16 research outputs found

    CDCL SAT solver heuristics: Clause management, instance structure, and decisions

    Get PDF
    The Boolean satisfiability problem or SAT is the problem of deciding if a Boolean formula has a satisfying assignment. It was the first problem shown to be NP-complete, and remains one of the most well-known and studied NP-complete problems. We do not expect to find a polynomial time algorithm that solves all SAT problems, as this would imply equivalence of the complexity classes P and NP, which seems unlikely. However, there are algorithms and heuristics to solve SAT problems that are often effective in practice. A SAT solver is a program that takes as input a Boolean formula and tries to find a satisfying assignment for it. The most-used algorithm in SAT solvers intended for solving real-world problems is known as Conflict Driven Clause Learning, abbreviated CDCL. Due to its broad usage, improving the performance of these solvers can have a large impact on other fields that use SAT solvers and also make SAT solving a useful tool for more applications. The practical performance of CDCL SAT solvers depends critically on a small number of key heuristic mechanisms, and works on these heuristics over the past 20 years have improved CDCL solver performance significantly. This dissertation contributes to our understanding of two of the key heuristic mechanisms, known as the decision heuristic and the clause database management scheme. There are two main foci, which are closely related. First, we focus on developing light weighted methods to use measures of instance structure in solver heuristics. The structure of instances arising from real-world problems seems to be one of the main features that makes them special but there is little work exploiting structural properties within CDCL solvers. We introduce a new structural measure for SAT instances, called Centrality, and show that this measure can be used in both decision and clause management heuristics to improve solver performance. Second, we study different components of clause database management schemes in order to understand and improve them. We categorize clauses as permanent and temporary, show that the permanent set is key to solver performance and propose modifications to the criteria for permanent clauses to improve performance. In recent years, clause database management strategies used in high-performance solvers have become complex, making their study and refinement difficult. We introduce a new clause reduction scheme, called online deletion, which is simple to implement and results in comparable performance

    Stabbing Planes

    Get PDF
    We introduce and develop a new semi-algebraic proof system, called Stabbing Planes that is in the style of DPLL-based modern SAT solvers. As with DPLL, there is only one rule: the current polytope can be subdivided by branching on an inequality and its "integer negation." That is, we can (nondeterministically choose) a hyperplane a x >= b with integer coefficients, which partitions the polytope into three pieces: the points in the polytope satisfying a x >= b, the points satisfying a x <= b-1, and the middle slab b-1 < a x < b. Since the middle slab contains no integer points it can be safely discarded, and the algorithm proceeds recursively on the other two branches. Each path terminates when the current polytope is empty, which is polynomial-time checkable. Among our results, we show somewhat surprisingly that Stabbing Planes can efficiently simulate Cutting Planes, and moreover, is strictly stronger than Cutting Planes under a reasonable conjecture. We prove linear lower bounds on the rank of Stabbing Planes refutations, by adapting a lifting argument in communication complexity

    Combining clause learning and resolution for multimodal reasoning

    Get PDF
    Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Ciência da Computação, 2019.Vários aspectos de sistemas computacionais complexos podem ser modelados utilizando linguagens lógicas, que permitem a caracterização de noções como probabilidades, pos- sibilidades, noções temporais, conhecimento e crenças [32, 37, 38, 64]. Lógicas modais, mais especificamente, têm sido amplamente estudadas em Ciência da Computação, pois possibilitam modelar de forma natural, por exemplo, noções de conhecimento e crença em sistemas multiagentes [16, 32, 64] e aspectos temporais na verificação formal de problemas relacionados a sistemas concorrentes e distribuídos [37, 38]. Apesar de sua simplicidade, linguagens modais são expressivas para raciocinar sobre relações entre diferentes contextos ou interpretações [15]. Uma vez que um sistema é especificado em uma linguagem lógica, é possível usar mé- todos de prova para verificar as propriedades desse sistema. Em geral, se I é o conjunto de fórmulas que representam a implementação e S é o conjunto que caracteriza a especi- ficação, o processo de verificação consiste em mostrar que é possível derivar os aspectos especificados em S a partir de I. Cada método de prova corresponde a um conjunto de regras de inferência acompanhado de uma metodologia de como lidar com as fórmulas. Geralmente, a literatura sobre um sistema de prova contém análises de melhor e pior casos. Também pode-se encontrar na literatura comparações entre diferentes métodos de prova para uma linguagem lógica específica. Para lógicas modais, por exemplo, uma aná- lise empírica de desempenho de quatro sistemas de prova diferentes pode ser encontrada em [42]. Ainda é possível combinar métodos de prova para se beneficiar do melhor cenário de cada método. Frequentemente, métodos de prova são projetados para serem implementados como provadores de teoremas automatizados, ou seja, aspectos relacionados à busca por uma prova também são considerados no projeto de um método de prova específico. Na lite- ratura, existem vários provadores de teoremas para lógicas modais [4, 67, 76, 77]. Neste trabalho, o foco é o provador de teoremas para a lógica multimodal básica Kn: KSP [61], que implementa o método baseado em resolução proposto em [60]. Kn é a linguagem que estende a lógica proposicional clássica com a adição dos operadores modais de necessidade, denotado por a , e de possibilidade, denotado por ♦a , ambos indexados por um agente a. v A semântica dos operatores é dada por “é necessário do ponto de vista do agente a” e “é possível do ponto de vista do agente a”, respectivamente. O KSP traduz as fórmulas de entrada para uma forma normal clausal na qual cláusulas são rotuladas pelo nível modal em que ocorrem, ajudando a restringir aplicações desneces- sários das regras de inferência do cálculo que o KSP implementa. Para reduzir o espaço de busca para uma prova, vários refinamentos e estratégias de simplificação são implemen- tadas como parte do provador KSP. Para obter o melhor desempenho para uma fórmula específica, ou classe de fórmulas, é importante escolher as estratégias e otimizações mais adequadas. De acordo com [61], o KSP apresenta um ótimo desempenho se o conjunto de símbolos proposicionais for uniformemente distribuído pelos níveis modais. No entanto, quando há um grande número de símbolos proposicionais em apenas um nível específico, a eficiência diminui. A razão é que a tradução para a forma normal usada sempre gera conjuntos satisfatíveis de cláusulas proposicionais, ou seja, cláusulas sem operadores modais. Como resolução depende da saturação do conjunto de cláusulas, isso pode custar muito tempo. Este trabalho contribui para o KSP com a implementação de uma opção adicional à lista de estratégias disponíveis do provador. O objetivo dessa nova opção é tentar reduzir o tempo que o KSP gasta saturando o conjunto de cláusulas, e, possivelmente, aumentar a velocidade na qual as regras de inferência que lidam com o raciocínio modal podem ser aplicadas. Portanto, a contribuição deste trabalho consiste, principalmente, na adição de duas novas regras ao cálculo implementado pelo KSP. Um dos resultados apresentados é a demonstração de que as regras são corretas e a adição de ambas não interfere na completude do provador. Nossa implementação utiliza um provador de satisfatibilidade booleana baseado em aprendizagem de cláusulas conduzida por análise de conflitos (CDCL SAT solver). O problema de satisfatibilidade booleana (SAT) é o problema de determinar se existe al- guma valoração para as variáveis de uma fórmula proposicional que torne esta fórmula verdadeira. Provadores para este problema (SAT solvers) são em geral conhecidos por serem muito eficientes. Esses provadores comumente são capazes de resolver problemas considerados difíceis, com mais de um milhão de variáveis e milhões de restrições [35]. Uma das principais razões para o amplo uso de SAT em muitas aplicações é que os CDCL SAT solvers são muito eficientes na prática [35]. A principal idéia por trás da aprendiza- gem de cláusulas implementada nesses solvers é adicionar as causas de um dado conflito, derivado de atribuições parciais de valores de verdade a símbolos proposicionais, como cláusulas aprendidas. Então essas informações são usadas para podar a árvore de busca por uma valoração satisfatível em diferentes partes. vi Competições anuais também influenciaram o desenvolvimento de implementações in- teligentes e eficientes dos provadores baseados em SAT, como Chaff [56], MiniSat [73] e Glucose [5]. Essas competições permitem que muitas técnicas sejam exploradas e criam uma extensa coleção de instâncias de problemas do mundo real e problemas projetados como desafiadores, formando um grande banco referência de casos de teste [35]. Além da análise de conflitos, os provadores modernos incluem técnicas como estruturas de dados com avaliação preguiçosa, reinicializações de busca, heurísticas de ramificação controlada por conflitos e estratégias de exclusão de cláusulas [14]. Em 2005, mais especificamente, Sörensson e Een desenvolveram um provador SAT com minimização de cláusulas de con- flito, chamado MiniSat [73], que permaneceu por um tempo como o SAT solver do estado da arte. O MiniSat é um provador popular, com um desempenho surpreendente, que implementa de forma sucinta muitas heurísticas conhecidas. Ele ganhou vários prêmios na competição SAT 2005 e tem a vantagem de ser código aberto. Mantém até hoje sua importância como uma ferramenta usada como parte integrada de diferentes siste- mas [26, 27, 28, 75]. Aproveitamos os esforços teóricos e práticos que foram direcionados em melhorar a eficiência de tais provadores para ajudar a acelerar o processo de saturação dentro dos procedimentos já implementados no KSP. Nossa implementação modifica o provador KSP para realizar uma chamada externa ao MiniSat. O provador modificado pode ser encontrado em [1]. A idéia principal por trás dessa combinação é criar uma consulta para o SAT solver contendo cláusulas especiais criadas a partir de cada nível modal. Se o provador baseado em CDCL aprender uma ou mais cláusulas pelo procedimento de análise de conflitos, adicionamos-as ao conjunto de cláusulas proposicionais da respectiva instância do KSP, pois sabemos que essas cláusulas aprendidas são consequências do conjunto que passamos ao MiniSat. Além disso, se o MiniSat concluir que o conjunto dado como entrada é insatisfatível, também aprendemos uma cláusula que, por construção, deve ser uma das premissas das regras de inferência que lidam com raciocínio modal. Aprendendo esta cláusula, nossa hipótese é que a aplicação dessas regras será possível sem que o KSP dependa da saturação do conjunto de cláusulas proposicionais. A combinação implementada foi testada com três grandes bancos de problemas clás- sicos, LWB [11], MQBF [43, 53] e 3CNF [53], em um Ubuntu 18.04 com um processador Intel i7 e 16 GB de memória. Assim como o KSP sozinho, nossa combinação não conseguiu resolver nenhuma instância dos problemas pertecentes ao 3CNF no limite de tempo de 20 minutos. Para os demais bancos, o limite de tempo dado foi de 100 segundos. Os resul- tados experimentais de nossa implementação executando com os bancos MQBF e LWB não apresentaram, em geral, um ganho em tempo de execução, provavelmente devido à sobrecarga que inserimos com a chamada ao MiniSat. vii Entretanto, nossa implementação foi capaz de avançar o KSP na resolução de entradas insatisfatíveis de uma das famílias mais difíceis do banco LWB. Essa família corresponde ao princípio da casa dos pombos estabelecido como fórmulas em Kn. Essas fórmulas são projetadas com um grande número de símbolos proposicionais distribuídos em um máximo de dois níveis modais, o que representa exatamente o cenário para o qual desejávamos me- lhorar a eficiência do KSP. O provador sozinho é capaz de resolver cinco instâncias dessa família, enquanto nossa combinação conseguiu resolver até a nona entrada. Outros pro- vadores na literatura também apresentam grande dificuldade em resolver instâncias dessa família [61]. Além disso, a execução do KSP combinado com o MiniSat para essas entra- das em particular mostrou que o uso do MiniSat permitiu uma diminuição significativa no número de inferências necessárias para que o KSP encontrasse uma prova. Isso é re- levante quando consideramos uso de memória como parâmetro de eficiência. Este último resultado indica que nossa combinação teve um impacto positivo na execução do KSP. Acreditamos que um refinamento nas mudanças implementadas no provador, buscando um meio termo entre a sobrecarga da chamada ao MiniSat e minimizar o número de inferências feitas, poderia levar a resultados ainda melhores.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CAPES).Modal logics have been widely studied in Computer Science for allowing the character- isation of complex systems that express notions in terms of knowledge, belief etc. In this work, we focus on the theorem prover for the basic multimodal language Kn: KSP, which implements a clausal resolution method. Clauses are labelled by the modal level at which they occur, helping to restrict unnecessary applications of the resolution inference rules. KSP performs well if the set of propositional symbols are uniformly distributed over the modal levels. However, when there is a high number of variables in just one particular level, the performance deteriorates. One reason is that the specific normal form we use al- ways generates satisfiable sets of propositional clauses. As resolution relies on saturation, this can be very time consuming. Our work contributes to KSP with the implementation of an additional option to the list of available strategies. This option attempts to reduce the time KSP spends during saturation, or even to increase the rate in which inference rules that deal with modal reasoning can be applied. We modified KSP to externally call MiniSat, a popular SAT solver based on clause learning. The output from MiniSat, as well as the clauses it might learn in the proof search, gives us important information about the set of clauses at each modal level. Although the proposed combination did not improve KSP performance in average, it allowed KSP to solve more instances of the ph family than before. This is one of the hardest families of the LWB benchmark, which corresponds to the pigeonhole principle established as a formula in Kn

    A SAT Approach to Clique-Width

    Full text link
    Clique-width is a graph invariant that has been widely studied in combinatorics and computer science. However, computing the clique-width of a graph is an intricate problem, the exact clique-width is not known even for very small graphs. We present a new method for computing the clique-width of graphs based on an encoding to propositional satisfiability (SAT) which is then evaluated by a SAT solver. Our encoding is based on a reformulation of clique-width in terms of partitions that utilizes an efficient encoding of cardinality constraints. Our SAT-based method is the first to discover the exact clique-width of various small graphs, including famous graphs from the literature as well as random graphs of various density. With our method we determined the smallest graphs that require a small pre-described clique-width.Comment: proofs in section 3 updated, results remain unchange

    Study of efficient techniques for implementing a Pseudo-Boolean solver based on cutting planes

    Get PDF
    Most modern SAT solvers are based on resolution and CNF representation. The performance of these has improved a great deal in the past decades. But still they have some drawbacks such as the slow effi- ciency in solving some compact formulas e.g. Pigeonhole Principle [1] or the large number of clauses required for representing some SAT instances. Linear Pseudo-Boolean inequalities using cutting planes as resolution step is another popular configuration for SAT solvers. These solvers have a more compact representation of a SAT formula, which makes them also able to solve some instances such as the Pigeonhole Principle easily. However, they are outperformed by clausal solvers in most cases. This thesis does a research in the CDCL scheme and how can be applied to cutting planes based PB solvers in order to understand its performance. Then some aspects of PB solving that could be improved are reviewed and an implementation for one of them (division) is proposed. Finally, some experiments are run with this new implementation. Several instances are used as benchmarks encoding problems about graph theory (dominating set, even colouring and vertex cover). In conclusion the performance of division varies among the different problems. For dominating set the performance is worse than the original, for even colouring no clear conclusions are shown and for vertex cover, the implementation of division outperforms the original version

    Model-based symbolic design space exploration at the electronic system level: a systematic approach

    Get PDF
    In this thesis, a novel, fully systematic approach is proposed that addresses the automated design space exploration at the electronic system level. The problem is formulated as multi-objective optimization problem and is encoded symbolically using Answer Set Programming (ASP). Several specialized solvers are tightly coupled as background theories with the foreground ASP solver under the ASP modulo Theories (ASPmT) paradigm. By utilizing the ASPmT paradigm, the search is executed entirely systematically and the disparate synthesis steps can be coupled to explore the search space effectively.In dieser Arbeit wird ein vollständig systematischer Ansatz präsentiert, der sich mit der Entwurfsraumexploration auf der elektronischen Systemebene befasst. Das Problem wird als multikriterielles Optimierungsproblem formuliert und symbolisch mit Hilfe von Answer Set Programming (ASP) kodiert. Spezialisierte Solver sind im Rahmen des ASP modulo Theories (ASPmT) Paradigmas als Hintergrundtheorien eng mit dem ASP Solver gekoppelt. Durch die Verwendung von ASPmT wird die Suche systematisch ausgeführt und die individuellen Schritte können gekoppelt werden, um den Suchraum effektiv zu durchsuchen

    Proof-theoretic Semantics for Intuitionistic Multiplicative Linear Logic

    Get PDF
    This work is the first exploration of proof-theoretic semantics for a substructural logic. It focuses on the base-extension semantics (B-eS) for intuitionistic multiplicative linear logic (IMLL). The starting point is a review of Sandqvist’s B-eS for intuitionistic propositional logic (IPL), for which we propose an alternative treatment of conjunction that takes the form of the generalized elimination rule for the connective. The resulting semantics is shown to be sound and complete. This motivates our main contribution, a B-eS for IMLL , in which the definitions of the logical constants all take the form of their elimination rule and for which soundness and completeness are established

    A SAT-based approach for index calculus on binary elliptic curves

    Get PDF
    Logical cryptanalysis, first introduced by Massacci in 2000, is a viable alternative to common algebraic cryptanalysis techniques over boolean fields. With XOR operations being at the core of many cryptographic problems, recent research in this area has focused on handling XOR clauses efficiently. In this paper, we investigate solving the point decomposition step of the index calculus method for prime degree extension fields F2n\mathbb{F}_{2^n}, using SAT solving methods. We experimented with different SAT solvers and decided on using WDSat, a solver dedicated to this specific problem. We extend this solver by adding a novel breaking symmetry technique and optimizing the time complexity of the point decomposition step by a factor of m!m! for the (m+1)(m+1)\textsuperscript{th} Semaev\u27s summation polynomial. While asymptotically solving the point decomposition problem with this method has exponential worst time complexity in the dimension ll of the vector space defining the factor base, experimental running times show that the the presented SAT solving technique is significantly faster than current algebraic methods based on Gröbner basis computation. For the values ll and nn considered in the experiments, the WDSat solver coupled with our breaking symmetry technique is up to 300 times faster then MAGMA\u27s F4 implementation, and this factor grows with ll and nn
    corecore