CDCL SAT Solver Heuristics: Clause

Management, Instance Structure, and

Decisions
by
Sima Jamali

M.Sc., Sharif University of Technology, 2015
B.Sc., Azad University of Mashhad, 2012

Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

Doctor of Philosophy

in the
School of Computing Science

Faculty of Applied Sciences

© Sima Jamali 2021
SIMON FRASER UNIVERSITY
Summer 2021

Copyright in this work is held by the author. Please ensure that any reproduction
or re-use is done in accordance with the relevant national copyright legislation.

Declaration of Committee

Name: Sima Jamali
Degree: Doctor of Philosophy
Thesis title: CDCL SAT Solver Heuristics: Clause

Management, Instance Structure, and Decisions

Committee: Chair: Joseph Peters
Professor, Computing Science

David Mitchell
Supervisor
Associate Professor, Computing Science

Hang Ma
Committee Member
Assistant Professor, Computing Science

Saba Alimadadi
Examiner
Assistant Professor, Computing Science

Vijay Ganesh

External Examiner

Associate Professor

Electrical and Computer Engineering
and Computer Science

University of Waterloo

ii

Abstract

The Boolean satisfiability problem or SAT is the problem of deciding if a Boolean formula
has a satisfying assignment. It was the first problem shown to be NP-complete, and remains
one of the most well-known and studied NP-complete problems. We do not expect to find
a polynomial time algorithm that solves all SAT problems, as this would imply equivalence
of the complexity classes P and NP, which seems unlikely. However, there are algorithms
and heuristics to solve SAT problems that are often effective in practice. A SAT solver is
a program that takes as input a Boolean formula and tries to find a satisfying assignment
for it. The most-used algorithm in SAT solvers intended for solving real-world problems
is known as Conflict Driven Clause Learning, abbreviated CDCL. Due to its broad usage,
improving the performance of these solvers can have a large impact on other fields that use

SAT solvers and also make SAT solving a useful tool for more applications.

The practical performance of CDCL SAT solvers depends critically on a small number of
key heuristic mechanisms, and work on these heuristics over the past 20 years have improved
CDCL solver performance significantly. This dissertation contributes to our understanding
of two of the key heuristic mechanisms, known as the decision heuristic and the clause
database management scheme. There are two main foci, which are closely related. First
we focus on developing light weighted methods to use measures of instance structure in
solver heuristics. The structure of instances arising from real-world problems seems to be
one of the main features that makes them special but there is little work exploiting struc-
tural properties within CDCL solvers. We introduce a new structural measure for SAT
instances, called Centrality, and show that this measure can be used in both decision and
clause management heuristics to improve solver performance. Second, we study different
components of clause database management schemes in order to understand and improve
them. We categorize clauses as permanent and temporary, show that the permanent set is
key to solver performance and propose modifications to the criteria for permanent clauses
to improve performance. In recent years, clause database management strategies used in
high-performance solvers have become complex, making their study and refinement diffi-
cult. We introduce a new clause reduction scheme, called online deletion, which is simple

to implement and results in comparable performance.

iii

Keywords: Structural Properties of CNF Formulas; Simplifying Clause Deletion; Central-
ity in SAT; Permanent Clauses; CDCL Solvers; Heuristics in SAT Solvers

iv

To 92,
The light of my life!

Acknowledgements

First and foremost, I offer my sincerest gratitude to my senior supervisor, Dr. David
Mitchell. I am wholeheartedly grateful for all his invaluable contributions of time and insight
to make my research productive, stimulating, and exciting. Thank you, David! I would like
to sincerely thank the members of my PhD dissertation committee: Dr. Hang Ma, Dr. Saba
Alimadadi and Dr. Vijay Ganesh for their thorough examination of this thesis and their
suggestions and remarks on this work.

A special thanks goes to my parents, a constant source of support and encouragement
for me; thank you for being so loving, caring and supportive. Heartfelt thanks goes to my
grandma, Sepideh, Mohamadreza and Pegah. I appreciate their endless love and support
that made all these years a pleasant chapter of my life. My beloved family are always my
sense of safety and calmness.

I am thankful to my friends at Simon Fraser University and my second family in Vancou-
ver who made my studies more pleasant and enjoyable. Especially, I am grateful to Nazanin,
Zahra, Mahsa, Parsian, Mona, Sina, Akbar, Mehdi, Ali, Hamid, Kiarash, Payam, Ramtin,
Mina, Sajjad, Rana, Ehsan, Sepehr and Sara.

Last but not least, I am immensely grateful to my partner, my best friend and my
husband, Babak! Thank you for always being on my side, for believing in me unconditionally
and supporting me in this chapter of my life.

I would like to acknowledge the administrative and technical staff in the School of
Computing Science for making this school a productive environment. I also wish to thank the
Natural Sciences and Engineering Research Council of Canada (NSERC) for their financial

support in the course of this research.

vi

Contents

Declaration of Committee

Abstract

Dedication

Acknowledgements

Table of Contents

List of Tables

List of Figures

1 Introduction

1.1

1.2
1.3

SAT and CDCL Solvers o e
1.1.1 CDCL Algorithm and Heuristics
Thesis Contributions e

Thesis Structure

2 Conflict Driven Clause Learning Solvers

2.1

2.2

2.3

Basic definitions and terminology
2.1.1 Boolean Satisfiability Problem (SAT)
2.1.2 SAT solvers
2.1.3 Literal, Clause e
2.1.4 Conjunctive Normal Form (CNF)
Solving Algorithms and CDCL
2.2.1 Truth Table Method
2.2.2 Backtracking
2.2.3 DPLL Algorithm o
2.2.4 CDCL Algorithm o
CDCL heuristics

2.3.1 Decision Heuristics oo

vii

ii

iii

vi

vii

xi

NS IS JUR S B

© © oo oo @

2.4

2.3.2 Clause Database Management

Summary e e e

Decision Heuristics and Instance Structure

3.1
3.2
3.3

3.4

3.5

3.6

Overview L e
Related Work oL
Structural Properties
3.3.1 Structural Properties Computations
VSIDS Preferences and Preferential Bumping
3.4.1 VSIDS Preferences
3.4.2 Preferential Bumpingo 0oL
3.4.3 Preferential Bumping of Central Communities
3.4.4 Preferential Bumping in Glucose
Centrality based Modifications in Maple LCM Dist
3.5.1 Decision Heuristics o
3.5.2 Performance Evaluation
3.5.3 Performance Analysis L L.

SUMmMAryo e e e e

Clause Centrality in Deletion Strategies

4.1
4.2
4.3

4.4
4.5
4.6

OVEIVIEW o o o o e e e e e e e
Clause Centrality
Centrality based Clause Deletion in Maple LCM Dist
4.3.1 Performance Evaluation
4.3.2 Comparing Clauses after Deletions
Learned Clause Quality o .
Deletion Criteria in Delete-Half Schemes

Summary . o.o. ... e

Permanent Clauses

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9

OVEIVIEW . . . o o o s e e
PERM Set in State of the Art Solvers
Usage in Learned Clauses o
Size and Value of PERM in MapleLCMDistChronoBT
Varying Size and LBD Criteria for PERM
Adding High-Centrality Clauses to PERM
Small good clauses not to add to PERM
SAT vs. UNSAT formulas

SUMmMAryo e e e e e

viii

34
34
36
37
39
40
41
42
45
46
49
49
50
o1
93

54
54
95
95
o6
99
60
62
63

6 Simplifying Clause Database Management

6.1 Overview

6.1.1 Performance Evaluation and Base Solver
6.2 Online Clause Deletion
6.2.1 Relating Delete-Half and Online Deletion
6.3 Age-Based Deletion
6.4 Clause Usage 0 i i e e
6.4.1 Fraction Saved by RU
6.4.2 Clauses saved by RU and Activity
6.5 Clause LBD and Tier2
6.6 Computation Time
6.7 SAT vs. UNSAT formulas

6.8 Summary
7 Conclusion

Bibliography

ix

79
79
81
82
82
82
83
86
86
87
88
89
90

91

94

List of Tables

Table 2.1
Table 2.2
Table 2.3
Table 2.4

Table 3.1
Table 3.2
Table 3.3
Table 3.4
Table 3.5
Table 3.6
Table 3.7

Table 4.1
Table 4.2
Table 4.3

Table 5.1
Table 5.2
Table 5.3

Table 6.1
Table 6.2

Truth Table of Formula ¢.
Simplifying ¢
Unit Propagation in solving ¢

Main Features of the Chosen Solvers

Correlations amoung structure computation and solver times.
Measures of the degree to which VSIDS prefers special variables . . .
Effect of increasing the bump value for variables in central communities
Comparing performance of modified solvers on a smaller benchmark .
Performance of default Maple LCM Dist and our three modified solvers
Number of families involved in formulas solved by our modified solvers

Measures of search or reasoning rate for the four solvers

Performance of Maple LCM Dist and HCdel solvers
Measures of reasoning rate

Measures of quality for clauses in LOCAL

Average value of clause quality measures in solver with no clause deletion
Learning rates in instances with Large/Small number of PERM clauses

Performance on Satisfiable vs Unsatisfiable instances.

Commonality among High-Activity Clauses and Recently-Used Clauses.

Performance on Satisfiable vs Unsatisfiable Formulas.

o1
93

56
o8
99

68
70
77

87

List of Figures

Figure 1.1

Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6
Figure 2.7
Figure 2.8

Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8
Figure 3.9

Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4

Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6
Figure 5.7

CDCL algorithm and its main Heuristics

Tree showing full assignments for ¢
Pruned tree using backtracking algorithm for ¢
Pruned tree after settingp=0.,
Implication Graph without Conflict
Implication Graph with Conflict
Resolution on Conflict Clause
Further Resolution by CDCL to find an Asserting Clause

Evolution of Solvers

Computing time of structural properties
Mean fraction of special decisions over full run
Effect of preferential bumping on special decisions
Effect of initial vs uniform preferential bumping
Examples of community graphs with no clear coarse structure . . .
Examples of community graphs with coarse structure
Relative performance of Glucose, GLPB-Br-u and GLPB-HC-i.
Cactus plot comparing Maple LCM Dist and three modified solvers
Scatter plots comparing Maple LCM Dist and three modified solvers

Cactus plot of Maple LCM Dist and HCdel performance
Scatter plot of Maple LCM Dist and HCdel performance
Average Usage with respect to different clause quality measures

PAR-2 scores of solvers with different deletion criteria.

Average LBD of learned clauses with respect to Age
PERM Size Histogram
Effect of removing PERM from MapleLCMDistChronoBT
Effect of limiting size of PERM on “LC” formulas.
Average size of the PERM set on LC benchmarks
Effect of PERM criteria on clauses and size of DB
Effect of PERM criterion on PAR-2 Scores

xi

o7
58
60
62

Figure 5.8
Figure 5.9
Figure 5.10
Figure 5.11

Figure 6.1
Figure 6.2
Figure 6.3
Figure 6.4
Figure 6.5
Figure 6.6
Figure 6.7

Performance of solvers with small clauses in Core
Performance of solvers with high-centrality clauses in PERM
Performance with PERM criteria Size< 8 or HC.

Performance of solvers with new learned clauses

Number of TEMP Clauses in Delete-Half scheme
Simple Online Deletion Performance.
Rate of use of clauses in Local at different ages.
Online Deletion with Recent Usage
Fraction of saved clauses in different online deletion schemes . . .
Online Deletion With Usage and LBD
Fraction of Time Spent in Clause Deletion Methods

xii

84

Chapter 1

Introduction

The Boolean satisfiability problem, or SAT, is the problem of finding an assignment to the
variables of a Boolean formula that makes the formula true. A SAT solver is a software arti-
fact that takes as input a Boolean formula (also known as a formula of propositional logic)
and searches for a satisfying assignment for it. This dissertation contributes to the area of
applied SAT solving, that is, the use of SAT solvers in solving problems of a combinatorial
nature that come from real world applications. Hardware and Software Verification [21],
Planning [62][63], Scheduling [50], Automatic test pattern generation [105] and Bioinfor-
matics are just some examples of the problem domains where SAT solvers have been used.
SAT instances coming from such applications are called “industrial”.

The most effective SAT solvers for industrial instances are based on an algorithm called
Conflict Driven Clause Learning, abbreviated CDCL. The performance of CDCL solvers in
practice depends critically on a small number of key heuristic mechanisms. This disserta-
tion makes several contributions to the understanding and design of two of these heuristic
mechanisms, namely the decision heuristic and the clause database management scheme.
The contributions are generally of three sorts. First, we study the use of instance structure
in the heuristics. We introduce a new structural measure of formulas, called Centrality, and
show it can be used in decision and clause database management heuristics to improve the
performance of CDCL solvers. Second, we take a close look at clause database management
techniques in state of the art solvers, shedding some light on the roles of their various fea-
tures and ways to improve them. Third, we introduce a new simplified clause management
scheme. The contributions are described in detail in Section 1.2, after we introduce the
basics of CDCL solvers in Section 1.1.

1.1 SAT and CDCL Solvers

SAT is the problem of determining whether a boolean formula is satisfiable or unsatisfiable.
It was the first problem shown to be NP-complete, in a 1971 paper by Stephen Cook

[97, 34, 45]. A boolean formula, or just formula for simplicity, is satisfiable if there exists a

truth assignment for its variables for which the formula evaluates to true. If no such truth
assignment exists, the formula is unsatisfiable. SAT has been identified as a core problem
in computer science among with several other important computational problems and has
been comprehensively studied, leaving a huge literature [90]. From the complexity point of
view, we can not expect to find an answer for all SAT problems in polynomial time as it
would imply P = NP which is believed to be unlikely. However, there are many algorithms
and solvers to tackle SAT problems which are shown to be effective in practice, and as a
consequence, NP-complete problems in many fields are solved by reducing or transforming
them to SAT. Because of this broad usage, improving the performance of SAT solvers can
have an impact on many fields and also increase the range of applications for which it is
useful. In this dissertation we will focus on practical SAT research and solving SAT problems
in CNF format with solvers that have CDCL as their core algorithm, that is, CDCL SAT
solvers.

The CDCL algorithm was proposed by Marques-Silva and Sakallah in 1996 as an ex-
tension to the DPLL algorithm for SAT [98]. At the time, DPLL was not really useful in
practical settings but was theoretically interesting [9]. The CDCL algorithm, introduced
in the solver GRASP [98, 78] changed the picture a lot. GRASP empirically showed that
solving real world problems using a SAT solver can be practical. Since that time, perfor-
mance of SAT solvers has been improved by orders of magnitude in many practical settings
using methods like activity-based heuristics [39] and LBD-based clause deletions [9]. Due
to its remarkable efficiency, specifically in practical settings, CDCL has been the core al-
gorithm in most SAT solvers today to the extent that the term “CDCL solver” is often
used synonymously with “SAT solver”. Modern CDCL solvers are able to solve real world
problems with millions of variables in reasonable time, which is impressive considering their
worst case running time is exponential in the number of variables. Since 2002 there have
been yearly SAT Solver competitions to evaluate SAT solvers and they continuously show
performance improvements each year [1]. It seems like currently, only CDCL solvers are
able to win in the application or industrial competition track [59]. The focus of this work
will be on performance of CDCL solvers on benchmark formulas from the application track
of the competitions.

The widespread use of SAT solvers in many fields in both academia and industry has
led the community to provide reliable, robust, open source and easily embeddable solvers.
Some of the most influential CDCL solvers over the past 20 years are GRASP [98], Chaff
[81], MiniSAT [39], Glucose [8], Lingeling [20], MapleSAT [71], and Cadical [22] to date. One
of the important ways these solvers differ is in the design and implementation of their key
heuristics. Over the years, these heuristics have been built upon each other and improved

the performance of solvers significantly.

1.1.1 CDCL Algorithm and Heuristics

The main solving scheme in all CDCL solvers is the same. They get a CNF formula as input
and start a search to find a satisfying assignment for it or prove its unsatisfiability. This
starts by picking a variable in the formula, assigning a truth value to it and performing
Boolean Constraint Propagation (BCP). This will be repeated until the solver reaches a
conflict (the partial assignment constructed so far makes a clause false) or satisfies all
clauses. If all clauses are satisfied, the solver will report the formula is satisfiable. If a conflict
is reached, the solver will learn a clause and add it to the clause database to prevent possible
similar conflicts in future. Then it backtracks to a level in the search tree before this conflict
happened and continues by picking another unassigned variable and repeats the process.
If a backtrack is to level 0, the solver will report the formula is unsatisfiable and stop the
search.

The main CDCL algorithm has been the same ever since it was first introduced in 1996 and
can be found in most state of the art solvers but with changes to a number of details and
heuristics. Three main CDCL heuristics are known as the Decision Heuristic, the Clause
Database Management Scheme and the Restart Policy. Figure 1.1 illustrates the CDCL
algorithm and where its most important heuristics play their roles. A restart is a backtrack
to level zero where all variables become unassigned and the solver starts a new and different
search. The restart policy determines when this happens. Our focus in on the other two

heuristics.

CDCL(F)
While (F has Unassigned Variables)
Pick a variable, V and Assign a truth value, T Decision Heuristic
If BCP(F,V—T) = conflict

Learn conflict clause, C

Clause Database
DB — DB u {C} Management

Find backtrack level, L before conflict
If L < 0 then return Unsatisfiable

Else Backtrack(L) Restart Heuristic may set L to 0

return Satisifiable

Figure 1.1: CDCL algorithm and its main Heuristics

The decision heuristic determines which variable will be chosen next to assign a value to,
and which truth value will be assigned. This has a considerable impact on the performance

as it determines which branches of the search tree to explore first. One of the most popular

decision heuristics that solvers use is called “Variable State Independent Decaying Sum” or
VSIDS. Some version of it can be found in all state of the art solvers today [81]. VSIDS tries
to keep the search in parts of the formula that solver is focusing on so when choosing the next
decision variable, it gives more priority to the ones that were involved in recent conflicts.
Recently a new decision heuristic called “Learning Rate Based” or LRB was introduced and
can be found in some recent solvers [69, 53]. LRB aims to prioritize variables used in recent
conflicts as well but has a different approach based on machine learning techniques to do
so [69]. Both VSIDS and LRB use an activity-based scoring system for variables and pick
the unassigned variable with highest score at each time.

As suggested by its name, Clause Database Management is responsible for managing
the number of clauses in the database and how they are stored. Modern CDCL solvers
can learn and add thousands of clauses to the database per second which can ruin the
solver’s performance very fast [87]. The reason is that not only keeping clauses consumes
memory that can eventually result in exhaustion of the available memory, but also it is
costly to perform BCP on clauses and not all clauses are valuable enough to be worth the
cost [89]. Clause Database Management determines which clauses should be removed from
the database, when this should happen and how. In particular, most learned clauses must
be deleted to keep the clause database of practical size which is why this heuristic is also
known as the clause deletion heuristic [9]. There are two main aspects to a clause deletion
scheme. The first is a method to categorize clauses as likely to be useful in future (high
quality), or not (low quality). The aim is to keep the high quality clauses in the database and
delete from the low quality ones. The second is implementation of an algorithmic method
to remove low quality clauses efficiently. There are some known cause quality measures that
are believed to predict clauses usefulness to some extent and usually a combination of some
or all of them is utilized in a solver’s clause deletion scheme. Size, LBD, Usage (Activity)
and Age are probably the most important. The most popular scheme for deleting low quality
clauses is to periodically sort the clauses in the learned-clause database based on a quality
measure and delete some (usually half) of the lowest quality. This scheme, which we call
Delete-Half, has been very widely used in CDCL solvers for many years [9, 104, 71]. Typical
clause database management strategies involve two stores of learned clauses in the database.
One is for keeping the clauses that are believed to be too important to delete and they are
kept in the database permanently. The binary clauses usually belong to this store. The rest

of the clauses are considered temporary and clause deletion happens among them [58].

1.2 Thesis Contributions

This research introduces a novel measure in the context of SAT solving, Centrality which is
based on the structure of SAT formulas and proposes different decision and clause database

management heuristics to utilize this measure. We illustrate the effectiveness of using Cen-

trality by adopting these heuristics in state of the art solvers and show performance im-
provements. We also report many experimental studies to help illuminate the behaviour of
heuristics, primarily in clause database management. We review the current clause database
management schemes to understand different components of them better, improve them fur-
ther and propose a simpler method to replace the current deletion scheme. In summary, our

contributions are as follows.

o Centrality in SAT formulas: Structure of the formulas in industrial SAT instances
seems to be one of the main features that makes them special and can help explain
the fact that CDCL solvers perform very well on them in comparison with much
smaller instances that are designed to be hard. There are limited works on exploiting
structural properties of formulas in the solver and in many of them, extracting the
properties is very expensive so it is hard to use them in solvers without damaging their
performance. We introduce betweenness centrality, a measure which is extracted from
the primal graph of CNF formulas. The betweenness centrality of a vertex v in a graph
G is the number of shortest paths between pairs of distinct vertices that visit v. The
betweenness centrality of a variable v in formula ¢ is the betweenness centrality of v
in the un-weighted primal graph G(¢). We show that by using the Brandes algorithm
[28], computing centralities can be done efficiently for a large number of industrial
formulas and by using sampling, we can further calculate good approximate centrality
values even more efficiently. We examine the behaviour of the VSIDS decision heuristic
experimentally and show that this heuristic favors variables that have high centrality
values (and some other structural properties) which may help explain their efficiency

on industrial formulas.

e Preferential Bumping in decision heuristics: Initially, we show that VSIDS de-
cision heuristic in the state of the art solvers favors some special groups of variables
categorized by their structural properties without actually aiming for those properties
in the first place. We introduce a new scheme to be added to the decision heuristics in
the solvers that increase the focus of the decisions on a special set of variables which
we call Preferential Bumping. Using preferential bumping, we modify different CDCL
solvers to choose more decisions among the variables of a special set and we show
that preferential bumping of high centrality variables can improve the performance of
solvers. We use a similar method to change the preference in the LRB decision heuris-
tic. In particular, preferential bumping of high centrality variables clearly improved
the performance of Maple LCM Dist, which took first place in the industrial category
of the 2017 SAT solver competition.

« Exploiting centrality as a clause quality measure: Considering the positive
results we have from utilizing centrality in decision heuristics, we show how it can

also be used in the clause database management heuristic. We introduce a new clause

quality measure called Centrality which is defined as the average betweenness central-
ity of variables in a clause. We show that by implementing centrality-based deletion
schemes in state of the art solvers, we can improve their performance. In particular,
the performance of Maple LCM Dist, which was the first place solver in the indus-
trial category of the 2017 SAT solver competition, was improved significantly. We also
compare centrality with three other main clause quality measures, LBD, Size and Ac-
tivity in deletion strategies and make various observations. We show that Centrality
of remaining clauses after deletion is the only quality measure that perfectly correlates
with the speed of the solvers. We show that clauses with higher centrality values are
more useful in conflict analysis which is similar to the behaviour of small or low-LBD
clauses. We also compare using various clause quality measures in deletion and show
that in the presence of a permanent set of clauses with low LBD, centrality based
deletion results in the best performance. These experiments apply to the MapleSAT
solvers with a 3-tier clause database management heuristic which is a common scheme

in recent state of the art solvers.

Categorizing clauses to PERM and TEMP in clause management strategies
and illustrating the importance of PERM: The clauses learned by the solver can
be partitioned into two categories with respect to deletion. The set of clauses that are
never considered for deletion by the clause database management heuristic and are
stored permanently we call PERM. The set of clauses that might get deleted we call
TEMP. Historically PERM usually is the set of binary clauses, which are believed to
be very valuable. In recent years, other clauses with small LBD also sometimes belong
to PERM. We study the importance of PERM in recent solvers and show that even
though by relaxing the criteria for PERM clauses the solver ends up saving millions
of clauses in some cases, they are still valuable and our experiments suggest they
should not be removed. We also show that clauses with high centrality, which tend to
be more useful in the conflict analysis, make good candidates for PERM. We modify
a recent version of MapleSAT and its clause deletion scheme to add high centrality
clauses to PERM and show that this improves performance. In particular, modifying
MapleLCMDistChronoBT, the winner of the SAT competition 2018 on the industrial
formulas to keep small clauses (of size at most 8) permanently or to add high centrality
clauses to its PERM set, improved its performance significantly. Finally, we introduce
a new scheme to learn additional small clauses with low cost. We show they can be
beneficial to solver’s performance if added to TEMP but not PERM.

Proposing a simple and novel clause deletion scheme called Online Dele-
tion: The clause database management heuristic is usually considered in two aspects.
One is having good clause quality measures to keep the more useful clauses and the

other is efficient clause deletion algorithms to remove the rest. Over time many refine-

ments have combined to make the overall mechanism in the best recent solvers quite
complex. This complexity makes it hard to evaluate the contributions of individual
elements, and is an obstacle to adding new features or refined quality measures. We
take a closer look at the recent heuristics for clause database management and their
complexity to discuss ways we can possibly simplify this heuristic. We also discuss
other unappealing features of current deletion algorithms which involve periodically
sorting and deleting half the clauses with lower qualities. Examples are constantly
changing the size of clause database or giving different clauses different chances to
be kept without considering their quality. We propose a new deletion scheme, which
we call Online Deletion and illustrate how this simple scheme can overcome those
problems while keeping the performance of the solver at the same level. To aid in
understanding the degree to which the particular methods play a role in solver per-
formance, we present data from a number of experiments measuring performance or

other properties.

1.3 Thesis Structure

The remainder of this thesis is organized as follows. Chapter 2 explains in detail the basics
of the CDCL algorithm and its most important heuristics. In chapter 3 we introduce some
structural properties of SAT formulas, and introduce betweenness centrality of variables.
We also introduce methods for exploiting these properties by modifying standard CDCL
decision heuristics. In chapter 4, we introduce clause centrality, provide evidence of its
usefulness as a clause quality measure, and show that solver performance can be improved
by utilizing clause centrality in clause deletion schemes. In chapter 5, we study the roles
of permanent (PERM) and temporary (TEMP) clauses in solvers. We study the use of
different kinds of clauses in PERM and the effects on performance, and in particular show
that adding high centrality clauses to PERM can improve solver performance. In chapter 6,
we explain a new and simple clause deletion algorithm, called Online Deletion and discuss

its advantages. Chapter 7 concludes.

Chapter 2

Conflict Driven Clause Learning
Solvers

2.1 Basic definitions and terminology

In this section we start by reviewing terminology used in the literature and proceed to

discussing the main algorithms and techniques for solving SAT problems.

2.1.1 Boolean Satisfiability Problem (SAT)

In Boolean formula is a formula of propositional logic, composed of Boolean variables are
connectives for the standard Boolean logic operators, negation (—), conjunction (A) and
disjunction (V). A Boolean variable can be assigned to either TRUE or FALSE. A truth
assignment for a formula is an assignment of a truth-value (either true or false) to variables of
the boolean formula. If the truth value of all the variables is set, we call it a full assignment.
It is called a partial assignment when the truth value of some variables remains unassigned
[40].

A boolean formulas is considered Satisfiable if there exist a truth assignment for its
variables in a way that it evaluates to true. If no such truth assignment exists, the formula
is Unsatisfiable. A Boolean satisfiablity problem is the problem of determining whether
the formula is Satisfiable or Unsatisfiable. SAT solvers are widely used to find the answer
for this problem. We say that two formulas are logically equivalent if they have the exact
same satisfiabing assignments. It means that any truth assignment that makes one formula
true (false), will make the other one true (false) as well. A weaker definition of this form
is equisatisfiability. Two formulas are considered equisatisfiable if they are both satisfiable
or they are both unsatisfiable. Any two formulas that are logically equivalent are also
equisatisfiable but the converse does not hold. It means that there may exist a specific

truth assignment that satisfies one formula but not the other [65].

2.1.2 SAT solvers

Boolean satisfiability problem or SAT is a well-known NP-complete problem [97][34][45].
Given a possible satisfying assignment, its correctness can be determined in polynomial
time by evaluating the formula but there is no known polynomial time algorithm to find
a satisfying assignment for a formula. In fact given that any NP-complete problem can be
relatively easily transformed into another one, if there was such a solution then all NP-
complete problems could be solved in polynomial time which would result in P=NP. All
known solutions for NP-Complete problems that are currently being used, in the worst
case, require runtime that grows exponentially with the size of the instance. For example,
the worst case for finding a satisfying assignment (or determining there is none) for a
formula with n variables is to check all the 2™ possible assignments. However in the past
years, many algorithms and heuristics have been introduced for solving SAT problems that
usually require time much less than the worst case. Because of the efficiency of algorithms
used in SAT solvers, they have become known as a go-to tool for solving NP-complete
problems in general. Hardware and Software Verification [21], Planning [62][63], Scheduling
[50], Automatic test pattern generation [105] and Bioinformatics are just some examples of
the problem domains that use SAT solvers in their problem solving. In this chapter, we go

over some definitions and address some basic algorithms for solving SAT problems.

2.1.3 Literal, Clause

Let us denote a variable by x. A literal [is a variable or its negation (specified with —). We
say that a literal [has positive polarity if x appears positively in [(I = x) and that it has
negative polarity if = appears negatively in [(I = —x). Literals [; and I are complements
when one is a negation of the other. A clause is a logical sentence consisting of a finite
number of literals connected with disjunctions. A clause is satisfied if at least one of its
literals is true and it is falsified if all its literals are false. A clause, C, of size n can be
written in the following format where [; are its literals: C' = (I; V2 V ... V I,,). Alternatively,
we can use a set notation to show clause C as follows where we clause C is shown as a set
that contains n literals: C' =y, (o, ..., ;.

The size of a clause, |C|, is the number of literals in it. An empty clause is a clause
of size 0 and is denoted by several symbols like (), L, or(]. The truth value of an empty
clause is always false and so we say its unsatisfiable. In the context of SAT, the presence
or derivation of the empty clause is a proof of unsatisfiability. A clause of size one, which
contains only one literal, is called a unit clause. In order to satisfy a unit clause, its only
literal, [, has to be set to true. Therefore a satisfied unit clause represents a fact meaning

its variable, x, has to be true (false) if | = z(l = —x).

2.1.4 Conjunctive Normal Form (CNF)

A formula in a boolean satisfiablity problem may be expressed in particular structures in
special cases. Conjunctive Normal Form or CNF is one of these structures and almost all
SAT solvers expect the input boolean formula to be in CNF format. A CNF formula is a
conjunction of clauses. It can alternatively be shown as a set of clauses in the set nota-
tion. There are different methods in boolean algebra that can transform any propositional
boolean formula to an equisatisfiable formula in conjunctive normal form. The Tseitin trans-
formation is one these methods that can do it in polynomial time with a linear increase in
size of the formula. [107]

2.2 Solving Algorithms and CDCL

We start by looking at some basic algorithms for solving SAT problems in CNF format.
Note that not all of them need to get their input in this format but from now on, when we

say formula, we assume its in CNF format.

2.2.1 Truth Table Method

We start by the truth table method in which to determine if a formula is satisfiable, we
build the truth table for the formula to find satisfing assignments or show there are none. To
build the truth table, we add a row for each possible truth assignment of the variables in a
formula. Given that each variable can be assigned to either true or false, for a formula with
n variables in it, there will be 2" rows. Even though this approach is sound and complete
as it checks all possible truth assignments, the size of the table grows exponentially and it
is not practical for large formulas.

Let’s assume we have the following formula: ¢ = {(p, q)(—q,r)(p, —7)}. ¢ has 3 variables
which means there will be 23 = 8 rows in the truth table. Now for each truth assignment
(row), the truth value of each clause will be determined separately using reduction rules. ¢
is satisfied only when all its clauses are satisfied. After determining the truth value of each
clause, we can find the truth value of ¢ for each row. ¢ is considered a satisfiable formula iff
its value is true in at least one row of the truth table. It is unsatisfiable otherwise. Table 2.1
shows the truth table for formula ¢. Note that we use 1 to show that a variable or formula is
assigned to true and 0 to show that it is assigned to false. As there are 3 truth assignments
that sets ¢ to 1(true), then ¢ is a satisfiable formula.

2.2.2 Backtracking

As you can see, the truth table method examines all possible full assignments of the variables

in the formula. To determine the satisfiability of a formula, it is not always necessary to

10

p q v | (g (mgr) (p,-r)| ¢
0 0 0] O 1 1 0
00 1] o 1 0 0
01 0] 1 0 1 0
01 1] 1 1 0 0
1 0 0| 1 1 1 1
1 0 1| 1 1 1 1
1 1 0| 1 0 1 0
11 1] 1 1 1 1

Table 2.1: Truth Table of Formula ¢.

do that. For example in the previous formula, we can show ¢ is satisfiable by a partial
assignment of setting p and r to true even without knowing the value of ¢. In this case, the
amount of time we could be saving by not examining ¢ is small but in larger formulas with
many variables, it can save a lot of time and space. Similarly, the unsatisfiability of some
formulas can be detected by partial assignments.

In a simple backtracking approach we aim to search the truth assignment space of a
formula by assigning truth values to variables one at a time. To represent the search space
in this approach we use a binary tree. The root of the tree represents the empty assignment
when none of the variables are assigned to a truth value. At each node a variable can be
assigned to two different values so there are two branches. The depth of the tree can be as big
as the number of variables in the formula. The middle layers of the tree are showing partial
assignments whereas each leaf is showing a full assignment. The backtracking algorithm at
each step, assigns a value to a variable and checks if the formula is satisfied. At that point
if the formula is satisfied, it can complete the partial assignment by arbitrary assigning
the remaining variables, reporting one or more satisfying assignments for the formula and
terminating the algorithm. Alternatively if the formula evaluates to false at a point, the
algorithm will not continue assigning more values in that branch and blocks that path as
all of them will reach to an assignment/leaf that is not satisfying. Instead, it backtracks to
the most recent decision and continues on a different branch. The algorithm continues its
work until either a satisfying is found or all possible assignments (unblocked paths) have
been explored and it will report the unsatisfiability of formula.

Going back to our example ¢ = {(p, q)(—q,r)(p,)}, figure 2.1 shows a full assignment
of its 3 variables with the binary tree representation. As mentioned each leaf shows a full
assignment and here we have 8 leaves for ¢. Figure 2.2 on the next page illustrates how
backtracking algorithm can prune the search space for the same formula. Consider the first
two assignments that sets variables p and ¢ to false (0). Just by setting these two variables
and evaluating formula ¢, the algorithm will determine that this formula is unsatisfiable

under this partial assignment because one of its clauses, (p V q), is already made false. At

11

EmptyAssignment

Figure 2.1: Tree showing full assignments for ¢

EmptyAssignment
| \
p=0 p=
| | | |
q=0 q=1 q= qg=1
UNSAT ’—'—‘ SAT ’—'—‘

r=20 r=1 r=20 r=1
UNSAT UNSAT UNSAT SAT

Figure 2.2: Pruned tree using backtracking algorithm for ¢

this point the algorithm blocks the current path and marks it as unsatisfiable (UNSAT) and
backtracks to the most recent decision (p = 0) and tries a different branch (¢ = 1). We say
that the search space has been pruned as the algorithm will not need to explore the blocked
subtree after this. A similar situation happens in the path where p is set to true and ¢ is set
to false. Evaluating the formula at this point results in showing its satisfiability under this
partial assignment because all clauses in ¢ are satisfied. Hence the algorithm would know
any arbitrary assignment to r will still make the formula satisfied and marks this node as
satisfiable (SAT). The algorithm terminates at this point reporting the formula as satisfiable
as it already found two satisfying assignments for the formula ¢ (p = 1,¢ = 0,7 = 0 or
p =1, =0,r = 1). Alternatively, we can let the algorithm continue examining the rest
of the tree to find all satisfying and non-satisfying assignments. The sub-tree illustrated
with a rectangular box in figure 2.2 is found by the algorithm after the first satisfying
assignment was found and will only be explored if the algorithm is designed to find all
satisfying assignments. The pruned space in this example is not that significant but you can
imagine if the search space is large and this happens in top layers of the tree, this algorithm

can potentially save a lot of space and time.

12

Original formula Set p=20
(p,q) (q)

(ﬁQv T) (ﬁf}v T)
(p, —r) (=)

Table 2.2: Simplifying ¢ after setting p =0

Unit Propagation and BCP

Now, we explain two techniques that can be added to the simple backtracking algorithm
for further pruning of the search space. Consider the backtracking algorithm and binary
tree representation. At each branch after assigning a truth value to a variable, we can
simplify the formula. If a variable = is assigned to true, all clauses with literal I; = x in
them are satisfied and can be eliminated from the formula for further consideration on that
branch. Also, all clauses containing the literal [, = —x can be modified by removing [
from them because in order for those clauses to become satisfied, one of their remaining
literals must become satisfied. In other words if x is true, any clause C containing —x
is equisatisfiable to a clause Co = C/—z. Similarly, if variable x is assigned to false, all
clauses with literal s = —x can be removed from the formula and all clauses containing
the literal [y = x can be modified by removing /. To illustrate this method, lets go back
to our example formula ¢ = {(p,q)(—q,7)(p, r)}. Table 2.2 shows the simplified formula
after setting p = 0 (first branch in the tree). Let’s call this new simplified formula ¢, We
can say that ¢’ is equisatisfiable to ¢ after setting p = 0.

Simplification enables us to use a very important technique called Unit Propagation
that can prune the search space significantly. Whenever there is a clause of size 1 in the
formula, we know that all the satisfying assignments of the formula must set the literal in
that clause to true because that’s the only way we can satisfy the clause. These clauses of
size one are called unit clauses and represent a fact that its literal has to be true for the
formula to be satisfied. Considering the tree representation, at any point that there is a
unit clause in the simplified (or original) formula, the sub-tree that falsifies that clause can
be pruned without any further computation. Simplifying the formula by removing literals
and using unit clauses is called unit propagation or the unit clause rule.

Let’s go back to our example. As shown in table 2.2, after setting p = 0 and simplifying
the formula, two of the clauses become unit ((¢) and (—r)). Using unit propagation, we
know that in order to satisfy the formula, both literals in them should become true so ¢ = 1
and r = 0 and we can prune any branch in the tree that has different values for them.
Figure 2.3 shows the pruned tree where sub-trees in red rectangles are removed from the

search.

13

EmptyAssignment

Figure 2.3: Pruned tree after setting p =0

Original formula | Set p=0 Unit Propagation | Unit Propagation
sets g =1 sets r =10

(p,q) (9) - -
(—g,7) (—q,7) (r) 0
(p,—r) (=) (=) -

Table 2.3: Unit Propagation in solving ¢

Table 2.3 illustrates how the formula ¢ is simplified after setting p = 0 and applying unit
propagation. Note that applying unit propagation can make more unit clauses and trigger
further unit propagation.

Boolean Constraint Propagation (BCP) refers to the process of applying unit propaga-
tion to a boolean formula until no further unit propagation is possible and a fix point is
reached [112]. This means until there is no more unit clauses in the formula or an empty
clause has been created or derived. Deriving an empty clause means that the formula is
unsatisfiable under the given truth assignment. For example table 2.3 shows that after as-
signing the variable p to false which is a partial assignment for variable of ¢ and applying
unit propagation, an empty clause is derived that appears in the second column of the
table. This means the formula ¢ is unsatisfiable if p is set to false. Using the backtracking
algorithm, we can backtrack to the node where p was assigned to false (root of the tree in

this case) and try a different branch by setting p to true.

Resolution

Resolution [93] in propositional logic is a rule of inference that produces a new clause implied
by two clauses containing literals that are complements of each other. Let C7 be a clause
{l,a1,aq9,...,a,} and Cy be another clause {-l, b1, ba, ..., by, }. Using resolution, a new clause
C3 can be derived as C3 = (C1 U C2)\{l, ~l} which is the disjunction of all literals in C;
and Cy excluding | and —I. The resolution rule states that if C; and Cy are satisfied under
some satisfying assignment then Cs must also be satisfied. Resolution can be depicted in

the following format.

14

Cy1:{l,ay,az,...,an} Co:{=l,b1,b2,....0m }
C3:{ay,a9...,an,b1,b2,....bm }

We say that clause Cj3 is the resolvent of clauses C and Cy. Semantically, this rule is
deriving a logical conclusion of considering both cases of setting [to true and false. In the
case that [is true, consequently clause C] is satisfied. Since —l is false, in order for C'5 to be
true at least one of its literals {b1, ba, ..., by, } should be true which results in clause C3 being
satisfied. Similarly in the case that [is false (!l is true), clause Cy is satisfied and for clause
C4 to be satisfied, at least one of it literals {a1, as, ..., a,} must be true. This will result in
Cs being satisfied. This rule combined with a complete search algorithm for SAT problems
results in a sound and complete approach in [93] and makes resolution a very powerful tool
in boolean satisfiability. Note that unit propagation is a special case of the resolution rule

where one of the clauses is unit.

2.2.3 DPLL Algorithm

The Davis-Putnam-Logemann-Loveland (DPLL) algorithm [36] (which is an variation of the
Davis-Putnam algorithm [37]) was introduced in 1962 by Martin Davis, George Logemann
and Donald Loveland (DPLL is also known as DLL) and is used to determine the satisfia-
bility of a CNF formula. It has a more general application as well but we remain focused
on propositional CNF formulas in this report. DPLL is originally a recursive algorithm and
iteratively chooses one variable and splits the formula into two smaller formulas with a
unit clause, one containing the variable in negative form and the other with the variable in
positive form. It is called Split Rule and is similar to setting the variable to false and true
at each branch as shown in the backtracking algorithm before. After assigning a value to
the variable, the formula is simplified by BCP and the process is repeated for these smaller
formulas. If an empty clause is derived at some point, the algorithm terminates and reports
unsatisfiability. If DPLL assigns all variables without deriving an empty clause, the formula
is proven to be satisfiable. This gives us an efficient approach to solve SAT problems that

even today after almost 60 years, is the core algorithm used in modern SAT solvers.

Algorithm 1 Davis Putnam Logemann Loveland Algorithm

1: procedure DPLL(¢)

2 if o € ¢ then > Empty Clause Derived
3 return Unsatisfiable

4 if ¢ = @ then > All variables eliminated
5: return Satisfiable

6 BCP(¢) > Boolean Constraint Propagation
7 Pick a variable z € ¢

8 return (DPLL(¢ U {x}) vV DPLL(¢ U {—z})) > Split Rule

15

Algorithm 1 illustrates the steps in DPLL. This algorithm is a recursive version of DPLL
however in practice an iterative version is used in SAT solvers. Also, since the generated
subformulas are relatively large they are not saved by the algorithm. Instead of executing
elimination of clauses and literals by changing the input formula, the solvers keep a stack of
partial assignments to variables at all levels and as a result, the current state of the formula

can always be calculated as needed.

Algorithm 2 Davis Putnam Logemann Loveland Algorithm - Iterative Version

1: procedure DPLL(¢)

2 level <0

3 loop

4 BCP(¢)

5: if Conflict then > Formula is Unsatisfiable under current assignment
6 if level == 0 then

7 return Unsatisfiable

8 level < level — 1

9 Backtrack(o, level)

10: Decision[level].value() < true > Change the last decision to true
11: else

12: if ¢ = @ then

13: return Satisfiable

14: Pick an unassigned variable x € ¢ > Next variable to branch on
15: level < level + 1

16: Decision[level].var() « x

17: Decision[level|.value() < false > Try setting x to false first

Algorithm 2 shows an iterative version of DPLL that is closer to what is used in practical
SAT solvers. It is very similar to the backtracking algorithm mentioned before along with
the unit propagation rule. It starts from Level 0 which is the root in the tree representation.
At each iteration, it applies BCP until a fixed point is reached. This means either an empty
clause is reached (Conflict) or no more unit clauses exist in the formula. If a Conflict is
reached, it means the formula is unsatisfiable under the current assignment. So the algorithm
changes the last decision and tries a different branch or reports unsatisfiability in case it is
at level 0 (no more decisions can be made). If BCP doesn’t report a Coon flict, the algorithm
picks the next variable to branch on and moves to the next level. In this report, we call
the branching variable the Decision Variable and call the levels in the algorithm, Decision
Levels. The process of picking decision variables will continue until all variables are assigned
and the algorithm reports Satisfiability. Remember that the iterative version of DPLL does
not remove the literals from the clauses to make them unit. A clause is considered unit if
it is unit under the current assignment. For example consider a clause C1 = {—z,y} where
x is assigned to true. C is considered unit under this assignment because we can actually

derive clause Co = {y} by applying unit propagation. The Backtrack function in DPLL

16

not only removes the assignments made to last decision variable, it also undoes the BCP

process and all the assignments made by BCP in the last level.

2.2.4 CDCL Algorithm

Almost 30 years after DPLL was first introduced, a powerful extension to it called Conflict
Driven Clause Learning (CDCL) was implemented in the solver, GRASP [99, 78]. This al-
gorithm was shown to be very efficient for solving large real world SAT formulas and was
adopted quickly by solvers to the extent that today, almost all modern SAT solvers working
on industrial formulas use the CDCL algorithm. These solvers are also referred to as CDCL
solvers. The power of CDCL comes from its ability to learn new clauses after conflicts that
are added to the formula. These clauses are logical consequences of the original formula
which means they are not mandatory and can be deleted at any time. Another important
difference of CDCL with simple DPLL is its non-chronological backtracking which also helps

with pruning the search space.

Intuitively speaking, after each conflict, CDCL learns at least one reason for that con-
flict in the form of a new clause. These clauses are also called learned clauses. For example,
assume a conflict happens after assigning variables x1 to x1g all to true at decision levels 1
through 10. After analyzing this conflict, CDCL learns a new clause C1 = {—x1, ~x3, 7210}
as a reason for it. This means that at least one of these three variables should be assigned
to false in order to satisfy the formula. Now, CDCL introduces non-chronological back-
tracking. Assuming this clause was in the formula earlier, after decision level 3, C7 would
have been a unit clause because 1 and z3 are both true at that level. This means that
by unit propagation x19 would have been assigned to false to satisfy C;. Therefore, after
learning C1, CDCL directly backtracks to level 3 and since C is now in the formula and
unit under current assignment, the algorithm immediately assigns x1¢ to false by unit prop-
agation. Since this clause is asserting the value of x1g at level 3, it is also referred to as the
Asserting Clause. In principle CDCL can learn many clauses after each conflict but modern
solvers learn only one clause [6]. In earlier solvers like GRASP [78], CDCL learns more than
one clause per conflict. Algorithm 3 shows the DPLL algorithm extended with CDCL. For

simplicity, we call this algorithm CDCL from now on.

The main difference between algorithms 3 and 2 is in the AnalyzeConflict() function.
In CDCL, after each conflict a new clause C' is learned and a possibly non-chronological
backtracking level, level, is reported by this function. To explain this process in CDCL
better, we first show the variable assignments with a directed acyclic graph (DAG) referred
to as the Implication Graph.

17

Algorithm 3 DPLL Extended with CDCL

1. procedure CDCL(¢)

2 level <0

3 loop

4 BCP(¢)

5: if Conflict then > Formula is Unsatisfiable under current assignment
6 if level == 0 then

7 return Unsatisfiable

8 (level, C') < AnalyzeConflict() > Learns clause C
9: ¢+ (pUC)
10: Backtrack(¢, level)
11: Decisionllevel].value() < true > Change the last decision to true
12: else
13: if All variables assigned then
14: return Satisfiable
15: Pick an unassigned variable x € ¢ > Next variable to branch on
16: level < level + 1
17: Decision[level].var() < x
18: Decision[level].value() < false > Try setting = to false first

Implication Graph and Analyzing Conflicts

—|x3

Cl CS

X5

02 Cg

L4

Figure 2.4: Implication Graph without Conflict

Figure 2.4 shows the implication graph for the formula ¢; = {C1,Cs,Cs} where C; =
{z1, w923}, Cy = {2, 24} and C3 = {x3, x4, x5}. Each node in the implication graph
represents a variable assignment by the algorithm. The elipse shaped nodes show decision
variables and the rectangular nodes show variable assignments done by BCP. The variables
are in both negative and positive forms which shows the polarity of the truth assignment
for those variables. In this example, CDCL picks z1 and xo respectively at level 1 and 2 as

decision variables and sets them to false. Next, (still in level 2) the BCP is activated and

18

using C which is a unit clause under this assignment, x3 is also set to false. It is shown
in the implication graph by adding an edge from both z; and x2 to x3 with the label Cj.
This label indicates that clause C is the reason for assigning zs to false. Similarly x4 and
x5 are both set to true using clauses Cs and C3 as reasons. Since all variables are assigned

without any conflict, the formula is found to be satisfiable at level 2.

Cs

T

ﬁxg

04 4

Cl 05 :

T3 zs

C 1 C13 05

Ts

T4

Figure 2.5: Implication Graph with Conflict

Now lets look at an example with conflict. Consider formula ¢o = {C1, C2, C3, Cy, Cs5, Cs}
where C1 = {x1,z9—x3}, Co = {xo, 24}, C3 = {x3, 24,25}, Cy = {x1, 26,27} , C5 =
{—zs5, z¢, 28} and Cg = {—x7, ~xs}. As before, CDCL picks x1 and x5 respectively at level
1 and 2 as decision variables and sets them to false. Next variables z3, x4 and x5 will be
assigned by BCP using C7, Cy and C3 as reasons. Going to level 3, the algorithm picks xg
as decision variable and sets it to false. Using clauses Cy and Cs both variables 7 and xg
will be assigned to true at this point. Having x7 set to true, in order to satisfy Cg, xg needs
to be set to false which creates a conflict because it has been assigned to true previously
and Cy is falsified. We call this clause a conflicting clause because it is the reason for this

conflict. This conflict is shown by L in the implication graph in figure 2.5.

Cs={—x5,06,28} Co={—w7, w3}
Cr={—w5,x6,~27}

Figure 2.6: Resolution on Conflict Clause

19

At this point, we want to know why a conflict happened under the current truth as-
signment so CDCL calls the AnalyzeConflict() process. We briefly explain how this process
works. We start with the conflicting clause Cs = {27, 725} which is the obvious reason for
the conflict because both its literals are set to false. As long as the literals are not assigned
as decisions, we can further reason about why they are falsified. For example, we pick literal
—zg and we look for a reason clause that falsified it (assigned xg to true). Looking back
at the implication graph, we can see the reason is C5. It means that setting other literals
in C5 (—x5 and xg) to false, led BCP to assign xg to true which resulted in fasifying the
conflicting clause Cg. So to prevent this conflict, we can not have all ~z7, -5 and z¢ to be
false at the same time. AnalyzeConflict() uses resolution to do this reasoning. By resolution
on the conflicting clause, Cg, and the reason clause of xg, C5, as shown in figure 2.6, we can

find a new clause C7 as a reason for this conflict.

Cy={r1,26,27} Cr={—-x5,26, 727}
Cs={z1,~25,26}

Figure 2.7: Further Resolution by CDCL to find an Asserting Clause

Remember that CDCL looks for an asserting clause which means it should only have
one literal assigned at the current decision level. C'; does not have this property as both xg
and —x7 belong to level 3 so the process will continue until an asserting clause is reached.
Next, we pick x7 (the last assigned variable) and resolve that by picking its reason clause
which is Cy (illustrated by the implication graph). Using resolution on Cy and C7 a new
clause is derived called Cs shown in figure 2.7. Note that only zg belongs to the current
decision level, 3, so Cg is an asserting clause and will be added to the clause database by
CDCL as the learned clause.

In order to guarantee reaching an asserting clause, CDCL picks variables to resolve in
the reverse chronological order of their assignment. So in the worst case, it tracks back to
the decision made at the last level which is what happened in our example because we
reached xg which was a decision variable. It is similar to backtracking and flipping the
last decision, though the backtrack is usually to many levels before the last decision. We
mentioned CDCL uses non-chronological backtracking to a level that only one literal of the
learnt clause is unassigned at that level. For example in this example the literal in Cs were
assigned at 3 different levels. z¢ is from the last level 3, —x5 is from level 2 and x; is from
level 1. Non-chronological backtracking picks the highest level before the current level in
the learned clause which is level 2 in this example and backtracks there. Since xg was not
assigned at level 2, BCP immediately sets z¢g to true to satisfy C's and we call it the asserting
literal. Algorithm 4 illustrates this scheme where AnalyzeConflict() gets a conflicting clause
confl as an input and finds and reports a learned clause, C and a backtracking level, lev.

Even though non-chronological backtracking is the main scheme used in most solvers, there

20

are some solvers with chronological backtracking in the recent years that are shown to be

effective as well [83, 53] but we don’t use them in this report.

Algorithm 4 Analyze Conflict

1. procedure ANALYZECONFLICT(con fl)

2 loop

3 [+ Most recently assigned literal € con fl

4 C" + reason(l) > find reason clause for assigning [
5: C' < resolution(C’, con f1)

6 if C is asserting then

7 lev <— 2nd highest decision level in C'

8 return (lev,C)

9

confl + C

Modern SAT solvers stop once the first asserting clause is learned so this scheme is called
First Unique Implication Point learning or 1-UIP learning [78]. It is possible to continue
the process and learn more clauses. For example if the asserting literal is not from a decision
variable, we can still find a reason for that assignment and apply resolution further to learn
a new clause. This process can be continued until the asserting literal is a decision (last-UIP)
so potentially many clauses can be learned at each conflict. Learning 1-UIP clauses is shown
to be the best learning scheme in multiple works [113, 38, 102]. This scheme guarantees to

always learn a new clause at each conflict.

2.3 CDCL heuristics

Studying heuristics in algorithms goes back to 300 A.D in which Pappas suggested easy
to use approximate methods that do not guarantee optimality [42]. Ever since, there are
some general principles proposed to make an effective heuristic. For example, Bitner and
Reingold were the first to propose one for the search rearrangement heuristic. It suggests
that at every node of a search tree, the variable that has the smallest number of remaining
choices (low degree) should be picked and assigned a value [25, 42].

Based on the nature of SAT algorithms, there are different heuristics proposed to help
the solvers reach better performance. In the previous sections, we explained CDCL which
is the core algorithm used in almost all modern SAT solvers. But there are many different
heuristics added to this algorithm which makes solvers different from each other. These
heuristics actually are shown to have a huge impact on the solver’s performance. There
are 3 main heuristics in each solver known as the Decision Heuristic, the Clause Database
Management scheme and the Restart policy. Our focus in this work is on the first two which

we will discuss in more detail later in this section. We first review the restart heuristic briefly.

21

The restart heuristic is a very simple but valuable technique. A restart is a backtrack
to level zero where all variables are unassigned and the solver starts a new search. It was
first introduced in [49] where it is argued that if a solver starts the search in a formula
from a bad seed, there is a chance that it takes exponentially more time to solve it than
from a good seed. This is known as Heavy-Tailed behaviour [48]. Restarting the search at
random which is called Randomized Restarts results in dramatic improvements on satisfiable
random formulas with heavy-tailed behavior [49]. Restarts were first aimed to try different
seeds to increase the chance of finding a good seed that can solve the formula faster. For
this argument to apply, there needs to be some randomness in the solver and that is why
decision heuristics were initially randomized to make sure that after each restart the search
tree would be different [95]. Other than that, solvers could not trigger restarts too frequently
to make sure they can explore the complete search tree between two restarts in case the
SAT problem they are trying to solve has no solution. This was no longer a necessity
after CDCL algorithms came into the picture [77]. By learning and keeping new clauses,
CDCL solvers can prove unsatisfiability even with rapid restarts [51]. Still, there is a lot of
evidence showing restarts help solvers to have better performance on real word satisfiable
and unsatisfiable formulas even when there is no randomness which is why it can be found
in almost all modern solvers [68, 95, 15]. There are many different strategies in the literature
for determining how often a restart should occur [73, 17, 8, 95].

In earlier CDCL solvers [46, 81, 82, 94], a fixed interval was used that triggers a restart
after n conflicts where n has had different values between 550 as in Berkmin and 16000 as
in Siege [46, 94]. It was suggested in [109] to use a geometric series for assigning values to n
by starting with a small value first and the size of consecutive restarts grows geometrically.
MiniSAT deployed this strategy and it was the first solver to show the effectiveness of this
approach using the following geometric series: n; = 100 x 1.5°~! where i is the interval
counter and n; is the number of conflicts between i — 1th and ith restart [39]. Other solvers
like PicoSAT also showed improvements using this strategy [18]. A very popular geometric
series used for assigning restart intervals in solvers is the Luby series [73] which is charac-
terized by the following pattern: 1,1,2,1,1,2,4,1,1,2,1,1,2,4,8,1,.... In solvers RSat 2.0
[92] and TiniSat [54] the Luby series is used where each number in the series is multiplied
by 512 and in PrecoSAT [19] and some more recent versions of MiniSAT [104] and their
successors numbers are multiplied by 100. Local Restarts was presented in [95] with the
intention of introducing a dynamic measure to restarts based on the current search of the
solver and not just some fixed pattern. In this scheme a restart is triggered based on the
decision level the search is at. It was observed that the clauses learned at lower decision lev-
els are smaller hence more valuable. Therefore, giving less chance to higher levels forces the
solver to prioritize learning smaller clauses [8, 95]. It has been shown that the local restart
strategy can work well on solving unsatisfiable formulas when implemented in MiniSAT [95].

Another successful dynamic approach for restarts that was introduced in [10] and adopted

22

eCOMSPS
2015

Figure 2.8: Evolution of Solvers

by many solvers after that [90], is based on the LBD of learned clauses which is a quality
measure. Intuitively, the LBD-based restart heuristic, uses LBD to determine how good the
clauses being learned by the solver are. If not good enough, a restart is triggered to start a
new search. Compared to the previous restart heuristics, the LBD based restart heuristic as
implemented in many solvers results in more rapid restarts in practice [10]. It is important
that restarts happen along with clause learning to guarantee that the search after restarts
is different. Note that adding new learned clauses to the solver prevents the same conflicts
from happening. This guarantees the completeness of the algorithm with restarts.

As mentioned before, in addition to restarts, there are two main heuristics used in CDCL
solvers. There is a lot of small details and hacks involved in the implementation of these
heuristics and they may be used with various small changes in different solvers. Some solvers
are specifically tuned to perform well on specific benchmarks. For example CryptoMiniSAT
[101] that is specifically designed for solving cryptographic problems has heuristics tuned
to work well on these benchmarks. Keeping this in mind, we picked a few solvers that were
influential in the evolution of solvers and looked at their heuristics in more detail. They
all made significant contributions to the current state of the art of solvers and we can find
their footprints on most solvers used today. These solvers are Grasp, Chaff, Berkmin,
MiniSAT, Glucose and MapleCOMSPS. Most of these were build up on the solver
before or used many of their features. Figure 2.8 shows them in order of the year they were
built in.

In the rest of this section, we explain the decision heuristic and clause database man-

agement and look at the implementations of them in these 6 solvers.

2.3.1 Decision Heuristics

In Algorithm 3 mentioned in last section, it is not clear how we choose the next variable
to branch on. A very important heuristic in solvers, called decision heuristic (also known
as branching heuristic), focuses on this matter. This heuristic is not specifically designed
for CDCL and has been studied and used by SAT solvers and algorithms like DPLL before
CDCL as well [76, 78, 42, 112, 35, 30, 60] One approach that called Variable State Indepen-
dent Decaying Sum (VSIDS) [81], has been introduced in the Chaff solver and is probably
the main decision heuristic of CDCL solvers ever since. Learning Rate Based (LRB) [69] is

also a more recent decision heuristic that proved to be effective. In this section we look into

23

these two heuristics in more detail.

VSIDS: VSIDS was first introduced in the Chaff solver [81] and since then it has been
the most known and used decision heuristic for CDCL solvers. It is known to be crucial for
getting good performance on application benchmarks [23]. Intuitively speaking, the VSIDS
heuristics tries to keep the search focused in a specific parts of the search space, so when
choosing the next variable, it gives more priority to the ones that were involved in recent
conflict analyses. In order to do that, VSIDS assigns an activity score to each variable or
literal to represent how “active” they have been in previous conflict analyses. These activity
scores are usually initialized with a constant value and increased by activity value v every
time the variable appears in a learned clause so their chance of being picked as decision
later is increased. At each round, the most active variable (variable with the highest activity
score) is chosen by VSIDS as the next decision. VSIDS aims to give more weight to the
more recently used variables and to do that, all activity scores are decayed over time so if
a variable is inactive for a long time, its chance of being a decision is reduced compared to
more recently active variables. In order to make sure the activity scores don’t overflow, the
scores are reduced uniformly once they reach a maximum value, maz. so when the activity
value of a variable is equal to or higher than max, the activity value of all variables are
divided by max at once. Note that the original heuristic in chaff assigned activity values
to each literal but starting from SATZOO and then MiniSAT, it was changed to variables
[39].

LRB: A more recent decision heuristic called LRB was introduced in [69] and is used
in many winning solvers in SAT competitions ever since [14, 53]. It looks at the solver’s
heuristic as an optimization problem and uses machine learning techniques to solve it. Par-
ticularly, LRB is based on a Multi Armed Bandit (MAB) algorithm [106], which is the
problem of deciding what action to take at time t if the rewards of choosing all action so far
are known in order to maximize the reward at time ¢. Viewing the SAT solver branching
heuristic as a MAB problem, LRB defines choosing variables as actions and defines the
Learning Rate (LR) measure for each variable as the rewards of choosing it as decision
(actions in MAB) which needs to be optimized. LR measures how much a choosing a vari-
able as a decision contributes to the solver making progress. As a measure of progress, it
uses the production of learned clauses. First, it is said that a variable has participated in
producing a learnt clause if it appears in that clause or it was resolved during the analysis of
that clause. This means the variable was needed for getting a conflict and making a learnt
clause (it appears somewhere in the implication graph when analyzing the conflict). Now to
compute the LR of a variable v in interval I, let L(I) be the total number of learnt clauses
in I and P(v,I) be the number of learnt clauses that v participated in during I. I is defined

as the time that variable v is assigned until it becomes unassigned again by backtracking.

24

So L(I) is the number of conflicts that occurred in /. Now we have LR, = P(v,I)/L(I).
Since we can’t compute the LR of a variable before the conflict is made and the analy-
sis has happened, we use learning algorithms for a better estimation of LR. The greedy
approach is to compute the mean of LR of each variable at all intervals so far and pick
the one with the highest mean as the next decision. But since the solver is non stationary
and the rewards change over time, an exponential moving average (EMA) [29] of each de-
cision variable is used. So each variable v has a floating point number @Q,,, which represents
the EMA of all known LRs of it so far. Every time a variable v becomes unassigned, @,
is updated by @, = (1 — @).Q, + a.LR, where « (step size) emphasizes the importance
of more recent values. « is initialized to 0.4 and gradually increased to 0.6 over time. @,
is quite similar to activity scores of variables in VSIDS and is used to decide the next de-

cision variable (variable with highest @) by the solvers using LRB as their decision heuristic.

Phase Saving

Phase Saving also known as Polarity Saving is a technique that is shown to be important
to be used as part of decision heuristics [91] and is usually implemented along with VSIDS
and LRB. It is an approach for assigning the polarity when choosing a decision variable. It
basically keeps the last known polarity of each variable, z, when it is assigned by BCP as
P, where P, can be true or false. If later, x becomes unassigned as a result of backtracking
and is picked as a decision variable, the solver will set its polarity to P, using phase saving
approach. In [91], the authors observed that backjumps can result in repetitively solving the

same satisfiable subformulas. Phase saving was proposed to prevent that from happening.

Chosen Solvers

Above, we explained the most well known decision heuristics that have been utilized by
CDCL SAT solvers. It is important to note that each solver may adopt a different version
of these heuristics, change some of the parameters or even introduce its own heuristic for
picking the decision variable. It is beyond the scope of this report to explain them one by
one as many new solvers are introduced every year. As mentioned before, we picked 6 solvers
that played an important role in the evolution of modern SAT solvers and in the rest of

this subsection, we will briefly go over the decision heuristics used in these 6 solvers.

GRASP [78]: GRASP was developed before VSIDS and uses a more straightforward
decision heuristic. Its decision heuristic is called Dynamic Largest Individual Sum (DLIS).
Basically, it aims to satisfy as many clauses as possible with the decision assignment. When
choosing the decision variable, it calculates the number clauses that would get satisfied by

each assignment and picks the variable that satisfies most clauses. At each step, assuming

25

the number of unassigned variables is V', there will be 2 x V' cases to choose from, one for

each literal (assigning variables to true or false).

Chaff [81]: The Chaff solver introduced the Variable State Independent Decaying Sum
(VSIDS) heuristic for picking the decision variables. VSIDS in chaff assigns two activity score
to each variable (one for each literal) and chooses the one with highest activity value that
is not currently assigned as decision. The polarity of the variable is also chosen by VSIDS
as each literal has its own activity value and the picked literal determines the polarity of
decision variable. Activity values are initialized to zero and every time a conflict happens,
the activity values of the literals in the learned clause are incremented by 1. To keep the
search more focused on recent learned clauses, all activity values are periodically divided by
a constant which is called decaying. In Chaff, this constant is set to 2 and decaying happens
after every 255 decisions. Literals are periodically sorted based on their activity values. Even
though VSIDS computations add some overhead to the solver compared to decision heuris-

tics used before, Chaff showed it can improve solver’s performance by an order of magnitude.

Berkmin [46]: Berkmin’s decision heuristic aims to be more dynamic and adopt to the
current state of the search rapidly. Berkmin assigns an activity value to each variable instead
of each literal as in Chaff. After each conflict, the activity values of variables appearing in
the learned clause and also variables appearing in the clauses used in conflict analysis are
increased by one. One main difference between Berkmin and Chaff is that Berkmin takes
into account all clauses used in conflict analysis whereas in Chaff, only activities of the
variables appearing in the learned clause are increased. All activity values are periodically
divided by a constant which is 4 in Berkmin. This constant is 2 in chaff so BerKmin favors
recent learned clauses more. The activity computation introduced by Berkmin was later
adopted by zChaff [75, 44|, an updated version of Chaff which was the winner of SAT 2002
and SAT 2004 competitions [66, 1]. Interestingly, activities are not the only or even the main
measure Berkmin uses in its decision heuristic. Berkmin stores all learnt clauses chronolog-
ically in its database. To pick the decision variable, it finds the most recent learned clause
that is not satisfied, called current top clause, and among its unassigned variables, it picks
the one with highest activity as decision variable. If all learned clauses are satisfied, it acts
like chaff and picks the variable with highest activity among all unassigned variables. So
far we explained how Berkmin chooses a decision variable. After that, Berkmin uses two
measures for assigning a polarity to the decision variable. The first measure is activity of
literals shown by lit__act. Activity of a literal is calculated similar to the activity of variables
except that there is no decaying. If the decision variable belongs to a learned clause (current
top clause), this measure is used to set its polarity. For example assume v is the decision
variable and [and —l are literals made from v in positive and negative format respectively.
Then if lit_act(l) > lit_act(=l), v will be set to true by Berkmin. If not, v will be set to

26

false. For setting polarity of other variables (in case all learned clauses are satisfied), a cost
function, nby,, is used. For each literal [, function nby,,(l) is computed as the number of
binary clauses containing ! plus the number of clauses containing —I’ where I’ is the other
literal appearing in these binary clauses. nby,, (1) is considered as an estimate of the power
of BCP after setting [to 0. Back to our previous example of decision variable v, and [and
=l being literals made from v, if nbyuy,o(l) > nbywe(—l), then v will be set to false. If not, v

will be set to true.

MiniSAT [39]: MiniSAT introduced an efficient and popular implementation of VSIDS
that is called Exponential VSIDS (EVSIDS) [39, 23]. This implementation of VSIDS has
shown to be more efficient and has been used by other solvers ever since. EVSIDS assigns
an activity score to each variable instead of the literals like Berkmin. At each round, the
most active variable (variable with the highest activity score) is chosen as decision variable.
In MiniSAT, these activity scores are increased by activity value v, every time a variable
is either seen in the learnt clause or in clauses appearing in conflict analysis. Decaying is
also different in this implementation of VSIDS. Instead of decaying the activity scores, the
activity value (v) is increased over time so the activity score of more recent variables will
end up higher. Lets assume v is initialized with 1 which is the case in original MiniSat solver
so if a variable is used in the first conflict analysis, its activity score is increased by 1. In the
next conflict analysis, the activity value will be increased by some f > 1. In MiniSat solver,
f=1/0.95 and 1/f (0.95 in this case) is called the variable decay factor [39]. Therefore,
the activity scores of variables used in the second conflict analysis, will be increase by 1.05
instead of 1. In order to prevent overflow in activity scores, once one of them reaches a
maximum value, max, all activity scores along with activity value v are uniformly divided
by max. In MiniSAT maz is set to 10190,

Glucose [9]: Glucose uses EVSIDS as its decision heuristic and increases the activity
score of variables used in conflict analysis by an activity value, v defined similar to Min-
iSAT activities. Glucose is known to introduce a clause quality measure, LBD, that will
be explained later in Section 2.3.2, Clause Database Management. Glucose favors low LBD
clauses and it increases the activity scores of variables involved in making such clauses more
than other variables. So, it increases the activity value of all variables which were used in
conflict analysis by v, and if they were propagated by a clause with LBD lower than the

LBD of the new learned clause, they will be increased by 2v instead of v.

MapleCOMSPS ([71]: This solver uses a combination of EVSIDS and LRB as it’s
decision heuristic. MapleCOMSPS starts with EVSIDS for the first 10000 conflicts as im-
plemented in MiniSAT. Then it switches to LRB for 2500 seconds. If no answer is found in

that time, the solver switches its decision heuristic back to EVSIDS and continues with that.

27

Note that in this solver, each variable has two different activity scores, one for each heuristic.

2.3.2 Clause Database Management

As mentioned before, modern SAT solvers learn a new clause after each conflict. They
normally add thousands of clauses per second [87, 89]. These clauses are stored in the
learned clause database and keeping all learned clauses can be impractical for two main
reasons. First, keeping clauses consumes memory that can eventually result in exhaustion
of the available memory of the computers used to run the solvers. Note that the number of
new learnt clauses grows with the number of conflicts and this growth can be exponential in
the number of variables of the formula [24]. Second, it is costly to perform BCP on clauses
and not all clauses are valuable enough to be worth the cost. For example, large learned
clauses (clauses with many literals in them) have shown to be less useful for search pruning
purposes [99] and adding them to the database leads to additional overhead for conducting
the search process. So, it eventually costs more in terms of BCP computations than what
it saves in terms of backtracks [24].

Given that CDCL solvers generate a very large number of new learned clauses and based
on the two reasons explained above, clause database management methods are central to
solver’s performance [6]. In particular, most learned clauses must be deleted to keep the
clause database of practical size, and the clause reduction scheme is the key heuristic in the
solvers to do that [9, 90]. There are two main aspects to a clause deletion strategy: The first
is a method to categorize clauses as likely to be useful (high quality), or not (low quality).
The better we can predict the future usefulness of clauses, the more efficient solvers we
can have by removing less useful clauses and reducing BCP time. Second is implementation
of an algorithmic method to remove low quality clauses efficiently. In an idealized scheme,
having a clause quality measure Q, we can keep the clauses in a heap so that the lowest
quality clause(s) can be removed when the clause database is deemed too large. Conventional
wisdom is that using a heap would be too inefficient. It also seems unlikely that spending
time to obtain the very worst clause is necessary. Thus, fast heuristics are desired.

In early CDCL solvers, some of the clauses were periodically deleted mainly to address
the memory exhaustion problem [6, 81, 39, 46] but in the past 10 years clause database
management became an active topic of research and has been shown to play an essential
role in solvers’ performance [9, 6, 11] so more well studied strategies has been introduced for
it. From early solvers to current state of the art solvers, the fundamental way of managing
learned clauses is to periodically detect some clauses with lower quality and delete them
from the clause database. Determining the intervals for performing clause deletion is usually
based on the number of conflicts since it is an indicator of the number of new clauses
in the database. Note that after each conflict, a new clause is learned and added to the

clause database. As discussed before, CDCL is a complete algorithm because of its learning

28

ability that prevents a conflict from happening twice which ensures eventually exploring
the whole search space. This is only guaranteed if we keep all learnt clauses and not with
clause deletion. In order to preserve completeness of the algorithms, some solvers gradually
increase the intervals between clause deletions. Given that the number of variables in each
formula is finite, the number of possible learned clauses made from those variables is finite
as well so if the interval between two clause deletions is long enough for the solver to learn
all possible clauses, completeness is ensured. Some solvers use restarts as a point to perform
clause deletion and do it right after a restart [46].

The scheme that is widely used in solvers, which we call Delete-Half, is to periodically
sort the learned clauses based on some quality measure and delete the half with lowest

quality. We will look into some of the main clause quality measure in the next section.

Clause Quality Measures

The quality measure is typically a combination of size, age, literal block distance (LBD)
and some measure of usage or activity [9, 39, 69, 90, 89]. First, lets look at each of these
measures and explain how each has been used as a quality measure.

Size: Size of a clause is the number of literals in it. It is broadly accepted that the
smaller clauses are more valuable and have higher quality for different reasons. They have
fewer literals so they need less memory to be kept. A clause of size n is visited by BCP at
most n — 1 times so the smaller the clause, the less time spent by BCP on it at worst case.
Also, since it is likely that a smaller clause becomes unit under some assumption faster than
a larger clause, it can enable more unit propagation and result in finding a conflict faster.

Age: Age of a clause is determined by how many conflicts were made since a clause was
learned. It is believed that the more recent clauses are more relevant to the current search
and so more valuable (higher quality).

LBD: Literal Block Distance or LBD was first introduced in [9] as a measure of learned
clauses quality and is computed to reflect the number of decision levels involved in a
clause, assuming that every literal in the clause is assigned. Consider a learned clause
C = {x1,x9,z3}. Assume that at the time the clause was learned, z1 was assigned at level
10, xo was assigned at level 20 and x3 was the asserting literal. Since there are 2 decision
levels involved in this clause, the LBD of the clause is set to 2. LBD of a clause is at most
equal to the size of the clause minus 1. It has been shown that the lower the LBD of a
clause, the more useful the clause is in future hence the higher its quality [9].

Activity and Usage: This measure is mainly used to reflect how useful a clause has
been so far. The Usage is measured by the number of conflicts for which the clause has been
responsible for so far (used in conflict analysis). Activity or VSIDS Activity is a similar
measure that takes the time of usage into account. Basically, the clauses that were used
more recently are considered to be more usefull and have higher activities. VSIDS strategy
was first introduced in Chaff solver for variables [81] but it was later adopted by MiniSAT to

29

be used for clauses as well [39]. Clause activity is calculated similar to the variable activity.
Every time a clause is used in conflict analysis, its activity is increased by a value. This

value increases over time to give more weight to more recent usages.

Chosen Solvers

Now, lets get to the clause database management schemes implemented in our chosen
solvers. In all solvers clauses that are a reason for a current variable assignment are saved
from deletion. These are the clauses that have all literals except one assigned false and the
remaining literal has been assigned true by BCP.

GRASP [78]: GRASP uses size as its clause quality measure. It aims to keep the size
of the learned clause database to be polynomial in the number of variables. GRASP defines
a threshold, k, and only stores the clauses of size k or less in the database and keeps larger
clauses around only while they are unit. As mentioned before, all clauses are considered to
be unit at the time they are learned with respect to the partial assignment of that time
(only their asserting variable is unassigned) and this will change when a backtrack happens
and other variable/variables in the clause that where assigned at a higher level than the
backtrack level become unassigned as well. The clauses of size larger that k are deleted
then. k is set to 20 in the original GRASP solver.

Chalff [81]: Chaff uses size and assigned variables in the learned clauses to choose which
clauses should be deleted and when. When a clause is learned, it is examined to determine
when (if at all) it should be deleted. For each clause a threshold ¢ is set and when the number
of unassigned variables in the clause reaches t, it is marked as ”deleted” and the solver will
ignore it from that point on. Periodically, the actual memory assigned to "deleted” clauses
is freed. t is usually between 100 and 200 in the solver.

Berkmin [46]: Berkmin performs clause deletion after each restart using a combination
of age, size and usage as quality measures. Their hypothesis is that since more recent clauses
were made in higher decision levels they are harder to derive and so more valuable to keep.
(Note that after each restart the decision level resets to zero and increases over time). They
consider the 15/16 of the clauses that were learned more recently to be "new” and the
other 1/16 to be ”old”. From the old clauses any clause with size larger than 8 or usage
smaller than 60 will be removed at each restart. From the new clauses any clause with size
larger than 42 or usage smaller than 7 will be removed. The usage threshold value of the
old clauses is increased after every 1024 decisions with the starting value of 60. So if a large
clause is not used in conflicts and does not have an increasing usage will be removed from the
database eventually. Berkmin aims to delete at least 1/16 of clauses when a clause deletion
is activated. If after applying the above scheme, the number of removed clauses are less
that 1/16 of all learned clauses, the size threshold value of old clauses is decreased by one

(starting at 8). However, this threshold will never be less than 4 and based on experimental

30

results shown in Berkmin’s paper, this is enough to always delete 1/16 of clauses on their
benchmark.

MiniSAT [39]: MiniSAT uses a combination of size and activity in its clause deletion
method. It utilizes the Delete- Half scheme and periodically deletes half of the learned clauses
in database based on these measures. The learned clauses are in a list and when a deletion
is triggered, all binary clauses will go to the beginning of the list and the rest of the clauses
will be sorted based on their activity in a descending order. Then, half of the clauses from
the end of this list are deleted. MiniSAT also deletes all clauses of size larger than 2 with
activity smaller than a threshold even if they appear in the beginning of the list. This
threshold is set to 1 over the number of learned clauses. The deletion is triggered after
every i conflicts where the value of i increases over time to allow more learned clauses in
the database. In early versions of MiniSAT i is initialized to the number of clauses in the
original formula divided by 3. After each restart, ¢ is multiplied by 1.1 to gradually increase
the size of clause database.

Glucose [9]: Glucose is mainly known for introducing LBD as a clause quality measure.
Ever since, LBD has been used in different heuristics of state of the art solvers. Glucose is
also took a more aggressive approach to learned clause deletion and showed that storing
fewer clauses in the database could improve a solver’s performance. Like MiniSAT, Glucose
also uses the Delete-Half scheme to reduce the size of its clause database but sorts the
learned clauses based on their LBD and deletes the half with larger LBDs. It activates the
deletion more frequently so generally maintains a smaller database. To be more specific,
no matter the size of the initial formula, Glucose removes half of the learned clauses with
lower LBDs every 20000 + 500z conflicts where x is the number of times clauses deletion
was previously performed. The main advantage of aggressive clause deletion is faster BCP
which is shown in particular to help on satisfiable instances [8].

MapleCOMSPS [71]: MapleCOMSPS adopted the deletion scheme introduced in an-
other solver called COMiniSatPS [90, 89]. It partitions the clause database into three dif-
ferent sets, called Core, Tier2 and Local. The decision of where to store a newly learned
clause in is based on its LBD at the time. A clause is stored in Core if its LBD < 3, in Tier2
if 4 < LBD < 6 and in Local if 6 < LBD. After the first 100,000 conflicts, if there are not
enough clauses in Core (less that 100), the core threshold is changed from 3 to 5. A clause
may be moved from one set to another based on LBD or usage. The LBD of each clause is
recomputed whenever it is used in conflict analysis. If the LBD of a clause at that time is
sufficiently reduced to meets the thresholds, it will be moved from Local to Tier2 or Core,
or from Tier2 to Core. Based on its updated LBD, every 10,000 conflicts, all clauses in Tier2
that have not been used during the last 30,000 conflicts are moved to Local. The deletion
only happens to clauses stored in Local. After every 15,000 conflicts, all the clauses in Local
are sorted by their activity and half of the clauses with lower activities will be removed

from the database. Clauses with recent improvement in LBD are saved from deletion.

31

2.4 Summary

The Boolean Satisfiability Problem (SAT) is to determine whether a given boolean formula
can be made to evaluate to true by assigning boolean truth values to the variables in
the formula. SAT is a canonical decision problem shown to be NP-complete and is one of
several computational tasks identified by researchers as core problems in computer science
[90]. Due to its NP-complete nature, there is no algorithm that can solve SAT problems in
polynomial time unless we prove P=NP, which is believed to be very unlikely. In the worst
case, a general SAT solver based on search principles needs to visit an exponential number
of nodes in the search tree to determine the satisfiability of a Boolean formula. Thanks to
the efficiency of modern SAT solvers, which is probably their most important feature, we
are far away from this worst case scenario in solving real world SAT instances.

A lot of the research done in the SAT community is about improving the speed of SAT
solvers and this has been done by trying to reduce the number of nodes that are visited
during the search by improving the algorithms and heuristics used in solvers. For example,
learning, a good decision strategy and non-chronological backtracking have been studied

and shown to be efficient by empirical experiments.

In this work, we looked at CDCL algorithm which is widely used as the main algorithm
in SAT solvers and has been known to be one of the main reason for efficiency of solvers.
We also discussed the most important heuristics used in the CDCL algorithm which had a
very important role in the evolution of modern SAT solvers. To illustrate this evolution, we
focused on 6 important solvers and their heuristics. These solvers have had an impact on
the solvers coming after them as they all introduced new strategies and demonstrated how
they can improve the performance. Table 2.4 summarizes the main features of each solver.
I believe there is a lot of room for improving SAT solvers efficiency further by studying

these current methods and their impact on different types of real world formulas.

32

GRASP

e First CDCL solver that illustrated the efficiency of CDCL algorithm
e Uses DLIS (Dynamic Largest Individual Sum) as decision heuristic
e Deletes clauses based on their Size

e No Restarts

Chaff

e Placed 1st in main track of SAT competition 2002 and 2004
e Introduced VSIDS decision heuristic

e Deletes clauses based on their Size

e Uses a fixed-size restart strategy

Berkmin

e Placed 1st in main track of SAT competition 2002 (Satisfiable
instances)

e Used a modified version of VSIDS as decision heuristic which is
calculated for all variables and is updated in all used clauses in conflict
analysis

e Deletes clauses based on their Size, Age and Usage

e Uses a fixed-size restart strategy

MiniSAT

e Placed 2nd in main track of SAT competition 2005 and 3rd in SAT
competition 2007

e Introduced EVSIDS decision heuristic which is a more efficient
implementation of VSIDS

e Deletes clauses based on their Size and Activity

e Uses a geometric series restart strategy

Glucose

e Placed 1st in main track of SAT competition 2011 (All instances),
2012 (All instances) and 2013 (Unsatisfiable instances)

e Placed 2nd in main track of SAT competition 2009 (All instances)
and 2014 (Unsatisfiable instances)

e Uses EVSIDS as decision heuristic with LBD-based modifications
e Deletes clauses based on their LBD

e Uses a LBD-based restart strategy

MapleCOMSPS

e Placed 1st in main track of SAT competition 2016

e Uses a combination of LRB and EVSIDS as decision heuristic
e Deletes clauses based on their LBD and Activity

e Have 3 tiers for saving learned clauses

e Uses a combination of LBD-based and Luby restart strategies

Table 2.4: Main Features of the 6 Chosen Solvers

33

Chapter 3

Decision Heuristics and Instance
Structure

3.1 Overview

Structure seems important in SAT research in attempts to explain the large divergence
in CDCL solvers performance over formulas of various sorts. For example, large industrial
formulas are often easier than small crafted or random formulas. Notions of instance struc-
ture are invoked in explaining solver performance and many empirical studies relate aspects
of solver performance to formula structure. Modularity is an appealing notion of useful
structure. If a formula can be decomposed into sub-formulas with few shared variables,
then each assignment to the shared variables induces smaller sub-problems that can be
solved independently [7]. An example of such an approach is the use of tree decompositions.
Unfortunately, while industrial formulas have interesting structure, few have suitable de-
compositions where the shared or “connecting” set of variables is small enough for standard
decomposition methods to be useful in practice [80]. Also, it is not at all clear how to exploit
such decomposition approaches in a CDCL solver for enumeration of all assignments to be
effective. Our approach has been to search for lightweight methods for exploiting structure
within the scheme of current high-performance CDCL SAT solvers.

Structure of CNF formulas is often studied in terms of an underlying graph, such as the
primal graph. The “community structure” of primal graphs of industrial CNF formulas is one
of the structural properties that have received some attention in the literature in recent years
[5, 87, 4, 70]. These studies have shown interesting correlations between community structure
of CNF formulas and aspects of the execution of CDCL SAT solvers on those formulas. In the
notion of community structure, a graph is considered to have “good community structure”
if its vertices can be partitioned into “communities” so that the ratio of the number of
within-community edges to the number of between-community edges is greater than would
be expected in a random graph with the same degree distribution. This can be thought of as

a kind of modularity, and indeed one measure of quality of community structure, introduced

34

in [86], is named modularity in the literature. It has been observed that this modularity
measure is correlated with CDCL SAT solver running times [87]. Variables appear in clauses
that belong to two or more communities are called “bridge” variables. It has been observed
that the VSIDS decision heuristic in CDCL SAT solvers chooses bridge variables much
more frequently than other variables [70]. This raises several questions. What causes the
VSIDS preference for bridge variables? Is this preference good or bad? Are there other
structural properties that are similarly relevant to VSIDS preference? Can we manipulate
this preference to alter solver behaviour? Our results in this chapter of the thesis partially
answer the latter three questions.

Towards answering these and related questions we carried out a variety of experiments.
First, we measured the degree to which VSIDS prefers several “special” families of variables.
Second, we proposed different ways to utilize these variables in modifying a CDCL solver’s
heuristics to improve their performance. We started with a simpler solver, Glucose, and
then showed our methods have benefits for other state of the art solvers as well. We chose
Glucose because it is well known and relatively well understood, is easy to work with, and
is very influential in that it is the base of several other solvers.

Community graphs of industrial formulas are diverse in structure, but we observed that
some have or contain a rather simple, nearly linear, structure (see Section 3.4). For these
formulas, the variables in the central communities of this structure can be viewed as “con-
necting variables” between two sub-formulas. This led us to examining the most central
variables in the formulas, based on a global measure called betweenness centrality [43]. We
found that VSIDS also shows a strong preference for the high-centrality variables. Bridge
variables and high centrality variables appear to be very interesting. However, the sets of
these variables are too large to consider enumerating all assignments to them. We deter-
mined that, rather than doing this, we can simply encourage VSIDS to choose these variables
more often. In VSIDS based solvers, solvers make their decisions based on the “activity”
of variables and these activities are determined by a “bumping” method. When a clause is
learned, a set of variables that were effective in the learning process are chosen and their ac-
tivities will be increased by a factor called the “bump value”. The bump value is usually set
to 1 and increases at regular intervals to give more weight to recent activities. We can simply
encourage VSIDS to choose a special set of variable more often by adjusting/increasing the
“bump value” for that set of variables. We call this “preferential bumping”. We show here
that preferential bumping of high centrality and bridge variables can be used to improve the
performance of high-performance CDCL SAT solvers. In our initial experiments we showed
improvements when modifying Glucose with preferential bumping on these variables.

Observing the impressive effect of utilizing variable betweenness centrality to improve
Glucose performance, we also present modifications to the decision heuristics of a state-of-
the-art solvers. We give three different centrality-based modifications that alter VSIDS and

LRB variable activities. We demonstrate the effectiveness of the methods by implementing

35

them in Maple LCM Dist, the winning solver from Main Track (Industrial track) of the
2017 SAT solver competition, and running them on the formulas from that track with a
5000 second time-out. All the modifications increased the number of instances solved and
reduced the PAR-2 scores. While our methods are simple, to our knowledge this is the first
time that explicit structural information has been successfully used to improve the current
state-of-the-art CDCL solvers on the main track benchmark. We also report a number of
other measures of solver performance and make some observations about these. We show
that:

e VSIDS has strong preference for a number of “special” families of variables; Bridge

variables, high degree variables and high centrality variables.

o Sufficient structural information to improve performance with “preferential bumping”

on these variables can be obtained quickly enough to be useful.

o By selectively altering the VSIDS “bump value” for specific sets of variables, we can

influence the preference VSIDS has for choosing these variables.

e Modifying VSIDS and LRB decision heuristics to prefer high centrality variables can

improve the performance of a state of the art CDCL solver.

e The effect of our modifications is positive on a few different performance measures

other than solving time.

3.2 Related Work

Several papers have studied the structure of industrial CNF formulas, e.g., [9, 110, 47].
Stronger “Community structure” has been shown in industrial formulas [41] and this com-
munity structure quality is correlated with solver run time [4, 5, 87, 88]. Community struc-
ture was used in [6] to generate useful learned clauses in satisfiable instances. They added
a preprocessing step in which, the solver tries to solve the subformulas made from the
clauses in pair of communities. For the satisfiable subformulas, all learned clauses will be
added to the original SAT formula. After all possible learned clauses are augmented to the
original formula, the solver will start solving this new formula instead. They showed this
can improve solver’s performance on satisfiable instances. In [79, 85] community structure
is used in SAT-based MaxSAT solvers. There, structure is used to partition the formula
to obtain smaller witnesses of unsatisfiability, not to direct the SAT solver execution. [70]
showed that VSIDS tends to choose bridge variables (community connectors) as decisions
more often. [100] described a method that alters the parallel portfolio solver PeneLoPe [2]
to heavily focus on specific communities at each time. Community structure is also used in
[108] to improve performance of parallel solvers by defining high quality clauses based on

LBD and number of communities they appear in. Hierarchical Community Structure (HCS)

36

is another definition of community structure proposed in [67] to explain the efficiency of
SAT solvers in industrial formulas. It has been shown HCS correlates well with solver’s run
time and is an effective measure to distinguish between easy industrial and hard crafted
SAT instances. Eigenvalue centrality of variables was studied in [61], and it was shown that
CDCL decisions are likely to be central variables. Some features used in learning perfor-
mance prediction models, as used in SATzilla [111], are structural measures. Lower bounds
for CDCL run times on unsatisfiable formulas are implied by resolution lower bounds, and
formula structure is central to these [16]. Formulas with bounded treewidth are fixed pa-
rameter tractable [3], and also can be efficiently refuted by CDCL with suitable heuristics
[7].

3.3 Structural Properties

In this section, we define some structural measures of CNF formulas. We also show that,
although the time to compute these measures for some formulas is prohibitive, for the
majority of formulas it is fast enough to be used as a pre-processing step in a SAT solver.

We assume the reader is familiar with the standard terminology regarding graphs.

Primal Graph

The primal graph of ¢ (also know as variable incidence graph or the variable interaction
graph (VIG)) is usually used to study the structure of CNF formulas. The nodes of the
primal graph are the variables of the formula, and there is an edge between two nodes
if the corresponding variables co-occur in a clause (in either polarity). Let ¢ be a CNF
formula with m clauses over n atoms (Boolean variables) in S. The frequency of atom p in
¢ is the number of occurrences of p, negated or not. The primal graph of ¢ is the graph
G(¢) =(V,E) with V =S, and (p,q) € E iff there is a clause C € ¢ containing both p and
g either negated or not. By the degree of atom p we mean the degree of p in G(¢). Degree

of an atom p also indicates the number of clauses that p appears in.

Community Structure

The community structure of a formula is typically based on a weighted version of this
graph, where each clause of size k contributes weight 1/ (g) to each associated edge. If GG is

a weighted graph and P a partition of its vertices, then define:

2
Q(G, P) _ Z |:Zw,yepw($7y) o (Zprdeg(x))]

pEP Zw,yev U)(l', y) SumIEVdeg<m)

The modularity @ of G is the maximum value of Q(G, P) over all partitions P. We say a

formula has good community structure if the modularity) of its weighted primal graph is

37

large. Computing a partition that maximizes @) is NP-hard, so for large graphs, heuristic
methods are used. As in most previous SAT research on community structure, we use the
Louvain method [26], as implemented in the NetworkX python package, to compute the
community structure of formulas [72] in this chapter. Edges with end points in distinct
communities are called bridges, and nodes in such edges are called bridge variables. Bridge
variables are the “connecting” variables in this notion of modularity. Clearly, bridge vari-
ables appear in clauses that belong to two or more communities. A community graph for
a formula has communities as vertices and an edge between two communities if there is a
bridge between them. Weights may be used to reflect community size and the number of
bridges between two communities. It has been shown that VSIDS decision heuristic shows

a preference for bridge variables [70].

Centrality

The intuitive notion of “centrality” of a vertex in a graph may be measured in a number
of ways. A very simple centrality measure is equal to vertex degree and is sometimes called
degree centrality. The Eigenvalue centrality of a vertex v is the value alv] where a is a
normalization of the eigenvector of the adjacency matrix of G having maximum eigenvalue
[27, 61]. Our focus in this chapter will be on the Betweenness centrality.

The betweenness centrality of a vertex v in a graph G is the number of shortest paths
between pairs of vertices excluding v, that visit v. It is defined by g(v) as follows, where o ;
is the number of shortest s-t paths and o, ¢(v) is the number of those that pass through v,

normalized by the number of all possible paths to range over [0, 1] [43].

gw) = Y (05:(v)/0ss)
sFVFEL

The betweenness centrality of a variable v in formula ¢ is the betweenness centrality
of v in the primal graph G(¢). Exactly computing betweenness centrality involves an all-
pairs-shortest-paths computation, and is too expensive for large formulas. We computed
approximate centrality values using the NetworkX [84] betweenness centrality function,
with sample size parameter n/50, where n is the number of variables. The function call is as

follows, where the parameter sets the number of vertices used to compute the approximation:
nx.betweenness__centrality(G, k = samplesize, normalized = True)

All computations of the experiments reported in sections 3.3 and 3.4 were run on Intel(R)
Core(TM) 3.4 GHz i7-3770 quad-core processors (single-threaded) with 16Gb of RAM,

running Linux.

38

3.3.1 Structural Properties Computations

For a significant fraction of formulas from industrial benchmarks, the time to detect com-
munity structure or compute variable centralities is substantial, and often greater than the
time to decide satisfiability. For our exploration of the cost of computing structural mea-
sures and their role in CDCL solvers, we used a set of formulas consisting of all 600 formulas
from the industrial categories of the 2013 and 2016 SAT solver competitions for which we
could perform centrality computations within one hour, using sample size set to the number
of variables divided by 50. The resulting set has 223 formulas from a wide variety families
within the competition benchmark sets. The community detection took less than one hour
for each of these formulas. We used this set of formulas in the experiments reported in this
section and in Section 3.4.

For many industrial formulas we could not obtain good approximations of centralities
in less than an hour. Clearly, one could not (at least with current methods) perform these
computations in a SAT solver for every input. However, for a large fraction of the formulas
reasonable approximations can be computed quite quickly. Figure 3.1a shows a histogram
of the approximate centralities we could find in one hour. As can be seen, for many formulas
the computation is quite fast, and only a small fraction have relatively long computation
times. More than half these formulas required less than 70 seconds. Figure 3.1b shows a
histogram of community detection times, which shows a similar pattern. The community
detection generally was faster than centrality computation, and more than three quarters

of the formulas required less than 35 seconds.

0.5
0.8
£ 04 c 97
S S 06
5 e
£03 0 (5
%) £
« %)
3 S04
£ 0.
502 E
5 S 03
c °
201 4 c 0.2
& g
i 8 0.1
0 w
lll-.l- -
0 1000 2000 3000 4000 0

0 500 1000 1500 2000 2500 3000

Time slots (each bin : 35 seconds) Time slots (each bin : 35 seconds)

(a) Histogram of Centrality Computation

Times. (b) Histogram of Community Detection Times

Figure 3.1: Computing time of structural properties

Further, it turned out that the most useful information for our preferential bumping
schemes (at least as currently implemented) that will be explained later was generally
obtained quickly. For example, for all instances that were solved by Glucose enhanced with
centrality-based preferential bumping (GLPB-HC-i as described in Section 3.4.2) but not

39

solved by default Glucose with the same time-out (see Section 3.4.4), centrality computation
time was less than 150 seconds.

It seems slightly counter-intuitive that useful information for hard formulas should be
easy to compute. We examined the correlation between running time of default Glucose, and
the times to compute centrality and community information. Table 3.1 shows the results.
Because SAT solver run times are very far from normally distributed, it is more appropriate
to use a non-parametric measure of correlation than, for example, the well-known Pearson
correlation. We use the Kendall 7 rank-based correlation coefficient. A 7 of 1 indicates
perfect correlation, -1 perfect inverse correlation, and 0 no correlation at all. As can be
seen, the times to compute both structural measures are highly correlated with each other.
Glucose solving time is only weakly correlated with structure computation times. However,
the p values for these measures are extremely small (p < 0.01 is generally regarded as highly
significant), so we can be fairly confident this correlation is real. The interesting point is that
these correlations are negative which suggests computing structural information is easier
for formulas that are harder for Glucose. Of course, for similar formulas of different size,
structure computation time must increase with formula size. The negative correlation of
solver time and structure computation time may reflect a bias in the benchmark selection
process: The small formulas are hard relative to their size, and the large formulas are easy

relative to their size.

’ Measures Kendal 7 p-value
Glucose vs. Centrality computation -0.13 0.003
Glucose vs. Community detection -0.20 | < 0.0001
Centrality computation vs. Community detection 0.71 | < 0.0001

Table 3.1: Correlations amoung structure computation and solver times.

3.4 VSIDS Preferences and Preferential Bumping

As previously discussed, the VSIDS decision heuristic, with a number of small variations,
has been the dominant decision heuristic almost since it was introduced in [81]. A useful re-
cent discussion of VSIDS can be found in [23]. The VSIDS method is based on recording an
“activity score” for each variable of the formula. At each decision, the unassigned variable
with highest score is chosen. As implemented in Glucose, the activity score of a variable is
updated each time the variable is seen while deriving a new learned clause. The update is
performed by adding the current “bump value” to the score. The bump value is initially 1,
and at each conflict it is multiplied by 1/d, where d is the “decay factor” (VSIDS approx-
imates an exponential moving average), which is initially 0.8 and is gradually increased to
0.95.

40

3.4.1 VSIDS Preferences

It was observed in [70] that VSIDS chooses bridge variables with far greater frequency than
might be expected. Here, we confirm that this holds for our test benchmark set, and add
several more observations. We were interested in the degree to which VSIDS, in Glucose,
would show a preference for high degree variables, for high centrality variables, and also for
high degree and high centrality bridge variables. In [70] it is claimed that VSIDS prefers
high centrality bridge variables. The centrality measure used there is degree centrality, a
local property, whereas the betweenness centrality measure we use here is a global property.

We ran Glucose on the formulas of our test benchmark set, and recorded the number
of decisions from each variable family. Table 3.2 shows the mean value of each of these
measures over the 186 formulas from our test benchmark set that Glucose solved within the

5000 second time-out.

Family Atoms (%) | Decisions (%) | Strength | Hit Rate | Precision
All 100 100 1.0 100 37
Bridge 49 83 2.86 7 64
High Degree 33 80 2.38 62 50
High Centrality 33 73 2.22 45 52
High Deg. Bridge 22 67 4.05 49 71
High Cent. Bridge 21 65 4.17 36 82
High Deg. High Cent. 18 65 3.8 34 69

Table 3.2: Measures of the degree to which VSIDS prefers “special” families of variables.

The first column of Table 3.2 identifies the family of variables in question. We defined
the set of high degree variables to be the one-third fraction of variables with the highest
degree, and high centrality similarly. The second column gives the fraction of all atoms in
the formula that belong to each family. High Degree Bridge, High Centrality Bridge and
High Degree High Centrality are the intersection of variables in two different families. The
third column of Table 3.2 gives the fraction of all decisions that are variables from each
family. We observe that, for each family, the fraction of decisions belonging to the family
is much higher than the fraction of atoms belonging to that family, indicating that VISDS
chooses variables from these structurally “special” families more often than others. In fact
(see discussion of the Precision column below) on average 63% of variables are not chosen
as decisions even once during a run of the solver.

The forth column is the ratio of the fraction of decisions from each family to the fraction
of atoms from the family. It is the mean of the ratios, not the ratio of the means, so can’t
be computed from the preceding columns. This gives a measure of how “important” the
family is relative to its size. The sets of bridge, high degree and high centrality variables

all account for about twice as many decisions as their sizes would suggest. The high degree

41

bridge and high centrality bridge sets, while much smaller, account for far more decisions
relative to their size hence have higher values in the forth column.

The fifth and sixth column are standard evaluations of the predictive power of a factor,
where we are viewing membership in the special family as a predictor of being chosen at
least once as a decision variable. Hit rate, also called sensitivity or “true positive rate”, is
the fraction of special atoms that are chosen by VSIDS at least once during a run. Precision,
also called “positive predictive value”, is the fraction of variables that are chosen at least
once that are also from the family. Notice that the All row of the Precision column gives us
the fact that only 37% of variables are chosen as decisions at some time during a run.

Our data show that, while VSIDS preferentially chooses several families of “special”
variables, some of these preferences are much stronger than others, and in particular, some
are much stronger relative to the size of the “special” set. Although the high degree bridges
and high centrality bridges seem very interesting, in preliminary experiments, preferential
bumping of these sets did not appear especially promising. It is not clear whether this is

because there are just too few of them or something else.

VSIDS Preferences are Stable

Our sets of “special variables” are static, being defined in terms of the initial formula.
However, It has been observed in [6], and confirmed by our own experiments, that clause
learning destroys the initial community structure of formulas. That is, the primal graph
made from the set of clauses the solver is working with after running for a while does not
have the same community structure as the initial formula. In particular, a large fraction of
learned clauses would add bridges to the initial set of communities.

Since VSIDS, overall, prefers variables with certain initial structural roles, one might
suspect that this preference changes during a run as the structure of the current clause set
changes. Since our sets of “special variables” are computed only on the initial formula, it
might be expected that they become less relevant over time. We cannot determine if that
is the case, but we did find, despite the changing learned clause set, the preferences VSIDS
shows for the “special” families of interest here are generally quite stable of an entire run
of the solver.

Figure 3.2 is illustrative of several experiments we ran that show this. The figure shows
the average fraction of decisions from three families of special variables over a run. To show
full-run data and also the initial “settling down”, we use an unconventional x-axis. The left
half of the axis shows the values every 100K decisions for the first 1 million decisions. The

right half shows the values at 9 points equally spread over the remainder of each run.

3.4.2 Preferential Bumping

The strong preference shown by VSIDS for certain families of variables led us to wonder

whether these preferences are always good or not, and to consider whether we could alter

42

100 T T T T T T T T T
90 | .

80 b~ : -
70;/,/>——~frrr=r 3 -

60 [.
50 4
40 + : -
30 | .
o0 | : —+&— Bridge Decisions

: High Degree Decisions
10 : —>—— High Centrality Decisions -

O 1 1 1 1 I 1 1 1 1
0 20 40 60 80 100

Decisions(x 10000) | Fraction of run

Fraction of special decisions

Figure 3.2: Mean fraction of special decisions over full run. Left half is for the first 1M
decisions; right half is the remainder of the run to completion.

the fractions of these families of decisions, thereby perhaps adjusting for “non-optimal
preference”. We found that by selectively increasing or decreasing the VSIDS activity bump
value for certain variables, we can increase or decrease (respectively) the tendency of VSIDS
to pick them. We illustrate this here by showing the fraction of Glucose decisions that are
from a chosen family of variables when we increase the bump value for the variables in that
family of variables. We experimented with a number of preferential bumping schemes, two
of which we report here.

Our preferential bumping scheme alters the VSIDS score update factor, “bump value”,
for a selected set S of variables. For variables not in S, the score update is addition of the
default bump value, as described above. We maintain a second “special” bump value, which
is initialized to some value b different from 1, and is updated in the same manner as the
default bump value. This “special bump value” is used to update the scores of variables
in S. We verified that, for a number of special families of variables, increasing the special
bump value, increases the fraction of decisions among the special family, while decreasing
the special bump value reduces the fraction of decisions among the special variables.

The two preferential bumping schemes we report data on below are as follows. Having

selected a set S of variables we want to influence, and a “special bump value”, we do one
of:

1. Uniform preferential bumping scheme: Variables from S are bumped using the “spe-

cial” bump value during the entire run;

2. Initial preferential bumping scheme: Variables from S are bumped by the “special”
bump value until 100K decisions have been made, after which they are bumped using

the default bump value.

43

We call this Glucose modified with preferential bumping GLPB, and use names of the
form GLPB-S-B, where S identifies the set of special variables and B identifies the pref-
erential bumping scheme. S is either HC, for “high centrality variables” or Br for “bridge
variables”. B is either u for “uniform preferential bumping” or i for “initial preferential
bumping”. In all the reported experiments with Glucose, the special bump value is initiated
to 1.1 instead of 1.

: —+&— Bridges Glucose
30 . |—=— Bridges GIPB-Br-u 7
. |—>— Bridges GIPB-Br-i

100 T T T T T T T T T T
90 : 7
2 80 B T
iel
2 70 _
& :
S 60 [|]
©
© 50 3 7
8 :
n 40 3 .
5 ‘
c
il
©
©
L

20 -
: High Centralities Glucose
10 | ——*— High Centralities GIPB-HC-i A
O 1 1 1 1 I 1 1 1 1 1

0 20 40 60 80 100
Decisions(x 10000) | Fraction of run

Figure 3.3: Effect of preferential bumping on the fraction of special decisions.

100 T T T T T

95 .

90

—&— Bridges Glucose
75 ——+—— Bridges GIPB-Br-u -
—>>—— Bridges GIPB-Br-i

Fraction of special decisions

70 1 1 1 1 1
0 0.5 1 1.5 2 2.5 3

Decisions %x10°

Figure 3.4: Effect of initial vs uniform preferential bumping: magnified inital segmant.

Figure 3.3 illustrates the effect of preferential bumping. The two lower lines are fractions
of high centrality decisions for default Glucose and for the variant GLPB-HC-i, with initial
preferential bumping of high-centrality variables. The three upper lines show the fraction
of bridge decisions for default Glucose and for the solvers GLPB-Br-u, with preferential
bumping of bridges all the time, and GLPB-Br-i, with initial preferential bumping of bridges.

44

Figure 3.4 shows a blow-up view of the initial segments of those three curves. Preferential
bumping for the entire run increases the fraction of “preferred” decisions for the entire run.
With initial preferential bumping, the fraction increases at first, then drops back toward,
but does not meet, the default value.

Now that we described the preferential bumping, in section 3.4.4 we will demonstrate
the effectiveness of structure-based preferential bumping in two versions of GLPB (Glucose
modified with preferential bumping), on a large set of industrial formulas. We begin with a

small motivating example in section 3.4.3.

3.4.3 Preferential Bumping of Central Communities

Community graphs of many industrial formulas do not seem to always have an easy-to-
understand structure but we observed that they do in many other cases. Figure 3.5 gives
examples of the former; Figures 3.6 examples of the latter. This is not surprising to see these
structures in industrial formulas since they are modeling real worlds problems versus the
random formulas. In particular, figures 3.6 shows these have an imperfect but clear linear
“coarse structure”.

In these figures, the size of nodes reflects community size (number of variables in each
community), and the width of edges reflects the number of bridges between the relevant
communities (number of variables shared in between 2 communities). The formula UR-
15-10p0 takes the form of a linear chain-like structure. The formula hwmcclO-timeframe-
expansion-k45 takes the form of a path of large communities connected by wide edges, plus
a number of small communities connected by narrow edges. We view the dominant linear
structures here as being a kind of coarse structure. It is the apparent structure if we ignore
most small details. There are many other formulas with “nice coarse structure” — another

example is shown in Figure 1 of [6].

12

Figure 3.5: The not-so-nice community graphs of formulas minxorminand128 (left) and
AProVEQT7-03.

To examine the effect of increasing bump value of central variables we start with an
illustrating experiment. For a number of formulas with a clear linear coarse structure, we
selected a small number of (visually) central communities, and then increased the Glucose

bump value for the variables in these communities. For the formulas hwmcclO-timeframe-

45

Figure 3.6: The community graphs of instances hwmccl0-timeframe-expansion-k45 (left)
and UR-15-10p0 (right) have a linear “coarse structure”. Black nodes are those selected
for preferential bumping. (Numeric labels are number of decisions, in thousands, made by
Glucose with preferential bumping, within each community.)

expansion-k45 (which we write as hwmc..k45 for short) and UR-15-10p0, the selected com-
munities are the highlighted in black in Figure 3.6.

Instance Default Glucose Glucose + Central Bumping
Central Decisions | CPU Time | Central Decisions | CPU Time

hwmec...k45 8.5 % 2147 12.6 % 616

UR-15-10p0.cnf 6.3 % 1293 15 % 749

Table 3.3: Effect of increasing the bump value for variables in central communities on solving
time and fraction of decisions

Table 3.3 shows, for each of the formulas of Figures 3.6, the effect of uniform preferen-
tial bumping on the fraction of decisions within the chosen central communities, and the
corresponding reduction in Glucose run times, which is significant. Our selection of central
communities in these examples was done manually, but since the community graphs of most
formulas are small, we can quickly compute good path decompositions (and probably use-
ful tree or branch decompositions) of them, so finding central communities in community
graphs like these can certainly be automated.

These, and similar examples, provided some of the first evidence of success of structure-
based preferential bumping, and motivated exploration of the notion of centrality in SAT

formulas’ primal graphs.

3.4.4 Preferential Bumping in Glucose

In the following, we demonstrate that fully automatic preferential bumping of specific fami-
lies of structurally determined variables can in fact improve solver performance. In particu-
lar, we ran default Glucose, GLPB-HC-i and GLPB-Br-u on all of the 742 distinct formulas
from the industrial categories of the three most recent (at time of experiments) SAT solver
competitions (2013, 2014 and 2016) combined. This set includes the 223 formulas used in

previous sections of this paper.

46

Recall that GLPB-Br-u preferentially bumps variables that are bridges in the primal
graph for the entire run, and GLPB-HC-i preferentially bumps variables that have high
centrality in the primal graph for the first 100K decisions. The computations to find bridge
and high centrality variables can be expensive, in some cases taking longer than running a
SAT solver on the instance. However, for many formulas, the computations are fast. More-
over, it seems that the information obtained tends to be more useful when the computation
is fast than when it is not. Therefore, the strategy of simply running bridge detection or
centrality computation algorithms for a short time as a pre-processing step is useful. If we
obtain the structural information in time, we use it, otherwise we simply run the default
version of the solver and pay only a small time penalty. We allowed up to 50 seconds for
community bridge detection in GLPB-Br-u and 200 seconds for centrality computation in
GLPB-HC-i, and 5000 seconds total running time (structure computation plus solving) for
each formula. 5000 seconds is the standard timeout for the applicational track of SAT com-
petitions [1]. If the structural properties computation was not successful within the time
out, GLPB-HC-i and GLPB-Br-u continue running as the default glucose solver for the

remaining time.

5000 [|—=— Glucose

| |—=— GIPB-HC-i
4500 GIPB-Br-u
4000

340 360 380 400 420 440 460 480 500 520 540
Number of solved instances

Figure 3.7: Relative performance of Glucose, GLPB-Br-u and GLPB-HC-i.

From the 742 industrial formulas in the benchmark set, 210 were not solved by any
of the three solvers. Glucose solved 512 formulas, GLPB-Br-u solved 517, and GLPB-HC-i
solved 524. For calibration, in the 2016 competition 4 formulas is the difference between first
and third place, and in the 2020 competition 4 formulas is the difference between first and
second place. GLPB-HC-i also solved one formula from the 2016 SAT solver competition
that none of the 29 solvers in the competition solved within the competition timeout. While

our time-out is the same as the competition, our hardware is not, so we cannot conclude

47

that GLPB-HC-i would have solved it in the competition. However, the fact that no solver
in the competition solved it in 5000 seconds does suggest that it is indeed a hard formula
by current standards.

Figure 3.7 is the standard (in the SAT solver literature) “cactus plot”, which shows
for each solver how many formulas were solved in time at most ¢, as a function of . We
see that on easier formulas the time spent on structure computation does not pay off, and
Glucose performs best. However, the preferential bumping solvers perform better on harder

formulas.

Robustness of Results

Solver Number Solved (out of 60) | Mean solving time
Glucose 54 347
Altered Glucose 54 355
GLPB-HC-i-0.9 54 382
GLPB-HC-i-1.1 56 353
GLPB-HC-a-0.9 59 507
GLPB-HC-a-1.1 55 430
GLPB-Br-i-0.9 54 398
GLPB-Br-i-1.1 54 349
GLPB-Br-a-0.9 54 422
GLPB-Br-a-1.1 51§ 381

Table 3.4: Comparing performance of modified solvers on a smaller benchmark. The mean
solving time is over the formulas that all solvers could solve.

Alterations to SAT solvers can be tricky to evaluate, because even a very small change
can significantly alter the performance on any individual formula. This leads to a number of
ways in which apparent but not real improvements are seen. For example, if one chooses a
set of formulas which are relatively hard for a specific solver, relative to other good solvers,
it is often the case that almost any small change at all will improve the performance on
those formulas. Such changes typically lose on other formulas in a good benchmark set.

In our experiments we, unsurprisingly, found many settings in which we seemed to get
improved performance. The methods we have reported are ones for which we have seen
enough data to have reasonable confidence are not just a lucky coincidence. Table 3.4 gives
one such data set. This is for runs on a smaller benchmark set, with a number of parameter
settings. The data shows that when we bump bridges harder with any of our schemes, we
get better performance, and when we bump them less we get worse performance. Similarly
for high centrality. The line “Glucose” is for completely unmodified Glucose, while the line
“Glucose Altered” is Glucose with our modifications, but all parameter changes turned off.
It is slightly slower because it contains code which is always executed, but does no work

when our modifications are turned off.

48

3.5 Centrality based Modifications in Maple LCM Dist

In the previous experiments, we illustrated a few ways to utilize the structural properties
of the SAT formulas to improve the performance of a basic CDCL solver, Glucose. Those
are interesting findings but it is imprortant to us to see if they are also beneficial to the
state of the art solvers with more complicated heuristics. For that, we chose the MapleSAT
family of solvers, which have been the winners of the SAT competition between 2015-2019
[1]. They all share similar decision heuristic which is a combination of VSIDS and LRB.
In the rest of this section, our focus will be on modifying these two decision heuristics in
Maple-LCM-Dist solver, the winner of SAT competition 2017, and utilizing betweenness

centrality of the variables in the formulas to improve its performance.

3.5.1 Decision Heuristics

The VSIDS decision heuristic [81], in several variations, has been dominant in CDCL solvers
for well over a decade. Recently, the LRB (Learning Rate Based) heuristic [69] was shown
to be effective, and winners of recent competitions from MapleSAT solvers family use a
combination of VSIDS and LRB. As discussed previously, both employ variable “activity”
values, which are updated frequently to reflect the recent variable usage. Similar to VSIDS,
the update in LRB involves increasing the activity value for a variable each time it is assigned
or appears during the derivation of a new learned clause. A secondary update in MapleSAT
[69] and its descendants involves, at each conflict, reducing the LRB activity score of each
variable that has not been assigned a value since the last restart. Maple LCM Dist uses
both VSIDS and LRB, at different times during a run, and LRB activity reduction.

In section 3.4.4, we reported that increasing the VSIDS bump value for high-centrality
variables during an initial period of a run improved the performance of the solver Glucose.
This did not help much in solvers using LRB, but motivated further studies to have LRB

favor high-centrality variables. The modifications reported here are:

HCbump-V: We scale the VSIDS additive bump values for high-centrality variables by
a factor greater than 1. In the experiments reported here, the factor is 1.15. This
is similar to VSIDS preferential bumping described in section 3.4.2 with uniform

bumping scheme.

HCbump-L: We periodically scale the LRB activity values of high-centrality variables by
a factor greater than 1. In the experiments reported here, we scaled by a factor of 1.2

every 20,000 conflicts.

HCnoReduce: We disable the reduction of LRB scores for “unused variables” that are

also high-centrality variables.

49

3.5.2 Performance Evaluation

We implemented each of our centrality-based decision heuristics in Maple LCM Dist [74],
the solver that took first place in the Main Track of the 2017 SAT Solver Competition
[96]. We compared the performance of the modified versions against the default version
of Maple LCM Dist by running them on the 350 formulas from the Main Track of the
2017 solver competition, using a 5000 second time-out. This is the standard time-out in
SAT competitions [1]. Computations were performed on the Cedar compute cluster [31]
operated by Compute Canada [33]. The cluster consists of 32-core, 128 GB nodes with Intel
“Broadwell” CPUs running at 2.1Ghz.

We allocated 70 seconds to approximate the variable centralities, based on the cost-
benefit trade-off seen in Figure 3.1a: Additional time to obtain centralities for more for-
mulas grows quickly after this point. If the computation completed, we used the resulting
approximation in our modified solver. Otherwise we terminated the computation and ran
default Maple LCM Dist. The choice of 70 seconds is not crucial: Any cut-off between 45

and 300 seconds gives essentially the same outcome. Centrality values were obtained for

Maple LCM Dist | HCbump-L HCbump-V HCnoReduce
Number Solved 215 219 218 221
PAR-2 Score 4421 4382 4375 4381

Table 3.5: Number of Formulas Solved (out of 350) and PAR-2 score, for default Maple
LCM Dist and our three modified versions.

198 of the 350 formulas. Our 5000 second timeout includes the time spent on centrality
computation, whether or not the computation succeeded.

Table 3.5 gives the number of instances solved and the PAR-2 score for each method.
All three centrality-based modifications improved the performance of Maple LCM Dist by
both measures.

Figure 3.8 gives the “cactus plot” (inverse cumulative distribution function) for the
runs. All three modifications result in improved performance. these solvers, which modify
the decision heuristic, improve on the default for all times longer than 3300 seconds. The
two methods that modify LRB under-perform the default on easy formulas, but catch up

at around 3200 seconds.

Families Affected

It is natural to wonder if these improvements are due to only one or two formula families.
They are not. Table 3.6 shows, for each of our three modified solvers, how many formulas

it solved that default Maple LCM Dist did not, and how many families they came from.

50

—— Maple-LCM-dist
—— HCbump-L
—s=—HCbump-V
—e—HCnoReduce

(S]]
e
T

S
~

CPU Time (s)
wW
=

n
~

170 180 190 200 210 220
Number of solved instances

Figure 3.8: Cactus plot comparing performance of Maple LCM Dist and our three modified
versions.

Table 3.6 shows that the improvements happens in formulas from various families and is

not specific to a special domain.

Solver HCnoReduce | HCbump-L | HCbumpt-V
Number of Formulas 10 8 5
Number of Families 6 5 3

Table 3.6: Number of families involved in formulas solved by our modified solvers by not by
default Maple LCM Dist.

3.5.3 Performance Analysis

In this section, we compare the performance of our modified solvers in more details.

Reliability

There is an element of happenstance when using a cut-off time. For example in figure 3.8,
the “best" method would be different with a cut-off of 2800 seconds, and the “worst" would
be different with a cut-off of 3500 seconds. Run-time scatter plots give us an alternate view.

Figure 3.9 gives scatter plots comparing the individual formula run-times for each of
our three modified solvers with the default Maple LCM Dist. Each point in the scatter
plots represents a formula. The satisfiable (SAT) formulas are denoted with o and the
unsatiafiable (UNSAT) formulas are denoted with x. The x-value and y-value of each point
shows the solving time of that formula by 2 solvers. If a formula was not solved within the
time-out of 5000 seconds, the solving time value is replaced by 5000.

We observe:

51

w
=

4K

S
=

w
=
w
=

n
=

n
=~
Maple-LCM-dist

Maple-LCM-dist

=
=

0 1K 2K 3K 4K 5K 0 1K 2K 3K 4K 5K
HCbump-L HCbump-V
5K

N
=

w
=

Maple-LCM-dist
no
=

=

0 ;:};‘ 000 ‘ ‘ ‘
0 1K 2K 3K 4K 5K
HCnoReduce
Figure 3.9: Comparison of run-times of default Maple LCM Dist with each of our modified
versions. Each plot shows all instances that were solved by at least one of the two solvers
represented. Satisfiable formulas are denoted with o, unsatisfiable formulas with x.

e In each plot many points are lined up just below the main diagonal. These are the
formulas that we could not find the centralities for in time. For these, we pay a 70-

second penalty.

e The VSIDS modification, HCbump-V, caused the least variation: it solved more for-

mulas, but gave significant speedups on only a few others.

e The two LRB modifications, HCbump-L and HCnoReduce, were very “noisy”, speed-

ing up many formulas but also slowing down quite a few.

o It is very interesting that very large differences in run-time were mostly for satisfiable

formulas.

Reasoning Rates

Here, we look at other performance measures to compare the solvers based on the rate of
solver’s reasoning or search (as distinct from, for example, quality of reasoning or total time).
Table 3.7 shows, for each method, the mean conflict production rate, the mean decision rate
and the mean unit propagation rate. These are the average number of conflicts, decisions
and unit propagations made by the solver per second respectively over the benchmark set.
The table also reports the average Global Learning Rate (GLR). GLR, was introduced in

52

[72] where it is defined as the ratio of the number of conflicts to the number of decisions
in solving a formula. It was observed that solvers with decision heuristics that produce a
higher GLR had reduced solving times [72]. We observe:

o Consistent with the observations in [72], decision heuristic changes that improved

performance increased GLR, though only slightly;

e Modifying the LRB decision heuristic in HCbump-L solver increased all the search
and reasoning rates and learned clauses faster than the default solver. This is not the

case for the other two modified solvers.

Solver Conflicts | Decisions | Propagations GLR
Maple LCM Dist 8.25 23.7 1,452 0.623
HCbump-L 8.52 26.3 1,530 0.626
HCbump-V 8.15 23.5 1,432 0.625
HCnoReduce 8.02 21.0 1,420 0.629

Table 3.7: Measures of search or reasoning rate for the four solvers. Conflicts, Decisions
and Propagations are in thousands of events per second.

3.6 Summary

We demonstrated that the community graphs of some formulas have nice “coarse struc-
ture” that can be exploited fairly easily. We have extended previous observations that the
VSIDS decision heuristic in CDCL solvers shows a strong preference for particular families
of variables. We also introduced the notion of variable betweenness centrality in SAT for-
mulas and showed high centrality variables are among those families. Wondering whether
this preference was good or bad led us to experiment with preferential VSIDS bumping. We
have shown that the performance of Glucose can be meaningfully improved by preferential
bumping schemes.

Glucose uses simple heuristics compared to the recent state of the art solvers in SAT
competitions. To evaluate the effect of utilizing centrality in these solvers, we introduced
three centrality-based modifications to standard CDCL decision heuristics, and implemented
these in Maple LCM Dist, first-place solver from the Main Track (aka industrial track) of the
2017 SAT Solver Competition. All three changes improved the performance on the formulas
from this track.

The decision heuristic modifications confirmed the importance of variable centrality, and
are interesting because they seem to work for different formulas. For example, among 26
formulas that at least one method solved and at least one did not, there are 12 formulas
that are either solved by HCbump-L and no other method, or not solved by HCbump-L but
solved by all other methods.

53

Chapter 4

Clause Centrality in Deletion
Strategies

4.1 Overview

In our attempt to develop lightweight methods for exploiting formula structure, we intro-
duced the notion of centrality in SAT formulas in Chapter 3 and showed that it can be
utlized in the decision heuristics of CDCL solvers to improve their performance. In this
chapter, we introduce clause centrality as a measure of clause quality, and study its use in
the clause database management heuristic.

We demonstrate the effectiveness centrality as a clause quality measure by implementing
by showing that replacing the activity based deletion in Maple LCM Dist, the winning
solver from Main Track (applicational track) of the 2017 SAT Solver competition, with
centrality based deletion improved performance. We also report a number of other measures
of solver performance and learned clause quality, and make some observations about these.
We continue by moving the centrality computations as a preprocessing step done by the
solver and confirm our improvements using another solver, MapleLCMDistChronoBT, the
winner of the main track of SAT competition 2018.

To explain the good performance of solvers with centrality-based deletion, we look at
the usefullness of clauses with high centrality in conflict analysis and how it compares with
other quality measures. Finally, we compare various clause quality measures in the deletion
scheme of MapleLCMDistChronoBT and illustrate the effectiveness of our measure. While
our methods are simple, to our knowledge this is the first time that explicit structural
information has been successfully used in clause database management heuristic to improve

the current state-of-the-art CDCL solvers on the main track benchmark. We show that:

o Centrality of variables can be utilized in the clause deletion scheme of state of the art

solvers to improve performance.

54

A new clause quality measure can be introduced based on centrality of variables in

the clauses in a way that clauses with high centrality values, are used more often in

conflict analysis.

e The effect of our modifications is positive on a few different performance measures in

addition to solving time.

o Small clauses, clauses with small LBD and High-centrality clauses are used more often

in conflict analysis.

e As long as the solvers have a permanent set to store low LBD clauses, Centrality is

the best measure to be used in the Delete-Half scheme based on our experiments.

4.2 Clause Centrality

In the previous chapter, we used betweenness centrality of variables in decision heuristics
and we have evidence suggesting using centrality of variables in decision heuristics can help
performance. Recall that in Chapter 3 we defined the betweenness centrality of a variable
by g(v) as follows, where oy, is the number of shortest s-t paths and o (v) is the number
of those that pass through v, normalized by the number of all possible paths to range over
[0, 1] [43].
g(w) = Y (054(v)/0s4)
sAv£L

We start by introducing a clause quality measure, which we call clause centrality, to help
use betweenness centrality of variables of a CNF formula in clause deletion strategies. In
this measure, we consider the clauses with high centrality variables in them to have higher

clause centrality values.

Clause Centrality: Centrality of a clause is computed as the mean betweenness centrality
of the variables occurring in it. For a clause of size m like C' = {v1,v9, ..., s}, the

centrality is computed as follows:

E:Zl Centrality(v;)
m

Centrality(C) =

4.3 Centrality based Clause Deletion in Maple LCM Dist

The Maple LCM Dist clause database management (or clause deletion) scheme was inherited
from COMiniSatPS which was explained in Chapter 2. A summary of the scheme is as
follows [13, 74]. The learned clauses are partitioned into three sets called CORE, TIER2
and LOCAL. Two LBD threshold values, t1,%s, are used. Learned clauses with LBD less
than t; are put in CORE. t; is initially 3 but changes to 5 if CORE has fewer than 100
clauses after 100,000 conflicts. Clauses with LBD between t; and 9 = 6 are put in TIER2.

95

Maple LCM Dist | HCdel
Number Solved 215 224
PAR-2 Score 4421 4242

Table 4.1: Number of Formulas Solved (out of 350) and PAR-2 score, for default Maple
LCM Dist and HCdel solvers.

Clauses with LBD more than ¢ are put in LOCAL. Clauses in TIER2 that are not used for
a long time are moved to LOCAL. For clause deletion, the clauses in LOCAL are ordered by
non-decreasing activity values. If m is the number of clauses in LOCAL, the solver deletes
the first m/2 clauses that are not reasons for the current assignment.

The clause deletion of Maple LCM Dist is basically the Delete-Half scheme in LOCAL
using activities. We would like to see the result of changing the clause quality measure in
deletion to centrality. We report on the following modification to Maple LCM Dist using

centrality in its clause deletion scheme:

HCdel: Replace criteria for ordering the clauses in LOCAL from clause activity with or-
dering by clause centrality. In every clause deletion step, delete half the clauses with

lower centrality values excluding clauses that are reason for the current assignment.

4.3.1 Performance Evaluation

We implemented centrality-based deletion, HCdel, in Maple LCM Dist [74], and compared
the performance of the modified version against the default version of Maple LCM Dist by
running them on the 350 formulas from the Main Track of the 2017 solver competition,
using a 5000 second time-out. Computations were performed on the Cedar compute cluster
[31] operated by Compute Canada [33]. The cluster consists of 32-core, 128 GB nodes with
Intel “Broadwell” CPUs running at 2.1Ghz.

Exactly computing betweenness centrality involves an all-pairs-shortest-paths computa-
tion, and can be too expensive for large formulas. In the experiments of the first section of
this chapter, section 4.2 and this section, we computed approximate centrality values us-
ing the NetworkX [84] betweenness_ centrality function, with sample size parameter n/50,
where n is the number of variables in the formulas.

We allocated 70 seconds to approximate the variable centralities, similar to experiments
in chapter 3. Additional time to obtain centralities for more formulas grows quickly after
this point but the choice of 70 seconds is not crucial: Any cut-off between 45 and 300 seconds
gives essentially the same outcome. If the computation was completed, we used the resulting
approximation in our modified solver. Otherwise we terminated the computation and ran
default Maple LCM Dist. Centrality values were obtained for 198 of the 350 formulas. Our
5000 second timeout includes the time spent on centrality computation, whether or not the

computation succeeded.

56

5K k Maple-LCM-dist i
HCdel
_ 4K .
K
) -
£ 3K} - .
|_
T
O 2K + /*. J
1K *‘*.**}..x‘*""f _
140 160 180 200 220

Number of solved instances

Figure 4.1: Cactus plot comparing performance of Maple LCM Dist and HCdel solvers.

Table 4.1 gives the number of instances solved and the PAR-2 score for both solvers.
The centrality-based clause deletion scheme, HCdel, improved the performance of Maple
LCM Dist by both measures.

Figure 4.1 gives the “cactus plot” for the runs. HCdel out-performs default Maple LCM
Dist for almost all smaller cut-off time values. Within the standard 5000 seconds, HCdel
solves 9 formulas more than the default solver which comes from 5 different family of
formulas. It is interesting that the improvement are not specific to one or two families and

could improve different kinds of instances.

Reliability

There is an element of happenstance when using a cut-off time as in cactus plots so it is
useful to compare performance in other ways. Run-time scatter plots give us an alternate
view.

Figure 4.2 gives a scatter plot comparing the individual formula run-times for both
solvers. Each point in the scatter plots represents a formula. The satisfiable (SAT) formulas
are denoted with o and the unsatiafiable (UNSAT) formulas are denoted with x. The x-
value and y-value of the point shows the solving time of that formula by the two solvers.
If a formula was not solved within the time-out of 5000 seconds, the solving time value is
replaced by 5000.

We observe that many points are lined up just below the main diagonal. These are the
formulas without centralities, for which we pay a 70-second penalty. We can also see that
HCdel was faster on 70% of formulas with centralities and had significant slow-down for

only 4 formulas. It is interesting that very large differences in run-time were mostly for

57

BKe oo o 0 00 @&

0 SAT) °
KL UNSAT
k2
O
ESK’
O
-
02Kt
Q
s
1K o

0 1K 2K 3K 4K 5K
HCdel
Figure 4.2: Comparison of run-times of default Maple LCM Dist with HCdel. The plot

shows all instances that were solved by at least one of the two solvers. Satisfiable formulas
are denoted with o, unsatisfiable formulas with x.

satisfiable formulas. We observed the same effect before from solvers with centrality-based

decision heuristics.

Reasoning Rates

Similar to analysing centrality-based decision heuristics, here we look at a few performance
measures to compare the solvers based on the rate of reasoning or search. Table 4.2 shows, for
each method, the mean conflict production rate, the mean decision rate and the mean unit
propagation rate. These are the average number of conflicts, decisions and unit propagations
made by the solver per second respectively over the benchmark set. The table also reports
the average Global Learning Rate (GLR). GLR, was introduced in [72] where it is defined
as the ratio of the number of conflicts to the number of decisions in solving a formula.

We observe that, HCdel did not have a higher GLR than Maple LCM Dist suggesting
that it learned or kept “better” clauses after decisions and propagations, rather than more
clauses. Looking at other reasoning rates, HCdel has higher reasoning rates in all measures

suggesting it was generally faster in reasoning like generating conflicts.

Solver Conflicts | Decisions | Propagations GLR
Maple LCM Dist 8.25 23.7 1,452 0.623
HCdel 8.43 25.2 1,493 0.623

Table 4.2: Measures of search or reasoning rate for the solvers. Conflicts, Decisions and
Propagations are in thousands of events per second.

58

4.3.2 Comparing Clauses after Deletions

Measures of “clause quality” that have been studied or used in solver heuristics include
size, literal block distance (LBD) and activity. Here we add clause centrality to these. Small
clauses are good because they eliminate many truth assignments and facilitate propagation.
Literal Block Distance is defined relative to a CDCL assignment stack, and is the number of
different decision levels for variables in the clause. Small LBD clauses are like short clauses
relative to assignments that are near the current one [9]. Clause activity is an analog of
VSIDS activity, bumped each time the clause is used in a learned clause derivation [103].
Intuitively, clauses with low centrality connect variables “on the edge of the formula”, and
a long clause with low centrality connects many such variables, so is likely hard to use.

To see the effect of centrality-based deletion on some of the clause quality measures, we
measured the quality of learned clauses kept in LOCAL for three deletion schemes: Activity
based deletion (default Maple LCM Dist); Centrality-based deletion (HCdel); and LBD-
based deletion which was implemented in Maple LCM Dist for this study where it sorts
clauses in LOCAL based on LBD and deletes the half with higher LBDs. Table 4.3 shows
the results. Reported numbers are the mean of measurements taken just after each clause
deletion phase. The last column shows the average solving time of all formulas with each
method. Out of 119 formulas that where solved by all 3 solvers, The order of centrality
averages holds for all 119 of them. The order of LBD holds for 113 of them and the order

of size averages holds for 115 of them.

Deletion method Clause Centrality | Clause LBD | Clause Size | Time
Activity-based Deletion 106 24 56 401
Centrality-based Deletion 182 15 36 347
LBD-based Deletion 80 9 24 446

Table 4.3: Measures of quality for clauses in the LOCAL clause set, for three deletion
schemes. (Centralities are scaled by 10,000).

We observe:

o Centrality-based deletion keeps better clauses than activity-based deletion, as mea-

sured by both size and LBD, and also performs better.

o LBD-based deletion keeps the “best” clauses measured by LBD and size, has the worst

performance and keeps the worst clauses measured by centrality.

o Centrality is the only clause quality measure that perfectly predicts ordering of the

deletion methods by solving speed.

59

Table 4.3 suggests centrality of saved (not deleted) clauses can be good indicator of the
solving time. In the next sections of this chapter, we will look into the usefulness of clauses

with high centrality in more details.

4.4 Learned Clause Quality

Our experiments in section 4.3 suggests that centrality, can be a useful measure in identifying
high quality clauses and using it in deletion. Now we would like take a closer look at
the connection between main clause quality measures, Size, LBD and Centrality and their
usefulness in conflict analysis. We define Usage to reflect how useful a clause has been in
reaching new conflicts and learning new clauses. It is measured by the number of conflicts
for which the clause has participated in and appeared in the implication graph in conflict
analysis. Size and LBD have been used previously in many clause deletion schemes as a
good predictor of usefulness of clauses and we showed, centrality can also be used in clause
deletion and result in good performance. Here, we want to compare these measures based

on their usage.

S D
o o

Average Usage
S

0 5 10 15 20 25+
LBD

(a) Average Usage with respect to clause LBD

Average Usage
N @
o o

n
o

0 5 10 15 20 25+
Size

(b) Average Usage with respect to clause size

Average Usage

[0,1) [1,2) [2,3) [3.4) [4,5) [5.6) [6.7) [7.8) [8,max)
Centrality (x e03)

(c¢) Average Usage with respect to clause centrality

Figure 4.3: Average Usage with respect to different clause quality measures

60

In the rest of the experiments of this chapter, our base solver for experiments is MapleL-
CMDistChronoBT which shares the same clause database management scheme of Maple-
SAT solvers (including Maple LCM Dist) and was the winner in main track of SAT com-
petition 2018 [83, 64]. Consider a modified version of MapleLCMDistChronoBT in which
the clause deletion is deactivated and stop this solver after generating 500,000 conflicts.
At this point, the modified solvers has learned 500,000 clauses and partitioned and stored
them in Core, Tier2 and Local. We ran this solver on 10 randomly chosen formulas from the
2020 SAT competition benchmarks and made a database of 5 million clauses (with a total
of about 774 thousands clauses in Core, 695 thousands clauses in Tier2 and 3.526 million
clauses in Local). For each clause, we recorded its size, LBD, centrality and usage values.
The centrality computations were done using the Brandes [28] algorithm as before but we
implemented the algorithm as a preprocessing step in the solver instead of generating the
centrality information as an outside process and passing it to the solver as input. This made
the computations about 5 times faster and allows computing the exact centrality values for
many industrial SAT formulas in a reasonable time. In this experiment, we calculated the
exact centrality values in the 10 formulas and have not used sampling.

Figure 4.3 shows the usage rate in clauses with different qualities. Each bin in Figure 4.3
shows the average usage values of clauses with the similar size, LBD and centrality. The
first two figures clearly show that as the size and LBD of clauses grows, their usefulness in
conflict analysis drops so larger (and higher LBD) clauses are used fewer times in conflict
analysis. Figure 4.3c similarly shows that as the centrality of clauses increases, their usage
also increases. This clearly suggests more central clauses are more useful in conflict analysis

which can explain the good performance of HCdel in Section 4.3.

It is interesting and unexpected to see the huge different in usage between clauses with
LBD < 3 (basically clauses in Core) and LBD > 3 in figure 4.3a. We think the sudden
change can be explained by the way the LBD values are updated. Every time a clause that
does not belong to Core is used in conflict analysis and its LBD value decreases, the value
will be updated and the clause moved to Core if it meets the threshold. This means clauses
that are used more often, have a higher chance of being moved to Core so more useful
clauses with low LBD appear there whereas the clauses that have current low LBD but are
not used in conflict analysis, will never get their LBD updated. Our back up experiments
show a similar pattern (with low LBD clauses having higher usage value) even if we only
consider the initial LBD value of all clauses and never update the values but the change is

not as sudden.

61

7000

I Activity
| |I Centrality |
6500 [ILBD

I Size

PAR-2 Score
(&)} [6)] (2]
o [&)] o
o o o
o o o

4500

| |
With Permanent Clauses Without Permanent Clauses
Deletion Criteria

4000

Figure 4.4: Comparison of PAR-2 scores of solvers using different deletion criteria with and
without permanent clauses in Core.

4.5 Deletion Criteria in Delete-Half Schemes

In our solver with centrality-based deletion, HCdel, we showed that modifying the Delete-
Half scheme to delete the clauses with low centrality (versus clauses with low activity)
can be beneficial to performance. It is important to remember that the clause database
management heuristic in MapleSAT solvers, keeps clauses with low LBD in Core and Tier2
and the deletion is not purely based on activity. The same holds in HCdel. In this section,
we will try to answer the question of which clause quality measure is best if used separately.
For that, we continue using the MapleLCMDistChronoBT solver and various modifications
of it. We make 8 different modified solvers where each one uses a different criterion in its
Delete-Half scheme. 4 solvers keep the Core setting of MapleLCMDistChronoBT and store
clauses with LBD < 3 in Core database permanently. In their deletion, we use the four
different criteria of activity, centrality, LBD and size to sort clauses in Local and remove
the half with lower qualities. This deletion scheme is repeated in the other 4 solvers with
the difference of not having a Core database and storing all clauses in Local. Note that for
simplicity, we removed the Tier2 database from all solvers and clauses that are normally
stored in Tier2 are stored in Local.

For our experiments in this section, we used the main track of 2020 SAT competition
benchmarks. There is a total of 400 SAT formulas and the centrality computation algorithm
implemented in the solvers could find exact centrality values of 168 formulas in less that
150 seconds which is our centrality computation timeout. We ran the 8 solvers mentioned
above on these 168 formulas with the standard timeout of 5000 seconds and used PAR-2
scores to compare their performance. Note that the solving time of the two solvers using

centrality includes the time spent on computing centrality values.

62

Figure 4.4 compares these solvers using different criteria for deletion based on their
PAR-2 scores. The 4 solvers on the right are showing the performance of solvers in Delete-
Half scheme when they only use one criteria in deletion. We can see that LBD and Size
show the best performance followed by centrality. Sorting and deleting clauses only by
activities results in the worst performance among them. The 4 solvers on the left on the
other hand are storing low LBD clauses permanently in Core so with Delete-Half scheme
on clauses in Local, they are using a combination of two criteria in their clause database
management and deletion. The colors indicate different criteria in sorting and deleting of
Local. By saving low LBD clauses (which are also usually small) permanently, LBD is no
longer the best deletion criterion. In that case, we can see that deletion by Centrality shows
the best performance followed by activity and size. This can confirm the good performance
of HCdel implemented on another solver (MapleLCMDistChronoBT) and another set of
benchmarks. It is interesting that LBD-based deletion in presence of a permanent set of
clauses like Core, is even poorer than deleting by LBD and keeping low LBD clauses in
Core at the same time.

We can see that in general, solvers in Figure 4.4 that have a permanent set of clauses in
Core, perform better that the solvers without Core. In the next chapter, we will focus on

permanent clauses and their effect in CDCL solvers.

4.6 Summary

Previously, we demonstrated that betweenness centrality of variables can be utilized in
decision heuristics of CDCL solvers to improve their performance. Wondering whether this
measure can be used in clause database management heuristics as well or not, led us to
introduce a new clause quality measure, clause centrality, and study the result of using
it in the clause deletion strategies. To evaluate the effect of utilizing clause centrality in
solvers, we introduced a centrality-based modification to standard CDCL deletion heuristic,
Delete-Half, and implemented it in Maple LCM Dist, the first-place solver from the Main
Track of the 2017 SAT Solver Competition. Our modifications improved the performance
on the formulas from this track. We also confirmed this observation using another solver,
MapleLCMDistChronoBT which is the winner of main track of SAT competition 2018.
We presented other evidence that clause centrality is an interesting clause quality mea-
sure. We showed that the clauses with higher centrality values are used more frequently in
conflict analysis which can be one of the reasons of its effectiveness as a measure of quality.
We believe that further study of this measure will be productive. We also show that saving
low LBD clauses permanently has a positive effect on performance regardless of the criteria

used in deletion which we will discuss in details in the next chapter.

63

Chapter 5

Permanent Clauses

5.1 Overview

Modern CDCL solvers learn a new clause after each conflict. They normally learn and add
thousands of clauses per second [87, 89]. These clauses are stored in learned clause database
and keeping all learned clauses can be impractical as they will have huge memory consump-
tion which may not be available since the growth of learned clauses can be exponential
in the number of variables of the formula [24]. Other than limited memory problem, it is
costly to perform BCP on clauses and not all clauses are valuable enough to be worth the
cost. The clause database management heuristic deletes clauses periodically to help keep
the solvers efficient [9, 6]. It is important to have good “clause quality” measures that can
predict future value of clauses and use them in clause deletion techniques. Most solvers store
some “high quality” clauses permanently and review the others periodically to delete some
of lower quality. We will call the set of clauses that are never deleted PERM for Permanent
clauses, and the set which is reviewed for deletion TEMP for Temporary clauses. Techni-
cally, some PERM clauses can be deleted because they are satisfied by a learned unit clause
(so they are satisfied at decision level 0), but these clauses could not be used again anyway
even if they were kept. PERM and TEMP are often, but not always, stored in distinct data
structures.

In the previous chapter, we introduced a clause quality measure based on betweenness
centrality of variables and used it in deletion scheme from TEMP. In this chapter, we
show how we can utilize this measure in PERM, but first we study the PERM set and its
properties in current state of the are solvers in more depth. Here, we focus on PERM clauses
learned by solvers of the MapleSAT family [71, 90, 69, 64, 83, 114] , which have performed
very well in recent SAT solver competitions. Our experimental results convinced us that the
clause deletion scheme is important to their performance, but the complexity of the clause
database management heuristic makes it hard to understand why. Recent MapleSAT-based
solvers have three distinct stores of clauses, use at least two dynamic clause quality measures

(LBD and activity), and a number of heuristic rules to move clauses between the stores. In

64

contrast, it is desired to build quite good solvers with much simpler schemes [58, 57| which
will be discussed in the next chapter of this thesis.

Many solvers place only binary clauses in PERM and use a simple measure to delete
from TEMP. For example, Glucose and Cadical use LBD with ties broken by size [9, 22].
Cadical also retains some TEMP clauses based on two bits of recent use information.
There are other solvers that allow more flexibility in their PERM criteria. For example,
MapleLCMDistChronoBT-DL (Duplicate Learnts) [64] which is the winning solver of SAT
Race 2019 [52], mark the clauses that are learned repeatedly after deletion as PERM.

We will look at different clause quality measures and define PERM with respect to
them. The main quality measures that will be studied and discussed here are Size, LBD
and finally Centrality. Size is the number of literals in the clause. LBD [9] is the number
of decision levels of literals in the clause at the time it is computed (at which time all
literals must be assigned). Clause Centrality [56] as introduced in the previous chapter is
the average betweenness centrality of its variables in the primal graph of the formula [55].
In this chapter, we will report an empirical study of PERM in MapleLCMDistChronoBT.
We show that:

o Usually PERM is of moderate size, but sometimes it grows very large.

o At least some ways of restricting PERM size for formulas where it gets large did not
help.

o Alternate LBD and size based criteria for PERM can improve performance (with
similar-sized PERM). In particular (perhaps surprisingly) sending all clauses of size

up to 8 to PERM was very effective.

o Adding very high-centrality (HC) clauses to PERM improved performance on formulas
for which centrality computation is fast. Our results indicate that very high-centrality

clauses are valuable even if they are long.

e The best improvement in our experiments comes from a combination of size< 8 and
adding HC clauses to PERM. This version solved 197 instances, 13 more than the 184
that MapleLCMDistChronoBT solved.

e There are small clauses that are easy to derive, which help when added to TEMP,
but hurt when added to PERM.

The base solver in all reported experiments is MapleLCMDistChronoBT, the first-place
solver in the 2018 SAT solver competition [83, 53]. We denote simply “maple” in keys
of some figures, to keep names short. The MapleLCMDistChronoBT deletion scheme was
originally adopted from COMiniSatP$S [64, 90]. Our data are for 400 formulas from the Main
Track of the 2020 SAT competition with a 5000 second timeout [12]. Computations were

65

performed on the Cedar compute cluster [31] operated by Compute Canada [33] which is
a cloud service. The cluster consists of 32-core, 64 GB nodes with Intel “Broadwell” CPUs

running at 2.1Ghz.

5.2 PERM Set in State of the Art Solvers

We categorize clauses learned by the solver into two categories based on the possibility of
them being deleted. We call the clauses that are kept by the solver permanently, PERM
and the clauses that are considered for deletion TEMP. If a clauses is marked as PERM it
will never change to TEMP but technically there are a small number PERM clauses that
are deleted if they are satisfied by a learned unit clause (at level 0) and can never be used
again. In this work, we only consider learned clauses even though the initial set of clauses
in the formula are also never deleted.

PERM clauses in state of the art solvers are usually defined based on their Size or
LBD. In deletion schemes implemented in early CDCL solvers, size was usually the main
factor in keeping clauses permanently. For example in Seige [94], the permanent set was
binary and ternary (size 3) clauses. In GRASP [78], the deletion was performed on clauses
of size larger than 20 so smaller clauses would have been saved permanently. This made a
large portion of learned clauses. Over the years the deletion has become more aggressive
and there are empirical studies showing keeping the size of the clause database small helps
improve performance [9]. MiniSAT [39] started with deleting more clauses at the time and
only kept binary clauses permanently in the clause database. Binary clauses are known to
be valuable and are still saved permanently by almost all CDCL solvers which makes them
the most common definition of PERM clauses and the deletion happens periodically from
the rest of the clauses based on their last known LBD or Activity [8, 20, 69]. Kissat, the
winner of SAT competition 2020 is also among the solvers that follow MiniSAT’s strategy
in their permanent clauses [22]. The following properties make binary clause good targets

for PERM:
e They don’t require much memory to be stored.
e The don’t take much BCP time as they will be visited at most once.

e They can easily become unit after one of their literals is assigned to false hence they

have a higher chance of triggering unit propagation.

These are interesting features but there are other clauses that can have the same prop-
erties to some extent and the question is whether there are more learned clauses worth
storing permanently. For example, it is reasonable to ask this question about clauses of size

3 or low-LBD clauses.

66

In the past few years a new criteria based on LBD for permanent clauses and gen-
erally managing clause database has been used by Maple-SAT family solvers (with small
variations) which have been the winners of SAT competitions between 2016 and 2019 [1].
MapleSAT adopted the deletion scheme first introduced in a solver called COMiniSatPS
[90, 89]. It partitions the clause database into three different sets called Core, Tier2 and
Local. The decision of where to store a newly learned clause is based on its LBD at the
time; A clause is stored in Core if its LBD < 3 (which can be changed to LBD < 5 if size
of Core is too small after the first 100,000 conflict), in Tier2 if 4 < LBD < 6 and in Local if
6 < LBD. A clause may be moved from one set to another based on LBD or usage. The LBD
of each clause is recomputed whenever it is used in conflict analysis. If the LBD of a clause
at that time is sufficiently reduced and meets the thresholds, it will be moved from Local
to Tier2 or Core, or from Tier2 to Core. Based on its updated LBD, every 10,000 conflicts,
all clauses in Tier2 that have not been used during the last 30,000 conflicts are moved to
Local. The deletion only happens to clauses stored in Local using the Delete-Half scheme
with the Activity as clause quality measure for sorting and deletion. The clauses stored in
Core make the PERM set and will be saved permanently. In the rest of this chapter, our
experiments will be on the MapleLCMDistChronoBT solver using this scheme as clause

database management heuristic.

5.3 Usage in Learned Clauses

Now that we explained the partition scheme in MapleSAT solvers, we want to see how are
these sets different. The obvious difference is their LBD values but to compare them in other
ways we designed the following experiment. In all the experiments of this section, our base
solver is MapleLCMDistChronoBT which shares the same clause database management
scheme of MapleSAT and was the winner of SAT competiton 2018 [83, 64].

Consider a modified version of MapleLCMDistChronoBT solver in which the clause
deletion is deactivated and stop this solver after learning 500,000 conflicts. At this point,
the modified solvers has learned 500,000 clauses and partitioned and stored them in Core,
Tier2 and Local. We ran this solver on 10 randomly chosen formulas from the 2020 SAT
competition benchmark and compared the average value of different quality measures in
the clauses of these sets with each other. Note that we are comparing 5 million clauses here
generated from 10 SAT instances. Out of them, there is a total of 774 thousand PERM
clauses in Core, 695 thousand TEMP clauses in Tier2 and 3.526 million TEMP clauses in
Local. Table 5.1 compares the average value of LBD, Size, Age (number of conflicts since
generation), Centrality and different usage measures in them. We considered 3 different

usage measures, UP Usage, CA Usage and Activity defined as follows:

67

DataBase LBD | Size Age | UP Usage | CA Usage | Activity | Centrality
Core(PERM) | 2.27 6.47 | 267215 199 49 1.52 1.59
Tier2(TEMP) | 5.10 | 11.26 | 229957 13 5) 1.40 1.68
Local(TEMP) | 16.50 | 37.11 | 253054 1.8 1.5 0.24 1.79

Table 5.1: Average value of clause quality measures in solver with no clause deletion

UP Usage: UP (Unit Propagation) Usage is used to reflect how useful a clause has
been so far in activating unit propagation. This happens when a clause becomes unit and
has just one unassigned literal under some variable assignment of the solver. The UP usage
is basically counting these occurrences for each clause. UP usage is not really a quality
measure used by deletion methods but it is safe to assume smaller clauses have higher
chance of becoming unit under random assignments.

CA Usage: CA (Conflict Analysis) Usage is mainly used to reflect how useful a clause
has been in reaching new conflicts and learning new clauses. The CA Usage is measured
by the number of conflicts the clause has participated in and appeared in the implication
graph.

Activity: Activity here is defined as the VSIDS Activity [81]. It is a similar measure to
CA Usage that takes into account the time of usage as well. The Activity values are reduced
periodically. Hence, the clauses that were used more recently have higher activities and are

considered to be more useful.

Table 5.1 shows the average value of different clause quality measures in the three learned
clause databases. Activity and Centrality values are normalized by 103. Given that PERM
clauses were originally stored in Core based on their LBD values, it is expected that they
have lower average LBD values and given that LBD is bounded by Size, it is easy to see
why they are smaller as well. Table 5.1 suggests clauses in Tier2 have the lowest average age
whereas clauses in Core appear to have the higher average age. We know the inactive clauses
in conflict analysis in Tier2 are moved to Local by the solver so clauses left in Tier2 (shown
in the table) are the more active ones. On the other hand, it has been shown empirically
that the CA usage of clauses drops quickly over time [58] so it can also explain why the
average age of clauses left in Tier2 is lower than other stores. It is not clear why the average
age in the clauses of Core (PERM) is higher than the rest of the clauses, especially when
we look at the average age of PERM clauses (which is 267215) compared to the average
age of TEMP clauses (which is 249251). In an attempt to explain this difference, figure 5.1
shows a histogram of the average LBD of clauses with respect to their age. It shows the
LBD of learned clauses increases over time which means LBD of clauses learned around the

beginning of the run is lower hence more PERM clauses are generated then.

68

5 3 1
Age (e+5)

Figure 5.1: Average LBD of learned clauses with respect to Age

Going back to table 5.1, it is interesting to see that PERM clauses learned by MapleL-
CMDistChronoBT are used much more than TEMP clauses in both unit propagation and
conflict analysis. Since they have smaller size (and LBD), we know that they have a higher
chance of becoming unit (a clause of size [n| becomes unit after |n| — 1 of its literals are
assigned) and it is reasonable to see higher UP Usage in PERM clauses. It is interesting to
see that PERM clauses are also used much more than TEMP clauses in conflict analysis
and are more useful in that sense as well. This can explain why low LBD clauses are very
important to solvers.

Activity which is computed based on CA usage (and age) is also higher in PERM
clauses. MapleLCMDistChronoBT performs deletion from the clauses in Local based on
activity values and if we turn on the deletion step in this experiment and calculate the
average activity values again, we see that the average activity values of TEMP clauses
in Local increases from 0.24(e-15) to 77.44(e-15) even though the difference in activity of
PERM clauses remains almost the same. This is because most of the clauses in Local with
smaller activity values are deleted and only the most active ones remain. Finally, looking at
the average centrality values of PERM and TEMP clauses, we can not see any meaningful

difference in them but TEMP clauses seem to have slightly higher centralities.

5.4 Size and Value of PERM in MapleLCMDistChronoBT

After studying some measures of usefulness of PERM clauses in MapleLCMDistChronoBT,
we want to look more into individual SAT instances to see how PERM clauses look for them.
It is known that the industrial SAT instances have different characteristics and they usually
hold some sort of structure as opposed to random instances [72]. We would like to study these
formulas in terms of the size or value of PERM in MapleLCMDistChronoBT. To do that,
first we looked into the size of PERM set in different instances from 2020 SAT competition
benchmarks. MapleLCMDistChronoBT solved 184 instances from this benchmark set with
the 5000 second time-out. Figure 5.2 is a histogram showing the number of PERM clauses
that are stored in Core at the end of the run on these formulas.

For about half of the formulas the final size of PERM is 30,000 or less, which is moderate
compared to the average TEMP size of about 30,000. However for nearly a quarter of the

69

60

N
o

Number of Instances
n
o

| J |
0 2 4 6 8 10 12
PERM Size «10°

o

Figure 5.2: PERM Size Histogram

Benchmark Set PERM Size | Conflict learning rate | Decision making rate | GLR
Small PERM(SP) 11801 7661 111281 0.33
Large PERM(LP) 349364 3317 20965 0.41

Table 5.2: Learning rates in instances with Large/Small number of PERM clauses

instances (22%), the final PERM size is more than 150,000. We call these, LP (Large PERM)
instances. In LP instances, the PERM clauses make a large fraction of all learned clauses
stored by the solver. Let’s also define SP (Small PERM) instances to be the instances that
have less than 20,000 PERM clauses by the end of the solver’s run. There is a total of 59
SC instances in this set (32 %).

To see the effect of a large PERM set on solver progress, we calculated both average
conflict learning rate (#conflict/time in seconds) and decision making rate (#decisions/rime
in seconds) in these sets and the results, as shown in table 5.2, confirm that both rates are
smaller when the PERM size is larger so the learning has been slowed down in this sense. It
is reasonable to expect that the solving time of LP instances is larger that of SP instances
which is why they have more learned clauses. It is actually true but we would like to point
out that the average solving time of the LP instances is almost 4 times larger than the
average solving time in SP instances whereas the number of conflicts occurring in this time
is only about twice as much. This is clear by comparing the conflict learning rates as well.

Another way to compare the performance in these two sets is by measuring the Global
Learning Rate (GLR) of the solver for these instances. GLR was introduced in [72] as a per-
formance measure for solvers and is computed as follows: GLR = #Con flicts/# Decisions.
Larger GLR in a solver means it made fewer decisions to learn a new clause (reach a conflict)
which is considered a positive learning factor. The average GLR is 0.33 in SP instances and
0.41 in LP instances which is slightly higher and somewhat indicating having more PERM
clauses is better in terms of GLR. This is not surprising as having a larger clause database
results in more BCP with each decision and so solvers can reach a conflict with making

fewer decisions.

70

We report two experiments to evaluate the usefulness of PERM clauses in MapleL-
CMDistChronoBT. In the first experiment, we compared the default solver with two modi-
fied versions, one with PERM empty, and one with only binary clauses sent to PERM. We
ran these solvers on the full benchmark set with 400 instances to see the effect of reducing
the size of PERM on performance. Figure 5.3 shows that both modifications reduce perfor-
mance substantially illustrating the value of PERM clauses in MapleLCMDistChronoBT.

Number of solved instances within 5000 seconds
T T T

5000 |- ‘ ‘ —
—a&— Maple 1 .
—+— Maple-No-PERM
4000 —— Maple-PERM-Size2 -
2
o 3000 -
E
'_
=)
o 2000 4
(@)

60 80 100 120 140 160 180
Number of solved instances

Figure 5.3: Effect of removing PERM from MapleLCMDistChronoBT

Conventional wisdom suggests 150,000 is very large for a learned clause set, and we
hypothesized it might be better to limit its size. In the second experiment, we use various
schemes to restrict the size of PERM, with the goal of keeping it less than 100,000. We
applied these schemes to the formulas for which PERM grew to more than 150,000 clauses
(LP instances). As Figure 5.4 shows, even for these formulas most of the methods were
damaging to performance, and even the best do not seem beneficial. The schemes are as

follows:

o Maple-PERM-LBD2: This modification changes the criteria for PERM clauses and

only stores clauses with LBD < 2 in Core permanently .

o Maple-PERMset-max100K: If size of PERM reaches 100,000, the solver sends no more
clauses to PERM and sends all new clauses to TEMP.

5000 H—s—Maple

—e—Maple-PERM-LBD2

—s—Maple-PERMset-max 100K

—>—Maple-PERMset-DelHalf-Act-max 100K
Maple-PERMset-DelHalf-LBD-Save-Size2-max100K
Maple-PERMset-DelHalf-LBD-Save-Size3-max100K

@ Maple-PERMset-DelHalf-LBD-Save-LBD2-max100K

4000 H

e
&)
=3
Is}
s}

T

o

S

S
T

5 10 15 20 25 30 35 40
Number of solved instances

Figure 5.4: Effect of limiting size of PERM on “LC” formulas.

71

o Maple-PERMset-DelHalf-Act-max100K: If size of PERM reaches 100,000, the solver

invokes a Delete-Half deletion scheme on PERM, based on clause activity.

o Maple-PERMset-DelHalf-LBD-Save-X-max100K: If size of PERM reaches 100,000,
the solver invokes a Delete-Half deletion scheme on PERM, based on LBD (with ties
broken by clause age), but never deleting clauses with property X, for X in {size <
2,size < 3,LBD < 2}.

We also show the average PERM size in these solvers in figure 5.5 to illustrate the
reduction in size. The rate of learning PERM clauses over all learned clauses in MapleL-
CMDistChronoBT and the modified solvers is about the same (around 14 %). These pre-
liminary experiments suggest that keeping all PERM clauses might be useful, even if they

make the size of clause database very large.

25 %105 Average Size of Core DB in different settings - Large Core DB k
) I I I

3

Size of Core
- r
o N o

o
o

Maple DelHalf DelHalf-keep: 2 DelHalf-keep-size3 DelHalf-keep-LBD2 Maple-Core-LBD2

Core Del Scheme

Figure 5.5: Average size of the PERM set at the end of solver’s run on LC benchmarks

5.5 Varying Size and LBD Criteria for PERM

The MapleLCMDistChronoBT criterion for putting in PERM is LBD < 3. (Sometimes it
is changed to LBD < 5 during the run but for few formulas.) We report an experiment in
which we vary the criteria over two ranges: Size < k, for k € {2,...15} and LBD < k, for
k € {2,...8}. First, we would like to show how the change in PERM criterion effects the
average size of PERM. Figure 5.6 shows the effect on the fraction of learned clauses sent to
PERM, and on the final size of PERM where yellow bars indicate these values in solvers in
which PERM is defined based on Size and purple bars show the solvers using LBD as PERM
criteria. The purple bar with L3 label shows the closest solver to MapleLCMDistChronoBT’s
clause management scheme which ends up with a PERM size of 70,000 on average.

Figure 5.7 shows the effect of these variations on PAR-2 performance scores. The PAR-2
score is the main criteria used in SAT competitions to evaluate the performance of different
solvers [1]. It is computed as the average solving time of a solver where the instances that

could not be solved within the time cut off ¢ (5000 seconds here), are given a time of

72

<
~
T

o
w
T

o
o
T

°
T

Fraction of PERM clauses

Omﬁﬂﬂﬂﬂllmﬂllﬂl

|
S2 S3 S4 S5 S6 S7 L3 S8 S9 L4 S15 L8
PERM Criteria (S:Size, L:.LBD)

o

x10°
2 T

=15

o

w

o

s 0

()

N

D05 -
—_—t

SS

L3 S8 S9 L4 L5 S10 L6 8§15
PERM Criteria

Figure 5.6: Fraction of learned clauses sent to PERM (upper), and final size of PERM
(lower) with varied PERM criteria.

6000

Hiissasaall

NoPERM S2 S6 s7 S8 S9 S10 S15 L2 L3 L4 L5 L6 L8
PERM Criteria (S:Size, L:LBD)

PAR2

Figure 5.7: Effect of PERM criterion on PAR-2 Scores

73

2t. The lower the value of PAR-2, the faster and more efficient the solver has performed.
The first bar (blue) in figure 5.7 shows the PAR-2 score of a solver with no PERM that
considers all clauses as TEMP, stores them in either Tier2 or Local and considers them for
deletion periodically from Local. We have not changed the way the solver manages these
two databases other than changing the lower threshold of Tier2. Figure 5.7 suggests that
having PERM clauses helps with performance but as the PERM set gets too large, the
performance starts to drop again. The best PAR-2 score belongs to the solver with Size < 8
as PERM criteria. As Figure 5.6 shows, the number of PERM clauses in solver with Size
< 8 falls between that for LBD < 3 and LBD < 4. Figure 5.8 compares the performance of
this solver with MapleLCMDistChronoBT in a cactus plot.

C T T T T T T -
5000 —=—Maple " N

—— Maple-PERM-Size8

4000
(2]

(

3000

ime

2000

CPUT

1000

0 et 1 1 1 1 1
60 80 100 120 140 160 180 200

Number of solved instances

Figure 5.8: Performance of solvers with small clauses in Core

5.6 Adding High-Centrality Clauses to PERM

Clause betweenness centrality as defined in Chapter 4 has shown to be a useful clause
quality measure. We showed that clauses with high centrality (HC) values were used more
often in conflict analysis, suggesting they are more useful in generating new conflicts and
learning clauses. We also showed they can be utilized in clause deletion schemes to improve
performance so here, we want to see if they can help if used in PERM clauses as well.

Here we add a limited number of high-centrality (HC) clauses to PERM in MapleL-
CMDistChronoBT. We computed variable centralities using the Brandes algorithm [28] in
the solver as before. The centrality computation sometimes takes too long, and we limited
it to 150 seconds, obtaining centralities for 168 of the 400 instances. For the other formulas
we did not use centrality. We normalize the centrality values by 1/(n — 1)(n — 2) where n
is the number of variables, so they fall in [0,1]. The HC clauses can be large and result
in computation and memory overhead so care is needed when adding them to PERM. We
aimed to include at least the 0.02% of learned clauses with highest centrality. We set an
initial centrality threshold of C'T" > 0.008 which was chosen empirically. Every 100,000 con-
flicts, if the number HC clauses in PERM is less than 0.02% of all learned clauses, C'T is
reduced by 0.001, but it is never reduced below 0.001. We report three versions:

74

o Maple-PERM-HC-max10K: Add at most the first 10K HC clauses to PERM.
e Maple-PERM-HC-max25K: Add at most the first 25K HC clauses to PERM.

e Maple-PERM-HC-Sizel5-max10K: Add HC clauses to PERM only if they have size
< 15, adding at most the first 10K.

Figure 5.9 compares the performance of these versions, including centrality computa-
tions, against the default solver. The two versions with no size limit on the HC clauses
performed noticeably better. The version with the size limit performed only slightly better
than the default. This indicates long HC clauses are valuable. The average number of ad-
ditional HC PERM clauses (that would not have been placed in PERM because of LBD)
was 8,200 in the version with the limit of 10K, 16,000 with the limit of 25K, and 7050 with
the limit of 10K and size < 15.

5000 - ‘ B
—s—Maple 5

= 4000 |—=—Maple-PERM-HC-max10K
— —+—Maple-PERM-HC-max25K
GE) 3000 |——Maple-PERM-HC-Size15-max10K

|—
5 2000 f
o

O 1000

0 . 2 T 1 1 1 1
10 20 30 40 50 60 70

Number of solved instances

Figure 5.9: Performance of solvers with high-centrality clauses in PERM

Long clauses are generally less valuable than short clauses. They eliminate fewer truth
assignments, and are used less frequently by CDCL solvers. However, it is interesting to
see that our data shows that the value of HC clauses added to PERM comes from the
longer ones as the modified solvers that stores only smaller HC clauses in PERM does not
perform as well. So far we have shown changing the PERM criteria from LBD < 3 to
Size < 8 and also adding HC clauses to PERM can help performance of the solver. Often
the combination of two heuristics that are beneficial does not improve over the best of the
two. However, in the case of our criteria for PERM, the following combination did improve
overall performance: For each instance, if we did not get centralities within the 150 seconds
time limit, we used PERM criterion of Size< 8; otherwise we used LBD< 3 and added
HC clauses. Figure 5.10 compares this version with the original and shows it improves the

performance by solving 13 more instances.

5.7 Small good clauses not to add to PERM

In Section 5.4, we showed that performance improved when we saved all learned clauses of

size up to 8 to PERM. Here, we show that there are small clauses we can derive simply

75

T
—e—Maple

% 4000 | Maple-PERM-HC-max10K-or-Size8 7
o

E

[

5 2000 - |
o

B ‘M ‘ ‘ ‘ 1 1 1

20 40 60 80 100 120 140 160 180 200
Number of solved instances

Figure 5.10: Performance with PERM criteria Size< 8 or HC.

which help when added to TEMP but not when added to PERM. Standard conflict analysis
schemes derive one clause, called the 1-UIP (for First Unique Implication Point) clause, at
each conflict. Various other schemes have been tried, but most reports confirm that the
1-UIP scheme is best [113, 38, 102]. An example of adding more clauses is in [38], but these
clauses require significant additional reasoning.

Here, we introduce a simple scheme to learn additional small clauses which are very
cheap to obtain but still improve performance. Regarding the focus of this paper, the in-
teresting observation is that they have length less than 8, but adding them to PERM
reduces performance while adding them to TEMP improves performance. (In contrast,
adding all small 1-UIP clauses to PERM improves performance, as we showed above.) As-
sume a conflict at level x, meaning after assigning x literals l1,ls,..,l, to true, a conflict
is reached. After conflict analysis the solver backjumps to a level b and learns a 1-UIP
clause C; = {my, ma,...,m;—1,m;}. Only one literal m; from C belongs to level z, and
b < z, so after the first b decisions, if we had ' in the clause database, unit propagation
could prevent this conflict by assigning m; to true. Therefore, we can also learn clause
Cy = {~ly1,—la, ...mlp, m; }. If b < 6, this clause has size <= 6, so we have a new small clause
with little work. Here the last two literals of Cy, =l and m;, are glued together so Cy has
LBD |b| and size |b| + 1. We modified the solver to learn clauses of this kind and added
them either to PERM or TEMP.

5000 f ! B
—=—NMaple
—~ 4000 ,—O—Maple-BJ-PERM -
L ——Maple-BJ-TEMP
£ 3000 |- .
=
= 2000 [~ b
o
© 1000 |- s
0 b BRI S | | | | | | |

20 40 60 80 100 120 140 160 180 200
Number of solved instances

Figure 5.11: Performance of solvers with new learned clauses

76

Figure 5.11 compares performance of these versions with MapleLCMDistChronoBT. In
the formulas of this experiment, an average of 8500 additional clauses were generated using
this scheme most of which had LBD 4 or 5. This can be a factor in making them less
interesting for PERM.

5.8 SAT vs. UNSAT formulas

In the final section, we briefly show the effect of different modified solvers discussed in this
chapter on satisfiable and unsatisfiable formulas. Table 5.3 shows the total number of formu-
las solved by the main interesting solvers introduced in this chapter distinguishing between
satisfiable (SAT) and unsatisfiable (UNSAT) formulas. The first line in the table shows
that MapleLCMDistChronoBT solved a total of 184 formulas from the 2020 competition
benchmarks of which 86 were satisfiable and 98 were unsatisfiable. Just by changing the
PERM criteria from LBD < 3 to Size < 8 we improved the number solved by 10 formulas
where most of the improvement was from satisfiable instances.

Our solver with centrality based modifications in PERM, Maple-PERM-HC-max10K,
also shows a similar pattern with 4 more satisfiable instances and just 1 more unsatisfiable
instance. Note that for this solver, if the centrality computation was not completed within
the time limit, the solver continues as MapleLCMDistChronoBT without any modifications.

The difference is less strong in solvers with the additional learning scheme. Learning
additional clauses with this scheme when added to TEMP, improved performance and it
solved 5 more formulas than MapleLCMDistChronoBT from which 3 are satisfiable instances

and 2 are unsatisfiable.

Solver # Solved | SAT | UNSAT
MapleLCMDistChronoBT 184 86 98
Maple-PERM-Size8 194 94 100
Maple-PERM-HC-max10K 189 90 99
Maple-BJ-PERM 177 81 96
Maple-BJ-TEMP 189 89 100

Table 5.3: Performance on Satisfiable vs Unsatisfiable instances.

5.9 Summary

In this chapter, we started by comparing PERM and TEMP in MapleLCMDistChronoBT
with respect to different quality measures. We showed that PERM clauses are on average
smaller with lower LBD values and are used substantially more in conflict analysis and
triggering unit propagation. However, they do not show a meaningful difference with respect

to centrality values.

77

We showed that the size of PERM in some industrial formulas grows quickly resulting
sometimes in more than million clauses stored permanently. Wondering whether this helps or
hurts the performance of solvers, we tried various modification of MapleLCMDistChronoBT
to limit the size of PERM but showed that all of them damaged the performance. We also
tried comparing the PERM definition of MapleLCMDistChronoBT with a solver with no
PERM and a solver with binary clauses as PERM (similar to most solvers) and showed that
MapleLCMDistChronoBT performs substantially better than both modified versions.

We compared different criterion for PERM based on size and LBD and showed LBD <
4 and Size < 8 result in best solvers. Based on our findings on the usefulness of High
Centrality (HC) clauses in conflict analysis and also the effect of using them as a quality
measure for deletion, we proposed a solver where HC clauses are stored as PERM and showed
it will result in performance improvements on industrial formulas. Interestingly when we
only used the small HC clauses, the improvements were not as strong suggesting long HC
clauses had meaningful value. We also showed that there are additional small clauses other
than the 1-UIP scheme that can be learned efficiently by the solver with low cost. These
can be beneficial to solver if added to TEMP but not to PERM.

Finally we showed most of the improvements made by these solvers are in satisfiable

instance with less effect on unsatisfiable ones.

78

Chapter 6

Simplifying Clause Database
Management

6.1 Overview

CDCL SAT solvers generate a very large number of new “learned” clauses, so clause man-
agement methods are important to solver performance [6, 87]. In particular, most learned
clauses must be deleted to keep the clause database of practical size, and the clause database
management scheme is one of a small number of key heuristic mechanisms in a CDCL solver
[89, 9]. Typical clause maintenance strategies involve two sets of learned clauses, which we
call PERM and TEMP as discussed in chapter 5. In the MapleSAT solver family, TEMP
clauses are stored in Local or Tier2 and PERM clauses are stored in Core (clauses placed
in Core are retained for the entire run). The size of Core is limited by being selective about
which clauses are added. The large majority of learned clauses are placed in Local. The
size of Local is limited by periodic deletion of “low quality” clauses, which are deemed
unlikely to be of high future utility. The quality measure is typically a combination of
size, age, literal block distance (LBD), centrality and some measure of usage or activity
[9, 39, 46, 90, 56, 89, 69].

In our work on clause database management schemes that was discussed in previous
chapters, we realized that major changes to the general scheme are rare, but over time
many refinements have been combined to make the overall mechanism in the best recent
solvers quite complex. Most details have intuitive explanations, and were chosen based
on empirical performance results. At the same time, the complexity seems perhaps a bit
much relative to our understanding of “clause quality”. This complexity makes it hard to
evaluate the contributions of individual elements of clause management, and is an obstacle
to adding new features or refined quality measures. In this chapter, we address this problem
by introducing a new, simple, clause management scheme.

There are two main aspects to a clause deletion strategy. The first is a method to

categorize clauses as likely to be useful (high quality), or not (low quality). The second

79

x104

Local Size
—_ N
T T
| —T

0] 1 2 3 4 5
Conflicts x10°

Figure 6.1: Number of TEMP Clauses with Delete-Half Reduction Scheme.

is implementation of an algorithmic method to remove low quality clauses efficiently. In
an idealized scheme, we might have a clause quality measure Q, and keep the clauses in
a heap so that the lowest quality clause(s) can be removed when the clause database is
deemed too large. Conventional wisdom is that using a heap would be too inefficient. It
also seems unlikely that spending time to obtain the very worst clause is necessary. Thus,
fast heuristics are desired. One scheme, which we call Delete-Half, is to periodically sort
the clauses of Local and delete the half with lowest quality. This scheme has been very
widely used for many years, but there are many other possible schemes. While some solvers
use other schemes (e.g., [19, 101]), we think much more investigation is justified. Regarding
clause quality, we expect a very good clause quality measure to involve a combination of
many factors. The dominant current quality measure uses VSIDS-like clause activities or
LBD. Unfortunately, the way activities are computed and maintained in practice makes it
hard to combine activity with other measures of quality in a simple and meaningful way.
Before proceeding, we make some observations about the Delete-Half scheme. First, the
size of the resulting Local clause set has a “saw-tooth” pattern, as indicated in figure 6.1.
This figure shows the number of TEMP clauses in MapleLCMDistChronoBT solver [83] but
other solvers with Delete-Half scheme show the same pattern. While it is possible that this
pattern is somehow beneficial, in the absence of evidence to suggest so, we should assume
that a uniform “ideal” clause set size would be as good or better. Second, in recent solvers,
the clauses are sorted for deletion every few thousands conflicts and the store has a few
tens of thousands clauses at each deletion. Assuming a sorting cost of nlogn, this could be
expensive in terms of computation time. Third, the current scheme, as it has been refined
for various goals, has actually become rather complex, with much of the complexity perhaps
not well justified. This can be partly due to the fact that usually solvers are build upon
older versions with various modifications and details can be missing and very hard to track
and reevaluate every time. Forth, a new clause may be deleted very soon after being added,

if it is not used right away, so newly learned clauses may not be kept long enough for the

80

algorithm to discover that they are useful. This is especially a problem with solvers that
use LBD for sorting in the Delete-Half scheme.
Our goal in this chapter is to identify simple methods that might largely account for

effectiveness of the best current schemes. We show:

e We can replace the popular Delete-Half clause deletion scheme by a much simpler
scheme which we call “online” clause deletion. It is simple to implement and maintains
the size of Local at any desired value. It does not use sorting and in many natural

instantiations takes constant time per conflict. The scheme is presented in Section 6.2.

e A simple instantiation of this scheme performs comparably to the state of the art
solvers. In particular, we implemented the scheme within MapleLCMDistChronoBT,
the first-place solver from the 2018 SAT Competition [83, 1], and obtained performance

almost the same as the original, despite very little effort at optimization or “tuning”.

e This instantiation takes into account clause usage and LBD using very simple mech-
anisms. The resulting solver (Online-RU-T2Flag) and its performance are described

in Section 6.5.

e The data from a number of experiments measuring performance or other properties,
to aid in understanding the degree to which the particular methods play a role in

solver performance. These appear throughout remaining sections.

6.1.1 Performance Evaluation and Base Solver

Our performance evaluations are carried out using the 400 formulas from the main track
of the 2018 SAT Solver Competition, with a 5000 second cut off. The computations were
performed on the Cedar compute cluster [31] on 32-core, 128 GB nodes with Intel “Broad-
well” CPUs running at 2.1Ghz. Similar to chapter 5, our baseline solver for performance
evaluation is MapleLCMDistChronoBT, winner of the SAT 2018 competition and all other
solvers in our experiments are modified versions of it.

The clause deletion scheme of MapleSAT family [69, 83, 89, 90] has been discussed in
detail in previous chapters but here is a general description of it as a reminder. The scheme
has three clause databases, called Core, Tier2 and Local. Core stores PERM clauses and
TEMP clauses go to Local or Tier2. The decision of where to store a newly learned clause
in is based on its LBD: Core if LBD < 3, Tier2 if 4 < LBD < 6 and Local if 6 < LBD. A
clause may be moved from one DB to another based on its updated LBD or usage. Inactive
clauses in Tier2 are moved to Local where the deletion is performed. Periodically, all the

clauses in Local are sorted and deleted based on their activity.

81

6.2 Online Clause Deletion

Our online clause deletion scheme that we propose to replace the delete half scheme is as
follows. The TEMP clauses (normally in Local) are maintained in a circular list L with
an index variable ¢ that traverses the list in one direction. The index identifies the current
“deletion candidate” L;. We assume a clause quality measure (), and some threshold quality
value ¢ and we want to make sure clauses with quality higher than this threshold will not be
deleted while their quality remains high. When a new learned clause C' needs to be stored
in L, we select a “low quality” clause in the list to be replaced with C' by sequential search.
As long as Q(L;) > g, we increment i to look for the next candidate. This means “saving”
clause L; for one more “round”. The first time Q(L;) < g, we replace L; with C' and delete
the “old” clause, L;. The clause quality measure threshold must be chosen so that there
are always sufficiently many low-quality clauses in the list (which we will continue to call
Local) otherwise there will be no more room for new learned clauses and in a sense the list
L becomes a database for PERM clauses. There are algorithmic methods to ensure this (for
example, using a feedback control mechanism) but in our experiments, it was not hard to
obtain good practical performance without them.

We call our scheme “online”, in analogy to online algorithms, because each time a conflict
clause is derived we make a decision about which previously learned clause to replace it with,
having no information about future clauses. It is not an online algorithm in the usual sense
of there being a dichotomy between making decisions as data is read and making decisions

after all data is obtained. In that sense, all clause deletion schemes sit somewhere in between.

6.2.1 Relating Delete-Half and Online Deletion

Consider a Delete-Half scheme from Local with a sort-and-reduce phase every k conflicts.
Roughly speaking (ignoring some details for simplicity) each TEMP clause is inspected
every k conflicts, deleted if its quality is below the median of the current clauses in Local. If
we instantiate the size of the list L in our online scheme with S = 2k, and keep ¢ sufficiently
close to the median, we expect each clause to be inspected every k conflicts and deleted if
its quality is below the median of the current TEMP clauses. In this sense, the two schemes
can be made quite close: we trade off sorting for dynamically estimating the median. In
doing so, we get a clause database of uniform size, rather than one that significantly grows

and shrinks.

6.3 Age-Based Deletion

A trivially implemented version of our scheme assumes Q(C) < ¢ for every clause C. This
results in a pure age-based scheme: Each new learned clause replaces the oldest learned

clause in L. This very low-cost scheme works surprisingly well. Figure 6.2 shows a “cactus-

82

5000 ! T T T
—e— MapleLCMDistChronoBT

4000 [|—*—Online Age-Only - No Core - No Tier2
2 —>—Online Age-Only - No Tier2
© 3000 Online Age-Only

T

=
S 2000
o

O 1000 |

e _skode ol

O= 4-"?:.::‘;‘-@&3?“’”-7";;
0 50 100 150 200 250
Number of solved instances

. i alnlad

1 1

Figure 6.2: Simple Online Deletion Performance.

plot” comparison of default MapleLCMDistChronoBT with 3 variants using online deletion.
In this plot, we also illustrate the importance of having a Core DB to store PERM clauses
again. The size limit of Local is set to 80,000 clauses in all solvers using online deletion
reported here. This results in having at least 80,000 clauses at a time stored by the solver
to work with (after the first time number of clauses in Local reaches this value).

Here is a brief description of the 3 modified solvers with online deletion reported in figure
6.2:

Online Age-Only - No Core, No Tier2 In this version, we store all clauses in Local
and perform online deletion there. This has no PERM set at all, just pure age-based

deletion of all learned clauses.

Online Age-Only - No Tier2 This version have a PERM set based on LBD and Size
of clauses. This keeps clauses with LBD < 3 or Size < 4 permanently in Core, and

stores the rest of the clauses in Local where uses a pure online age-based deletion.

Online Age-Only In this version we have Core and Tier2 just as in MapleLCMDistChronoBT,
but use age-based online deletion from Local with the maximum size of 80,000 (as in
the previous two modifications). If a clause is moved from Tier2 to Local, it replaces

the oldest clause in Local similar to adding a new learned clause to Local.

Figure 6.2 confirms our previous observation that having a set of PERM clauses (Core)
is important to the performance of MapleLCMDistChronoBT. It also shows that in the
presence of Core a simple pure age-based deletion scheme for Local gives quite good per-

formance.

6.4 Clause Usage

MiniSAT and many of its successors, including MapleLCMDistChronoBT, use clause “ac-

tivity” scores in their clause deletion schemes [39, 69, 90]. Every time a clause is used in

83

o
o
=

o o
o o
o @
T T
I I

#Used per Conflict
o
=)

o

1-10 10-100 100-1000 1000-10,000
#conflicts after generation

Figure 6.3: Rate of use of clauses in Local at different ages.

conflict analysis, its activity is “bumped”, meaning its activity score is increased by a re-
ward value. The reward is initialized to 1 and divided by 0.999 (the decay factor) at each
conflict, to simulate decay of activities. This way at each time, the recent usages have more
weight on activities than older ones. To prevent activity overflow, when the activity of any
clause reaches 1e20, all activity values and the reward value are divided by 1e-20 [39, 23].
This scheme, with many variations, has been widely used, but it also has inconvenient
aspects as mentioned before. We anticipated that, in the presence of a separate DB for
storing PERM clauses, much simpler usage measures might be effective. We start by an
experiment to report the usefullness of learned clause in conflict analysis over time. We

make two observations regarding usage and online deletion:

1. We show that Age is highly correlated with usage rate, and can account for a large
fraction of clauses that would normally be saved based on clause activities. This is
illustrated by Figure 6.3, which shows the average usage rates of clauses that have
been in Local for at least 10K conflicts, at different ages. Each bar shows the average
number of times a clause is used in conflict analysis after generation divided by the
number of conflicts in that bar (y axis). This figure shows that the usage rate, which
is an indicator of probability of a clause being used in conflict analysis, is very high in
the first 10 conflicts right after generation. As the age of a clause increases, the usage
rate of most clauses drops very quickly. This figure shows the usage rate in TEMP
clauses but a similar pattern exist in the PERM clauses of MapleLCMDistChronoBT.
The only difference is that the usage rate in each bar of PERM clauses is almost twice

the values in figure 6.3.

2. In online deletion with Local of size S, if the probability of saving a clause is at most
0.5 (see Figure 6.5), then every learned clause is kept for at least S/2 conflicts, giving
it substantial time to be used in comparison with Delete-Half schemes. This gives us

the flexibility of using a simple quality measure in online deletion.

84

Recent Usage: We define a few variants of Recent Usage measure for online deletion
similar to the Usage definition in chapter 4. We added Recent so that similar to Activity
measure, the recent usages in conflict analysis have more influence on the quality of a clause.

Here we report two clause quality measures to be used in online deletion scheme that
we have considered. Both are extremely simple to implement. We call them Recent Usage
(RU) and Recent Usage Decayed (RUD) and we used them along with online deletion
in MapleLCMDistChronoBT to evaluate performance. We continue this section by their
descriptions and reports of three experiments that may shed light on the performance of

the Recent Usage (RU) measures.

T T T
5000 |—=—MapleLCMDistChronoBT . -
—— M-Sort&Delete By RU
_4000 + M-OnlineDel-RU | i
L —+—M-OnlineDel-RUD
£ 3000 | 1
=
- - i
7 2000
o
1000 i
o == ' ' .
100 150 200 250

Number of solved instances

Figure 6.4: Online Deletion with Recent Usage

M-OnlineDel-RU In this version, the measure Q of quality (or activity) is called RU and
is just the number of times the clause was used in conflict analysis during the last
“round”. That is, we update RU count every time the clause is used and reset the
count to zero if the clause becomes a candidate for deletion but is saved. We denote
this measure RU, for Recently-Used. If the threshold value is q (denoted RU = ¢), a

clause will be saved if it was used q or more times in the last round.

M-OnlineDel-RUD This is similar to M-OnlineDel-RU, but instead of resetting RU to 0
when a clause is considered for deletion and saved, we decay its RU value by dividing

it by a constant. We call this measure RUD, for Recently-Used-Decayed.

Figure 6.4 shows the performance of M-OnlineDel-RU with threshold RU=2 and M-
OnlineDel-RUD with RU=2 and Decay constant 4. Both versions perform quite well, the
decay version being almost as good as MapleLCMDistChronoBT. This suggests that online
deletion using simple measures might compete effectively with Delete-Half using traditional

activities.

85

M-Sort&Delete By RU To understand the effectiveness of RU versus traditional ac-
tivities, we created a solver M-Sort&Delete By RU that is identical to Maplel-
CMDistChronoBT but does sorting and deletion from Local based on RU instead
of activity. The RU value of all clauses in reset to zero after each clause deletion.
Figure 6.4 shows the performance is slightly inferior to MapleLCMDistChronoBT on
our benchmark, lying between the performance of the two versions with online dele-
tion. This suggests that we pay no penalty for using online deletion instead of the
Delete-Half scheme, and confirms that in the presence of a PERM set, a simple usage

measure can be almost as useful as traditional clause activities.

I
Il Overall Save
[IllSaved base on RUx>=q

q=1-RU q=2- RU q=2-RUD g=2-RU-T2Flag q=2-RUL

Figure 6.5: Fraction of saved clauses in different online deletion schemes

6.4.1 Fraction Saved by RU

Here we examine the fraction of clauses in Local that become candidates for deletion but
are saved based on the RU measure. Figure 6.5 shows this value for several variations. In
each pair of bars, the right bar (orange) shows the fraction of clauses with RU > g¢; the
left bar (blue) shows the fraction of clauses saved based on either RU or because of being
“locked” [39]. Locked clauses are the ones that are a reason to the current assignments of
the solver and can not be deleted until a backjump or restart is activated to un-assign them.

With ¢ = 1, the probability of deletion is almost 1/2, and the performance of the solver
is poor. In contrast, with ¢ = 2 using either RU or RUD in online deletion, about three
quarters of clauses are deleted, and the performance is quite good as shown in Figure 6.4.
We explain other bars shown in this plot later. In the remainder of the experiments in this

chapter, all solvers using online deletion with RU measure have ¢ set to 2.

6.4.2 Clauses saved by RU and Activity

We designed an experiment to help us better understand the difference of using RU versus
activity in the actual clauses that would be deleted from Local. We examined the clauses in
Local just before the 10t clause deletion in MapleLCMDistChronoBT, and measured their

RU and activity values to see what fraction of clauses would be saved by our RU-based

86

5000 [-|—=—MapleLCMDistChronoBT 7
—e—M-OnlineDel-RU-T2Flag
% 4000 M-OnlineDel-RUL 7
£ 3000 | 4 A
I— /’=>)aﬁﬁ'
> 2000 | v 1
o >
S -
1000 | ¢ a
0 T o 1 1 1
100 150 200 250

Number of solved instances

Figure 6.6: Online Deletion With Usage and LBD

schemes. We examined the result of this experiment in 10 different families of the formulas
in SAT competition. Table 6.1 shows the results for one formula from each of 10 families.
First column determines the formula we are looking at. The second column is the number
of clauses in Local just before deletion. Other columns show the number of clauses that
would be saved due to RU > ¢, and the fraction (in percent) of these clauses that have
high enough activity to be saved by Delete-Half. On average this fraction is between 87
and 97 percent, suggesting that simple RU counters can account for a significant fraction

of decisions for clause deletion based on activities.

6.5 Clause LBD and Tier2

LBD is used in MapleLCMDistChronoBT for initial placement of a learned clause, and to
move clauses between stores if the LBD changes. Here we report two simple modifications
to MapleLCMDistChronoBT to take into account these changes in the solver with online

deletion and no Tier2. Figure 6.6 show the resulting performance.

Table 6.1: Commonality among High-Activity Clauses and Recently-Used Clauses.

Formula [Local Size | RU>1 (%) [RU>2 (%) | RUD >2 (%) | RUL > 2 (%) |

201 28470 | 12150 (100) | 2162 (100) | 2265 (97) | 3591 (100)
CNP-5-20 | 28699 | 13177 (98) | 4122 (100) | 4923 (87) | 2915 (99)
Karatsuba | 25251 | 11091 (86) | 1730 (90) | 2111 (80) | 5571 (89)
T62.2.0 7097 2474 (100) | 521 (100) | 618 (86) | 1574 (100)
ae_rphp 30535 | 12586 (87) | 6575 (94) | 8004 (78) | 7278 (94)
apn-sbox6 | 29422 | 15459 (87) | 6423 (92) | 7129 (85) | 6282 (90)
cms-scheel | 21828 8602 (100) | 2454 (100) | 2698 (92) | 3752 (100)
courses 13869 3241 (100) | 854 (100) | 1092 (83) | 1610 (100)
cz-alt-3-7 26577 | 11276 (99) | 2346 (100) | 2639 (93) | 7247 (99)
dist9.c 26274 | 15150 (84) | 4182 (92) | 4614 (87) | 6651 (90)
Average 23802 | 10521 (93) | 3137 (97) | 3609 (87) | 3395 (96)

87

M-OnlineDel-RU-T2Flag Here we replace Tier2 with a rough simulation, by adding a
“Tier 2 flag” to clauses in Local. We set the flag true if MapleLCMDistChronoBT
would move it from Local to Tier2 (but keeping it in Local), and false for the re-
verse direction. Clauses with this flag true are always saved. This is not an accurate
Tier2 simulation, because the size of the clause DB does not change appropriately.

Nonetheless, the resulting performance is very close to the original solver.

M-OnlineDel-RUL Here we take LBD into account by modifying the usage scoring. In-
stead of incrementing RU by 1 each time a clause is used, we increment by ¢/LBD,
for a constant ¢. We call this RUL, for Recent Usage with LBD. The RUL values are
re-set to zero when a clause becomes a candidate for deletion and is saved. The ma-
genta curve in Figure 6.6 shows the performance of this solver with ¢ = 20. Choosing
this value for ¢ results in clauses with LBD < 10 to be save if at leased used once
(similar to Tier2), clauses with 10 < LBD < 20 to be saved if used twice or more,

clauses with 20 < LBD < 30 to be saved if used 3 times or more, and so on.

Looking back at figure 6.5, we can see that the fraction of clauses that are saved from
deletion with the M-OnlineDel-RU-T2Flag scheme is similar to simple M-OnlineDel-RU
scheme and about 30 percent. This amount increases to almost 40 percent in the M-
OnlineDel-RUL scheme.

6.6 Computation Time

Given that online deletion does not need sorting clauses, it is reasonable to expect it to take
less time than Delete-Half scheme which is a sorting-based deletion. Here we will illustrate
the difference using profile data for a SAT formula from the 2018 competition benchmarks.
The formula was chosen from the ”Grand Tour Puzzle” family [32] as it takes about the same
time (100 seconds) to be solved with both solvers and is easier to meaningfully compare the
clause deletion time for. Other formulas showed a similar pattern which is expected as time
spent on clause deletion is mostly effected by size of clause database and not structure of
the formulas.

We aim to compare the time spent on clause deletion in both Delete-Half and Online
Deletion schemes which is shown in figure 6.7. The Delete-Half scheme is the one imple-
mented in default MapleLCMDistChronoBT so we solve the problem with this solver and
looked into the deletion from Local. We also solved the problem with M-OnlineDel-RU
solver which uses online deletion for comparison.

Figure 6.7 shows the fraction of time spent on each part of the clause deletion scheme
in both solvers. The "Garbage Collector” function is the actual removal of clauses and
freeing the memory allocated to them. In both solvers it happens every 15,000 conflicts.

The "Remove Clause” function is responsible for detaching the deleted clauses from Local.

88

140 + Il Garbage Collector |-
Remove Clause
I Choose Clause

Percentage of Time Spent
S N

5§ 8 &8 38 S
T

N
o

Delete-Half Online deletion

Figure 6.7: Fraction of Time Spent in Various Parts of Clause Deletion Methods

Finally, the ”Choose Clause” function is the function that finds clauses for deletion and
marks them as deleted. The difference in deletion scheme comes from this function. As
illustrated in figure 6.7, more than 40% of the deletion time of Delete-Half scheme is spent
on the Choose Clause function whereas this number is only 0.05% in online deletion. We
would like to point out the garbage collector function in both solvers is very similar in terms

of time consumption and takes less than 1% of the total solving time.

6.7 SAT vs. UNSAT formulas

In the final section, we briefly show the effect of online deletion on satisfibale and unsatis-
fibale formulas. Table 6.2 shows the total number of formulas solved by the main solvers with
online deletion introduced in this section distinguishing between satisfiable (SAT) and un-
satisfiable (UNSAT) formulas. The first line in table shows that MapleLCMDistChronoBT
solved a total of 241 formulas from the 2018 competition benchmarks from which, 138
were satisfiable and 103 were unsatisfiable. Our simplest solver with online deletion, M-
OnlineDel-RU, solved 132 formulas from satisfiable and 98 from the unsatisfiable instance
which is proportionally very similar to MapleLCMDistChronoBT if we consider the size of
each set. The next three solver in the table suggest that by improving the clause quality
criteria in the online deletion, we could improve the performance on satisfiable formulas
and even outperforming MapleLCMDistChronoBT but this improvement is not observed

on unsatisfiable formulas.

89

Table 6.2: Performance on Satisfiable vs Unsatisfiable Formulas.

Solver # Solved | SAT | UNSAT
MapleLCMDistChronoBT 241 138 103
M-OnlineDel-RU 230 132 98
M-OnlineDel-RUL 237 140 97
M-OnlineDel-RUD 238 141 97
M-OnlineDel-RU-T2Flag 238 139 99

6.8 Summary

In this chapter, we started by pointing out to some of the complexities of the most popular
clauses database management strategies and we proposed a new, simple clause deletion
scheme called online deletion. This helps the solver to maintain a set of TEMP clauses of
fixed size and every time a new clause is learned, it will replace a current clause with lower
expected quality.
We follow by reporting the performance of different instantiations of the online deletion using
clause age, LBD and very simple measures of usage as clause quality. An implementation
of the online scheme in MapleLCMDistChronoBT, the winning solver from the main track
of the 2018 SAT solver competition, has performance almost as good as the original solver.
We show that online deletion requires less computation time than the Delete-Half
scheme. However, the fraction of run time consumed by deletion in MapleLCMDistChronoBT
is small, so this is not a major performance factor but can be helpful in understanding the
effect of different parameters of deletion scheme on performance.
We show that usage rate in recently learned clauses is high and so the online deletion
schemes we use here consider age or age modified by a fixed quality threshold to take that
into account. A dynamic threshold may be more desirable, in which case we may use a
feedback control scheme to ensure the threshold is such that the fraction of saved clauses
is suitable. We replace the activity with a simple recent usage measure and show that it
accounts for most of the clauses saved in the deletion scheme of MapleLCMDistChronoBT.
Finally, we show a comparison of the solvers on satisfiable vs. unsatisfiable formulas
and show that some versions of online deletion work better on satisfiable instances but not

unsatisfiable ones.

90

Chapter 7

Conclusion

In this dissertation, we contributed in two main directions. The first is introducing a new
measure based on the structure of SAT formulas, showing it is meaninful in various ways, and
utilizing it to modify CDCL solver heuristics to improve solver performance. The second is
reviewing current clause database management schemes to understand different components

of them better and proposing methods to replace and improve the current deletion schemes.

e CDCL solver input formulas are in CNF, and generating the primal graph of those
formulas is a common way of studying the structure of them. We introduced a new
structural measure called centrality based on the betweenness centrality of variables
in primal graph of the input CNF formulas. We demonstrated that the primal graphs
of some industrial formulas have nice “coarse structure” that can be exploited fairly
easily. We have extended previous observations that the VSIDS decision heuristic
in CDCL solvers shows a strong preference for particular families of variables and
showed this applies to variables with high centralities as well. Wondering whether
this was good or bad led us to experiment with preferential bumping which is a new
scheme proposed by us to change the preference of VSIDS decisions for a special set
of variables. We have shown that the performance of Glucose can be meaningfully
improved by preferential bumping schemes. We continued the experiments modifying
more complicated solvers from the MapleSAT solver family to see if our findings can be
used in other solvers. We introduced three centrality-based modifications to standard
CDCL decision heuristics, VSIDS and LRB, and implemented these in Maple LCM
Dist, the first-place solver from the main track of the 2017 SAT Solver Competition.
All three changes improved the performance on the industrial formulas. The centrality
based modifications seem to be interesting as they seem to work for different formulas
and even result in solving formulas that no other solver in competition could solve

within the time limit.

e Considering the effectiveness of using centrality in the decision heuristics of CDCL

solvers, we introduced centrality-based deletion schemes to utilize centrality in clause

91

database management heuristics. This deletion scheme is based on clause centrality,
a new measure of clause quality introduced here. We presented evidence that clause
centrality is an interesting quality measure and showed that the centrality of clauses
is correlated with their usefulness in conflict analysis. We implemented clause deletion
schemes based on centrality in two different solvers that were the winners of 2017 and
2018 SAT competitions and showed their performance was improved. Future directions
could include more in-depth study of the roles of variable and clause centrality in
solver execution, and development of a centrality-based restart strategy. While we feel
we have made some progress in understanding the role of structure-based measures
in CDCL solvers, and have found some promising techniques for improving solver
performance, we cannot claim to have shed light on the question of what makes CDCL

solvers preference toward these variables.

We studied the clause database management heuristic in terms of current definitions
of permanent and temporary clauses. We started by illustrating the important of
having a set of permanent clauses that are mainly small clauses. We showed that even
though the number of permanent clauses can grow to be very large in some formulas,
which is usually not desired, our attempts to reduce the size of this set proved to be
harmful to performance. We continued by comparing various definition of permanent
clauses based on size and LBD and showed in both measures this set should not be
defined too restrictive or too broad for best performance results. We showed storing
high centrality clauses permanently is beneficial to solvers. We also showed that there
are additional small clauses other than the UIP scheme that can be learned efficiently
by the solver with low cost. These can be beneficial to solver when added to the
temporary set of clauses, but not to the permanent set. We hope our work sheds
some light on the importance of permanent clauses in clause database management

heuristics and motivates future work in this area.

We introduced a new, simple online clause deletion scheme, and reported the per-
formance of instantiations of the scheme using clause age, LBD and very simple
measures of usage in conflict analysis. An implementation of the online scheme in
MapleLCMDistChronoBT, the winning solver from the main track of the 2018 SAT
Competition, has performance almost as good as the original. Online deletion requires
less computation time than the Delete-Half scheme. However, the fraction of run time
consumed by deletion in MapleLCMDistChronoBT is small, so this is not a major
performance factor. The online deletion schemes in this paper use age or age modified
by a fixed quality threshold. A dynamic threshold may be more desirable, in which
case we may use a feedback control scheme to ensure the threshold is such that the
fraction of saved clauses is suitable. Future work directions could investigate more re-

fined versions of online deletion, in particular with regard to clause quality measures

92

and clause database size. We also showed that our modified solvers are biased toward

satisfiable instances, and some work to shift this bias is desired.

93

Bibliography

1]
2]

[3]

The international SAT competitions. http://www.satcompetition.org/.

PeneL.oPe, a parallel SAT solver. http://www.cril.univ-artois.fr/~hoessen/
penelope.html/.

Michael Alekhnovich and Alexander A. Razborov. Satisfiability, branch-width and
Tseitin tautologies. In 43rd Symposium on Foundations of Computer Science (FOCS),
pages 593-603. IEEE, 2002.

Carlos Ansétegui, Maria Luisa Bonet, Jestus Girdldez-Cru, and Jordi Levy. Commu-
nity structure in industrial SAT instances. arXive preprint arXiv:1606.03329, 2016.

Carlos Ansétegui, Jests Girdldez-Cru, and Jordi Levy. The community structure of
SAT formulas. In International Conference on Theory and Applications of Satisfia-
bility Testing (SAT), pages 410-423. Springer, 2012.

Carlos Ansétegui, Jests Girdldez-Cru, Jordi Levy, and Laurent Simon. Using commu-
nity structure to detect relevant learnt clauses. In International Conference on Theory
and Applications of Satisfiability Testing (SAT), pages 238-254. Springer, 2015.

Albert Atserias, Johannes Klaus Fichte, and Marc Thurley. Clause-learning algo-
rithms with many restarts and bounded-width resolution. In International Conference
on Theory and Applications of Satisfiability Testing (SAT), pages 114-127. Springer,
2009.

Gilles Audemard and Laurent Simon. Glucose: a solver that predicts learnt clauses
quality. SAT Competition, pages 7-8, 2009.

Gilles Audemard and Laurent Simon. Predicting learnt clauses quality in modern
SAT solvers. In International Joint Conference on Artifical Intelligence (IJCAI),
pages 399-404. Morgan Kaufmann, 2009.

Gilles Audemard and Laurent Simon. Refining restarts strategies for SAT and UN-
SAT. In International Conference on Principles and Practice of Constraint Program-
ming (CP), pages 118-126. Springer, 2012.

Gilles Audemard and Laurent Simon. Lazy clause exchange policy for parallel SAT
solvers. In International Conference on Theory and Applications of Satisfiability Test-
ing (SAT), pages 197-205. Springer, 2014.

94

http://www.satcompetition.org/
http://www.cril.univ-artois.fr/~hoessen/penelope.html/
http://www.cril.univ-artois.fr/~hoessen/penelope.html/

[12]

[13]

[14]

[24]

[25]

Tomas Balyo, Nils Froleyks, Marijn J.H. Heule, Markus Iser, Matti Jarvisalo, and
Martin Suda. Proceedings of SAT competition 2020: Solver and benchmark descrip-
tions. Technical report, University of Helsinki, 2020.

Tomas Balyo, Marijn J.H. Heule, and Matti Jarvisalo. Proceedings of SAT competition
2016: Solver and benchmark descriptions. Technical report, University of Helsinki,
2016.

Tomas Balyo, Marijn J.H. Heule, and Matti Jarvisalo. SAT competition 2016: Re-
cent developments. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 31, 2017.

Luis Baptista and Joao Marques-Silva. Using randomization and learning to solve
hard real-world instances of satisfiability. In International conference on principles
and practice of constraint programming (CP), pages 489-494. Springer, 2000.

Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow — resolution made simple.
In Thirty-first annual ACM symposium on Theory of computing, pages 517-526. ACM,
1999.

Armin Biere. Adaptive restart strategies for conflict driven SAT solvers. In Interna-
tional Conference on Theory and Applications of Satisfiability Testing (SAT), pages
28-33. Springer, 2008.

Armin Biere. Picosat essentials. Journal on Satisfiability, Boolean Modeling and
Computation, 4(2-4):75-97, 2008.

Armin Biere. PrecoSAT solver description for SAT competition 2009. SAT Competi-
tive Event Booklet, 2009.

Armin Biere. Lingeling and friends at the SAT competition 2011. FMV Report Series,
11(1), 2011.

Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu. Symbolic model
checking without bdds. In International conference on tools and algorithms for the
construction and analysis of systems, pages 193-207. Springer, 1999.

Armin Biere, Katalin Fazekas, Mathias Fleury, and Maximillian Heisinger. CaDiCalL,
Kissat, Paracooba, Plingeling and Treengeling entering the SAT Competition 2020. In
Proceedings of SAT competition 2020 — Solver and Benchmark Descriptions, volume
B-2020-1, pages 51-53. University of Helsinki, 2020.

Armin Biere and Andreas Frohlich. Evaluating CDCL variable scoring schemes. In
International Conference of Theory and Applications of Satisfiability Testing (SAT),
pages 405—422. Springer, 2015.

Armin Biere, Marijn J.H. Heule, and Hans van Maaren. Handbook of Satisfiability,
volume 185. IOS press, 2009.

James R. Bitner and Edward M. Reingold. Backtrack programming techniques. Com-
munications of the ACM, 18(11):651-656, 1975.

95

[26]

[27]

28]

[29]

[39]

[40]
[41]

[42]

Vincent D. Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre.
Fast unfolding of communities in large networks. The Journal of statistical mechanics:
theory and experiment, 2008(10):10008, 2008.

Phillip Bonacich. Factoring and weighting approaches to status scores and clique
identification. The Journal of Mathematical Sociology, 2(1):113-120, 1972.

Ulrik Brandes. A faster algorithm for betweenness centrality. The Journal of Mathe-
matical Sociology, 25(2):163-177, 2001.

Robert G. Brown. Exponential smoothing for predicting demand. In Operations
Research, volume 5, pages 145-145, 1957.

Michael Buro and H Kleine Biining. Report on a SAT competition. Fachbereich Math.
Informatik, University of Gesamthochschule, 1992.

Cedar, A Compute Canada Cluster. https://docs. computecanada.ca/wiki/Cedar.

Md Solimul Chowdhury, Martin Miiller, and Jia-Huai You. GrandTourobs puzzle as
a SAT benchmark. Proceedings of SAT Competition, pages 5960, 2018.

Compute Canada: Advanced Research Computing (ARC) Systems. https://www.
computecanada.ca/.

Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings of
the third annual ACM symposium on Theory of computing, pages 151-158, 1971.

James M. Crawford and Larry D. Auton. Experimental results on the crossover point
in satisfiability problems. In AAAI volume 93, pages 21-27. Citeseer, 1993.

Martin Davis, George Logemann, and Donald Loveland. A machine program for
theorem-proving. Communications of the ACM, 5(7):394-397, 1962.

Martin Davis and Hilary Putnam. A computing procedure for quantification theory.
Journal of the ACM (JACM), 7(3):201-215, 1960.

Nachum Dershowitz, Ziyad Hanna, and Alexander Nadel. Towards a better under-
standing of the functionality of a conflict-driven SAT solver. In International Con-
ference on Theory and Applications of Satisfiability Testing (SAT), pages 287—-293.
Springer, 2007.

Niklas Eén and Niklas Sorensson. An extensible SAT solver. In International Con-
ference on Theory and Applications of Satisfiability Testing, pages 502-518. Springer,
2003.

Herbert B. Enderton. A mathematical introduction to logic. Elsevier, 2001.

Santo Fortunato. Community detection in graphs. Physics reports, 486(3-5):75-174,
2010.

Jon W. Freeman. Improvements to propositional satisfiability search algorithms. PhD
thesis, University of Pennsylvania, 1995.

96

https://docs.computecanada.ca/wiki/Cedar
https://www.computecanada.ca/
https://www.computecanada.ca/

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

Linton C. Freeman. A set of measures of centrality based on betweenness. Sociometry,
40(1):35-41, 1977.

Zhaohui Fu, Yogesh Mahajan, and Sharad Malik. New features of the SAT04 versions
of zChaff. SAT Competition, 2004.

Michael R. Garey and David S. Johnson. Computers and intractability, volume 174.
freeman San Francisco, 1979.

Eugene Goldberg and Yakov Novikov. BerkMin: A fast and robust SAT-solver. Dis-
crete Applied Mathematics, 155(12):1549-1561, 2007.

Carla P. Gomes and Bart Selman. Problem structure in the presence of perturbations.
In National Conference on Artificial Intelligence and Ninth Innovative Applications
of Artificial Intelligence Conference, (AAAI), pages 221-226. AAAI, 1997.

Carla P. Gomes, Bart Selman, and Nuno Crato. Heavy-tailed distributions in combi-
natorial search. In International Conference on Principles and Practice of Constraint
Programming (CP), pages 121-135. Springer, 1997.

Carla P. Gomes, Bart Selman, and Henry Kautz. Boosting combinatorial search
through randomization. AAAI/TAAI 98:431-437, 1998.

Carla P. Gomes, Bart Selman, Ken McAloon, and Carol Tretkoff. Randomization in
backtrack search: Exploiting heavy-tailed profiles for solving hard scheduling prob-
lems. In Artificial Intelligence Planning Systems (AIPS), pages 208-213, 1998.

Shai Haim and Marijn J.H. Heule. Towards ultra rapid restarts. arXiv preprint
arXiv:1402.4413, 2014.

Marijn J.H. Heule, Matti Jarvisalo, and Martin Suda. Proceedings of SAT race 2019:
Solver and benchmark descriptions. Technical report, University of Helsinki, 2019.

Marijn J.H. Heule, Matti Jarvisalo, and Martin Suda. SAT competition 2018. Journal
on Satisfiability, Boolean Modeling and Computation, 11(1):133-154, 2019.

Jinbo Huang. A case for simple SAT solvers. In International Conference on Principles
and Practice of Constraint Programming (CP), pages 839-846. Springer, 2007.

Sima Jamali and David Mitchell. Improving SAT solver performance with structure-
based preferential bumping. In Global Conference of Artificial Intelligence (GCAI),
pages 175-187. Springer, 2017.

Sima Jamali and David Mitchell. Centrality-based improvements to CDCL heuris-
tics. In International Conference on Theory and Applications of Satisfiability Testing
(SAT), pages 122-131. Springer, 2018.

Sima Jamali and David Mitchell. Maple LCM OnlineDel. SAT RACE, page 27, 2019.

Sima Jamali and David Mitchell. Simplifying CDCL clause database reduction. In
International Conference on Theory and Applications of Satisfiability Testing SAT,
pages 183-192. Springer, 2019.

97

[59]

[60]

[61]

[62]

[63]

[64]

[65]
[66]

[67]

[71]

Matti Jéarvisalo, Daniel Le Berre, Olivier Roussel, and Laurent Simon. The interna-
tional SAT solver competitions. AI Magazine, 33(1):89-94, 2012.

Robert G. Jeroslow and Jinchang Wang. Solving propositional satisfiability problems.
Annals of mathematics and Artificial Intelligence, 1(1-4):167-187, 1990.

George Katsirelos and Laurent Simon. Eigenvector centrality in industrial SAT in-
stances. In International Conference on Principles and Practice of Constraint Pro-
gramming (CP), pages 348-356. Springer, 2012.

Henry Kautz and Bart Selman. Planning as satisfiability. In European Conference on
Artificial Intelligence (ECAI), volume 92, pages 359-363, 1992.

Henry Kautz and Bart Selman. Pushing the envelope: Planning, propositional logic,
and stochastic search. In Proceedings of the national conference on artificial intelli-
gence, pages 1194-1201, 1996.

Stepan Kochemazov, Oleg Zaikin, Victor Kondratiev, and Alexander Semenov.
MapleLCMDistChronoBT-DL, duplicate learnts heuristic-aided solvers at the SAT
race. Proceedings of SAT Race, pages 24-24, 2019.

Markus Krotzsch. Description logic rules, volume 8. IOS Press, 2010.

Daniel Le Berre and Laurent Simon. Fifty-five solvers in Vancouver: The SAT 2004
competition. In International Conference on Theory and Applications of Satisfiability
Testing, pages 321-344. Springer, 2004.

Chunxiao Li, Jonathan Chung, Soham Mukherjee, Marc Vinyals, Noah Fleming, An-
tonina Kolokolova, Alice Mu, and Vijay Ganesh. On the hierarchical community
structure of practical boolean formulas. In International Conference on Theory and
Applications of Satisfiability Testing (SAT), pages 359-376. Springer, 2021.

Chunxiao Li, Noah Fleming, Marc Vinyals, Toniann Pitassi, and Vijay Ganesh. To-
wards a complexity-theoretic understanding of restarts in sat solvers. In International
Conference on Theory and Applications of Satisfiability Testing (SAT), pages 233-249.
Springer, 2020.

Jia Hui Liang, Vijay Ganesh, Pascal Poupart, and Krzysztof Czarnecki. Learning rate
based branching heuristic for SAT solvers. In International Conference on Theory and
Applications of Satisfiability Testing (SAT), pages 123—-140. Springer, 2016.

Jia Hui Liang, Vijay Ganesh, Ed Zulkoski, Atulan Zaman, and Krzysztof Czarnecki.
Understanding VSIDS branching heuristics in conflict-driven clause-learning SAT
solvers. In Hardware and Software: Verification and Testing: Haifa Verification Con-
ference, pages 225-241. Springer, 2015.

Jia Hui Liang, Chanseok Oh, Vijay Ganesh, Krzysztof Czarnecki, and Pascal Poupart.
Maple-COMSPS, MapleCOMSPS LRB, MapleCOMSPS CHB. SAT Competition,
page 52, 2016.

98

[72]

Jia Hui Liang, Pascal Poupart, Krzysztof Czarnecki, and Vijay Ganesh. An empirical
study of branching heuristics through the lens of global learning rate. In International
Conference on Theory and Applications of Satisfiability Testing (SAT), pages 119-135.
Springer, 2017.

Michael Luby, Alistair Sinclair, and David Zuckerman. Optimal speedup of Las Vegas
algorithms. Information Processing Letters, 47(4):173-180, 1993.

Mao Luo, Chu-Min Li, Fan Xiao, Felip Manya, and Zhipeng Lii. An effective learnt
clause minimization approach for CDCL SAT solvers. In 26th International Joint
Conference on Artificial Intelligence (IJCAI 2017), Melbourne, Australia, August 19—
25, 2017, pages 703-711. ijcai.org, 2017.

Yogesh S. Mahajan, Zhaohui Fu, and Sharad Malik. Zchaff2004: An efficient SAT
solver. In International Conference on Theory and Applications of Satisfiability Test-
ing, pages 360-375. Springer, 2004.

Joao Marques-Silva. The impact of branching heuristics in propositional satisfiability
algorithms. In Portuguese Conference on Artificial Intelligence, pages 62—74. Springer,
1999.

Joao Marques-Silva, Inés Lynce, and Sharad Malik. Conflict-driven clause learning
SAT solvers. In Handbook of satisfiability, pages 131-153. IOS Press, 2009.

Joao Marques-Silva and Karem A. Sakallah. Grasp: A search algorithm for proposi-
tional satisfiability. IEEE Transactions on Computers, 48(5):506-521, 1999.

Ruben Martins, Vasco Manquinho, and Inés Lynce. Community-based partitioning
for MaxSAT solving. In International Conference on Theory and Applications of
Satisfiability Testing (SAT), pages 182-191. Springer, 2013.

Robert Mateescu. Treewidth in industrial SAT benchmarks. Technical Report MSR-
TR-2011-22, Microsoft, February 2011.

Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad
Malik. Chaff: Engineering an efficient SAT solver. In Proceedings of Annual Design
Automation Conference (DAC), pages 530-535. ACM, 2001.

Alexander Nadel, Moran Gordon, Amit Palti, and Ziyad Hanna. Eureka-2006 SAT
solver. Solver description - SAT Race, 2006.

Alexander Nadel and Ryvchin Vadim. Chronological backtracking. In International
Conference on Theory and Applications of Satisfiability Testing (SAT), pages 111-121.
Springer, 2018.

NetworkX, Software for complex networks. https://networkx.github.io/.

Miguel Neves, Ruben Martins, Mikolds Janota, Inés Lynce, and Vasco Manquinho.
Exploiting resolution-based representations for MaxSAT solving. In International
Conference on Theory and Applications of Satisfiability Testing (SAT), pages 272—
286. Springer, 2015.

99

https://networkx.github.io/

[36]

[87]

[88]

[90]

[91]

[100]

Mark EJ Newman and Michelle Girvan. Finding and evaluating community structure
in networks. Physical review E, 69(2):026113, 2004.

Zack Newsham, Vijay Ganesh, Sebastian Fischmeister, Gilles Audemard, and Laurent
Simon. Impact of community structure on SAT solver performance. In International
Conference on Theory and Applications of Satisfiability Testing (SAT), pages 252—268.
Springer, 2014.

Zack Newsham, William Lindsay, Vijay Ganesh, Jia Hui Liang, Sebastian Fischmeis-
ter, and Krzysztof Czarnecki. SATGraf: Visualizing the evolution of SAT formula
structure in solvers. In International Conference on Theory and Applications of Sat-
isfiability Testing (SAT), pages 62-70. Springer, 2015.

Chanseok Oh. Between SAT and UNSAT: the fundamental difference in CDCL
SAT. In International Conference on Theory and Applications of Satisfiability Testing
(SAT), pages 307-323. Springer, 2015.

Chanseok Oh. Improving SAT solvers by exploiting empirical characteristics of CDCL.
PhD thesis, New York University, 2016.

Knot Pipatsrisawat and Adnan Darwiche. A lightweight component caching scheme
for satisfiability solvers. In International conference on theory and applications of
satisfiability testing (SAT), pages 294-299. Springer, 2007.

Knot Pipatsrisawat and Adnan Darwiche. Rsat 2.0: SAT solver description. Technical
report, Citeseer, 2007.

John Alan Robinson. A machine-oriented logic based on the resolution principle.
Journal of the ACM (JACM), 12(1):23-41, 1965.

Lawrence Ryan. Efficient algorithms for clause-learning SAT solvers. PhD thesis,
Simon Fraser University, 2004.

Vadim Ryvchin and Ofer Strichman. Local restarts in SAT. Constraint Programming
Letters (CPL), 4:3-13, 2008.

SAT Competition 2017. https://baldur.iti.kit.edu/sat-competition-2017/,
July 2017.

Thomas J Schaefer. The complexity of satisfiability problems. In Proceedings of the
tenth annual ACM symposium on Theory of computing, pages 216—226, 1978.

Joao Marques Silva and Karem A. Sakallah. Grasp—a new search algorithm for
satisfiability. 1996.

Joao Marques Silva and Karem A. Sakallah. Grasp—a new search algorithm for
satisfiability. In The Best of ICCAD, pages 73-89. Springer, 2003.

Tomohiro Sonobe, Shuya Kondoh, and Mary Inaba. Community branching for parallel
portfolio SAT solvers. In International Conference on Theory and Applications of
Satisfiability Testing (SAT), pages 188-196. Springer, 2014.

100

https://baldur.iti.kit.edu/sat-competition-2017/

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]
[110]

[111]

[112]

[113]

[114]

Mate Soos, Karsten Nohl, and Claude Castelluccia. Extending SAT solvers to cryp-
tographic problems. In International Conference on Theory and Applications of Sat-
isfiability Testing (SAT), pages 244-257. Springer, 2009.

Niklas Soérensson and Armin Biere. Minimizing learned clauses. In International
Conference on Theory and Applications of Satisfiability Testing (SAT), pages 237—
243. Springer, 2009.

Niklas Sorensson and Niklas Een. Minisat v1. 13 - a SAT solver with conflict-clause
minimization. Poster at the International Conference on Theory and Applications of
Satisfiability Testing (SAT), 2005.

Niklas Sérensson and Niklas Eén. Minisat 2.1 and minisat++ 1.0. SAT Race, page 31,
2009.

Paul Stephan, Robert K. Brayton, and Alberto L. Sangiovanni-Vincentelli. Combi-
national test generation using satisfiability. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 15(9):1167-1176, 1996.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.
2011.

Grigori S Tseitin. On the complexity of derivation in propositional calculus. In
Automation of reasoning, pages 466—483. Springer, 1983.

Vincent Vallade, Ludovic Le Frioux, Souheib Baarir, Julien Sopena, Vijay Ganesh,
and Fabrice Kordon. Community and LBD-based clause sharing policy for parallel
SAT solving. In International Conference on Theory and Applications of Satisfiability
Testing(SAT), pages 11-27. Springer, 2020.

Toby Walsh. Search in a small world. IJCAI 99:1172-1177, 1999.

Ryan Williams, Carla P Gomes, and Bart Selman. Backdoors to typical case com-
plexity. In International Joint Conference on Artificial Intelligence (IJCAI), pages
1173-1178. Morgan Kaufmann, 2003.

Lin Xu, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. SATzilla: Portfolio-
based algorithm selection for SAT. Journal of Artificial Intelligence Research, 32:565—
606, 2008.

Ramin Zabih and David A. McAllester. A rearrangement search strategy for deter-
mining propositional satisfiability. In AAAI volume 88, pages 155-160, 1988.

Lintao Zhang, Conor F. Madigan, Matthew H. Moskewicz, and Sharad Malik. Efficient
conflict driven learning in a boolean satisfiability solver. In IEEE/ACM International
Conference on Computer Aided Design (ICCAD), pages 279-285. IEEE, 2001.

Xindi Zhang and Shaowei Cai. Relaxed backtracking with rephasing. SAT competition
2020, page 15, 2020.

101

	Declaration of Committee
	Abstract
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	SAT and CDCL Solvers
	CDCL Algorithm and Heuristics

	Thesis Contributions
	Thesis Structure

	Conflict Driven Clause Learning Solvers
	Basic definitions and terminology
	Boolean Satisfiability Problem (SAT)
	SAT solvers
	Literal, Clause
	Conjunctive Normal Form (CNF)

	Solving Algorithms and CDCL
	Truth Table Method
	Backtracking
	DPLL Algorithm
	CDCL Algorithm

	CDCL heuristics
	Decision Heuristics
	Clause Database Management

	Summary

	Decision Heuristics and Instance Structure
	Overview
	Related Work
	Structural Properties
	Structural Properties Computations

	VSIDS Preferences and Preferential Bumping
	VSIDS Preferences
	Preferential Bumping
	Preferential Bumping of Central Communities
	Preferential Bumping in Glucose

	Centrality based Modifications in Maple LCM Dist
	Decision Heuristics
	Performance Evaluation
	Performance Analysis

	Summary

	Clause Centrality in Deletion Strategies
	Overview
	Clause Centrality
	Centrality based Clause Deletion in Maple LCM Dist
	Performance Evaluation
	Comparing Clauses after Deletions

	Learned Clause Quality
	Deletion Criteria in Delete-Half Schemes
	Summary

	Permanent Clauses
	Overview
	PERM Set in State of the Art Solvers
	Usage in Learned Clauses
	Size and Value of PERM in MapleLCMDistChronoBT
	Varying Size and LBD Criteria for PERM
	Adding High-Centrality Clauses to PERM
	Small good clauses not to add to PERM
	SAT vs. UNSAT formulas
	Summary

	Simplifying Clause Database Management
	Overview
	Performance Evaluation and Base Solver

	Online Clause Deletion
	Relating Delete-Half and Online Deletion

	Age-Based Deletion
	Clause Usage
	Fraction Saved by RU
	Clauses saved by RU and Activity

	Clause LBD and Tier2
	Computation Time
	SAT vs. UNSAT formulas
	Summary

	Conclusion
	Bibliography

