compute updated mean and covariance using actual measurements:

mk = mk|k−1 + Kk(zk − ẑk|k−1), Pk = Pk|k−1 − PxzKT
k ,

where

Kk = PxzS−1
k , Sk = Rk + Pzz, Pxz =

2n

∑
0

W(i)(X (i)
k|k−1 −mk|k−1)(hk(X

(i)
k|k−1)− ẑk|k−1)

T,

Pzz =
2n

∑
0

W(i)(hk(X
(i)
k|k−1)− ẑk|k−1)(hk(X

(i)
k|k−1)− ẑk|k−1)

T.

2.2.2 Particle filters

The particle filters (PF) (Gordon, Salmond and Smith, 1993; Gordon, 1997; Doucet,

De Freitas and Gordon, 2001; Ristic, Arulampalam and Gordon, 2004) belong to a class

of approximation methods to non-linear systems in the Bayesian filter family. The

basic method of the particle filters is to use a random sampling process (Monte Carlo)

to approximate the probability distributions of interest (Vo et al., 2015). The particle

filters implement the random sampling process called Monte Carlo (MC) method to
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approximate the belief density by a weighted set of independently and identically

distributed (i.i.d) particles.

Suppose at time k − 1, the belief density is approximated by a set of particles,

{(w(i)
k−1, x̃(i)k−1)}

N
i=1, i.e., :

πk−1(xk−1|z1:k) ≈
N

∑
i=1

w(i)
k−1δ(xk−1 − x̃(i)k−1), (2.14)

where δ(·) denotes the Kronecker delta, and
N
∑

i=1
w(i)

k−1 = 1.

Each particle is predicted to time k using the dynamic transition model, given by:

x̃(i)k|k−1 = fk−1(x̃(i)k−1) + qk−1, (2.15)

while the weight w(i)
k|k−1 = w(i)

k−1 is maintained the same during the prediction step.

In contrast, during the update step, the particle state is maintained, i.e., x̃(i)k = x̃(i)k|k−1,

while its corresponding weight is updated, given by

w(i)
k =

gk(zk|x̃
(i)
k )w(i)

k|k−1

∑N
i=1 gk(zk|x̃

(i)
k )w(i)

k|k−1

. (2.16)

A typical problem of particles filter is particles depletion, i.e., weights are concentrated

on a few particles, while the rest of the particles have weights closed to zero.

The reason is that, after update procedures, the variance of weights increases

and never decreases because the measurement likelihood function is often less

scattered than the dynamic transition kernel. A well-known method to prevent

particle depletion is called resampling, which can be done in various ways, such as

multimodal resampling, systematic resampling, soft systematic resampling, bootstrap

filter resampling, regularised particle filter and auxiliary particle filter (Doucet,

De Freitas and Gordon, 2001; Ristic, Arulampalam and Gordon, 2004; Douc and Cappé,

2005; Hol, Schon and Gustafsson, 2006). The main idea is that the particles with very

small weights are pruned, while the very high weight particles are copied.

2.3 Random Finite Sets

The previous subsection provides most well-known filters for tracking single-object,

wherein only one object and one measurement exist. For multi-object tracking,
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Chapter 2 Fundamentals of Tracking and Planning

several heuristic approaches have been proposed using an array of single-object

trackers such as global nearest neighbour (GNN) (Blackman and Popoli, 1999), joint

probabilistic data association (JPDA) (Bar-Shalom, 1987), multi-hypotheses tracking

(MHT) (Reid, 1979). However, these algorithms involve an explicit object to

measurement assignment (data association), which becomes less reliable during high

false-alarms or objects in closed space. Further, these trackers require a known and

fixed number of objects since their underlying states are random variables, which

have fixed and known dimensions. Note that even for cases of wildlife tracking,

when the data association problem is solved via unique radio-tagged identity resulting

an array of single-object trackers can be used for MOT; however, the existence of

objects is difficult to confirm, especially under low SNR conditions. As a result,

there are remaining critical applications in which the number of objects is unknown

and time-varying. A more suitable model is random finite set (RFS) framework, an

emerging paradigm that generalises the classical dynamical systems to set-valued

dynamical systems, in which MOT is a multi-object state estimation problem (Mahler,

2007b).

2.3.1 Definition

An RFS X on X is a random variable taking values in the finite subsets of X. Using

Mahler’s finite set statistic (FISST), an RFS is fully described by its FISST density. The

FISST density is not a probability density (Mahler, 2007b), but it is equivalent to a

probability density as shown in (Vo, Singh and Doucet, 2005). We introduce three

common RFSs, Bernoulli RFS, multi-Bernoulli RFS and labelled multi-Bernoulli RFS

used in our work.

2.3.2 Bernoulli RFS

A Bernoulli RFS X on X has at most one element with probability r for being a singleton

distributed over the state space X according to PDF p(·), and probability 1− r for being

empty. Its FISST density is defined as follows (Mahler, 2007b, pp. 351):

π(X) =

1− r X = ∅,

r · p(x) X = {x},
(2.17)

while its cardinality distribution ρ(·) is a Bernoulli distribution parameterised by r.
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2.3.3 Multi-Bernoulli RFS

A Multi-Bernoulli RFS is a union of a fixed number (say N) of independent Bernoulli

RFSs: X =
N⋃

i=1
X(i), where X(i) is a Bernoulli RFS on F (X) characterised by the

existence probability r(i) and probability density p(i) defined on X. Its FISST density is

given by (Mahler, 2007b, pp. 368):

π({x(1), . . . , x(n)}) = π(∅) ∑
1≤i1 6=···6=in≤N

n

∏
j=1

r(ij) · p(ij)(x(j))

1− r(ij)
, (2.18)

where π(∅) =
N
∏
i=1

(1− r(i)), and its cardinality distribution is also a multi-Bernoulli

distribution (Mahler, 2007b, pp. 369):

ρ(n) = π(∅) ∑
1≤i1<···<in≤N

n

∏
j=1

r(ij)

1− r(ij)
. (2.19)

2.3.4 Labelled multi-Bernoulli RFS

A labelled RFS with state space X and label space L is an RFS on X × L where

all realisations of labels are distinct. Similar to the multi-Bernoulli RFS, a labelled

multi-Bernoulli (LMB) RFS is completely defined by a parameter set {(r(λ), p(λ)) : λ ∈
Ψ} with index set Ψ. Its FISST density is given by (Reuter et al., 2014):

π(X) = δ|X|(|L(X)|)w(L(X))pX , (2.20)

where δ is the Kronecker delta, L(X) denotes the set of labels extracted from X ∈
F (X × L), p(x) = p(x, λ) = p(λ)(x), pX = ∏(x,λ)∈X p(λ)(x), w(L) , ∏i∈L(1 −

r(i))∏λ∈L
1L(λ)r(λ)

(1− r(λ))
.

2.3.5 Generalised labelled multi-Bernoulli RFS

A generalised labelled multi-Bernoulli (GLMB) RFS with state space X and label space

L is an RFS on X×L such that its FISST density follows (Vo and Vo, 2013):

π(X) = 4(X) ∑
ξ∈Ξ

w(ξ)[p(ξ)]X , (2.21)

where4(X) , δ|X|(|L(X)|) is the distinct label indicator, Ξ is a discrete space,p(ξ)(·, l)

is a probability density on X, and w(ξ)(I) is a non-negative hypothesis weight with
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∑I⊆L ∑ξ∈Ξ w(ξ)(I) = 1. An alternative form of the GLMB is known as δ-GLMB, which

is used to facilitate the numerical implementation. A δ-GLMB RFS represents the

statistical dependencies among objects by considering multiple hypotheses comprising

of a set of track labels I ∈ L and a corresponding association history ξ ∈ Ξ. Its FISST

density is given by (Vo, Vo and Phung, 2014):

π(X) = 4(X) ∑
(I,ξ)∈F (L)×Ξ

w(I,ξ)δI(L(X))[p(ξ)]X . (2.22)

Note that the δ-GLMB is realised from the GLMB using the relationship wξ(J) =

∑I∈F (L) w(ξ)(I)δI(J).

2.4 Multi-object Filtering using RFS Theory

In the FISST approach, the multi-object state at time k is modelled as a (labelled) RFS

Xk. The representation of a multi-object state by a finite set provides consistency with

the notion of estimation error distance (Vo et al., 2010). Let z1:k denote the history

of measurement data from time 1 to k. Then using the FISST concept of density and

integration, the filtering densities can be propagated using the prediction and update

steps of the Bayes multi-object filter (Mahler, 2007b):

πk|k−1(Xk|z1:k−1) =
∫

fk|k−1(Xk|Xk−1)πk−1(Xk−1|z1:k−1)δXk−1, (2.23)

πk(Xk|z1:k) =
g(zk|Xk)πk|k−1(Xk|z1:k−1)∫
g(zk|X)πk|k−1(X|z1:k−1)δX

, (2.24)

where πk|k−1(·|z1:k−1) denotes a multi-object predicted density; πk(·|z1:k) denotes a

multi-object filtering density; fk|k−1(·|·) denotes a transition kernel from time k− 1 to k;

g(zk|·) denotes a measurement likelihood function at time k. Note that the multi-object

transition kernel fk|k−1(·|·) incorporates all dynamic aspects of objects including death,

birth and transition to new states. The integral is a set integral defined for any function

p : F (X×L)→ R, given by:

∫
p(X)δX =

∞

∑
n=0

1
n! ∑

(l1,...,ln)∈Ln

∫
Xn

p({(x(1), l(1)), . . . , (x(n), l(n))})d(x(1), . . . , x(n)).

(2.25)

Generally, the FISST Bayes multi-object recursion is intractable. However, considerable

interest in the field has lead to a number of filtering solutions such as the probability
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hypothesis density (PHD) filter (Mahler, 2003), the cardinalised PHD (CPHD)

filter (Mahler, 2007a), the multi-object multi-Bernoulli (MB) filter (Mahler, 2007b; Vo,

Vo and Cantoni, 2009), the generalised labelled multi-Bernoulli (GLMB) filter (Vo and

Vo, 2013; Vo, Vo and Phung, 2014), and the labelled multi-Bernoulli (LMB) filter (Reuter

et al., 2014).

2.5 Path Planning for UAVs

Given this dissertation considers the problem of path planning for multiple UAVs,

we provide a brief background in path planning theories. The prominent planning

algorithms such as genetic algorithm (GA) and particle swarm optimisation (PSO)

(Roberge, Tarbouchi and Labonte, 2013) are not applicable for online applications

because it is computationally expensive due to bio-inspired approaches. As shown in

(Kaelbling, Littman and Cassandra, 1998), the online planning problem is similar to the

problem of an agent computing optimal actions under a partially observable Markov

decision process (POMDP) to maximise its reward, which has gained significant

interest recently (Baek et al., 2013; Ragi and Chong, 2013). Additionally, at the

theoretical level, the POMDP framework facilitates direct generalisation to MOT using

RFS (Mahler, 2007b). This can be called as RFS-POMDP — a POMDP with the

information state being the filtering density of the RFS of objects.

Multi-agent path planning in partially observable environments is further challenging

due to the complex coordination among agents. Although the cooperation problem

can be formulated as a decentralised POMDP (Dec-POMDP), its exact solutions are

NEXP-hard (Bernstein et al., 2002). This is especially problematic for multi-agent

POMDPs since the action and observation space grows exponentially with the number

of agents (Amato and Oliehoek, 2015). One approach is distributed POMDPS (e.g.,

networked distributed POMDP (Nair et al., 2005)) by exploiting interactions among

neighbouring agents using distributed constraint optimisation. However, realising a

global goal for multi-agents in a distributed manner is an NEXP-problem in worst case

scenarios (Rizk, Awad and Tunstel, 2018). Hence, to cope with this intractability, the

MPOMDP centralised approach (Messias, Spaan and Lima, 2011) can be adopted for

controlling multiple agents (Dames and Kumar, 2015; Dames, Tokekar and Kumar,

2017; Wang et al., 2018).
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Therefore, this section provides a brief background on POMDP for planning a single

agent (e.g., a single UAV) and MPOMDP for planning multiple agents (e.g., multiple

UAVs).

2.5.1 Partially observable Markov decision process (POMDP)

POMDP (partially observable Markov decision process) is a theoretical framework

for stochastic control problems and is described by the 6-tuple
[
F (T) ×

U,A, T ,R,F (Z), g(·|·)
]

where (Monahan, 1982; Lovejoy, William S, 1991; Bertsekas

et al., 1996; Hsu, Lee and Rong, 2008):

• T = X×L is the labelled state space;

• F (T)×U is the space where each of its elements is an ordered pair (X, u), with

X being an object state (possibly a multi-object state) and u an observer state;

• A: a set of control actions;

• T : a state-transition function on
[
F (T) × U

]
× A ×

[
F (T) × U

]
where

T ((X, u), a, (X ′, u′)) is the probability density of next state (X ′, u′) given current

state (X, u) and action a taken by the observer;

• R: a real-valued reward function defined on A;

• F (Z): a set of observations;

• g(·|·): an observation likelihood function on F (Z) ×
[
F (T) × U

]
× A where

g(z|(X, u), a) is the likelihood of an observation z given the state (X, u), after

the observer takes the action a.

The main goal in a POMDP is to find an optimal action a∗k that generates an

optimal trajectory (a sequence of observer’s positions) by maximising the total

expected reward over H look-ahead steps. Specifically, the total expected reward is

E[∑H
j=1 γj−1Rk+j(ak)] with E[·] denoting the expectation operator, and discount factor

γ ∈ (0, 1] to moderate the effects of future rewards on current actions.

In this dissertation, we propose using an information-based reward function. For

the purpose of joint detection and tracking, where reducing overall uncertainty2

2The uncertainty associated with the estimated state of all objects.
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is the main objective, such a reward function is more appropriate because more

information implies less uncertainty (Beard et al., 2017). There are other reward

functions, such as cardinality variances (Gostar, Hoseinnezhad and Bab-Hadiashar,

2013), which are good at estimating the number of objects or the OSPA-based method

in (Gostar et al., 2017) that depends on user-defined threshold values. In contrast,

the information-based methods capture overall cardinality and position information,

and can be efficiently computed in a closed-form. A detailed comparison between

task-based and information-based reward functions can be found in (Kreucher, Hero

and Kastella, 2005).

Suppose πk+H|k(·|z1:k) is the predicted density to time k + H given measurements up

to time k, which can be calculated recursively by only using the Bayes prediction step

in (2.23) from time k to k + H. Now, suppose ak is the control action applied to the

UAV at time k; then, the UAV follows a trajectory consisting of a sequence of discrete

positions uk+1:k+H(ak) = [uk+1(ak), . . . , uk+H(ak)]
T with corresponding hypothesised

measurements zk+1:k+H(ak) = [zk+1(ak), . . . , zk+H(ak)]
T. Then the filtering density

πk+H(·|z1:k, zk+1:k+H(ak)) can be computed recursively using the Bayes filter in (2.23)

and (2.24) from time k to k + H. The reward function can be specified in terms of

information divergence between the filtering density and the predicted density. The

rationale is that a more informative filtering density yields better estimation results.

Thus, it is appropriate to choose an optimal policy that generates a more informative

filtering density. Since the filtering density is equally or more informative than

the predicted density, maximising the information divergence between the filtering

density and the predicted density often results in a more informative filtering density,

and consequently, a better tracking performance. In particular, the information-based

reward function is given by (Beard et al., 2015):

Rk+H(ak) = D(πk+H(·|z1:k, zk+1:k+H(ak), πk+H|k(·|z1:k)), (2.26)

where D(π2, π1) is the information divergence between two FISST densities, π2

and π1. Some information divergence candidates are Rényi divergence (including

Kullback-Leibler divergence) and Cauchy-Schwarz divergence, described below:

Rényi divergence between any two FISST densities, π2 and π1, is defined as (Ristic

and Vo, 2010):

DRényi(π2, π1) =
1

α− 1
log

∫
πα

2 (X)π1−α
1 (X)δX, (2.27)
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where α ≥ 0 is a parameter which determines the emphasis of the tails of two

distributions in the metric. When α → 1, we obtain the well-known Kullback-Leibler

(KL) divergence.

Cauchy-Schwarz divergence between any two FISST densities, π2 and π1, is defined

as (Hoang et al., 2015):

DCS(π2, π1) = − log

 ∫
K|X|π2(X)π1(X)δX√∫

K|X|π2
2(X)δX

∫
K|X|π2

1(X)δX

 , (2.28)

where K denotes the unit of hyper-volume on T.

2.5.2 Multi-agent POMDP (MPOMDP)

Multi-agent POMDP is a centralised control framework for multiple agents wherein

each agent shares its observations via communications to a centralised controller. Let

F (A) denote the class of finite subsets of A. An MPOMDP is described by a tuple[
S, H,F (X)×US,AS,F (Z)S, T ,R,O

]
where

• S is the number of agents;

• H is the look-ahead horizon;

• F (X)×US is the space, wherein each element is an ordered pair (X, U), with X

is the object state and U = [u1, . . . , uS]T ∈ US is states of S agents;

• AS = A× · · · × A is the control action space for S agents resulting in the joint

action A = [a1, . . . , aS]T ∈ AS;

• F (Z)S = F (Z) × · · · × F (Z) is the space of joint observations resulting in the

joint observation Z = [Z1, . . . , ZS]T ∈ F (Z)S;

• T :
[
F (X)×US]× [F (X)×US]×AS → [0, 1] defines the transition probabilities

Pr
(
(X′, U′)|(X, U), A

)
;

• R :
[
F (X)×US]×AS → R defines the immediate reward of performing action

A in state
[
F (X)×US];

• O : F (Z)S ×
[
F (X) × US] × AS → [0, 1] defines the joint observation

probabilities Pr
(
Z|(X′, U′), A

)
.
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2.6 Performance Evaluation Metrics

In this section, we present the key evaluation metrics used in the multi-object tracking

and employed to evaluate the performance of the algorithms developed herein. These

include: i) root mean square error (RMSE), ii) optimal sub-pattern assignment (OSPA),

and iii) OSPA-on-OSPA (OSPA(2)).

2.6.1 Root mean square error (RMSE)

When the number of object is known and unchanged over time, RMSE is often used to

measure the estimation error between the estimated value versus its ground truth.

Let X̂ = [x̂1, . . . , x̂n]T ∈ X be an estimate of its ground truth X = [x1, . . . , xn]T ∈ X
where n is the number of objects (or so-called cardinality). The RMSE is the square

root of the mean square error, given by:

drmse =

√√√√√ n
∑

i=1

[
d(x̂i, xi)

]2
n

, (2.29)

where d(x̂i, xi) is a single object metric (e.g., Euclidean distance) on X.

2.6.2 Optimal sub-pattern assignment (OSPA)

When the number of objects is unknown and time-varying, RMSE is not suitable since

it does not cover the miss-distance concept, e.g., the number of estimated objects is not

the same as the number of true objects. Therefore, OSPA (Schuhmacher, Vo and Vo,

2008) — a new mathematically and intuitively consistent metric — is introduced to

address the miss-distance concept.

Let F (X) be the space of finite subsets of X. As stated in (Schuhmacher, Vo and Vo,

2008), let d(c)p (X, Y) be the OSPA distance between X, Y ∈ F (X) with order p and

cut-off c. Let m be the cardinality of X = {x(1), . . . , x(m)} and n be the cardinality of

Y = {y(1), . . . , y(n)}. If m ≤ n, d(c)p (X, Y) is defined as

d(c)p (X, Y) =

(
1
n

(
min
π∈Πn

m

∑
i=1

d̄(c)(x(i), y(π(i)))p + cp(n−m)

))1/p

, (2.30)
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where Πn is a set of all permutations of n (|Πn| = n!), d̄(c)(x, y) = min(c, d(x, y)), in

which d(·, ·) is an arbitrary metric on the single object state space of X. If m > n, then

d(c)p (X, Y) , d(c)p (Y, X).

The OSPA distance is comprised of two components: OSPA localisation d̄(c)p,loc and OSPA

cardinality d̄(c)p,card to account for localisation and cardinality errors. These components

are given by with m ≤ n:

d̄(c)p,loc(X, Y) =
(

1
n

min
π∈Πn

m

∑
i=1

d(c)(xi, yπ(i))p
)1/p

, (2.31)

d̄(c)p,card(X, Y) =
(

cp(n−m)

n

)1/p

, (2.32)

and if m > n, then d̄(c)p,loc(X, Y) , d̄(c)p,loc(Y, X), d̄(c)p,card(X, Y) , d̄(c)p,card(Y, X).

2.6.3 OSPA(2) metric

In multi-object tracking, the actual interest is object trajectories instead of object states

over time, which involves trajectory labels (Vo and Vo, 2013). The OSPA metric only

measures the distance between estimated versus true states, thus it does not consider

other tracking criteria such as track fragmentation and track switching. As a result, a

new adaption of OSPA, called OSPA(2) is invented to measure the difference between

two sets of tracks (Beard, Vo and Vo, 2017, 2018; Beard, Vo and Vo, 2020). In particular,

OSPA(2) metric is the same as the OSPA metric, except its base distance is itself another

OSPA-based distance.

Let T = {1, . . . , K} be a finite space of time indices, from the start time at 1 to the end

time at K. Let U , { f : T→ X} be a space of all functions from T to X. An element of

U is defined as a track.

Base distance: Let f , g ∈ U be two tracks of U, let D f , Dg ∈ T be the time support of

track f and track g, respectively. The base distance between two tracks is defined as

the average OSPA distance over its time support, i.e.,

d̃(c)( f , g) =


∑

t∈D f∪Dg

d(c)({ f (t)}, {g(t)})
|D f ∪ Dg|

, if |D f ∪ Dg| 6= 0,

0, if |D f ∪ Dg| = 0.

(2.33)
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where { f (t)} is a singleton if t ∈ D f , and empty set otherwise(likewise for {g(t)}),
d(c)(·, ·) is the OSPA distance defined in (2.30), which becomes

d(c)({ f (t)}, {g(t)}) =


0, if |({ f (t)}| = |{g(t)}| = 0,

c, if |({ f (t)}| 6= |{g(t)}|,

min(c, d( f (t), g(t))), if |({ f (t)}| = |{g(t)}| = 1.

(2.34)

OSPA(2) for Tracks: The base distance defined in (2.34) is a metric, and confined by the

cut-off value c. Thus, it can be used as a base distance for the original OSPA distance.

Let X = { f (1), . . . , f (m)} ∈ F (U) and Y = {g(1), . . . , g(n)} ∈ F (U) be two sets of

tracks, ď(c)p (X, Y) be the OSPA(2) distance between X and Y. If m ≤ n, ď(c)p (X, Y) is

defined based on the base distance d̃(c)(·, ·) as

ď(c)p (X, Y) =

(
1
n

(
min
π∈Πn

m

∑
i=1

d̃(c)( f (i), y(π(i)))p + cp(n−m)

))1/p

, (2.35)

where c is the cut-off and p is the order parameters. If m > n, then ď(c)p (X, Y) ,

ď(c)p (Y, X).

As shown in (Beard, Vo and Vo, 2020), OSPA(2) is a metric with all properties including

identity, symmetry, non-negative and triangle inequality.
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Chapter 3

Autonomous UAV for
Tracking Multiple

Radio-Tagged Objects

W
E consider the problem of building an autonomous aerial

robot capable of planning its trajectory to track and locate

multiple mobile objects within the field of view of its

sensor. We ground our problem in the application of the system for

tracking and locating radio-tagged wildlife in conservation biology. We

present a novel autonomous aerial vehicle system—TrackerBots—to track

and localise multiple radio-tagged animals. Such a robot can provide new

possibilities to study the habitats and behaviours of endangered species

through the efficient gathering of location information at temporal-spatial

granularity not possible with traditional manual survey methods. The

simplicity of measuring the RSSI values of VHF radio-collars commonly

used in radio-tagging is exploited to realise a low cost and lightweight

sensor platform suitable for integration with UAVs. Due to uncertainty

and the non-linearity of the system based on RSSI measurements, our joint

tracking and planning approaches integrate a particle filter for tracking

and localising and a POMDP for dynamic path planning. This approach

allows autonomous navigation of a UAV in a direction of maximum

information gain to locate multiple mobile animals and reduce exploration

time, and, consequently, conserve on-board battery power. We validated

our real-time and online approach through both extensive simulations and

field experiments with five VHF radio-tags on a grassland plain.
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3.1 Motivation and Contribution

Understanding basic questions of ecology such as how animals use their habitat,

their movements and activities are necessary for addressing numerous environmental

challenges ranging from invasive species to diseases spread by animals and saving

endangered species from extinction. Conservation biologists, ecologists as well

as natural resource management agencies around the world rely on numerous

methods to monitor animals. Traditional methods using radio-tagging species of

interest (Cochran and Lord Jr, 1963; Kenward, 2000) as well as more recent vision-based

sensors (Selby, Corke and Rus, 2011; Olivares-Mendez et al., 2015) or infrared (IR)

based sensors (Zhou, 2013; Christiansen et al., 2014; Gonzalez et al., 2016; Ward et al.,

2016) are employed for these tasks. IR-based sensors are sensitive to environmental

temperature and become less reliable when they are used outdoors, especially during

daytime in summer months (Zhou, 2013). In general, vision-based approaches are

less effective when animals are camouflaged and are susceptible to visual occlusions,

e.g. by grass, shrubs and even other animals. Most significantly, due to the

difficulty of automatically recognising individual animals using vision/IR based

approaches, tracking multiple animals with these sensors requires dealing with the

very challenging problem of data association (Bar-Shalom, 1987; Stone et al., 2013).

Often, conservation biologists need tools to track and monitor a specific set of

individual animal species; for example, individuals of a reintroduction species into a

natural habitat. This becomes difficult to achieve in the presence of occlusions and data

associations problems of IR/vision based approaches. Thus, capturing and collaring

concerned species with very high frequency (VHF) radio tags and the subsequent

use of VHF telemetry or radio tracking is the most important and cost-effective tool

employed to study the movement of a wide range of animal sizes (Wikelski et al.,

2007) in their natural environments (Kays et al., 2011; Thomas, Holland and Minot,

2012; Tremblay et al., 2017; Webber et al., 2017).

However, the traditional method of radio tracking is not without its problems.

Tracking radio-collared animals typically requires researchers to trek long distances

in the field, armed with cumbersome VHF radio receivers with hand-held antennas

and battery packs to manually home in on radio signals emitted from radio-tagged

or collared animals. Consequently, the precious spatial data acquired through radio

tracking come at a significant cost to researchers in terms of manpower, time and

funding. The problem is often compounded by other challenges, such as low animal
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Sensor System

Embedded
Compute Module

Software
Defined Radio

VHF Antenna

Figure 3.1. TrackerBots. An overview of the UAV tracking platform with its sensor system.

recapture rates, equipment failures, and the inability to track animals that move into

inaccessible terrains. Furthermore, many of our most endangered species also happen

to be the most difficult to track due to their small size, inconspicuousness, and location

in remote habitats.

Automated tracking and location of wildlife with autonomous unmanned aerial

vehicles (UAVs) can provide new possibilities to better understand ecology and

our native wildlife to safeguard biodiversity and manage our natural resources

cost-effectively. We present a low-cost approach capable of realisation in a lightweight

payload for transforming existing commodity drone platforms into autonomous aerial

vehicle systems as shown in Figure 3.1 to empower conservation biologists to track

and localise multiple radio-tagged animals.

The main contribution of this chapter is a new autonomous aerial vehicle system for

simultaneously tracking and localising multiple mobile radio-tagged animals using

VHF radio-collars, commonly used in the field by conservation biologists.

3.2 Related Work

Our problem is embedded in the development of a UAV planning method for tracking

multiple mobile radio-tagged objects using the simplicity of received signal strength

measurements. Therefore: i) we review studies in the field of received signal strength

measurement based tracking with a specific focus on methods developed for UAVs and

wildlife tracking; and ii) we focus on related work in the field of tracking radio-collared

animals using UAVs.
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Received signal strength indicator (RSSI)-based Tracking: This method is studied

in localising objects in both indoor and outdoor environments. The approach relies

on using the strength of a radio signal from an emitter captured by a receiver to

estimate, for example, the distance to the emitter. Related methods with possible

applications to wildlife tracking can be found in the use of wireless sensor networks

(WSN) for tracking a radio wave emitter. In (Caballero et al., 2008; Särkkä, Viikari

and Jaakkola, 2014) a mobile beacon is localised by a fixed number of sensor nodes

with known locations. The first automated VHF telemetry measurement system was

reported in (Kays et al., 2011). A set of six ground-based antenna arrays deployed in

a rainforest localised radio-tagged animal locations using bearing estimates obtained

from signal strength measurements made by ground-based stations. These methods

are advantageous for meeting long-term monitoring needs. However, the scale of

the fixed and powered infrastructure required prior to a tracking task and the cost

of deployment and maintenance over a large area make these approaches difficult for

general use cases. In contrast, a UAV based measurement method can provide greater

flexibility and a lower cost approach. Off-line estimations of a radio-tag’s location

obtained from signal strength data logged from a UAV was demonstrated in (Jensen,

Geller and Chen, 2014). Developments in software-defined radios (SDRs) have enabled

new capabilities to process multiple radio-tag signals simultaneously. Early efforts to

demonstrate the possibility of incorporating SDR architectures with a UAV to detect

multiple transmitted signals from radio-tags were reported in (Dos Santos et al., 2014;

VonEhr et al., 2016). Notably, the studies above with UAVs were performed under the

assumption of stationary radio tags. The task of autonomously tracking and locating

multiple mobile radio-tagged objects from a UAV remains.

UAV-based Autonomous Localisation and Tracking: Since this application is related

to locating VHF collared animals, we will focus on progress made towards the

autonomous localisation and tracking of multiple VHF radio-tagged animals here.

Pioneering achievements in autonomous wildlife tracking have been made through

simulation studies (Posch and Sukkarieh, 2009) and experimentally demonstrated

systems (Körner et al., 2010; Tokekar et al., 2010; Vander Hook, Tokekar and Isler,

2014; Cliff et al., 2015) in recent years. In particular, the first demonstration of a UAV

was presented in (Cliff et al., 2015).

The recent approaches (Vander Hook, Tokekar and Isler, 2014; Cliff et al., 2015) for

real-time localisation of a static object (assuming stationary wildlife) used wireless
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signal characteristics captured by a narrowband receiver to estimate location; in

particular, the angle-of-arrival (AoA) of a radio beacon was determined using an

array of antennas with the information related to a ground-based receiver for location

estimations. Although the approach can conveniently manage topological variations

in terrain, AoA systems require a large bulky receiver system and multiple antenna

elements as well as long observation times, 45 seconds per observation as reported

in (Cliff et al., 2015). Moreover, the antenna systems being mounted on top of the

UAV (Cliff et al., 2015) is likely to lead to difficulty in tracking terrestrial animals

although being suitable for locating avian species dwelling in trees.

Summary: We can see that there are few investigations that have studied the problem

of locating radio-collared animals using autonomous robots. Although a system

based on the angle-of-arrival was recently evaluated to be able to locate a stationary

radio-collared animal, the development of a low-cost and lightweight autonomous

system, capable of long-range flights and of locating multiple mobile radio-collared

animals, still remains.

We present an alternative approach, exploiting RSSI-based measurements, because

of the ability to use a simpler sensing system onboard commodity UAVs, to realise

lower cost, and longer flight time, UAVs for tracking and localising multiple animals.

Together with a theoretical framework for joint tracking and planning, we design,

build and demonstrate a lightweight autonomous aerial robot platform. Our robot

platform has the potential to provide a cost-effective method for wildlife conservation

and management. To the best of our knowledge, ours is the first demonstration of an

autonomous online aerial robot system for tracking and locating multiple mobile VHF

radio-tags in real-time.

3.3 Tracking and Planning Problem Formulation

Real-time tracking requires an online estimator and a dynamic planning method.

This section presents our tracking and localising formulation under the theoretical

frameworks of a Bayesian filter for tracking and POMDP for planning strategy.
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3.3.1 Tracking and localising

For tracking, we use a Bayesian filter. It is an online estimation technique which deals

with the problem of inferring knowledge about the unobserved state of a dynamic

system—in our problem, wildlife—which changes over time, from a sequence of noisy

measurements. Suppose x ∈ X and z ∈ Z are respectively the system (kinematic)

state vector in the state space X and the measurement (observation) vector in the

observation space Z. The problem is estimating the state x ∈ X from the measurement

z ∈ Z or calculating the marginal posterior distribution πk(·|z1:k) sequentially through

prediction (3.1) and update (3.2) steps.

πk|k−1(xk|z1:k−1) =
∫

fk|k−1(xk|x)πk−1(x|z1:k−1)dx, (3.1)

πk(xk|z1:k) =
g(zk|xk)πk|k−1(xk|z1:k−1)∫
g(zk|x)πk|k−1(x|z1:k−1)dx

. (3.2)

where fk|k−1(·|·) denotes a state transition kernel from time k− 1 to time k, and g(zk|·)
denotes a measurement likelihood at time k.

In the case of a non-linear system or non-Gaussian noise, there is no general

closed-form solution for the Bayesian recursion and πk(·|z1:k) generally has a

non-parametric form. Therefore, in our problem, we use a particle filter

implementation as an approximate solution for the Bayesian filtering problem due to

our highly non-linear measurement model.

Particle Filter (PF): A particle filter uses a sampling approach to represent the

non-parametric form of the posterior density πk(·|z1:k). The samples from the

distribution are represented by a set of particles; each particle has a weight assigned

to represent the probability of that particle being sampled from the probability density

function. Then, these particles representing the non-parametric form of πk(·|z1:k) are

propagated over time. In the simplest version of the particle filter, known as the

bootstrap filter first introduced by Gordon in (Gordon, Salmond and Smith, 1993),

the samples are directly generated from the transitional dynamic model. Then, to

reduce the particle degeneracy, resampling and injection techniques are implemented;

a detailed algorithm can be found in (Ristic, Arulampalam and Gordon, 2004). See

Section 2.2.2 for more details.

Measurement model: The update process of a PF requires the derivation of a

likelihood of measurements. In our problem, based on estimating an object’s—VHF

radio tag’s—range from the receiver, we require a realistic signal propagation model
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to obtain the likelihood of receiving a given measurement. We employ two VHF

signal propagation models suitable for describing RSSI measurements in non-urban

outdoor environments (Jakes, 1974; Patwari et al., 2005). Denoting h(x, u) as the RSSI

measurement function between object x and observer (UAV) state u, we have:

i) Log Distance Path Loss Model (LogPath): The received power is the only line of

sight power component transmitted from a transmitter subjected to signal attenuation

such as through absorption and propagation loss (Patwari et al., 2005):

h(x, u) = Pd0
r − 10n log10(d(x, up)/d0) + Gr(x, u), (3.3)

where

• x = [pt
x, pt

y, pt
z]

T is the object’s position; up = [pu
x , pu

y , pu
z ]

T is the observer’s (UAV)

position in Cartesian coordinates; u = [up; θu] is the UAV’s state which includes

its heading angle θu;

• d(x, up) is the Euclidean distance between the object’s position and UAV’s

position;

• Gr(x, u) is the UAV receiver antenna gain which depends on its heading, its

position, and object’s position (details explained in Section 3.6.2);

• Pd0
r is received power at a reference distance d0;

• n is the path-loss exponent that characterises the signal losses such as absorption

and propagation losses and this parameter depends on the environment with

typical values ranging from 2 to 4 (Patwari et al., 2005).

ii) Log Distance Path Loss Model with Multi-Path Fading (MultiPath): The received

power is composed of both line of sight power component transmitted from a

transmitter and the multi-path power component reflected from the ground plane

subjected to signal attenuation such as through absorption and propagation loss:

(Jakes, 1974, pp. 81):

h(x, u) = Pd0
r − 10n log10(d(x, up)/d0) + Gr(x, u) + 10n log10(|1 + Γ(ψ)e−j4ϕ|), (3.4)

where, in addition to terms in (3.3),
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• ψ is the angle of incidence between the reflected path and the ground plane;

• Γ(ψ) = [sin(ψ) −
√

εg − cos2(ψ)]/[sin(ψ) +
√

εg − cos2(ψ)] is the ground

reflection coefficient with εg is the relative permittivity of the ground;

• 4ϕ = 2π4d/λ is the phase difference between two waves where λ is the

wavelength and4d = ((pt
x − pu

x)
2 + (pt

y − pu
y)

2 + (pt
z + pu

z )
2)1/2 − d(x, u).

In non-urban environments, received power is usually corrupted by environmental

noise, with the assumption that the noise is white, the total received power z =

Pr(x, u) [dBm] is:

z = h(x, u) + ηP, (3.5)

where ηP ∼ N (0, σ2
P) is Gaussian white noise with covariance σ2

P. Notably, even if RSSI

noise is not completely characterised by a white noise model, we found it practical to

characterise the received noise with a white Gaussian model as shown in Figure 3.7.

We use data captured in experiments using our sensor system to validate the physical

sensor characteristics Gr(x, u) (see Section 3.4) and n defined by environmental

characteristics, as well as estimate the propagation model reference power parameter

Pd0
r and noise σP (see Section 3.6.2).

Measurement likelihood: Based on (3.5) with Gaussian noise ηP, the likelihood of

measurement zk, given object and sensor position are xk and uk, respectively, at time k

is

g(zk|xk, uk) ∼ N (zk; h(xk, uk), σ2
P), (3.6)

where N (·; µ, σ2) is a normal distribution with mean µ and covariance σ2.

3.3.2 Path planning

The UAV planning problem is similar to the problem of an agent computing optimal

actions under a partially observable Markov decision process (POMDP) to maximise

its reward. (Kaelbling, Littman and Cassandra, 1998) have shown that a POMDP

framework implements an efficient and optimal approach based on previous actions

and observations to determine the true world states. A POMDP in conjunction with

a particle filter provides a principled approach for evaluating planning decisions to

realise an autonomous system for tracking.
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In general, a POMDP is described by the 6-tuple (S ,A, T ,R,O,Z) where S is a set

of both UAV and object states (s = {x, u} ∈ S), A is a set of UAV actions, T is a

state-transition function T (s, a, s′) = p(s′|s, a) for a given action a, R(a) is a reward

function, O is a set of observations and Z is an observation likelihood Z(s, a, o) =

p(o|s, a) with s, s′ ∈ S is the current state and next state respectively, a ∈ A is the

taken action and o ∈ O is the observation—i.e., measurement. The goal of a POMDP is

to find an optimal policy to maximise the total expected reward E[∑k+H
t=k+1 γt−kRt(ak)]

where H is look-ahead horizon steps, γ is the discount factor which serves as the value

difference between the current reward versus the future reward, ak is action at time

step k and E[·] is the expectation operator (Hsu, Lee and Rong, 2008).

The reward function can be calculated using different methods such as task-driven

or information-driven strategies. When uncertainty is high, the information gain

approach is preferable to reduce an object’s location uncertainty (Beard et al.,

2017); hence, we used this method to calculate our reward function. There are

several approaches to evaluate information gain in robotic path planning such as

Shannon entropy (Cliff et al., 2015), Kullback-Leibler (KL) divergence or Rényi

divergence (Hero, Kreucher and Blatt, 2008). We adopted the approach in (Ristic and

Vo, 2010; Ristic, 2013) to implement Rényi divergence as our reward function since

it fits naturally with our Monte Carlo sampling method. Here, Rényi divergence

measures the information gain between prior and posterior densities (Ristic and Vo,

2010; Beard et al., 2017):

R(m)
k+H(ak) =

1
α− 1

log
∫ [

πk+H|k(x|z1:k)
]α [

πk+H(x|z1:k, z(m)
k+1:k+H(ak))

]1−α
dx, (3.7)

where α ≥ 0 is a scale factor to decide the effect from the tails of two distributions.

The prior density πk+H|k(·|z1:k) is calculated by propagating current posterior particles

sampled from πk(·|z1:k) to time k + H using the prediction step (3.1). The posterior

density πk+H(·|z1:k, z(m)
k+1:k+H(ak)) where z(m)

k+1:k+H(ak) is the future measurement set

that will be observed if action ak ∈ Ak is taken; this is calculated by applying both

prediction (3.1) and update steps (3.2) up to time k + H. However, using Bayes update

procedure is computationally expensive and prohibitive in a real-time setting. Instead,

we implement a computationally efficient approach using a black box simulator

proposed in (Silver and Veness, 2010) along with the Monte Carlo sampling approach.

Hence, the problem transforms to find an optimal action a∗k ∈ Ak to maximise total
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expected reward:

a∗k ≈ arg max
ak∈Ak

1
Ms

k+H

∑
t=k+1

Ms

∑
m=1

γt−kR(m)
t (ak), (3.8)

where Ms is the number of future measurements.

3.3.3 Multi-object tracking

The particle filter proposed in Section 3.3.1 can be extended to multi-object tracking

(MOT). However, MOT normally deals with the complex data association problem

where it is difficult to determine which measurement belongs to which object. In

contrast, for our system, each object can be estimated from the measurement based

on the signal frequency and tracked independently. Thus, we do not need to solve

the data association problem. Notably, not all of the objects are detected due to, for

example, the UAV movements, the measurement range limits imposed by propagation

losses and receiver sensitivity. Therefore, if the object is not detected, the solver does

not update its estimated position.

Besides maximising the number of objects localised and tracked, we formulated a

termination condition for each object to conserve UAV battery power; an object is

considered localised if its location uncertainty, determined by a determinant of its

particles covariance, is sufficiently small (< NTh). Note that the tracking accuracy

can be improved if the uncertainty threshold NTh is tightened, however, tightening

NTh may lead to a longer flight time since the UAV needs to spend more time to

localise objects. Further, those found objects are forgotten to aid the solver to prioritise

its computing resources of the ground control system on those objects with high

uncertainty. The the proposed termination condition ensure the greedy planning

strategy—trajectory planning to reduce the uncertainty of the closest target—does not

consider unnecessary UAV actions to further reduce the estimation uncertainty of

already localised targets and waste UAV battery power.

3.4 System Implementation

We implemented an experimental aerial robot system based on our tracking and

planning formulation. An overview of the complete system is described in Figure 3.2a.
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Figure 3.2. TrackerBots’ system implementation. a) The communication channels between UAV

and the ground control system (GCS) with its main software components and protocols. The solid

lines represent the internal connections/communications within the sensor system and the GCS. The

dotted lines are connections between wireless interfaces such as the aerial robot system and the GCS

through two different radio channels: 915 MHz and 2.4 GHz. b) The folded 2-element Yagi antenna

design used in our sensor system for observations.

Our experimental system used a 3DR IRIS+ UAV platform and a new sensor system

built with: i) a compact directional VHF antenna design, and ii) a software-defined

signal processing module capable of simultaneously processing signals from multiple

objects and remotely communicating with a ground control system (GCS) for tracking

and planning. In our system, the ArduPilotMega (APM) on the IRIS+ UAV transmits

back its global positioning system (GPS) location to the Telemetry Host tool developed

by our group to communicate with the APM module using the MAVLink protocol over

a 915 MHz full duplex radio channel. The sensor system together with the antenna,

SDR receiver, and the embedded compute module delivers objects’ RSSI data through

a 2.40 GHz radio channel to the GCS.

GPS locations of the UAV platform and objects’ RSSI data are delivered to our tracking

and planning algorithm—solver—through the Telemetry Host using a RESTful web

service. The solver estimates object locations and calculates new control actions

per each POMDP cycle to command the UAV through MAVLink to fly to a new

location. In order to ensure safety and meet University regulatory requirements, we

also employ QGroundControl—a popular cross-platform flight control and mission

planning software—to monitor and abort autonomous navigation. We detail our

sensor system below.

Signal Processing Module: Figure 3.3 illustrates the components of the proposed

signal processing module. We propose using a software-defined radio (SDR) receiver

to implement the signal processing components. The key advantages of our choice are

the ability to: i) reduce the weight of the receiver; ii) rapidly scan a large frequency

spectrum to track multiple animals beaconing on different VHF frequency channels;
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Figure 3.3. The signal processing module. (a) Software-defined radio: raw input RF signals

are processed through the HackRF One SDR device with different configurable amplifiers–low noise

amplifier (LNA) and variable gain amplifier (VGA), and an ADC to convert analogue signals to digital

signals. (b) Embedded compute module: digital signals are processed on an Intel Edison board using

a DFT (discrete Fourier transform)-based frequency filter with configurable input frequencies, edge

filter and peak detector algorithms to derive radio collar RSSI measurements.

and iii) reconfigure the system on the fly because the signal processing chain is defined

in software.

In this chapter, we use the HackRF One SDR—an open source platform developed

by (Ossmann, 2015) capable of directly converting radio frequency (RF) signals to

digital signals using an analogue-to-digital converter (ADC)—together with an Intel

Edison board as our embedded compute module. We implemented a discrete Fourier

transform (DFT) filter to isolate, from multiple signals, each unique VHF frequency

channel associated with an animal radio collar and measure the signal strength of the

received signal.

Antenna: A lightweight folded 2-element Yagi antenna was specially designed for our

sensor system. Our design achieves a low profile antenna capable of being within

the form factor of low-cost commodity UAVs suitable for easy operation in the field.

Similar to a standard 2-element Yagi antenna, the folded design has one reflector and

one driven element as shown in Figure 3.2b.

The antenna operates in the frequency range from 145 MHz to 155 MHz (a typical

range for wildlife radio tags), and a centre frequency of fc = 150 MHz. The length of

driven and reflector elements are Dd = 0.3975λ and Dr = 0.402λ, respectively, while

d1 = 0.1λ, d2 = 0.03λ and the inductive loading ring diameter is d3 = 0.015λ. Here, the

wavelength λ = c/ fc = 2 m with c = 3 · 108 m/s. The antenna gain model calculated

for the design is shown in Figure 3.6b.
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3.4.1 Planning implementation for a real-time system

Implementing planning algorithms on any real-time systems is always challenging

because of its high computational demand. Thus, in the following, we present the

approaches to minimise the planning computational time while not sacrificing the

overall localisation performance:

1. Notably, for RSSI data, the uncertainty in the estimation of an object’s location

is reduced when the maximum gain of the directional antenna mounted on

the UAV points toward the object position. Hence, to increase the localisation

accuracy, the UAV heading angle θu
k must be controlled during the path planning

process, although the multi-rotor UAV can be manoeuvred without changing its

heading. We select a set of discrete UAV rotation angles for the control actions

Ak based on a simulation-based study to reduce the computational complexity

of the POMDP planning process by limiting the number of possible actions to

evaluate.

2. The solver performs planning in every Np observation cycles with Np > 1 instead

of every observation. This approach helps to ensure that the solver prioritises its

limited computational resource on tracking objects instead of only performing

planning steps.

3. A coarse planning interval tp in the planning procedure is implemented to

minimise the computational time by reducing the number of look-ahead steps

while still having the same look-ahead horizon. For example, if we want to

estimate the object’s state in a 10 second horizon, we can use the normal interval

tp = 1 s and estimate the object’s state 10 times or use the coarser interval tp = 5 s

and perform the estimation twice; the latter approach is computationally less

expensive.

4. Instead of selecting the best action from the possible action spaceAk, the domain

knowledge of the receiver antenna gain is used to select a subset of actions that

give the highest received gain using Algorithm 3.1.

Following the above implementation approach, UAV motion includes two modes:

i) changing its heading angle while hovering, and ii) moving forward to its direct

location. In one planning procedure with Np cycles, the UAV needs b|4θ|/θmaxc cycles
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Algorithm 3.1 Calculate the control action subset
1: Input: NA,s, Ak, Gr, xk+H . action space, antenna gain and object’s position

2: Output: As
k . subset of control actions

3: for l = 1 : NA,k do

4: Get ul
k+H ∈ Ak(l)

5: Calculate Gl
r := Gr(xk+H , ul

k+H)

6: end for

7: As
k := Ak(Gl

r ≥ Top NA,s of Gr) . select top NA,s with highest gains

to rotate, and spends the remaining cycles Np−b|4θ|/θmaxc to move forward without

changing its heading. Here b·c and | · | are the floor and absolute operator respectively,

and θmax is the UAV maximum rotation angle in one cycle . The sign of4θ decides the

rotation direction (+ for the clockwise, and − for the counter-clockwise).

3.5 Simulation Experiments

Implementing on a real system is time-consuming and difficult. Hence, we want

to validate our systems first through several simulation experiments to: i) verify

our tracking and planning algorithms; ii) investigate how our planning parameters

such as different α values of the Rényi divergence or the number of discrete actions

NA,s = |As
k| created in Algorithm 3.1 contribute to the overall algorithm performance;

and iii) compare our proposed Rényi divergence based planning technique with

other well-known methods, and the impact of the look-ahead horizon parameters on

computational time and localisation accuracy. All of the simulation experiments were

processed on a PC with an Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz, 32GB RAM and

MATLAB-2016b.

3.5.1 Tracking and planning simulation

This simulation was implemented to validate our approach under a synthetic scenario

where all parameters (e.g., velocity of the UAV vu) are set to those expected in practice.

In this experiment, the UAV attempted to search and localise 10 moving objects

randomly located in an area of 500 m× 500 m. The following are the list of parameters

used in this simulation: the sampling time step is 1 second since the tag emits pulse

signals every 1 second. The solver performed a planning procedure every Np = 5 s,

and the look-ahead horizon parameters: H = NHtp = 5 s with the number of horizons
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NH = 1 and the planning interval tp = 5 s. The UAV started from its home location at

u1 = [0, 0, 20, 0]T m, moved under the constant velocity vu = 5 m/s with its maximum

heading rotation angle θmax = π/6 rad/s. The number of particles for each object was

capped at Ns = 10, 000, with the number of future sample measurements Ms = 50, the

Rényi divergence parameter α = 0.5, the number of actions NA,s = 5. In addition, an

object is considered localised if its location uncertainty, determined by the determinant

of its particles covariance, is small enough—NTh = 10, 000 m2Ns was chosen as the

limit. The LogPath measurement model with Pd0
r = 7.7 dBm, n = 3.1, σP = 4.22 dB was

used to verify our proposed algorithm. To demonstrate that our algorithm was able

to localise mobile objects, a wombat—an animal that usually wanders around its area

was considered. Hence, a random walk model was used to describe its behaviour with

a single object’s transitional density:

fk|k−1(xk|xk−1) = N (xk; Fxk−1,Q), (3.9)

where F = I3 with In is n× n identity matrix , Q = σ2
Q diag([1, 1, 0]T), σQ = 2 m/s.

Figure 3.4 shows localisation results for 10 mobile objects where the estimation details

are annotated next to the object’s position with two indicators: Root Mean Square (RMS)

and flight time—see Section 3.5.2 for definitions. In summary, for this scenario, it took

the UAV 587 seconds to localise all ten moving objects at a maximum error distance

of less than 15 m, except for an outlier, object 2 (RMS = 26.3 m). At flight time 587 s,

after localising the last object (object 7), the UAV was sent a command to fly back to

its original home location. In this case, the total UAV travel distance was 1.93 km.

The results demonstrate that our algorithm can search and accurately localise multiple

numbers of objects in real time (about 10 minutes) and the travel distance 1.93 km

is well within the capacity of commercial off the shelf drones under the 2 kg mass

category.

3.5.2 Monte Carlo simulations

For this experiment, all of the Monte Carlo setup parameters were kept the same

as in Section 3.5.1, except for those under investigation. In addition, to ensure that

the results were not random, all of the conducted experiments were performed over

100 Monte Carlo runs. The tracking algorithm was evaluated based on the following

criterion:
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Figure 3.4. Simulation results. Ten mobile objects localised using a single UAV.

• Estimation Error is the absolute distance between ground truth and estimated

object location Drms = ∑
Ntg
j=1 dj

rms/Ntg with dj
rms = [(xj

truth − xj
est)

2 + (yj
truth −

yj
est)

2]1/2;

• Flight time (s) for UAV to localise all of the objects and this includes hovering time

when the UAV waits for commands from the solver to take an action;

• UAV travel distance: the total distance travelled by the UAV to track and locate all

of the objects to the required location uncertainty bound; i.e the determinant of

covariance being adequately small—NTh ≤ 10, 000 m2Ns ;

• Computational cost: We evaluate the computational cost in terms of two

components: i) execution time for the solver to execute the tracking algorithm

only (called non-planning time), and ii) the execution time for the solver to select

the best action—planning step—as well as complete the tracking task (called

planning time).

First, our search and localisation algorithms were evaluated using different α values

for the Rényi reward function in (3.7). Table 3.1 presents the Monte Carlo results for

α = {0.1, 0.5, 0.9999}. In general, the α value does not significantly impact the overall
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Table 3.1. Localisation performance for different alpha values.

α = 0.1 α = 0.5 α = 0.9999

RMS (m) 12.35 12.77 12.96

Flight time (s) 724 741 727

UAV travel distance (km) 2.38 2.41 2.34

performance. However, applying α = 0.1 provides the best localisation results in terms

of estimation error and search duration. Applying α = 0.5 proposed in (Ristic and

Vo, 2010; Ristic, Morelande and Gunatilaka, 2010) results in the worst performance,

it increases flight time and travel distance necessary to complete the localisation task.

Using α = 0.9999 (considered as using KL divergence which is a popular information

gain measure) helps to save UAV travel distance while sacrificing location accuracy.

One explanation for this scenario is that our noisy measurement causes the posterior

density πk+H(·|z1:k, z(m)
k+1:k+H(a)) in (3.7) to be less informative due to high uncertainty.

Therefore, the reward function should place more emphasis on the current posterior

instead by using a small α value or setting α → 1 to completely ignore the future

posterior. This also explains the reason for the worst localisation performance observed

when α = 0.5 (equally weighting the current and the future posterior).

Second, we conducted experiments to understand how the number of actions NA,s

created by Algorithm 3.1 affects our tracking performance in term of planning time

and localisation error. Table 3.2 shows Monte Carlo results for NA,s = {2, 3, 4, 5, 6, 7}
wherein the planning time increases linearly with respect to the number of actions.

Further, increasing the number of actions beyond four does not necessarily lead to

better planning decisions because of the directionality of the antenna gain. Since

the antenna gain is not omnidirectional, some actions result in changing the heading

where antenna gain along the propagation path between the UAV and the object is

lower; when the number of actions evaluated is increased, we encounter instances

when an action leading to such a lower antenna gain results in a higher reward. This

result is a consequence of the inherent uncertainties in the models used in tracking

and planning. Thus, NA,s = 4 provides an adequate pool of actions to yield the

best localisation performance in terms of estimation error, flight duration, and travel

distance, a desirable result for realising real-time planning with limited computational

resources.

Page 41



3.5 Simulation Experiments

Table 3.2. Localisation performance for different number of actions.

Number of actions NA,s 2 3 4 5 6 7

RMS (m) 14.18 12.64 12.17 12.27 12.83 12.63

Flight time (s) 840 781 693 723 756 799

UAV travel distance (km) 2.62 2.53 2.39 2.50 2.52 2.70

Planning time (s) 1.16 1.19 1.23 1.27 1.36 1.47
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Figure 3.5. Localisation performance for different number of objects. Ntg increases from 1 to

10.

Third, we want to examine the performance of our proposed algorithm under an

increasing number of objects; in this study, we increase the maximum number of

objects Ntg from 1 to 10. As depicted in Figure 3.5, our algorithm’s estimation error

was stable and invariant to the number of objects. Moreover, it is reasonable that the

flight time and the travel distance increased linearly with object numbers because it

took more time and power to track more objects.

Fourth, we examined the performance of the information gain measure, Rényi

divergence, under different look-ahead horizons H = NHtp compared to: i) Shannon

entropy (Cliff et al., 2015), ii) a naive approach that moves UAV to the closest estimated

object location, and iii) a uniform search with the predefined path used in (Ristic,

Morelande and Gunatilaka, 2010). Table 3.3 shows the Monte Carlo comparison results

among various planning algorithms. All the parameters were reused from the Section

3.5.1, except for α = 0.1 and NA,s = 4 that was updated based on the previous

experimental results. The results demonstrated that the Rényi divergence based

reward function leads to significantly better planning strategies in comparison with

other reward functions in terms of localisation accuracy, including Shannon entropy

with the same horizon settings (NH = 1; tp = 5). For the Rényi reward function
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Table 3.3. Localisation performance for different planning algorithms.

Uniform
Closest

object

Shannon

(Cliff et al.,

2015)

Rényi

NH N/A N/A 1 1 3 5 10

tp (s) N/A N/A 5 5 1 1 1

RMS (m) 18.8 13.4 12.6 12.5 12.4 12.0 11.6

Flight time (s) 921 799 774 699 889 811 822

UAV travel

distance (km)
3.72 2.29 2.54 2.27 2.99 2.82 2.42

Planning Time (s) 1.58 1.11 1.38 1.28 1.53 1.65 2.71

Non-planning

Time (s)
1.58 1.03 0.99 0.97 0.96 0.97 0.96

itself, the large look ahead horizon number NH > 1 helps to improve the localisation

accuracy; however, it requires higher computational power (planning) and causes the

UAV to travel further. Using NH = 1; tp = 5 s provides the best trade-off between

computational time and accuracy.

Summary: According to the above simulation results, we select α = 0.1, NA,s = 4,

and NH = 1, tp = 5 s as the planning parameters for the field experiment since

these parameters provide the lowest computational cost, best performance in terms

of location estimation error, travel distance and flight time.

3.6 Field Experiments

We describe here our extensive experiments regime to validate our approach and

evaluate the performance of our aerial robot system in the field. Our aim is to: i)

investigate the possibility of signal interference from spinning motors of a UAV on RSSI

measurements; ii) estimate the model parameters in the sensor model and validate the

proposed model; and iii) conduct field trials to demonstrate and evaluate our system

capabilities.
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Figure 3.6. Rotor noise and Antenna gain. a) Waterfall plot for the rotor noise experiment when

four motors spun at maximum rotation speed. b) Normalised antenna gain in E-plane G(φ). The

red line is gain modelled pattern and black line is the normalised measured gain pattern from 30

measurements collected by rotating the UAV heading at 15◦ intervals.

3.6.1 Rotor noise

We investigated the rotor noise to confirm that our system is not affected by the

electromagnetic interference from the UAV’s motors. It also helps to clear the concern

raised in (Cliff et al., 2015) that the rotor noise may affect the RSSI measurements. Four

motors of the 3DR IRIS+ quad-copter shown in Figure 3.1 were used in this experiment.

The RSSI data of a radio collar were measured across 149 MHz to 151 MHz frequency

spectrum when four motors were operating at 20%, 50%, 100% of its maximum speed

of 10, 212 revolutions per minute. Figure 3.6a shows the frequency spectrum of the

received signal. We can see that there was no difference in the frequency characteristics

when the rotors were in ON and OFF states. This result confirms that the rotors

do not spin fast enough to generate high-frequency interference to impact our RSSI

measurements.

3.6.2 Sensor model validation and parameter estimation

Antenna Gain: The antenna gain pattern was measured to verify its

directivity compared to the antenna gain model Gr(x, u) = Gr(φ)

calculated—following (Orfanidis, 2002, pp.1252)—based on the physical design

as discussed in Section 3.4. Figure 3.6b shows the measured and modelled radiation

patterns Gr(φ) in the E-plane. In the measurement process, φ is evaluated as the angle

between the UAV heading, changed through 0◦ to 360◦, and the direction from its

position to a fixed location of a VHF radio tag. The result shows that the front-to-back
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Figure 3.7. Empirical measurement model. Plot of measured RSSI data points and its model

estimates over a distance from 10 m to 320 m at 10 m intervals.

ratio is smaller (2 dB) than expected and this is an artefact of folding the reflector on

our design.

Signal propagation model parameter validation: We collected RSSI data points over

a range from 10 m to 320 m between the UAV and a VHF radio tag. The tag and the

UAV were kept at a height of 5 m above ground during this experiment. The tag was

stationary at all times, while the UAV was directed to move away in a straight line

from the tag at 10 m intervals whilst hovering at each location to allow the collection

of approximately 30 measurements. The UAV heading was maintained to ensure

consistent antenna gain during the experiment. Since we operated in an open terrain

over a grassland, we selected the path loss exponent n = 2 suitable for modelling

free space path loss. Figure 3.7 shows the measured RSSI and the propagation models

obtained using a non-linear regression algorithm to estimate model parameters. We

have the following results for reference power Pd0
r in (3.3), (3.4) at the reference distance

d0 = 1 m, and measurement noise variance σP in (3.5):

• LogPath model : Pd0
r = −15.69 dBm , σP = 4.21 dB,

• MultiPath model : Pd0
r = −15.28 dBm , σP = 2.31 dB.

The results show that both models, as expected, derived a similar reference power Pd0
r

whilst providing a reasonable fit to measurement data. This affirms the validity of our

propagation model. Although the LogPath model is reasonable, the MultiPath model is

more accurate and yields a smaller measurement noise variance. The results confirm

the impact of ground reflections, especially close to the signal source.
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3.6.3 Field trials

We designed and conducted two sets of field experiments that included 20 autonomous

missions as described below.

• First set of trials (autumn season): We conducted a total of 16 autonomous

flights with two mobile radio-tags to evaluate the measurement models and

demonstrate the robustness of our system (see Section 3.6.4).

• Second set of trials (winter and wet season): We conducted 4 autonomous

flights with the best performing measurement model. These experiments were

aimed at demonstrating the multi-object tracking capability of our aerial robot

platform under a mix of stationary (3 radio-tags) and mobile (2 radio-tags)

object dynamics. In particular, we subjected our system to two highly mobile

objects. Notably, these trials were conducted during the wet winter months

when the test zone was over-grown with grass and shrubs. Therefore,

these experiments demonstrate our system’s capability to plan a trajectory to

track multiple radio-tagged objects with differing motion dynamics and under

different environmental settings (see Section 3.6.5).

Our experiments were designed around the University of Adelaide and CASA (Civil

Aviation Safety Authority, Australia) regulations governing the conduct of UAV

research. Given the need to operate in an autonomous mode, our flight zone, as well as

the scope of the experiment, was restricted to University-owned property designated

for UAV flight tests. Prior to gaining ethical and regulatory clearances to progress our

field trial to a wildlife species of interest to conservation biologists, our first objective is

to evaluate and demonstrate a robust working prototype. This is a necessary condition

to gain both regulatory and ethical approval. Further, it is not feasible to have a wildlife

species of interest at the remote test site and conduct experiments to systematically

evaluate the aerial robot system. Therefore we chose to conduct experiments with

human test subjects with stipulated safety measures in an area allocated for field tests.

This allowed us to create various object motion dynamics as well as obtain accurate

ground truth data for tag locations to evaluate our system. Notably, our measurement

model is based on the received signal strength indicator (RSSI-based) measurements

of signals transmitted from radio-tags. Hence, there is no technical difference whether

the radio-tags are carried by humans or wildlife.
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Figure 3.8. Example of a radio-collared tag. The collar used for radio tagging the endangered

species of Southern Hairy Nose (SHN) wombats used in our field experiments. Each tag used in

our experiments transmits an unmodulated on-off-keyed signal with a pulse width ranging from 10−
20 ms, at a period of approximately 1 s, and using a unique frequency in the range of 150− 152 MHz.

In the field trials, the task of the aerial robot system was set to search and localise

radio-tags undergoing various motion dynamics in a search area 75 m× 300 m (2.25

hectares). Instead of wildlife, we relied on volunteers to wear a VHF radio tag of

the type shown in Figure 3.8 on their forearm, and carry a mobile phone-based GPS

data logger in their hands to obtain ground truth data. We were required to have two

extra personnel stationed to maintain constant sight of the UAV as well a pilot with an

RePL (remote pilot licence) in the field capable of aborting the autonomous mode and

transferring control to manual operations mode.

3.6.4 First set of trials

In this section, we present the first set of field trials to demonstrate the planning

method for tracking mobile objects. We also compare localisation performance

between the two signal propagation models: LogPath model and MultiPath model

derived in section 3.6.2. We used two VHF radio collars for these trials.

Figure 3.9 shows the tracking and localisation results along with UAV trajectories

based on the two different measurement models. As expected, we observe the UAV

planning has a tendency to approach the object’s position since when the distance

between the UAV and objects reduces, the RSSI measurement uncertainty is reduced.

Thus it helps to reduce the uncertainty and increase the information gain. We can

observe a clear difference in the LogPath model and MultiPath model where UAV

pursues the second object after completing the tracking task for object 1. The more

accurate MultiPath model is able to track and localise the second object without

needing a close approach. We can also observe that using the LogPath model, where
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Figure 3.9. Field experiment results. Searching, tracking and localisation results of two mobile

tags for the two different measurement models. a) Standard LogPath. b) MultiPath.
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Figure 3.10. The intermediate distributions of belief density representing the location of the

radio-tags for the two scenarios in Figure 3.9. Here, Figure 3.10a demonstrates the convergence

of the belief density of the radio-tag positions using the standard LogPath measurement model

in Figure 3.9a) after first observation (k = 1), tag 1 is localised (k = 55), and tag 2 is localised

(k = 125). Similarly, Figure 3.10b demonstrates the convergence of the belief density of the radio-tag

positions using the MultiPath measurement model in Figure 3.9b) after the first observation (k = 1),

tag 1 is localised (k = 53), and tag 2 is localised (k = 109). The blue and orange dots represent

the starting positions of tag 1 and tag 2, respectively. The square symbols denote the ground truths

of the localised tags; the star symbols denote the estimated positions of the tags. The solid yellow

lines represent the UAV trajectories.
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multipath propagation is not modelled but is clearly dominant close to the object, leads

to a poorer localisation accuracy despite the path planning algorithm leading the UAV

close to the object.

Figure 3.10 shows the particle distribution after the first observation is updated and

when the objects are tracked and localised using the two measurement models. We

can see that the solver is able to estimate the two tag positions quite accurately even

after the update using the initial observation; however, the uncertainty (as noted by

the particle distribution) is still very high. Interestingly, MultiPath model location

uncertainty is significantly less where object 1 is placed in the bottom half of the field

while object 2 is placed in the top half of the field. Object 1, being closer to the UAV, is

localised first, with under 55 measurements for both measurement models. At the time

when object 1 is localised, the uncertainty of object 2 is relatively higher for the LogPath

model. The MultiPath model required significantly fewer measurements to track and

localise object 2. As expected, both measurement models required significantly more

measurements to localise the second object given the high measurement uncertainty

associated with being much further than the first object from the UAV during its flight.

Furthermore, the random walk of the second object provided a challenging scenario

since object 2 typically moved a larger distance around the field compared to the

random walk performed by object 1.

Although the solver guides the UAV to move toward an object’s position in both

measurement models, as expected, the standard LogPath model is less accurate

compared to the MultiPath model shown in Figure 3.7; thus, the uncertainty when

using the LogPath model is higher and leads to longer time duration to localise the

two tags. Albeit model uncertainty, the LogPath model is still capable of locating both

moving objects within the flight time capability of the UAV. The consequence of model

uncertainty resulting from the LogPath model is more apparent when the UAV makes

an approach to the object and the distance to the object is less than 50 m. This is evident

in comparing the belief density in Figure 3.10a at k = 125 to that in Figure 3.10b at

k = 109. We can see that the object location uncertainty increases for the LogPath

model in the vicinity of 50 m and as a result, the UAV requires an increased number of

manoeuvres to track and locate the object.

Table 3.4 presents the summary comparison results of location estimates between

the two measurement models. Smaller RMS (root mean square) estimation error

values suggest a higher accuracy, while shorter flight times and travel distance to
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Table 3.4. Comparison of localisation performance.

Model Object Type Trials RMS (m)
Total Flight Time

(s)

Travel Distance

(m)

LogPath Mobile 8 30.1± 12.8 255± 104 549± 167

MultiPath Mobile 8 22.7± 13.9 138± 53 286± 121

(Cliff et al., 2015) Stationary 6 23.8± 14.0 8383 N/A

localise all objects are highly desirable for a practicable system given the power

constrained nature of commodity UAVs. The results confirm that the MultiPath model

is superior to the standard LogPath model since it has been able to account for ground

reflections. Further, the UAV is not required to approach the object closely to reduce

its measurement uncertainty when using the MultiPath model.

The results in Table 3.4 also demonstrate that our proposed method can localise two

mobile objects with a shorter flight time and better accuracy compared to the method in

(Cliff et al., 2015). The RMS flight time realised with the MultiPath model is one-sixth

of that in (Cliff et al., 2015). Although our experiments were not performed with a live

object animal species of interest to conservation biologists, we search and locate two

mobile radio-tagged objects. In contrast, the (Cliff et al., 2015) method was formulated

and implemented to locate a single stationary object. However, the approach in (Cliff

et al., 2015) was evaluated with a stationary radio-collared live bird while our field

experiments were conducted with human test subjects.

3.6.5 Second set of trials

In this section, we present the second set of field trials. We use the Multipath

measurement model because it provides a better measurement likelihood as shown in

the tracking accuracy and flight time results in Table 3.4. We can see from Figure 3.3, the

SDR-based signal processing architecture used in our system scales to enable tracking

a large number of radio tags. The number of VHF radio-tags that can be tracked

and localised is only limited by the hardware, such as the battery life of the UAV

and the receiver noise of the SDR. In order to demonstrate scalability and robustness,

3Information regarding the total flight is not reported in (Cliff et al., 2015), however, as shown in

Figure 9 in (Cliff et al., 2015), one observation took 76.21s and one trial needed 11 observations, hence

total flight time is 11× 76.21 = 838.31s
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(a) Mission 1 (b) Mission 2

(c) Mission 3 (d) Mission 4

Figure 3.11. Four autonomous field experiment missions. Search, track and localise five

objects: two mobile objects (object 1, 2) and three stationary tags (object 3, 4, 5). Figure 3.11(a),

(b), (c), and (d) corresponds to the sequence of the missions in Table 3.5. The square symbols

denote the ground truth of the localised radio-tags; the star symbols denote the estimated positions

of the radio-tags; the solid blue lines represent the trajectories planned by the autonomous aerial

robot to track the set of five VHF radio-collared tags.

we used five radio-tags. In order to demonstrate the capability of our system to

accommodate different animal behaviours, we used two highly mobile objects (object

1, 2) and three stationary objects (object 3, 4, 5). Further, to demonstrate the robustness

of our measurement model, we conducted these trials in the wet, winter season in

South Australia where the test site was representative of a grassland with shrubs and

moisture. We conducted four field missions in which the task of our aerial robot system

was to track and localise five objects as opposed to two mobile objects investigated in

Section 3.6.4. All other experimental settings were as described in Section 3.6.4.

Figure 3.11 depicts the UAV and mobile object trajectories together with tracking and

localisation results. Table 3.5 presents a quantitative summary of the results from the

four field missions. The results show that when the objects are highly mobile, such
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Table 3.5. Localisation performance over for field missions to track and localise five radio-tagged

objects.

RMS (m)
Flight time

(s)
Object dynamics Mobile Stationary

Mean
Object # Object 1 Object 2 Object 3 Object 4 Object 5

Mission 1 27.3 19.1 27.2 18.1 19.9 22.3 163

Mission 2 9.3 21.8 24.9 25.4 23.7 21.0 143

Mission 3 15.0 9.3 18.7 30.6 16.3 18.0 128

Mission 4 10.0 29.6 18.4 25.1 16.6 19.9 165

as object 1 in Figure 3.11a or object 1 and 2 in Figure 3.11d, the UAV takes longer

flight paths to be able to localise these highly mobile objects. This is because the

UAV undertakes control actions to position itself to reduce measurement uncertainty.

Consequently, we also see that the UAV path planning algorithm undertakes control

actions to navigate the UAV closer or follow objects to quickly reduce measurement

uncertainty. In contrast, when the objects are less mobile as shown in Figure 3.11bc,

the UAV can easily localise the objects with fewer measurements, shorter flight paths,

and without needing to approach the objects. Thus, when objects are less mobile, the

UAV requires less flight time to accurately track and localise them. We can see that

our planning for tracking approach was robust with respect to various object motion

dynamics we have created. Further, the results summarised in Table 3.5 demonstrate

that our localisation results were consistently high across all four missions.

As expected, our aerial robot system can successfully track and localise multiple

radio tags. In relation to the first set of field trials, we can also see that our system

is: i) scalable to a larger number of VHF radio-tags, ii) robust against variations in

environmental conditions, and iii) robust with respect to various object behaviours.

3.7 Discussion

In this section, we summarise and discuss results from our approach as well as

compare and discuss our results in the context of the recent study by (Cliff et al.,

2015) (see Section 3.7.1). We then reflect upon the lessons learnt from our field trials

to build, test and evaluate a new approach following a different school of thought for

autonomous tracking and localisation of VHF radio-tags (see Section 3.7.2). Our work,

being a first, is not without limitations. We discuss these in Section 3.7.3.
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3.7.1 Comparison

Table 3.6 presents a complete comparison between our proposed system and (Cliff

et al., 2015) system. Notably, our search area is smaller compared to (Cliff et al.,

2015) (75 m × 300 m v.s 1000 m × 1000 m) due to our test flight zone restrictions;

however, we have set up our initial distance from the UAV home position to its farthest

object’s position to be equivalent to the distance of the stationary object in (Cliff et al.,

2015), approximately 300 m. Although we have tried to replicate the distance to the

location of a radio-tag, the detection range is determined by a number of factors other

than the specification of the receiver and the antenna used. The detection range is

heavily influenced by the transmitted power of a radio-tag, which is adjusted based

on application requirements and varies in different environments, even for the radio

collars from the same manufacturer. Therefore, we have not directly compared the

detection range. Instead, we have tried to achieve a similar UAV-to-object distance in

our experimental settings.

In general, as shown in Table 3.6, our system is more compact, lighter, and has a

payload that is one-third of that in (Cliff et al., 2015) and consequently capable of

longer flight times on any given UAV. Our total system mass being under 2 kg

enables ecologists in jurisdictions such as Australia (Civil Aviation Safety Authority,

2017), Germany (Federal Ministry of Transport and Digital Infrastructure, 2017) and

India (Office Of The Director General Of Civil Aviation, 2018) to operate our system

without a remote pilot licence (RePL) and regulatory burdens. Moreover, as shown

in Table 3.4, compared to the bearing-only method requiring full rotations of a UAV

at each observation point, the ability to instantly collect RSSI measurements also

helps reduce flight times significantly. Furthermore, as discussed in (Arulampalam

et al., 2002), the computational cost for grid-based methods used in (Cliff et al., 2015)

increases dramatically with the number of cells whilst the grid must be dense enough

to achieve accurate estimations; e.g., a grid-based filter with N cells conducts O(N2)

operations per iteration, while a similar particle filter with N particles only requires

O(N) operations. Hence, the grid-based filter method is only suitable for cases with

stationary objects as in (Cliff et al., 2015) where the most expensive computational

step, the prediction step, is skipped. Moreover, as shown in Table 3.3, our planning

algorithm based on Rényi divergence is superior to the Shannon entropy approach

in (Cliff et al., 2015) in terms of two important metrics: i) accuracy, and ii) UAV flight

time.
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Table 3.6. Comparison between our system and (Cliff et al., 2015) system.

Ours (Cliff et al., 2015)

Payload (g) 260 750

Total mass (g) 1,280 2,200

Drone type Quad-copters (smaller drone) Octocopters (relatively larger drone)

Receiver Architecture

Software defined radio (digital-based,

rapidly scan multiple frequencies to

support detecting signals from

multiple animals)

Analogue filtering circuit and a fixed

frequency narrowband receiver

(analogue-based, difficult to

re-configure for a new frequency)

Antenna elements

Compact, lightweight, folded

2-element Yagi antenna (designed for

small drone form factor)

Antenna array structure requiring a

large spatial separation of two

antenna elements and wire ground

plane

Measurement model
Range-only (exploiting the simplicity

of a range-only measurement system)

Bearing-only (antenna array, and

UAV rotation at grid points with a

phase difference measurement

system)

Filtering method
Particle filter (O(N) operations per

iteration)

Grid-based filter (O(N2) operations

per iteration)

Planning algorithm

(reward function)
Rényi divergence Shannon entropy

Objects dynamics Multiple mobile objects A single stationary object

Nature of objects
Radio tags carried by humans test

subjects

A radio-tagged bird (Manorina

Melanocephala)

The studies in (Dos Santos et al., 2014) and (VonEhr et al., 2016) also used an SDR

receiver and considered the problem of detecting multiple VHF radio-tag signals using

a software defined radio based receiver. We can make the following observations

regarding the other SDR based receiver approaches:

• The team in (Dos Santos et al., 2014) used an SDR payload on a UAV flying a

predefined flight path to store raw signal detection. This data was post-post

processed after the flight to build a signal heat map. The detection range reported

in (Dos Santos et al., 2014) is 240 m, similar to our range of 320 m.

• This study in (VonEhr et al., 2016) discussed two software defined radio methods

to collect VHF signal measurements: i) using the Doppler effect, ii) bearing
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measurements obtained by rotating a drone-mounted Yagi antenna, the so-called

Yagi rotation methodology. Notably, this measurement approach is like that

proposed in (Cliff et al., 2015). Only the Yagi rotation methodology was

implemented with a reported bearing measurement accuracy of ±30 degrees.

More significantly, the detection range reported in (VonEhr et al., 2016) is up to

1.5 km. This is mainly due to a higher gain antenna (3-element Yagi vs 2-element

Yagi of our system) and a more sensitive SDR, the Funcube Dongle Pro+ (FDP+)

SDR used in the study. Although the Funcube Dongle Pro+ (FDP+) has a higher

receiver sensitivity, it has a limited bandwidth compared to the HackRF One SDR

device we employed.

The mass of the sensor systems was not reported in (VonEhr et al., 2016), but Funcube

Dongle Pro+ (FDP+) SDR device with a mass of 17 g is significantly more lightweight

than the HackRF One we employed with a mass of 100 g. Although detection range

cannot be directly compared, we can see that together with a higher gain antenna,

the hardware employed in (VonEhr et al., 2016) achieved a significantly larger signal

detection range compared with our study and the studies in (Dos Santos et al., 2014)

and (Cliff et al., 2015).

3.7.2 Lessons learnt

In this section, we share our observations and discuss lessons learnt during our

extensive set of field experiments. We also share with the research community

guidelines for establishing a framework for UAV operations and related research.

We realise that the field trials are difficult for any robotics system, especially for aerial

platforms where several strict regulations govern their operation. These regulations

can depend on jurisdictions under which the flight operations are conducted.

Typically, regulations imposed can be different depending on the purpose of the flight

such as commercial or recreational and the weight class of the UAV. Currently, there

is a lack of harmonisation in these regulations. For instance, the requirement for a

remote pilot licence (RePL) applies to countries such as Australia, Germany, and India

only for UAVs over 2 kg (Civil Aviation Safety Authority, 2017; Federal Ministry of

Transport and Digital Infrastructure, 2017; Office Of The Director General Of Civil

Aviation, 2018). In contrast, New Zealand and Finland only require a licence for UAVs

over 25 kg (Civil Aviation Authority Of New Zealand, 2015; Finnish Transport Safety
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Agency, 2016). Therefore, the research team must first familiarise themselves with

existing regulations governing the operation of UAVs. Second, the research team needs

to negotiate with the insuring body under which they operate to allow the conduct

of drone-based flights as this should not be assumed. Insurance agencies can place

further restrictions upon the possible field trials that can be conducted due to legal and

risk issues. Dealing with these critical issues first will allow getting a framework under

which to operate UAV related research such as our work in this article. At the time of

doing this research, such a framework was pioneered at our University. This included

the creation of a chief remote pilot position and a maintenance controller position, and

subsequently, applying to CASA (Civil Aviation Safety Authority, Australia) to obtain

a remotely piloted aircraft operator’s certificate (ReOC) to conduct UAV missions. The

chief remote pilot registered with CASA then has the authority to evaluate, manage

and approve all UAV flights conducted by University staff and students.

We observed, in both field experiments and simulations, that flying the robot platform

higher allows obtaining a better signal compared to ground-based systems. This is

because the signal propagating to the UAV system entering an open airspace will

be less attenuated than a signal propagating to a ground-based antenna and receiver

system. This is because a signal propagating to a ground-based receiver will be more

attenuated from potentially multiple radio wave scatters, reflectors, absorbers such

as shrubs and grass in the intervening paths. Therefore, flying the robot at a higher

altitude can increase the detection range. Notably, in practice, this height advantage is

sometimes obtained by using lightweight aircraft and this is an expensive proposition.

The detection range of our current system is not comparable to handheld systems.

However, we can see that to develop a mature tool that can function independently

and survey a large area of land, we need a longer signal detection range. One simple

approach to increase the range is to employ a preamplifier stage for the SDR we have

used. An alternative approach is to consider an SDR device with greater sensitivity

in the VHF band. For example, an earlier SDR based design (VonEhr et al., 2016)

has achieved a 1.5 km detection range. Although we could not have benefited from

such a long range given the limited University allocated space for testing, the study in

(VonEhr et al., 2016) shows that a different SDR device based receiver can offer much

longer detection range. Most notably, the SDR used in (VonEhr et al., 2016) with a

mass of only 17 g can be used to replace the SDR of mass 100 g we have employed to

realise a further reduction in the mass of the sensor system.
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The current flight time for 3DR IRIS+ quad-copter carrying our sensor system is only

around 10 minutes while the detection range of the type of VHF collar we have used is

around 320 m. Thus, surveying a larger area in the order of several hundred hectares

is not yet feasible for our battery-equipped UAV. However, assuming we employ the

SDR receiver used in (VonEhr et al., 2016), we can achieve a reported detection range

of 1.5 km. Consequently, we can see that such a detection range can achieve a survey

area defined by a radius of 1.5 km to yield an area of over 700 hectares. Alternatively,

if we assume that the survey area scales with the square of the detection range, we can

see that an area of 225 hectares can potentially be surveyed.

Further, we observe that flying the UAV close to highly mobile objects helps to

reduce localisation uncertainty. We can clearly observe this in our path planning

results in Figure 3.11a where object 1 was running back and forth compared with

the UAV trajectory for Figure 3.11b where object 1 was less mobile. However,

a close approach by a UAV may disturb the wildlife of interest (Hodgson and

Koh, 2016; Mulero-Pázmány et al., 2017) and can be potentially counterproductive

when attempting to obtain accurate spatial and temporal information of threatened

species. Wildlife reactions to a UAV differ among different species. For example,

terrestrial mammals are less reactive to a UAV than birds (Mulero-Pázmány et al.,

2017). Therefore, the potential for disturbance as well as operating parameters of a

UAV close to wildlife is more likely to be dependent on the species of interest. We

hope to be able to address questions around appropriate operating parameters for

drones in our future work. Nevertheless, we should consider maintaining a safe

distance from wildlife. A practical solution can be found by flying at the highest

altitude possible (Mulero-Pázmány et al., 2017). A second approach is to use a receiver

with a higher sensitivity, such as the hardware used in (Mulero-Pázmány et al., 2017),

to increase the signal detection range. A third approach can be to reformulate the

trajectory planning algorithm using the void probability functional proposed in (Beard

et al., 2017). Such a planning method can alter the control decisions of the path

planning algorithm to avoid approaching wildlife and always maintain a safe distance.

3.7.3 Limitations

While we have demonstrated a successful system, our approach is not without

limitations.
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Although we formulated a three-dimensional (3D) tracking problem—see

equation (3.9)—our implementation assumed a fixed UAV altitude during the

field trials. Therefore the implemented algorithm solved a two-dimensional (2D)

tracking problem, that is ideally suitable for tracking and locating endangered species

in largely flat terrains and grasslands. Consequently, the current approach is not

suitable for tracking wildlife in hills or mountainous areas. See Appendix B for our

initial investigation of tracking objects in 3D environments.

3.8 Conclusion

We have developed and demonstrated an autonomous aerial vehicle system

for tracking and localising VHF radio-tagged animals using noisy RSSI based

measurements and considered the mobility of objects during their discovery in the

field. The joint particle filter and POMDP with Rényi divergence based reward

function provided an accurate method to track and locate multiple animal collars while

considering the resource constraints of the underlying UAV platform. In addition,

we have realised a lightweight sensor system to minimise the payload on a UAV and

achieved longer flight times.

Our problem formulation assumes that at least one object is visible or the UAV’s initial

heading can be in the general direction of the objects or the sensor has a very long

detection range. This approach is similar to that followed in (Cliff et al., 2015). In

future work, planning formulation should consider both exploration and tracking to

deal with events where there are no detectable radio signals within the range of the

sensor (Charrow, Michael and Kumar, 2015). See Chapter 5 for how we propose a new

multi-objective algorithm to perform both searching and tracking of unknown number

of objects.

Further, this chapter only considers the scenarios in high signal-to-noise ratio

(SNR) environments where the UAV can easily detect objects using common signal

thresholding methods, which can be categorised under detection-then-track (DTT)

techniques. However, in the cases of noisy and low SNR conditions, DTT methods

often fail to detect the objects of interest if the threshold value is high, or generate

false-alarms if the threshold value too low. Therefore, in the next chapter, we

derived a separable track-before-detect (TBD) likelihood function for radio-tagged
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signals resulting in an efficient TBD filter that can detect and track an unknown and

time-varying number of objects under a random finite set (RFS) framework.
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Chapter 4

Planning for Detecting and
Tracking Multiple

Radio-tagged Objects

W
E consider the problem of online path planning for joint

detection and tracking of multiple unknown radio-tagged

objects under noisy and low SNR environments and

propose an online path planning algorithm with joint detection and

tracking. A POMDP with a RFS TBD multi-object filter is derived, which

also maintains a safe distance between the UAV and the objects of interest

using a void probability constraint. In practice, the multi-object likelihood

function of raw signals received by the UAV in the time-frequency domain

is shown to be separable and results in a numerically efficient multi-object

TBD filter. A TBD filter is developed with a jump Markov system to

accommodate manoeuvring objects capable of switching between different

dynamic modes. Our evaluations demonstrate the capability of the

proposed approach to handle multiple radio-tagged objects subject to birth,

death, and motion modes. Moreover, this online planning method with

the TBD-based filter outperforms its detection-based counterparts, such as

the method in Chapter 3, in tracking, especially in low signal-to-noise ratio

environments.
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4.1 Motivation and Contribution

In this chapter, we consider the problem of online path planning for UAV based

localisation or tracking of a time-varying number of radio-tagged objects. This

is an important basic problem if UAVs are to be able to autonomously gather

spatial-temporal information about the objects of interest such as animals in wildlife

monitoring (Kays et al., 2011; Thomas, Holland and Minot, 2012; Cliff et al., 2015;

Nguyen et al., 2019a), or safety beacons in search-and-rescue missions (Gerasenko

et al., 2001; Murphy et al., 2008). Signals received by the UAV’s on-board radio

receiver are used for the detection and tracking of multiple objects in the region of

interest. However, the radio receiver has a limited range, hence, the UAV—with limited

energy supply—needs to move within range of the mobile objects that are scattered

throughout the region. This is extremely challenging because neither the exact number

nor locations of the objects of interest are available to the UAV.

Detecting and tracking an unknown and time-varying number of moving objects

in low signal-to-noise ratio (SNR) environments is a challenging problem in itself.

Objects of interest such as wildlife and people tend to switch between various modes

of movements in an unpredictable manner. Constraints on the transmitters such

as cost and battery life mean that signals emitted from radio-tagged objects have

very low power, and become unreliable due to receiver noise, even when they are

within receiving range. The traditional approach of detection before tracking incurs

information loss, and is not feasible in such low SNR environments. Reducing

information loss introduces far too many false-alarms, while reducing the false-alarms

increases misdetections and information loss (Lehmann, 2012).

Planning the path for a UAV to effectively detect and track multiple objects in such

environments poses additional challenges. Path planning techniques for tracking a

single object are not applicable. Since there are multiple moving objects appearing and

disappearing in the region, following only certain objects to localise them accurately

means that the UAV is likely to miss many other objects. The important question is:

which objects should the UAV follow, and for how long before switching to follow other objects

or to search for new objects? In addition to detection and tracking, the UAV needs to

maintain a safe distance from the objects without exact knowledge of their locations.

For example, in wildlife monitoring, UAV noise would startle animals away if they

move within a close range. We also need to keep in mind that the UAV itself has

limited power supply as well as computing and communication resources.
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4.2 Related Work

Well-known bio-inspired planning algorithms such as genetic algorithm (GA) and

particle swarm optimisation (PSO) (Roberge, Tarbouchi and Labonte, 2013) are

computationally expensive and not suitable for online applications. Markov decision

process and partially observable Markov decision process (POMDP) are receiving

increasing attention as online planning algorithms over the last few decades with

techniques such as grid-based MDP (Baek et al., 2013), or POMDP with nominal belief

state optimisation (Ragi and Chong, 2013). Furthermore, at a conceptual level, the

POMDP framework enables direct generalisation to multiple objects via the use of

random finite set (RFS) models (Mahler, 2007b). Random finite set can be regarded as

a special case of point process when the points are not repeated (for more information

on point process theory, please see (Moller and Waagepetersen, 2003; Vo, Singh and

Doucet, 2005; Daley and Vere-Jones, 2007)). This so-called RFS-POMDP is a POMDP

with the information state being the filtering density of the RFS of objects.

RFS-POMDP provides a natural framework that addresses all the challenges of our

online UAV path planning problem. Indeed, RFS-POMDP for multi-object tracking

with various information theoretic reward functions and task-based reward functions

have been proposed in (Ristic and Vo, 2010; Ristic, Vo and Clark, 2011; Hoang

and Vo, 2014; Hoang et al., 2015; Beard et al., 2017) and (Gostar, Hoseinnezhad

and Bab-Hadiashar, 2013; Gostar et al., 2017; Wang et al., 2018), respectively. This

framework accommodates path planning for tracking an unknown and time-varying

number of objects in a conceptually intuitive manner. In addition, RFS constructs

such as the void probabilities facilitate the incorporation of a safe distance between the

UAV and objects (whose exact locations are unknown) into the POMDP (Beard et al.,

2017). However, these algorithms require detection to be performed before tracking

and hence are not applicable to our problem due to the low SNR.

In our earlier work (Nguyen et al., 2019a) (see Chapter 3), we presented a path planning

solution for tracking one object at a time, in a high SNR environment with a fixed

number of objects. This solution, also based on a detection before tracking formulation,

is not applicable to the far more challenging problem of simultaneously tracking an

unknown and time-varying number of objects in low SNR.

In this chapter, we propose an online path planning algorithm for joint detection

and tracking of multiple objects directly from the received radio signal in low SNR
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environments. This is accomplished by formulating it as a POMDP with an RFS-based

track-before-detect (TBD) multi-object filter.

TBD methods operate on raw, unthresholded data (Ebenezer and

Papandreou-Suppappola, 2016) and are well-suited for tracking in low SNR

environments such as infrared, optical (Barniv, 1985; Tonissen and Bar-Shalom,

1998; Rutten, Gordon and Maskell, 2005; Vo et al., 2010), and radar (Buzzi, Lops and

Venturino, 2005; Buzzi et al., 2008; Lehmann, 2012; Dunne and Kirubarajan, 2013;

Papi et al., 2015). However, TBD methods are computationally intensive, and TBD

for range-only (received signal strength) tracking has not been developed. One of

the main innovations of our solution is to convert the raw signals received by the

UAV receiver into time-frequency input measurements for the multi-object TBD

filter (using the short time Fourier transform). Such signal representation enables

us to derive a separable measurement likelihood function that yields a numerically

efficient multi-object TBD filter. In order to accommodate the time-varying modes

of movements of the objects, we use a jump Markov system (JMS) to model their

dynamics. Further, to maintain a safe distance from the objects, we impose an object

avoidance constraint based on the void probability functional in (Beard et al., 2017) for

the planning formulation.

4.3 Problem Formulation

4.3.1 Problem statement

The sensor system under consideration consists of a UAV with antenna elements, and

a signal processing module. Following the sensor hardware description in Chapter 3,

we present some of its basic components:

• UAVs used are commercial, civilian, low cost, and small form factor platforms

with physical constraints on maximum linear and rotation speeds and onboard

battery life;

• The main payload on a UAV is a directional antenna (e.g., Yagi antenna) to capture

radio signals;

• The signal processing module is a hardware component embodying a software

defined radio capable of receiving and processing multiple radio-tag signals

simultaneously.
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The objects of interest are equipped with radio transmitters with on-off-keying

signalling with low transmit power settings. This strategy is commonly used in

numerous applications such as very high frequency (VHF) collared tags for wildlife

tracking (Kays et al., 2011; Thomas, Holland and Minot, 2012; Cliff et al., 2015;

Nguyen et al., 2019a), or safety beacons for search and rescue missions (Gerasenko

et al., 2001; Murphy et al., 2008). The transmitter design and signalling methods are

designed to conserve battery power, reduce the cost of the transmitters, increase the

transmitters’ lifespan as well as reduce installation and maintenance costs. Such a

transmitter usually emits a pulse train of period T0. Within this period, the pulse

consists of a truncated sine wave with frequency f over the interval [τ, τ + Pw], as

illustrated later in Figure 4.2. Low power on-off-keying signals are difficult to detect

in noisy environments. The objects of interest, e.g., people, wildlife, do not follow very

predictable trajectories (such as cars, or planes), and most objects, wildlife, for instance,

are afraid of the presence of the UAV in their territories. As a result, the UAV also needs

to maintain a safe distance from objects, although getting close to the objects of interest

improves tracking accuracy. Consequently, the received signals from the objects of

interest are even harder to detect.

The problem we have articulated for involves tracking multiple radio-tagged objects

of interest. The state of a single object of interest comprises of all of its kinematic state

(denoted as ζ = [x, s]T ∈ R4 × S), including its position and velocity x ∈ R4, and its

unknown dynamic model s ∈ S (e.g., wandering, constant velocity). Furthermore, each

object of interest transmits an on-off-keying signal, as illustrated later in Figure 4.2,

with unknown offset time τ ∈ R+
0 (a non-negative real number), and an unknown

unique frequency index λ ∈ L ⊂ N (a natural number). Thus, the state of a single

object of interest is x = [ζ, τ, λ]T ∈ T = X×L, where X ⊆ R4 × S×R+
0 .

4.3.2 Measurement model

Given a multi-object state X ∈ F (T), each object x = [ζ, τ, λ]T ∈ X, uniquely identified

by frequency index λ, transmits an on-off-keying signal within a frequency band (e.g.,

148− 152 MHz VHF band commonly used for wildlife transmitters (Kenward, 2000))

to a directional antenna mounted on an observer.

The receiver model of the observer is illustrated in Figure 4.1. Here, a software

defined radio (SDR) collects received signals from the antenna and down-converts
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the received signal v via the Hilbert transform and a mixer to a baseband signal

y, which is subsequently digitised via an embedded analogue-to-digital converter

(ADC) (Ossmann, 2015). The digitised signal is then transformed to the time-frequency

domain via a short time Fourier transform (STFT) algorithm (Figure 4.1c). In practice,

the following assumptions for the receiver are made:

• The required safety distance between the observer and each object of interest is

sufficiently large, so that the transmitted signal can be treated as a far-field signal

and the effect of multipath is negligible (Nguyen et al., 2019a);

• The receiver noise η, which may come from the outside environment or thermal

noise generated from electronic devices within the receiver, is narrowband

wide-sense-stationary (WSS) Gaussian because the bandwidth Bw is small

compared to the centre frequency fc, Bw � fc (Orfanidis, 2002, pp.116).

In the following, we construct a model of the received signals captured by the receiver,

beginning with the antenna model.

Antenna Model (Figure 4.1a): For a single object with state x = [ζ, τ, λ]T, the signal

s(x) measured at a reference distance d0 > 0 in the far field region can be modelled as:

s(x)(t) =
A(λ)

dκ
0

cos[2π( fc + f (λ))t + φ(λ)]rectT0
Pw
(t− τ), (4.1)

where A(λ), f (λ), φ(λ) are the signal amplitude, baseband frequency and phase,

respectively, corresponding to frequency index λ of object x; κ is a dimensionless path

loss exponent that depends on the environment and typically ranges from 2 to 4; fc is

the centre frequency of the band of interest; and

rectT0
Pw
(t− τ) =

∞

∑
n=−∞

boxcarτ+Pw
τ (t + nT0) (4.2)

is a periodic rectangular pulse train with period T0 and pulse width Pw; boxcarb
a(·) is a

function which is unity on the interval [a, b] and zero elsewhere.

At the output of the directional antenna, the noiseless received signal from a given set

X of objects of interest is modelled as:

v(u)(t) = ∑
x∈X

v(x,u)(t). (4.3)
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Figure 4.1. The receiver model. |X| objects transmit on-off-keying analogue signals in the

time domain. These signals are captured by the antenna and subsequently digitised through a

software defined radio device, and converted to time-frequency domain measurements using an STFT

algorithm.

Here, v(x,u) is the individual signal contribution of an object with state x measured by

the observer with state u, given by (Nguyen et al., 2019a):

v(x,u)(t) = γ(ζ, u) cos[2π( fc + f (λ))t + ψ(ζ, u)]rectT0
Pw
(t− τ), (4.4)

where

• u = [p(u); θ(u)] is the observer state which comprises of its position p(u) and

heading angle θ(u);

• γ(ζ, u) = A(λ)GrGa(ζ, u)(d0/d(p(ζ), p(u)))κ is the received signal magnitude

when distance between the position of object x (p(ζ)) and the position of observer

u (p(u)) is d(p(ζ), p(u));

• Gr is the receiver gain to amplify the received signal;

• Ga(ζ, u) is the directional antenna gain that depends on a UAV’s heading angle

θ(u) and its relative position with respect to the position of object x;

• ψ(ζ, u) = φ(λ) − ( fc + f (λ))d(p(ζ), p(u))/c is the received signal phase, where c is

the signal velocity.

Remark 1. Notably, the measured signal v(x,u) always depends on the observer state u.

Hereafter, for notational simplicity, u is suppressed, e.g., v(x) , v(x,u), γ(ζ) , γ(ζ, u).

Software Defined Radio (SDR) (Figure 4.1b): The received signal v is down-converted

from the VHF band to the baseband via the Hilbert transform and the mixer. This

down-conversion step implemented on the SDR’s hardware components is a linear

operation and is presented here for completeness. The baseband signal, ṽ, is given by:

ṽ(t) = ∑
x∈X

ṽ(x)(t), (4.5)
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Figure 4.2. Illustration for an on-off-keying discrete-time signal. ṽ(x)[·] and a STFT windowing

method at the kth measurement interval [tk−1, tk). R is the hop size, Nw is the window width, Pw

is the pulse width, τ is the pulse time offset, T0 is the period of the pulse. The STFT window

frame is indexed at mR/ fs where m ∈ {0, . . . , M− 1}, and M is the number of window frames in

one measurement interval. m(τ) = dτ fs/Re is the time frame index of the signal transmitted from

object x.

where

ṽ(x)(t) , [v(x)(t) + j[v(x)]∗(t)]e−j2π fct = γ(ζ)ejψ(ζ)ej2π f (λ)trectT0
Pw
(t− τ), (4.6)

j is the imaginary unit; [v(x)]∗ is the complex conjugate of v(x). Since the received

signal is corrupted by receiver noise η ∼ N (·; 0, Ση), the total baseband signal y can be

written as:

y(t) = ∑
x∈X

ṽ(x)(t) + η(t). (4.7)

This continuous baseband signal y(·) in (4.7) is sampled at rate fs by the ADC

component, which generates a discrete-time signal y[·], given by y[n] , y(n/ fs).

Short-Time Fourier Transform (Figure 4.1c): The short time Fourier transform (STFT)

converts the received signal to a time-frequency measurement. Since the on-off keying

pulse offset time τ is unknown, we apply STFT to divide the measurement interval into

shorter segments of equal length to capture the sinusoidal component of the received

signal to estimate τ from the measurement. Figure 4.2 illustrates how the STFT is

implemented over one measurement interval [tk−1, tk) of a discrete on-off keying signal

(the dash line in Figure 4.2) with period T0 and pulse width Pw.

To capture the characteristics of the entire signal, we choose the kth measurement

interval to be [tk − T0, tk) to fully contain one cycle of the periodic pulse train. The
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discrete-time signal on [tk − T0, tk), at the STFT window frame m ∈ {0, . . . , M− 1}, is

given by:

y(m)
k [n] , y(tk − T0 + mR/ fs + n/ fs), (4.8)

where n = {0, 1, . . . , Nw − 1}.

We set the hop size R and the STFT window width Nw to meet the following condition,

1/ f (λ) ≤ Nw < R = Pw fs/2, (4.9)

to ensure that the rectangular pulse of signal ṽ(x) in (4.6) over the interval [tk − T0 +

τ, tk− T0 + τ + Pw) contains two non-overlapping STFT window indices, {m(τ), m(τ)+

1} as illustrated in Figure 4.2, such that these two STFT windows are only composed

of the sinusoidal part of the signal. Thus, the number of window frames in one

measurement interval is

M = d2T0/Pwe, (4.10)

where d·e is the ceiling operator. The corresponding L-point STFT of y(m)
k [·] using the

windowing function w[·] is:

Y(m)
k [l] =

Nw−1

∑
n=0

y(m)
k [n]w[n]e−j(n+mR)2πl/L, (4.11)

for l = {0, 1, . . . , L − 1} (definitions of different window functions for extracting

short-time signal segments and their properties can be found in (Smith III, 2011)).

At the kth measurement interval, let Xk denote the multi-object state and xk =

[ζk, τk, λk]
T be an element of Xk. By substituting (4.2), (4.6), (4.7), (4.8) into (4.11), and

combining with conditions in (4.9), Y(m)
k [l] can be written in term of signal and noise

components as:

Y(m)
k [l] = ∑

xk∈Xk

G(m,l)(xk) + H(m)
k [l], (4.12)

where

G(m,l)(xk) =

γ(ζk)ejψ(ζk)W[l − l(λk)] if m ∈ {m(τk), m(τk) + 1},

0 otherwise,
(4.13)
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Figure 4.3. Illustration for the resolvability of signal frequencies. a) Two on-off-keying signals

superpositioned in the time domain: v(t) = [cos(40t)+ 2 cos(100t)]rect1
0.35(t− 0.4) at the sampling

rate fs = 1 kHz; b) The signals are well-separated in frequency domain when using a 4-term

Blackman Harris window with Nm = 8, where Nw = 150 samples and the main-lobe width (in Hz)

Nm fs/Nw = 53.33 Hz ¡ 4 f = 60 Hz; c) However, it is not separable when Nw = 42 samples where

the main-lobe width (in Hz) Nm fs/Nw = 190.47 Hz ¿ 4 f = 60 Hz.

W[m] =
Nw−1

∑
n=0

w[n]e−jn2πl/L, (4.14)

l(λk) = bL f (λk)/ fsc, (4.15)

m(τk) = dτk fs/Re, (4.16)

H(m)
k [l] =

Nw−1

∑
n=0

η
(m)
k [n]w[n]e−j(n+mR)2πl/L, (4.17)

η
(m)
k [n] , η(tk − T0 + mR/ fs + n/ fs). (4.18)

Now the measurement data zk at the kth measurement interval is an M× L matrix, with

each element z(m,l)
k = |Y(m)

k [l]|, i.e., the magnitude of Y(m)
k [l] defined in (4.12).

Notably, to increase the estimation accuracy of the number of transmitted signals, we

need to reduce the interference among signal signatures in the frequency domain. Let

Nm denote the main-lobe width (in bins), where each windowing function w[·] affects

Nm differently, as shown in Table 4.1 (Smith III, 2011). Denote 4 f as the minimum

frequency separation among all transmitted signals, given by4 f = min
i,j∈{1,...,|X|}

| f (λi)−

f (λ
j)| where i 6= j. To ensure resolvability of signal frequencies we require the

main-lobe width (in Hz) of the signal signatures be well-separated (Smith III, 2011),

as illustrated in Figure 4.3b; hence Nm fs/Nw ≤ 4 f , which implies

Nw ≥ dNm
fs

4 f
e. (4.19)

Next, we derive the measurement likelihood given measurement zk and the condition

in (4.19).
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Table 4.1. Main-lobe width (in bins) Nm for various windowing functions

Windowing Function Rectangular Hamming Blackman B-term Blackman-Harris

Nm 2 4 6 2B

4.3.3 Measurement likelihood function

Let C(xk) denote the influence region of an object with state xk, given by:

C(xk) , {(m, l) : |G(m,l)(xk)| > 0}, (4.20)

where G(m,l)(xk) is defined in (4.13). We have the following proposition:

Proposition 4.1. Given a multi-object Xk, and its corresponding measurement zk at the kth

measurement interval. If the influence region of each object does not overlap, i.e.,

C(xk) ∩ C(x′k) = ∅ ∀ xk, x′k ∈ Xk, (4.21)

then the measurement likelihood function is given by:

g(zk|Xk) ∝ ∏
xk∈Xk

gzk(xk), (4.22)

where

• gzk(xk) = ∏
(m,l)∈C(xk)

ϕ(z(m,l)
k ; |G(m,l)(xk)|, Σz)

φ(z(m,l)
k ; Σz)

,

• ϕ(·; |G(m,l)(xk)|, Σz) is the Ricean distribution with mean |G(m,l)(xk)| and covariance

Σz,

• φ(·; Σz) is the Rayleigh distributions with covariance Σz,

• Σz = EwΣη/2 is the receiver noise covariance in frequency domain,

• Ew =
Nw−1

∑
n=0
|w[n]|2 is the window energy.

The following Lemma facilitates the proof of Proposition 4.1.

Lemma 4.2. The STFT of the discrete-time signal y(m)
k [·] can be expressed in terms of in-phase

and quadrature forms:

Y(m)
k [l] = ∑

xk∈Xk

G(m,l)(xk) + H(m)
k [l] = Y(m)

k,I [l] + jY(m)
k,Q [l]. (4.23)

Furthermore, the components, Y(m)
k,I [·] and Y(m)

k,Q [·], are independent non-zero mean Gaussian

random variables with covariance Σz = EwΣη/2.

Page 71



4.3 Problem Formulation

Proof: First, we show that the in-phase and quadrature components of the noise terms

H(m)
k [·] of Y(m)

k [·] are independent. Next, we prove that the magnitude of the signal

term ∑xk∈Xk
G(m,·)(xk) of Y(m)

k [·] has the form
∣∣µW[·]

∣∣where µ is zero or a constant and

W is as defined in (4.14). Therefore, for a given frequency frame l, the in-phase and

quadrature components of Y(m)
k [·] are characterised by constant signal terms of the

form
∣∣µW[·]

∣∣ and independent noise terms. Thus, as proven in (Richards, 2013, pp.17),

the in-phase and quadrature components are independent since their cross-correlation

coefficient is zero. Detailed as below.

Since the receiver noise η ∼ N (·; 0, Ση) is narrowband wide-sense-stationary

Gaussian, it can be rewritten in terms of in-phase and quadrature noise

components (Davenport and Root, 1987, pp.159):

η(t) = ηI(t) + jηQ(t). (4.24)

where ηI(·) and ηQ(·) are independent zero mean Gaussian random variables with

covariance Ση/2. Then the STFT transformation of the noise components into

time-frequency frames in (4.17) follows:

H(m)
k [l] = H(m)

k,I [l] + jH(m)
k,Q [l], (4.25)

where H(m)
k,I [·] and H(m)

k,Q [·] are also independent zero-mean Gaussian random variables

with covariance Σz = EwΣη/2, as proven in (Richards, 2013, pp.10-12). Thus, by

rewriting Y(m)
k [·] in (4.12) in terms of in-phase and quadrature components, and letting

Γ(m)
k [l] = ∑xk∈Xk

G(m,l)(xk), for simplicity, we have:

Y(m)
k [l] = Γ(m)

k [l] + H(m)
k [l], (4.26)

=
(
Re{Γ(m)

k [l]}+ H(m)
k,I [l]

)
+ j
(
Im{Γ(m)

k [l]}+ H(m)
k,Q [l]

)
, (4.27)

= Y(m)
k,I [l] + jY(m)

k,Q [l]. (4.28)

From the initial assumption in Proposition 4.1, C(xk) ∩ C(x′k) = ∅ ∀ xk, x′k ∈ Xk. Thus,

(m, l) /∈ C(xk) ∩ C(x′k). In other words, at time-frequency frame (m, l), at most one

object xk ∈ Xk contributes to the magnitude of |Γ(m)
k [l]|, such that:

|Γ(m)
k [l]| = | ∑

xk∈Xk

G(m,l)(xk)| =

|G(m,l)(xk)| if (m, l) ∈ C(xk),

0 otherwise,
(4.29)
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where, following the signal model illustrated in Figure 4.2,

|G(m,l)(xk)| =


∣∣γ(ζk)W[l − l(λk)]

∣∣ if m ∈ {m(τk), m(τk) + 1}

0 otherwise,

C(xk) = {m(τk), m(τk) + 1} × S(l(λk)),

(4.30)

and S(l(λk)) ⊆ {0, . . . , L− 1} denotes the window function—see Table 4.1—dependent

number of frequency samples contributed by object xk .

According to (4.29) and (4.30), |Γ(m)
k [·]| is deterministic and has the form

∣∣µW[·]
∣∣, where

µ is zero or a constant. Consequently, the cross-correlation coefficient ρIQ of Y(m)
k,I [·] and

Y(m)
k,Q [·] is zero, as proven in (Richards, 2013):

ρIQ =
(
E
(
Y(m)

k,I [l]Y(m)
k,Q [l]

)
− Γ(m)

k,I [l]Γ(m)
k,Q [l]

)
/Σz = 0. (4.31)

Therefore, Y(m)
k,I [·] and Y(m)

k,Q [·] are both independent non-zero mean Gaussian with the

same covariance Σz = EwΣη/2.�

Proof of Proposition 4.1: Applying Lemma 4.2, for any time-frequency frame (m, l),

Y(m)
k,I [l] and Y(m)

k,Q [l] are independent non-zero mean Gaussian. Thus, combining the

result in (Richards, 2013, pp.17-18), if object xk contributes to the measurement zk at

time-frequency frame (m, l): |Γ(m)
k [l]| = |G(m,l)(xk)|, then the measurement likelihood

function of z(m,l)
k = |Y(m)

k [l]| is:

p(z(m,l)
k |xk) = ϕ(z(m,l)

k ; |G(m,l)(xk)|, Σz), (4.32)

where ϕ(x; ν, Σ) = x exp{−(x2 + ν2)/(2Σ)}I0(xν/Σ)/Σ is a Ricean distribution; I0(·)
is the Bessel function of the first kind defined as I0(x) =

∞
∑

j=0
(−1)j(x2/4)j/(j!)2.

When no signal contributes to a frame (m, l), |Γ(m)
k [l]| = 0, then the measurement

likelihood function of z(m,l)
k is:

p(z(m,l)
k |xk) = φ(z(m,l)

k ; Σz), (4.33)

where φ(x; Σ) = x exp{−x2/Σ}/Σ is a Rayleigh distribution.

Thus, at any given frame (m, l) ∈ {0, . . . , M − 1} × {0, . . . , L − 1}, the measurement

likelihood function of z(m,l)
k = |Y(m)

k [l]|, given object state xk follows:

p(z(m,l)
k |xk) =

ϕ(z(m,l)
k ; |G(m,l)(xk)|, Σz) (m, l) ∈ C(xk),

φ(z(m,l)
k ; Σz) (m, l) /∈ C(xk).

(4.34)
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Since there is no overlap between the influence regions of two objects, i.e., C(xk) ∩
C(x′k) = ∅ ∀ xk, x′k ∈ Xk, the measurement likelihood of zk conditioned on the

multi-object state Xk, can be modelled as a separable function:

g(zk|Xk) =
(

∏
xk∈Xk

∏
(m,l)∈C(xk)

ϕ(z(m,l)
k ; |G(m,l)(xk)|, Σz)

)
∏

(m,l)/∈∪xk∈Xk C(xk)

φ(z(m,l)
k ; Σz)

(4.35)

=
(M−1,L−1)

∏
(m,l)=(0,0)

φ(z(m,l)
k ; Σz) ∏

xk∈Xk

gzk(xk) ∝ ∏
xk∈Xk

gzk(xk),

where

gzk(xk) = ∏
(m,l)∈C(xk)

ϕ(z(m,l)
k ; |G(m,l)(xk)|, Σz)

φ(z(m,l)
k ; Σz)

.�

For our particular problem, given a multi-object X, a single object x = [ζ, τ, λ]T ∈ X

is uniquely identified by the unique frequency index λ. Furthermore, condition (4.19)

ensures negligible interference in the frequency domain between the signals emitted

from objects with different λ. As shown in (Harris, 1978), using the 4-term Blackman

Harris window, the side-lobe level is less than−92 dB compared to the main-lobe level.

Consequently, for all practical purposes, we can consider that the influence region of

each object does not overlap, i.e., C(x) ∩ C(x′) = ∅ ∀ x, x′ ∈ X. Thus, Proposition 4.1

applies to our measurement model.

4.3.4 Multi-object tracking

Tracking an unknown number of objects of interest under noisy measurements is

a difficult problem. It is even more challenging when the number of objects of

interest may change over time. Due to the low power characteristics of signals from

radio-tagged objects, detection-based approaches often fail to detect objects in low

signal-to-noise ratio (SNR) environments, especially when objects appear or disappear

frequently, which lead to higher tracking errors. Thus, detection based approaches

may not be suitable for tracking radio-tagged objects in low SNR environments due to

the information loss during the thresholding process to detect objects’ signals. On the

other hand, the TBD method, using raw received signals as measurements, preserves

all of the signals’ information and has been successfully proven to be an effective filter

under low SNR environments in (Barniv, 1985; Tonissen and Bar-Shalom, 1998; Rutten,
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Gordon and Maskell, 2005; Buzzi, Lops and Venturino, 2005; Buzzi et al., 2008; Vo et al.,

2010; Lehmann, 2012; Dunne and Kirubarajan, 2013; Papi et al., 2013, 2015).

We propose using the TBD-LMB filter (Papi et al., 2015) to track multiple, unknown

and time-varying number of objects. For our particular problem, the single object state

x = [ζ, τ, λ]T = [ζ̄, λ]T ∈ X is uniquely identified by λ ∈ L, where L (assumed to be

known)4 is a discrete label space containing all frequency indices λ, and ζ̄ = [ζ, τ]T ∈
X is the object state without label. Hence, the multi-object X ∈ F (T) is in fact a

labelled RFS. Our initial prior is an LMB density with label space L and an LMB birth

model with label space B to accommodate an increase in the label space that can occur

during UAV path planning for tracking objects5. Since we use the LMB birth model,

TBD-GLMB filter in (Papi et al., 2015) reduces to a TBD-LMB filter.

TBD-LMB filter provides a simple and elegant solution for a multi-object tracking

approach in a low SNR environment. However, existing applications of TBD-LMB

filters do not make use of jump Markov system (JMS) models. Following (Reuter,

Scheel and Dietmayer, 2015), we incorporate a JMS model to the proposed TBD-LMB

filter by augmenting a discrete mode into the state vector: ζ = [x, s]T, where x is the

object position and velocity, s ∈ S = {1, 2, ..., S0} is the object dynamic mode, S0 ∈ N+

is a positive natural number. Moreover, the mode variable is modelled as first-order

Markov chain with transitional probability tk|k−1(sk|sk−1). Hence, the state dynamics

and measurement likelihood for a single augmented state vector are given by:

Φk|k−1(xk|xk−1) = Φk|k−1(ζ̄k|ζ̄k−1)δλk−1(λk), (4.36)

gzk(xk) = gzk(xk, τk, λk) = g(λk)
zk (xk, τk),

where

Φk|k−1(ζ̄k|ζ̄k−1) = N (xk; F(sk−1)
k−1 xk−1, Q(sk−1))N (τk; τk−1, Q(τ))tk|k−1(sk|sk−1), (4.37)

4In practice, the assumption that L is known holds; for example, conservation biologists possess a

collection of radio-tagged wildlife captured, tagged and released back into the wild. However, λ ∈
L itself cannot be directly inferred from the measurements, especially under the low signal-to-noise

ratio scenarios where existing object signals may or may not be received by the sensor and the sensor

also receives interfering measurements (from other users) and thermal noise generated measurement

artefacts not originating from any object.
5Notably, in an application where no new objects are introduced into the system over time, the label

space L remains unchanged and the set of LMB birth parameters as expressed in (4.39) vanishes. In a

practical application, the birth model can accommodate, for example, newly released wildlife during

the operation of a tracking task by a UAV.
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N (·; µ, Q) denotes a Gaussian density with mean µ and covariance Q, F(sk−1)
k−1 is the

single-object dynamic kernel on the discrete mode sk−1. The offset time τ is estimated

using a zero mean Gaussian random walk method with covariance Q(τ) = σ2
τ T2

0 , where

σ2
τ is the standard deviation of the time offset noise. The frequency index λk ∈ L is

unique and static, thus the transition kernel for λk is given by:

δλk−1(λk) =

1 if λk = λk−1,

0 otherwise.
(4.38)

LMB Prediction: At time k − 1, suppose the filtering density πk−1 is an LMB RFS

described by the parameter set {r(λ)k−1, p(λ)k−1}λ∈Lk−1
with state space X and label space

Lk−1 (for notational convenience, we use πk−1 = {r(λ)k−1, p(λ)k−1}λ∈Lk−1
to denote the

density of an LMB RFS), and the birth model is also an LMB RFS πB,k = {r
(λ)
B,k , p(λ)B,k}λ∈Bk

with state space X and label space Bk (with Lk−1 ∩ Bk = ∅), then the predicted

multi-object density is also an LMB RFS πk|k−1 = {r(λ)k|k−1, p(λ)k|k−1}λ∈Lk|k−1
with state

space X and label space Lk|k−1 = Lk−1 ∪Bk, given by (Reuter et al., 2014):

πk|k−1 = {r(λ)E,k|k−1, p(λ)E,k|k−1}λ∈Lk−1
∪ {r(λ)B,k , p(λ)B,k}λ∈Bk , (4.39)

where

r(λ)E,k|k−1 =r(λ)k−1 · 〈p
(λ)
k−1, p(λ)S,k 〉, (4.40)

p(λ)E,k|k−1(ζ̄) =
〈Φk|k−1(ζ̄|·), p(λ)k−1p(λ)S,k 〉

〈p(λ)k−1, p(λ)S,k 〉
, (4.41)

and 〈·〉 is the inner product calculated on the previous state ζ̄k−1, given by:

〈α, β〉 = ∑
s

∫
α(x, τ|s)β(x, τ|s)d(x, τ). (4.42)

LMB Update: Given the predicted LMB πk|k−1 = {r(λ)k|k−1, p(λ)k|k−1}λ∈Lk|k−1
defined in

(4.39), and a separable measurement likelihood function as in (4.22), then the filtering

LMB is given by (Vo et al., 2010):

πk = {r
(λ)
k , p(λ)k }λ∈Lk|k−1

, (4.43)

where

r(λ)k =
r(λ)k|k−1〈p

(λ)
k|k−1, g(λ)zk 〉

1− r(λ)k|k−1 + r(λ)k|k−1〈p
(λ)
k|k−1, g(λ)zk 〉

, (4.44)

p(λ)k =
p(λ)k|k−1g(λ)zk

〈p(λ)k|k−1, g(λ)zk 〉
. (4.45)
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4.3.5 Path planning under constraints

We formulate the online UAV path planning problem for joint detection and tracking

as a partially observable Markov decision process (POMDP) which has been proven

as an efficient and optimal technique for trajectory planning problems (Kaelbling,

Littman and Cassandra, 1998; Castañón and Carin, 2008). In the POMDP framework,

the purpose of path planning is to find the optimal policy (e.g. a sequence of actions)

to maximise the total expected reward (Gostar et al., 2017). Hence, we first focus on

evaluating the reward functions. Second, we incorporate a void constraint to maintain

a safe distance between the UAV and objects of interest.

Reward Functions for Path Planning

Let Ak ∈ A denote a set of possible control vectors ak at time k. A common approach

is to calculate an optimal action that maximises the total expected reward over a look

ahead horizon H (Ristic and Vo, 2010; Hoang and Vo, 2014; Beard et al., 2017)—see

Section 2.5.1:

a∗k = arg max
ak∈Ak

E
[ H

∑
j=1

γj−1Rk+j(ak)
]
. (4.46)

Since an analytical solution for the expectation of (4.46) is not available in general,

two popular alternatives are to use Monte Carlo integration (Ristic and Vo, 2010;

Beard et al., 2017) or the predicted ideal measurement set (PIMS) as in (Ristic, Vo

and Clark, 2011; Hoang and Vo, 2014; Gostar, Hoseinnezhad and Bab-hadiashar,

2016). Using PIMS, the computationally lower cost approach, we only generate one

ideal future measurement at each measurement interval (Hoang and Vo, 2014; Gostar,

Hoseinnezhad and Bab-hadiashar, 2016). Hence, instead of (4.46), the optimal action

is defined by:

a∗k = arg max
ak∈Ak

H

∑
j=1

γj−1R̂k+j(ak), (4.47)

where

R̂k+j(ak) = D(πk+j(·|z1:k, ẑk+1:k+j(ak), πk+j|k(·|z1:k)). (4.48)

In (4.48), the predicted density πk+j|k(·|z1:k) is calculated by propagating the filtering

density πk(·|z1:k) in (4.43) using the prediction step6 in (4.40), (4.41) repeatedly, from

6The prediction step generally includes birth, death and object motion. For improving computational

time and tractability, we limit this to object motion only as in (Beard et al., 2017).
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time k to k + j. In contrast, the filtering density πk+j(·|z1:k, ẑk+1:k+j(ak)) is computed

recursively by propagating πk(·|z1:k) in (4.43) from k to k + j using both prediction in

(4.40), (4.41) and update steps in (4.44), (4.45) with the ideal measurement ẑk+1:k+H(ak).

The ideal measurement ẑk+1:k+j(ak) is computed by the following steps (Hoang and Vo,

2014):

i) Sampling from the filtering density πk(·|z1:k) in (4.43),

ii) Propagating it to k + j using the prediction step in (4.40), (4.41),

iii) Calculating the number of objects n̂k+j|k and the estimated multi-object state

X̂k+j|k = {x̂
(i)
k+j|k}

n̂k+j|k
i=1 ,

iv) Simulating the ideal measurement at k + j based on the measurement model in

(4.12) with the estimated state X̂k+j|k.

The number of LMB components for the predicted density πk+j|k(·|z1:k) and the

filtering density πk+j(·|z1:k, ẑk+1:k+j(ak)) are the same because the measurement

likelihood function is separable. For notational simplicity, π1 , πk+j|k(·|z1:k) and

π2 , πk+j(·|z1:k, ẑk+1:k+j(ak)) are two LMB densities on X with the same label space L
(see Section 2.3.4 for a definition of an LMB density), given by:

π1 = {r(λ)1 , p(λ)1 }λ∈L, π2 = {r(λ)2 , p(λ)2 }λ∈L, (4.49)

and rewriting π1 and π2 in terms of LMB densities:

π1(X) = δ|X|(|L(X)|)w1(L(X))pX
1 , (4.50)

π2(X) = δ|X|(|L(X)|)w2(L(X))pX
2 . (4.51)

Hence, evaluating R̂k+j(ak+j) requires calculating the divergence between the two

LMB densities π2 and π1. We consider two candidate divergence measures: i) Rényi

divergence, and ii) Cauchy-Schwarz divergence described in Section 2.5.1. However,

given the non-linearity of our measurement likelihood, both divergence measures have

no closed form solution. Therefore, we approximate the divergence between two

LMB densities using Monte Carlo sampling. In contrast to (Gostar, Hoseinnezhad and

Bab-hadiashar, 2016) where Monte Carlo sampling was used to approximate the first

moment, we approximate the full distribution.
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1) Rényi Divergence Approximation From the definition in Section 2.5.1, we have:

DRényi(π2, π1) =
1

α− 1
log

∫
πα

2 (X)π1−α
1 (X)δX

=
1

α− 1
log

∫ [(
δ|X|(|L(X)|)w2(L(X))[p2(·)]X

)α (4.52)

×
(
δ|X|(|L(X)|)w1(L(X))[p1(·)]X

)1−α
]
δX.

Since [pX ]α =
[

∏x∈X p(x)
]α

= ∏x∈X [p(x)]α = [pα]X , using Lemma 3 in (Vo and Vo,

2013), this becomes:

DRényi(π2, π1) =
1

α− 1
log

[
∑

L⊆L
wα

2(L)w1−α
1 (L) ∏

λ∈L

[ ∫ [
p(λ)2 (ζ̄)

]α[p(λ)1 (ζ̄)
]1−αdζ̄

]]
.

(4.53)

Each λ component of πj (j = 1, 2), the continuous density p(λ)j (·), is approximated

by a probability mass function p̂j
(λ)(·) using the same set of samples {ζ̄(λ,i)}Ns

i=1 with

different weights {ω(λ,i)
j }Ns

i=1:

p(λ)j (ζ̄) ≈ p̂(λ)j (ζ̄) =
Ns

∑
i=1

ω
(λ,i)
j δζ̄(λ,i)(ζ̄). (4.54)

Using Monte Carlo sampling, the product between the two continuous densities in

(4.53) can be approximated by the product of two probability mass functions on the

finite samples {ζ̄(λ,i)}Ns
i=1, given by:∫ [

p(λ)2 (ζ̄)
]α[p(λ)1 (ζ̄)

]1−αdζ̄ ≈
Ns

∑
i=1

[
p̂(λ)2 (ζ̄(λ,i))

]α[ p̂(λ)1 (ζ̄(λ,i))
]1−α

≈
Ns

∑
i=1

[ Ns

∑
j=1

ω
(λ,j)
2 δζ̄(λ,j)(ζ̄

(λ,i))
]α[ Ns

∑
k=1

ω
(λ,k)
1 δζ̄(λ,k)(ζ̄

(λ,i))
]1−α

≈
Ns

∑
i=1

[
ω

(λ,i)
2

]α[
ω

(λ,i)
1

]1−α.

(4.55)

Substituting (4.55) into (4.53), the Rényi divergence becomes:

DRényi(π2, π1) ≈
1

α− 1
log

[
∑

L⊆L
wα

2(L)w1−α
1 (L) ∏

λ∈L

[ Ns

∑
i=1

(
ω

(λ,i)
2

)α(
ω

(λ,i)
1

)1−α
]]

.

(4.56)

2) Cauchy-Schwarz Divergence Approximation From the definition in Section 2.5.1

and following (Beard et al., 2017), we have:

DCS(π2, π1) = − log
( 〈π2, π1〉K√
〈π2, π2〉K〈π1, π1〉K

)
, (4.57)
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where

〈πi, πj〉K = ∑
L⊆L

wi(L)wj(L) ∏
λ∈L

K〈p(λ)i (·), p(λ)j (·)〉, (4.58)

for i, j ∈ {1, 2}. Using the approach in (4.55), we have

〈πi, πj〉K ≈ ∑
L⊆L

wi(L)wj(L) ∏
λ∈L

K
( Ns

∑
k=1

ω
(λ,k)
i ω

(λ,k)
j

)
. (4.59)

Void Probability Functional

The UAV needs to maintain a safe distance from objects, although getting close to the

objects of interest improves tracking accuracy. Therefore, in the following section, we

derive a void constraint for the path planning formulation.

Let V(uk+j(ak), rmin) denote the void region of objects based on a UAV’s position at

time k + j if an action ak is taken. This leads to a cylinder shape where the ground

distance between a UAV and any objects should be smaller than rmin, given by:

V(uk+j(ak), rmin) =
{

x ∈ X :

√
(p(x)

x − p
(uk+j(ak))
x )2 + (p(x)

y − p
(uk+j(ak))
y )2 < rmin

}
,

(4.60)

where p(x)
x , p(x)

y and p
(uk+j(ak))
x , p

(uk+j(ak))
y denote positions of x and uk+j(ak) in x − y

coordinates, respectively.

Using the closed form expression for the void probability functional7 of the GLMB in

(Beard et al., 2017), we impose the constraint in (44) on the trajectory planning problem

as formulated below.

Given a region S ⊆ X and an LMB density π on X parameterised as π =

δ|X|(|L(X)|)w(L(X))pX = {r(λ), p(λ)}λ∈L where each λ component is approximated

by a set of weighted samples {ω(λ,i), ζ̄(λ,i)}Ns
i=1 : p(λ)(ζ̄) ≈ ∑Ns

i=1 ω(λ,i)δζ̄(λ,j)(ζ̄), the void

functional of S given the multi-object density π, Bπ(S), can be approximated as:

Bπ(S) ≈ ∑
L⊆L

w(L) ∏
λ∈L

(
1−

Ns

∑
i=1

w(λ,i)δζ̄(λ,i)(ζ̄)1S(ζ̄)
)

(4.61)

using the expression of the void probability functional in (Beard et al., 2017). Now the

maximisation problem in (4.47) becomes:

a∗k = arg max
ak∈Ak

H

∑
j=1

γj−1R̂k+j(ak), (4.62)

7Here, we use the notion of void probabilities as defined in (Kendall, Mecke and Stoyan, 1995).
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subject to the constraint

min
j∈{1,...,H}

[Bπk+j(·|z1:k)
(V(uk+j(ak), rmin))] > Pvmin,

where Pvmin denotes a void probability threshold.

4.3.6 Computational complexity analysis

In this subsection, we analyse the computational complexity of our proposed

TBD-LMB tracking and planning algorithm. Since the planning algorithm consumes

the most of computational time, we focus on analysing its computational complexity.

In particular, the proposed planning algorithm consists of the following nested

components:

i) Computation of raw measurements using STFT algorithms: O(MNw log(Nw)),

ii) Computation of the information-based divergence: O(|L|2|L|Ns),

iii) Computation of the optimal action a∗k : O(|A|H).

Therefore, the total computational complexity of our proposed planning algorithm

is O(MNw log(Nw)|L|2|L|Ns|A|H). We can see that the computational complexity is

proportional to 2|L|, the hypothesis truncation method in (Vo, Vo and Phung, 2014)

can be adopted to discard hypotheses with small weights to significantly improve the

computational time. We can further improve the computational time by paralleling all

of the above components using graphics processing units (GPUs).

4.4 Simulation Experiments

In this section, we evaluate the proposed online path planning strategy for joint

detection and tracking of multiple radio-tagged objects using a UAV.

4.4.1 Experimental settings

A two-dimensional area of [0, 1500] m× [0, 1500] m is investigated to demonstrate the

proposed approach. The UAV’s height is maintained at 30 m while the objects’ heights
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are fixed at 1 m to limit the scope to a two-dimensional (2D) problem8. The total flight

time is 400 s for all experiments.

We also follow the same practical constraints mentioned in (Nguyen et al., 2019a) for

our simulations. The UAV cannot change its heading instantly, hence its maximum

turning rate is limited to 4θu
k = |θu

k − θu
k−1| ≤ θu

max (rad/s). In addition, since the

planning step normally consumes more time than the tracking step, we apply a cruder

planning interval Np compared to measurement interval T0, such that Np = nT0 where

n ≥ 2, n ∈ N (i.e., T0 = 1 s, Np = 5 s, the planning algorithm calculates the best

trajectory for the UAV in next five seconds at each five-measurement-intervals instead

of every measurement-interval).

An object’s dynamic mode s follows the jump Markov system where its motion model

is either: i) a Wandering (WD) mode where an object moves short distances without

any clear purpose or direction, or ii) a constant velocity (CV) mode.

The Wandering (WD) Model:

xk = FWD
k−1 xk−1 + qWD

k−1, (4.63)

where FWD
k−1 = diag([1 0 1 0]T), qWD

k−1 ∼ N (0, QWD) is a zero mean Gaussian process

noise with covariance QWD = diag([0.25 m2, 2.25 (m/s)2, 0.25 m2, 2.25 (m/s)2]T).

In the wandering model, the velocity components are instantly forgotten and then

sampled from covariance QWD at each time step k. However, the sampled velocity

components do not influence an object’s position. Further, the velocity components in

QWD are significantly larger than the position components therein. This is necessary

to achieve the fast moving behaviour of objects in the constant velocity dynamic mode

when an object switches from the wandering mode to the constant velocity mode.

The Constant Velocity (CV) Model:

xk = FCV
k−1xk−1 + qCV

k−1,

FCV
k−1 =

(
1 T0

0 1

)
⊗ I2, (4.64)

8It can be easily extended to 3D; however, to save computational power, we limit our problem to the

2D domain.
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Table 4.2. Birth, death, and dynamic mode parameters

Parameter Value

Birth probability (rB) 10−6

Survival probability

(pS)
0.99

Initial mode

probability
[0.5 0.5]T

Mode transitional

probability
[0.99 0.01; 0.01 0.99]

Constant velocity

noise (σCV)
0.05 m/s2

where ⊗ denotes the Kronecker tensor product operator between two matrices, and

qCV
k−1 ∼ N (0, QCV) is a 4× 1 zero mean Gaussian process noise, with covariance

QCV = σ2
CV

(
T3

0 /3 T2
0 /2

T2
0 /2 T0

)
⊗ I2,

and σCV is the standard deviation of the process noise parameter.

There are four objects with different birth and death times, listed in pairs as

(tbirth, tdeath): (1, 250), (50, 300), (100, 350), (150, 400) s. The four objects initially

follow the wandering model (WD) with initial state vectors [800, 0.13, 300,−1.44]T,

[200, 0.18, 700,−2.17]T, [1200,−1.94, 1000, 0.42]T, [900, 1.91, 1300,−2.04]T (with

appropriate standard units) at birth. One second period after birth, object 1 and

object 3 switch their dynamic mode to the constant velocity mode while object 2 and

object 4 continue to follow the wandering model for 65 s. We detail the mode changes

(later) in Figure 4.6.

For each newly born object, we assume an initial birth state described by a

Gaussian distribution with means [800, 0, 300, 0]T, [200, 0, 700, 0]T, [1200, 0, 1000, 0]T,

[900, 0, 1300, 0]T (with appropriate standard units) and covariance QB =

diag([100 m2, 4 (m/s)2, 100 m2, 4 (m/s)2]T). In practice, such a setting is reasonable and

captures the prior knowledge about an object’s location. For example, in applications

such as wildlife tracking, conservation biologists know the location of newly released

wildlife or the locations of entry and exit points of animals that can suddenly appear

in a scene from underground animal dwellings.
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Table 4.3. Signal parameters

Parameter Symbol Value

Centre frequency fc 150 MHz

Baseband

frequencies
f (λ)

131 kHz, 201 kHz,

401kHz , 841 kHz

Sampling

frequency
fs 2 MHz

Pulse period T0 1 s

Pulse offset time τ(λ)
0.1 s, 0.2 s, 0.3 s,

0.4 s

Pulse width Pw 18 ms

Reference distance d0 1 m

Pulse amplitude A 0.0059 V

Path loss constant κ 3.1068
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Figure 4.4. An illustration of received signals. For transmitting objects at distances of

[120, 515, 400, 920] m for object 1, object 2, object 3 and object 4 respectively, to the UAV

in the presence of complex receiver noise covariance Ση = 0.022 V2. a) The received signal in the

time domain without noise; b) The received signal in the time domain in the presence of the complex

white noise; c) Spectrogram of the received signal in discrete time and frequency domain (111× 256

frames) where the bright spots represent an object’s signal in a time-frequency frame.

The common parameters used in the following experiments are listed in Tables 4.2, 4.3,

and 4.4. In addition, Figure 4.4a illustrates a raw received signal without noise from

four transmitted objects along with a noisy received signal in Figure 4.4b. Furthermore,

a single measurement set of the noisy received signal after going through the STFT

process consisting of 111× 256 time-frequency frames is illustrated in Figure 4.4c.

9The current void distance of 50 m is supported by our observations in (unpublished) field

experiments involving UAV flights towards Southern Hairy-nosed wombats at Koolola station, South

Australia to assess disturbances from UAVs.
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Table 4.4. Measurement parameters

Parameter Symbol Value

Receiver gain Gr 72 dB

Receiver noise

covariance
Ση 0.0252 V2

Number of window

frames
M 111

Number of frequency

samples
L 256

Window width Nw 256

Number of particles Ns 50, 000

UAV’s max heading

angle
θu

max π/3 rad/s

UAV’s velocity vu 20 m/s

UAV’s initial position u1
[0, 0, 30, π/4]T

Planning interval Np 5 s

Look-a-head horizon H 3

Minimum distance9 rmin 50 m

Void threshold Pvmin 0.9

OSPA (order, cut-off) (p, c) (1, 100 m)

4.4.2 Experiments and results

We conduct two experiments: i) to validate and evaluate our proposed planning

method for joint detection and tracking; ii) to compare performance against planning

for tracking with conventional detection-then-track methods.

Experiment 1–Validating Planning for Joint Detection and Tracking: The first

experiment is conducted with four objects in various locations and moving in different

directions where birth and death times and motion dynamics are described in

Section 4.4.1. We employ a Rényi divergence based reward function with receiver

noise covariance Ση = 0.0252 V2 and the UAV undergoes trajectory changes every 15 s,

i.e., the planning interval Np = 5 s with a look ahead horizon H = 3 (see Table 4.4).

Figure 4.5a-b depict true object trajectories, birth and death times together with the

estimated tracking accuracy for a typical experiment run. The results show that the

Page 85



4.4 Simulation Experiments

d)

Time (s)

100 200 300 400
0

50

100

O
S

P
A

D
is

t 
(m

)

b)

100 200 300 400

Time (s)

0

500

1000

1500

y
-c

o
o
rd

in
at

e 
(m

)

1

2

3

4
a)

100 200 300 400

Time (s)

0

500

1000

1500

x
-c

o
o
rd

in
at

e 
(m

)

1

3

2

4

c)

C
ar

d
in

al
it

y
 S

ta
ti

st
ic

s

50 60 70 80 90

2

2.5

Figure 4.5. Tracking four objects in various locations with different birth and death times

and motion dynamics. Estimated positions and truth in: a) x-coordinate; b) y-coordinate; c)

cardinality—its truth versus mean µ and its variance (µ ± 3σ); d) OSPA—the cut-off and order

parameters are given in Table 4.4.

proposed planning for joint detection and tracking accurately estimates position and

cardinality of the objects.

Figure 4.5c depicts the ground truth changes in the number of objects over time

with the estimated cardinality. We used the optimal sub-pattern assignment (OSPA)

metric (Schuhmacher, Vo and Vo, 2008) to quantify the error between the filter

estimates and the ground truth to evaluate the multi-object miss distance. The spikes

in Figure 4.5c indicate a high uncertainty in the estimated cardinality distribution. The

high uncertainty is due to low signal-to-noise ratio (SNR) of received measurements.

During path planning, noisy signals lead to poor control decisions that result in the

UAV navigating to positions further from objects of interest where the signal incident

on the UAV sensor antenna is often at an angle where the antenna gain is poor. Further,

planning decisions are also subject to void constraints. Consequently, the existence

probability of objects of interest can suddenly increase or decrease after a poor control

action.

The OSPA error over the tracking period for these objects is depicted in Figure 4.5d. We

see changes in the OSPA distance during birth and death events and their subsequent

reduction as the planning algorithm undergoes course changes to improve tracking

accuracy. These results confirm that our trajectory planning algorithm consistently
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Figure 4.6. The estimated mode probability for four objects. Mode WD: Wandering and mode

CV: Constant Velocity of a) object 1; b) object 2; c) object 3; and d) object 4.

tracks the time-varying number of objects over time whilst making course changes to

improve estimation accuracy of all the objects.

Figure 4.6 depicts the multiple motion modes of objects and how it changes over

time. The results show that although the received signals are noisy, the filter can still

accurately estimate the correct mode of objects most of the time.

Figure 4.7 depicts the evolution of true and estimated object trajectories under the

control of the path planning scheme subject to the void constraint. From these

snapshots in time, we can see that a typical trajectory to track objects under the birth

and death process agrees with our intuition. Initially, the UAV navigates towards

object 1. At time t = 50 s (Figure 4.7a), object 2 is born; subsequently, the UAV

maintains a trajectory between the two objects with course changes to track both

objects. Object 3 is born at t = 100 s, and the UAV undertakes course changes to

estimate the positions of all three moving objects with a manoeuvre to follow object 1
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Figure 4.7. A typical UAV trajectory. A UAV trajectory (green path) under the proposed

path planning for joint detection and tracking algorithm for multiple radio-tagged objects. Here:

‘◦’ denotes locations of object births; ‘�’ denotes locations of object deaths; ‘♦’ denotes current

locations of the UAV. Faint tracks show objects subject to a death process.

and 2 whilst moving closer to object 3 (Figure 4.7bc). We can observe a similar planning

strategy evolving when object 4 is born at time 150 s. The UAV navigates to a position

to be closer to all four objects and maintain a position at the centre of the four objects to

estimate the position of all four objects (Figure 4.7de). At time 250 s, object 1 vanishes,

thus the UAV moves up towards a position at the centre of object 2, object 3 and object 4

to track the remaining objects (Figure 4.7f). Beyond 300 s, both object 1 and object 2 are

no longer in existence; therefore we can observe the UAV heading to a position between

objects 3—whilst maintaining the void constraint illustrated by the dashed circle at the

UAV position—and object 4 (Figure 4.7g). After time 350 s, only object 4 exists; thus, the

UAV undertakes trajectory changes to move towards object 4 (Figure 4.7h). The results

show that the proposed planning strategy is able to detect and track all objects whilst

dynamically acting upon different birth and death events to manoeuvre the UAV to

move to positions that minimise the overall tracking error.

Experiment 2–Comparing Performance: In this experiment, we compare our

proposed online path planning for joint detection and tracking formulation with

the TBD-LMB filter with planning for detection-then-track (DTT) methods using a
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DTT-LMB filter (Reuter et al., 2014). We compare three trajectory planning approaches

for tracking: i) a straight path—direct the UAV back and forth along a diagonal line

between (0, 0) m and (1500, 1500) m, ii) planning with Rényi divergence as the reward

function, and iii) planning with Cauchy divergence as the reward function.

The measurements for DTT are extracted based on a peak detection algorithm to find

the prominent peak such that the minimum peak separation is Nm = 8 frequency

bins—i.e. the number of main-lobe width (in bins) for a 4-term Blackman Harris

window as listed in Table 4.1. Since we examine the filter performance under various

receiver noise levels, it is more appropriate to use a peak detection method compared

to a fixed threshold value. Further, the peak detection method is robust against

different noise levels, considering false-alarms and misdetections rates (Scholkmann,

Boss and Wolf, 2012). The planning for DTT methods uses the same PIMS approach as

per the TBD planning described in Section 4.3.5.

We use the OSPA distance and its cardinality component to compare performance

across the three planning strategies for TBD and DTT approaches. We perform

100 Monte Carlo runs for each of the six cases, and receiver noise levels Ση =

0.0102, 0.0152, . . . , 0.0502 V2 for the scenario shown in Figure 4.7. OSPA distance and

cardinality results in Figure 4.8 show that the proposed path planning for TBD strategy

provides significantly better estimation performance over planning for DTT-based

strategies as demonstrated by the lower OSPA distance in the presence of increasing

receiver noise. The TBD approaches are more effective than DTT approaches,

especially due to the failure of DTT methods to detect changes in the number of objects

in the presence of birth and death processes as evident in Figure 4.8b.

Intuition suggests that an information based approach should execute control

actions to continually position the UAV to locations with the best ability to track

multiple objects undergoing motion changes. Information based planning strategies

outperforming the straight path approaches in both the TBD and DTT methods agrees

with this intuition. Although, Rényi or Cauchy divergence as reward functions

improve the overall tracking performance compared to the straight path method, we

also observe that Rényi divergence is more discriminative than Cauchy divergence in

our task and yields better OSPA distance values and hence the best performance.
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a) b)

Figure 4.8. A performance comparison between TBD and DTT. Mean OSPA performance

comparison across increasing receiver noise values. Here, -Straight, -Rényi and -Cauchy denote

straight path, Rényi divergence and Cauchy divergence based planning strategies, respectively: a)

OSPA distance; b) OSPA cardinality.

4.5 Conclusion

In this chapter, we have proposed an online path planning algorithm for joint

detection and tracking of multiple radio-tagged objects under low SNR conditions.

The planning for multi-object tracking problem was formulated as a POMDP with two

information-based reward functions and the JMS TBD-LMB filter. In particular, the

planning formulation incorporates a practical constraint to maintain a safe distance

between the UAV and objects of interest to minimise the disturbances from the UAV.

We have derived a measurement likelihood for the TBD-LMB filter and proved that the

likelihood is separable in practice for multiple radio-tagged objects, thereby deriving

an accurate multi-object TBD filter. The results demonstrated that our approach is

highly effective in reducing the estimation error of multiple-objects in the presence

of low signal-to-noise ratios compared to both detection-then-track approaches and

tracking without planning.

Up until this chapter, we only considered the problem of tracking and planning using

a single UAV to track multiple objects using a sensor with a large detection range. In

reality, the on-board sensors mounted on the UAV are usually range-limited. Thus,

to enlarge the search area and improve tracking accuracy, we must rely on multiple

UAVs. In the next chapter, we will investigate the problem of controlling multiple

UAVs to search for and track an unknown and time-varying number of objects with

field of view (FoV) limited onboard sensors.
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Chapter 5

Multi-Objective
Multi-Agent Planning for
Discovering and Tracking

W
E consider the challenging problem of online planning

for a team of agents to autonomously search and track a

time-varying number of mobile objects under the practical

constraint of detection range limited, or limited FoV, onboard sensors. A

standard POMDP with a value function that either encourages discovery

or accurate tracking of mobile objects is inadequate to simultaneously

meet the conflicting goals of searching for undiscovered mobile objects

whilst keeping track of discovered objects. Further, the planning problem

is complicated by misdetections or false-detection of objects caused by

range limited sensors and noise inherent to sensor measurements. We

formulate a novel multi-objective POMDP based on information theoretic

criteria, and an online multi-object tracking filter for the problem. Since

controlling multi-agents is a well known combinatorial optimisation

problem, assigning control actions to agents necessitates a greedy

algorithm. We prove that our proposed multi-objective value function is

a monotone submodular set function; consequently, the greedy algorithm

can achieve a (1 − 1/e) approximation for maximising the submodular

multi-objective function.
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5.1 Motivation and Contribution

We study the problem of controlling a team of agents to jointly track discovered

mobile objects and explore the environment to search for undiscovered mobile objects

of interest. Such problems are ubiquitous in wildlife tracking (Kays et al., 2011;

Thomas, Holland and Minot, 2012; Cliff et al., 2015; Nguyen et al., 2019a), search and

rescue missions (Gerasenko et al., 2001; Murphy et al., 2008). For instance, a team of

unmanned aerial vehicles (UAVs) can be deployed to monitor activities of endangered

radio-tagged wildlife in a survey scene, or to search for victims in a disaster response

(Beck et al., 2018). Hence, it is critical to not only search for undiscovered objects

but also track the movements of discovered objects of interest. Consequently, the

overall team’s objectives arise as a natural multi-objective optimisation problem, where

several pertinent goals (i.e., tracking and discovering) need to be simultaneously

achieved.

Intrinsically, searching for undiscovered objects whilst simultaneously tracking visible

objects are competing goals because, in practice, agent sensor systems, such as cameras,

have a limited detection range. A single agent may only observe a small region of

space and a decision to leave a visible object to explore hitherto unseen regions will

lead to losing track of visible objects. Therefore, an agent observing a small region of

the search area needs to collaboratively interact with other agents to plan its course of

actions to collectively maximise the overall team’s objectives of tracking and discovering

multiple objects.

Multi-agent planning to achieve multiple competing objectives remains a challenging

problem because of the complex interactions between agents leading to combinatorial

optimisation problems (Wai et al., 2018). In practice, the problem is further complicated

because: i) the agent sensors are not only limited in range but also sensitivity, and

measurements are always subjected to environmental noise. Consequently, object

detectors suffer from both missing detection of objects and false-detection; and ii) the

number of objects of interest is often unknown, and varies with time since mobile

objects can enter and leave the scene anytime (Vo et al., 2012). Most critically, the

computation of optimal planning actions must be timely for real-world applications.

We propose a framework for multiple agents to jointly plan, search and track a

time-varying number of objects using a novel multi-objective information-based value

function formulation. Our multi-objective value function captures the competing

objectives of planning for tracking and discovery. We adopt the random finite set (RFS)
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model for the collection of objects of interest to account for the random appearance

and disappearance of objects and their dynamics. Our proposed multi-objective value

function maximises information gain over a look-ahead horizon for both discovered

and undiscovered objects. Most importantly, our multi-objective value function is

proven to be a monotone submodular set function; thus, we can cope with the

intractability of the multi-objective optimisation problem (MOP) by employing a

greedy algorithm. Our ability to use a greedy algorithm facilitates the computation of

approximately optimal control actions with linear complexity in the number of agents

for realising an online planning method.

5.2 Related Work

Multi-agent path planning in partially observable environments is a difficult problem

for which the partially observable Markov decision processes (POMDP) approach

has recently gained significant interest (Silver and Veness, 2010; Messias, Spaan

and Lima, 2011; MacDermed and Isbell, 2013). Although the cooperation problem

can be formulated as a decentralised POMDP (Dec-POMDP), its exact solutions are

NEXP-complete (Bernstein et al., 2002). This is especially problematic for multi-agent

POMDPs since the action and observation space grows exponentially with the number

of agents (Amato and Oliehoek, 2015). One approach is distributed POMDPS (e.g.,

networked distributed POMDP (Nair et al., 2005)) by exploiting interactions among

neighbouring agents using distributed constraint optimisation. However, achieving a

global goal for multi-agents in a distributed manner is an NEXP-problem in worst case

scenarios (Rizk, Awad and Tunstel, 2018). To cope with this intractability, we adopt

the MPOMDP centralised approach (Messias, Spaan and Lima, 2011) for controlling

multiple agents (Dames and Kumar, 2015; Dames, Tokekar and Kumar, 2017; Wang

et al., 2018).

POMDP has also been employed for sensor selection problems, e.g., (Spaan, Veiga and

Lima, 2015; Satsangi et al., 2018) proposed using the ρPOMDP (Araya et al., 2010) for

a mobile agent to select K in N available sensors to search and track multiple objects.

In particular, (Spaan, Veiga and Lima, 2015) proposed a method that always assumes

the existence of one extra object in the scene to encourage discovery. However, biasing

the cardinality estimate generates sub optimal planing decisions at the cost of tracking

performance.

Page 93



5.2 Related Work

Our study focuses on the problem of controlling a team of agents for the task

of tracking and discovering mobile targets. The task requires a suitable tracking

framework. Studies on tracking objects have employed approaches such as multiple

hypotheses tracking (MHT) (Reid, 1979) or joint probabilistic data association

(JPDA) (Blackman and Popoli, 1999). The complex nature of our problem requires

a framework that has the notion of probability of a random collection due to a

time-varying and random number of objects where the states of objects are random

vectors. The random finite set (RFS) (Mahler, 2007b) is the only framework that has

the notion of probability density of a random set. Hence, we adopt RFS as our tracking

framework.

Information-based path planning under the RFS framework for a single agent has

been studied in several works (Ristic and Vo, 2010; Hoang and Vo, 2014; Beard et al.,

2017). Most studies on multi-agent path planning using an RFS framework, are based

on the generalised covariance intersection (GCI) methods with the assumption that

agents have a consensus view of all objects (Gostar, Hoseinnezhad and Bab-Hadiashar,

2016; Wang et al., 2018) and using only a single look-ahead horizon. (Dames,

Tokekar and Kumar, 2017) proposed to control multiple fixed-wing UAVs to localise

mobile taxis with a single objective value function. For localising and searching

objects simultaneously, (Dames and Kumar, 2015) and (Charrow, Michael and Kumar,

2015) considered a similar scenario, but only for stationary objects. Planning using

multi-objective optimisation (MOP) has not been explored yet, except for single sensor

selection (Zhu, Wang and Liang, 2019) or using the weighted sum method presented

in (Charrow, Michael and Kumar, 2015) where the weighting parameters are difficult

to define without prior knowledge. In contrast, we focus on optimising all value

functions (i.e., tracking and discovering) simultaneously using MOP. In particular,

our proposed tracking and discovering value functions are based on information

criteria. The tracking value function maximises the mutual information between

future measurements and discovered object states under a multi-sensor Bernoulli filter;

the discovering value function maximises the mutual information between empty

measurements and undiscovered object states under a grid occupancy filter.

Our contributions: The main contributions of our work are: (i) We formulate a

multi-agent planning problem with competing objectives and propose a planning

algorithm for searching and tracking multiple mobile objects; (ii) We unify tracking and

planning algorithms under a Bernoulli-based model; (iii) We prove that our proposed

Page 94



Chapter 5 Multi-Objective Multi-Agent Planning for Discovering and Tracking

multi-objective value function is submodular; hence, the greedy algorithm can be

used to rapidly determine the approximately optimal control actions with a bounded

performance guarantee at (1− 1/e)OPT.

5.3 Problem Formulation

First, we introduce assumptions to help define our problem and introduce the

notations we adopt in our work. Second, we provide a brief overview of the

multi-sensor Bernoulli filter which unifies the tracking and discovering formulation.

Next, we formulate our MPOMDP multi-agent planning approach for controlling the

multi-agent team.

5.3.1 Assumptions and notations

We consider a team of S agents surveying a large area to detect and track an unknown

and time-varying number of mobile objects using detection-based measurements. We

assume that each agent can localise itself (e.g., using an onboard GPS for UAVs) and

that all agents can communicate to a central node to enable us to adopt the centralised

approach for MPOMDP. Consequently, we assume that all of the measurements are

transferred to a central node that analyses received information and subsequently

sends control actions to all of the agents. Here, we employ a discrete control action

space to reduce the computational load (Beard et al., 2017; Dames, Tokekar and Kumar,

2017). We further assume that the measurements from an object collected by the agents

are conditionally independent given the object’s state (Thrun, Burgard and Fox, 2005;

Charrow, Michael and Kumar, 2015).

We use the convention that lower-case letters (e.g., x) represent single-object states,

upper-case letters (e.g., X) represent multi-object (finite-set) states, and blackboard bold

letters (e.g., X,Z) represent spaces. We denote the inner product
∫

f (x)g(x)dx = 〈 f , g〉.

5.3.2 Multi-sensor Bernoulli filter (MS-BF)

In practice, an object can randomly enter and leave the surveillance region, hence the

number of objects of interest is unknown and time-varying. Further, it is important

to consider the existence of objects of interest to allow the agents to discover new
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objects when they enter the scene and to prevent agents following false-positives.

This can be addressed by the random finite sets (RFSs) approach, first proposed by

(Mahler, 2007b). RFSs are finite-set valued random variables. We assume that each

measurement is uniquely identified, e.g., transmit frequencies from radio beacons

(Kays et al., 2011; Thomas, Holland and Minot, 2012; Cliff et al., 2015; Nguyen et al.,

2018b, 2019a,b) or MAC address (Beck et al., 2018; Charrow, Michael and Kumar, 2015),

which is typical for wildlife tracking or search and rescue missions. Since each object is

uniquely identified, we propose using a the multi-sensor Bernoulli filter (MS-BF) (Vo

et al., 2012), where each object’s state is a Bernoulli RFS, and run multiple MS-BF filters

parallel to track multiple objects. A Bernoulli RFS X on X has at most one element

with probability r for being singleton or 1− r for being empty. Its probability density

π(·) = (r, p(·)) given by

π(X) =

1− r, X = ∅,

r · p(x), X = {x}.

Object tracking with MS-BF: We model each object’s state at time k by Xk as a

Bernoulli RFS. The MS-BF propagates the two quantities: the existence probability

r and spatial density p(·). If the posterior density is πk−1 = (rk−1, pk−1),

then the predicted density πk|k−1 = (rk|k−1, pk|k−1) is also a Bernoulli RFS, with

rk|k−1 = rB,k(1 − rk−1) + rk−1〈pS,k, pk−1〉, pk−1(xk) =
[
rB,k(1 − rk−1)bk(xk) +

rk−1〈 fk|k−1(xk|·), pS,k(·)pk−1(·)〉
]
/rk|k−1. Here, rB,k and pS,k are the probabilities of

object birth and object survival, bk(·) is the object birth density. Further, the updated

density πk is also a Bernoulli RFS, given by πk = (rk, pk) with rk = Ψ(S)
k ◦ · · · ◦

Ψ(1)
k (rk|k−1); pk = Ψ(S)

k ◦ · · · ◦Ψ(1)
k (pk|k−1). Here, ◦ denotes composition (of operators),

Ψ(s)
k is an update operator for agent s, i.e.:

[Ψ(s)
k (r)] =〈η(s)(Z(s)|·), p(·)〉r/

[
(1− r)e−λ(s)

r〈η(s)(Z(s)|·), p(·)〉
]
, (5.1)

[Ψ(s)
k (p)](x) =η(s)(Z(s)|x)p(x)/〈η(s)(Z(s)|·), p(·)〉, (5.2)

where the superscript (s) denotes the parameters of agent s, λ(s) is the clutter rate,

and η(s)(Z(s)|x) denotes the likelihood of measurement set Z(s) from agent s given the

object’s state x. η(s)(Z(s)|x) is also a Bernoulli RFS, given by

η(s)(Z(s)|x) =

1− p(s)d (x), if Z(s) = ∅,

p(s)d (x)g(s)(z|x), if Z(s) = {z}.
(5.3)
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Here, p(s)d (x) is the probability that agent s detects object x, and g(s)(z|x) is the

(conventional) likelihood function of measurement z given object’s state x.

5.3.3 Planning

At time k, the team of S agents needs to plan how they manoeuvre over the time

interval k + 1 : k + H to improve its estimation of the states of multiple objects Xk,

where H denotes the look-ahead horizon length. Let A ⊆ RN be all possible set

of control actions for a given agent. When the control action ai
k ∈ A is applied

to an agent i, it follows a trajectory comprised of sequence of the discrete poses

ui
k+1:k+H(ai

k) = [ui
k+1, . . . , ui

k+H]
T with corresponding measurements Zi

k+1:k+H(ai
k) =

[Zi
k+1, . . . , Zi

k+H]
T (for notational compactness, we omit the dependence on Xk here).

Let Ak = [a1
k, . . . , aS

k ]
T ∈ AS be the control actions where AS = A × · · · × A is

the control action space for S agents, and the corresponding measurement set is

Zk+1:k+H(Ak) = [Z1
k+1:k+H(a1

k), . . . , ZS
k+1:k+H(aS

k )]
T.

The objective of path planning is to find the optimal action A∗k ∈ AS that maximises

the value function, i.e.,

A∗k = arg max
Ak∈AS

V(Xk+1:k+H, Zk+1:k+H(Ak)). (5.4)

where V(Xk+1:k+H, Zk+1:k+H(Ak)) = E
[

∑H
j=1R(Xk+j, Zk+j(Ak))

]
is the value function

or the expected sum of immediate rewardsR(·) over a finite horizon H.

Since an analytic solution does not exist for the expected reward, we use the predicted

ideal measurement set (PIMS) (Mahler, 2004)—a computationally low-cost approach.

The value function is calculated:

V(Xk+1:k+H, Ẑk+1:k+H(Ak)) =
H

∑
j=1
R(Xk+j, Ẑk+j(Ak)), (5.5)

where Ẑk+j(Ak) denotes the ideal measurement set of Zk+j(Ak) calculated using the

measurement model and the estimated states of objects without measurement noise.

For notational compactness, we write the value function V(Xk+1:k+H, Ẑk+1:k+H(Ak))

as V(Ak).
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5.4 Planning for Tracking and Discovering Multiple

Objects

5.4.1 Planning for tracking discovered mobile objects

In this problem, we consider maximising an information-based reward function

to reduce the overall uncertainty of the discovered mobile objects because more

information naturally implies less uncertainty. In particular, we propose using the

mutual information I(X; Z) between the object’s state X and measurement state Z as

the immediate reward function, and the long-term sum of rewards over a finite horizon

H, or so-called the value function is given by

V1(Ak) =
H

∑
j=1

I(Xk+j; Ẑk+j(Ak)), (5.6)

where I(X; Z) = h(X)− h(X|Z), with h(X) is the generalisation of differential entropy

for a finite set X ⊆ X with density f (X) defined as h(X) = −
∫
X f (X) log f (X)δX;

here
∫
X ·δX is the set integral (Mahler, 2007b). For Bernoulli RFS, this integration is

simplified to h(X) = −
[

f (X = ∅) log f (X = ∅) +
∫

f (X = x) log f (X = x)dx
]
. We

have the following theorem.

Theorem 5.1. The mutual information I(X; Z) between the object state X and measurement

state Z is a monotone submodular set function of Z.

Proof. We want to prove that this mutual information I(X; Z) is a monotone

submodular set function, i.e., for Z1 ⊆ Z2 ⊆ Z, and z ∈ Z \ Z2 independent of Z1

and Z2:

I(X; Z2, {z})− I(X; Z2) ≤ I(X; Z1, {z})− I(X; Z1).

Since Z1 ⊆ Z2 ⊆ Z, using mutual information inequalities (Cover and Thomas, 2012,

pp.50), we have:

I(Z2; {z}) ≥ I(Z1; {z}),

⇔ h(z)− h(z|Z2) ≥ h(z)− h(z|Z1),

⇔ h(z|Z1) ≥ h(z|Z2),

⇔ h(Z1, {z})− h(Z1) ≥ h(Z2, {z})− h(Z2). (5.7)
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Further, since I(Z2; {z}|X) = I(Z1; {z}|X) = 0 is due to z is independent of Z1 and Z2

given X, we have:

h({z}|X) = h({z}|X, Z2) + I(Z2; {z}|X) = h({z}|X, Z2)

= h(X, Z2, {z})− h(X, Z2),

h({z}|X) = h({z}|X, Z1) + I(Z1; {z}|X)

= h(X, Z1, {z})− h(X, Z1).

Hence,

h(X, Z2, {z})− h(X, Z2) = h(X, Z1, {z})− h(X, Z1). (5.8)

Subtracting (5.7) from (5.8), we have:

[h(X, Z2, {z})− h(X, Z2)]− [h(Z2, {z})− h(Z2)]

≥ [h(X, Z1, {z})− h(X, Z1)]− [h(Z1, {z})− h(Z1)].

Using differential entropy chain rules (Cover and Thomas, 2012, pp.253), we have that

h(X|Z2, {z}) = h(X, Z2, {z}) − h(Z2, {z}) and h(X|Z2) = h(X, Z2) − h(Z2), thus the

above equation is equivalent to

h(X|Z2, {z})− h(X|Z2) ≥ h(X|Z1, {z})− h(X|Z1)

⇔[h(X)− h(X|Z2, {z})]− [h(X)− h(X|Z2)]

≤ [h(X)− h(X|Z1, {z}]− [h(X)− h(X|Z1)],

⇔I(X; Z2, {z})− I(X; Z2) ≤ I(X; Z1, {z})− I(X; Z1).

Thus, I(X; Z) is a submodular set function. Further, using the chain rule we have:

I(X; Z2, {z})− I(X; Z2) = I(X; Z2|{z}) ≥ 0. (5.9)

Therefore, I(X; Z) is a monotone submodular set function.

Remark: Our mutual information formulation is different to that in (Krause, Singh and

Guestrin, 2008) used for sensor selection problems. Krause et al. showed that for Z ⊆
Z, the mutual information I(Z;Z \ Z) is a submodular set function. In other words,

the mutual information I(Z1; Z2) is submodular with the property that Z1 ∪ Z2 = Z
and |Z| is fixed. In contrast, we measure the mutual information between the random

set object state X and the random set measurement state Z and prove I(X; Z) is also a

submodular set function of Z without the aforementioned property.
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Corollary 5.2. The value function V1(Ak) in (5.6) is a monotone submodular set function.

Proof. Since I(Xk; Ẑk+j(Ak)) is a monotone submodular set function and V1(Ak) is a

positive linear combination of it, according to (Nemhauser, Wolsey and Fisher, 1978,

pp.272), V1(Ak) is a monotone submodular set function.

Mutual Information Calculation based on MS-BF: Assume that each object i is

associated with a Bernoulli distribution π(Xi) = (ri, pi). Let pi(x) be approximated

by a set of Ns particles, such that pi(x) ≈
Ns
∑

m=1
w(m)

i δ(x(m) − x) with
Ns
∑

m=1
w(m)

i = 1 and

δ(·) is the Kronecker delta function, X = X1 ∪ · · · ∪ Xn be the state of multiple objects.

Since each object is uniquely identified by its label and estimated by an individual

Bernoulli filter, we have

h(X) =
n

∑
i

h(Xi) ≈
n

∑
i

[
− (1− ri) log(1− ri)− ri

Ns

∑
m=1

[
w(m)

i log(row(m)
i )

]]
. (5.10)

According to the definition of the mutual information I(X; Z) = h(X) −
h(X|Z), thus the tracking value function V1(Ak) can be calculated as V1(Ak) =

∑H
j=1
[
h(Xk+j)− h(Xk+j|Ẑk+j(Ak))

]
, where h(Xk+1) is calculated directly in (5.10). For

h(Xk+j|Ẑk+j(Ak)), it has the same form as in (5.10); however, rk+j,i and w(m)
k+j,i are

calculated by propagating rk,i and w(m)
k,i from time k to k + j using (5.1) and (5.2)

respectively with the ideal measurements Ẑk+j(Ak).

5.4.2 Planning to search for undiscovered mobile objects

Occupancy Grid Filter: Since an agent is equipped with a sensor with a limited

detection range, we propose using an occupancy grid to represent the probability of

any undiscovered objects (Elfes, 1989). We extend the static grid approach in (Charrow,

Michael and Kumar, 2015; Thrun, Burgard and Fox, 2005) by incorporating the birth

probability into each occupancy cell to account for the possibilities of mobile objects

entering and leaving the survey area, anytime. The survey area is divided into an

occupancy grid G = {g1, . . . , gNg} ⊂ RN, where each cell gi ∈ G is associated with

a Bernoulli random variable ri. Here, ri is the probability that cell gi contains at least

one undiscovered object. For initialisation, we set ri
0 = rB such that every cell has

the same prior. Each cell i is propagated through MS-BF over time using the predict
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and update equations. In particular, let ri
k−1 be the probability of cell gi containing at

least one undiscovered object, then its predict and update probabilities at time k are

(5.11) and (5.12). Note that since these objects are yet to be discovered, we use empty

measurements for all agents (denoted as Z∅ to update).

ri
k|k−1 = rB(1− ri

k−1) + ri
k−1pS, (5.11)

ri
k = Ψ(S)

k ◦ · · · ◦Ψ(1)
k (ri

k|k−1), (5.12)

where [Ψ(s)
k (ri)] = (1− p(s)d (gi))ri/

[
1− ri + ri(1− p(s)d (gi))

]
.

Searching for undiscovered objects: As before, we propose using mutual information

as the immediate reward function. We want to maximise the mutual information

between the estimated occupancy grid G and the ideal empty future measurement

Ẑ∅
k+1:k+H(Ak), i.e.,

V2(Ak) =
H

∑
j=1

I(Gk; Ẑ∅
k+j(Ak)), (5.13)

where I(Gk; Ẑ∅
k+j(Ak)) = H(Gk)−H(Gk|Ẑ∅

k+j(Ak)) andH(Gk) is the Shannon entropy

of Gk:

H(Gk) = −
Ng

∑
i=1

[
ri

k log(ri
k) + (1− ri

k) log(1− ri
k)
]
, (5.14)

and H(Gk+j|Ẑ∅
k+j(Ak)) has the same form as in (5.14) with ri

k+j is calculated by

propagating ri
k+j from k to k + j using the update step in (5.12) with empty

measurements Ẑ∅
k+j(Ak).

Theorem 5.3. The value function V2 in (5.13) is a monotone submodular set function.

Proof. We can apply a similar strategy as per Theorem 5.1 to prove that I(Gk; Ẑ∅
k+j(Ak))

is a monotone submodular set function, note that H(·) is the Shannon entropy (a

discrete version of differential entropy h(·)). Further, since V2(Ak) is a positive linear

combination of I(Gk; Ẑ∅
k+j(Ak)), according to (Nemhauser, Wolsey and Fisher, 1978,

pp.272), V2(Ak) is a monotone submodular set function.

5.4.3 Multi-objective value function for tracking and discovering

In this problem, we want to control the team of agents to perform both tracking and

discovering; this naturally leads to a multi-objective problem. Specifically, we want to
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maximise

V(Ak) = [V1(Ak), V2(Ak)]
T, (5.15)

subject to Ak ∈ AS where V1 and V2 are defined in (5.6) and (5.13), respectively.

Multi-objective optimisation provides a meaningful notion of multi-objective

optimality such as the Pareto-set, which represents trade-offs between the objectives

such that there is no other solution that can improve one objective without degrading

any remaining objectives (Whiteson and Roijers, 2016). Online planning necessitates

selecting one compromised solution from the Pareto-set on-the-fly. One approach

is robust submodular observation selection (ROSS) (Krause et al., 2008), which is

robust against the worst possible objective; however, even if each Vi is submodular,

Vmin = mini Vi is generally not submodular. Other approaches include weighted sum

(WS) and global criterion method (GCM); the simplicity of these methods are not only

attractive for meeting the demands of online planning but also result in a submodular

value function. In this work, we adopt GCM to select the compromised solution

considering the distance equally for two value functions from the ideal solution.

Inspired by (Koski, 1993), we define the value function Vmo (with Vmo(∅) = 0) as:

Vmo(Ak) =
2

∑
i=1

Vi(Ak)− min
Ak∈AS

Vi(Ak)

max
A∈AS

Vi(Ak)− min
Ak∈AS

Vi(Ak)
. (5.16)

The global criterion method admits a unique optimal solution from the

Pareto-set (Coello et al., 2007). Hence, the multi-objective problem becomes

A∗k = arg max
Ak∈AS

Vmo(Ak). (5.17)

Since finding the optimal control action A∗ ∈ AS is a combinatorial optimisation

problem, we want to show that the multi-objective value function Vmo(A) in (5.16)

is also a monotone submodular set function on Z. This enables us to use the greedy

algorithm to find the optimal action that approximately maximise this multi-objective

value function.

Corollary 5.4. The multi-objective value function Vmo in (5.16) is a monotone submodular set

function.

Proof. Since Vi(Ak)) is a monotone submodular set function and Vmo(Ak) is a positive

linear combination of it, according to (Nemhauser, Wolsey and Fisher, 1978, pp.272),

Vmo(Ak) is a monotone submodular set function.
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5.4.4 Greedy search algorithm

We proved that our multi-objective value function Vmo(·) is a monotone submodular

set function—see Corollary 4. For submodular functions, (Nemhauser, Wolsey and

Fisher, 1978) proved the greedy search algorithm guarantees a performance bound at

(1− 1/e)OPT, where OPT is the optimal value of the submodular function. Therefore,

if the optimal value of our value function is Vmo(A∗), we can simply state the following

fundamental performance bound for our submodular value function:

Theorem 5.5. From (Nemhauser, Wolsey and Fisher, 1978). Let AG be the output greedy

control action and A∗ be the optimal control action evaluated using brute-force method of

(5.17). Then

Vmo(AG) ≥ (1− 1/e)Vmo(A∗), (5.18)

where e = 2.718 . . . is the base of the natural logarithm.

Hence, we propose using the greedy search algorithm by simply adding agents

sequentially and picking the next agent which provides the maximum value function

Vmo(·) as presented in Algorithm 5.1.

Algorithm 5.1 Greedy algorithm
1: Input: Vmo(·),A . value function and the action space.

2: Output: AG ∈ AS . greedy control actions for all agents.

3: AG := ∅ . initialise the greedy control action.

4: P := ∅ . initialise the agent planned list.

5: U := {1, . . . , S} . initialise list of agents to plan.

6: while U 6= ∅ do

7: for each s ∈ U do

8: [As, Vs
c ] := arg max

A∈AV∪{s}
Vmo(A) . find the best action and value function for each agent in U.

9: end for

10: s∗ := arg max
s∈U

Vs
c . select the agent s∗ that provides the best value function.

11: AG := AG ∪ {As∗} . save the greedy control action for agent s∗.

12: P := P ∪ {s∗} . add agent s∗ into the planned list.

13: U := U \ {s∗} . remove agent s∗ from the list of agents to plan.

14: end while
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5.5 Experiments

We evaluate the proposed value function using a series of comprehensive synthetic

experiments since we can control all of the parameters of the problem, especially with

a time-varying number of agents and objects. We compare three planning algorithm

formulations: (i) using the single objective value function V1(·) in (5.6) for tracking.

(ii) using a single objective value function based on our new discovery value function

V2(·) in (5.13). (iii) using our proposed multi-objective value function Vmo(·).

We use optimal sub-pattern assignment (OSPA) (Schuhmacher, Vo and Vo, 2008) to

measure performance. We report OSPA Dist as the main metric to evaluate the overall

team performance since it incorporates both tracking and discovery indicators. For

further insights into our planning formulations, we also report: (i) OSPA Loc as a

localisation accuracy measure, (ii) OSPA Card as an object discovery performance

measure, and (iii) Search Area Entropy as the average entropy of the occupancy grid

to measure the coverage area of the team. For demonstration, a team of quad-copter

UAVs flying at different altitudes is considered. The detailed parameter settings are

provided as follows, while scenario setups are shown in Figure 5.1. Our experiments

considered for different scenarios and two different detection-based sensors subject to

noisy measurements.

Parameter settings for experiments: The search areas for the first three scenarios

and scenario 4 are 1000 m ×1000 m and 2000 m ×2000 m, respectively. Each agent is

controlled to fly at a fixed and different altitude (i.e., 5 m altitude gap between each

agent) to prevent collisions with other team members. The minimum altitude starts

at 30 m for the first agent and increases 5 m for each additional agent. Further, all

objects are assumed to exist on a horizontal ground plane to speed up the numerical

experiments by tracking in 2D. Each object state x = (x, l) is uniquely identified by its

label l, while its motion state x = [px, ṗx, py, ṗy]T comprises of object’s position and

velocity in Cartesian coordinates. Each object moves in accordance with the constant

velocity (CV) model given by xk = FCV xk−1 + qCV
k−1. Here, FCV = [1, T0; 0, T0]⊗ I2, T0

is the sampling interval (T0 = 1 s for our experiments), ⊗ denotes for the Kronecker

tensor product; I2 is the 2× 2 identity matrix; qCV
k−1 ∼ N (0, QCV) is a 4× 1 zero mean

Gaussian process noise, with co-variance QCV = σ2
CV [T

3
0 /3, T2

0 /2; T2
0 /2, T0]⊗ I2. The
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Figure 5.1. Setup for four scenarios. (a) Scenario 1; (b) Scenario 2; (c) Scenario 3; (d) Scenario

4. Start/Stop locations for each object are denoted by©/�. Start locations for agents are denoted

by ?.

detection probability is

pD(us, xp) =

0.98 if ||xp − us|| ≤ rd,

max(0, 0.98− (||xp − us|| − rd)h̄) otherwise,

where rd is the sensor detection range and h̄ = 0.008 m−1. The sensor reports

false-detection or false-alarm measurements following a Poison RFS with a clutter rate

λ = 0.2, where each agent collects at most one measurement per time step for

each object, either from the real objects, clutters (false-detection) or the measurement

is empty (missed detection). For the sensor noise, the range and bearing-based

measurement is corrupted by zero-mean Gaussian noise that depends on the distance

between objects and agents, i.e., v ∼ N (0, R) with R = diag(σ2
φ, σ2

ρ ) where σφ =

σ0,φ + βφ||xp− us||, σρ = σ0,ρ + βρ||xp− us||, σ0,φ = 2π/180 rad, βφ = 1.7 · 10−5 rad/m,

σ0,ρ = 10 m, and βρ = 5 · 10−3. Similarly, for vision-based sensor, each detected object

x leads to a measurement z of noisy x − y positions, given by: z =
[
px, py]T + v.

Here, v ∼ N (0, R) with R = diag(σ2
x , σ2

y ) where σx = σy = σ0,xy + βxy||xp − us||
with σ0,xy = 10 m, and βxy = 1 · 10−2. The grid size is 100 × 100 across four

scenarios. This corresponds to a grid cell of 10 m ×10 m for scenario 1,2 and 3 and

a grid cell of 20 m ×20 m for scenario 4. The total time is 200 s. The agent does not

have any prior knowledge about object’s state, thus it uses the initial birth probability

rB = 0.005, and a Gaussian density pB = N (x; mB, QB) with mB = [500, 0, 500, 0]T and

QB = diag([500, 10, 500, 10]).

Scenario 1 (FastMoving): Three fast moving objects in two groups travelling in the same

direction. A team of agents starts at [500, 100]T m as depicted in Figure 5.1a.
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Scenario 2 (LateBirth): Late birth objects. We investigate a searching and tracking

scenario in Figure 5.1b) with four slow-moving mobile objects using a team of agents.

Here, the groups of objects D and C enter the scene when the agents are out of their

detection range—late birth. This scenario favours agent planning with the discovery

value function encouraging exploration and demonstrates the effectiveness of our

multi-objective value function with its competing tracking and discovery objectives.

Scenario 3 (Opposite): Four objects in two groups (A and B) moving rapidly in opposing

directions. Figure 5.1c illustrates the scenario. We use this setting to confirm the

effectiveness of our multi-objective value function. Now, the possibility to discover

group B out of the sensor detection range must be achieved through exploration while

planning to track group A in the vicinity of the agents is immediately rewarded by the

tracking objective.

Scenario 4 (Explosion): Multiple groups of fast moving objects in opposing directions. Here,

we consider a team of agents to search and track 20 fast moving mobile objects as shown

in Figure 5.1d.

Detection-based sensors: (i) We considered agents equipped with a range and bearing

based sensor—common in wildlife tracking (Cliff et al., 2015) for example. Let us =

[ps
x, ps

y, ps
z]

T be the position of agent s, xp = [px, py, 1]T be the position of object x,

each detected object x leads to a noisy measurement z of range and bearing given

by: z =
[

arctan [(py − ps
y)/(px − ps

x)], ||xp − us||
]T

+ v. Here,|| · || is the Euclidean

norm; v ∼ N (0, R) with R = diag(σ2
φ, σ2

ρ ) where σφ = σ0,φ + βφ||xp − us||, σρ =

σ0,ρ + βρ||xp− us||. (ii) To demonstrate the sensor-agnostic nature of our approach, we

consider agents equipped with a vision-based sensor. Each detected object x leads to a

measurement z of noisy xy positions, given by: z =
[
px, py]T + v. Here, v ∼ N (0, R)

with R = diag(σ2
x , σ2

y ).

5.5.1 Comparing greedy and brute force algorithm results for our

submodular multi-objective value function

Figure 5.2 depicts the ratio of our multi-objective value function obtained from greedy

and brute-force algorithms for the four scenarios. The result obtained from 20 Monte

Carlo (MC) runs for each scenario agrees with the performance guarantee of the greedy

algorithm to yield an approximately optimal solution with a bounded performance

guarantee at (1− 1/e) OPT.
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Figure 5.2. Performance comparison between Greedy and Brute-force algorithms.

Multi-objective value function ratio between the greedy VGD
mo and brute-force VBF

mo algorithms with

agents (a) S = 2 and (b) S = 3 (20 MC runs, range and bearing based sensor with rd = 200 m).

5.5.2 Comparing multi-objective multi-agent planning with single

objective multi-agent planning

Table 5.1 compares results for scenario 1, 2, 3 and 4 collected from 20 MC runs for

agents with range and bearing based sensors. It is expected that the average search

area entropy is smallest for V2 since it encourages agents to explore the search area.

Consequently, V2 can also be seen to generate the best performance in terms of OSPA

cardinality—OSPA Card. In contrast, we can see that the multi-agent planning with

the single value function (to encourage only tracking accuracy) V1, achieves improved

results for object localisation accuracy only (low OSPA Loc results) but at the expense

of missing objects often out of the range of the sensors (as seen by significantly large

OSPA Card results). Most importantly, our results verify that Vmo performs best in

terms of overall tracking and cardinality accuracy (reported by OSPA Dist) since Vmo

not only rewards agents for undertaking the discovery of new objects but also rewards

agents for accurately tracking discovered objects.

Figure 5.3 shows the grid occupancy probability and the trajectories of the agents

for scenario 3. The results demonstrate the effectiveness of our proposed planning

method, where agents not only track but discover distant mobile objects.

5.5.3 Explore the asymptotic behaviour of tracking performance with

an increasing number of agents for our planning formulation

Figure 5.4 depicts the overall mean tracking accuracy from 20 MC runs for agent teams

with each detection-based sensor. It confirms that planning with Vmo consistently

performs better than V1 or V2 alone. As expected, when the number of agents increases,
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Table 5.1. Comparing multi-agent planning for tracking mobile objects using our

multi-objective value function Vmo across four scenarios using range and bearing based

sensors with detection range rd = 200 m. We use planning with the single objective value

functions V1 and V2 as baselines and the results are averaged over 20 Monte Carlo experiments.
Scenario 1 (FastMoving) Scenario 2 (LateBirth)

Indicators
Overall

Performance

Tracking

Performance

Discovery

Performance

Overall

Performance

Tracking

Performance

Discovery

Performance

Agents
Value

Functions

OSPA

Dist (m)

OSPA

Loc (m)

OSPA

Card (m)

Search Area

Entropy (nats)

OSPA

Dist (m)

OSPA

Loc (m)

OSPA

Card (m)

Search Area

Entropy (nats)

S = 3

V1 33.9 4.4 29.5 0.23 57.0 4.0 53.0 0.22

V2 21.2 9.7 11.5 0.12 41.1 10.3 30.8 0.12

Vmo 17.7 6.1 11.6 0.17 52.1 5.2 46.9 0.17

S = 5

V1 25.4 5.1 20.3 0.20 53.4 3.6 49.8 0.17

V2 20.3 9.2 11.1 0.09 43.9 9.5 34.4 0.09

Vmo 16.8 5.7 11.1 0.13 38.8 5.1 33.7 0.11

Scenario 3 (Opposite) Scenario 4 (Explosion)

S = 3

V1 51.7 3.0 48.7 0.24 53.7 3.1 50.6 0.32

V2 18.3 12.8 5.5 0.12 55.0 29.8 25.2 0.28

Vmo 11.1 5.9 5.2 0.18 40.7 9.7 31.0 0.32

S = 5

V1 51.2 2.9 48.3 0.24 36.9 5.0 31.9 0.30

V2 10.5 6.9 3.6 0.09 31.2 19.5 11.7 0.25

Vmo 10.5 5.9 4.1 0.15 17.4 6.4 11.1 0.29

Figure 5.3. Illustration of grid occupancy probability and trajectories’ heat map for Scenario

3. Grid occupancy probability (top) and heat map (bottom) of trajectories for 3 agents over 20

MC runs with rd = 200 m using (a) V1. Late birth group B never discovered, (b) V2. Extensive

exploration, and (c) Vmo. Discovers the late birth group B whilst tracking both groups.
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Figure 5.4. Comparison between our multi-objective value function Vmo versus baseline

methods. Overall tracking performance over 20 MC runs based on multi-agent planning with our

multi-objective value function Vmo compare with the single objective value functions V1 and V2 when

the number of agents are increased from 2 to 10 for Scenario 4 (Explosion) with rd = 200 m using

(a) agents with range and bearing based sensors, (b) agents with vision based sensors.
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Figure 5.5. Ratio of the RSOS-based value function Vmin between the greedy and brute-force

algorithms over 20 MC-runs across four scenarios with the detection range rd = 200 m. (a)

Agents S = 2 and (b) Agents S = 3. Here, VGD
min and VBF

min are the RSOS-based value functions

evaluated with the greedy and brute-force algorithms.

V1 and V2 tracking performances improve and approach that of Vmo. Interestingly,

multi-agent planning with a single exploration objective closely approaches the

tracking performance of the multi-objective value function when the team of agents

is large enough to cover the survey area with its range limited sensors and all objects

become visible to the agents.

5.5.4 The evolution of the computational time with the number of

agents

In this subsection, we investigate how the planning time evolves with respected to

the number of agents using the proposed algorithm in Algorithm 5.1. Fig 5.6 depicts

the planning time for a centralised controller to compute optimal control actions when
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Figure 5.6. The evolution of the computational time with respect to the number of agents.

The number of agents is increased from 2 to 10 for Scenario 1 (FastMoving) with rd = 200 m

using range and bearing-based sensors.

the number of agents S is increased from 2 to 10 for Scenario 1 (FastMoving). The

results confirm that using the proposed algorithm, the planning time has quadratic

complexity in the number of agents, as shown in Algorithm 5.1. In particular, the

computational complexity of Algorithm 5.1 consists of two loops:

i) Computation of Vmo: O(Vmo) = O(V1) +O(V2) = O(HNs|X|S) + O(HNgS),

ii) Computation of AG using the greedy algorithm: O(S|A|).

Therefore, the total planning time complexity using the greedy algorithm is

O
(

H(Ns|X| + Ng)|A|S2). Notably, using the greedy algorithm, the computational

complexity of our proposed algorithm increases linearly with respect to the number

of control actions |A| instead of increasing exponentially (|A|S) as in the case of the

brute-force algorithm.

5.5.5 Comparing between greedy and brute force algorithms for a

non-submodular multi-objective value function

We formulated and proved the submodularity of our multi-objective value function.

Here, we investigate the non-submodular multi-objective optimisation method called

robust submodular observation selection (RSOS) (Krause et al., 2008; Udwani, 2018),

which is an a priori preference articulation method in multi-objective optimisation

robust against the worst possible objective to contrast against the quality of the

solutions from our multi-objective optimisation method based on the global criterion

method. Unlike the global criterion method, where we prove the solution preference
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formulation (see(5.16)) is submodular (see Theorem 5.5), in the RSOS approach, even

if each of the ith value function Vi is submodular (as in our formulations and proofs) ,

Vmin = min
i

Vi is generally not submodular (Krause et al., 2008).

Figure 5.5 depicts the ratio of the value function obtained from the RSOS

multi-objective optimisation using greedy and brute-force algorithms for the four

scenarios. The results obtained from 20 Monte Carlo (MC) runs for each scenario

confirms the non-submodularity of the RSOS-based value function formulation since

its performance using the greedy algorithm violates the (1− 1/e)OPT (optimal) bound

for scenario 1 and 3.

5.5.6 Grid occupancy probability (area coverage) and the trajectories

of the agents

We illustrated the behaviour of the agents for Scenario 3 (Opposite) Section 5.5

as it provides an interesting mix of tracking and discovery. Here we present in

Figures 5.7, 5.8, and 5.9 the grid occupancy probability and trajectory heat-maps

resulting from the experiments for Scenario 1, 2 and 4 over 20 MC runs using a team

of three agents.

As expected, value function Vmo is not only able to track discovered mobile objects

but also able to search for and track undiscovered mobile objects out of the range

of the team’s sensor detection range. This is evident in comparing the similarity

between coverage plots for our discovery value function V2 based planning method

with that of our multi-objective value function Vmo based planning. Performance of

our multi-objective planning method is even more apparent in Figure 5.9 where the

three agents fail to often visit all four corners of the search area when making planning

decisions with only our discovery value function. In contrast, we can see that the

multi-objective planning method achieves not only excellent tracking performance but

also coverage of the search area. Notably, this feat is achieved with only three agents

and four groups of objects with a total of 20 fast moving mobile objects.

Agent trajectories reveal that agent rewarding tracking performance alone (V1) leads to

teams moving towards and tracking the immediately visible objects. For example, we

can observe in Figure 5.9 that all three agents almost always follow the immediately

visible object groups when planning decision are made using only the V1 value
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function aiming to achieve improved tracking performance. Further, as two groups of

objects take the agents away from the other opposing groups, the opposing groups are

rarely ever tracked. In contrast, in Figure 5.9, we can clearly see the three agents using

the multi-objective value function for planning, traversing between the four groups of

20 fast moving objects to track all of the targets.

5.5.7 Overall performance with a vision-based sensor

We presented the results from our four scenarios using a range and bearing sensor in

Section 5.5 (see Table 5.1). Here, Table 5.2 compares results for scenario 1, 2, 3 and 4

collected from 20 MC runs where the agent use an onboard vision sensor with detection

range rd = 200 m.

Our observations for the vision based sensor is similar to the range and bearing based

sensor experiments. It is expected that the average search area entropy is smallest

for V2 since it encourages agents to explore the search area. Consequently, V2 can

also be seen to achieve better performance in terms of OSPA cardinality—OSPA Card

compared to planning with value function V1 (for tracking). In contrast, we can see

Figure 5.7. Scenario 1 (FastMoving) using vision-based sensors. 2D grid occupancy probability

(top) and heat map (bottom) of the trajectories of three agents to search and track three fast

moving objects over 20 MC runs using range and bearing based sensor with detection range rd =

200 m.
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Figure 5.8. Scenario 2 (LateBirth) using vision-based sensors. 2D grid occupancy probability

(top) and heat map (bottom) of the trajectories of three agents to search and track four slow moving

objects over 20 MC runs using range and bearing based sensor with detection range rd = 200 m.

that multi-agent planning decisions that value function only tracking accuracy, V1,

achieves improved results for object localisation accuracy only (low OSPA Loc results)

but at the expense of missing objects often out of the range of the sensors (as seen

by significantly large OSPA Card results). Most importantly, our results verifies that

multi-agent planning with the multi-objective value function Vmo performs the best in

6 out of 8 cases in terms of overall tracking and cardinality accuracy (reported by OSPA

Dist). We can expect this result in our challenging scenarios since Vmo not only value

functions agents for undertaking the discovery of new objects but also value functions

agents for accurately tracking discovered objects.

We observe that for Scenario 2 (LateBirth), when the number of agents is small (S = 3),

V2 performs better than Vmo. This is reasonable since our discovery value function, V2,

encourages planing decisions that disperses agents to regions with high entropy or

less information. Consequently, the late birth objects are instantly detect. In contrast,

planning with Vmo value function needs the agent team to complete two tasks (i.e.,

tracking and discovering) simultaneously and with limited number of agents (S = 3).

Now, the discovery of the two groups of late birth objects occurs very late. This is

evident in the OSPA Loc result being better for Vmo compare to V2 (10.1 vs 13.6) while
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Figure 5.9. Scenario 4 (Explosion) using vision-based sensors. 2D grid occupancy probability

(top) and heat map (bottom) of the trajectories of three agents to search and track twenty fast

moving objects over 20 MC runs using vision based sensor with detection range rd = 200 m. Here

object groups C and D—see Figure 5.1—are born late.

OSPA Card results being worse for Vmo compared to V2 (36.4 vs. 29.2) for Scenario 2

(LateBirth). However, with more agents (S = 5) we can observe the team of agents

performing better under the Vmo value function planning than with V2 value function

alone.

In Scenario 3 (Opposite), we can observe planning with value function V2 performs

marginally better than the agent team with planning using Vmo when S = 5. This

is because the increased number of agents (S = 5) achieves faster exploration over

the search area (see the occupancy probability map in Figure 5.3). Now, the object

group B—see Figure 5.1—are discovered much more quickly with the agents planning

for searching with discovery value function V2 to reduce their expected entropy of

the search area. This is evident in the OSPA Card result being better for the agent

team planning using our discovery value function V2 as opposed to our multi-objective

value function Vmo (3.2 vs. 4.0) while the tracking performance for both teams (using

V2 and Vmo) are nearly identical (13.2 vs. 12.3).
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Table 5.2. Comparing multi-agent planning for tracking mobile objects using our

multi-objective value function Vmo across four scenarios using vision based sensors with

detection range rd = 200 m. We use planning with the single objective value functions V1 and V2

as baselines and the results are averaged over 20 Monte Carlo experiments.
Scenario 1 (FastMoving) Scenario 2 (LateBirth)

Indicators
Overall

Performance

Tracking

Performance

Discovery

Performance

Overall

Performance

Tracking

Performance

Discovery

Performance

Agents Value functions
OSPA

Dist (m)

OSPA

Loc (m)

OSPA

Card (m)

Search Area

Entropy (nats)

OSPA

Dist (m)

OSPA

Loc (m)

OSPA

Card (m)

Search Area

Entropy (nats)

S = 3

V1 41.3 9.7 31.6 0.25 58.5 7.3 51.2 0.21

V2 26.3 15.1 11.2 0.12 42.8 13.6 29.2 0.12

Vmo 23.2 12.1 11.1 0.16 46.5 10.1 36.4 0.16

S = 5

V1 31.3 10.8 20.5 0.2 52.2 8.3 43.9 0.20

V2 24 13.6 10.4 0.09 43.3 12.9 30.4 0.09

Vmo 23.4 12.1 11.3 0.13 39.1 10.9 28.2 0.12

Scenario 3 (Opposite) Scenario 4 (Explosion)

S = 3

V1 51.5 7.8 43.7 0.26 55.3 9.3 46 0.32

V2 22.4 17.8 4.5 0.12 54.5 37.5 17.1 0.28

Vmo 19.4 13.4 6.0 0.16 43.4 20.8 22.6 0.32

S = 5

V1 51.2 8.6 42.6 0.25 43.7 12.7 31.0 0.31

V2 16.4 13.2 3.2 0.09 33.4 25.4 8.0 0.25

Vmo 17.3 13.3 4.0 0.12 18.8 7.7 0.29 0.29

5.5.8 Explore the asymptotic behaviour of tracking performance with

increasing agent team’s maximum sensor coverage

In Figure 5.4, we studied the behaviour of tracking performance with an increasing

number of agents for our planning formulation. In this experiment we consider

maximum agent team search area coverage capability and tracking performance.

In practice, sensors have a limited range. In our numerical experiments both the vision

sensor and the radio receivers will have a limited range, i.e., rd = 200 m. However,

in this experiment, we wanted to understand the performance of our multi-objective

planning algorithm when objects are nearly all visible to the agents and systematically

remove the constraints imposed by practical detectors. We can expect our single

objective value function V1 or V2 to perform better under the theoretical conditions

of agent sensors with unlimited detection range.

We recognise that increasing the number of agents, albeit with a range limited sensor

is akin to increasing the range of a sensor to be extremely large for a small team of

agents. Therefore, we define the Agent Team’s Maximum Sensor Coverage (%) as 100S×
πr2

d/(Search Area) %, and investigate the overall performance over in increasing the

Agent Team’s Maximum Sensor Coverage (%).
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Figure 5.10. Overall tracking performance over 20 MC runs based on multi-agent planning

with our multi-objective value function function Vmo compared with the single objective

tracking value functions V1 and our discovery V2. The Agent Team’s Maximum Sensor Coverage

(%)) using five agents is increased from 3.9 % to 251.3 % for (a) Scenario 1 (FastMoving), (b)

Scenario 2 (LateBirth), and (c) Scenario 3 (Opposite) with (left) range and bearing based sensors,

(right) vision based sensors.

Figure 5.10 and Figure 5.11 depict the overall performance for planning with our

multi-objective value function Vmo versus tracking value function V1 and our discovery
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Figure 5.11. Overall tracking performance over 20 MC runs based on multi-agent planning

with our multi-objective value function function Vmo compared with the single objective

tracking value functions V1 and our discovery value function V2. The Agent Team’s Maximum

Sensor Coverage (%) using five agents is increased from 3.9 % to 251.3 % for Scenario 4 (Explosion)

with (a) range and bearing based sensors, (b) vision based sensors.

value function V2 for the four scenarios. The Agent Team’s Maximum Sensor Coverage

(%) using five agents (S = 5) is increased from 3.9 % to 251.3 %; this corresponds to

a detection range rd increase from 50 m to 400 m for scenario 1, 2, and 3 and an rd

increase from 100 m to 800 m for scenario 4.

We can see that planning with value function V1 performs worst and provides

inconsistent performance across the four scenarios compared to V2 and Vmo. Planning

with our exploration value function V2 alone generally performs better when the team

coverage increases; this is expected. Multi-agent planning with our multi-objective

value function Vmo almost always performs better or the same as V1 or V2 across all

scenarios, especially under the more practical situations of low team area coverage

(< 99%). Notably, it is difficult for any planning strategy to achieve an overall result

better than OSPA Dist≈10 m under our experimental settings for the detectors given

the realistic process and measurement noise levels we employed.

5.6 Conclusion

In this chapter, we have formulated a multi-objective planning approach for

multi-agent tracking and searching for mobile objects. We have established that

our formulation results in a value function that is monotone and submodular. We
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presented a series of extensive experimental results to demonstrate the effectiveness of

our method and performance guarantees when using the low-cost greedy algorithm to

determine control actions for the multi-agent.

So far, we consider a centralised MPOMDP for multi-agent planning for MOT where

scalability can be a limitation. Moreover, the centralised approach can be a serious

limitation in real life cases when long distance and a large number of agents (e.g.,

UAVs) are required to explore a large area. A scalable approach should be a distributed

POMDP for MOT, wherein each agent runs its local filter to track multiple objects,

and coordinates with other agents to achieve a global objective. However, planning

for multiple agents to reach a global goal under a distributed POMDP framework is

an NEXP-complete problem (Bernstein et al., 2002). In the next chapter, we focus on

solving MOT in a distributed manner where agents are stationary and equipped with

limited FoV sensors. Solving this distributed MOT problem is an essential first step

towards developing a distributed multi-agent path planning algorithm for MOT.
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Chapter 6

Distributed Multi-object
Tracking under Limited

FoV Sensors

W
E consider the problem of tracking multiple objects using

distributed multi-sensors with limited field of views.

Specifically, to achieve real-time tracking under limited

computing resources, we develop a novel fusion strategy that operates

on local multi-object track estimates instead of local multi-object densities.

Consequently, the proposed distributed multi-sensor multi-object tracking

algorithm is significantly faster than those based on multi-object density

fusion. It also achieves better tracking accuracy by directly considering

the error of the multi-object track via the Optimal Sub-Pattern Assignment

(OSPA) metric. Numerical experiments demonstrate the real-time

capability of our proposed solution, in speed and accuracy compared to

state-of-the-art fusion rules such as Generalised Covariance Intersection

(GCI) in challenging scenarios.
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Exchange information
Local computing unit

Sensor FoV
Limited FoV Sensor

Figure 6.1. A distributed sensor network system with limited FoVs.

6.1 Motivation and Contribution

Progress in wireless communication technologies and sensing has enabled significant

developments in sensing capabilities for sensor networks. These networks are

comprising of interconnected nodes with perception, communication and processing

capabilities, such as the distributed network illustrated in Fig. 6.1. To fully capitalise

on the potential of sensor networks, a properly distributed algorithm should be: i)

scalable across increasing numbers of nodes; ii) flexible to adapt to different scenarios;

and iii) reliable—avoiding the pitfalls from a single point of failure in a centralised

approach (Luo et al., 2006). In the distributed networks, each node can work

independently and without a centralised node or knowledge of the network topology.

Distributed MOT (DMOT) is a natural extension of sensor networks. DMOT addresses

the practical problems of limited field of view (FoV) or observability of sensing

modalities from a single node, such as thermal cameras or radars, to obtain a

comprehensive understanding of surveillance areas. Such networks are ubiquitous

in various smart cyber-physical systems ranging from traffic management, patient

care, battlefield surveillance to space exploration (Souza, Nakamura and Pazzi,

2016). The common objective is to combine or fuse information from sensors or

multiple nodes with limited observability to track multiple objects under surveillance.

In principle, an optimal fusion can be accomplished by preserving marginal and

joint distributions from all nodes (Liggins et al., 1997). However, maintaining these

quantities demands common information to be shared among all nodes (Mahler,

2000; Battistelli et al., 2013); this hinders the flexibility and scalability of distributed

networks. Therefore, a robust (likely sup-optimal) information fusion is essential

to counteract the double-counting of information when the common information is
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unknown (Üney, Clark and Julier, 2013). In addition, practical considerations on

computing resource and communication bandwidth for distributed solutions, means

that fusing multi-object distributions (which invariably contain a large number of

parameters) should be avoided.

Recently, there has been an emergence of DMOT algorithms developed from the RFS

framework. This RFS framework is an emerging paradigm that generalises the classical

dynamical systems to set-valued dynamical systems, in which MOT is a multi-object

state estimation problem. Consequently, a considerable number of RFS filters have

been developed, including i) non-labelled filters such as the probability hypothesis

density (PHD) filter (Mahler, 2003), cardinalised PHD (CPHD) filter (Mahler, 2007a),

multi-Bernoulli (MB) filter (Mahler, 2007b; Vo, Vo and Cantoni, 2009); ii) labelled filters

such as generalised labelled multi-Bernoulli (GLMB) filter (Vo and Vo, 2013; Vo, Vo

and Phung, 2014), and labelled multi-Bernoulli (LMB) filter (Reuter et al., 2014).

Under the RFS framework, Generalised Covariance Intersection (GCI10) (Mahler,

2000; Hurley, 2002) has emerged as an efficient solution to fuse multi-object

densities using the geometric mean from multiple nodes in a distributed network.

Subsequently, distributed multi-object tracking filters using GCI under the RFS

framework, such as i) non-labelled GCI-based filters: PHD-GCI (Üney, Clark and Julier,

2013), CPHD-GCI (Battistelli et al., 2013), MB-GCI (Wang et al., 2016); and ii) labelled

GCI-based filters: LMB-GCI (Fantacci et al., 2018), Label Free LF-GCI (Li et al., 2018;

Yi et al., 2020), Label Matching LM-GCI (Li et al., 2019) have been formulated. In

essence, GCI can be considered as an intersection among multi-object densities of

multi-sensors, thus, GCI-based filters perform badly when nodes do not share the

same FoV, as in practice, because GCI is affected by cardinality inconsistency (Üney

et al., 2019). Further, GCI fusion in a distributed network setting is computationally

inefficient and demands extremely high bandwidth to share multi-object densities

among all nodes (Fantacci et al., 2015); these aspects can be prohibitive in practice

for real-time tracking with increasing numbers of networked nodes and objects of

interest (Gao, Battistelli and Chisci, 2019).

A few remedies for distributed fusion problems with different FoVs have been

investigated. For non-labelled GCI-based filters, Li et al. proposed using cluster

analysis for PHD-GCI filter (CA-PHD-GCI) (Li et al., 2020). The CA-PHD-GCI filter
10GCI is also known as Chernoff fusion (Cover and Thomas, 2012; Chang, Chong and Mori, 2010),

Exponential Mixture Density (EMD) (Julier, Bailey and Uhlmann, 2006; Clark et al., 2010; Üney, Clark

and Julier, 2013) or Kullback-Leibler Average (KLA) (Battistelli et al., 2013; Battistelli and Chisci, 2014)
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solution requires sharing FoV information among nodes and does not generate object

labels (identifications), an important feature in MOT problems to obtain object tracks (Vo,

Vo and Phung, 2014), since its underlying filter is the non-labelled PHD filter. For

labelled GCI-based filters, early efforts to minimising label inconsistency problems

(e.g., an object is assigned different labels by different nodes) for sensors without FoV

limitations have been investigated in (Li et al., 2018, 2019; Yi et al., 2020) for distributed

fusion problems. However, the problem of reaching label consensus and minimising

label inconsistency problems among multiple nodes under practical settings of limited

FoV in distributed fusion remains a challenging problem to solve. Importantly, we

observe that GCI-based divergence is not a metric (Van Erven and Harremos, 2014).

In this work, we focus on solving DMOT problems under the practical challenges

of sensors with limited FoVs and communication channel bandwidth. Therefore

we formulate a computation and bandwidth efficient method to remedy the label

inconsistency problem in DMOT when nodes operating with limited FoV sensors

do not share the same label space. We propose sharing and fusing local estimates

instead of the local multi-object densities in a distributed manner; this fusion strategy

allows us to significantly reduce the communications bandwidth among nodes as

well as the fusing time (computational cost). The track-to-track fusion and association

algorithms have been investigated previously in various literature (Chong, Mori and

Chang, 1990; Chang, Saha and Bar-Shalom, 1997; Chong et al., 2000; Mori et al.,

2002; Mori and Chong, 2003; Kaplan, Bar-Shalom and Blair, 2008; Mori, Chang and

Chong, 2014; Tian, Yuan and Bar-Shalom, 2015). However, a common practice of these

track-to-track association methods is to assume that there is no false tracks or missed

objects (thus the number of local tracks from two nodes are the same) (Mori, Chang

and Chong, 2014). Therefore, these previous track-to-track association algorithms

are not suitable to handle the complex nature of our considered problem involving

a time-varying number of objects with unknown associations and the limited FoV

sensors. In particular, we formulate a track consensus algorithm, TC-OSPA(2) based

on the similarity measures between estimated tracks. Intuitively, we can understand

our approach by considering the fact that the tracks, albeit partial, seen over time

by multiple nodes for the same object ought to be alike. This requires considering a

track consensus problem with, ideally, guarantees on object track similarity measure

using Optimal Sub-Pattern Assignment(2) (Beard, Vo and Vo, 2017, 2018) — a metric —

between two estimated tracks. Consequently, we establish a performance bound for

the label inconsistency problem by exploring the metric property of OSPA(2) distance.
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Further, we develop a label consensus algorithm to minimise the label inconsistency

problems since local nodes are equipped with limited FoV sensors, and mismatched

labels among nodes are common, especially when objects are moving from one node’s

FoV to another node’s FoV.

Our contributions:: i) a fast and efficient distributed fusion algorithm for multi-sensor

with different FoVs is devised; ii) a novel label consensus algorithm is developed

to minimise the label inconsistency problems due to limited FoV sensors; iii)

Simulation results confirm the effectiveness of our proposed method that considerably

outperforms the GCI-based approaches in terms of accuracy and fusing time.

6.2 Background

This section presents a brief background needed in our work, including our notational

convention, a background about metrics, and the descriptions of a distributed sensor

network.

6.2.1 Notation

The notational convention in (Vo, Vo and Phung, 2014) is adopted, lowercase letters

(e.g., x, x) denote single-object states, while uppercase letters (e.g., X, X) denote

multi-object states. Labelled states and their distributions are represented in bold

letters (e.g., X, π), while spaces are denoted in blackboard letters (e.g., X, L). A labelled

single-object state x is comprising of its unlabelled kinematic state x and label l,

i.e., x = (x, l). Let L : X × L → L be the label projection L((x, l)) = l, thus

L(X) = {L(x) : x ∈ X} is the set of labels of X. Further, for a given set X, F (X)

denotes the class of finite subsets of X, while 1X(·) denotes the indicator function of X,

and its cardinality is denoted by |X|. Through out the texts, the term metric or distance

is used interchangeably with the same meaning.

6.2.2 Multi-object tracking metrics

In this subsection, we revisit the metric property, and a few notable metrics used in

multi-object tracking.

Page 123



6.2 Background

Metric property The metric has a precise mathematical meaning. A function d :

F (X)×F (X)→ [0, ∞) is a metric if it meets the following conditions:

1) d(x, y) = 0 if and only if x = y (identity),

2) d(x, y) = d(y, x) (symmetry),

3) d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality).

Wasserstein metric Consider two multi-object states X = {x(1), . . . , x(m)} ∈ F (X)
and Y = {y(1), . . . , y(n)} ∈ F (X), and a parameter p ∈ [1, ∞). Hoffman and

Mahler (Hoffman and Mahler, 2004) introduced the Wasserstein metric dW
p (·, ·) for

empirical densities, given by:

dW
p (X, Y) = min

C

( m

∑
i=1

n

∑
j=1

Ci,jd(xi, yj)
p
)1/p

, (6.1)

where the minimum is taken over all m × n transportation matrices C = (Ci,j). An

m× n matrix C is a transportation matrix if Ci,j ≥ 0 ∀i = 1, . . . , m; j = 1, . . . , n, and

m

∑
i=1

Ci,j =
1
n

,
n

∑
j=1

Ci,j =
1
m

. (6.2)

The Earth mover’s distance in (Levina and Bickel, 2001) is a special case of the

Wasserstein metric when p = 1, which is the minimum cost of turning one earth

pile to the other. The Wasserstein metric encounters a few important problems

(see (Schuhmacher, Vo and Vo, 2008) for more details), e.g.,

i) The inconsistency of the metric: the performance of the Wasserstein metric depends

on the equitable distribution of the number of objects between two multi-object

states, thus it occasionally fails to detect cardinality errors.

ii) Geometry dependent behavior: the cardinality error is penalised more heavily when

objects are further apart.

OSPA metric The OSPA metric is proposed in (Schuhmacher, Vo and Vo, 2008) to

alleviate the aforementioned problems of the Wasserstein metric. Let d(c)p (·, ·) be the

OSPA metric with order p ∈ [1, ∞) and cutoff c ∈ (0, ∞). Consider two multi-object
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Figure 6.2. A sketch for track definition with two fragmented tracks f and g.

states X = {x(1), . . . , x(m)} ∈ F (X) and Y = {y(1), . . . , y(n)} ∈ F (X). If m ≤ n,

d(c)p (X, Y) is defined as

d(c)p (X, Y)

=

(
1
n

(
min
π∈Πn

m

∑
i=1

d̄(c)(xi, yπ(i))p + cp(n−m)

))1/p

, (6.3)

where d̄(c)(x, y) = min(c, d(x, y)), in which d(·, ·) is an arbitrary metric on the single

object state space of X. If m > n, then d(c)p (X, Y) , d(c)p (Y, X). Since the factor of

1/n is used in (6.3), the OSPA metric can be interpreted as the smallest localisation

and cardinality per-object error. The cut-off c is a parameter to emphasise on the

localisation error if c is small or on the cardinality error if c is large.

Base distance between two tracks — a metric Let T = {1, . . . , K} be a finite space of

time indices, from the start time at 1 to the end time at K. Let U , { f : T → X} be a

space of all functions from T to X. An element of f ∈ U is defined as a track, and its

domain D f ⊂ T is the set of time instants that the object exists. This track definition

(as illustrated in Fig. 6.2) encompasses the so-called fragmented tracks (e.g., tracks of

estimated objects with holes in their domains due to disappearance/reappearance)

and the continuous tracks (so-called trajectories), e.g., tracks of ground truth objects

without holes in their domains.

Let f and g be the two tracks of interest on the space F (U). The base distance between

two tracks, d̃(c)(·, ·), is defined as the average OSPA distance between the set of states

of tracks f and g, over its domain t ∈ D f ∪Dg, i.e.,

d̃(c)( f , g) = ∑
t∈D f∪Dg

d(c)({ f (t)}, {g(t)})
|D f ∪Dg|

(6.4)
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if D f ∪ Dg 6= ∅, and d̃(c)( f , g) = 0, if D f ∪ Dg = ∅. Here, { f (t)} is a singleton if

t ∈ D f , and empty otherwise (likewise for {g(t)}). Thus, the parameter p in (6.3) is

removed due to redundancy. As shown in (Beard, Vo and Vo, 2020), the base distance

between two tracks is a metric with all aforementioned metric properties.

OSPA(2) metric for tracks The base distance defined in (6.4) is a metric, and confined

by the cut-off value c. Thus, it can be served as a base distance of the original OSPA

metric in (6.3). The resulting metric is called OSPA-on-OSPA or OSPA(2) metric. The

OSPA(2) metric can be interpreted as the time-average per-track error, which considers

errors in localisation, cardinality, as well as track fragmentation and labelling errors

(i.e., label inconsistency problems) (Beard, Vo and Vo, 2020).

6.2.3 Distributed sensor network description

Consider a distributed heterogeneous network in Fig. 6.1 described by an undirected

graph G = (S ,A) where S is the set of nodes and A ∈ S × S is the set of arcs

representing connections among nodes. Particularly, (a, b) ∈ A if node a can receive

information from node b. Then, for each node a, let S (a) , {∀b ∈ S : b 6= a and (a, b) ∈
A} be the set of neighbours that node a can receive data from.

The network of nodes S is conducting surveillance over a large area to detect and

track an unknown and time-varying number of mobile objects. We assume that each

node is equipped with a local computational unit capable of, for example, computing

its local probability density and its resulting local estimate, as well as a transceiver

for communicating reliably with their neighbours through a range and bandwidth

limited communication channel. In this context, a typical ad-hoc network exists

between the nodes where a repeated message passing mechanism can propagate the

local information of each node across the network. A node is equipped with a limited

field-of-view (FoV) sensor subjected to false-alarms and misdetections, as in practice.

Further, the associations between objects and measurements are unknown and must

be estimated online.

The network of interest has no central fusion node and its nodes operate without

knowledge of the network topology. The objective in this problem is to reach an

agreement amongst the local estimates of the set of nodes S ; this is a fundamental

problem for a network. Our interest is in networked estimation algorithms scalable
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with respect to network size and permitting each node to operate without knowledge

of the dependence between its own information and the information from other nodes.

6.3 Information Fusion using Track Consensus

To this end, we consider that each local node computes its local LMB filter and its

resulting local estimate. The goal is to reach the estimate consensus among nodes,

comprising of: i) spatial consensus (i.e., object’s positions) and ii) label consensus (i.e.,

object’s identifications) of local estimates. Note that the notion of consensus requires

a physically meaningful distance (i.e., OSPA(2)) with metric properties to measure the

similarity among local estimates.

In this section, we present our proposed distributed information fusion method for

local estimates from the local LMB filters of a network of |S| distributed nodes. The

fundamental idea is to find matched tracks by measuring the similarity between two

tracks over a time window (e.g., 10-scan), instead of relying on the state of a single

scan—measurement time step—as in previous work Li et al. (2019). Additionally, since

the sensor on each node has a limited FoV, the fusion algorithm should only fuse the

matched tracks to enhance tracking accuracy while preserving the unmatched ones to

enlarge detectability. Further, the fusion algorithm needs to address the challenging

problem of label inconsistency resulting from the limited FoV sensors in the presence

of fragmented tracks to achieve label consensus.

First, for the sake of simplicity, we consider information fusion for the case of two

nodes. We present how to use the base distance of OSPA(2) metric as a distance metric

of two tracks. Second, we derive a performance bound for the label inconsistency

problem. Third, we present the spatial consensus method. Forth, we propose a

label consensus algorithm to counteract the label inconsistency problem. Last, a

message-passing mechanism coupling with a pair-wise fusing algorithm is proposed

when the number of nodes |S| > 2.

6.3.1 Track matching for two nodes

The previous work in (Li et al., 2019) using LM-GCI only considers label matching at

one instance in time. Further, LM-GCI can only perform well in full FoV scenarios

when all of the nodes can observe all of objects. For limited FoV cases, there are
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inconsistent labels in case the objects only appear in one node’s FoV but not the others,

resulting that the mismatched objects are not detected. In this work, we propose using

the tracks of detected objects to match among nodes which considers the histories

of objects for a better match. Further, the unmatched objects are maintained for the

limited FoV scenarios.

Considering two nodes a, b ∈ S with its local estimated tracks over a time interval [j, k]

are X(a)
j:k and X(b)

j:k , respectively. At time k, the aim is to compute a reported estimate Xrep
k

between two nodes. Because the data fusion is conducted for existing local estimates

at time k, we consider track matching for the existing tracks at time k only. Let L(a)
k

and L(b)
k be the sets of labels at time k of the two respective local estimates, a and b.

Let l ∈ L(a)
k and l′ ∈ L(b)

k be two labels of a and b local estimates, respectively. The

corresponding domains are D(l) ⊆ [j, k] and D(l′) ⊆ [j, k], with the respective tracks

are x(l) and x(l
′).

Without loss of generality, assume |L(a)
k | ≤ |L

(b)
k |. Let τ : L(a)

k → L(b)
k be a track

matching map, which is an injective function mapping unique elements of its domain

to unique elements of its codomain such that τ(l1) = τ(l2) if and only if l1 = l2. The

set T of all such track matching maps is called the track matching map space. The

objective is to find the optimal matching that minimises summation of the OSPA(2)

base distances between estimated tracks from two local estimates:

τ∗ = argmin
τ∈T

∑
∀l∈L(a)

k

d̃(c)(x(l), x(τ(l))). (6.5)

This can be achieved by solving a ranked assignment problem (Vo, Vo and Phung,

2014). The cost matrix of an optimal matching problem is the |L(a)
k | × |L

(b)
k |matrix:

C =


C1,1 · · · C

1,|L(b)
k |

... . . . ...

C|L(a)
k |,1

· · · C|L(a)
k |,|L

(b)
k |

 , (6.6)

where for m ∈ {1, . . . , |L(a)
k |} and n ∈ {1, . . . , |L(b)

k |},

Cm,n = d̃(c)(x(lm), x(l
′
n)). (6.7)

In particular, let H be an assignment matrix comprised of 0 or 1 elements such that the

sum of every row and every column is either 0 or 1. Here, Hm,n = 1 if lm is matched to
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l′n, and Hm,n = 0 if otherwise. The assignment matrix cost H is the joint costs of every

label in L(b)
k to every label in L(a)

k , which can be written as the Frobenius inner product,

such that

tr(HTC) =
|L(a)

k |

∑
m=1

|L(b)
k |

∑
n=1

Cm,nHm,n.

The ranked assignment problem can be determined using the Hungarian algorithm

in strongly polynomial time (Kuhn, 1955; Munkres, 1957). In the multi-object

tracking context, as in this chapter, a Murty’s algorithm (Murty, 1968) with O(|L(b)
k |

4)

complexity is implemented. Beside that, other efficient assignment algorithms (Miller,

Stone and Cox, 1997; Pedersen, Nielsen and Andersen, 2008) with O(|L(b)
k |

3) could be

considered.

Remark 2. The computational time of the ranked assignment using TC-OSPA(2) is

considerably smaller than LM-GCI proposed in (Li et al., 2019). The reason is that for LMB

filter, the local estimate is extracted from the local LMB density for any labels with existence

probabilities higher than a predefined threshold (typically 0.5). Thus, the label space of the local

estimate used in TC-OSPA(2) is substantially smaller than the label space of the LMB density

used in LM-GCI.

6.3.2 Performance bound for label inconsistency

In this subsection, we investigate the condition to ensure there is no label inconsistency

when performing the optimal assignment algorithm in (6.5). We have the following

propositions (see the appendix for proofs).

Proposition 6.1. Given two objects with its ground truth trajectories y(1)
j:k , y(2)

j:k . Let x(l1), x(l2)

and x(l
′
1), x(l

′
2) be their estimated tracks from node a and node b, respectively. Let the estimated

trajectory error bound using the base distance of OSPA(2) for node a and node b over the time

interval [j, k] is Ea,j:k and Eb,j:k, respectively. Let Ej:k = max(Ea,j:k, Eb,j:k), that is for any

m = 1, 2,

ď(c)(x(lm), y(m)
j:k ) ≤ Ej:k, and ď(c)(y(m)

j:k , x(l
′
m)) ≤ Ej:k.

Then the condition for no label inconsistency in (6.5) is that

ď(c)(y(1)
j:k , y(2)

j:k ) > 4Ej:k. (6.8)
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Proof. Since the base distance of OSPA(2) is a metric, applying triangle inequality, we

have:

ď(c)(x(lm), x(l
′
m)) ≤ ď(c)(x(lm), y(m)

j:k ) + ď(c)(y(m)
j:k , x(l

′
m)),

≤ 2Ej:k. (6.9)

Similarly, using triangle inequality, we have

ď(c)(x(l1), x(l
′
2)) ≥ ď(c)(y(1)

j:k , x(l
′
2))− Ej:k,

≥ ď(c)(y(1)
j:k , y(2)

j:k )− 2Ej:k. (6.10)

So the condition for no label switching is that:

ď(c)(x(l1), x(l
′
2)) > ď(c)(x(lm), x(l

′
m)), (6.11)

⇔ ď(c)(y(1)
j:k , y(2)

j:k ) > 4Ej:k.

The following definition is needed to explore Ej:k.

Definition 1 (The empirical existence probability). A single object with state y ∈ X can

be estimated using any filter after applying measurements by either a single object with

state x ∈ X — an object detection, occurring with probability pX(y) ∈ [0, 1] or a missed

detection, no estimated object at all, occurring with probability 1− pX(y). Here, pX(·)
is called an empirical detection probability11. Over the time period [j : k], the empirical

existence probability of an object y(m)
j:k from node a with its estimated track x(lm) is

p(a)
X,j:k(y

(m)
j:k ) =

|D(lm)|
n

. (6.12)

where D(lm) is the domain of track x(lm), and n = k− j + 1.

Proposition 6.2. Let p(a)
X,j:k(·) and p(b)X,j:k(·) be the minimum empirical existence probability of

node a and node b for all objects, in the period [j, k], and pmin
X,j:k = min(p(a)

X,j:k(·), p(b)X,j:k(·)).

11The empirical existence probability pX is different from the detection probability pD in the sense

that pD is related to detectability of a sensor measurement while pX is related to the detectability based

on the filter’s posterior estimate. For any good filters, we can expect 0 ≤ pD ≤ pX ≤ 1 ∀pD, and pX is

monotonically increasing to pD.
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Let the state estimation error bound for node a and node b over period [j, k] be εa,j:k, εb,j:k

respectively, and let ε
(c)
j:k = min(c, max(εa,j:k, εb,j:k)) ≤ c, that is for any m = 1, 2,

d(c)({x(lm)i }, {y(m)
i }) =

c i /∈ D(lm)

min(d(x(lm)i , y(m)
i ), c) ≤ ε

(c)
j:k i ∈ D(lm)

,

d(c)({x(l
′
m)

i }, {y(m)
i }) =

c i /∈ D(l′m)

min(d(x(l
′
m)

i , y(m)
i ), c) ≤ ε

(c)
j:k i ∈ D(l′m)

Then we have:

Ej:k = ε
(c)
j:k pmin

X,j:k + c(1− pmin
X,j:k). (6.13)

Proof. Based on the Definition 1, we have:

p(a)
X,j:k(y

(m)
j:k ) =

|D(lm)|
n

= pmin
X,j:k + ε, (6.14)

where ε ≥ 0.

According to the definition of the base distance of OSPA(2):

d̃(c)(x(lm), y(m)
j:k ) =

k

∑
i=j

d(c)({x(lm)i }, {y(m)
i })

n

=
1
n ∑

i∈D(lm)

d(c)({x(lm)i }, {y(m)
i }) +

n− |D(lm)|
n

c

≤ p(a)
X,j:k(y

(m)
j:k )ε

(c)
j:k + (1− p(a)

X,j:k(y
(m)
j:k ))c

≤ (pmin
X,j:k + ε)ε

(c)
j:k + (1− pmin

X,j:k − ε)c

≤ ε
(c)
j:k pmin

X,j:k + (1− pmin
X,j:k)c− ε(c− ε

(c)
j:k )

≤ ε
(c)
j:k pmin

X,j:k + (1− pmin
X,j:k)c.

(6.15)

Similarly we have

d̃(c)(x(l
′
m), y(m)

j:k ) ≤ ε
(c)
j:k pmin

X,j:k + (1− pmin
X,j:k)c.

Remark 3. If the time interval [j, k] is long enough, and a good filter is used, we can have

pmin
X,j:k ≈ pmin

X ≥ pD. Hence,

Ej:k ≤ ε
(c)
j:k pD + c(1− pD). (6.16)
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Further, the estimation error bound ε
(c)
j:k is often proportional to measurement noise covariance

R. Suppose R = diag(σ2
x , σ2

y ) and ε
(c)
j:k = min(2

√
σ2

x + σ2
y , c), we have:

Ej:k ≤ min(2
√

σ2
x + σ2

y , c)pD + c(1− pD). (6.17)

Then the condition for no label inconsistency is that

ď(c)(y(1)
j:k , y(2)

j:k ) > 4
[

min(2
√

σ2
x + σ2

y , c)pD + c(1− pD)
]
. (6.18)

6.3.3 Achieving spatial consensus — object’s positions

Since each node is equipped with a limited FoV sensor, only tracks that are co-observed

by two nodes a and b should be matched. Hence, for all matched pairs (m, n) that

Sm,n = 1, only pairs with associated costs Cm,n less than a predefined cost threshold

Cmatch are considered legitimate. A small Cmatch can lead to a smaller number of

matched pairs which results in a higher number of unmatched tracks (possibly false

tracks) and vice versa. Since the maximum value of Cm,n is the cut-off c, Cmatch should

not be larger than c. In particular, let Qk = [Q(a)
k , Q(b)

k ] be a 2-column matrix contains

all legitimately matched pairs indexes (m, n) such that

m ∈ Q(a)
k ⊆ {1, . . . , |L(a)

k |},

n ∈ Q(b)
k ⊆ {1, . . . , |L(b)

k |}, (6.19)

subject to Sm,n = 1 and Cm,n < Cmatch.

Hence, |Q(a)
k | = |Q

(b)
k | ≤ min(|L(a)

k |, |L
(b)
k |). The detailed algorithm for determining

matched pairs is given in Algorithm 6.A.1 (see the appendix).

For the unmatched tracks, which are only observed by one node but not the other,

some of these tracks are possibly false tracks created from false-alarm measurements

and should be pruned. Thus, we propose that only unmatched tracks with lengths

higher than a predefined track length Clength are preserved. Similar to the traditional

thresholding method in extracting raw measurements, a small track length Clength

helps to detect new objects faster with a higher number of false-positive tracks and

vice versa. As a result, the reported estimate comprises of two components: i) The

preserved estimates from two nodes; ii) The fused estimate which is observed by two

nodes. We have the following spatial fusion procedure for spatial consensus12:

12Object’s states are presented in bold letters which include labels; however, their labels could be

modified later to achieve label consensus
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Figure 6.3. Example 1 — label consensus problem: two nodes with limited FoVs to track

a single object. a) Reported estimate at node 1 before reaching label consensus; b) Reported

estimate at node 2 before reaching label consensus; c) Reported estimate at node 1 (likewise for node

2) after reaching label consensus. Here: ‘◦’ is location of object’s birth; ‘�’ is location of object’s

death. Colour coding represents labels of the objects.

1) Pick the preserved estimates: let Xpres
a,k be the preserved estimate of node a (likewise for

node b), which are extracted from the unmatched tracks, subject to a predefined track

length, i.e.,
Xpres

a,k ,
⋃

m∈{1,...,|L(a)
k |}\Q

(a)
k

x(lm)k

subject to |D(lm)| ≥ Clength.

(6.20)

2) Fusion of the matched estimate: Let wa and wb be the fusing weights of two nodes,

with wa + wb = 1 and wa, wb > 0 (See Section 6.4 for how the weights are selected).

For each valid matched pairs (m, n) ∈ Qk, its corresponding local estimates are x(lm)k =

(x(lm)k , lm) and x(l
′
n)

k = (x(l
′
n)

k , l′n). Let x̄k = (x̄k, l̄) ∈ X̄k be the fused estimate, where x̄k is

the fused spatial estimate and l̄ is the fused label, i.e. (Chong et al., 2000):

x̄k = wax(lm)k + wbx(l
′
n)

k , (6.21)

l̄ =

lm, if the fusion step performs at node a,

l′n, if the fusion step performs at node b.
(6.22)

3) Compute the reported estimate: Let Xrep
k be the reported estimate at time k comprising

of two components: i) the preserved estimates of two nodes, ii) the fused estimate, i.e.,

Xrep
k = X̄k ∪ Xpres

a,k ∪ Xpres
b,k . (6.23)

Remark 4. The reported estimate Xrep
k is used for reporting purposes only. For spatial fusion

procedures listed above, the local estimate Xk is maintained independently for the next fusion
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step, which relies on the local estimate over a time window. The reason is that the proposed

spatial fusion procedure is conducted at the local estimate level, thus the local belief density is

not updated.

6.3.4 Achieving label consensus — object’s identifications

The previous subsection presents our proposed spatial fusion procedure for two nodes

with limited FoVs for reaching spatial consensus. However, MOT concerns not only

object’s positions (spatial) but also object’s identifications (labels). Therefore, in this

subsection, we provide our solution to achieve label consensus by minimising the label

inconsistency problem in case of limited FoV sensors for two nodes. The reason is

that during fusion steps, the preserved estimates from two nodes are included in the

final reported estimate (see (6.23)). Hence, care must be taken to ensure mismatched

labels between nodes are resolved to achieve the label consensus. The following example

explains the problem.

Example 1. Given a distributed sensor network of two nodes monitoring an area of

[−500, 1500] m ×[0, 1000] m. A sensor mounted on each node can only detect objects

within its relative angle [−60◦, 60◦] with detection probability pD = 0.98 and detection

range rD = 800 m. The locations of two nodes are [0, 400]T and [0, 800]T. Each detected

object with a kinematic state x = [px, ṗx, py, ṗy]T results in an observation z of noisy

xy positions, given by: z =
[
px, py]T + v. Here, v ∼ N (0, R) with R = diag(σ2

x , σ2
y )

where σx = σy = 10 m. There is one object moving in constant velocity model, given

by xk = FCV xk−1 + qCV
k−1. Here, FCV = [1, T0; 0, T0] ⊗ I2, T0 is the sampling interval

(T0 = 1 s for our experiments), ⊗ denotes for the Kronecker tensor product; I2 is

the 2 × 2 identity matrix; qCV
k−1 ∼ N (0, QCV) is a 4 × 1 zero mean Gaussian process

noise, with co-variance QCV = σ2
CV [T

3
0 /3, T2

0 /2; T2
0 /2, T0] ⊗ I2 where σCV = 5 m/s2.

Each node runs an LMB filter locally. The considered example is provided in Fig. 6.3.

After performing the spatial consensus procedure, we have the two following label

inconsistency problems:

1) Label inconsistency of preserved estimates: Fig. 6.3a depicts the reported estimate at

node 1. Although the spatial fusion procedure successfully helps node 1 track the

object, even when the object moves out of node 1’s FoV, it causes a track fragmentation

problem because of assigning a new label for the same object when the object moves

out of the FoV of node 1. The reason is that, when the object moves out of node 1’s FoV,
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it is not detected by node 1 anymore. Thus, we rely on node 2 information to track that

object, including node 2’s labels. Since node 2 has a different label (depicted in the red

colour) for the object that was observed before by node 1 (depicted in the blue colour),

the reported estimate yields two different labels for the same object.

2) Label inconsistency of the matched estimate: Fig. 6.3b depicts the reported estimate at

node 2. Initially, the object is not detected by node 2, hence, it relies on the information

from node 1 to track the object, including node 1’s label (depicted in the blue colour).

When the object moves into the node 2’s FoV, node 2 assigns it a new label. During the

fusion for the matched estimate (see (6.22)), the fused label is the new label (depicted

in the blue colour) from node 2. As a result, the reported estimate has different labels

for the same object.

As shown in Example 1, the label inconsistency problems are due to limited FoV

sensors. In the following, we present our solution to minimise the label inconsistency

problems to reach the label consensus. The main idea is that we first construct an

association history between label pairs which are matched. After that, the label

consensus can be achieved based on the number of times each label is associated with

each other, and which label is born first. In the following discussions, without loss of

generality, we consider the fusion procedure performed at node a receiving the local

estimate sent from node b.

Update the association history Let Ξ(a,b)
1:k be the association history up to time k

between the label set L(a)
1:k of node a and L(b)

1:k of node b. Ξ(a,b)
1:k is an |L(a)

1:k | × |L
(b)
1:k |matrix.

For m ∈ Q(a)
k and n ∈ Q(b)

k via (6.19), let i(m) ∈ {1, . . . , |L(a)
1:k |} and i(n) ∈ {1, . . . , |L(b)

1:k |}
be its corresponding index in label set L(a)

1:k of node a and L(b)
1:k of node b. We update

the association history between labels based on how many times each of the labels is

matched with each other, i.e.,

Ξ(a,b)
1:k (i(m), i(n)) := Ξ(a,b)

1:k (i(m), i(n)) + 1. (6.24)

See Algorithm 6.A.2 in the appendix for more details.

Update preserved labels As illustrated in Fig. 6.3a, the preserved labels sent from

node 2 to node 1 (where the fusion procedure is conducted) may need to be relabelled

to node 1’s own labels to reach the label consensus between two nodes. Hence, we
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propose using the association history Ξ(a,b)
1:k to update the preserved labels sent from

node b. In particular, let Lpres
k = L(Xpres

a,k ∪ Xpres
b,k ) be the preserved labels, L̄k = L(X̄k)

be the matched labels, i ∈ {1, . . . , |Lpres
k |} be any label index of preserved labels such

that Lpres
k (:, i) ∈ L(b)

1:k , n ∈ {1, . . . , |L(b)
1:k |} be the corresponding index in label set L(b)

1:k

for i, and m ∈ {1, . . . , |L(a)
1:k |} be the highest value index in label set L(a)

1:k of Ξ(a,b)
1:k (:, n),

resulting corresponding label l = L(a)
1:k (:, m). To ensure the label’s uniqueness, only

label l /∈
[
Lpres

k ∪ L̄k
]

is updated , i.e.

Lpres
k (:, i) = l subject to l /∈

[
Lpres

k ∪ L̄k
]
, (6.25)

as given in Algorithm 6.A.3 (see the appendix).

Update reported labels As shown in Fig. 6.3b, the reported labels may need to be

relabelled due to label inconsistency problems for the matched estimate, which are

currently based on the matched labels of the local node where the fusion procedure

is performed, i.e., node 2 in this example (see (6.22)). However, if the object was born

before it entered node 2’s FoV, we should use the sent label from node 1 instead of node

2 to reach the label consensus. In particular, let Lrep
k = L(Xrep

k ) be the reported label,

i ∈ {1, . . . , |Lrep
k |} be any label index of reported label set Lrep

k such that Lrep
k (:, i) ∈ L(a)

1:k ,

m ∈ L(a)
1:k be the corresponding index in the label set L(a)

1:k from node a, and n ∈ L(b)
1:k

be the highest value index in the label set L(b)
1:k from node b of Ξ(a,b)

1:k (m, :), resulting

corresponding label l′ = L(b)
1:k (:, n). Then the reported label is updated based on label’s

uniqueness constraint and label’s time of birth, i.e.,

Lrep
k (:, i) := l′ subject to l′ /∈ Lrep

k and l′(1) < Lrep
k (1, i). (6.26)

The proposed algorithm is presented in Algorithm 6.A.4 in the appendix, which

updates labels from node a to node b under the label’s uniqueness constraint and

label’s time of birth.

Label consensus data fusion Fig. 6.3c depicts the reported estimate at node 1 after

the label consensus is achieved, e.g., there is no label inconsistency for the single

object. The detailed algorithm summarising our proposed fusion method is given in

Algorithm 6.1.
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Algorithm 6.1 FuseTwoEstimates

1: Input: X(a)
j:k ; X(b)

j:k ; Ξ(a,b)
1:k−1; L(a)

1:k ; L(b)
1:k ;

2: Output: Xrep
k ; Ξ(a,b)

1:k

3: L(a)
k := L(X(a)

k ) ; L(b)
k := L(X(b)

k );

4: Qk := DetermineMatchedPairs(X(a)
j:k , X(b)

j:k ), L(a)
k , L(b)

k );

5: Ξ(a,b)
1:k := UpdateAssociationHistory(Ξ(a,b)

1:k−1, L(a)
1:k , L(b)

1:k , Qk);

6: Compute Xpres
a,k and Xpres

b,k via (6.20); X̄k via (6.21);

7: Lpres
k := L(Xpres

a,k ∪ Xpres
b,k ) ; L̄k := L(X̄k);

8: Lpres
k := UpdatePreservedLabels(Ξ(a,b)

1:k ; L(a)
1:k ; L(b)

1:k ; Lpres
k ; L̄k);

9: Xrep
k := X̄k ∪ Xpres

a,k ∪ Xpres
b,k ; Lrep

k := L(Xrep
k );

10: Lrep
k := UpdateReportedLabels(Ξ(a,b)

1:k ; L(a)
1:k ; L(b)

1:k ; Lrep
k );

6.3.5 Information fusion for multiple nodes

In the previous subsections, we have presented a new information fusion method for

fusing local estimates between two nodes, as provided in Algorithm 6.1. In reality, for a

distributed sensor network, the number of nodes |S| is often larger than two. Thus, it is

important to consider data fusion for scenarios when |S| > 2. Although the proposed

method can be extended to the case of |S| > 2, the resulting track matching problem

is an |S|-dimensional ranked assignment, which is an NP-hard problem. Hence, we

relegate it by performing pair-wise matching for two nodes sequentially.

As discussed in Remark 4, the proposed estimates fusion method is performed at a

local estimate level extracted from a local density; hence, the local density of each

node is not updated. As a result, the current reported estimate does not influence

the local estimate in the next scan. Since we use track matching, which relies on the

consecutive of track labels over a time period, we need to maintain the local estimate

and the reported estimate separately.

In this work, we propose that each node plays as a node in an ad-hoc network such

that the node can receive local estimates from all of the other nodes, either directly

or indirectly via directly neighbouring nodes as forwarding nodes. Assume the

estimates from one node is broadcasted to all other nodes. This is achievable given

the significantly low message sizes realised by transmitting local estimates compared

to transmitting local densities. In particular, suppose |Lmax| be the maximum number

of objects seen by the network, i.e., |Lmax| = max
(
[|L(1)|, . . . , |L(S)|]

)
, then the order of
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magnitude of data that needs to be shared is upper bounded by 13

|S||Lmax|. (6.27)

For example, if |S| = 20 nodes, |Lmax| = 100 objects, and each object state has

4 dimensions (2D environments), and each dimension is represented by an 8-byte

floating point value, then the maximum amount of data that needs to be shared by

an agent at one time is 64 KB, which is reasonably low to track a large number

of objects using 20 distributed nodes. The proposed message-passing mechanism

is slightly different from consensus algorithms in the literature (Olfati-Saber, 2007;

Stanković, Stanković and Stipanović, 2009; Cattivelli and Sayed, 2010; Calafiore and

Abrate, 2009; Üney, Clark and Julier, 2013; Battistelli and Chisci, 2014; Fantacci et al.,

2018), wherein local estimates are not fused but only broadcast to all other nodes.

The reason is that, consensus algorithms could be too slow to perform in a real-time

manner. Further, adopting consensus algorithms may result in label inconsistencies

during consensus steps. Although broadcasting local estimates to all nodes requires

higher communication cost, it is a good trade-off for achieving a shorter delay and

minimising label inconsistency problems due to limited FoV sensors.

Based on the proposed network architecture, the data fusion for multi-sensor is realised

in Algorithm 6.2. The Algorithm 6.2 contains two steps: i) Each neighbour estimate is

fused to the estimate of the node of interest to ensure the label consensus according

to the label set of the node of interest; ii) Since the label consensus is reached, the

fused estimates between neighbour nodes and the nodes of interest are fused together

without relabelling by using an empty association history.

6.4 Numerical Experiments

In this section, the proposed TC-OSPA(2) fusion method is investigated and compared

to other fusion strategies in two scenarios with multi-sensors in distributed network

settings. A 2-dimensional search area is adopted for both scenarios to demonstrate

the effectiveness of our method. Standard object dynamic and observation models

presented in Example 1 are considered. Each object has a survival probability PS =

0.98. Clutter follows a Possion model with an average of 10 clutter per scan. We

13The upper bound is only reached in the case that all nodes observe all the objects. In reality, because

of limited FoV sensors, this upper bound will not be reached in most cases.
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Algorithm 6.2 FuseMultiEstimates

1: Input: {X(a)
j:k }

|S|
a=1; {Ξ(a,b)

1:k−1}
a,b=|S|
a,b=1 ; {L(a)

1:k}
|S|
a=1;

2: Output: {Xrep
a,k }

|S|
a=1; {Ξ(a,b)

1:k }
a,b=|S|
a,b=1

3: for a = 1 : |S| do

4: B := {1 : |S|} \ {a};
5: Xtemp = []; . temporary reported estimate.

6: for i = 1 : |B| do . step 1: fusing each neighbour nodes to node a.

7: b := B(i);
8: [X(i)

temp, Ξ(a,b)
1:k ] :=

9: FuseTwoEstimates(X(a)
j:k , X(b)

j:k , Ξ(a,b)
1:k−1, L(a)

1:k , L(b)
1:k );

10: end for

11: Xrep
a,k := X(1)

temp;

12: if |B| > 1 then . step 2: fusing the fused results of neighbour nodes.

13: for i = 2 : |B| do

14: Xrep
a,k :=FuseTwoEstimates(Xrep

a,k , X(i)
temp, [], [], []);

15: end for

16: end if

17: end for

use optimal sub-pattern assignment (OSPA) (Schuhmacher, Vo and Vo, 2008) and

OSPA(2) (Beard, Vo and Vo, 2017) to measure performance with cut-off c = 100 m,

order p = 1. The OSPA(2) distance at time k is calculated over a 10-scan window

ending at k (see (Beard, Vo and Vo, 2017) for more details).

At each local node, an efficient LMB filter with Gaussian Mixtures approach using

Gibbs sampling (Vo, Vo and Hoang, 2016) is implemented to track multiple objects. The

existence threshold is set at 10−3, i.e., any state l with existence probability r(l) < 10−3

is pruned. Meanwhile, any state l with existence probability r(l) > 0.5 is confirmed

as an existing object and extracted as an estimate with label l. Further, the Adaptive

Birth Procedure (ABP) in (Reuter et al., 2014) is implemented. In particular, the birth

distribution ßB,k+1 at time k + 1 is a function of measurement sets Zk, i.e., ßB,k+1 ={
r(l)B,k+1(z), p(l)B,k+1(x|z)

}|Zk|
l=1 , where

r(l)B,k+1(z) = min
(

rB,max,
1− rU,k(z)

∑ζ∈Zk
1− rU,k(ζ)

λB,k+1

)
.

Here, rU,k(z) is the probability that the measurement z associated to a track in the

hypotheses, given by

rU,k(z) = ∑
Ik−1,ξ,Ik,θk

1θk(z)w
(Ik−1,ξ)w(Ik−1,ξ,Ik,θk), (6.28)
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where w(Ik−1,ξ)w(Ik−1,ξ,Ik,θk) is in (Vo, Vo and Hoang, 2016, eq.14), λB,k+1 is the expected

number of births at time k + 1 and rB,max is the maximum existence probability of a

new born object. In the following two scenarios, we set λB,k+1 = 0.5 and rB,max = 0.03.

For data fusion, since we do not focus on the weight picking problem, the Metropolis

weight is implemented, i.e., for each node a, b ∈ S ,

w(a,b) =


1

1+max(|S (a)|,|S (b)|) , a ∈ S , b ∈ S (a),

1−∑b∈S (a) w(a,b), a ∈ S , b = a.

The cost threshold for determining matched pairs is set at Cmatch = 100 m, which is

equal to cut-off c. Meanwhile, the track length is set Clength = 4, i.e., only tracks with

lengths larger or equal to 4 are preserved.

The proposed fusion method (TC-OSPA(2)) is compared to CA-PHD-GCI (Li et al.,

2020), LM-GCI (Li et al., 2019), and TC-WASS (the track consensus method using

the Wasserstein metric between two tracks instead of OSPA(2) base distance) in terms

of OSPA, OSPA(2) and fusing time. Note that for CA-PHD-GCI fusion strategy,

its underlying PHD filter does not report labels for estimated objects, the resulting

OSPA(2) cannot be computed. Thus, we propose using a naive label assignment

approach for CA-PHD-GCI as the following: i) Match the estimated state Xk to

the previous estimated state Xk−1 by OSPA distance using a similar scheme as in

Algorithm 6.A.1 except that the track length is equal to 1 and OSPA distance instead

of OSPA(2) is evaluated; ii) Assign the same labels for the matched estimate of Xk; iii)

Assign newborn labels at time k for unmatched estimates of Xk. The report results are

calculated and averaged over 100 Monte Carlo (MC) trials.

6.4.1 Scenario 1 — Two nodes

In this scenario, we consider a challenging problem of two nodes with limited FoVs

to track a time-varying and unknown number of mobile objects in a survey area of

[−500, 1800] m × [−100, 1000] m, with the maximum number of objects is 22. The

sensor mounted on each node has limited FoV that can only detection objects within

its relative angle of the interval [−50◦, 50◦] with pD = 0.98 and rD = 1000 m. Two

nodes are located at [300,−100]T and [1000,−100]T. The duration for this scenario is

K = 80 s with various birth and death objects occurring. The considered scenario

settings is illustrated in Fig. 6.4a.
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Figure 6.4. Scenario 1 ground truth vs reported estimates at node 2. a) ground truth settings,

b) CA-PHD-GCI, c) LM-GCI, d) TC-WASS, e) TC-OSPA(2). Starting and stopping positions are

denoted by ◦ and �, respectively. Colour coding represents labels of the objects.

Fig. 6.4bcd depicts the reported estimate versus the ground truth tracks at node 2 of a

particular trial using CA-PHD-GCI, LM-GCI, TC-WASS and TC-OSPA(2), respectively.

The results confirm that TC-OSPA(2) can successfully detect and track all of objects

without label inconsistency problems, regardless of whether these objects are in its FoV

or not. In contrast, LM-GCI can only track most of the objects within its FoV. Although

CA-PHD-GCI can detect all of objects, even outside of its FoV, it cannot determine

whether these objects are the same or different objects because of the limitation nature

of the PHD filter which can only track objects but not labels. Fig 6.5c shows the
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Figure 6.5. Comparison results for scenario 1: a) OSPA distance; b) OSPA(2) distance; c) Cardinality

estimations; d) Fusing times.

cardinality estimation which further supports the above observation. It is expected

that LM-GCI fails to detect all of the objects compared to CA-PHD-GCI, TC-WASS and

TC-OSPA(2) since only the later three strategies are designed to cope with scenarios

under limited FoV sensors.

Fig. 6.5abd and Table 6.1 present the performance comparison among three fusion

strategies: CA-PHD-GCI, LM-GCI, TC-WASS and TC-OSPA(2) in terms of OSPA,

OSPA(2) and fusing time over 100 Monte Carlo trials. It can be seen that TC-OSPA(2)

outperforms other fusion strategies in large margins under the smallest fusing times.

The reason is that TC-OSPA(2) has solved a challenging problem of label inconsistency

for limited FoV sensors while fusing the best local estimates to reach consensus in both

position and label estimations. The results also shows that TC-WASS fails to estimate

the correct cardinality of truth objects since the Wasserstein metric can partially

penalise the cardinality differences between tracks, as mentioned in the background

section. As a result, TC-WASS is omitted in the next experiments.
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Table 6.1. Comparison results of TC-OSPA(2) versus CA-PHD-GCI, LM-GCI, and TC-WASS in

Scenario 1

Strategies OSPA (m) OSPA(2) (m) Fusing time (s)

CA-PHD-GCI 51.6 87.9 2.216

LM-GCI 43.4 50.5 0.471

TC-WASS 29.0 46.3 0.168

TC-OSPA(2) 21.0 31.7 0.089

Table 6.2. Performance comparison for different pD values in Scenario 1

pD CA-PHD-GCI LM-GCI TC-OSPA(2)

OSPA (m)

0.7 78.9 61.1 41.3

0.8 71.1 52.4 34.7

0.9 64.4 44.7 29.0

OSPA(2) (m)

0.7 93.1 67.4 52.2

0.8 90.6 59.6 45.8

0.9 88.6 52.3 40.0
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Figure 6.6. Scenario 2 — ground truth vs reported estimates at node 7. a) ground truth;

b) LM-GCI; c) TC-OSPA(2) Starting and stopping positions are denoted by ◦ and �, respectively.

Colour coding represents labels of the objects.

Table 6.2 provides further performance comparison of TC-OSPA(2) versus LM-GCI

and CA-PHD-GCI under different pD values. The results validate that although the

tracking accuracy decreases when pD decreases as well as more label inconsistencies

as observed in Remark 3, our proposed TC-OSPA(2) consistently outperforms the other

two fusion strategies across different pD values.
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Table 6.3. Comparison results of TC-OSPA(2) versus LM-GCI in Scenario 2

Strategies OSPA (m) OSPA2 (m) Fusing times (s)

LM-GCI 78.8 81.6 1.48

TC-OSPA2 24.6 45.9 0.32

6.4.2 Scenario 2 — A large number of nodes

To further demonstrate the effectiveness of our proposed fusion method, a scenario of

16 nodes with limited FoVs to track a time-varying and unknown number of mobile

objects in a survey area of [−1000, 1000] m× [−1000, 1000] m is considered. The sensor

has limited FoV that can only detection objects within its relative angle of the interval

[−25◦, 25◦] with pD = 0.98 and rD = 1000 m. There are up to 16 nodes positioned in the

edge of the search area. The duration for this scenario is K = 75 s with various birth

and death objects occur with the maximum number of objects is 18. The considered

scenario settings is depicted in Fig. 6.6a. Note that for this scenario, we can only

compare TC-OSPA(2) v.s. LM-GCI since it is unclear how CA-PHD-GCI is implemented

for more than two nodes.

Fig. 6.6bc plots the estimate versus ground truth at node 7 using LM-GCI and

TC-OSPA(2) respectively for one particular trial. Although unexpectedly, LM-GCI can

detect and track a few objects outside of node 7’s FoV, since LM-GCI is not designed to

do that, there are remaining objects that LM-GCI cannot track. In contrast, TC-OSPA(2)

can detect, track and assign correct labels for most of objects, regardless of the objects’

locations. The results are further affirmed by cardinality estimation plotted in Fig. 6.7c

which demonstrates that TC-OSPA(2) can detect all of 18 objects in this scenario, while

LM-GCI can only averagely detect up to 4 objects over 100 MC runs.

Fig. 6.7abd provides additional comparison results between LM-GCI and TC-OSPA(2).

The results further demonstrate the robustness of TC-OSPA(2) which significantly

outperforms LM-GCI across three performance metrics: OSPA, OSPA(2) and fusing

time. Table 6.3 provides detailed performance comparison results, which facilitates the

effectiveness of our proposed fusion strategy for a distributed multi-sensor network.

Fig. 6.8 depicts the overall tracking performance for scenario 2 using TC-OSPA(2) at

node 2 when the number of nodes is increased from 2 to 16. The results validate the

scalability of our proposed fusion strategy, wherein the fusing time increases linearly

to the number of nodes, i.e., O(|S|). Even when the number of nodes is 16, the fusing
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Figure 6.7. Comparison results at node 7 for scenario 2: a) OSPA distance; b) OSPA(2) distance;

c) Cardinality estimations; d) Fusing times.
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Figure 6.8. Tracking performance using TC-OSPA(2) at node 2 over 100 MC runs for scenario 2

when the number of nodes is increased from 2 to 16.

time is relatively small, which enables the real-time tracking in several applications.

As expected, when the number of nodes increases, OSPA and OSPA(2) distances reduce
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since the node can share its local estimate with other nodes to complement its limited

FoV and improve its coverage area.

6.5 Conclusion

The chapter has provided new results of distributed multi-object tracking for

multi-sensors with limited FoV sensors. A novel label consensus algorithm coupling

with a track consensus method based on OSPA(2) has been devised for fully distributed

and scalable fusion of information from distributed multi-sensor networks. The

experimental results demonstrate the effectiveness of our approach compared to

GCI-based fusion methods. Future work should consider incorporating planning

algorithms jointly with the proposed fusion methods to empower the autonomy of

distributed systems in tracking multi-object.
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Conclusion

T
HIS chapter concludes the dissertation and suggests directions

for future work.
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7.1 Summary

This dissertation presents novel approaches for achieving autonomy for single or

multiple UAVs to search and track multiple mobile objects of interest. Our formulation

is built on the RFS-(M)POMDP framework and addresses all of the challenges of MOT

and online planning problems. In particular, the MOT problem is formulated under

the RFS framework to address MOT challenges such as false-alarms, misdetections,

unknown data associations and the time-varying number of objects. For online

path planning problems, we adopt POMDP for a single UAV and the centralised

MPOMDP for multiple UAVs to compute optimal control actions in an online manner.

The information-based reward functions have been implemented to calculate optimal

actions by maximising information gain to reduce overall estimation uncertainty since

more information naturally implies less uncertainty. Our formulation yields a value

function as a submodular set function, which allows us to apply the greedy algorithm

for computing optimal control actions for multi-agent planning in real-time with a

lower bound performance guarantee. Besides that, a distributed fusion algorithm

has been developed for a network of static agents with limited FoV sensors, which

is an essential building block for multi-agent path planning for MOT in a distributed

manner. Our proposed approaches work well in multiple situations compared to

state-of-the-art methods, regardless of the number of agents or the sensor FoV sizes.

Chapter 3 presents a real-world autonomous aerial robotic system that is able to

search, localise and track multiple mobile VHF radio-tagged objects under noisy

RSSI-based measurements. The formulation is based on using a particle filter for

MOT and the POMDP for path planning. The Rényi divergence information-based

reward function is used to compute the optimal control actions. The field experimental

results demonstrated our proposed approach which can track multiple wildlife collars

accurately. Additionally, our proposed sensor system is lightweight, which helps

reduce the overall UAV’s payload and improve flight times.

In Chapter 4, an online path planning algorithm of a single UAV for joint detection

and tracking of multiple radio-tagged objects under low SNR environments has been

proposed. We use a JMS TBD-LMB filter to track multiple objects, while the POMDP

framework controls the UAV. Two information-based reward functions using Rényi

divergence and Cauchy-Schwarz divergence are investigated to compute the optimal

control actions. A measurement likelihood function is proved to be separable in

practice, which results in an efficient TBD-LMB filter to track multiple radio-tagged
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objects under low SNR conditions. Simulation results validated our proposed method,

which significantly reduces estimation errors compared to traditional DTT methods or

tracking without planning, especially under low SNR environments.

Chapter 5 extends the RFS-POMDP framework for a single agent to RFS-MPOMDP

framework for multi-agents. A multi-objective planning for multi-agents to search

and track an unknown and time-varying number of mobile objects is formulated.

We proved that our formulation results in a value function that is monotone and

submodular. Experimental results confirm the capability of our approach, which also

validate the lower bound performance guarantee of using the greedy algorithm to

compute control actions for multiple agents in real-time.

In Chapter 6, a fast and efficient distributed MOT algorithm for multi-agents with

limited FoV sensors is developed. The proposed fusion strategy operates on local

multi-object trajectories instead of multi-object densities, which results in real-time

tracking under limited computational resources. We use the OSPA(2) to estimate the

similarities among trajectories for achieving track consensus. Furthermore, a novel

label consensus algorithm is devised to minimise label inconsistency problems due

to limited FoV sensors. Experimental results confirm that our proposed approach

significantly outperforms GCI-based fusion methods in both speed and accuracy.

7.2 Future Work

There are a number of possible areas worthy of further investigation to improve the

autonomy of multiple UAVs under RFS-POMDP framework, including i) multi-UAV

systems designs and ii) algorithmic developments.

7.2.1 Multi-UAV systems designs

In Chapter 3, while the SDR devices may be replaced to achieve a greater detection

range, as we discussed in Section 3.7.2, future work should focus on the development

of new antenna designs. We designed, simulated and built a compact, folded

two element Yagi antenna. Further research efforts to investigate antenna design

techniques can lead to lightweight higher gain antennas to increase the detection range

and survey area.
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Furthermore, the range of the 2.4 GHz wireless link we employed for communicating

between the GCS and the UAV has limited outdoor range—see Figure 3.2. Although

this is not a problem given the limited test site available for our work, building

a practical tool requires addressing this potential problem. Thus, future work

should piggyback data on the telemetry channel using the long-range 915 MHz radio

channel (VonEhr et al., 2016). Alternatively, the GCS may be removed from the loop,

by embedding all of the tracking and planning algorithm on the UAV itself using an

embedded computing platform (e.g., Odroid XU4, Mobile GPU), to increase the system

reliability and search area, by eliminating the transmission power consumed by the

additional 2.4 GHz radio channel.

Although it is possible to perform 3D tracking exploiting the simplicity of range only

measurements as in Appendix B, the next step is to build a sophisticated range-only

measurement model to account for complex signal characteristics in 3D environments,

and to validate it in field experiments. Additionally, the practical challenge is that

we need to obtain accurate UAV altitude measurements to implement a robust 3D

tracking formulation. Commercial off the shelf UAVs such as the 3DR IRIS+ that we

used for building our autonomous system employ a barometer to determine height.

We observed in flight tests that the height measurement is unreliable, fluctuates over

time and often depends on weather conditions; as also observed in (Szafranski et al.,

2013; Liu et al., 2014). Thus, we leave it for future work to address the problem of

accurately estimating the altitude of a UAV. Two approaches that can be considered

include: i) filtering the barometer sensor data using, for example, a Kalman filter (Liu

et al., 2014); and ii) the use of a LiDAR sensor or a radar-based sensor for more accurate

height above ground estimations (Schartel et al., 2018). Alternatively, employing the

existing implementation on all topographical conditions require a UAV capability to

maintain a fixed relative altitude above ground.

Another interesting area worthy of exploration is developing control actions for hybrid

vertical take-off and landing (VTOL) fixed-wing UAVs to extend flight times and cover

longer distances (Unmanned Systems Technology, 2019). Although hybrid VTOL

UAVs can hover, its heading (or so-called yaw) is significantly harder to control than

the investigated multi-copter drones. For RSSI-based measurements, the received

signal strength depends heavily on UAV’s heading because the antenna gain is

typically directional. The reason is that directional antennas help to improve detection

range as well as identify the angle of arrival. Therefore, the planning algorithm needs
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to take into account the aerial dynamic behaviours of hybrid VTOL UAVs and the

antenna gain when calculating the control actions to achieve optimal results.

In Chapter 4, an efficient TBD-LMB filter has been derived. A next natural step is to

implement the proposed TBD-LMB filter with an information-based reward function

on the UAV itself to fully explore its efficiency under low SNR conditions. However,

the complexity of processing the raw received measurements through STFT algorithms

is quite high, which prevents using a standard computing unit such as Raspberry

Pi or Intel Edison, as implemented in Chapter 3. One of potential companion

computers would be NVIDIA Jetson TX2 Module, wherein the tracking and planning

algorithms could be computed efficiently using the embedded GPUs. Additionally,

the optimisation of the proposed TBD-LMB algorithm could be explored to further

improve the computing time.

7.2.2 Algorithmic developments

For multi-agent planning, a common approach is to use a centralised

MPOMDP (Messias, Spaan and Lima, 2011) wherein a centralised controller calculates

optimal control actions and sends it to all agents, as presented in Chapter 5. However,

the centralised approach is limited in scalability. Factored-POMDP (Oliehoek et al.,

2008) can be employed to achieve further system scalability but centralised methods

are prone to single point of failure and require reliable and fast communications

between agents and the centralised controller. It is still extremely challenging to plan

and track mobile objects in an online manner without any communications among

agents as in decentralised POMDP (Dec-POMDP), in which its exact solution are

NEXP-complete (Bernstein et al., 2002). A more reliable approach could be using

distributed POMDPs, such as networked distributed POMDP (ND-POMDP) (Nair

et al., 2005) to exploit neighbouring interactions to coordinate among agents for

planning under uncertainty using distributed constraint optimisation. This approach

also naturally fits with our proposed distributed MOT algorithms in Chapter 6.

However, achieving a global goal for multiple agents to track multiple mobile objects

in distributed settings is an NEXP-complete problem in the worst case scenario (Rizk,

Awad and Tunstel, 2018). Future research directions can explore new planning

strategies to the problem of distributed control of a team of UAVs for searching and

tracking. Moreover, since the observed signals have built-in object labels, the problem

considered in Chapter 5 is less complex than the case where the objects have no labels.
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Thus, one possible research direction is to generalise the proposed framework in

Chapter 5 for the problem where the data associations are unknown using the novel

MS-GLMB filter recently proposed in (Vo, Vo and Beard, 2019).

In this dissertation, we assumed that the locations of UAVs can be obtained accurately

using the global position system (GPS). It could be useful to consider scenarios

wherein GPS information is not available or not reliable such as in GPS-denied

environments (Lange, Sunderhauf and Protzel, 2009; Song et al., 2015). One of

feasible approaches is building 3D simultaneous localisation and mapping (SLAM)

environments, such as in (Artieda et al., 2009) for UAVs or using a laser range

finder (Fossel et al., 2013; Song et al., 2015). For multi-agent SLAM, a centralised

approach has been investigated in (Schmuck and Chli, 2017). Given our interest in

multi-agent planning for MOT, it is still an open question for tracking multiple objects

in a distributed manner when the locations of UAVs are unknown.

Page 152



Appendix A

Pseudo-codes for
Distributed Algorithms of

Chapter 6

T
He following pseudo-codes provide detailed implementation

of Algorithm 6.A.1 of determining matched pairs based on

OSPA(2) distance between two tracks, Algorithm 6.A.2 of updating

association history for these matched pairs, Algorithm 6.A.3 for updating

the preserved labels of preserved estimates, Algorithm 6.A.4 for updating

reported labels to minimise label inconsistency problems.
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Algorithm 6.A.1 DetermineMatchedPairs

1: Input: X(a)
j:k ; X(b)

j:k ; L(a)
k ; L(b)

k

2: Output: Qk = [Q(a)
k , Q(b)

k ]

3: C := zeros(|L(a)
k |, |L

(b)
k |);

4: for m = 1 : |L(a)
k | do

5: l(m) := L(a)
k (:, m);

6: for n = 1 : |L(b)
k | do

7: l′(n) := L(b)
k (:, n);

8: Cm,n := d̃(c)(x(lm), x(l
′
n)) via (6.4)

9: end for

10: end for

11: S := RankedAssignment(C); . using Murty’s algorithm.

12: S := S� (C < Cmatch); . assignments with cost less than Cmatch only.

13: i(a)
k := [1 : |L(a)

k |]
T ; i(b)k := [1 : |L(b)

k |]
T ;

14: Q(a)
k := i(a)

k ; Q(b)
k := S · i(b)k ; Qk := [Q(a)

k , Q(b)
k ];

15: Qcheck := [Q(a)
k �Q(b)

k ] > 0; . ensure Sm,n = 1.

16: Qk := Qk(:, Qcheck);

Algorithm 6.A.2 UpdateAssociationHistory

1: Input: Ξ(a,b)
1:k−1; L(a)

1:k ; L(b)
1:k ; Qk = [Q(a)

k , Q(b)
k ]

2: Output: Ξ(a,b)
1:k

3: Ξ(a,b)
1:k := zeros(|L(a)

1:k |, |L
(b)
1:k |);

4: Ξ(a,b)
1:k (1 : |L(a)

1:k−1|, 1 : |L(b)
1:k−1|) := Ξ(a,b)

1:k−1;

5: i(a)
1:k := 1 : |L(a)

1:k |; i(b)1:k := 1 : |L(b)
1:k |

6: for i = 1 : |Q(a)
k | do

7: m := Q(a)
k (i); n := Q(b)

k (i);

8: l(m) := L(a)
k (: m); l′(n) := L(b)

k (:, n);

9: i(m) := i(a)
1:k (l

(m) = L(a)
1:k );

10: i(n) := i(b)1:k (l
′(n) = L(b)

1:k );

11: Ξ(a,b)
1:k (i(m), i(n)) := Ξ(a,b)

1:k (i(m), i(n)) + 1;

12: end for
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Algorithm 6.A.3 UpdatePreservedLabels

1: Input: Ξ(a,b)
1:k ; L(a)

1:k ; L(b)
1:k ; Lpres

k ; L̄k

2: Output: Lpres
k

3: i(a)
1:k := 1 : |L(a)

1:k |; i(b)1:k := 1 : |L(b)
1:k |

4: for i = 1 : |Lpres
k | do

5: if Lpres
k (:, i) ∈ L(b)

1:k then . only update labels from node b.

6: l′ := Lpres
k (:, i);

7: n := i(b)1:k (l
′ = L(b)

1:k );

8: ξ(a,l) := Ξ(a,b)
1:k (:, n);

9: count:= |ξ(a,l)(ξ(a,l) > 0)|;
10: while count > 0 do

11: count :=count−1;

12: [∼, m] := max(ξ(a,l)); . pick highest value index.

13: l := L(a)
1:k (:, m);

14: if l /∈
[
Lpres

k ∪ L̄k
]

then . ensure labels’ uniqueness.

15: Lpres
k (:, i) := l; . update the label.

16: break; . escape while loop.

17: end if

18: ξ(a,l)(m) := 0;

19: end while

20: end if

21: end for
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Algorithm 6.A.4 UpdateReportedLabels

1: Input: Ξ(a,b)
1:k ; L(a)

1:k ; L(b)
1:k ; Lrep

k

2: Output: Lrep
k

3: i(a)
1:k := 1 : |L(a)

1:k |; i(b)1:k := 1 : |L(b)
1:k |

4: for i = 1 : |Lrep
k | do

5: if Lrep
k (:, i) ∈ L(a)

1:k then . update labels from node a.

6: l := Lrep
k (:, i);

7: m := i(a)
1:k (l = L(a)

1:k );

8: ξ(b) := Ξ(a,b)
1:k (m, :);

9: count:= |ξ(b)(ξ(b) > 0)|;
10: while count > 0 do

11: count :=count−1;

12: [∼, n] := max(ξ(b)); . index highest value.

13: l′ = L(b)
1:k (:, n);

14: if l′ /∈ Lrep
k and l′(1) < l(1) then . ensure labels’ uniqueness and only update new labels.

15: Lrep
k (:, i) := l′; . update the label.

16: break; . escape while loop.

17: end if

18: ξ(b)(n) := 0;

19: end while

20: end if

21: end for
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Appendix B

Software in the Loop Study
for Locating Radio-tags in

a 3D Space

O
Ur problem formulation in Chapter 3 developed a tracking

and planning problem for a three dimensional space (3D).

However, our simulations and experiments were limited to

2D spaces where the terrain was relatively flat and the height of the UAV

above ground was constant. Here, we investigate the implementation of

the 3D tracking and planning problem to validate the capability of the

range-only method proposed in Chapter 3 to track multiple mobile radio

tags under real-world digital terrain models in hilly terrains in a simulated

software-in-the-loop environment of a quad-copter.
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B.1 Motivation and Contribution

In this appendix, we investigate our tracking and planning formulation in Chapter 3 in

3D to account for unknown terrains, especially in hilly areas. Although Chapter 3 has

demonstrated an aerial robot system, for the first time, capable of planning trajectories

to track and localise multiple mobile VHF wildlife radio tag objects, the validation of

the method in a 3D environment remains.

As in Chapter 3, we use received signal strength indicator (RSSI) measurements,

which exploits the simplicity of antenna and receiver designs to build a lightweight

payload system, to validate our approach in a 3D environment. Notably, all of existing

UAV-based methods assume that the terrains are flat and implemented tracking and

planning algorithms to localise radio-tagged objects in two dimensions (latitudes and

longitudes only) on the ground plane. Elevations (the ground surfaces) have been

largely ignored in the previous work. This additional study takes the first step towards

autonomous tracking and localising under unknown terrains in 3D environments

using a UAV with RSSI-based measurements.

In summary, the key study contributions are:

• Implementing a 3D tracking and planning formulation using RSSI-based

methods in a software-in-the-loop (SITL) simulation of a quad-copter,

• Simulating tracking and localising multiple mobile radio-tagged objects in hills

or valleys where the terrain information is unknown,

• Comparison of the developed 3D tracking method to track and localise radio-tags

in unknown terrains with one where the terrain information is known. Here, the

investigations are based on the real-world digital elevation model (DEM) data

published by (Australia-Geoscience, 2018) for a simulated SITL quad-copter.

B.2 Problem Statement

We consider the problem of tracking and localising multiple mobile radio-tagged

objects in the hilly terrains using a UAV. The proposed platform is discussed in

Chapter 3, with the following elements:
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• A civilian, commercial and low-cost UAV with a accurate global positioning

system (GPS) measurements in latitude and longitude, but using an unreliable

barometer sensor in altitude measurements. The UAV manoeuvrability is

determined by that of a quad-copter.

• A sensor system—the main payload—includes a directional VHF antenna to

receive the transmitted signals, an embedded computer module connected to a

software-defined radio device to detect and measure the received signal strength

indicator (RSSI) through VHF antenna.

Further, we assume that each radio-tag transmits an on-off-keying signal with known

transmission power P0 in every T0 seconds. The object is located in a hilly area where

its altitude can vary in [zmin, zmax] m. We did not consider the exploration problems

in this work where the reward functions can be formulated in both exploration and

localisation parameters (Charrow, Michael and Kumar, 2015). Instead, we assume that

the UAV can detect all of the objects, which is reasonable in a moderate size search

area; we concentrate on improving the tracking performance for detected objects.

B.3 Problem Formulation

In this work, we focus on formulating the problem of tracking and localising

radio-tagged objects in unknown terrains and follow our previous work in Chapter 3.

The state of a single object is x = [p(x)
x , p(x)

y , p(x)
z ]T ∈ R3, which is the object 3D

position in x, y and z axes of the Cartesian coordinate system. The state of a UAV

is u = [p(u), θ(u)]T ∈ R3 × [0, 2π), where p(u) = [p(u)x , p(u)y , p(u)z ]T ∈ R3 is the UAV

position in 3D coordinate; θ(u) is the UAV heading. Further, we assume that the

number of objects Nt in the search area is known, and the search operation terminates

when all of the searching objects are tracked and localised.

B.3.1 Multi-object tracking

We propose using a particle filter to implement our tracking algorithm to account for

the non-linear system dynamics and noisy measurement data from signal strength

measurements interfered with by radio-wave scattering and attenuation or thermal

noise of the receiver (Nguyen et al., 2019a). Since each object is uniquely identified
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B.3 Problem Formulation

by its frequency, the RSSI-based measurements provide a known data association.

Further, we assume that there are no false-alarms or misdetections for our RSSI-based

measurements as in (Cliff et al., 2015; Nguyen et al., 2018a, 2019a). Therefore, we can

track and localise multiple radio-tagged objects by running multiple particle filters

simultaneously, one particle filter for each object, as proposed in (Charrow, Michael and

Kumar, 2015; Nguyen et al., 2019a). The particle filter requires correctly modelling for

both object transition and observation models to achieve good performance.

Object transition model: For wildlife objects, their dynamic behaviours are usually

unpredictable, thus we model their behaviours as a random walk model, i.e.,

fk|k−1(xk|xk−1) = N (xk; xk−1, Q(x)), (B.1)

where N (·; µ, Q) denotes a Gaussian density with mean µ and co-variance Q; Q(x) =

[σ2
x , σ2

y , σ2
z ]I3 is the 3 × 3 co-variance matrix of the process noise, and In denotes the

n× n identity matrix.

Observation model: We consider the LogPath measurement model experimentally

validated with VHF frequencies in Chapter 3. Here, the received power h(xk, uk) [dBm]

at the UAV with state uk transmitted from object with state xk comprises only the LOS

component,i.e.,

h(xk, uk) = P0 − 10n log(d(xk, uk)) + Gr(xk, uk). (B.2)

Here, P0 is the reference power [dBm]; n is the unit-less path loss constant, which

characterises how signal attenuates over the distance with a typical range from 2 to 4;

d(xk, uk) = ||xk − p(uk)|| is the distance between the object and the UAV; Gr(xk, uk) is

the directional antenna gain, which depends on the UAV heading θ(uk) and its relative

position to the object xk.

The measured power or the received signal strength indicator (RSSI) zk [dBm] is

corrupted with noise, e.g., thermal noise or signal interference from other sources. We

assume the noise is white, thus, the measurement likelihood model is

gk(zk|xk) = N (zk; h(xk, uk), Q(z)), (B.3)

where Q(z) is the 1× 1 co-variance matrix of the measurement noise.
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B.3.2 Path planning using the Shannon entropy information gain

In this section, we present our approach to calculate an optimal control action for the

UAV. At time k, the UAV needs to plan how it will navigate over the time interval

k + 1 : k + H with the look-ahead horizon H. Since there are multiple objects in

the search area, we select the object with the strongest RSSI-based measurement as

the one to be tracked and localised first (Nguyen et al., 2019a). Formally, suppose

Zk(Xk) =
⋃

x∈Xk
zk(x) is a set of measurements at time k generated from the respective

set of objects Xk = {x
(1)
k , . . . , x(Nt)

k }, and Fk is of the set of localised objects (an object is

considered localised if its estimation uncertainty is smaller than a predefined bound),

the selected object
∗
xk for the path planning at time k is given by,

∗
xk = arg max

x∈Xk\Fk

Zk(Xk). (B.4)

Let Ak be a discrete set of control actions for the UAV at time k. We define Ak contains

|Ak| number of actions that control the UAV to change its heading to one of the

following {0, 2π/|Ak|, . . . , 2π(1− 1/|Ak|)} angles, then moves forward according to

the selected angle until another control action applies. For each control action a ∈ Ak

applies to the UAV, it generates a discrete sequence of the UAV poses uk+1:k+H(a) =

[uk+1, . . . , uk+H] with corresponding measurements zk+1:k+H(a) = [zk+1, . . . , zk+H].

The goal in path planning is to find an optimal control action
∗
ak ∈ Ak that maximises

the expected reward, i.e.,

∗
ak = arg max

a∈Ak

E
[
Rk+H(a)

]
. (B.5)

Since the expected reward requires an integration, which does have an analytic

formula, we implement the Monte Carlo integration (Ristic and Vo, 2010; Beard et al.,

2017; Nguyen et al., 2019a) by drawing multiple sampled measurements z(m)
k+1:k+H(a)

for m = 1, . . . , M, then calculate the sampled reward R(m)
k+H(a). Thus, the expected

reward can be approximated by the mean of all the sampled rewards, i.e.,

E
[
Rk+H(a)

]
≈ 1

M

M

∑
m=1
R(m)

k+H(a). (B.6)

Page 161



B.4 Software In The Loop Experiments

In this work, we implement the change in Shannon entropy as the reward function14

as in (Cliff et al., 2015; Charrow, Michael and Kumar, 2015):

R(m)
k+H(a) = H(πk+H|k(

∗
xk|z1:k))−H(πk+H(

∗
xk|z1:k), z(m)

k+1:k+H(a)). (B.7)

For notational simplicity, let π1 , πk+H|k(
∗
xk|z1:k) and π2 , πk+H(

∗
xk|z1:k, z(m)

k+1:k+H(a)).

Since we use the particle filter as our tracking filter, each density can be approximated

by the same set of particles with different weights:

π1 ≈ {(w
(i)
1 , x̃(i))}Ns

i=1; π2 ≈ {(w(i)
2 , x̃(i))}Ns

i=1. (B.8)

Thus, the reward function in (B.7) can be approximated as followed:

R(m)
k+H(a) ≈

Ns

∑
i=1

[
w(i)

2 log(w(i)
2 )− w(i)

1 log(w(i)
1 )
]
. (B.9)

B.4 Software In The Loop Experiments

In this section, we validate and demonstrate our approach by tracking and localising

multiple radio-tagged objects in two different unknown terrains. Further, we compare

our 3D tracking algorithm with a tracking method where the terrain information

is already known. The terrain information is based on the real-world DEM

data published by (Australia-Geoscience, 2018) with 5 m in latitude and longitude

resolutions, and ±0.3 m in altitude errors.

B.4.1 Simulation experimental setup

We evaluate our algorithm using the real-time emulated SITL environments as shown

in Figure B.1. The tracking and planning algorithm is written in MATLAB, which sends

control actions in way-points through the Telemetry Host Tool and the Input/output

proxy—IO proxy, both are written in Rust, to the DroneKit-SITL simulator (Ryan et al.,

2015) using the MAVLink protocol. For the DroneKit-SITL, we use the copter-3.3 library

to emulate a quad-copter. Further, the QGroundControl (a popular and cross-platform

14Notably, multiple other information gain measures can be employed. In Chapter 3, we investigated

several reward functions. We selected Shannon entropy here due to its simplicity and because our goal

is to take the first steps to demonstrate that RSSI based measurements from an aerial robot can be used

to realise tracking in realistic 3D settings.
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Figure B.1. Block diagram of our propose SITL settings for emulated experiments..

The Tracking and Planning System communicates with the DroneKit SITL simulator through the

MAVLink protocol.

ground station control software) can also communicate to the DroneKit-SITL simulator

to facilitate and control the emulated copter in arming, taking off, and changing

its altitude to a defined altitude above ground level (AGL). The tools and software

developed for the TrackerBots project will be publicly available at our project

repository15

We conduct several software-in-the-loop (SITL) trials under two different terrain

settings: i) South Australia (SA) - Lower Glenelg National Park; ii) New South Wales

(NSW) - Dorrigo National Park as shown in Figure B.2 to verify and demonstrate the

capability of planning to track multiple mobile objects with RSSI based measurements

from an aerial robot.

B.4.2 Algorithm evaluations:

To evaluate our proposed algorithm, we measure the Root Mean Square (RMS)

error—the average error distance between the objects’ estimated locations versus its

ground truths—RMS = ∑Nt
i=1 ||x

(i)
truth − x(i)est||/Nt [m], and the flight time [s]—the time

a UAV takes to localise all of the objects, including planning time. As in Chapter 3, an

object is considered tracked and localised if its estimation uncertainty is smaller than

the predefined bound: 15 m for the x-axis and y-axis, and 25 m for the z-axis. The

reason z-axis has a higher bound is because the directional antenna does not provide

15The TrackerBots project repository https://github.com/AdelaideAuto-IDLab/TrackerBots
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Figure B.2. The terrain information for two site settings. a) Lower Glenelg National Park

terrain, South Australia (SA); b) Dorrigo National Park terrain, New South Wales (NSW).

an accurate antenna gain in z-axis causing higher uncertainty in the estimation (see

the antenna pattern modelled and evaluated in Chapter 3 where the measurements

validated the pattern in the xy plane due to the difficulty of accurately controlling the

UAV position to measure the field pattern in the xz plane).

B.4.3 Scenario 1:

The first scenario considers tracking and localising three mobile radio-tagged wildlife

in Lower Glenelg National Park, South Australia (SA). We selected a search area of

1000 m × 1000 m (100 hectares) where the elevation changes from 16 m to 36 m

based on the real-world digital elevation model (DEM) from (Australia-Geoscience,

2018), as shown in Figure B.2a. Its initial position in latitude, longitude, elevation is

[−38.0300, 141.1783, 17.7]T, which is converted to [0, 0, 17.7]T m in the xyz-axes.
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For generating the ground truth, the initial positions of three mobile objects are

[320, 361, 21.5]T m, [826, 640, 26.7]T m and [166, 796, 30.3]T m. objects are assumed

to follow the random walk model with standard deviations in x-axis and y-axis as

σ
(x)
x = σ

(x)
y = 1 (m/s), while its elevation in z-axis is derived from the DEM data based

on its x and y positions.

For tracking and planning algorithm without terrain awareness, the object location is

unknown and its initial distribution is sampled from a uniform distribution over the

predefined ranges with the number of particles N = 40, 000, i.e.,

π0(x0) = U [0, 1000]×U [0, 1000]×U [12.7, 37.7],

where U [a, b] denotes the uniform distribution on the interval [a, b] (m). The

co-variance matrix of the process noise is Q(x) = [1, 1, 0.1]T I3 (m/s)2. We set

the measurement duration T0 = 1 s, the measurement noise Q(z) = 52 (dBm)2,

the reference power P0 = −35.4 dBm, the path loss constant n = 2, and the

look-a-head horizon time step H = 10. The UAV is armed, taken off and its

altitude is set to 80 m AGL using QGroundControl, i.e., its initial state is set at

u0 = [10 m, 10 m, 97.7 m, π/4 rad]T and its maximum ground speed at 10 m/s. We

consider the number of control actions is |A| = 30, i.e., the allowable heading changes

are {0, π/15, . . . , 29π/15} (rad).

For tracking and planning algorithm with the terrain awareness, since the elevation

data (z-axis) are already available, we only need to estimate the object position in

two dimensions of the xy-axes, then deriving the elevation in z-axis from the DEM

data based on its x and y estimated positions. For parameter settings, we implement

the same settings as in the case without terrain awareness, except the particles of the

initial distribution are only sampled from U [0, 1000] × U [0, 1000] for xy-axes, while

z-axis particles are calculated from DEM data based on the particles of the xy-axes.

Further, given known terrain information, the co-variance matrix of process noise is

Q(x) = [1, 1, 0]T I3 (m/s)2.

Figure B.3 and Figure B.4 depict the tracking and localisation results with terrain

awareness and without terrain awareness algorithms, respectively. Table B.1 provides

detailed comparisons between these two approaches over 10 Monte Carlo trials in SITL

emulated environments. We can see that the tracking error in term of RMS is similar

for both algorithms with or without terrain data.
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Figure B.3. The tracking and localisation results without terrain awareness to track and

localise three radio-tagged objects in the Lower Glenelg National Park - SA. a) the ground

truth vs the estimated positions in three dimensions (North-East-Elevation); b) the UAV trajectory

using the Shannon entropy and its estimated locations in two dimensions (North-East); c) the

screen-shot of the QGroundControl with the UAV trajectory.

Figure B.4. The tracking and localisation results with terrain awareness to track and

localise three radio-tagged objects in the Lower Glenelg National Park, SA. a) the ground

truth vs the estimated positions in three dimensions (North-East-Elevation); b) the UAV trajectory

using the Shannon entropy based reward function and the estimated locations of the radio tags

in two dimensions (North-East); c) A screen capture of Software In the Loop simulation with

QGroundControl showing the UAV trajectory. Here the straight-line path shows the UAV returning

to its home location after the tracking task is complete.

It is expected that the algorithm using terrain information has a smaller z-axis error,

which is due to the errors in estimating positions in xy-axes. Further, we notice that

the flight time for terrain awareness is significantly shorter because it only needs to

estimate two unknown variables compared to the algorithm without terrain awareness.

Thus, when the terrain information is readily available, we should implement the

tracking algorithm with terrain awareness to improve flight times. However, most

areas in Australia still do not have a Digital Elevation Model, thus implementing

our algorithm—tracking without terrain awareness—-can play an important role in

tracking wildlife objects in unknown terrains. Notably, flight times of approximately,
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Table B.1. Tracking and localising performance over 10 Monte Carlo runs for tracking

radio-tagged objects. Location: the Lower Glenelg National Park, SA

Terrain

Aware

Error (m) RMS

(m)

Flight

Time (s)x-axis y-axis z-axis

No 12.6 13.4 4.2 20.78 414.4

Yes 14.4 13.5 0.3 21.53 379.1

400 seconds for environments without terrain information are easily achievable with

modern small size battery powered UAVs.

B.4.4 Scenario 2:

The second scenario considers the problem for tracking and localising three mobile

radio-tagged objects in Dorrigo National Park, New South Wales (NSW). This

terrain is more challenging than Scenario 1 since the Dorrigo National Park site has

larger elevation variations ranging from 51.7 m to 318.7 m. Its initial positions in

latitude, longitude, and elevation is [−30.3730, 152.8622, 119.1]T, which is converted

to [0, 0, 119.1]T m in the xyz-axes.

For parameters, we apply the same settings as in the Scenario 1 for the algorithm

with terrain awareness. For the algorithm without terrain awareness, all settings are

kept as the same as in the Scenario 1, except for the elevation settings. The initial

particles for the elevation are sampled from U [49.1, 319.1] m. Since the variation in

the elevation in this site is higher, we set the co-variance matrix of the process noise

as Q(x) = [1, 1, 1]T (m/s)2. Further, the UAV is armed, taken off and changed to

an altitude of 400 m AGL16 using the QGroundControl, i.e., its initial state is set at

u0 = [10 m, 10 m, 519.1 m, π/4 rad]T.

Figure B.5 and Figure B.6 present the tracking and localisation results with

terrain awareness and without terrain awareness algorithms, respectively, for tracking

radio-tagged wildlife the Dorrigo National Park, NSW. Here, the elevations change

significantly. We can see that our algorithm can still perform well and accurately

16We understand that it is legally not possible to fly a UAV at an altitude higher than 120 m AGL (Civil

Aviation Safety Authority, 2017). However, as a proof of concept and in an emulated environment, we

set the relative altitude to 400 m AGL to remove the obstacle avoidance problem from our formulation.

We leave this for future work.
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Figure B.5. The tracking and localisation results without terrain awareness to track and

localise three mobile radio-tagged objects in the Dorrigo National Park, NSW. a) the ground

truth vs the estimated positions in three dimensions (North-East-Elevation); b) the UAV trajectory

using the Shannon entropy based reward function and the estimated locations of the radio tags in

two dimensions (North-East); c) the screen capture of the Software In the Loop simulation with

QGroundControl showing the UAV trajectory. Here, the straight line trajectory shows the UAV

returning home after completing the tracking task.

Figure B.6. The tracking and localisation results with terrain awareness to track and localise

three radio-tagged objects in the Dorrigo National Park, NSW. a) the ground truth vs the

estimated positions in three dimensions (North-East-Elevation); b) the UAV trajectory using the

Shannon entropy and its estimated locations in two dimensions (North-East); c) the screen capture

of the Software In The Loop simulation with QGroundControl showing the UAV trajectory. Again,

the straight line path shows the UAV returning to its home location after completing the task.

localise three mobile radio-tagged objects in this challenging survey area. In this

particular mission, the RMS and flight time are (31.8 m, 705.1 s) and (28.2 m, 603.3 s)

for algorithms without terrain awareness and with terrain awareness, respectively.

Although the RMS values are higher compared with those in Table B.1 due to the

challenging environment, the results demonstrate the robustness of our proposed

algorithm. Our RSSI based measurements based planning for tracking can localise

the mobile radio-tagged objects under very challenging terrain variations. Notably,

the flight times are longer than with Scenario 1, however, flight times of approximately

700 seconds are still achievable with modern battery powered medium size UAVs in
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the 2 kg to 4 kg range. For instance, our TrackerBots demonstrated in Chapter 3 has a

flight time of approximately 6-10 minutes whilst carrying a sensor system payload of

mass 260 g.

B.5 Conclusion

We have validated our formulation for planning to track multiple mobile VHF radio

tagged objects in emulated 3D environments using a measurement model validated

in field experiments using a software in the loop simulations. Therefore, we have

taken the first steps towards three dimensional tracking and planning for a UAV using

RSSI-based method with or without terrain awareness. Whilst we have demonstrated

that it is possible to conduct 3D tracking, the particular limitation of the study is

that the signals generated in the study have only considered the unencumbered

propagation of the light-of-sight signal transmitted from a radio beacon and have not

considered the signal propagation complexities of a 3D environment and we did not

consider the problems of missed detections and false detections or the limited FoV of

the onboard sensor.
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