
UNIVERSITÄT ROSTOCK | FAKULTÄT FÜR INFORMATIK UND ELEKTROTECHNIK
Institut für Angewandte Mikroelektronik und Datentechnik
Richard-Wagner-Str. 31, 18119 Rostock-Warnemünde | Tel: +49 381 498-7251

Model-based Symbolic
Design Space Exploration at the

Electronic System Level

– A Systematic Approach –

Dissertation zur Erlangung des akademischen Grades
Doktor-Ingenieur (Dr.-Ing.)

der Fakultät für Informatik und Elektrotechnik
der Universität Rostock

vorgelegt von:
M.Sc. Kai Neubauer,

geboren am 10.05.1991 in Demmin

Eingereicht am:
17.08.2021

https://doi.org/10.18453/rosdok_id00003664
https://doi.org/10.18453/rosdok_id00003664

Gutachter

• Prof. Dr.-Ing. habil. Christian Haubelt
Lehrstuhl “Eingebettete Systeme”
Institut für Angewandte Mikroelektronik und Datentechnik
Universität Rostock

• Prof. Dr. Torsten Schaub
Wissensverarbeitung und Informationssysteme
Institut für Informatik und Computational Science
Universität Potsdam

• Prof. Dr.-Ing. Michael Glaß
Institut für Eingebettete Systeme / Echtzeitsysteme
Fakultät für Ingenieurwissenschaften, Informatik und Psychologie
Universität Ulm

Datum der Abgabe: 17.08.2021
Datum der Verteidigung: 11.03.2022

Dieses Werk ist lizenziert unter einer
Creative Commons Namensnennung - Keine Bearbeitungen 4.0
International Lizenz.

Acknowledgments

For the past six and a half years, many people have accompanied and supported me in the
creation of the present work. I would like to take the opportunity here to express my sincere
gratitude to all of them.

First and foremost, I would like to thank Prof. Dr. Christian Haubelt for providing me
with the opportunity to work on this thesis topic. His continuous support and supervision –
already beginning with my bachelor and master theses – was and is particularly appreciated.
Without his valuable input, this work would not have been possible. Furthermore, my thanks
go to Prof. Dr. Torsten Schaub at the University of Potsdam for the co-supervision, the helpful
discussions regarding ASP, and accepting to review the thesis. I would also like to thank
Prof. Dr. Michael Glaß at the University of Ulm, who accepted to review the thesis as well.

Many thanks go to my colleagues at the Institute of Applied Microelectronics and Computer
Engineering for the consistently pleasant working atmosphere and the support through un-
countable discussions and activities – both work-related and non-work-related. In particular,
but also representatively for the whole team, I would like to thank Dr. Florian Grützmacher,
Dr. Henning Puttnies, Dr. Michael Rethfeldt, Daniel Gis, Benjamin Beichler, and Luise Müller
for their valuable input regarding the present thesis and all related topics. Also, I would like to
thank Philipp Wanko at the University of Potsdam for the fruitful cooperation in the mutual
project that led to this thesis.

Finally, my special thanks go to my parents, Holger and Ramona Neubauer, and my friends
for motivating and supporting me in many ways. In anticipation of forgetting someone impor-
tant, I refrain from mentioning you explicitly. You know who you are!

– Thank you!

Abstract

Today, computer systems are ubiquitously integrated in nearly all areas of everyday life.
Well ahead of conventional general purpose computers, embedded systems are dominating
the global market. They are present in telecommunication equipment, in current and future
automotive and aviation technology, household appliances, and infrastructure. The design of
those embedded computer systems is continuously becoming more complex as the requirements
with respect to their functional and extra-functional properties grow steadily. Simultaneously,
the adaption to technological progress demands for shorter development cycles. Hence, an
efficient design process is imperative to fulfill these requirements. A bottom-up design strategy,
where every detail of the system can be explored and evaluated, has not been viable for a long
time now. Thus, the design process has been raised to higher abstraction levels, where large-
scaled decisions can be explored more effectively. Decisions are first explored at the electronic
system level (ESL), before the results are refined at lower abstractions. However, even at the
ESL, the exploration of design alternatives is not a trivial task. It has to be decided, which
resources are allocated, where the functionality is implemented, and how the communication
infrastructure is realized. Depending on these decisions, the properties of the design have to
be determined and evaluated. Typically, an embedded computer system must fulfill several
constraints and shall be optimal with respect to multiple objectives. These objectives are
often conflicting with each other such that no single optimal solution but a set of compromise,
e.g., Pareto-optimal, solutions exists. Therefore, the design of embedded computer systems
is considered a multi-objective optimization problem. Automatic approaches are mandatory
to obtain Pareto-optimal designs, as the manual exploration of the whole design space is not
feasible. To this end, the problem is typically encoded through mathematical models that
allow for the evaluation of desired properties. For the exploration, many approaches rely on
population-based heuristics that traverse the design space on the basis of random decisions.
While this methodology has been shown to work well for many scenarios, it holds significant
disadvantages. First, as the search is generally not executed systematically, the approaches
cannot guarantee to explore the entire design space and, therefore, may miss optimal solutions.
Furthermore, the approaches usually cannot identify already explored solutions. That is, the
same design candidates are re-visited again even if they already have been evaluated and found
to be non-optimal before. Second, as most population-based approaches are based on the re-
combination of previously found solutions, they tend to run in saturation, exploring the same
regions of design space over and over. Finally, the search is decoupled from the exploration.
This prevents to exchange information between the individual steps that could allow to steer
the search into more promising regions.

In this thesis, a novel, fully systematic approach is proposed that aims to address the outlined
problems. The multi-objective optimization problem is encoded symbolically through a concise
answer set programming (ASP) formulation. The programming paradigm ASP stems from the
area of knowledge representation and reasoning and permits the systematic exploration of

i

Abstract

the search space. While linear feasibility constraints can be directly verified in ASP, non-
linear objectives are hard to formulate in standard ASP. Therefore, in the thesis at hand,
several specialized solvers are tightly coupled as background theories with the foreground ASP
solver under the ASP modulo theories (ASPmT) paradigm. The tight coupling of foreground
and background theories allows the exchange of information between the previously isolated
problems. That is, reasons for invalid design points found in one of the background theories
are used to steer the search in the foreground theory and prune the search more effectively.
Furthermore, the coupling of disparate solvers allows for the evaluation of partial assignments
where only a subset of decisions has been made. This leads to an earlier detection of invalid
regions in the search space. The conducted experiments show a significant advantage of using
partial assignment checking when compared to an approach where only complete design can
be evaluated. The ability to work on partial assignments not only benefits the evaluation of
acquired solutions but also the Pareto-filtering as non-optimal solutions can be identified early.

However, the utilization of partial assignments imposes disadvantages as evaluations and
Pareto checks have to be executed more regularly. As a remedy, the thesis at hand proposes
specialized archive management and evaluation methodologies, that aim at reducing this over-
head. It is shown, only when a complete solution is checked for optimality, the entire Pareto
filtering process has to be executed. This leads to a significant reduction in required operations
for partial solutions while still maintaining correct results. Similarly, a specialized approxi-
mation technique is proposed that reduces the number of unnecessary expensive evaluations.
With this approach, up to 98 % of all evaluations can be skipped and the overall performance
of the design space exploration can be increased by up to six times for the considered use cases.

To summarize, the thesis at hand provides a holistic framework for designing embedded
computer systems at the ESL. By utilizing the ASPmT paradigm, the search is executed
entirely systematically and the disparate synthesis steps can be coupled to explore the search
space effectively.

ii

Kurzfassung

Computersysteme sind heute allgegenwärtig und in fast allen Bereichen des täglichen Lebens
integriert. Weit vor den herkömmlichen Allzweckcomputern dominieren eingebettete Systeme
den Weltmarkt. Sie sind in Telekommunikationsgeräten, in der Automobil- und Luftfahrttech-
nik, in Haushaltsgeräten und in der Infrastruktur zu finden. Der Entwurf dieser eingebetteten
Computersysteme wird immer komplexer, da die Anforderungen an ihre funktionalen und ex-
trafunktionalen Eigenschaften stetig wachsen. Gleichzeitig verlangt die Anpassung an den tech-
nologischen Fortschritt nach kürzeren Entwicklungszyklen. Um diesen Anforderungen gerecht
zu werden, ist ein effizienter Entwurfsprozess unabdingbar. Eine Bottom-up-Entwurfsstrategie,
bei der jedes Detail des Systems exploriert und bewertet werden kann, ist schon seit langem
nicht mehr praktikabel. Daher wurde der Entwurfsprozess auf höhere Abstraktionsebenen
angehoben, auf denen Entscheidungen von großer Tragweite effektiver untersucht werden kön-
nen. Entscheidungen werden zunächst auf der Systemebene untersucht, bevor die Ergebnisse
auf niedrigeren Abstraktionsebenen verfeinert werden. Doch selbst auf der Systemebene ist
die Exploration von Entwurfsalternativen keine triviale Aufgabe. Es muss entschieden wer-
den, welche Ressourcen alloziert werden, wo die Funktionalität implementiert wird und wie die
Kommunikationsinfrastruktur realisiert wird. Abhängig von diesen Entscheidungen müssen die
Eigenschaften des Entwurfs bestimmt und bewertet werden. Typischerweise muss ein eingebet-
tetes Computersystem mehrere Randbedingungen erfüllen und soll in Bezug auf mehrere Ziele
optimal sein. Diese Ziele stehen oft in einem Konflikt zueinander, sodass keine einzelne opti-
male Lösung, sondern eine Menge von Kompromisslösungen, d.h. Pareto-optimale Lösungen,
existieren. Daher wird der Entwurf von eingebetteten Computersystemen als ein mehrzieliges
Optimierungsproblem betrachtet. Automatische Ansätze sind zwingend erforderlich, um alle
Pareto-optimalen Entwurfspunkte zu erhalten, da die manuelle Exploration des gesamten Ent-
wurfsraums nicht durchführbar ist. Zu diesem Zweck wird das Problem typischerweise durch
mathematische Modelle modelliert, die die Auswertung der gewünschten Eigenschaften ermög-
lichen. Für die Exploration verlassen sich viele Ansätze auf populationsbasierte heuristische
Verfahren, die den Entwurfsraum auf der Basis von Zufallsentscheidungen durchlaufen. Ob-
wohl sich diese Methodik für viele Szenarien als gut geeignet erwiesen hat, birgt sie erhebliche
Nachteile. Erstens können die Ansätze, da die Suche im Allgemeinen nicht systematisch ausge-
führt wird, nicht garantieren, dass der gesamte Entwurfsraum durchsucht wird, und verpassen
daher möglicherweise optimale Lösungen. Außerdem können die Ansätze oftmals keine bereits
gefundenen Lösungen identifizieren. Das heißt, dieselben Entwurfskandidaten werden erneut
untersucht, auch wenn sie bereits zuvor bewertet und als nicht optimal befunden wurden.
Zweitens, da die meisten populationsbasierten Ansätze auf der Rekombination von zuvor ge-
fundenen Lösungen basieren, neigen sie dazu, in die Sättigung zu laufen und dieselben Regionen
des Suchraums immer wieder zu durchlaufen. Schließlich ist die Suche von der Exploration ent-
koppelt. Dies verhindert den Austausch von Informationen zwischen den einzelnen Schritten,
die es erlauben könnten, die Suche in vielversprechendere Regionen zu lenken.

iii

Kurzfassung

In dieser Arbeit wird ein neuartiger, vollständig systematischer Ansatz vorgeschlagen, der
darauf abzielt, die skizzierten Probleme zu lösen. Das Mehrzieloptimierungsproblem wird sym-
bolisch durch eine prägnante ASP-Formulierung kodiert. Das Programmierparadigma ASP
stammt aus dem Bereich der Wissensrepräsentation und Logik und erlaubt die systemati-
sche Exploration des Suchraums. Während lineare Randbedingungen in ASP direkt verifiziert
werden können, sind nicht-lineare Ziele in Standard-ASP schwer zu formulieren. Daher wer-
den in der vorliegenden Arbeit mehrere spezialisierte Solver als Hintergrundtheorien eng mit
dem Vordergrund-ASP-Solver unter dem ASPmT-Paradigma gekoppelt. Die enge Kopplung
von Vordergrund- und Hintergrundtheorien ermöglicht den Austausch von Informationen zwi-
schen den zuvor isolierten Problemen. Das heißt, Gründe für ungültige Entwurfspunkte, die
in einer der Hintergrundtheorien gefunden werden, werden verwendet, um die Suche in der
Vordergrundtheorie zu steuern und diese effektiver zu beschneiden. Darüber hinaus ermöglicht
die Kopplung von disparaten Solvern die Auswertung von Teillösungen, bei denen nur eine
Teilmenge von Entscheidungen getroffen wurde. Dies führt zu einer früheren Erkennung von
ungültigen Regionen im Suchraum. Die durchgeführten Experimente zeigen einen signifikanten
Vorteil der Prüfung von Teillösungen im Vergleich zu einem Ansatz, bei dem nur der komplette
Entwurf ausgewertet werden kann. Die Möglichkeit, mit Teillösungen zu arbeiten, kommt nicht
nur der Bewertung der gefundenen Lösungen zugute, sondern auch der Pareto-Filterung, da
nicht-optimale Lösungen frühzeitig erkannt werden können.

Allerdings bringt die Verwendung von Teillösungen auch Nachteile mit sich, da Auswertun-
gen und Optimalitätsprüfungen regelmäßiger durchgeführt werden müssen. Als Abhilfe schlägt
die vorliegende Arbeit spezielle Archivverwaltungs- und Auswertungsmethoden vor, die darauf
abzielen, diesen Overhead zu reduzieren. Es wird gezeigt, dass nur dann, wenn eine vollständi-
ge Lösung auf Optimalität geprüft wird, der gesamte Prozess der Pareto-Filterung ausgeführt
werden muss. Dies führt zu einer signifikanten Reduktion der erforderlichen Operationen für
Teillösungen bei gleichzeitiger Beibehaltung korrekter Ergebnisse. In ähnlicher Weise wird ei-
ne spezialisierte Approximationstechnik vorgeschlagen, die die Anzahl der unnötigen, teuren
Auswertungen reduziert. Mit diesem Ansatz können bis zu 98 % aller Evaluationen übersprun-
gen werden und die Gesamtleistung der Entwurfsraumexploration kann für die betrachteten
Anwendungsfälle um das bis zu Sechsfache gesteigert werden.

Zusammenfassend lässt sich sagen, dass die vorliegende Arbeit einen ganzheitlichen Rahmen
für den Entwurf von eingebetteten Computern auf der Systemebene bereitstellt. Durch die
Verwendung des ASPmT-Paradigmas wird die Suche vollständig systematisch ausgeführt und
die unterschiedlichen Syntheseschritte können gekoppelt werden, um den Suchraum effektiv zu
durchsuchen.

iv

Contents

List of Figures vii

List of Tables ix

Author’s Publications xi
Authored . xi
Co-Authored . xiii

1 Introduction 1
1.1 Contributions and Limitations . 3
1.2 Thesis Overview . 6
1.3 Funding and Cooperation . 7

2 Model-based Design 9
2.1 Hardware/Software Co-design . 9

2.1.1 Design Process . 10
2.1.2 Modeling Approaches . 11
2.1.3 Synthesis . 12

2.2 Constraint Modeling and Checking . 14
2.2.1 Boolean Satisfiability . 14
2.2.2 Answer Set Programming . 16
2.2.3 Background Theory Solving . 19

2.3 Multi-objective Optimization . 21
2.3.1 Quality Indicators . 24
2.3.2 Optimization Approaches . 28

2.4 Related Work . 33
2.4.1 System Synthesis . 33
2.4.2 Archive Management . 37
2.4.3 Approximation . 38
2.4.4 Test Case Generation . 41

3 System Synthesis with Partial Assignment Evaluation 43
3.1 System Model . 45
3.2 Synthesis Encoding . 49

3.2.1 Encoding Allocation, Binding and Routing 49
3.2.2 Encoding Scheduling Constraints with Integer Difference Logic 51

3.3 Theory Propagation . 62
3.3.1 Framework Overview . 62
3.3.2 Stateful Propagation . 63

v

Contents

3.4 Evaluation . 66
3.4.1 Test case generation . 66
3.4.2 Experiments . 72

3.5 Chapter Summary . 75

4 Symbolic Design Space Exploration 77
4.1 Search Space Pruning Through Pareto Filtering 79

4.1.1 Exploration Model . 79
4.1.2 Optimization Framework . 81
4.1.3 Evaluation . 87
4.1.4 Section Summary . 90

4.2 Archive Management . 91
4.2.1 Quad–Tree data structure . 92
4.2.2 Experimental Evaluation . 96
4.2.3 Section Summary . 99

4.3 Evaluation through Safe Approximations . 99
4.3.1 Safe Approximations . 100
4.3.2 Approximating Symbolic DSE . 106
4.3.3 Experiments . 110
4.3.4 Section Summary . 117

4.4 Chapter Summary . 118

5 Conclusion 121
5.1 Limitations . 122
5.2 Future Work . 123

A Appendix I
A.1 Synthesis – Experimental Results . I
A.2 Design Space Exploration – Experimental Results III
A.3 Approximation – Experimental Results . IV

Bibliography VII

vi

List of Figures

1.1 Design Space Exploration as a filtering process 2

2.1 Double roof model of systems design . 10
2.2 X-Chart model of synthesis . 13
2.3 The basic DPLL algorithm . 15
2.4 Regions in the objective space . 22
2.5 Dominance relation of objective vectors . 22
2.6 Quality comparison of non-dominated fronts . 25
2.7 Local optima of a single-objective minimization problem 30
2.8 Execution of one generation in NSGA-II . 31

3.1 Specification Graph . 46
3.2 Encoding of application A1 . 47
3.3 Encoding of the hardware platform shown in Figure 3.1 48
3.4 Encoding of the mapping options specified in Figure 3.1 49
3.5 ASP encoding of allocation, binding, and routing decisions 50
3.6 Feasible Binding and Routing . 51
3.7 QF–IDL Example with corresponding constraint graph 53
3.8 QF–IDL Theory definition in ASP with clingo 5. 54
3.9 First-order IIR filter. 56
3.10 Encoding of Dependency Constraints . 58
3.11 Encoding of Resource Sharing Constraints . 59
3.12 Example specification with deadlines larger than the periodicity. 60
3.13 Adapted application graph . 61
3.14 Architecture Overview of the synthesis framework. 62
3.15 Incremental consistency checking algorithm . 64
3.16 Scheduling anomaly . 65
3.17 Different patterns considered in the series-parallel graph generation. 67
3.18 Application Generator Module . 68
3.19 Generated applications with similar characteristics 69
3.20 Architecture Generator Module . 69
3.21 Mapping Generator Module . 70

4.1 Overview of the Design Space Exploration Framework 82
4.2 Optimization Strategies . 83
4.3 Exploration algorithm used by the optimization framework. 84
4.4 Preference Graph of the optimization framework 87
4.5 Updating an archive based on the Quad-Tree . 93
4.6 Recursive algorithm checking whether a partial assignment is dominated. 94

vii

List of Figures

4.7 Recursive algorithm to update the Quad–Tree after a complete assignment has
been found. 95

4.8 Experimental Setup for archive management with Quad-Trees 97
4.9 Performance comparison of Quad-Tree and List-based archive 98
4.10 Safe approximation of an analytical function. 101
4.11 Exact (blue) and approximated (orange) Pareto front 102
4.12 Under-approximations in minimization problems. 103
4.13 The design flow of the proposed iterative DSE methodology. 104
4.14 Impact of approximation accuracy and performance on overall runtime. 105
4.15 Different under-approximations for the calculation of the latency. 109
4.16 Latency approximation accuracy for different complexity groups and ERRs. Blue

corresponds to the original, red to a low ERR, and orange to a high ERR. 112
4.17 Epsilon dominance over the runtime of the small instances 114
4.18 The average Filter Ratio of the instances in the individual specification groups. . 115
4.19 The average performance improvement of the instances in the individual specifi-

cation groups. 117

viii

List of Tables

2.1 Encoding of the partitioning problem in SAT and ASP 18
2.2 Classification of the dominance relations . 23

3.1 Problem instances for the synthesis benchmark 72
3.2 Synthesis experimental results . 74

4.1 Quality for some test instances achieved by the different configurations 89
4.2 Quality by search strategy . 90
4.3 Quality by communication model . 90
4.4 Pareto front of Approximations as of Figure 4.11 102
4.5 Specification groups with its specific parameters 111

A.1 Detailed results of the synthesis experiments for the full assignment runs I
A.2 Detailed results of the synthesis experiments for the partial assignment runs . . . II
A.3 Extended results of the evaluation of the optimization framework III
A.4 Detailed data regarding the Filter Ratio . IV
A.5 Detailed data regarding the performance improvement V

ix

x

Author’s Publications

Authored

[1] Kai Neubauer, Christian Haubelt, and Michael Glaß. “Supporting Composition in Sym-
bolic System Synthesis”. In: International Conference on Embedded Computer Systems:
Architectures, Modeling and Simulation (SAMOS). Samos, Greece, July 2016, pp. 132–
139. doi: 10.1109/SAMOS.2016.7818340.
Abstract: Typically, state-of-the-art approaches in system synthesis do not consider the trend in em-
bedded systems design towards systems-of-systems where optimized subsystems exist from previous
projects or as 3 rd party IP. In this paper, we propose a novel top-down system synthesis approach with
additional support for the composition of subsystems that is based on the use of hierarchical mapping
edges and a list-based scheduling algorithm using distributed priority queues. The proposed method
not only enables composition of existing subsystems, but experimental results also show a significant
reduction of the design space while maintaining a good quality of the implemented systems. Especially
for large network-on-chip systems (NoC), our approach outperforms an existing top-down methodology
in solving time by nearly 50% and in average quality by 11%.

[2] Kai Neubauer, Philipp Wanko, Torsten Schaub, and Christian Haubelt. “Enhancing
Symbolic System Synthesis through ASPmT with Partial Assignment Evaluation”. In:
Design, Automation and Test in Europe Conference (DATE). Lausanne, Switzerland,
Mar. 2017, pp. 306–309. doi: 10.23919/DATE.2017.7927005.
Abstract: The design of embedded systems is becoming continuously more complex such that efficient
system-level design methods are becoming crucial. Recently, combined Answer Set Programming (ASP)
and Quantifier Free Integer Difference Logic (QF-IDL) solving has been shown to be a promising ap-
proach in system synthesis. However, this approach still has several restrictions limiting its applicability.
In the paper at hand, we propose a novel ASP modulo Theories (ASPmT) system synthesis approach,
which (i) supports more sophisticated system models, (ii) tightly integrates the QF-IDL solving into the
ASP solving, and (iii) makes use of partial assignment checking. As a result, more realistic systems are
considered and an early exclusion of infeasible solutions improves the entire system synthesis.

[3] Kai Neubauer, Christian Haubelt, Philipp Wanko, and Torsten Schaub. “Utilizing Quad-
Trees for Efficient Design Space Exploration with Partial Assignment Evaluation”. In:
23rd Asia and South Pacific Design Automation Conference (ASP-DAC). Jeju, Korea,
Jan. 2018, pp. 434–439. doi: 10.1109/ASPDAC.2018.8297362.
Abstract: Recently, it has been shown that constraint-based symbolic solving techniques offer an effi-
cient way for deciding binding and routing options in order to obtain a feasible system level implementa-
tion. In combination with various background theories, a feasibility analysis of the resulting system may
already be performed on partial solutions. That is, infeasible subsets of mapping and routing options can
be pruned early in the decision process, which fastens the solving accordingly. Allowing a proper design
space exploration including multi-objective optimization also requires an efficient structure for storing
and managing non-dominated solutions. In this work, we propose and study the usage of the Quad-Tree

xi

https://doi.org/10.1109/SAMOS.2016.7818340
https://doi.org/10.23919/DATE.2017.7927005
https://doi.org/10.1109/ASPDAC.2018.8297362

Author’s Publications

data structure in the context of partial assignment evaluation during system synthesis. Out experiments
show that unnecessary dominance checks can be avoided, which indicates a preference of Quad-Trees
over a commonly used list-based implementation for large combinatorial optimization problems.

[4] Kai Neubauer, Philipp Wanko, Torsten Schaub, and Christian Haubelt. “Exact Multi-
Objective Design Space Exploration using ASPmT”. In: Design, Automation and Test
in Europe Conference (DATE). Dresden, Germany, Mar. 2018, pp. 257–260. doi: 10.
23919/DATE.2018.8342014.
Abstract: An efficient Design Space Exploration (DSE) is imperative for the design of modern, highly
complex embedded systems in order to steer the development towards optimal design points. The early
evaluation of design decisions at system-level abstraction layer helps to find promising regions for sub-
sequent development steps in lower abstraction levels by diminishing the complexity of the search prob-
lem. In recent works, symbolic techniques, especially Answer Set Programming (ASP) modulo Theories
(ASPmT), have been shown to find feasible solutions of highly complex system-level synthesis problems
with non-linear constraints very efficiently. In this paper, we present a novel approach to a holistic
system-level DSE based on ASPmT. To this end, we include additional background theories that con-
currently guarantee compliance with hard constraints and perform the simultaneous optimization of
several design objectives. We implement and compare our approach with a state-of-the-art preference
handling framework for ASP. Experimental results indicate that our proposed method produces better
solutions with respect to both diversity and convergence to the true Pareto front.

[5] Kai Neubauer, Christian Haubelt, Philipp Wanko, and Torsten Schaub. “Systematic Test
Case Instance Generation for the Assessment of System-level Design Space Exploration
Approaches”. In: 21. Workshop Methoden und Beschreibungssprachen zur Modellierung
und Verifikation von Schaltungen und Systemen (MBMV). Tübingen, Germany, Mar.
2018. doi: 10.15496/publikation-25685.
Abstract: The design of embedded systems gets continually more arduous as the complexity of applica-
tions and hardware platforms advance to satisfy the increasing demands on functionality, performance,
and power consumption. Mostly however, the concurrent fulfillment of those demands are impossible
because quality parameters are usually conflicting with each other and cannot be guaranteed simultane-
ously. Thus, to find the best compromises of all possible solutions, an efficient Design Space Exploration
(DSE) becomes imperative. While, in recent time, many DSE techniques to the system-level synthesis
problem of embedded systems design have been proposed, a systematic approach on how to produce a
viable set of variant test cases with definite similar properties is not available. In this work, we therefore
propose a methodology for the test case generation for DSE techniques and present a versatile and easily
expendable benchmark generator based on Answer Set Programming (ASP) that is able to produce hard
synthesis problem instances.

[6] Kai Neubauer, Christian Haubelt, Philipp Wanko, and Torsten Schaub. “Work-in-Pro-
gress: On Leveraging Approximations for Exact System-level Design Space Exploration”.
In: International Conference on Hardware Software Codesign and System Synthesis
(CODES/ISSS). Sept. 2018, pp. 1–2. doi: 10.1109/CODESISSS.2018.8525974.
Abstract: In order to find good design points for embedded systems, an efficient exploration of the
design space is imperative. The ever-increasing complexity of embedded systems, however, results in
a deterioration of the overall exploration performance. The DSE essentially consists of two parts: (1)
the search for feasible solutions and (2) the evaluation of found feasible solutions. While the search has
been massively improved by ASPmT-based strategies, the evaluation emerges as the main bottleneck.
Tragically, evaluating bad solutions takes as much time as evaluating good ones. Hence, in this paper we

xii

https://doi.org/10.23919/DATE.2018.8342014
https://doi.org/10.23919/DATE.2018.8342014
https://doi.org/10.15496/publikation-25685
https://doi.org/10.1109/CODESISSS.2018.8525974

Co-Authored

study the utilization of approximations in the evaluation process integrated in an ASPmT-based DSE
to identify bad solutions more quickly while still retaining the exact Pareto-front.

[7] Kai Neubauer, Benjamin Beichler, and Christian Haubelt. “Exact Design Space Explo-
ration Based on Consistent Approximations”. In: Electronics 9.7 (June 2020), p. 1057.
issn: 2079-9292. doi: 10.3390/electronics9071057.
Abstract: The aim of design space exploration (DSE) is to identify implementations with optimal qual-
ity characteristics which simultaneously satisfy all imposed design constraints. Hence, besides searching
for new solutions, a quality evaluation has to be performed for each design point. This process is typically
very expensive and takes a majority of the exploration time. As nearly all the explored design points are
sub-optimal, most of them get discarded after evaluation. However, evaluating a solution takes virtually
the same amount of time for both good and bad ones. That way, a huge amount of computing power
is literally wasted. In this paper, we propose a solution to the aforementioned problem by integrating
efficient approximations in the background of a DSE engine in order to allow an initial evaluation of
each solution. Only if the approximated quality indicates a promising candidate, the time-consuming
exact evaluation is executed. The novelty of our approach is that (1) although the evaluation process
is accelerated by using approximations, we do not forfeit the quality of the acquired solutions and (2)
the integration in a background theory allows sophisticated reasoning techniques to prune the search
space with the help of the approximation results. We have conducted an experimental evaluation of our
approach by investigating the dependency of the accuracy of used approximations on the performance
gain. Based on 120 electronic system level problem instances, we show that our approach is able to
increase the overall exploration coverage by up to six times compared to a conservative DSE whenever
accurate approximation functions are available.

Co-Authored

[8] Christian Haubelt, Kai Neubauer, Torsten Schaub, and Philipp Wanko. “Design Space
Exploration with Answer Set Programming”. In: KI - Künstliche Intelligenz. Vol. 32.
2-3. Berlin Heidelberg: Springer Nature, May 2018, pp. 205–206. doi: 10.1007/s13218-
018-0530-3.
Abstract: The aim of our project design space exploration with answer set programming is to develop
a general framework based on Answer Set Programming (ASP) that finds valid solutions to the system
design problem and simultaneously performs Design Space Exploration (DSE) to find the most favor-
able alternatives. We leverage recent developments in ASP solving that allow for tight integration of
background theories to create a holistic framework for effective DSE.

[9] Joachim Falk, Kai Neubauer, Christian Haubelt, Christian Zebelein, and Jürgen Teich.
“Integrated Modeling Using Finite State Machines and Dataflow Graphs”. In: Handbook
of Signal Processing Systems. Ed. by S.S. Bhattacharyya, E.F. Deprettere, R. Leupers,
and J. Takala. Third Ed. Springer International Publishing, Oct. 2019, pp. 825–864.
doi: 10.1007/978-3-319-91734-4_23.
Abstract: In this chapter, different application modeling approaches based on the integration of finite
state machines with dataflow models are reviewed. Many well-known Models of Computation (MoC)
that are used in design methodologies to generate optimized hardware/software implementations from
a model-based specification turn out to be special cases thereof. A particular focus is put on the ana-
lyzability of these models with respect to schedulability and the generation of efficient schedule imple-

xiii

https://doi.org/10.3390/electronics9071057
https://doi.org/10.1007/s13218-018-0530-3
https://doi.org/10.1007/s13218-018-0530-3
https://doi.org/10.1007/978-3-319-91734-4_23

Author’s Publications

mentations. Here, newest results on clustering methods for model refinement and schedule optimization
by means of quasi-static scheduling are presented.

[10] Luise Müller, Kai Neubauer, and Christian Haubelt. “Exploiting Similarity in Evo-
lutionary Product Design for Improved Design Space Exploration”. In: International
Conference on Embedded Computer Systems: Architectures, Modeling and Simulation
(SAMOS). July 2021.
Abstract: The design of new products is often an evolutionary process, where product versions are
build on one another. This form of product generation engineering (PGE) reuses some parts of previ-
ously developed systems, while others have to be designed from scratch. In consideration of subsequent
design steps, i.e., verification, testing, and production, PGE may lead to significant reduction of the
time-to-market as these steps can be skipped for reused parts. Thus, deciding which components have
to be replaced or added to meet the updated requirements while preserving as many legacy components
as possible is one of the key problems in PGE. A further aspect of PGE is the potentially more efficient
search for valid design candidates. An already optimized base system can be systematically extended by
new functionality without the necessity to search the entire design space. To this end, in this work, we
propose a systematic approach, based on Answer Set Programming, to exploit the ideas of PGE in elec-
tronic system-level design space ex- ploration. The idea is to gather information of the implementation
of a previous design, analyze the changes to a new version, and utilize the information to steer the search
towards potentially good regions in the design space. Extensive experiments show that the presented
approach is capable of finding near-optimal design points up to 1,000 times faster than a conventional
approach from scratch.

xiv

1
Introduction

Throughout the last decades, embedded systems have penetrated the whole spectrum of
products in the market. They are nowadays ubiquitous and form with about 98 % [11, 12] the
largest share of all microprocessor systems. Beside typical areas such as telecommunication,
embedded systems are also utilized in traditionally mechanical sectors. Prominent examples
include automobiles, airplanes, factory automation, clinical devices, and domestic appliances.

Embedded systems are characterized by a tight integration into a larger system where they
fulfill a specific task and interact with the environment through sensors and actuators. They
have to adhere to a number of constraints which can be roughly categorized into behavioral,
functional, and extra-functional requirements. Behavioral constraints demand that the system
behaves under all circumstances the same as specified for the desired task. On the example of a
network router, the forwarding of a message to the correct destination is considered a behavioral
constraint. Functional and extra-functional requirements, on the other hand, both refer to the
properties of the system. While the former ones are imperative for error-free operation, the
latter are considered quality constraints that are additionally imposed by the specification.
Liveliness, e.g., an arrived message will eventually be forwarded by the aforementioned router,
is a typical functional requirement while performance, area costs and power dissipation are
typically considered to be extra-functional. However, the distinction between functional and
extra-functional requirements is not always a clear cut but rather dependent on the specific
case. In airbag controllers, for instance, the latency from sensing a collision to triggering the
airbag must not exceed a few milliseconds to guarantee the desired functionality, i.e., save lives.

Additional to the compliance to the various constraints given by the specification, the
time-to-market is an important factor in current and future designs of embedded systems.
Due to worldwide competition, companies are forced to enhance design and decision processes
in order to beat their competitors to new or optimized features. Simultaneously, more and
more features with challenging requirements, both functional and extra-functional, increase
the complexity of embedded systems constantly. Combined with the pressure on a short time-
to-market, manual design is not viable anymore as the number of design options is too large.

Thus, automated approaches that are able to explore the vast search space and evaluate
potential design candidates according to specified design constraints are needed for an efficient
design. An important prerequisite for automated approaches is a formal description of the
system that abstracts the properties and interaction of components of the system mathemat-
ically. This model-based design can be employed at various abstraction levels, i.e., depending
on the required level of detail, properties of components are more or less precisely modelled.
To date, most approaches explore the design space at high abstraction levels and only further
refine potential candidates in lower abstraction levels. In the monograph at hand, automated
approaches are investigated at the system-level. At the system-level, architectural decisions are

1

1 Introduction

Feasibility
Filter Evaluate Validity

Filter
Pareto
Filter

Parameter Space (Search) Objective Space (Optimization)

XF XF XVX XP

Figure 1.1: Design Space Exploration as a filtering process (inspired by [13])

made on the basis of task-level algorithmic descriptions of the system. Architectural decisions
include the allocation of necessary hardware resources such as microprocessors, FPGAs, memo-
ries, and communication devices. Tasks are partitioned into hardware and software by binding
them to the corresponding resources. The scheduling step finally determines the execution
order of the tasks.

The results of the synthesis, i.e., all allocation, binding, and scheduling decisions that have
been made, are considered as a design candidate that, subsequently, has to be evaluated. The
entire process can be abstracted as a filtering process as depicted in Figure 1.1. The set of
all potential design candidates X is first filtered by the feasibility filter. It guarantees that
no designs with infeasible decision combinations are selected. This excludes, for example,
solutions with unmapped or multiple mapped tasks, a broken communication infrastructure,
and erroneous message routing. The set of feasible designs XF is then evaluated with respect to
specific objective functions. That is, the evaluation transforms the design from the parameter
space into the objective space. In the objective space, the designs can subsequently be filtered
by the validity filter resulting in the set XV . A design candidate is considered valid if all
specified constraints in the objective space are fulfilled. Beside the adherence to specified
constraints, the desired result of a design space exploration (DSE) is often the optimization
of its properties. In a typical embedded system, the optimization objectives are manifold
and normally conflict with each other. As a result, there exists no single optimal design that
dominates (i.e., evaluates better for all objectives) every other design. Instead, a set of Pareto
optimal, mutually non-dominated design points (Pareto front XP) is obtained that renders the
best compromise solutions to a given problem.

In summary, the challenges for an efficient design space exploration can be split into the
modeling of the system, the evaluation of one design point, the coverage of the design space,
and the optimization with respect to specified objectives:

Modeling: A formal model of the system is imperative for an automated design space ex-
ploration. It must be able to include all properties and constraints that are imposed by the
specification. In this work, the first-order language of ASP is utilized to model both the spec-
ification and the rules that are implied by constraints and objectives. A synthesis problem is
therefore split into two parts. First, the specific problem instance defines the properties of the
individual parts of the system such as the existing task dependencies, hardware resources, and
mapping options. Second, a general encoding defines rules for synthesizing the specification
into an implementation. This leads to the advantage that the encoding can be utilized for
every possible problem instance and does not have to be generated anew.

Evaluation of Design Points: The computational complexity of the evaluation step highly
depends, among other factors, on the desired accuracy and the specific objective that has to be
evaluated. At system-level, the primary goal is a fast exploration of the design space resulting

2

1.1 Contributions and Limitations

in a set of potential designs that are investigated further at lower abstraction levels (e.g., gate
and transistor-level on the hardware side). While this indicates that the accuracy is of lower
concern, excessively increasing the evaluation performance at the expense of accuracy may
introduce non-optimal designs. Thus, a good evaluation constitutes a compromise to allow for
good accuracy while maintaining high performance.

Covering the Design Space: Although the decreased level of detail at the system-level
narrows the number of design decision significantly, the complexity of medium to large systems
restricts the exhaustive exploration of the entire design space even at high abstraction levels.
Hence, finding promising regions of the design space that contain feasible, valid, and ultimately
optimal design candidates proves to be hard. Traditionally, population-based heuristics were
employed to search for these regions. They start with an initial randomized population of
individual design decisions whose parameters are subsequently combined and altered in order
to create new design candidates. In general, this produces diverse and good solutions. There
are, however, two main disadvantages with these strategies. First, as the initial population is
created by a randomized process, finding regions with valid design points becomes a problem
for stringently constrained environments. Second, because the search is generally not executed
systematically but based on combining previously found solutions, heuristics tend to run into
saturation and stop finding novel solutions after an arbitrary number of iterations. Thus, giving
a guarantee that the whole design space will be explored is nearly impossible even when they are
run indefinitely. Therefore, a formal approach is examined in this thesis that explores the design
space systematically. With solving techniques derived from Boolean satisfiability problem
(SAT) and satisfiability modulo theories (SMT) solvers, finding regions with potentially good
design points is accelerated and the exploration coverage is, at least in theory, guaranteed to
be complete. Especially if the constraints are too stringent, the problem can be proven to be
unsatisfiable.

Optimization: Obtaining the set of Pareto-optimal designs points implies comparing each
valid design candidate with every other design candidate. This can be done by first saving all
valid designs with subsequent filtering of non-dominated ones or by only saving non-dominated
solutions in the first place. For medium to large systems, the former method is not viable,
as there might be billions of valid designs that only differ in marginal details. The latter, on
the other hand, demands continuous comparisons of new design points with previously found
ones which could influence the exploration speed negatively if the underlying archive is not
managed efficiently. Independent of the specific method used, the optimization approach has
to guarantee for a correct and complete result even if not the entire search space could have been
explored. That is, with respect to all explored designs, the Pareto-set must not contain any
dominated solutions (correctness) and has to include all non-dominated ones (completeness).

1.1 Contributions and Limitations

In this section, the main contributions and limitations of the thesis at hand within the
individual areas described above will be collated. In summary, the result is a novel methodology
for designing embedded systems at the system-level that parts from traditional heuristics by
proposing an automated DSE that is based on ASP.

3

1 Introduction

Optimization The main contribution of the thesis at hand is the successful merger of the
two, previously isolated problems searching for Pareto-optimal design points and defining a
feasibility preserving encoding. This has been accomplished by the tight integration of back-
ground theories into the solving process of the foreground logic solver under the programming
paradigm of ASPmT. This way, the Boolean ASP solver automatically ensures feasibility
constraints while non-linear objectives and the optimization are executed by specialized propa-
gators. The main benefit of the proposed approach is the shared utilization of decision variables
by both foreground and background solvers. That is, compared to separated or only loosely
coupled solvers, conflicting decisions as well as dominated design candidates detected by the
background propagators can be used to directly steer the search and prune invalid and domi-
nated designs from the search space. Furthermore, the logical connection of both steps permits
a succinct encoding. Instead of separated input languages, the thesis at hand proposes a uni-
form formulation of the entire DSE problem. Hence, feasibility and validity constraints can
be encoded side by side and, more importantly, share information on decisions imposed by
other constraints. Finally, as variables are shared in the foreground and background solvers,
the repeated exploration of the same design points is actively prevented. Due to the strict
systematic search, decisions that are shown to be infeasible or invalid by the ASP engine and
background propagators, respectively, are definitively removed from search. While this can
also be achieved with disjoint solvers, the shared variables provide the opportunity for the
specialized propagators to obtain minimal reasons. Hence, larger regions of the design space
can be pruned compared to individual solutions that are evaluated externally without shared
variables.

The main limitation of the proposed optimization approach stems from the complexity of the
considered systems. As the system synthesis is proven to be NP-complete, the time required to
solve an instance grows exponentially with its size. Although the approach guarantees finding
each solution theoretically, in reality, a complete exploration of the search space is generally
not viable in a reasonable amount of time.

Evaluation In order to obtain valid solutions to a specific synthesis problem, an evaluation
has to be performed for every explored design candidate. Typically, a design candidate can
only be evaluated for validity if a complete assignment is available. In this thesis, a novel
approach allowing the evaluation of partial assignments is proposed. Enabled by the tight
integration of the search and optimization through the ASPmT paradigm, as described above,
design candidates can be checked early for constraint violations. That is, as the variables are
shared between foreground and background theory, whenever a Boolean decision is taken, the
specialized propagators can check whether the solution can still be satisfied. This allows for
the detection of invalid regions early during the search and, thus, the pruning of entire invalid
and dominated regions of the design space. Experimental results (q.v., Section 3.4.2) show the
superiority of the proposed approach. While with an evaluation of full assignments only, less
than 25 % of all problem instances have been solved, the proposed approach utilizing partial
assignment checking has yielded a success rate of more than 90 %.

As partial assignment checking imposes a larger number of evaluations to be carried out,
the evaluation is identified as a bottleneck of the DSE. Therefore, the thesis at hand proposes
the utilization of approximations for the majority of evaluations before exact evaluations are
only executed for promising candidates. The proposed approach builds upon the use of safe
approximation. As such, compared to previous work, the correctness and completeness of the

4

1.1 Contributions and Limitations

obtained non-dominated solutions can be guaranteed although only a fraction of all designs is
evaluated exactly. The approach is experimentally evaluated and is shown to accelerate the
DSE by up to one magnitude for the considered instances and objectives.

Similar to the evaluation, the number of necessary dominance checks also increases with
the partial assignment checking. To tackle this problem, the thesis proposes an archive man-
agement technique that can be used to relay expensive operations to when the solution is
completely decided. The remaining checks conducted for the partial assignments require sig-
nificantly reduced dominance checks while retaining completeness and correctness. Compared
to a traditional management structure, the proposed approach shows an improvement of both
filtering time and the number of necessary comparisons by about one and two orders of mag-
nitude, respectively.

The evaluation is executed on the basis of abstract properties that are annotated within
the specification model. In reality, these properties have to be obtained through thorough
investigation. The execution time of a task on different resources, for instance, can be obtained
by compiling the task for different architectures. While realistic assumptions are aspired, the
data source of these properties is not the primary scope in this thesis. It is assumed that the
properties are known when starting the design space exploration. A second limitation is the
restriction of partial assignment checking for assignment monotonic objective functions. That
is, with every additional decision, the evaluation result must constantly move into the same
direction for one objective. All objective functions used here are assignment monotonic. The
utilization of safe approximations is, in addition to the requirement of assignment monotony,
restricted to objectives that can be consistently approximated. If no such approximation can
be determined, the DSE is equivalent to a traditional approach that has to exactly evaluate all
design candidates.

Guided Decoding The design space of realistically sized problem instances is essentially con-
stituted of vast numbers of mapping, routing, and scheduling options. In general, feasible design
candidates are located within narrow and separated regions of the design space. That is, many
combinations of the individual decisions may either lead to infeasible or similar design candi-
dates. The main goal of the DSE is therefore twofold. First, pruning infeasible regions from
the search and second, finding disconnected regions to obtain diversified designs. In contrast
to previous approaches, in the present work, the DSE is carried out strictly systematically.
Hence, advancing from one solution to another is steered by the previously found solution,
the encountered conflicts, and dominance checks. This is different to the mainly heuristic
approaches advancing entirely or at least partially randomly through the design space. The
proposed approach has the advantages that no design candidate is explored twice and that
every design point is eventually found in finite time. Furthermore, invalid regions, if detected,
are not considered for further exploration as they are automatically pruned from the search.

At the downside, the strictly systematic search may prevent finding diverse solutions fast.
The strict systematic Boolean search tends to vary subsequent solutions only marginally as
small changes in the individual decisions, equally yield small changes in the resulting solutions.
Especially, complex problem instances contain large amounts of designs that are technically
different but are characterized by similar properties. Thus, the escape from local optima
during the search is generally less effective when compared to approaches where optimization
and encoding is logically separated and applies random decision into the search.

5

1 Introduction

Modeling The central contribution of the thesis at hand is the overall methodology. However,
to evaluate the proposed methods regarding the DSE at the ESL, an appropriate specification
model is imperative. This monograph does not develop a completely novel model but instead
builds upon well-established, graph-based models at the ESL. Therefore, a model is chosen that
permits the definition of task-level applications, a hardware platform template implementing
a network on chip (NoC) and mapping options connecting the previous two. In the context
of evaluation, a methodology is proposed to systematically generate problem instances to test
the proposed approaches with defined problem classes.

The selection of the specification model implies some limitations on its own. First, the
applications are statically defined. That is, no dynamic information such as data-dependent
behavior, interrupts or sporadicity is supported. That is, all information that is specified in
the model has to be known at design time. This includes the availability of hardware resources,
task dependencies, and mapping options. Furthermore, no automatic dynamic reconfiguration
is possible if unforeseen events such as resource failure happen at runtime of the system. In
this case, a new synthesis had to be carried out.

1.2 Thesis Overview

Most of the approaches proposed in this monograph have previously been published by the
author at peer-reviewed conferences, workshops, and journals. This monograph aggregates the
results of the respective works and puts them into the context of a holistic view on the DSE
at the ESL. To this end, the formulation is unified, refined, and extended by more extensive
experimental evaluations. In the following, the structure of the remainder of this monograph
is outlined.

Prior to the main chapters, the fundamental concepts of model-based design are presented.
Chapter 2 deals with all topics that are necessary to fully comprehend the subsequent chapters.
The introduction of the general process of system design is followed by the necessary definitions
regarding model-based constraint checking with logic solvers and the basics of multi-objective
optimizations. The chapter concludes with an elaborate discussion of related work, where
existing approaches are compared to the proposed solutions in the thesis at hand.

Chapter 3 addresses the synthesis at the ESL. It is based on the work, that was previously
published in [2] and [5]. The system model is defined and the integration of background theories
under the ASPmT paradigm is discussed. Orthogonal to the proposed ASPmT-based synthesis
framework, a methodology for a modular test case generation is proposed. This is subsequently
used to evaluate the developed framework.

The holistic DSE is elaborated in Chapter 4. It extends the proposed synthesis framework
with multi-objective optimization and is primarily based on the work in [4]. After the evaluation
of different approaches to the DSE problem regarding the obtained quality of the non-dominated
front, improvements to the substeps dominance checking and evaluation are proposed. The
former is based on the methods proposed in [3] and aims in reducing the complexity of the
Pareto filter by utilizing specialized data structures. The latter has been previously published
in [6] and [7]. Here, the use of safe approximations is proposed that aim at accelerating the
evaluation of a design candidate while retaining the correctness of the obtained front.

The thesis concludes with Chapter 5, where the contributions and limitations of the proposed
approaches are summarized and an outlook of future work is given.

6

1.3 Funding and Cooperation

1.3 Funding and Cooperation

The monograph at hand is part of the result of the cooperation between the chair of Embedded
Systems at the University of Rostock and the chair of Knowledge Processing and Information
Systems at the University of Potsdam. It was funded by the German Science Foundation
(DFG) under the grants HA 4463/4-1 (Rostock) and SCHA 550/11-1 (Potsdam) with the title
Scalable Design Space Exploration with Answer Set Programming (original title: Skalierbare
Entwurfsraumexploration mit Antwortmengenprogrammierung) [14].

In this cooperation, the work was essentially split into the enhancement of the utilized ASP
solver clingo and the application to the problem at hand contributed by the University of Pots-
dam and the design space exploration methodology contributed by the University of Rostock.
The spent effort of the University of Rostock was mainly accomplished by the author of this
monograph. The work on the solver includes the development and integration of the ASPmT
paradigm and the implementation of a dedicated integer difference logic solver. Therefore, the
internal realization and theory of the ASP solving mechanisms have not been contributed by
the author of this monograph but instead by the cooperating partners at the University of
Potsdam. It shall be noted, however, that the basics of the implementation are also discussed
in the monograph at hand (see Sections 3.2 and 3.3) as the systems will be used as a tool in
further considerations.

While the ASPmT technology developed in context with this work has a more general ap-
plication, the main focus of the work conducted by the author has been related to domain
specific problems. This includes both the definition and encoding of necessary parameters
of the specification as well as the necessary information that shall be considered for optimal
design points (i.e., objective functions). In addition, non-ASP related optimizations to the de-
sign space exploration have been studied by the author of this monograph. In particular, this
concerns the archive management technique based on Quad–Trees (see Section 4.2) and the
proposal for the use of safe approximations (see Section 4.3) to accelerate the Pareto filtering
and evaluation substeps, respectively. Furthermore, the conceptual design of the conducted
experiments within the individual sections and chapters as well as the generation of test cases
(see Section 3.4) have been realized by the author.

The synthesis and optimization architectures, proposed in Sections 3.3 and 4.1, respectively,
are the result of the combined efforts of both project partners. They are build on both the
developed internal solver mechanisms and the design space exploration methodology. Hence,
these architectures provide the common result of the cooperation between the University of
Potsdam and the University of Rostock in this project.

7

8

2
Model-based Design

The work at hand cannot be considered in isolation but is instead embedded in a much wider
context in the area of design space exploration at the electronic system level (ESL). It is based
on well established concepts that are partly combined and extended particularly towards exact
design exploration methodologies. To motivate these general concepts, the goal of the present
chapter is the introduction of model-based design techniques and theory solvers.

Therefore, first, the typical design flow of digital systems is described, detailing design steps
at different levels of abstraction from system level to logic and instruction levels. Here, it
will be shown that commencing at system level benefits the entire design process regarding
exploration speed and coverage. In the second part of the chapter, well established concepts
regarding multi-objective optimization that are utilized throughout this work are outlined.
Within this section, exact solving approaches are motivated and expounded why they are
especially well suited for highly constraint design problems. Finally, an extensive investigation
of related work is presented at the end of this chapter where main contributions of the work at
hand are elaborated and set into context.

2.1 Hardware/Software Co-design

The design of application-specific embedded computer systems is an interwoven process of
simultaneous hardware and software development. The development of such systems has a
tradition of over 70 years now. Starting with the first universally programmable computers
Z1 (1938) to Z4 (1945) [15], through computer-aided space exploration to current systems in
everyday life, the complexity has been risen constantly. Today, billions of nanoscaled intercon-
nected devices are integrated in only a few square centimeters that run software that has to
fulfill strict performance and power constraints. Such complexity necessitates highly automated
approaches.

However, even with modern high-performance computers and algorithms, the vast design
space is often too large to optimize every least detail of the system. Thus, a system is typically
grouped into larger building blocks that abstract various details and are used to minimize the
overall design complexity. For example, individual transistors are grouped into logic gates, logic
gates into functional units, and finally functional units into processing and communication re-
sources. At software side, individual instructions are clustered into basic blocks, functions, and
finally abstract tasks. As a result, the design space of a digital system defined with the largest
building blocks is smaller and can be explored faster. The downside is that many details can-
not be expressed at the highest abstraction levels. Hence, current design methodologies utilize
different abstraction levels and consequently refine the resulting system gradually throughout
the design process.

9

2 Model-based Design

Behavior
Structure

System

Thread

Block
Software

Architecture

Logic
Hardware

Figure 2.1: Double roof model of systems design (adapted from [16]).

2.1.1 Design Process

The employment of different abstraction levels in the design process is typically a top-down
process. The double roof model of design [16], as depicted in Figure 2.1, is a concrete method-
ology implementing such a process. It is divided into a hardware and a software side with both
meeting at the center, where the system level is located. Hardware and software are in turn
divided into further abstraction levels, that involve the respecting building blocks as described
above. Within each abstraction level, the goal is the transformation from a behavioral spec-
ification into a structural implementation which involves decision-making and optimization.
These steps are indicated by the vertical arrows in Figure 2.1. The horizontal arrows, on the
other hand, represent the refinement steps from one abstraction level to the next. Here, the
structural implementation as the result of a higher abstraction level is (partially) transformed
into a behavioral description and used as input at a lower abstraction level. This way, the
design process gets gradually more detailed until the system description is detailed enough
to manufacture the hardware and execute the software as machine code on the corresponding
computational resources.

At system level, the fundamental design decisions are made. The decision-making process
includes the allocation of available computational and communication resources, the partition-
ing of functionality into hardware and software, and the task scheduling, i.e., the order of task
executions and identification of serial and parallel structures. The structual implementation
reflects the taken design decisions and can further be represented as transaction-level system
simulation models or as as graph-based models. Subsequently, the result of the design is then
split into hardware and software, and relayed to the subsequent thread and architecture abstrac-
tion levels, respectively. At thread level on the software side, communicating processes/tasks
have to be bound to available processors and scheduled according to the underlying operating
systems. The software synthesis at the thread level typically results in source code, structured
into classes, functions, and basic blocks. It is subsequently used for compilation in the final
step at the software side. At block level, the previously generated source code is compiled and
linked and results in machine-readable code for the respective processors. On the hardware
side, first the computation and communication is implemented at the architecture level. That
is, tasks and desired capabilities of the system that have been decided to be implemented
as hardware accelerators are elaborated. Mainly, the selection and interconnection of various
memories, arithmetic logical units (ALUs), and communication infrastructures is subject at

10

2.1 Hardware/Software Co-design

this level of abstraction. This synthesis step can also be automated, which is commonly known
as high level synthesis. The resulting register transfer level (RTL) description is often realzied
in form of hardware description languages such as VHDL [17] or Verilog [18]. At the logic
level, the lowest abstraction on the hardware side, the register transfer level (RTL) description
is transformed into logic gates like flip-flops, inverters, and Boolean gates. Admittedly, the
hardware synthesis continues even further at transistor level (not shown in Figure 2.1). Here,
the Boolean logic is compiled into individual transistors, wires, and their spacial placement
necessary for the final physical implementation on the die.

Beginning the design process at the highest level of abstraction, the system level, is largely
motivated by two considerations. First, the high abstraction at system level conceals details
of specific parts of the digital system. Hence, the focus is shifted towards more fundamental
decisions which can be explored and evaluated more quickly which, in turn, increases the
exploration coverage. That is, decisions made at system level have potentially the largest
impact on the final design as they define the golden reference of all subsequent steps. Second,
while in traditional approaches, the firmware and software development is dependent on the
hardware design process, both design steps can be started concurrently on the basis of the
system-level implementation (e.g., represented by a virtual prototype). Although the overhead
of obtaining this implementation may be significant, it can reduce the overall development time.
Moreover, as first evaluations of the system properties are already applied here, potential flaws
in the specification resulting in over- or underdesigned systems can be detected. This helps to
prevent late errors that are, in general, harder to fix and result in longer turn around times.

Note that a strict top-down approach is not always possible nor desirable in real world
designs of digital systems. A company may use subsystems available from previous projects
or may choose to obtain parts of the system as 3rd-party intellectual property (IP). These
parts do not have to be designed again and can directly be used in new systems resulting in a
hybrid approach. For example, a processor is typically not designed from scratch, but instead
bought as an off-the-shelf subsystem with predefined properties and interfaces. On the other
hand, design-specific functionalities such as sensor subsystems might not be available through
3rd-party IP and have to be designed in a top-down process. This hybrid strategy is, however,
not in conflict with the general approach. Moreover, the known properties of existing parts
can be utilized to simultaneously increase the evaluation accuracy in high abstraction levels
and decrease the time-to-market of the digital system.

2.1.2 Modeling Approaches

In order to allow a holistic specification and an automated design of digital systems, a
sophisticated design methodology is needed. In principle, there are two different ways to specify
digital systems. First, language-based approaches and, second, model-based approaches [16].
Language-based approaches are, generally speaking, dedicated to specific abstraction layers
of the design process. The hardware design is mostly exclusively executed with the hardware
description languages (HDL) Verilog and VHDL as they provide solutions from the architectural
view to the logic level of the system. Typical HDL often do not support the same tool-supported
development processes as modern high-level languages in software development. As a result,
development of complex software in VHDL or Verilog is often error-prone and time-consuming.
Therefore, they are less suitable for the software design process. Here, high-level languages such
as C, C++, and Java (among others) are more prominently used. Yet, without modifications,

11

2 Model-based Design

they lack the concept of concurrency and do not cover timing behavior and are therefore not
adequate for the description of hardware. System-level design languages (SLDLs) (e.g., SpecC
and SystemC) aim at a combined specification of both hard- and software. SystemC [19], for
example, is an extension library to C++ and contains structures for specifying concurrency
and timing constraints while maintaining compatibility to standard C++. An event-based
simulator can be used to evaluate the design for correctness regarding behavior and timing
constraints. Furthermore, there exist high-level compilers that allow to translate a subset of
SystemC into RTL descriptions and synthesize it into logic. While the language-based design
is highly expressive, i.e., various behaviors can be specified with a limited set of basic elements,
it generally lacks of clearly defined formal semantics. Both, the high expressiveness and the
absence of formal semantics often deteriorate the analyzability of extra-functional properties
such as timing, cost, or energy consumption of the specified system. In turn, this disqualifies
language-based approaches for automated exploration, especially at high levels of abstraction.

In contrast, model-based approaches offer strict formal semantics. They are abstracted
through mathematical models that reduce the expressiveness and, thus, allow for an improved
analyzability. Typical approaches for modeling systems include finite state machines (FSMs),
Petri nets, timed automata, and dataflow models. In the area of transformative embedded
system design, dataflow models are often used as parallelism of the underlying application
can be easily identified [20]. Dataflow models consist of individual actors that communicate
over channels. The actors model the behavior of processes and consume and produce data
(i.e., tokens) from and to connected channels, respectively. This way, especially streaming
applications can be naturally modeled. Besides the modeling of the functional behavior of
an application, the formal semantics of synchronous dataflow models2-1 also allow for the
evaluation of extra-functional properties. Especially, the buffer size (for FIFO channels) and the
maximum throughput analysis are well studied throughout literature (e.g., [21–23]). Although
hierarchical dataflow models can be used to represent mapping and scheduling decisions (e.g.,
[20]), dataflow typically only models the behavior of an application.

Again, the hardware is typically abstracted and is reduced to the properties that are needed
to evaluate the desired properties such as individual costs, power consumption, and process-
ing abilities. While both hard- and software models can be extended with respect to their
expressiveness, especially at ESL, this hinders automated design space exploration (DSE) as
evaluation performance and analyzability will deteriorate with increasing model complexity.

2.1.3 Synthesis

Independent of the specific abstraction level, a specification is transformed into an implemen-
tation. The overall goal is not only to identify valid designs that comply to given requirements
and behavioral properties but also to search for optimal ones among them. In the end, the
transformation results in a structural description and specific quality characteristics of one or
potentially a set of (Pareto) optimal design points. This step is known as synthesis and is
detailed in the following. Note that the synthesis is treated here in the context of the system
level abstraction. The process, however, is similar for lower levels of abstraction although the
degree of detail and the focus on specific steps might differ, depending on the abstraction level.
2-1Note that the analyzability deteriorates with increasing expressiveness of the dataflow model. For example,

Boolean and other dynamic dataflow models are already Touring-complete and only allow limited evaluation
of extra-functional properties.

12

2.1 Hardware/Software Co-design

Specification

Synthesis

Implementation

Decision-Making

Optimization

Evaluation

Behavior Non-functional
Constraints

Structure Quality
Characteristics

• Allocation

• Binding

• Scheduling

Figure 2.2: X-Chart model of synthesis based on [24]

As depicted by the X-Chart diagram [24] in Figure 2.2, three intermediate steps are necessary
to transform a specification into an implementation. That is, decision-making, evaluation, and
optimization. These steps generally cannot be considered isolated from each other, but instead
the results build up mutual dependencies. For instance, the evaluation of an invalid design
candidate (i.e., the requirements are not met for the made decisions) can be analyzed and
return the reason for the invalidity to the decision-making in order to steer it.

When specifying a digital system, it is normally unclear which components are used to com-
pose the final design, where the functionality is implemented, and in which order tasks are
processed. These steps are subject to the decision-making process which is further structured
into allocation, binding, and scheduling. During allocation, resources are selected that are used
as a hardware platform to execute the functionality of the digital system. At system level, such
hardware platforms consist of computing resources (CPUs, DSPs, and GPUs), communication
components (busses and/or networks on chip (NoCs)), memories, and other hardware IP blocks
that add specialized functionality. In the binding step, the specified tasks are mapped onto the
previously allocated computational resources. Data and messages that have to be exchanged
between tasks are routed over the communication infrastructure and (intermediate) results
are assigned to memories. Allocation and binding are tightly coupled. Allocated computing
resources have to allow the realization of the desired tasks and the allocated communication
infrastructure has to allow for the necessary links between dependent tasks mapped to differ-
ent resources. Finally, scheduling determines the execution order of tasks and communication
steps. Therefore, parallel and serial structures are identified and resource sharing of tasks and
messages is organized. Note that the determination of a static schedule is not always possi-
ble. If, for example, the task execution is conditional on dynamic input data not known at
design time, the exact schedule must be determined at runtime of the system. In these cases,
scheduling policies for every resource involved must be defined which can include priority as-
signments, partial execution orders of tasks, and deadlock avoidance strategies. The treatment
of dynamic schedules, however, is out of scope of the present monograph. It is assumed that
a static schedule can be obtained for the considered systems. This is enabled through the
assignment of worst case execution times for tasks that encompass all possible execution traces
for the corresponding tasks.

13

2 Model-based Design

The evaluation of a design candidate has the principal goal of determining the quality of the
design. Based on the decisions made during allocation, binding, and scheduling, the evaluation
step assesses the properties of the system with respect to the requirements defined in the spec-
ification. The evaluation can be conducted based on simulations of the system, by means of
mathematical models, or a combination of both. Simulations are typically more accurate than
mathematical models, especially when the digital system has a high amount of dynamic behav-
ior. On the other hand, mathematical models are typical much faster than simulations which,
in turn, favors the coverage of the search space. Apart from that, mathematical models can be
tuned towards the assessment of partial designs (i.e., only a subset of decisions has been made)
helping to indicate infeasible designs earlier. This is discussed in more detail in Section 3.2.2.
Independent of the specific evaluation approach, it provides the quality characteristics of the
design candidate which are utilized by the final optimization step.

Apart from a feasible design, it is often desired to design the digital system as good as pos-
sible. In order to outperform the competitors, it might not be sufficient to comply to a given
power budget but instead to deliver a system that consumes less power while still adhering to
the remaining requirements. This can, for example, be achieved by selecting fewer or slower
resources and instead put the emphasis on a better utilization through resource sharing. Thus,
the goal of the optimization is to analyze the design decisions and to steer the search towards
potentially better regions in the design space. This illustrates again the importance to com-
mence the design process at system level. Design decisions at lower abstraction levels have less
impact on the quality characteristics of the entire system. For instance, removing a whole CPU
from the hardware platform at system level has a higher impact on the power consumption
than a waiver of a few gates at logic level.

2.2 Constraint Modeling and Checking

To allow for an efficient synthesis of electronic systems, both functional and non-functional
constraints must be automatically provable for each design candidate. Therefore, the con-
straints are typically encoded by mathematical formulations. In this section, two encoding
techniques are detailed that allow a combined and automated decision-making and constraint
checking. First, the Boolean satisfiability problem (SAT) is based on propositional formulas
and is used in numerous applications in the area of electronic design automation (EDA), verifi-
cation, and testing. Second, answer set programming (ASP) stems from the area of knowledge
representation and reasoning and is based on a first-order language. The latter is especially
well suited for encoding reachability constraints that are required for the routing substep. As
a specific encoding technique is in general only tailored towards one class of problems, the sec-
tion closes with the concept of background theory solving. This methodology allows combining
multiple specialized techniques under one general approach.

2.2.1 Boolean Satisfiability

Propositional logic is a common approach to encode decision problems and their correspond-
ing constraints. It consists of binary variables (i.e., atoms) that are connected through logical
connectives such as negations, conjunctions, and disjunctions into propositional formulas. The
Boolean satisfiability problem (SAT) addresses whether a given propositional formula is satis-
fiable, i.e., if there exists a variable assignment such that the evaluation of the whole formula

14

2.2 Constraint Modeling and Checking

1: function DPLL(M = {C1, . . . , Cn})
2: if M = ∅ then return T RUE ▷ Set of clauses is satisfiable
3: else if ∅ ∈M then return F ALSE ▷ Set of clauses is unsatisfiable
4: else if {L} ∈M then return DPLL(M | L) ▷ Propagate unit clause
5: else
6: choose X : X ∈

⋃︁
Ci | i ∈ [1, n]

7: if DPLL(M | X) == T RUE then return T RUE ▷ Branching
8: else return DPLL(M | ¬X) ▷ Backtracking

Figure 2.3: The basic DPLL algorithm without the deduction from pure literals [26, 27].

results to TRUE. In 1971 the authors of [25] proved SAT to be the first NP-complete problem,
i.e., it is both in NP and NP-hard. Hence, on a non-determinstic machine, SAT is solvable in
polynomial time (NP) and every other problem in NP can be reduced to SAT in polynomial
time (NP-hard). So far, it is unknown whether there exists a general algorithm of polyno-
mial complexity to solve SAT (and other NP-complete problems) on a deterministic machine.
However, based on the Davis-Putnam-Logemann-Loveland algorithm (DPLL) [26, 27], today,
various systematic approaches exist that can identify the satisfiability of many propositional
formulas faster than the complexity class suggests.

The basic idea of DPLL is that the search space is pruned from infeasible regions and
structural properties of the formula are used to propagate inevitable decisions. The original
algorithm is given in Figure 2.3. It necessitates the propositional formula (viz. M in Figure 2.3)
to be in conjunctive normal form (CNF)2-2, i.e., a conjunction of clauses. A clause is a disjunc-
tion of literals and a literal is either an atom or its negation. Basically, the algorithm consists
of three phases. During the deduction phase, the clauses are scanned for unit clauses and pure
literals2-3 to propagate inevitable decisions. A clause is considered to be a unit clause if it con-
sists of exactly one literal. If a unit clause is identified, the decision variable can be assigned to
the truth value according to its parity. A variable that appears only in one parity throughout
the entire formula is called a pure literal. Again, the corresponding variable can be assigned the
truth value of its parity. For example, consider the formula g = (¬p)∧(q∨r)∧(q∨¬r). The unit
clause ¬p implies that p must not be set to TRUE as this would render the entire formula FALSE.
Furthermore, the variable q appears only without a negation and can be safely removed from
the formula, i.e., set to TRUE. Line 4 in Figure 2.3 executes the deduction from unit clauses.
Whenever a unit clause of the form {L} is detected, the algorithm is called recursively with
the literal L removed from M , i.e., DPLL(M | L).

In the second phase of the algorithm, the truth value of an unassigned variable is decided
(lines 5–8). This step signifies a choice and creates two branches — one for the TRUE and one
for the FALSE valuation (line 7 and 8, respectively). Whenever a TRUE valuation is assigned
to a variable φ, all literals ¬φ and all clauses containing φ are removed from the formula.
Analogously, literals φ and clauses containing ¬φ are removed if FALSE is assigned. If the
following deduction phase leads to a conflict, characterized by an empty clause, the third phase
is triggered. Here, the decisions and deductions are backtracked and reversed until an alternate
choice in a previous branch can be made. The formula is satisfiable when no clauses are left in
the formula (line 2). In contrast, it is proven to be unsatisfiable if no alternate decisions can
2-2There exist polynomial algorithms that allow the transformation of any propositional formula into a CNF

(e.g., [28]) such that this requirement does not increase the complexity.
2-3In later approaches, pure literals are not utilized anymore as their identification is too complex and benefits

are too low [27].

15

2 Model-based Design

be identified in the backtracking phase. State-of-the-art SAT solvers (e.g., Chaff [29], MiniSAT
[30]) still use the basic idea of DPLL. However, the backtracking step has been replaced by
conflict-driven clause learning (CDCL) and backjumping [31]. Here, whenever a conflict arises,
the reason for it is analyzed and a corresponding conflict clause is added to the original problem.
Decisions are then revoked to the level when the first variable of the conflict clause has been
decided. This prevents the solver to revisit the decision combination and, thus, prunes the
search space more effectively.

Although DPLL can solve many SAT problems effectively in practice, in general, the algo-
rithm is exponential in time with respect to the number of decision variables. The performance
is especially dependent on the specific problem structure and the methodology used for assign-
ing the next undecided variable. The latter can be influenced by various branching heuristics
[32]. Greedy heuristics such as maximum occurrences of minimum sized clauses and Bohm’s
heuristic try to estimate the impact of the unassigned variable on the Boolean formula. They
select the variable that satisfies most clauses or generates the most unit clauses. As the esti-
mation is based on statistics, greedy heuristics work well for random SAT instances but cannot
capture structural properties of the formulas [32]. Another approach consists of literal count
heuristics. Before branching, for each variable, the amount of literals is counted in all currently
unsatisfied clauses and the most frequent variable is selected for branching. The problem with
this approach is the computational overhead introduced before each branching step. The au-
thors of [29] have introduced the variable state independent decaying sum (VSIDS) heuristic.
At the beginning, it assigns a score to each literal according to its number of occurrences in
the formula. In each iteration, the highest valued literal is selected for branching. In regular
intervals, all scores are adapted by dividing them by a constant number. However, whenever a
conflict clause is added to the problem, the scores of containing literals are increased. This way,
more recent decisions have a higher impact on the branching strategy than earlier ones. The
computational overhead of VSIDS is much lower than those of literal count heuristics. Similar
to VSIDS, the heuristic used in the BerkMin SAT sovler [33] is also based on decaying scores.
However, in BerkMin, not only the literals of the conflict clause are considered for increasing
their scores but each literal that leads to a conflict. While this makes BerkMin more robust,
the overall performances of VSIDS and BerkMin are comparable.

Independent of the specific approach, SAT solving has become an important framework in
many areas of EDA. In particular, the logic synthesis of integrated circuits and model checking
techniques [31] in verification rely on SAT solvers. The application of SAT at the ESL has been
introduced in [34]. The work presented a Boolean formula to encode feasibility constraints of
mapping decisions throughout the synthesis. While decision constraints such as the mapping
problem are well expressible in CNF, reachability (as required by the routing) is hard to encode
effectively. Hence, the automatic checking of routing constraints is cumbersome with SAT and
requires a large overhead. Therefore, another encoding approach is needed.

2.2.2 Answer Set Programming

Answer set programming (ASP) is a declarative programming paradigm that, in contrast
to imperative programming languages, focuses on describing what the problem is instead of
how to solve it. It is tailored towards NP-hard combinatorial search problems and is based on
the stable model semantics, introduced by Gelfond et al. [35] in the late 1980s [36]. The term
ASP has been first used one decade later in the late 1990s by [37]. In ASP, search problems

16

2.2 Constraint Modeling and Checking

are reduced to computing stable models (i.e., answer sets). A stable model is a set of truth
assignments that satisfy the problem and can be derived from given information. Although
most ASP solvers utilize variants of DPLL, ASP and SAT mainly differ in two aspects. In
contrast to SAT, reasoning in ASP is done under the closed-world assumption. That is, an
atom is considered to be assigned FALSE whenever there is no evidence that it is TRUE. This
makes ASP especially powerful for problems, where only a small subset of decision variables
has to be selected whereas the remaining ones are not relevant. In particular, the closed-world
assumption allows a natural encoding of reachability, and hence, routing constraints.

The second aspect regards the problem encoding. In contrast to SAT, ASP utilizes a first-
order input language. The language consists of Prolog-style [38] rules that include predicate
symbols, constants, variables2-4 and logical connectives but must not contain quantifiers [39].
Knowledge is encoded as n-ary predicates (i.e., atoms) that consist of a predicate name and n
arguments. While a constant represents itself, variables act as placeholders for each variable-
free term in the logic program. Similar to SAT, a literal is an atom or its (default) negation.
Each rule is composed of a head and a body in the form

A0 : - L1, . . . , Ln.

and states that the atom A0 in the head is inferred if all literals L1, . . . , Ln in the body
hold. Facts and integrity constraints are specialized rules that have empty bodies and heads,
respectively. Facts of the form

A0.

encode the knowledge of the system indicating that the atom A0 is unconditionally TRUE.
Integrity constraints are rules that filter solution candidates as they require that the literals
L1, . . . , Ln in the body must not be concurrently satisfied:

: - L1, . . . , Ln.

Aggregate atoms are common extensions to the stable model semantics in logic programs. They
allow for expressing constraints over groups of literals. In detail, a function is applied to a set
of literals and its result is compared with given values which then leverages a truth value.

In ASP, it is common to separate a problem into a specific instance and a uniform encod-
ing that is applicable to every instance. The instance is composed of facts that represent the
initial knowledge. In the area of ESL design, this conforms to the specification including the
available computation and communication resources, tasks and messages, mapping options,
and properties of the aforementioned elements. On the other hand, the encoding is composed
of rules that are utilized to infer knowledge and generate answer sets for the given instance.
The encoding therefore maps to the non-functional constraints enforced by the specification.
Furthermore, the encoding of a search problem in ASP is typically characterized by a pro-
gramming methodology that divides the logic program into three parts in which the different
rule types are used [40]. In the “generate” part, potential solution candidates are typically
defined using choice rules and aggregates. The “define” part contains definitions of auxiliary
predicates. Finally, during “test”, solution candidates that cannot be considered as models are
removed from the search by integrity constraints that use predicates generated in the define
part.
2-4Variables (i.e., atoms) in SAT do not map to variables but rather to predicates and their arguments in ASP.

17

2 Model-based Design

Table 2.1: Encoding of the partitioning problem in SAT and ASP

SAT [34] ASP

mi,j =
{︄

1 if ti is bound to pj

0 else

b(m) = (m1,1 ∨m1,2) ∧ (¬m1,1 ∨ ¬m1,2)∧
(m2,1 ∨m2,2) ∧ (¬m2,1 ∨ ¬m2,2)∧
(m3,1 ∨m3,2) ∧ (¬m3,1 ∨ ¬m3,2)

task(t1). task(t2). task(t3).
processor(p1). processor(p2).
map(t1,p1). map(t1,p2). map(t2,p1).
map(t2,p2). map(t3,p1). map(t3,p2).
% GENERATE
{bind(T,P)} :- map(T,P).
% DEFINE
bound(T) :- bind(T,P).
% TEST
:- bind(T,P1), bind(T,P2), P1 != P2.
:- task(T), not bound(T).

Together with the first-order language, this leads to a more readable representation when
compared to SAT. Both functional and non-functional constraints can be specified more read-
able and the encoding can be reused and does not have to be generated for each instance of the
same problem. As an example, assume the following partitioning problem. Three tasks t1, t2, t3
shall be bound onto two processors p1, p2. Each task can be mapped onto both processors and
must be bound exactly once. The different encodings for this problem are given in Table 2.1.
In the SAT encoding, the problem is encoded with six atoms m1,1, . . . , m3,2 representing the
six possible mapping options. An atom mi,j is assigned true if the task ti is mapped onto the
processor pj . The property that each task must be bound exactly once is encoded according
to [34] in the CNF b(m). Each line correlates with one task. The first disjunction demands
that at least one mapping option is chosen and the latter prevents both from being chosen
concurrently. Analogously, the ASP encoding is given in right column of Table 2.1. Note that
in this and following examples, the syntax is aligned with the ASP solver clingo [41, 42]. It is
separated into two parts as described above. The upper part consists of the specific problem
instance and includes the knowledge about the three tasks, two processors and the six possible
mapping options. The arguments of the predicates task/1 (shorthand for: “a unary predicate
with the name task”), processor/1, and map/2 are constant symbols that represent the corre-
sponding elements of the specification. In contrast to the problem instance, the encoding in the
lower part utilizes variables as arguments. The variables are placeholders for the constants and
are replaced during solving. The first line of the encoding consists of a choice rule rendering the
“generate” part. Here, all potential solution candidates are defined as it states that a mapping
option may or may not lead to a specific binding. The next rule depicts the “define” part. It
defines a task T to be bound if any binding holds that includes that task T . Finally, the last
two lines represent the “test” through integrity constraints. While the former prevents a task
to be bound onto multiple processors, the latter eliminates answer sets where a task T is not
bound to any processor. Althoguh the encoding nicely shows the methodology of “generate”,
“define”, and “test”, it can be significantly reduced by using aggregate atoms:

1 {bind(T,P) : map(T,P)} 1 :- task(T).

Thus, a single line is able to encode the uniqueness property specified in the problem. In
short, the rule states, that for each task T , at least one and at most one (i.e., exactly one)

18

2.2 Constraint Modeling and Checking

mapping must be chosen. Therefore, the head atom consists of an aggregate atom that gener-
ates bind/2 predicates from the set of all map/2 atoms containing the variable T . In turn, it
evaluates to TRUE if exactly one bind/2 atom holds.

The advantage of the ASP encoding is twofold. The specification is represented intuitively
as elements can be expressed in a near-natural language. The encoding itself is more concise
and can be reused for other instances of the same problem. While adding tasks or processors
to the problem or changing the mapping options requires the CNF of the SAT encoding to be
regenerated entirely, the ASP rule can remain unchanged.

Processing answer set programs with an ASP solver is executed in two phases. In the first
phase, the logic program is translated into a semantically equivalent variable-free representa-
tion. This is called grounding. Principally, a naive approach where the variables are replaced
with all possible constant combinations occuring in the logic program, can be employed. How-
ever, it would increase the number of rules exponentially. Assume the generate rule of the
example above. Replacing the variables P and T with all combinations of the five available
constants would result in 52 variable-free rules. Hence, modern grounding techniques employ
more intelligent techniques to generate a grounded program. This includes techniques such as
partial evaluation, rewriting, and the elimination of equivalences like tautology rules [39]. In
the case above, for example, many combinations can be removed as only the constants of tasks
and processors are eligible for T and P , respectively.

After a variable-free representation is generated, the actual ASP solver is started. All modern
solvers are based on CDCL techniques as developed for SAT. However, they additionally extend
the search with a foundedness constraint. That is, the atoms in an answer set must be derivable
by a rule in the logic program. Similar to SAT solvers, they can be improved by heuristics that
influence the assignment order and preferred phases.

2.2.3 Background Theory Solving

Pure combinational theories such as ASP and SAT are predestined for solving Boolean deci-
sion problems. That is, a subset of decision variables is selected according to linear constraints
and rules. Often however, real constraints do not have linear dependencies. One example at
hand is finding and optimizing a valid schedule for a selected binding of tasks. As resources
are shared and tasks executions are dependent on each other, selecting a binding for a task
might influence (i.e., increase) further task execution times or does not affect the overall timing
at all (i.e., the task execution is fitted into a free time slot). In fact, the schedule is not only
dependent on the binding of the tasks but also the order of executions and the communication
routing over the network. In order to account for all these constraints, a Boolean encoding
would need decision variables that represent every possible time slot for every task. As a con-
sequnece, the number of these decision variables would increase exponentially. Hence, handling
such constraints is not feasible for realistic problem sizes.

Satisfiability modulo Theories One possibility to handle the aforementioned problem is the
application of background theories. The idea is that a part of the encoding is split from the
original problem and solved using a specialized technique. The result is then fed back to the
foreground theory (e.g., ASP, SAT) with the help of indicator variables that are known by both
fore- and background theories. The methodology is originally known as satisfiability modulo
theories (SMT) and was first applied to SAT. Here, in addition to propositional terms, SMT

19

2 Model-based Design

formulas consist of multiple different (combined) theory terms. In general, there exist two
possibilities to handle these combined formulas. The first approach is based on the translation
of the background theory into SAT. Such eager approaches have been developed as efficient
SAT solvers became available. The main advantages of an eager approach is that a state-of-
the-art SAT solver can be used to check the resulting formula for satisfiability. Although there
exist algorithms for translating various theories (e.g., the theory of equality of uninterpreted
functions (EUF) or difference logic) into propositional logic, they are often not as efficient as
specialized solvers [43]. Lazy SMT techniques are the second category and are used in many
modern SMT solvers such as Z3 [44]. Here, each atom in the original SMT formula is considered
a propositional symbol, i.e., not as a special theory term. The resulting propositional formula
is then checked for satisfiability by a SAT solver. If the propositional formula is already
unsatisfiable, the whole SMT formula is too. Otherwise, the propositional model is checked by
a specialized theory solver. In turn, the theory solver returns a conflict clause to the SAT solver
if the model does not satisfy the theory. This is repeated until a model for the theory is found or
the SAT solver identifies unsatisfiability. In most solvers today, this idea is directly integrated
into the solving algorithm of DPLL. For SMT solvers, the technique is called DPLL(T). The
following example shall illustrate the methodology of DPLL(T). Consider the SMT formula F
consisting of a combination of propositional and EUF terms.

F = (p ∨ q) ∧

⎛⎜⎝h(a) = b⏞ ⏟⏟ ⏞
x1

⎞⎟⎠ ∧
⎛⎜⎝g(b) ̸= h(g(b)⏞ ⏟⏟ ⏞

¬x2

) ∨ (a ̸= b)⏞ ⏟⏟ ⏞
¬x3

⎞⎟⎠ ∧
⎛⎜⎝g(b) = b⏞ ⏟⏟ ⏞

x4

∨h(b) = b⏞ ⏟⏟ ⏞
x5

⎞⎟⎠
With each EUF term assumed to be a propositional symbol x1, . . . , x5, the SAT solver considers
the standard CNF FCNF = (p∨q)∧(x1)∧(¬x2∨¬x3)∧(x4∨x5). A possible satisfying assignment
is identified by the SAT solver as {p, x1,¬x2, x3, x4,¬x5}. In the next step, that particular
assignment is checked by an EUF solver. As x3 implies that a = b, it results in a conflict in
x2: g(b) ̸= h(g(b)) x4→ b ̸= h(b) x3→ b ̸= h(a) x1→ b ̸= b. Hence, the assignment does not satisfy
the original SMT formula. According to DPLL, the conflict clause (¬x1 ∨ x2 ∨¬x3 ∨¬x4 ∨ x5)
is added to the problem and the search is backtracked. The next assignment to be checked is
{p, x1, x2,¬x3, x4,¬x5}. Again, the assignment does not satisfy the theory as g(b) = h(g(b)) x4→
b = h(b) conflicts with h(b) ̸= b implied by ¬x5. Eventually, an assignment satisfying the
theory such as {p, x1, x2,¬x3, x4, x5} is found.

The above methodology can be improved by incremental theory solving, theory propagation
and theory lemmas that steer backjumping of the underlying SAT solver [43]. With incremental
theory solving, whenever a decision is made in the SAT solver, a partial assignment is checked
whether it is still satisfiable by the theory. Theory propagation allows the theory solver to
propagate decisions based on already made partial assignments. Theory lemmas improve the
conflict clauses returned by the theory solver and allow the underlying DPLL algorithm to
perform focused backjumps. In the formula F above, theory propagation can lead to faster
satisfiability solving. For example, whenever x1 and x3 concurrently hold, x5 has to hold too,
i.e., h(a) = b

x4→ h(b) = b.

Answer Set Programming modulo Theories More recently, this concept has been extended
to ASP [45, 46]. In general, ASP modulo theories (ASPmT) relates to ASP similarly as SMT
relates to SAT. Hence, theory atoms in stable models of a grounded logic program have to be
derivable by the given rules and need to be checked through specialized solvers. In contrast to

20

2.3 Multi-objective Optimization

SMT, special care has to be taken during the grounding phase. That is, variable replacement
is limited in theory atoms as shown for example in [42]. A more detailed discussion of ASPmT
and its application in system design is conducted in Chapter 3 of this monograph.

To allow the definition of difference (and other theory) terms within the ASP program, the
input language of the solver has to be extended. To this end, the ASP solver clingo 5 is
utilized that allows for the definition of arbitrary theory languages [42]. Hence, a short review
of the language definition as described in [42] is given. Here, a theory language definition is
introduced by the #theory keyword followed by a unique name T and a set of theory term and
theory atom definitions Di with i ∈ [1, n]:

#theory T {D1;...; Dn}.

A theory atom is characterized by a leading ampersand &, a predicate name p, and its arity k
followed by its syntax definition. Theory atoms may occur in two forms distinguished by its
definition. It either consists of a single theory term t or it is a concatenation of two theory
terms t, t’ connected by a set of theory operators ⋄i:

&p/k : t, o or &p/k : t, {⋄1,...,⋄m}, t’, o.

The final parameter o ∈ {head, body, any, directive} determines the possible position in
an ASP rule. Theory terms with name t are integral parts of a theory atom and contain a set
of theory operator definitions Di:

t : {D1;...;Dm}.

In the logic program, a theory term t can have one of the following forms:

a constant term: c a function theory term: f(t1, . . . , tk)
a variable term: v a tuple theory term: (t1, . . . , tl,)
a binary theory term: t1 ⋄ t2 a set theory term: {t1, . . . , tl}
a unary theory term: ⋄t2 a list theory term: [t1, . . . , tl]

where each ti is a theory term, ⋄ is a theory operator defined by some Di, c and f are symbolic
constants, v is a first-order variable, k ≥ 1, and l ≥ 0. Finally, a theory operator ⋄ characterizes
the relations between theory terms. It may be a unary or a binary operator, whereas for binary
theory operators, their associativity a can be defined as left or right. Thus, it has the form

⋄ : p, unary or ⋄ : p, binary, a

where p ≥ 0 defines the precedence over other theory operators.

2.3 Multi-objective Optimization

The optimization is an integral part of the synthesis step. When a designer is only interested
in one objective, e.g., power consumption, the various design candidates are totally ordered.
A design candidate A that consumes 10 mW is clearly superior to a design candidate B that
consumes 20 mW for the same functionality. In many real-life scenarios, however, the design
is subject to multiple objectives concurrently.

21

2 Model-based Design

A

B

Infeasible Region

Unexplored Region

Invalid Region

f2

better→

f1←better

Figure 2.4: Regions in the objective space
of a 2-dimensional minimization
problem

f2

better→

f1←better

incomparable
x ∥ y

incomparable
x ∥ y

dominates
y ≻ x

is dominated
x ≻ y

x

Figure 2.5: Dominance relation of objective
vectors in a 2-dimensional mini-
mization problem

If a solution candidate x conforms to the feasibility and validity constraints, it belongs to
the sets XF and XV , respectively, with XV ⊆ XF . An exemplary result of an (incomplete)
optimization run is given in Figure 2.4. The figure depicts the regions of the problem in the
objective space. The gray lower left part does not contain any solutions as potential solutions
do not conform to given feasibility constraints hi(x). Similar, solution candidates in the top
and right gray regions do not conform to validity constraints gi(x). Only solutions that are
located in the valid region, indicated by the white and red regions are potentially good ones, i.e.,
the orange and blue solutions. Note that Figure 2.4 is an illustrative example. Especially the
shapes of the invalid and infeasible regions may be irregular and do not have to be connected.
Optimizing the individual objectives simultaneously is generally not possible as they are often
conflicting with each other, i.e., improving one objective implies the deterioration of another.
For instance, optimizing for low power consumption and high performance is generally mutually
exclusive as a low-power design is not able to deliver high performance and vice versa. Assume
again the designs A and B from above. In addition to the power consumption of 10 mW and 20
mW, design A is evaluated to attain a latency of 100 µs while design B achieves an end-to-end
latency of just 50 µs. While A is better with respect to power consumption, B achieves a higher
performance. Neither A nor B can be considered superior to the other.

Definition 2.3.1 (Multi-objective Optimization Problem): Given a set of objective
functions f(x) = {f1(x), . . . , fn(x)} ∈ O, an n-dimensional multi-objective optimization
problem (MOOP) is formulated as follows:

optimize f(x)
subject to:

hi(x) = ⊤,
gi(x) < 0,

where P is the parameter space, x ∈ P is the set of parameters, O is the objective space,
hi(x) is the set of feasibility constraints, and gi(x) is the set of validity constraints.

22

2.3 Multi-objective Optimization

Table 2.2: Classification of different dominance relations of objective vectors and non-
dominated fronts assuming a minimization problem [47]

objective vectors (i, j ∈ {0, . . . , n}) relation solution fronts (x ∈ X, y ∈ Y)

∀i : fi(x) < fi(y) x ≻≻ y strictly dominates X ≻≻ Y ∀y∃x : x ≻≻ y
x ⪰ y ∧ ∃j : fj(x) < fj(y) x ≻ y dominates X ≻ Y ∀y∃x : x ≻ y

– – better X ▷ Y X ⪰ Y ∧X ̸= Y
∀i : fi(x) ≤ fi(y) x ⪰ y weakly dominates X ⪰ Y ∀y∃x : x ⪰ y

x ̸⪰ y ∧ y ̸⪰ x x ∥ y incomparable X ∥ Y X ̸⪰ Y ∧ Y ̸⪰ X

In contrast to single-objective optimization problems (SOOPs), the design candidates of
MOOPs are not totally but rather partially ordered through the notion of dominance. The
dominance relation ≻ is formally defined for n-dimensional objective vectors of two distinct
solutions. A candidate solution x is said to dominate another solution y (x ≻ y) if x is evaluated
at least as good in every objective and better in at least one objective when compared to y.

Definition 2.3.2 (Dominance Relation): Without loss of generality, for a minimiza-
tion problem with n objectives evaluated through the functions f1, . . . , fn, the dominance
relation ≻ between two solutions x and y is defined as follows:

x ≻ y ↔ ∀i ∈ {1, . . . , n} : fi(x) ≤ fi(y) ∧ ∃j ∈ {1, . . . , n} : fj(x) < fj(y). (2.1)

The dominance relation can be further classified into strict and weak dominance as given in
the left part of Table 2.2. If a solution vector x is evaluated better than another solution y in
each objective, x is said to strictly dominate y (x ≻≻ y). The weak dominance relation x ⪰ y
is similar to the standard dominance relation (x ≻ y) but it explicitly allows for the equality
of two solution vectors. A visualization is given in Figure 2.5. The design candidate x is given
as a reference in a 2-dimensional minimization problem. Another design candidate y that is
evaluated and located in the upper right quadrant of the coordinate system is dominated by x
as both objectives f1 and f2 evaluate worse than for x. Contrary, if y was located in the lower
left quadrant, x was dominated by y. Finally, if y was located in the crosshatched quadrants,
neither of the two design candidates would be dominated by the other. In the upper left
quadrant, y would be evaluated better by f1 and worse by f2. Analogue, in the lower right
quadrant, the evaluation of f2 would be better and f1 would be worse. In these cases, x and y
are said to be incomparable (x ∥ y) or mutually non-dominated.

On the basis of the dominance relation, Pareto optimality is defined.

Definition 2.3.3 (Pareto optimality): A design candidate x is said to be Pareto optimal
if no valid dominating solution y exists: ∄y ∈ XV : y ≻ x.

The set of all Pareto optimal solutions forms the Pareto front. Thus, by definition, solutions
that are contained in the Pareto front XP are therefore mutually non-dominated to each other.
The Pareto front represents the best compromise solutions that can be found for a given MOOP.
According to the extended dominance relation towards sets of solutions, the Pareto front weakly
dominates every other possible front, that can be formed by the solution candidates. This is
shown in the right part of Table 2.2.

Obtaining the true Pareto front is, however, hard in general. Especially in the domain of

23

2 Model-based Design

system design, it has been shown to be NP-complete [48]. Hence, an exhaustive search for all
Pareto optimal solutions is often not feasible due to the vast search space. The result of an
optimization run is therefore only an approximate Pareto front while a fraction of the design
space remains unexplored. Although some solutions might not be found, the approximated
Pareto front still only contains mutually non-dominated solutions, i.e., it is domination-free.
Note that Pareto front approximations obtained by individual optimization runs generally
contain varying solution candidates as different regions of the search space have been explored.
For the sake of clarity, the term non-dominated front will be used in the remainder of this
monograph to refer to an approximate Pareto front, i.e., whenever not the entire search space
has been explored.

Consider again the (incomplete) optimization run in Figure 2.4. While the gray solutions
are filtered out as they are not located in the valid region, each orange solution is valid but
dominated by at least one other solution. The non-dominated front is represented by the blue
solutions as none of them is dominated by another solution. However, as the optimization run
is incomplete (e.g., due to a vast search space), the non-dominated front is not guaranteed to
be Pareto optimal. Further solutions might be located in the unexplored region (red) of the
design space and would be contained in the true Pareto front, indicated by the dashed curve.

2.3.1 Quality Indicators

Considering that only a fraction of the search space is explored, it becomes imperative to
evaluate the performance of different approaches. Therefore, generally two characteristics are
of interest: the convergence and the diversity2-5 of the obtained non-dominated front. While
the convergence assesses the proximity of the non-dominated front to the true Pareto front, the
diversity evaluates the distribution of the individual solutions within the non-dominated front.
Hence, a front that is located close to the true Pareto front has a good convergence, cf. Figure
2.6(a). Evenly distributed solutions constitute a good diversity, cf. Figure 2.6(b). While the
blue fronts have a clearly better quality than the orange ones in the first two cases, Figure
2.6(c) shows an example where the assessment is not trivial. On the one hand, the orange
front contains better solutions with respect to the first objective f1. On the other hand, the
blue front contains better solutions regarding the second objective f2. As a remedy, numerous
formal quality indicators have been presented in the literature that aim at assessing the quality
of non-dominated fronts.

Dominance Ranking Considering a collection of approximate Pareto fronts C, dominance
ranking [50] calculates a rank for each individual front Ci ∈ C within C based on the dominance
relation. The rank assigned to each front Ci corresponds to the number of other fronts Cj that
are better than Ci: rank(Ci) = 1 + |{Cj ∈ C : Cj ▷ Ci}|. Thus, a high rank signifies a worse
front than a low rank. As a result, the dominance ranking yields a relative statement about
the convergence of the non-dominated front with respect to the entire collection C. It cannot,
however, provide information on how much better or worse a front is compared to the rest and
if two fronts Ci and Cj are incomparable to each other, the dominance ranking will result in
the same ranks, cf. Figure 2.6(c).

2-5In some works (e.g., [49]), the diversity of the non-dominated front is further classified into uniformity and
spread which is not covered in the present monograph.

24

2.3 Multi-objective Optimization

f2

better→

f1←better

(a) Convergence differences

f2

better→

f1←better

(b) Diversity differences

f2

better→

f1←better

(c) Unclear quality

Figure 2.6: Comparison of two non-dominated fronts obtained by different optimization runs.
(a) Both runs have a similar diversity, but blue has a better convergence. (b)
Both runs result in a similar convergence, but blue has a higher diversity. (c) It is
unclear which front has a better convergence/diversity.

Generational Distance The generational distance (GD) [51] is another quality indicator
to assess a non-dominated front with respect to the convergence. In contrast to dominance
ranking, the GD needs a reference front to be calculated but quantifies the quality of the non-
dominated front. Given a non-dominated front X and a reference front A, the generational
distance GD(X) is based on the minimal Euclidean distance di of every solution candidate
i ∈ X to the reference front A:

GD(X) = 1
n
·

⌜⃓⃓⎷ n∑︂
i=1

d2
i , (2.2)

where n is the number of solutions in X.
The main problem of the GD is its averaging character. With an increasing number of

solutions in the non-dominated front, the quality measure decreases and the front is evaluated
better. A remedy has been proposed as the GDp indicator in [52]:

GDp(X) = 1√
n
·

⌜⃓⃓⎷ n∑︂
i=1

d2
i . (2.3)

Using the power mean prevents the preference towards large non-dominated fronts and makes
the comparison of fronts of different size more fair.

Convergence and Diversity Measure In [53], two quality indicators have been proposed.
The convergence measure is calculated similar to the GD but without applying the square root
to the accumulated distances in the numerator. Thus, the problem comparing differently sized
fronts does not arise.

Regarding measuring the diversity of a non-dominated front, an entropy-based approached
is used. To calculate the diversity measure, the n-dimensional objective space is therefore first
projected onto a (n− 1)-dimensional hyperplane. The hyperplane is then divided into N small
grids resulting in (n − 1)-dimensional boxes. Two binary variables Hi and hi are calculated

25

2 Model-based Design

for each grid i ∈ N that define whether a point of a reference front A and a point of the
non-dominated front X lie within each box, respectively. Depending on the values of Hi and
hi, and their direct neighbors, a distribution function m is defined. Finally, all results of m(Hi)
and m(hi) are accumulated and set into relation with each other:

D(X) =

∑︁
i∈N
hi ̸=0

m(hi)∑︁
i∈N

Hi ̸=0
m(Hi)

(2.4)

The grid size and the exact definition of the distribution function m are set by the user. While
small, and thus many grids increase the resolution of the indicator, it simultaneously increases
the complexity of the indicator. As the grid is also dependent on the number of objectives (i.e.,
the dimensionality of the problem), the complexity increases exponentially with the number
of objectives. Furthermore, a proposal for m is given by the authors only for 2-dimensional
problems. A definition for more than two objectives remains unclear.

Entropy Indicator Instead of the distribution function m, in [54] a Gaussian influence func-
tion is used to determine the entropy of the non-dominated set. The advantage of this approach
is the general applicability for more than two objectives as it is based on the Euclidean distance.
To apply the entropy indicator to an n-dimensional MOOP, the front has to be projected onto
an (n− 1)-dimensional hyperplane orthogonal to the line between normalized ideal and nadir
points2-6. The hyperplane is divided into a grid of a1 × . . . × an−1 cells, where a1 to an−1
(i.e., the grid size) are problem specific and user defined. Each solution x in the projected
non-dominated front X influences the density of a grid cell i by a certain degree according to
a user-defined influence function Ω(rx→i), where rx→i is the Euclidean distance from x to grid
cell i:

D(i) =
∑︂
x∈X

Ω(rx→i). (2.5)

The original work [54] proposes to utilize the Gaussian influence function

Ω(r) = 1
σ ·
√

2π
exp

(︄
−r2

σ2

)︄
(2.6)

with σ = 1/6. In order to calculate the entropy for the entire front, the density has to be
normalized to the accumulated density of all grid cells:

ρi = Di∑︁a1·...·an−1
k=1 Dk

. (2.7)

Finally, the entropy is defined as:

H = −
a1·...·an−1∑︂

k=1
ρk · ln(ρk). (2.8)

The entropy indicator evaluates the flatness of the distribution with a higher value indicating
a better diversity of the solutions. Although the entropy measure is more generally applicable
than the diversity measure above, it is still exponential in the number objectives.
2-6In MOOPs, the ideal and nadir points represent the best and worst of each objective value in the non-dominated

set, respectively.

26

2.3 Multi-objective Optimization

Diversity Comparison Indicator The diversity comparison indicator (DCI) [49] implements
another approach based on the entropy of the non-dominated front. Similar to the diversity
measure, DCI also spans a grid to assess the distribution of solutions within the objective space.
However, it only considers boxes that contain solutions and therefore achieves a quadratic
complexity independent of the grid size and the number of objectives. The grid is constructed
manually and should be located near the true Pareto front. Hence, the authors propose to use
the satisfied region, i.e., a user defined region that is expected to be located near the Pareto
front. If it is not possible to determine this region, the (approximated) ideal and nadir points
of the problem can be used instead.

Applying DCI to a single non-dominated front is not feasible, i.e., the indicator does not
produce an absolute quality value. Rather, it is applied to a set of non-dominated fronts to
assess the diversity of each front with respect to the entire set. Therefore, a combined front is
created to determine the grid boxes that are used (i.e., active) for the calculation. Grids that
contain now-dominated solutions are not considered in the assessment. For each active grid box
h, the contribution degree CD(P, h) of each individual non-dominated front P is calculated:

CD(P, h) =
{︄

1−D(P, h)2/(n + 1) if D(P, h) <
√

m + 1
0 else , (2.9)

where D(P, h) equals the minimum Euclidean distance of P to grid box h and n is the number
of objectives. The DCI of each front P is finally calculated by averaging the contribution degree
to each active box h. While the complexity of the algorithm is not influenced by the number
of grid boxes, it is sensitive towards the size of the grid. If the grid size is chosen too small, the
contribution of solutions may be insignificant towards the active boxes. Contrary, if the grid
size is too large, too many solutions will be present in each grid box and the DCI will fail to
distinguish differences in the diversity of individual non-dominated fronts.

Hypervolume The hypervolume quality indicator[55] calculates the area dominated by the
solutions present in the non-dominated front. Considering an n-dimensional MOOP, for each
solution candidate xi, the point in objective space Pxi = (f1(xi), . . . , fn(xi)) and a reference
point Pr span a hyperbox Hi. The intersections of all hyperboxes yield the hypervolume H
for the obtained non-dominated front. A larger hypervolume w.r.t. the same reference point
signifies a better quality of the front. Choosing the reference point is important for the relevance
of the approach. A good location for the reference point is, for example, at the crossing point
of invalid region of the individual objective functions. There, it is guaranteed to be dominated
by each solution, and it is identical for every non-dominated front. In the 2-dimensional
case, each solution candidate spans a rectangular hyperbox. The white region in Figure 2.4,
for example, represents the area H that is calculated by the hypervolume measure when the
reference is located at the intersection of the invalid regions. As a unary quality indicator, the
hypervolume can be calculated for each front individually, i.e., a reference front is not needed.
However, it prefers convex over concave regions and therefore might overrate certain solutions
[55]. The complexity to calculate the hypervolume is O(nd−2 log n) as analyzed in [56].

Epsilon Dominance The Epsilon Dominance (ϵ-Dominance) is an indicator to measure the
convergence of non-dominated fronts. It is introduced in [57] and quantifies the quality differ-
ences of two solutions x and y by a factor ϵ. The solution x is said to ϵ-dominate y (x ≻ϵ y) for

27

2 Model-based Design

some ϵ > 0 if f(x) evaluates better for each objective 1, . . . , n than f(y) by a factor of (1 + ϵ),
i.e., ∀i ∈ {1, . . . , n} : (1 + ϵ) · fi(x) ≥ fi(y). Inspired by this concept, the binary ϵ-indicator
Iϵ(X, Y) is proposed in [47] which extends the concept of the epsilon dominance towards two
non-dominated fronts X and Y . The indicator Iϵ(X, Y) is defined as the greatest lower bound
(infimum) of ϵ such that each solution vector y ∈ Y is ϵ-dominated by at least one solution
x ∈ X, i.e., Iϵ(X, Y) = infϵ∈R{∀y ∈ Y : ∃x ∈ X : x ⪰ϵ y}. Hence, it represents a factor by
which a non-dominated front is worse than another with respect to all objectives. Calculating
the binary ϵ-dominance in practice has a time complexity of O(n · |X| · |Y |):

Iϵ(X, Y) = max
y∈Y

min
x∈X

nmax
i=1

xi

yi
. (2.10)

The binary ϵ-indicator can be used to identify incomparable fronts as its application yields
conflicting results. For instance, considering the problem in Figure 2.6(c), applying the binary ϵ-
indicator results in Iϵ(BLUE, ORANGE) > 1 and simultaneously Iϵ(ORANGE, BLUE) > 1.
Depending on the order, one front or the other is considered to be worse. Hence, for the
identification, it is imperative to calculate the binary ϵ-indicator in both directions.

Based on the binary indicator, a unary ϵ-indicator Iϵ(X) can be used instead. Given a
reference P , an absolute quality value can be calculated for each front X, i.e., Iϵ(X) = Iϵ(X, P).
Ideally, the true Pareto front is taken as a reference. However, as discussed above, the true
Pareto front is usually not known. A combined front of all non-dominated solutions can be
used instead. By implication, the combined front weakly dominates every other non-dominated
front such that the quality of each front can be directly compared.

2.3.2 Optimization Approaches

The aim of solving a multi-objective optimization problem is to provide Pareto optimal or
at least non-dominated solution candidates to a decision maker (DM). The DM is expected
to have domain knowledge and can select the most appropriate solution for implementation.
Depending on whether the preferences of the DM are known before the optimization run or not,
different approaches for solving a MOOP must be followed. A priori approaches are available
whenever preferences of the DM are known before an optimization run. A posteriori methods
construct the Pareto front first and the DM selects a preferred solution afterwards.

If the preference towards a specific objective (e.g., performance) is known before the problem
is being tackled, the generally formulated MOOP can be transformed into a SOOP. There-
fore, only one objective is being optimized while the remaining objectives are converted into
constraints with an upper bound ϵ [58]. Note that the result of this SOOP is not guaranteed
to be Pareto optimal w.r.t. the original MOOP as only one minimization is executed. A lex-
icographic approach (e.g. [59]) can be used if, instead of one specific objective, the order of
objectives is defined by the DM, i.e., objective f1 is more important than f2 and so on. This
is enabled by a series of SOOPs that have to be executed. First, only the most important
objective is optimized resulting in the best possible objective value. The next iteration opti-
mizes the second to most important objective while adding a constraint to prevent the previous
objective from deteriorating. This procedure is repeated for the remaining objectives and the
final optimization yields one Pareto optimal solution of the corresponding MOOP.

A solution to the MOOP can also be obtained by scalarization where the problem is again
transformed to a single objective. An example is the weighting method [60]. In the weighting
method, a single objective is constructed as the sum of all n objective functions fi multiplied

28

2.3 Multi-objective Optimization

with individual weights wi, i.e.,
∑︁n

i=1 wi · fi(x). The function is then minimized. If a solution
exists with wi > 0 for all i, the solution is Pareto optimal for the corresponding MOOP2-7.

In this monograph, a more thorough investigation of a priori approaches is out of scope.
The interested reader is referenced to [61] and the references therein for further studies. In the
following, preferences by the DM are instead assumed to be unavailable before the optimization
is executed. That is, all Pareto optimal solutions are considered equally good during the
optimization run and the emphasis is put on a posteriori approaches. In general, it is possible
to adapt most a priori methods such that they deliver a complete Pareto front. Assume,
for instance, the application of the lexicographic approach for a 2-dimensional minimization
problem. At first, the first Pareto optimal solution xP 1 = (f1(x1), f2(x1)) is obtained as
described above. As it is guaranteed that there is no better objective value for f1 than f1(x1),
any further Pareto optimal solutions achieve a worse quality in f1 but a better quality in f2.
Therefore, two constraints of the form f1(x2) > f1(x1) and f2(x2) < f2(x1) are added. The
optimization is executed as before and a second Pareto optimal solution is obtained. This is
repeated until no further solution can be found, that conforms to the newly added constraints.
The advantage of this approach is that it is able to find all Pareto optimal solutions. However,
for optimization problems with n > 2 objectives, the procedure had to be executed (n − 1)
times for each Pareto optimal solution. This leads to an exponential increase in individual
optimization runs and degrades performance of the optimization.

As a consequence, more specialized methods have been presented in the literature that aim
at generating the set of optimal solutions for the DM to decide. These approaches can be
classified into exact and heuristic approaches. While heuristic approaches generally only yield
an approximate Pareto front, exact approaches can generate the true Pareto front.

Heuristic Approaches Heuristic approaches basically aim at generating Pareto optimal so-
lutions by randomly traversing the design space and automatically steering the search towards
promising regions. The idea of all heuristic approaches is that small changes in the parameter
space lead to small changes in the objective space. For example, mapping a single task onto a
different CPU while maintaining the binding decisions of the remaining tasks, alters the entire
set of objectives by a small degree. Hence, decisions are progressively adjusted throughout the
execution of an optimization run where only the good solutions are kept for further modifica-
tions. This is repeated until an abortion criterion is reached such as a maximum number of
generations (i.e., steps), a desired quality is achieved, no better decisions can be found, or a
combination of all. While this basic methodology guarantees a constant improvement of the
acquired design candidates, it is subject to the problem of local optima. Local optima are
situations during the search where individual changes do not improve the current design but
there exist areas in the parameter space that would lead to better designs. A remedy to this
problem are randomized decisions that are injected into the search. While most of the time
only local modifications to the decisions are made, once in a while, a (completely) random
set of decisions is generated and will be used instead. Figure 2.7 depicts the problem of local
optima with the aid of a single-objective minimization problem. For the sake of the argument,
the parameter space P translates into the objective space O through an (upfront unknown)
non-linear function, represented by the black curve. The function has three local optima, in-
dicated by A, B, and C of which only C constitutes the global optimum. Assuming that a

2-7If the problem is non-convex, the obtained solution may only be locally Pareto-optimal.

29

2 Model-based Design

objective
space

Y
better→

parameter space X

A

random change

local
change

B

C

Figure 2.7: Local optima of a single-objective minimization problem

design candidate is already acquired in the optimum A (blue dot), a local modification of the
parameters results in a deterioration (i.e., orange dot). On the contrary, a random change of
the parameters may lead to an improvement as indicated by the turquoise dot that is located
next to the global optimum C. Note that a random change does not guarantee an escape from
the local optimum. Whenever the randomly generated design is worse than the reference de-
sign, the search will continue in the neighborhood of the latter. This leads to the first problem
of heuristic approaches: the achievement of a global optimum cannot be proven if the exact
objective function is unknown.

The utilization of an approach such as the above where only one solution is kept as reference
(e.g., simulated annealing [62] and the downhill simplex algorithm [63]) is not suited for opti-
mization problems with multiple objectives. For solving MOOPs, population-based heuristic
prevail. Here, not only one design candidate (i.e., individual) is kept, but a set of individuals
(i.e., a population) is initially generated that is evaluated and improved in every generation.
Most of them are inspired by nature. Ant colony optimization (ACO) [64] is, for example,
motivated by the behavior of ants searching for food. Individual ants that find promising
food sources secrete pheromones to attract other ants to also move into that direction. Analo-
gously, good design candidates indicate promising regions of the search space and the search is
steered towards that direction. Particle swarm optimization (PSO) [65] simulates the behavior
of swarms where many individuals cooperate to achieve a common goal.

A third important approach are multi-objective evolutionary algorithms (MOEAs) that are
based on the natural selection process. The idea is that properties of good design candidates
are passed on to subsequent generations and bad areas in the parameter space are discarded.
An individual is first created as a genotype representing the decisions taken in the parameter
space. In a second step, the genotype is than translated into a phenotype that can be used
to assess the design candidate in the objective space. The search is steered by the concepts
of recombination and mutation. While the former picks up on the idea of local changes in
the parameter space, the latter is responsible for random changes to escape the local optima.
During recombination, the genotypes of two or more individuals (i.e., parents) are merged to
form a new child individual. In contrast, mutation creates an offspring by changing random
genomes of one individual only. The newly created children form the next generation and are
subsequently decoded, evaluated, and recombined again. Although, the general methodologies
are similar throughout different evolutionary approaches, the details on how to manage Pareto
optimal individuals and select parents for the succeeding generations vary.

30

2.3 Multi-objective Optimization

parent
population

Pt

offsprings

rank 1

rank 2

rank 3

rank 4

rank 5

rank 1

rank 2 parent
population

Pt+1

reject

reject

crow
ding

distance
sort

dom
inance

ranking
sort

recombination
mutation

Figure 2.8: Execution of one generation in NSGA-II according to [69]

The strength Pareto evolutionary algorithm (SPEA) [66] and its successor SPEA2 [67] save
the non-dominated solutions in an external bounded archive, i.e., separated from the popula-
tion. The selection process is steered by the fitness value of each individual, where a better
fitness increases the probability of being selected for recombination. An individual is assigned
a better fitness when there exist few other solutions that dominate it. Hence, Pareto optimal
solutions have the best fitness. Whenever the number of non-dominated solutions exceeds the
bound of the archive, it is pruned in a way such that the diversity of solutions is kept. The non-
dominated sorting genetic algorithm (NSGA) [68] and its successors [69, 70] pursue a different
way. Here, no external archive of non-dominated solutions exists but instead, the population
contains all individuals of a generation. The methodology of NSGA-II [69] is depicted in Fig-
ure 2.8. In each generation t, a parent population Pt of size |P | generates an equally sized set
of offsprings through recombination and mutation. The selection of the next parent population
Pt+1 is a two-step process. At first, the combined population is sorted by determining the dom-
inance rank of each individual on the basis of its phenotype. Starting with rank 1, all ranks are
successively added to Pt+1 whilst the number of individuals in the corresponding rank does not
exceed the population size. In the example given in Figure 2.8, adding all rank 3 individuals
would exceed the population size |P |. In order to select the remaining individuals to be added,
the borderline rank (i.e., rank 3) has to be sorted internally. Therefore, the crowding distance
is determined that represents the diversity of each individual. Only the most diverse solutions
are added to Pt+1 while the rest is rejected.

The main advantages of heuristic approaches are continuously improving solutions and a
high diversity through randomized decisions. Especially, population-based approaches such as
MOEAs are able to approximate the true Pareto front in a reasonable time. However, these
advantages are opposed by three major problems. First, the generation of an initial solution or
population is problematic if only a few solutions are feasible and valid. Randomly generated
solutions may be located in a region of the search space, that do not conform to feasibility and
validity constraints. Although random decisions will eventually lead the search towards valid
regions, local parameter changes will only result in further invalid solutions. Second, there is
generally no way of knowing whether an acquired solution or front is the true optimum of the
problem. This is explained by the lack of a systematical search. It is unknown which areas

31

2 Model-based Design

of the search have already been visited and could contain additional optima. Furthermore,
not finding any solutions with a heuristic approach does not prove that the given problem
is insoluble. Finally, heuristics tend to run into saturation where the same regions of the
search space are visited over and over. For example, recombination in MOEAs is increasingly
less likely to produce new individuals when consisting solutions get more similar. Although,
random decisions (i.e., mutations) may escape these regions, the probability of keeping these
for the next population diminishes when numerous better (but similar) solutions already exist.

Exact Approaches In contrast to heuristics, formal approaches explore the search space
systematically. This allows, at least in theory, to find all Pareto optimal solutions without
repeatedly visiting the same regions of the search space.

In its simplest form, all possible decisions are enumerated, optimal solutions are saved, and
the rest is rejected. Considering a synthesis problem where ten software tasks shall be mapped
onto three processing elements, with the enumeration approach had to evaluate 310 ≈ 6 · 104

different solutions. If the number of tasks is doubled, it would already lead to 320 ≈ 3.5 · 109

solutions. Hence, the exponential growth makes the simple enumeration infeasible in practice.
More advanced formal approaches utilize mathematical models to encode the problem and the
corresponding constraints. These models are subsequently decoded by specialized solvers that
search for solutions that fulfill the constraints. The advantage of these approaches is that
the integrated constraint encoding prune effectively invalid regions of the design space such
that many solutions are not unnecessarily visited. Linear programming (LP) and SAT are two
prominent representatives. Linear programming encodes an optimization problem by a set of
linear equations and inequalities. While there exist efficient algorithms to solve an LP, it is not
suitable for problems with discrete parameters. Thus, integer linear programming (ILP) must
be used instead that only allows integer variables but is shown to be NP-complete. Solving a
single-objective ILP (exactly) is commonly done by first solving the relaxation in form of an
LP to acquire upper and lower bounds. In subsequent steps, the problem is continuously nar-
rowed by splitting it into subproblems (branch-and-bound algorithm [71]) or the introduction
of additional inequalities (cutting plane algorithm [72]) until a discrete solution is found.

While SAT is primarily not an optimization technique, it can be utilized to explore the design
space systematically. This can be achieved by applying a modified DPLL algorithm as detailed
in section 2.2. In contrast to the default DPLL algorithm, the aim is not answering whether
a given propositional formula is satisfiable but to find all satisfying assignments. To this end,
whenever an assignment is found, the solution is evaluated and compared to previously found
assignments and, if optimal, saved into an archive. Simultaneously, non-optimal assignments
are removed from the archive. Finally, a conflict clause is added to the original problem
that prevents finding the same assignment again and the solver executes the backtracking
phase. If the extended problem becomes unsatisfiable, the optimal solution has been found.
Note that this methodology is equally applicable for both SOOPs and MOOPs. In fact, the
DPLL approach is applicable to multi-objective ILP problems [73] by traversing the graph of
subproblems. The asprin framework [74] implements the handling of optimizations in ASP.
It is able to define and evaluate preference relations over stable models of a logic program.
The generation of optimal stable models is a stepwise process based on successive calls to an
underlying ASP solver. Therefore, a stable model is supplied to an external preference program
that aims to deliver a strictly better stable model, if one exists. For MOOPs, this implies that
only after a solution is proven to be Pareto-optimal, incomparable solutions are explored. In

32

2.4 Related Work

contrast to the DPLL-based approach above, optimal stable models are not saved to an archive
but instead are saved via facts within the logic program.

Although the application of exact approaches, i.e., ILP, SAT, and ASP, improves the search
space exploration significantly compared to simple enumeration, the complexity stays the same.
Hence, a growing decision space exponentially increases the number of solution candidates to be
considered. This prevents these techniques to exhaustively explore the design space especially
for large problem instances. Furthermore, found solution candidates are often clustered in
local regions of the decision space. While local regions are exited by design eventually, formal
approaches might remain there for a long period. If that happens, and they are aborted prior
to completion, they provide less diversified solutions than heuristic approaches would. Hybrid
approaches are proposed as a remedy for this situation. Such hybrid approaches combine the
high diversity of heuristics and the systematic search for feasible solutions. In contrast to pure
heuristics, the population of solution candidates is not selected randomly. Instead, the problem
is encoded formally and a systematic solver is used to generate solutions. To obtain diverse
solutions, the internal decision strategy of the solver is subject to recombination and mutation
operations. Hence, different decision strategies constitute the population of one generation.
An example is presented in [75], where the problem is encoded by means of a propositional
formula and search is executed with an MOEA. There, the genotype consists of the phases and
priorities of the corresponding variables in the propositional formula. In turn, the phases and
priorities are used as the search heuristic in the SAT solver transforming the genotype into the
phenotype. This way, the approach solves the problem of finding a feasible initial population
as the SAT solver delivers a satisfying assignment. However, the other problems of MOEAs
remain. Thus, as the general methodology is still based on random decisions, the status of the
exploration coverage is unknown. Furthermore, the hybrid approach retains the tendency to
run into saturation if local optima are not escaped.

2.4 Related Work

Throughout the last decades, much research has been conducted in the field of embedded
computer design and connecting areas. So far, this chapter provided the fundamentals of
model-based design. The closing of the chapter shall present previous work directly related
to the individual problems addressed in the remainder of this monograph. By no means, the
discourse is exhaustive. It merely represents an overview of available approaches and sets them
into context of the approaches proposed in the thesis at hand.

2.4.1 System Synthesis

The automated synthesis of a behavioral description into an implementation has been subject
to research for more than four decades. It became a necessity after the digital circuits got too
complex to be developed entirely manually. At first, the emphasis was put on the hardware side
of digital systems. One of the first language approaches was developed with ISPS [76] that aims
at describing the computer system at RTL. With the adoption of very-large-scale integration
(VLSI) methodologies, other languages to model the circuit became available. Starting in 1985,
the VHDL hardware description language was introduced that was standardized by the IEEE
in 1987 [17] and is still used today in RTL design.

Despite the availability of languages, only in the late eighties of the 20th century, automated

33

2 Model-based Design

synthesis approaches became available. The approaches CATHEDRAL-II [77] and the Olympus
Synthesis System [78] are two early examples. Both works address the architecture synthesis
of DSPs. The approaches translate a behavioral description into an application-specific inte-
grated circuit (ASIC). As such, the authors only focus on the creation of integrated circuits, a
consideration of software components is therefore not part of the approaches.

In 1992, Gupta et al. proposed in [79] one of the first synthesis approaches at system level
that incorporated hardware/software co-design principles. They considered behavioral appli-
cations modeled through control flow graphs. During synthesis, the individual blocks of the
graph are partitioned into hardware and software. Therefore, the target platform consists of a
programmable processor that is assisted by several application-specific hardware components.
The hardware is further synthesized using the Olympus Synthesis System [78] while the soft-
ware is assumed to be modeled through C. The partitioning of the application is executed
iteratively. Starting with all components implemented in hardware, the algorithm strives to
successively shift as many tasks as possible towards the software side as long as feasibility and
timing constraints can still be satisfied. The work assumes a fixed platform where the processor
communicates with the hardware accelerators through common interfaces over a central bus. A
more general approach on communication synthesis was proposed by [80]. The paper proposes
to allocate appropriate communication components from a given library. Hence, the approach
creates an application-specific communication infrastructure. Communication between tasks is
modeled through channels that are mapped to allocated communication components fitting the
specified protocols, timing, and area constraints. The authors propose a mapping algorithm
that is based on a decision tree and executed automatically until a feasible implementation is
obtained.

Obtaining optimal designs, rather than only finding a feasible solution became an important
research goal around the late nineties. The authors of [48] first showed that the synthesis was
in fact an NP-complete problem. Furthermore, they proposed combining a model-based design
with a MOEA. The idea in this work is to randomly choose an initial set of implementations
consisting of arbitrary allocation and binding decisions, each encoded as a specialized genotype.
The genotype is then decoded and evaluated through objective functions. To obtain the timing
properties of the implementation, a second heuristic is used that enables the use of standard list-
scheduling techniques. In each generation, the implementations, i.e., genotypes, are permuted
to generate new design candidates. This allows a diverse exploration of the search space.
Ultimately, a set of mutually non-dominated implementations is returned.

In the following years, multiple research groups proposed and developed system synthesis
[81–83] and DSE frameworks [84–89]. While Metropolis [81] does not define any specific tools,
it provides a framework with a common language to support verification, simulation, and the
analysis of designs. The language provides the definition of the behavior of the application
through tasks and channels modeled by process networks. As a hardware model, the language
allows for the definition of processors, memories, and communication infrastructure. The au-
thors assume a platform-based design where allocated resources and their topology is largely
predefined. The interfaces of the individual modules of Metropolis further permit the integra-
tion of specified analysis techniques such as the generation of quasi-static schedules.

The authors of [82] proposed the synthesis system xPilot. It takes a behavioral description
specified in synthesizable C or SystemC code as input. The framework analyzes the code and
extracts processes, channels, and the communication topology. To finally synthesize a domain-
specific system-on-chip, xPilot relies on manual partitioning. Hence, a decision maker has to

34

2.4 Related Work

determine which components shall be implemented in software and hardware. With a given
mapping, the framework generates a feasible schedule using LP. The result of a synthesis run
is a description at RTL in either VHDL or SystemC.

Dömer et al. proposed the system-on-chip environment (SCE) [83] for the synthesis of multi-
processor system-on-chips (SoCs). Similar to xPilot, in SCE, the design decisions are entered
manually through an interactive user interface or shell scripts. However, SCE explicitly includes
an additional automated model refinement step. That is, based on the decisions, the specifi-
cation is transformed into an implementation using specified hardware and software databases
and adheres to specified constraints. SCE allows the (manual) exploration of multiple substeps
in the design process. This includes the architecture, scheduling, and network exploration as
well as the communication, RTL, and software synthesis. The software schedule assumes the
execution of a real-time operating system on each processor. There, the designer can choose
the scheduling strategy that is utilized for the analysis. Ultimately, SCE generates an imple-
mentation model that consists of RTL Verilog code and binaries for each processor.

Daedalus [85, 90] and SystemCoDesinger [86], in contrast to the tools above, are DSE frame-
works that automate the decision-making. Both works provide integrated environments that
yield promising design alternatives at an early stage of the design process. Although the scopes
of both works are put on streaming and data flow applications, the input of both approaches
differs slightly. While the input of Daedalus is modeled through Kahn Process Networks, Sys-
temCoDesigner uses actor oriented SystemC descriptions. The DSE is based on MOEAs to
trade off the often conflicting design objectives. Additionally, Deadalus can be configured to
perform an exhaustive DSE to further investigate certain areas of the design space. The results
of the DSE are RTL implementations that can be used for rapid prototyping.

Pimentel et al. state in a more recent study [91] that DSE approaches can essentially be
categorized into two types. First, (meta-)heuristics like evolutionary algorithms, particle swarm
and ant colony optimization (e.g. [86, 92–94]) and second, exact methods such as ILP and
branch-and-bound algorithms (e.g. [73, 95, 96]).

Most of the works presented in the field of meta-heuristics extend basic techniques in order
to respect domain specific characteristics. For example, in [93], the authors extend genetic
algorithms by utilizing domain knowledge. They state, that small differences in design decisions
lead to similar system implementations. They overcome the problem of finding infeasible initial
solutions by only considering homogeneous architectures where all tasks are executable on every
processor. The assumption of a homogeneous hardware platform also permits the identification
of symmetrical design points that can be pruned from the search space safely. While this is, in
theory, also possible for heterogeneous architectures, symmetries are less likely to be found.

Another approach (e.g. [86, 89, 92]) of handling the infeasibility problem is to integrate
dedicated constraint solvers into a MOEA. The work of Schlichter et al. [92] integrates, for
example, a SAT solver into a MOEA. Therefore, the synthesis problem is encoded symbolically
as, for example, proposed in [34]. Here, the decisions are not directly controlled by the ran-
domized search algorithm of the MOEA, but the heuristic of the decision variables is subject
to exploration. Altering the path through the decision tree permits finding more diverse design
candidates while maintaining the feasibility of each design point.

The main problem with heuristic approaches is that the design space is not covered system-
atically. Designs may be found multiple times and are evaluated unnecessarily often. Exact
approaches provide a solution to this problem by exploring the design space purely system-
atically. Here, the feasibility encoding is exhaustively explored. Commonly, the synthesis is

35

2 Model-based Design

encoded through pseudo Boolean logic, for example in [73, 97, 98]. For a long time, those
methods were restricted to single-objective optimization problems only. As one of the few
exceptions, Lukasiewycz et al. [73] present a complete multi-objective Pseudo-Boolean solver
based on branch-and-bound algorithms. The results show that this technique is able to find all
the proven optimal solutions for small problems in a short time. While the encoding of feasible
mapping and routing decisions into Boolean formulas led to efficient synthesis frameworks by
leveraging enhancements in state-of-the-art SAT solvers, numerical and non-linear problems
(such as scheduling) are not easily representable in Boolean logic.

As a consequence, SMT-based techniques, i.e. the combination of Boolean logic (traditionally
SAT) and various background theories, have been developed in the domain of embedded systems
synthesis [95, 99–102]. In one of the first works on SMT-based approaches, Reimann et al. [100]
integrate a background theory solver to evaluate partial assignments of an underlying SAT-
solver. In [103], they extend their approach by constructing schedules via an external theory
solver. However, here, they only consider complete assignments, i.e., mapping and routing is
already completed.

The authors of [95] present another SMT-based method for scheduling analysis in a back-
ground theory. Similar to the proposed approach in the thesis at hand, they utilize quantifier-
free integer difference logic (QF–IDL) as a background theory to identify valid schedules. The
main advantages of QF–IDL are its decidability in polynomial time [104] and the possibility
to leverage the solving process to directly analyze and propagate observed conflicts. Yet, the
work of [95] does neither support heterogeneous architectures nor multi-objective optimizations
as proposed in this monograph.

The works of Andres and Biewer et al. in [101] and [102] are the most related to the
approaches proposed in the thesis at hand. In fact, the problem encoding proposed by these
two works builds the basis of the synthesis framework proposed in Chapter 3. Essentially,
they suggest replacing the SAT-solver with an answer set programming (ASP) solver as it
has been shown to decide routing options more efficiently. This is mainly justified by the
varying assumptions of the solvers. While SAT assumes an open world, i.e., the truth value of
each decision variable has to be explicitly assigned, ASP assumes a closed world. In the latter,
decisions are assumed to be FALSE unless explicitly assigned to TRUE. Hence, reachability can be
directly formulated in ASP. This allows a more effective decision-making of message routing
when compared to SAT. To analyze timing constraints, they use separate ASP and QF–
IDL-based SMT-solvers which communicate indicator variables through a shared text file. In
combination with a homogeneous hardware architecture and unconstrained mapping options,
the authors are able to exploit symmetries in the synthesis problem and use advanced heuristics
which simplifies the solving accordingly. Again, an optimization step is not considered in their
works.

To summarize, in the past decades, many approaches have been proposed to synthesis prob-
lems. Since the beginning of this century, the focus of the research was put on the electronic
system level. Throughout these approaches, two main methodologies have prevailed. Heuris-
tic approaches are well suited for finding diverse solutions, but tend to fail covering the entire
design space. Initially finding regions with feasible solutions has been addressed by the integra-
tion of symbolic search techniques into the heuristics. Still, lacking a systematic search, design
candidates are subject to be explored multiple times. Exact approaches aim at eliminating
this problem. As the search is conducted purely automatically, no solutions are revisited twice.
Furthermore, invalid regions can be safely pruned from the search through conflict analysis.

36

2.4 Related Work

The DSE framework proposed in the thesis at hand extends the current state-of-the-art by
merging the previously isolated problems of searching for Pareto-optimal design points and
defining a feasibility preserving encoding. This is accomplished by the tight integration of
background theories into the solving process of the foreground theory solver. Shared vari-
ables between the foreground and background theories thus allow exchanging information and
advanced reasoning.

2.4.2 Archive Management

In the following, a number of methods are presented that have been developed to store and
manage archives of non-dominated solutions. The most simple technique is the utilization
of linear lists. Consequently, in the worst case, each novel solution is compared to all other
solutions before it can be added to or rejected from the archive. The most significant advantage
of linear lists is that solutions of the current archive that are dominated by a novel solution can
be removed from it very efficiently in O(1) without the need for adjustment of other solutions
(e.g., reordering). The main drawback is that the complexity w.r.t. the number of necessary
dominance checks is always O(N) where N is the length of the list.

To overcome this shortcoming, Habenicht [105] first proposed to use Quad–Trees, a k-ary tree
with k depending on the number of objective functions. In this data structure, solutions are
stored according to an ordered policy that allows for faster dominance checks without the need
to compare novel solutions against each existing element. However, deleting solutions from the
tree, whenever they are dominated by a new element, is challenging. Therefore, Mostaghim
and Teich [106] later introduced and compared three techniques to improve the performance
of the Quad–Tree based archive management. As Quad–Trees are described thoroughly in
Section 4.2, an extensive explanation is omitted here.

More recently, the authors of [107] proposed another approach for managing non-dominated
solutions in MOEAs. The M–Front combines a list-based data structure with a k-dimensional
binary search tree (k-d tree). Here, the solutions are stored into m sorted linked lists (M–List)
and the k-d tree simultaneously where m is the number of objectives. The basic idea is to
select one reference point for each novel solution and calculate a narrow area that contains a
set of solutions for which the dominance checks have to be performed. To determine this area,
they utilize geometric properties of the dominance relation to convert the problem into interval
queries which can be answered using the M–List. An additional key requirement to minimize
the number of solutions that must be checked and thus, the complexity of the algorithm is
to find an appropriate reference point. In order to do so, the authors use a nearest neighbor
search with the help of the k-d tree.

Jaszkiewicz and Lust [108] propose ND–Tree, a technique to update Pareto archives online.
In the tree-based structure, each node represents a subset of solutions that are contained in a
hypercube defined by its local nadir and optimal points (point-wise best/worst of all objective
functions). The actual solutions are stored in lists in the leaf nodes whereas internal nodes
represent a union of all of their children storing the accumulated optimal and nadir points.
That is, traversing the tree from the root to a leaf isolates potentially dominated candidates
without the need to check each solution individually. Whenever a new solution is, for example,
dominated by the combined nadir point, it can be discarded. If it dominates the ideal point,
the whole subtree is automatically dominated and can hence be deleted.

In the thesis at hand, the problem of efficiently managing the Pareto archives is addressed

37

2 Model-based Design

when solving multi-objective combinational problems (MOCOP) (cf. [109] for an overview)
based on CDCL and partial assignment checking. All previously mentioned methods have in
common that they were developed to manage the archive for population-based meta-heuristics
and do not work directly for CDCL-based solving techniques with partial assignment checking.
M–Front has the drawback that for every novel solution an appropriate reference point has to
be calculated. That is, this calculation has to be executed for each partial assignment which
would ultimately result in a high complexity.

In recent years, there have been few works that deal with deterministic methods for solving
MOCOPs. The authors of [110] propose a method to solve such problems. However, they do
not consider the ability of partial assignments. Though mentioning the possibility to utilize
Quad–Trees for managing the archive as an outlook for future work, they only use linear lists
to archive found non-dominated solutions as their focus lies on the solving process itself.

“asprin” (ASP for preference handling) [74] is a framework for defining and computing
preferred (optimal) solutions among stable models of logic programs. It offers a wide spectrum
of different predefined preference types such as cardinality minimization as well as composite
(i.e., multi-objective) preference types such as lexicographic and Pareto optimizations. With
“asprin”, a MOCOP can be solved using the stable model semantics. However, no archive is
used to store non-dominated solutions. Rather, constraints are added that exclude found and
dominated solutions from the search space.

2.4.3 Approximation

Besides the classification of DSE approaches in [91] as discussed above, in this section, the
focus shall be put on the use of approximations in DSE.

In general, there is no DSE approach that guarantees obtaining the true Pareto front of highly
complex embedded systems in a viable amount of time. Hence, each approach tries to find a set
of implementations that approximates the true Pareto set as good as possible. It is important
to state that the term “approximation” is not used consistently throughout literature. Two
different interpretations can be identified: search- and evaluation-related approximations.

In the former, the central aim is to steer the search into regions of the parameter space
where they expect Pareto optimal solutions. Representatives of works in these search-related
approximations are [95, 111–117]. ReSPIR [111] and MULTICUBE [112] use the technique
Design of Experiment (DoE) to choose appropriate sample configurations for simulating a
multi processor SoC. The results of the simulations are then used to create an approximation
of a Pareto front with response surface modeling (RSM). From this RSM, new configurations
for simulations are derived to incrementally enhance the approximation of the Pareto front. In
contrary, the approach proposed by the thesis at hand approximates the actual result to avoid
costly simulations. Thereby, the DoE technique is utilized as well. That is, the approach is able
to efficiently eliminate bad design candidates. However, the candidate choice is not steered by
the shape of the current Pareto front approximation.

The authors of [113] and [114] present comparable approaches by utilizing stochastic kriging,
a stochastic meta-model simulation, to select potentially good regions of the design space
to search for new solutions. Initially, they sample the initial points using a maximin latin
hypercube sample. These designs are then evaluated and used to fit the parameters of a
stochastic kriging model. Afterwards, the kriging model is used to determine a potentially good
region in the search space from which a new candidate solution is selected. After evaluating

38

2.4 Related Work

this point, the accuracy of the meta-model is analyzed and updated if necessary. The results
show that it finds up to 91% of all true Pareto points of common multi-objective optimization
problems. Instead of stochastic simulations, the authors of [117] propose the use of generic and
easily computable guiding functions that steer the search into promising regions of the design
space. Compared to a reference approach running over a period of two weeks, they obtain a 20%
better Pareto front approximation within four days. In [115], the search time is reduced by using
a heuristic that prunes the search of potentially inferior regions. Thus, expensive evaluations
can be reduced to a minimum. With their heuristic, the authors can achieve a speedup of up
to 80 while simultaneously maintaining the quality of Pareto front approximations compared
to a state-of-the-art MOEA. Liu et al. [95] present an approximation technique that is based
on a compositional approach. The approach is tailored towards a component-based design,
where most parts of the system are reused from legacy designs or IP libraries. Their algorithm
only explores each subsystem once and, with that, is capable of finding good Pareto front
approximations for the composed system. Compared to an exhaustive search, their results
show a performance gain of 52% up to 87% and an error rate between 1.5% and 4.7%.

The approach proposed in the thesis at hand belongs to the second group which can be
characterized as evaluation-related approximations. The DSE is accelerated by approximating
the objective function calculations that are performed to obtain the quality of found solutions.
The authors of [118] and [119] propose approximation techniques to accelerate the calculation of
performance indicators and power consumption of multiprocessor systems-on-chip, respectively.
Although the corresponding results show that their approximations reach error rates of less
than 18% for performance and only 9% for power consumption, both works do not integrate
their approximations into a DSE. The combination of objective approximations with a DSE
are proposed for example in [13, 120–123]. The three works [122], [121], and [123] propose to
combine the use of inexpensive approximations and accurate (but costly) simulations. In [122],
initially, exact evaluations are performed that are used to train an estimator. After the training
phase is finished, the estimator is then used instead of the exact simulation to save evaluation
time. Only promising solutions are still evaluated exactly. The authors of [123], on contrary,
save exploration time by statically evaluating only a given percentage of all designs exactly.
Thus, the quality of the remaining designs is only approximated. In both [122] and [123], the
exploration is partly conducted with approximated evaluations. As will be shown in Section 4.3,
this can lead to incomplete and incorrect archives where optimal designs might be missing or
non-optimal designs are included, respectively. The MILAN framework by Mohanty et al. [120]
and the approach of Herrera [124] are, on first sight, similar to the approach proposed by the
thesis at hand. The authors of [120] propose a hierarchical design space optimization where, in
each phase, the evaluation accuracy is increased to gradually remove potentially inferior designs.
The difference to the approach presented in this monograph is twofold. First, MILAN relies on
the manual selection of designs after each phase, whereas the proposed methodology works fully
automated. Second, the design points explored by MILAN are not guaranteed to be optimal.
Herrera [124] also uses an analytical approximation filtering valid solutions. Subsequently, an
exact simulation on each of these safe solutions is performed to find the optimal ones. However,
if a solution is erroneously not considered to be safe by the approximation, it will not be found
by this approach. Furthermore, postponing the exact simulation (after all safe solutions have
been determined) prevents pruning the design space early. RAPIDITAS [125] steers the search
for good solutions iteratively, where, in each iteration, the number of available processors in
the target platform is reduced. At first, the application of n tasks is mapped to n processors

39

2 Model-based Design

and simulated. In the next step, all mappings that contain (n− 1) processors are explored and
evaluated using approximations. The best design is chosen and once again simulated. This is
repeated until no solution with fewer processors can be found. As they only have to evaluate
a relatively small number of solutions, they can reduce the DSE time by 72%. Compared to
the proposed approach, RAPIDITAS does not guarantee completeness of the non-dominated
front as only one design per processor count is considered. If, for example, two designs with n
processors would be Pareto optimal, only one of them would be represented in the final non-
dominated front. Furthermore, RAPIDITAS assumes homogeneous platform models whereas
this thesis generally models heterogeneous computing resources. The work presented in [126]
uses individual application profiling to accelerate the DSE. The key point of this approach is
the extraction of execution traces during the DSE and shifting the actual mapping decisions to
the runtime of the system. The execution traces approximate the time needed for individual
applications assuming each task is executed on one distinct processor. At runtime, when the
active applications are known, a platform manager is invoked that composes the mappings of
the individual execution traces such that the resulting throughput of the application mix is
minimal. This can significantly accelerate the exploration at design time. Again, this work
considers homogeneous architectures. The most significant difference to the proposed approach
is, however, the relaying of mapping decisions into the runtime of the system. Instead, the
scope of this thesis is to provide a set of Pareto-optimal solutions at design time from which
good compromise designs can be selected for subsequent steps in the development process of
the overall digital systems.

To the best of the author’s knowledge, the earliest work in this area has been conducted by
Abraham et al. [13]. With the help of bounded approximations, they show that the true Pareto
front can be obtained. The approximation functions must not exceed a user-defined error
threshold ∆. They define a bounded Pareto dominance relation that filters all designs that lie
beyond a 2·∆ threshold. Exact evaluations have to be performed only for the remaining designs.
Note that this process fails if at least one design approximation is outside the threshold ∆. For
real world objective functions, this requirement is (in general) not feasible as the estimation is
highly dependent on design decisions made.

In the author’s opinion, the approach presented in this monograph cannot compete directly
with the aforementioned works as the scope differs too much. Although many of them aim at
obtaining Pareto fronts as a result of a DSE, they do not guarantee completeness and correct-
ness even if the entire search space is explored. Furthermore, different boundary conditions
such as homogeneous hardware platforms (e.g., [125]), runtime decisions (e.g., [126]), manual
refinement steps (e.g., [120]), or a different approximation scope (e.g., [111, 115, 117]) make
a direct comparison of exploration time and quality of the results meaningless. Even a direct
comparison with the early work of Abraham et al. [13] would be misleading in the author’s
opinion as the constraints put on the approximation function are hard to fulfill in real use cases.
The approach proposed in this thesis shall not be understood as a direct competition. Instead,
it is considered as orthogonal work that can be used in other frameworks with little overhead.
For instance, the approximation approach may be included in the evaluation step of evolution-
ary algorithms (e.g., [91]) where many evaluations have to be carried out in each iteration.

40

2.4 Related Work

2.4.4 Test Case Generation

While the research on DSE has lead to variant approaches for the exploration itself, system-
atic methods to generate test instances are sparse. There exist two graph generation tools [127,
128] that have been proposed to be used as standard tools for the generation of random task
graphs and synchronous dataflow graphs (SDFGs), respectively. TGFF [127] was especially
designed to serve as a reference system for generating random task graphs for mapping and
scheduling purposes. It constructs task graphs on the basis of two different algorithms, that can
be configured with a number of parameters. While the first algorithm specifies the properties
of the graph by the maximum In/Out Degree of nodes, the second algorithm generates series-
parallel task graphs recursively with the option of additional edges between parallel units.

The authors of [128] proposed SDF3, a tool to generate, analyze and visualize SDFGs. The
generated graphs are connected, consistent, and deadlock free with user defined characteristics.
Furthermore, the tool consists of (user expendable) functions that are able to assign specific
properties to actors and channels of the graph.

In contrast to the approach in the thesis at hand, both SDF3 and TGFF, however, only gen-
erate the application and do not consider the hardware architecture or mapping possibilities.
While the task graph model considered in the present thesis is similar to TGFF, SDF3 is es-
pecially orientated towards the data flow model of computation that additionally allows the
generation of cyclic applications. Therefore, a holistic approach is needed that is able to con-
currently generate the application, the hardware architecture and assign mapping possibilities.
Section 3.4.1 proposes an approach that generates complete problem instances. These can be
used as input for any DSE methodology that can read text-based input files. Note that an ad-
hoc random approach is not desirable as it may generate problem instances that are not solv-
able due to mapping (and scheduling) constraints. Furthermore, ad-hoc approaches have little
to no influence on the solving complexity of generated test instances.

41

42

3
System Synthesis with Partial

Assignment Evaluation

An automated synthesis approach at the electronic system level (ESL) should allow for inte-
grated constraint checks and decision evaluations. The formal modeling techniques reviewed
in Section 2.2 of the previous chapter only partially correspond to these requirements. Al-
though the encoding with answer set programming (ASP) does naturally permit defining fea-
sibility constrains and testing for linear validity constraints, it does not present an effective
approach for dealing with non-linear constraints. Especially scheduling constraints cannot be
modeled and integrated into the reasoning process. Instead, earlier approaches used external
tools to evaluate the validity of a solution candidate. This leads to isolated, merely loosely
coupled, solving processes that cannot share internal state variables for sophisticated pruning
techniques. To overcome these shortcomings, in this chapter, a novel, holistic approach to the
synthesis problem at ESL is elaborated. The aim of this chapter is therefore defining an ESL
synthesis approach that especially permits:

(a) the encoding of feasibility and (non-linear) validity constraints,

(b) the exchange of state variables for propagating decisions,

(c) a sophisticated pruning to skip infeasible regions of the search space.

The key concepts proposed in this chapter are utilized to holistically encode the specification
model originally presented by Blickle et al. [48]. This includes the application description,
a hardware template, as well as allocation, binding, routing, and scheduling constraints. To
this end, the ASP-based encoding is composed of three key components. First, the ASP
encoding itself that contains facts composing a specific problem instance and rules constituting
the allocation, binding, and routing constraints. Second, the scheduling constraints that are
encoded through theory atoms. While they are transparent to grounding, these theory atoms
represent couple variables whose internal value (i.e., the task start times) are not determined
by the ASP solver. When contained in a stable model, the theory atoms are instead checked
by the third component, a tightly integrated theory solver. This theory solver makes use of the
ASP modulo theories (ASPmT) paradigm and allows for the evaluation of partial assignments
as well as the theory propagation. Hence, invalid regions are detected early in the decision
process of the ASP solver. In conclusion, the combination of the three components enables a
single encoding of the complete specification that allows for a succinct and elaboration-tolerant
formulation.

The remainder of this chapter is organized as follows. In Section 3.1, the specification model
that is utilized throughout this monograph is detailed. Therefore, the originally proposed model

43

3 System Synthesis with Partial Assignment Evaluation

by Blickle et al. [48] is reviewed and extended to support periodic and cyclic applications.
Based on the model, the instance encoding will be detailed at the end of that section.

The specification model is followed by the constraints encoding corresponding to the ASPmT
paradigm in Section 3.2. This section is separated into the encoding of allocation, binding, and
routing constraints and scheduling constraints in the form of theory atoms. While the former
are encoded via classical ASP rules, the latter require the definition of a specialized grammar.
The background theory evaluating the satisfiability of the theory atoms is elaborated in Section
3.2.2. It utilizes a specialized quantifier-free integer difference logic (QF–IDL) solver that is
tightly integrated into the theory propagation framework of the underlying ASP solver. The
tight integration allows for an effective way to share information and propagate as well as
evaluate partial decisions made during the search.

Section 3.3 presents the final synthesis framework, where the integration of the background
theory solver is elaborated. That is, the connection between foreground ASP and background
QF–IDL solvers is detailed. Particularly, this includes the theory propagation techniques used
to implement an effective reasoning when utilizing partial assignments.

Based on a variety of test instances, the advantage of partial assignment evaluation over
complete assignments is experimentally evaluated in Section 3.4. Currently, however, available
benchmarks do not provide for a systematic method for generating such instances. To this end,
in the first part of the evaluation, an ASP-based instance generator is proposed. This allows
to define common properties of the generated problem instances. In particular, it provides
a methodology to generate synthetic specifications with a specified degree of parallelism in
the application graph. The generator is constructed modularly. Hence, it allows the addition
or replacement of parts without altering the remaining parts. In its default configuration, it
generates applications as series parallel graphs (SPGs) and a regular mesh-based hardware
platform implementing a 3-dimensional network on chip (NoC). The properties of the individual
elements are generated randomly to guarantee a diverse complexity of test instances. In the
second half of the evaluation, the generator is utilized to generate the instances for evaluating
the proposed synthesis framework.

Section 3.5 concludes this chapter and provides a summary of the proposed framework.

Relevant Publications

[2] Kai Neubauer, Philipp Wanko, Torsten Schaub, and Christian Haubelt. “Enhancing
Symbolic System Synthesis through ASPmT with Partial Assignment Evaluation”. In:
Design, Automation and Test in Europe Conference (DATE). Lausanne, Switzerland,
Mar. 2017, pp. 306–309. doi: 10.23919/DATE.2017.7927005.

[5] Kai Neubauer, Christian Haubelt, Philipp Wanko, and Torsten Schaub. “Systematic Test
Case Instance Generation for the Assessment of System-level Design Space Exploration
Approaches”. In: 21. Workshop Methoden und Beschreibungssprachen zur Modellierung
und Verifikation von Schaltungen und Systemen (MBMV). Tübingen, Germany, Mar.
2018. doi: 10.15496/publikation-25685.

44

https://doi.org/10.23919/DATE.2017.7927005
https://doi.org/10.15496/publikation-25685

3.1 System Model

3.1 System Model

As reviewed in Section 2.1.2, the system can be specified through a language- or model-based
approach. In this work, a mathematical model with strict formal semantics is chosen to allow for
a high analyzability. The abstract graph-theoretic modeling approach presented in the following
is based on the work of [48]. In accordance with the X-Chart diagram (cf. Section 2.1.3, Figure
2.2), the model is composed of a behavioral system description and a definition of non-functional
constraints. In summary, it supports the specification of deadline-constrained, periodic and
cyclic streaming applications that are mapped onto heterogeneous hardware architectures.

Model of Computation The behavioral description of the system is considered as a set A of
applications Ai in task-level granularity and is modeled as an application graph as follows:

Definition 3.1.1 (Application Graph): An application graph GA is defined as a triple
GA = (VA, EA,FA) where VA = T ∪C represents the set of vertices composed of tasks t ∈ T
and messages c ∈ C, EA ⊆ T ×C ∪C × T represent the dependencies between tasks t ∈ T
and messages c ∈ C and vice versa, and FA is a set of functions to assign properties to the
elements of the graph.

The set of property functions F may contain an arbitrary number of functions, depending
on the specific properties to be evaluated. In the present chapter, the functions pA, dA, s are
considered as they are necessary to evaluate the system regarding its performance. In detail,
pA : T → N, dA : T → N, and s : EA → N0 are functions that assign a periodicity and
deadline to each task t ∈ T , and an index delay to each message c ∈ C, respectively. While the
periodicity of a task indicates the time after which a task repeats its execution in the subsequent
iteration, the deadline defines the latest possible time when the corresponding task has to
finish its execution in each iteration relative to its release time. The index delay, specified for
messages, defines the number of iterations after which a message has to arrive at the receiving
task. Thus, a message c sent by ttx in iteration n through the edge (ttx, c) has to arrive at task
trx in iteration n + s(c) through the edge (c, trx).

In order to obtain a valid application graph, it has to adhere to various requirements. To this
end, consider the predecessor and successor functions pred : VA → 2VA and succ : VA → 2VA

with their definitions pred(vi) = {vj | (vj , vi) ∈ EA} and succ(vi) = {vj | (vi, vj) ∈ EA}. Each
message c is required to have exactly one predecessor and one successor, i.e., one sending task
ttx ∈ T and one receiving task trx ∈ T (|pred(c)| = |succ(c)| = 1). On contrary, a task t may
have an arbitrary number of predecessors or successors. Thus, inter process communication is
characterized by point-to-point connections and multicast communication has to be modeled
through individual messages. Furthermore, a valid application graph must only contain cyclic
dependencies forming a closed trail w = ⟨ti, cj , . . . , ck, ti⟩ such that the sum of the index delays
along the trail is greater than zero:

∀w ∈ {⟨ti, cj , . . . , ck, ti⟩ | (ti, cj), . . . , (ck, ti) ∈ EA} :
∑︂
c∈w

s(c) > 1.

Otherwise, the task ti, concurrently acting as sender and receiver, would be waiting for its own
transmission resulting in a contradicting deadlock. The final requirements concern connected
subgraphs of GA that represent individual applications Ai. Each application Ai consists of an
exclusive subset of all vertices Vi = Ti ∪ Ci ⊆ VA that are connected through directed edges

45

3 System Synthesis with Partial Assignment Evaluation

r1 r2

r3 r4

p1 p2

p3 p4

t5

c5

c6

t6

t7

c7

m10

m12

m
11

m
14

m
13

t1

c2c1

c3 c4

t4

t3t2

m2
m1

m
3

m4

m5 m6

m7

m8 m9

A2
A1pA(A1) = 7

dA(A1) = 12
s(c1) = 0
s(c2) = 0
s(c3) = 0
s(c4) = 0

w : {m1 ↦→ 3, m2 ↦→ 1, m3 ↦→ 2, m4 ↦→ 2, m5 ↦→ 2, m6 ↦→ 2, m7 ↦→ 2, m8 ↦→ 2, m9 ↦→ 2,
m10 ↦→ 3, m11 ↦→ 1, m12 ↦→ 2, m13 ↦→ 2, m14 ↦→ 2}

pA(A2) = 14
dA(A2) = 8
s(c5) = 0
s(c6) = 0
s(c7) = 1

Figure 3.1: Specification Graph based on the work of Blickle et al. [48]

Ei ⊆ EA. More precisely, each vertex v ∈ VA and edge e ∈ EA is contained in exactly one
application Ai and the predecessors and successors of each vertex vj ∈ Vi are required to be
located in the same application Ai:⋂︂

i

Vi = ∅ ∧
⋃︂
i

Vi = VA ∧
⋂︂
i

Ei = ∅ ∧
⋃︂
i

Ei = EA ∧ ∀Ai, v ∈ Vi : (pred(v) ⊆ Vi ∧ succ(v) ⊆ Vi).

In other words, there exists no trail containing tasks of two or more applications. Within an
application Ai, the periodicity of the tasks t ∈ Ti has to be identical, i.e., ∀tk, tl ∈ Ti : pA(tk) =
pA(tl), to avoid deadlocks in later iterations. Finally, the deadlines assigned to the tasks of
an application Ai are generally not constrained. However, two aspects should be considered.
First, a deadline should not be smaller than the task execution time (see below) as the problem
would be directly unsatisfiable. Second, considering an open trail ⟨ti, . . . , tj⟩ through the graph
of application Ai, the deadline of tj should be larger than the accumulated execution times of
the preceding tasks.

Apart from the direct dependencies of the vertices VA imposed by the edges EA, the transitive
hull of the graph GA forms two kinds of indirect dependencies between the vertices.

Definition 3.1.2 (Inter-iteration Dependency): Two tasks or messages vi, vj ∈ VA are
considered inter-iteration dependent (denoted by vi ↔ vj) of each other if a trail ⟨vi, . . . , vj⟩
or ⟨vj , . . . , vi⟩ through the graph GA exists. Whenever no such trail exists, the two vertices
are considered independent of each other, i.e., vi ↮ vj .

Definition 3.1.3 (Intra-iteration Dependency): Two tasks or messages vi, vj ∈ VA are
considered intra-iteration dependent (denoted by vi

∗↔ vj) of each other if a trail ⟨vi, . . . , vj⟩
or ⟨vj , . . . , vi⟩ through the graph GA exists and the sum of index delays of all messages along
the trail equals to zero. Otherwise, they are intra-iteration independent of each other, i.e.,
vi

∗↮ vj .

An example of an application graph is depicted in Figure 3.1. The application graph GA

consists of two independent applications A1 with T1 = {t1, t2, t3, t4}, C1 = {c1, c2, c3, c4},
and E1 = {(t1, c1), . . . , (c4, t4)} and A2 with T2 = {t5, t6, t7}, C2 = {c5, c6, c7}, and E2 =
{(t5, c5), . . . , (c6, t7)}. The periodicity and deadlines of the tasks are constant for each applica-
tion, i.e., ∀t ∈ T1 : pA(t) = 7, dA(t) = 12 and ∀t ∈ T2 : pA(t) = 14, dA(t) = 8. While the index

46

3.1 System Model

1 %%% Appl i ca t ion
2 app (a1) .
3 task (t 1 , a 1) . task (t 2 , a 1) . task (t 3 , a 1) . task (t 4 , a 1) .
4 message (c1 ,a1) . message (c2 ,a1) . message (c3 ,a1) . message (c4 ,a1) .
5 send (t 1 , c 1) . send (t 1 , c 2) . send (t 2 , c 3) . send (t 3 , c 4) .
6 r e c e i v e (t 2 , c 1) . r e c e i v e (t 3 , c 2) . r e c e i v e (t 4 , c 3) . r e c e i v e (t 4 , c 4) .
7 per iod (a1 ,7) .
8 per iod (T,P) :− task (T,A) , per iod (A,P) .
9 dead l ine (a1 ,12) .

10 dead l ine (T,D) :− task (T,A) , dead l ine (A,P) .
11 delay (c1 , 0) . delay (c2 , 0) . delay (c3 , 0) . delay (c4 , 0) .

Figure 3.2: Encoding of application A1

delay of most messages c ∈ C is equal to 0, there is one exception in application A2. As de-
fined above, a closed trail through a graph requires the sum of index delays along the path to
be larger than 0 to avoid deadlocks. Hence, the index delay of message c7 equals to one which
indicates an inter-iteration communication among t6 and t7. In order to encode the applica-
tion graph in ASP, the graph is translated into a set of rules. An example encoding of appli-
cation A1 of Figure 3.1 is listed in Figure 3.2. Independent applications are encoded through
the unary predicate app/1 (line 2). In the subsequent lines 3 and 4, the tasks and messages
are encoded through task/2 and message/2, respectively. While the first argument represents
the unique identifier, the second argument matches the corresponding application. The edges
EA are separated into the two subsets T × C and C × T , encoded by send/2 and receive/2.
Finally, the properties of the individual elements are defined. Here, the periodicity and dead-
line is encoded per application (cf., line 7 and 9). Subsequently, the periodicity of each task is
defined by the rule in line 8. During grounding, the periodicity of each task is inferred by the
corresponding periodicity of the application it belongs to. The index delay of the messages is
encoded by delay/2 as shown in line 11.

Model of Architecture Similar to the behavioral description, the hardware architecture is
modeled as a directed platform graph.

Definition 3.1.4 (Architecture Graph): An architecture, or platform graph GP is de-
fined as a triple GP = (VP , EP ,FP), where VP = P ∪R represents the union of all computa-
tional processing elements P and communication elements R, EP ⊆ VP ×VP represents the
communication links connecting the vertices, and FP is a set of functions to assign proper-
ties to the elements of the graph.

In contrast to the application graph, only one function dP : R → N is considered to
be included in the set FP in the present chapter. It assigns a routing delay to each link
l = (vi, vj) ∈ EP , i.e., the time necessary to route a message from the input of vi to the input
of vj via l. The communication resources are not constrained regarding their internal behavior
through the system model but instead by the specific problem encoding presented in the next
section. For example, the interpretation as on-chip routers or busses is possible. To act as rout-
ing devices, similar to [102], each communication resource r is assumed to internally consist of
independent crossbar switches and corresponding input buffers to allow concurrent routing of
messages. That is, two (or more) messages may be routed simultaneously over one resource if

47

3 System Synthesis with Partial Assignment Evaluation

12 %%% Hardware Platform
13 p r o c e s s o r (p1) . p r o c e s s o r (p2) . p r o c e s s o r (p3) . p r o c e s s o r (p4) .
14 route r (r1) . route r (r2) . route r (r3) . route r (r4) .
15 l i n k (l 1 , p 1 , r 1) . l i n k (l 2 , r 1 , p 1) . l i n k (l 3 , r 1 , r 2) . l i n k (l 4 , r 2 , r 1) . (. . .)
16 rout ingde l ay (l 1 , 2) . rout ingde l ay (l 2 , 2) . rout ingde l ay (l 3 , 2) . (. . .)

Figure 3.3: Encoding of the hardware platform shown in Figure 3.1

they have different destinations. Busses, on the other hand, only allow for one communication
at a given time step and messages have to be scheduled accordingly.

In the center of Figure 3.1, an example hardware platform is depicted. It consists of four pro-
cessing elements p1, . . . , p4 and four communication resources r1, . . . , r4. The communication
resources in this example act as routers with up to five ports, each connecting to one process-
ing element and the neighboring routers. Note that the links depicted in the graph represent
two directed edges. The routing delay is two time units for each link, i.e., ∀l ∈ EP : dP (l) = 2.
Thus, sending a message from p1 to p2 via the route ⟨p1, r1, r2, p2⟩ requires six time units.

The encoding of the platform graph through ASP facts is similar to the application and shown
in Figure 3.3. The unary predicates processor/1 and router/1 encode the processing and
communication elements, respectively. Communication links are established through link/3
atoms where the arguments indicate the ID, the source, and sink of the link. Finally, the
routing delay property is specified via routingdelay/2.

Specification Model To aggregate the models of computation and architecture, the specifi-
cation graph is defined.

Definition 3.1.5 (Specification Graph): A specification graph is defined as a quadruple
GS = (GA,GP , M,FS), where GA and GP represent an application and platform graph,
respectively, M ⊆ T × P is a set of options to map a task t ∈ T onto a processing element
p ∈ P , and FS is a set of functions assigning properties to the former three elements.

The mapping options M connect the application and the platform graphs. To this end, a
single mapping option m = (t, p) ∈ M indicates that task t is able to execute on processing
element p3-1. The function w : M → N ∈ FS assigns a worst case execution time (WCET)
to each mapping option. Specifying multiple mapping options mi = (tj , pk) to a single task
tj with their corresponding WCETs permits modeling heterogeneous architectures3-2. As an
example, consider the mapping edges in Figure 3.1, represented by dashed edges. For task
t1, three mapping options m1 = (t1, p1), m2 = (t1, p2), and m3 = (t1, p4) are specified that
allow for the execution on the processing elements p1, p2, and p4, respectively. The function
w assigns different WCETs to each of them, i.e., w(m1) = 3, w(m2) = 1, and w(m3) = 2.
Hence, the execution time of the task t1 depends on the decision which mapping option is
chosen. Furthermore, different mapping options can be assigned to the pair (t, p) to model, for
example, different compiler or logic synthesis options.

The ASP encoding of the mapping options M is given in Figure 3.4. Each mapping option is
3-1Similar to the mapping options of the tasks, the routing of messages could be constrained to specific links. For

the sake of brevity, no such constraints are employed by the model at hand nor studied in the experiments.
3-2Note that, apart from scheduling constraints, heterogeneity can also be modeled by assigning different prop-

erties (e.g. area and power consumption) to the elements v ∈ VP , see Chapter 4.

48

3.2 Synthesis Encoding

17 %%% Mapping Options
18 map(m1,t1,p1) . map(m2,t1,p2) . map(m3,t1,p4) . map(m4,t2,p1) . (. . .)
19 wcet (m1,3) . wcet (m2,1) . wcet (m3,2) . (. . .)

Figure 3.4: Encoding of the mapping options specified in Figure 3.1

encoded through a ternary predicate map/3 representing a unique identifier, the corresponding
task, and a processing element. The WCET is defined by wcet/2 containing the identifier of
the mapping option as the first and the execution time as the second argument.

3.2 Synthesis Encoding

The aim of the system synthesis is the transformation of a specification into an implemen-
tation of a system. In this section, an automated approach for solving the synthesis prob-
lem based on the ASP paradigm is proposed. As is common in ASP, the problem encoding is
split into two parts. First, the section presents an encoding of the graph-theoretic specifica-
tion model representing the specific problem instance. Due to the first-order input language
of ASP, the specification graph translates seamlessly into a set of ASP facts. Afterwards, the
section elaborates on the general problem definition of system synthesis, i.e., the allocation,
binding, routing, and scheduling. Although possible in theory, the encoding of non-linear con-
straints through regular ASP atoms is usually not viable in practice. Hence, the encoding of
such constraints is conducted via theory atoms. In particular, the scheduling substep is encoded
as QF–IDL terms and solved by a specialized, yet fully integrated QF–IDL solver. Compared
to separate solvers, the integration offers the advantage of partial assignment checking. That
is, partial binding and routing decisions leading to unsatisfiable scheduling constraints can be
directly detected which allows learning infeasible regions of the design space early in solving
process. This is enabled by the utilization of the ASPmT paradigm embedded into the ASP
solver clingo 5 [42]. In summary, the framework presented in the following allows for a unified
encoding of the synthesis problem resulting in a succinct and elaboration tolerant formulation.

3.2.1 Encoding Allocation, Binding and Routing

As reviewed in Section 2.1.3, an implementation I = (α, β, γ, τ) of a system consists of four
parts – an allocation α, a binding β, a routing γ, and a schedule τ . In short, an allocation
α ⊆ VP selects computation and communication resources, a binding β ⊆ M assigns tasks to
computation resources, the routing γ ⊆ C × 2EP assigns messages to communication elements,
and a schedule τ determines the temporal execution order of the tasks and messages.

The constraints imposed by the binding are twofold. First, each task must be assigned to
exactly one processing element and, second, a task must not be bound to an incompatible pro-
cessing element. The ASP encoding of binding and routing constraints is based on the work
conducted by Andres et al. [129] and shown in Figure 3.5. The choice rule in line 2 states that
for each atom task/1, at least and at most (i.e., exactly) one bind/3 must be selected. There-
fore, the grounder generates a set of bind/3 atoms for each map/3 atom containing the corre-
sponding task T in the inner part of the braces. Assume task t1 and the corresponding atoms
task(t1), map(m1,t1,p1), map(m2,t1,p2) and map(m3,t1,p4) of the running specification
example, cf. Figure 3.1. Grounding the rule in line 2 produces the variable free representation

49

3 System Synthesis with Partial Assignment Evaluation

1 %%% Binding
2 1 { bind (M,T,R) : map(M,T,R) } 1 :− task (T) .
3 %%% Routing
4 root (C,R) :− send (T,C) , bind (_,T,R) .
5 % r e s o u r c e s o f communication task per t a r g e t
6 s ink (C,R) :− read (T,C) , bind (_,T,R) .
7 % backward hops o f communication task
8 1 { reached (C,L,R,S) : l i n k (L,R,S) } 1 :− s ink (C,S) , not root (C,S) .
9 s ink (C,R) :− s ink (C,S) , reached (C,L,R,S) .

10 % reach communication root r e s o u r c e
11 :− read (T,C) , root (C,R) , not s ink (C,R) .
12 %%% A l l o c a t i o n
13 a l l o c a t e (R) :− bind (_,_,R) .
14 a l l o c a t e (R) :− s ink (_,R) .

Figure 3.5: ASP encoding of allocation, binding, and routing decisions

1 {bind(m1,t1,p1), bind(m2,t1,p2), bind(m3,t1,p4)} 1. An analogue transformation is
executed for each task of the specification. Note that the grounder removes the body as it is
not necessary for a semantically equivalent representation. The routing substep depends on
the binding decisions of dependent tasks, indicated by (ttx, c), (c, trx) ∈ EA. If the two tasks
are bound onto the same processing element i.e., (ttx, p), (trx, p) ∈ β, the dependency can be
resolved locally and data produced by ttx can directly be used by trx. Hence, a communica-
tion through the communication infrastructure is not necessary. However, whenever the two
tasks are not bound to the same processing element, i.e., (ttx, pi), (trx, pj) ∈ β | pi ̸= pj , a route
between the corresponding processing elements has to be established for the message c. The
function π : C × γ → 2EP represents the route of a message c ∈ C and yields an ordered list
of links that consists of an arbitrary number of hops. The function h : 2EP × N→ EP returns
the n-th hop of a given route indicated by the corresponding link. Note that a route π(c, γ)
(short πc) may be empty when both sending and receiving task are bound to same resource,
i.e., πc = ∅ ⇔ {(ti, c), (c, tj)} ⊆ EA ∧ {(ti, p), (tj , p)} ⊆ β. In the following, a hop is denoted
by hc,i as a shorthand for h(πc, i). Formally, each route corresponds to an open trail through
the platform graph. Hence, start and end vertices are distinct and edges must not repeat. The
ASP encoding is given in lines 3 – 11. In short, it determines a trail from the processing ele-
ment of the sending task to the processing element of the receiving task of a message by recur-
sively traversing the graph from the end to the start. In detail, the encoding consists of five
individual rules. The rule in line 4 infers the root node of the route by assessing the current
binding of the sending task. In line 6, the final destination is determined similarly, depending
on the current binding of the receiving task. The main traversal is encoded in lines 8 and 9.
If a resource S is already considered a sink by sink(C,S) and S is not equivalent to the root
node, exactly one link is chosen that contains S as destination. The subsequent line defines the
newly connected node as a further sink. This is repeated until no more sink/2 atoms can be
inferred. Finally, the integrity constraint in line 11 guarantees that the root node is reached.
Note that a closed trail is inherently prevented by the combination of the choice rule in line 8
and the integrity constraint in line 11. While the choice rule guarantees that only one outgo-
ing link is selected for each sink, the integrity constraint enforces that the root is reached.

For the running example, assume that the binding atoms bind(m1,t1,p1), bind(m4,t2,p1),
and bind(m6,t3,p3) are selected. Hence, the messages c1 and c2 shall be routed. The root

50

3.2 Synthesis Encoding

r1 r2

r3 r4

p1 p2

p3 p4

t5

c5

c6

t6

t7

c7

m10

m12

m
11

m
14

m
13

t1

c2c1

c3 c4

t4

t3t2

m2
m1

m
3

m4

m5 m6

m7

m8 m9

A2A1

πc1 = ⟨⟩, πc2 = ⟨(p1, r1), (r1, r3), (r3, p3)⟩, πc3 = ⟨(p1, r1), (r1, r3), (r3, p3)⟩, πc4 = ⟨⟩,
πc5 = ⟨(p2, r2), (r2, r4), (r4, p4)⟩, πc6 = ⟨⟩, πc7 = ⟨⟩

Figure 3.6: A feasible binding and routing of the Specification Graph in Figure 3.1

of both messages is determined to be processing element p1, i.e., the atoms root(c1,p1) and
root(c2,p1) are inferred by the rule in line 4. The final sink of message c1 is analogously de-
termined as processing element p1 inferring the atom sink(c1,p1). As both sink(c1,p1) and
root(c1,p1) are inferred, the head of the choice rule in line 8 does not infer any reached/4
atom. Furthermore, the integrity constraint in line 11 is satisfied. Hence, the route πc1 = ∅ of
the message c1 is empty because the sending and receiving task are bound to the same process-
ing element. In contrast, the route πc2 of message c2 must contain multiple hops as its corre-
sponding tasks are bound to different resources. The rule in line 6 infers the atom sink(c2,p3).
Subsequently, the first hop is selected using the choice rule. As there is only one link containing
p3 as destination, the corresponding link is selected and the atoms reached(c2,l12,r3,p3)
and sink(c2,r3) are inferred. Subsequently, the next hop is determined. Here, the ASP
solver has to choose between the links (r1, r3) and (r4, r3). For the sake of brevity, assume the
former is chosen leading to the atoms reached(c2,l5,r1,r3) and sink(c2,r1). In order to
reach the root node and satisfy the integrity constraint, in the final step, the link (p1, r1) is
selected and the corresponding atoms reached(c2,l1,p1,r1) as well as sink(c2,p1) are in-
ferred. Now, the integrity constraint in line 11 is satisfied and the route is complete: πc2 =
⟨(p1, r1), (r1, r3), (r3, p3)⟩.

The allocation α is determined by the last two lines in Figure 3.5. In this encoding, only nec-
essary resources are allocated, i.e., each processing element that is used in at least one binding
and each communication element that is contained in at least on route. The remaining resources
are assumed to be irrelevant. With the binding and routing decisions made in the running ex-
ample, the atoms allocated(p1), allocated(r1), allocated(p3), and allocated(r3) are
inferred. Hence, resources p2, r2, p4, and r4 are not present in the allocation. Note that this may
change with further binding and routing decisions made for the remaining tasks and messages.

3.2.2 Encoding Scheduling Constraints with Integer Difference Logic

In contrast to binding and routing, scheduling is a non-linear problem as the superposition
principle does not hold when resource sharing and dependent tasks are considered. Hence, the
start time of a task depends not only on its binding but also on its dependencies and resources
shared with other tasks. A task ti that expects data from another task tj must not start before

51

3 System Synthesis with Partial Assignment Evaluation

the corresponding message has arrived. Thus, the predecessor task tj has to finish its execution
and the message has to be routed and transmitted through the communication infrastructure.
Furthermore, even if two tasks ti and tj are independent of each other (i.e., there is no trail
from ti to tj or vice versa) but are bound to the same computation resource, an indirect
dependency is formed. As they cannot be executed simultaneously on the same resource, an
execution order has to be established. This may lead to situations where the assignment of a
task to another resource influences the start times of any task even when there are no direct
dependencies imposed by the application graph. To summarize, a task ti must execute after
its predecessors but must not simultaneously run with another task on the same resource.

While this can be modeled with pure ASP rules, the encoding results in an exponentially
increasing number of decision variables. The idea behind an encoding in ASP is that for each
task and possible point in time, an individual atom is created. During solving, a subset of these
atoms is selected that fulfills the aforementioned constraints. The problem with this encoding
is that the exponential growth of the search space is not only dependent on the number of
tasks in the application but also on the WCETs of the individual tasks. Furthermore, an upper
threshold of the time slots must be defined. In general, this is a complicated problem as a too
conservative estimation increases the search space too much and a too optimistic estimation
can exclude solutions from the search. Hence, this encoding is especially not suited for large
and complex problem instances.

To tackle this issue, in the following, an ASPmT3-3 approach is proposed, where the schedu-
lability analysis is performed through quantifier-free integer difference logic (QF–IDL) in a
tightly coupled background theory. This way, the dependence on the WCET is eliminated and
the encoding needs fewer variables. Moreover, the QF–IDL solver employed in the background
theory is able to determine the schedulability of a given binding and routing in polynomial
time. Furthermore, it provides an effective conflict analysis and reasoning whenever a given
binding is found to be unschedulable allowing the foreground search to be steered away from
unsatisfiable regions.

3.2.2.1 Quantifier-free Integer Difference Logic

The theory QF–IDL deals with conjunctions of constraints c that impose a maximum nu-
merical difference between two variables. The constraints are of the form

c = (x− y ≤ k)

with variables x, y ∈ Z and a constant k ∈ Z. Thus, QF–IDL is a subset of integer linear
programming (ILP) and is generally utilized to encode timing related, numeral problems such
as scheduling. A conjunction of QF–IDL constraints is either unsatisfiable or contains infinite
solutions [130].

Satisfiability Testing The conjunction C = c1 ∧ . . . ∧ cn is characterized through a directed
and weighted constraint graph GC = (VC , EC). The set of vertices VC of the constraint graph
contains all variables of C, i.e. ∀(xi − yj ≤ kl) ∈ C : vi, vj ∈ VC . For each constraint xi − yj ≤
kl ∈ C, there exists a weighted edge (xi, yj , kl) ∈ EC , with xi, yj , and kl indicating the source
vertex, the destination vertex, and the weight, respectively. The constraint graph contains an
3-3Additionally, with the ASPmT, the usage of non-integer-valued execution times is possible that is not sup-

ported by plain ASP. Yet, this is out of the scope of the present monograph.

52

3.2 Synthesis Encoding

c1 : x1 − x4 ≤ 3
c2 : x2 − x3 ≤ −5
c3 : x3 − x1 ≤ 1
c4 : x4 − x3 ≤ −4

(c5 : x1 − x2 ≤ −4)

v1

v0

v4v3

v2
0

0

0

0

1

−5 3

−4

−4

Figure 3.7: QF–IDL Example with corresponding constraint graph: introducing the additional
difference constraint c5 generates a negative cycle in the graph indicating that the
conjunction of constraints is unsatisfiable.

additional vertex v0 with accompanying edges to every other vertex with a weight of zero. By
determining the shortest path originating from the additional vertex v0 to each other vertex, a
feasible solution can be determined. The accumulated weight along the shortest path from v0
to each vertex v ∈ VC \{v0} equals the value of the corresponding variable in C. If, however, the
shortest path algorithm detects a cycle with an accumulated negative weight, the conjunction C
is unsatisfiable [130]. The complexity of QF–IDL is therefore dependent on the utilized shortest
path algorithm. By applying the Bellman-Ford algorithm [131, 132] to determine the shortest
path, a runtime of O(n ·m) can be achieved, where n and m are the numbers of variables and
constraints, i.e. vertices and edges, respectively.

As an example, consider the difference constraints c1, . . . , c4 (the constraint c5 and the corre-
sponding edge (v1, v2,−4) is not considered at first) and their corresponding constraints graph
in Figure 3.7. While the blue vertices v1, . . . , v4 and solid edges correspond to the variables
x1, . . . , x4 and the difference constraints, respectively, the orange vertex and the dashed edges
represent the additional vertex and its connection to each other vertex with a weight of zero.
Applying a shortest path algorithm from the special vertex v0 to all other vertices results in no
negative cycles. Hence, a feasible solution to the conjunction C = c1 ∧ . . . ∧ c4 exists with the
variable assignments {x1 = −4, x2 = 0, x3 = −5, x4 = −1}. Note that this represents only one
possible solution. Adding an arbitrary integer z to each variable xi produces further solutions,
e.g. {x1 = 0, x2 = 4, x3 = −1, x4 = 3} by adding 4 to each variable. Adding the constraint c5
and the corresponding edge (v1, v2,−4) to the problem, a negative cycle is formed between the
vertices {v1, v2, v3}. Thus, the conjunction C = c1 ∧ . . . ∧ c5 does not have a feasible solution.

Difference constraints are a special case of general linear integer constraints of the form∑︁
xi ⋊⋉ k, where i = N, k ∈ Z, xi ∈ Z are variables, and ⋊⋉∈ {<, >,≤,≥, =}. Linear constraints

with up to two variables can be transformed into QF–IDL as shown below.

x− y ≥ k ⇒ y − x ≤ −k

x− y < k ⇒ x− y ≤ k − 1
x− y > k ⇒ y − x ≤ −k − 1
x− y = k ⇒ x− y ≤ k ∧ y − x ≤ −k

x ≤ k ⇒ x− z0 ≤ k | z0
!= 0

(3.1)

The transformation of x ≤ k introduces a new variable z0. This variable is required to be

53

3 System Synthesis with Partial Assignment Evaluation

1 #theory dl {
2 i n t e g e r {− : 1 , unary } ;
3 di f f_term {− : 1 , b i n a r y , l e f t } ;
4 &diff /0 : d i f f_te rm, {<=} , i n t e g e r , any ;
5 } .
6

7 &diff { x1 − x4 } <= 3 .
8 &diff { x2 − x3 } <= −5 .
9 &diff { x3 − x1 } <= 1 .

10 &diff { x4 − x3 } <= −4 .

Figure 3.8: QF–IDL Theory definition in ASP with clingo 5.

constant zero, as otherwise, the inequality would be semantically different. Note that z0 and
the special vertex v0 are basically constrained by the same rules. The only difference is that v0
contains zero-weighted edges whereas z0 is specific to a particular constraint. However, both
can be combined in the constraint graph GC to reduce the vertex count. To this end, the zero-
weighted edge originating from z0 is replaced by the weight k of the corresponding constraint.

Theory Encoding Based on the definitions given above and the review on ASPmT in Sec-
tion 2.2.3, difference logic is defined as a background theory in ASP as shown in lines 1–5 of
Figure 3.8. The theory has the name dl and contains two theory term definitions integer
and diff_term defined in lines 2 and 3 as well as one theory atom definition &diff/0 in line
4. The latter represents a difference constraint that consists of the two theory terms of types
diff_term and integer that are connected by the theory operator <=. The any keyword at
the end permits the occurrence of a theory atom &diff/0 both in the head and the body of an
ASP rule. The theory term definition diff_term allows theory terms that contain the binary,
left associative theory operator - (i.e., the mathematical minus). On the contrary, the integer
term definition only permits the unary operator - (i.e., the mathematical negation). Note
that the occurrence of the defined theory operators are optional in the theory term. Hence,
an integer theory term may be build without the use of negation and represent an arbitrary
variable or constant integer.

Consider again the conjunction of the difference constraints c1, . . . , c4 in Figure 3.7. The
problem is encoded using the four theory atoms in lines 7–10 as defined by the theory dl. For
example, the theory atom in line 7, the theory term x1 - x4 and the integer 3 are connected
through the operator <=. Note that the difference constraints here are encoded as a fact (i.e.,
only a head is present) as they are directly specified. However, the theory variables generally
are subject to grounding.

3.2.2.2 Schedulability Analysis

The schedulability analysis of the bound and routed application is imperative to evaluate
the overall feasibility of the implementation. To this end, start times are assigned to each job
j, that has to be executed in the system. Here, a job j is considered to be a task t ∈ T or an
individual hop hci ∈ πc of a routed message c over a link. Thus, in the following the start time
of a job τ(j) corresponds either to a task execution start time or a message hop, depending
on the context. Note that here a periodic non-preemptive schedule is considered with a store-

54

3.2 Synthesis Encoding

and-forward switching strategy for routed messages. Hence, a task t with its corresponding
period pA(t) is assumed to be restarted after exactly pA(t) time units on the same resource
and, once started, a job is executed without interrupts. Furthermore, each hop of a message is
considered to be unique, i.e., the complete message is sent from the source to the destination
of one hop before the subsequent hop is taken. This implies the assumption of an unlimited
buffer size at each resource to store message packets before they are consumed or transmitted
further. The following considerations also assume the deadlines of the individual tasks to not
exceed the specified periodicity of the applications. The definition of tasks that allow larger
deadlines introduces further constraints (e.g., happening in pipelined executions). However, at
the end of this section, an approach is presented to avoid the necessity of such constraints and
allows handling of these applications.

Dependency Constraints For a given binding and routing to be feasible, individual jobs
must adhere to their dependencies defined by the application graph GA while allowing an
overlap-free execution. When considering single-core systems without the possibility of paral-
lelization, the schedulability analysis is trivial, as here, the accumulated execution times of all
tasks must be at most equal to the considered periodicity3-4 of the application

∑︁
w(ti, r) ≤ P .

A similarly trivial case exists if a multi-core hardware platform, but no dependencies between
individual tasks are assumed. Here, the system is guaranteed to be schedulable if the sum of
WCETs of all tasks mapped to a single resource never exceeds the specified periodicity of the
system, i.e.,

∀r ∈ α :
∑︂

m=(t,r)∈β

w(m) ≤ P. (3.2)

If both parallelization and dependencies are combined, Equation (3.2) becomes a necessary
rather than a sufficient criterion for a schedulable implementation. To acquire a sufficient set
of criteria that guarantee the correct job order the constraints in Equations (3.3) – (3.8) are
required.

∀t ∈ T : z0 − τ (t) ≤ 0 (3.3)
∀(t, p) ∈ β : τ (t) − z0 ≤ dA(t) − w((t, p)) (3.4)

∀c ∈ C | {(ti, c), (c, tj)} ⊆ EA, {(ti, p), (tj , p)} ⊆ β :
τ (ti) − τ (tj) ≤ −w((ti, p)) + s(c) · pA(tj)

(3.5)

∀c ∈ C | (ti, c) ∈ EA, πc ̸= ∅, (ti, p) ∈ β : τ (ti) − τ (hc,1) ≤ −w((ti, p)) (3.6)
∀c ∈ C | |πc| > 1, ∀i ∈ [2, |πc|], hc,i−1 = (c, l) : τ (hc,i−1) − τ (hc,i) ≤ −dP (l) (3.7)

∀c ∈ C | {(ti, c), (c, tj)} ⊆ EA, (tj , p) ∈ β, πc ̸= ∅, hc,|πc| = (c, l) :
τ (hc,|πc|) − τ (tj) ≤ −dP (l) + s(c) · pA(tj)

(3.8)

The first constraint in Equation (3.3) ensures that all tasks t ∈ T start after time point 0.
Therefore, the special variable z0 is introduced. Note that this constraint directly complies to
the dedicated zero vertex v0 and its corresponding edges that are included into the constraint
graph GC . The second constraint in Equation (3.4) is needed to ensure that each task finishes
its execution before its corresponding deadline. Equation (3.5) defines the constraints that
3-4When multiple independent applications are considered, the hyper-period PH = lcm(A1, . . . , An) of all appli-

cations has to be used instead.

55

3 System Synthesis with Partial Assignment Evaluation

∑︁
z−1

a

x yb

(a) First-order IIR filter

tΣ

c2

ta

c1

s(c1) = 0

s(c2) = 1

c0

s(c3) = 0
tb

(b) Modeled application graph of the IIR filter

Figure 3.9: A first-order IIR filter depicted as block diagram and modeled by an application
graph with three tasks and three messages.

have to be included for each pair of dependent tasks that are mapped to the same resource.
As task tj depends on the results of task ti, it must not start before ti finishes its execution.
However, if they form an inter-iteration dependency, the index delay of the connecting message
c has to be accounted for. As all tasks are required to restart at their specified periodicity rate
pA, this implies for the current iteration that the temporal distance must be smaller than the
index delay multiplied by the periodicity of tj .

As an example, assume a first-order IIR filter as depicted in Figure 3.9. The filter response
is acquired by adding the weighted input of the filter with the weighted filter response of
the previous iteration. For the sake of simplicity, only the two tasks tΣ and ta connected by
two messages c1 and c2 with their corresponding index delays s(c1) = 0 and s(c2) = 1 are
considered in following, i.e., tb and c0 are assumed to execute independently. Further, assume
both tasks are bound to the same resource p, WCETs of w(tΣ, p) = 1 and w(ta, p) = 4, and
have a periodicity of 6 time units. According to Equation (3.5), two constraints are added: (1)
τ(ta)−τ(tΣ) ≤ −4 and (2) τ(tΣ)−τ(ta) ≤ −1+1 ·6. While the first constraint guarantees that
the multiplication is started some time after the addition, the second constraint ensures that it
is not delayed by more than 5 time units. Now assume the tasks are bound to another resource
r, with w(t+, r) = 2 and w(t×, r) = 6. This induces the constraints (1) τ(ta) − τ(tΣ) ≤ −6
and (2) τ(tΣ) − τ(ta) ≤ −2 + 1 · 6, that do not have a feasible solution. Hence, the system is
unschedulable in this configuration3-5.

The remaining constraints regard the execution order of tasks that are not bound to the
same resource, i.e., where the route πc of the connecting message is not empty. Equation (3.6)
concerns the initial hop. Intuitively, the first hop hc,1 must not be sent before the sending task
finishes its execution. The second message constraint in Equation (3.7) considers all subsequent
hops. A message hop hc,i can only be sent after the previous hop hc,i−1 has been received.
Hence, the routing delay dP of the corresponding hop must be used. Finally, Equation (3.8)
addresses the start time of the receiving task. Similar to the task constraint in Equation (3.5),
the index delay of the message is considered here to guarantee inter-iteration dependencies.
Note that the index delay must not be involved in multiple constraints of the same message.
If the index delay was considered in each message hop, the message would be delayed n times
the index delay s(c), with n equals the number of hops of the corresponding message. This
would lead to incorrect schedules.

Theorem 3.2.1: The conjunction of constraints defined in Equations (3.3) to (3.8) guar-
antees an overlap-free execution of intra-iteration dependent jobs.

3-5For the sake of the argument, the necessary constraint defined in Equation (3.2) is assumed not to be tested.

56

3.2 Synthesis Encoding

Proof. The theorem is proven by induction. Let a = ⟨v1, v2, . . . , vn⟩ with
∑︁

c∈A s(c) = 0 be
a trail through an application graph GA. According to Definition 3.1.3, each pair of vertices
(vi, vj) ⊆ a are therefore intra-iteration dependent of each other, i.e., vi

∗↔ vj .
Initial step: Vertices v1 and v2 are directly dependent of each other. Independent of the
job types of v1 and v2, a constraint of form τ(v1) − τ(v2) ≤ −k1 is generated, where k1
signifies the execution time of v1. The terms s·pA of Equations (3.5) and (3.8) are irrelevant
as the index delay is guaranteed to be zero for intra-iteration dependent jobs. Hence, the
start time of τ(vj) must be at least equal to the end time of v1, i.e., τ(v2) ≥ τ(v1) + k1.
Therefore, two subsequent jobs vi−1, vi cannot overlap.
Again, for the successor of vi, a similar constraint of the form τ(vi) − τ(vi+1) ≤ ki is
generated. As τ(vi) is already shown to be larger than the end time of its predecessor vi−1,
and ki ≥ 0, the inequality chain results in τ(vi+1) ≥ τ(vi) + ki ≥ τ(vi−1) + ki−1. Hence, the
successor v(i+1) of a job vi cannot overlap with the predecessor vi−1.

Resource Sharing Constraints Equations (3.3) – (3.8) guarantee that dependent jobs are
scheduled in the correct order and intra-iteration dependent jobs do not overlap. However,
independent (both intra- and inter-iteration) jobs are not considered and may form conflicts
when sharing identical resources. Therefore, Equations (3.9) and (3.10) are defined additionally.

∀{(ti, p), (tj , p)} ⊆ β | ti
∗↮ tj :

τ (ti) − τ (tj) ≤ −w((ti, p)) ⊻⊻⊻ τ (tj) − τ (ti) ≤ −w((tj, p))
(3.9)

∀{hci,k, hcj ,l} ⊆
⋃︂

c∈C

πc | ci
∗↮ cj , hci,k = (ci, e), hcj ,l = (cj , e) ∈ EP :

τ (hci,k) − τ (hcj ,l) ≤ −dP (e) ⊻⊻⊻ τ (hcj ,l) − τ (hci,k) ≤ −dP (e)
(3.10)

While Equation (3.9) regards independent tasks mapped onto identical processing elements,
Equation (3.10) handles the schedulability analysis of independent message hops routed over
identical links. The rationale behind both constraints, however, is identical. If two intra-
iteration independent jobs jk and jl are supposed to be executed on the same resource, the
jobs have to be sequenced. Therefore, either job jk or job jl has to be delayed until the other
is finished, encoded by two difference constraints. As the difference constraints are connected
through an “exclusive or” relation, they must not be satisfied simultaneously. Assume the tasks
t2 and t3 of application A1 in the specification example in Figure 3.1 to be bound to the pro-
cessing element p3. Although the dependency constraints in Equations (3.3) – (3.8) guarantee
the execution to be delayed after the messages c1 and c2 have been arrived, respectively, the
tasks may still overlap temporally. Hence, either the difference constraint τ(t2) − τ(t3) ≤ −2
or τ(t3) − τ(t2) ≤ −2 has to be included. While the former forces t3 to be executed after t2,
the latter delays t2 analogously.

Schedulability Encoding The encoding of the difference constraints defined in Equations
(3.3) to (3.8) is depicted in Figure 3.10. Note that the theory definition dl as shown in
Figure 3.8 is used in the following. Each dependency constraint can be directly encoded by one
ASP rule in lines 1–6, respectively. During the grounding step, the constraint of Equation (3.3)
is generated for each task by the rule in line 1. The special zero vertex v0 is explicitly defined
as 0 in the first theory term. On the contrary, the theory atoms that are generated by the
grounder in line 2 depend on the current binding. Hence, only if a mapping m ∈ M is

57

3 System Synthesis with Partial Assignment Evaluation

1 &diff { 0 − T } <= 0 :− task (T,A) .
2 &diff { T − 0 } <= V :− bind (M,T,_) , dead l ine (T,D) , wcet (M,W) , V=D−W.
3 &diff { Ti − Tj } <= V :− send (Ti,C) , read (Tj,C) , bind (Mi,Ti,R) , bind (Mj,Tj,R) ,

↪→ per iod (Tj,P) , de lay (C,S) , wcet (Mi,W) , V=S∗P−W.
4 &diff { T − (C,L) } <= −W :− send (T, C) , reached (C,L,R,_) , bind (M,T,R) ,

↪→ wcet (M,W) .
5 &diff { (C,Li) − (C,Lj) } <= −D :− reached (C,Li,_,R) , reached (C,Lj,R,_) ,

↪→ rout ingde l ay (Li,D) .
6 &diff { (C,L) − T } <= V :− read (T,C) , reached (C,L,_,R) , bind (M,T,R) ,

↪→ rout ingde l ay (L,D) , de lay (C,S) , V=S∗P−D.

Figure 3.10: Encoding of Dependency Constraints

selected for the binding, i.e., m ∈ β, the corresponding theory atom is inferred. Within a
theory atom, the grounder only performs string replacements and cannot be used to evaluate
variables. Thus, the value of V used as the right-hand side of the inequality within the theory
atom must be calculated outside. This is done in the body of the ASP rule through V=D-W
which uses the deadline of each task and the WCET of its mapping options. As an example,
consider the mapping options m1, m2, and m3 of a task t1 with w(m1) = 3, w(m2) = 1,
w(m3) = 2, and dA(t1) = 12. Grounding line 2 will generate three variable-free rules for task t1:
&diff {t1-0} <= 9 :- bind(m1,t1,p1)., &diff {t1-0} <= 11 :- bind(m2,t1,p2)., and
&diff {t1-0} <= 10 :- bind(m3,t1,p4).

The rules generated by line 3 are only inferred if the two corresponding tasks ti and tj

are bound to the same resource r and are directly connected through a message c, i.e.,
(ti, r), (tj , r) ∈ β ∧ (ti, c), (c, tj) ∈ EA. The mechanism to calculate the constant value is simi-
lar to the rule in line 2 but utilizes the index delay of the message c, the WCET of task ti, and
the periodicity of task tj as defined by Equation (3.5).

The three final lines implement the dependency constraints of the individual message hops as
defined by the Equations (3.6) to (3.8), respectively. The constraints defined in Equation (3.6)
must only be satisfied if two dependent tasks are not bound to the resource. This implies that
the connecting message is routed over at least one hop that originates from the resource of
the sending task. Hence, the existence of a reached/4 atom with the corresponding source
resource suffices to guarantee that. If two consecutive reached/4 atoms have been inferred for
the same message, the rules generated by the grounder in line 5 are inferred. Finally, line 6
implements Equation (3.8). It basically plays the counterpart to line 4, and encodes the final
hop of a message with the resource of the reading task as destination.

While the dependency constraints are encoded by a single rule, the resource sharing con-
straints defined by Equations (3.9) and (3.10) need a set of additional decision atoms to be
decided first as shown in Figure 3.11. The encoding here is grouped into four parts. The
first three lines determine the transitive dependency relations of all vertices of the applica-
tion. Note that the atom depends/2 encodes the intra-iteration dependency (vi

∗↔ vj), as in
line 8, it is only inferred between a message and a reading task if the index delay of the mes-
sage is equal to zero. Lines 11 and 12 determine if two tasks are bound to the same resource
or individual message hops are routed over identical links, respectively. The corresponding
conflict/2 atoms are only inferred if both jobs are not intra-dependent of each other and the
terms Ti < Tj and Ci < Cj ensure that the jobs are unique. Subsequently, in line 14, a prior-
ity is defined for each conflict. That is, a partial order is decided which job shall get precedence

58

3.2 Synthesis Encoding

7 depends (Ti,C) :− send (Ti,C) .
8 depends (C,Tj) :− read (Tj,C) , de lay (C,0) .
9 depends (A,C) :− depends (A,B) , depends (B,C) .

10

11 c o n f l i c t (Ti ,Tj) :− bind (Mi, T i , P) , bind (Mj, Tj , P) , Ti < Tj ,
↪→ not depends (Ti ,Tj) , not depends (Tj ,Ti) .

12 c o n f l i c t (Ci ,Cj) :− reached (Ci,L,_,_) , reached (Cj,L,_,_) , Ci < Cj ,
↪→ not depends (Ci ,Cj) , not depends (Cj ,Ci) .

13

14 1{ pr i o (A,B) , p r i o (B,A) }1 :− c o n f l i c t (A,B) .
15 #edge (A,B) : pr i o (A,B) .
16

17 &diff { Ti − Tj } <= −W :− pr i o (Ti ,Tj) , bind (M,Ti,_) , wcet (M,W) .
18 &diff { (Ci,L) − (Cj,L) } <= −D :− pr i o (Ci ,Cj) , reached (Ci,L,_,_) ,

↪→ reached (Cj,L,_,_) , rou t ingde l ay (L,D) .

Figure 3.11: Encoding of Resource Sharing Constraints

over the other. This is realized through the choice rule in the head, that only selects either
prio(A,B) or prio(B,A). A set of partial orders may result in unsatisfiable priority chains,
such as prio(a,b). prio(b,c). prio(c,a). leading to non-functional deadlocks. The built-
in acyclicity rule [133] in line 15 is used to prevent such cycles. The actual resource sharing con-
straints defined by Equations (3.9) and (3.10) are implemented in lines 17 and 18, respectively.
Each time, a prio/2 atom has been inferred, a difference term is generated that sequences the
execution of the corresponding two tasks. While the rule in line 17 is only inferred if a bind/3
atom exists, the rule in line 18 is only inferred if the two corresponding reached/4 atoms exist.
If, for instance, the atom prio(ti,tj) is inferred, a difference constraint of the form τ(ti) −
τ(tj) ≤ −dA(ti) is generated that sequences the execution of ti and tj , i.e., it shifts the start time
τ(tj) behind the execution of ti encoded by the difference theory atom &diff {ti-tj} <= -W.

Iteration Unrolling So far, the constraints described above can only handle problem instances
where the deadlines of the tasks do not exceed the specified periodicity of the applications.
However, the application model proposed in Section 3.1 allows arbitrary deadlines. As an
example, assume the application in Figure 3.12(a). For the sake of simplicity, only tasks are
depicted here and the binding is assumed to be fixed. In detail, the tasks t1 and t3 are bound
to the processing element p1 while t2 and t4 are bound to processing element p2. The execution
times of the tasks t1, . . . , t4 are given as w(t1) = w(t3) = 2, w(t2) = 3, and w(t4) = 1. The
corresponding deadlines are d(t1) = d(t2) = 5, d(t3) = 9, and d(t4) = 11. As the tasks are
dependent on each other, the periodicity of each task is identical and is specified as p(ti) = 5.
Hence, tasks t3 and t4 have a deadline that is larger than the periodicity of the application.
Furthermore, the application consists of two inter-iteration dependencies with index delays of
2 and 3, respectively. That is, the fourth execution of t1 depends on the first execution of
t4 and the third execution of t2 depends on the second execution of t3. Tasks that share the
same colors are assumed to be bound to identical processing elements. Figure 3.12(b) depicts
a valid schedule. The interesting parts of the schedule are that first execution of t3 (i.e., t3,1)
is started after the second execution of t1 (t1,2) and the first execution of t4 is shifted behind
the second execution of t2. However, this is not possible to express with the constraints that
have been introduced in the paragraphs above. Instead, t3,1 and t4,1 would overlap with t1,2

59

3 System Synthesis with Partial Assignment Evaluation

t1

t2

t3

t4

3 2

d(t1) = 5
w(t1) = 2

d(t1) = 5
w(t2) = 3

d(t3) = 9
w(t3) = 2

d(t4) = 12
w(t4) = 1.5

(a) Application Graph

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
pH 2 · pH 3 · pH

t

p1

p2 t4,−2

t1,0

t2,0

t3,−1

t4,−1

t1,1

t2,1

t3,0

t4,0

t1,2

t2,2

t3,1

• • •

(b) Valid Schedule

Figure 3.12: Example specification with deadlines larger than the periodicity.

and t2,2, respectively. Thus, a correct analysis of the resulting latency would not be possible.
To detect these collisions, one possibility is to project all task executions into one common
iteration. This is visualized in the Gantt chart by the virtual preceding iterations, i.e., t3,0 and
t4,−1, respectively. However, this is only possible after all decisions have been made rendering
the evaluation of partial assignments infeasible.

A remedy to this problem is to unroll the application in a way that all resource sharing con-
straints can be adhered. Similar to loop unrolling done by compilers, the application is multi-
plied. Afterwards, virtual dependencies between the iterations are inserted and the periodic-
ity, deadlines and inter-iteration dependencies have to be adapted. The factor f by which the
application tasks are multiplied depends on the ratio between the latest deadline and the pe-
riodicity pH , i.e.:

f =
⌈︃max(d(ti))

pH

⌉︃
.

This way, all potential collisions can be detected. Thus, in the running example, the applica-
tions had to be multiplied three times as ⌈11/5⌉ = 3. Next, each execution of a copied task
ti,j has to be guaranteed to adhere to the specified periodicity, i.e., it has to be executed ex-
actly j · pH time units after the original task ti. This can be expressed by the linear term
τ(ti)− τ(ti,j) = −j · pH

3-6. As multiple iterations are now unrolled, the periodicity ˜︂pH of the
adapted application has to be changed to f times the original periodicity, i.e., ˜︂pH = f · pH .
The deadlines of the copied tasks ti,j are given by d(ti,j) = d(i) + j · pH . The remaining prop-
erties of the tasks are identical to the original ones. Particularly, the new tasks have to be
bound to the same processing elements as the original ones. Therefore, in the encoding, an
additional rule of form bind(Tij,R):-bind(Ti,R) is added to the logic program. Hence, if a
mapping m = (ti, p) is assigned TRUE for the task ti, the mapping m = (ti,j , p) has to be as-
signed TRUE simultaneously. Finally, for any inter-iteration dependency ⟨ts, c, tr⟩ with s(c) > 0,
the corresponding message c and the index delay s(c) thereof have to be adapted. To this
end, the original edge (c, tr) is removed from EA. The new receiving task tr,j is determined
by analyzing the index delay s(c) and the multiplication factor f . The index j is calculated
by j = s(c) mod f , with mod being the modulo operation, and the new index delay ˜︃s(c) is up-
dated with ˜︃s(c) = ⌊ s(c)

f ⌋. Finally, the new edge (c, tr,j) is added to EA.
Figure 3.13 shows the result of the iteration unrolling process for the running example. In

3-6This is transformed into two difference constraints as shown in Equation (3.1) on page 53.

60

3.2 Synthesis Encoding

t1,0

t2,0

t3,0

t4,0

t1,1

t2,1

t3,1

t4,1

t1,2

t2,2

t3,2

t4,2

1

τ(t1,0)− τ(t1,2) ≤ −10

τ(t1,2)− τ(t1,0) ≤ 10

d(t1,2) = 15

d(t2,2) = 15

d(t3,2) = 19

d(t4,2) = 21

Figure 3.13: The adapted application graph allowing the application of Figure 3.12(a) to be
analyzed by the proposed approach.

the figure, the dashed orange lines represent the difference terms while the black solid lines
depict dependencies. The black dotted lines shall not to be considered at the moment. For the
sake of clarity, only the adapted deadlines of the tasks t1,2 to t4,2 are shown. Similarly, only
two difference terms are specified explicitly. The remaining ones are defined analogously. The
two inter-iteration dependencies of the original application have been changed. While the first
dependency still renders an inter-iteration dependency, the second one has been changed into
a default dependency, i.e., with s = 0. Yet, the fourth execution of the task t1 still depends on
the first execution of t4 and the third execution of t2 still depends on the first execution of t3.
Additional dependencies are not necessary to analyze the latency of the application correctly.
For example, there is no edge between the tasks t4,1 and t1,1 as the timing constraints are already
guaranteed by the fixed difference constraints between the individual task copies. Furthermore,
the resource sharing constraints, defined in Equation (3.9), can now correctly detect and prevent
collisions between tasks t1,1 and t3,0 as well as t2,1 and t4,0. As, for example, tasks t4,0 and t2,1
are mapped to the same resources, the ASP solver can explicitly decide which is executed first.

The disadvantage of this approach is an increasing number of tasks, messages, and edges,
and in turn, decision variables that have to be assigned. However, many of the decisions do
not impact the complexity of the problem. That is, the binding of the additional tasks are
essentially unit clauses that are automatically assigned whenever the original task is bound to
a processing element. The same holds true for the difference constraints forcing the periodic
execution of the tasks. These do not have to be decided at all but instead are fixed from the
beginning of the search. Only the additional resource sharing constraints remain. To reduce
the number of additional decisions further, consider the dotted black lines in Figure 3.13.
Including these dependencies, copied tasks become dependent of each other. Hence, additional
resource sharing constraints can be omitted in these cases as only independent tasks must
be considered (q.v., Equation (3.9)). In this example, this limits the additionally introduced
constraints to resource sharing constraints between the pairs (t3,0, t1,1), (t3,0, t1,2), (t3,1, t1,2),
(t4,0, t2,1), (t4,0, t2,2), and (t4,1, t2,2).

61

3 System Synthesis with Partial Assignment Evaluation

Grounding

Problem Definition

rule1(X,R):-fact1(X,R).

rule2(X):-fact2(X).

:-fact1(X,R),fact1(Y,R).

Problem Instance Foreground Theory Background Theory

CDCL

propagate
and assign

ASP decisions

update
constraint graph

generate
conflict clause

restrict
search space

(partial) assignment

init

no

yes negative
cycle?

Valid
Implementation

yesno complete?

rz

ry

rx

Figure 3.14: Architecture Overview of the synthesis framework.

As a conclusion, the presented techniques can also be utilized to handle applications where
task deadlines exceed their periodicity. Yet, they demand a preprocessing of the problem
instance that leads to a slight increase in the number decisions to be made. This, however,
does not impact the search itself as it has to be done on the instance prior to solving. Hence,
in the following, the instances are assumed to be preprocessed before applying the proposed
synthesis approach.

3.3 Theory Propagation

The ASP encoding presented in the previous section allows a holistic definition of both spec-
ification and feasibility constraints that encompass all steps of the synthesis process, viz. al-
location, binding, routing, and scheduling. This section elaborates on the integration of the
background theory into the foreground ASP solver. Only the tight integration enables the use
of sophisticated solving techniques such as theory propagation and the evaluation of partial
assignments. At first, an overview of the entire framework is given before the individual parts
are discussed in more detail.

3.3.1 Framework Overview

The overview of the synthesis framework is depicted in Figure 3.14. The solving process is
logically split into two parts. While the foreground theory solver assigns and propagates ASP
decisions, the background theory solver evaluates the satisfiability of the corresponding schedul-
ing constraints. Both solvers are intertwined through the theory atoms &diff as defined in the
previous section. On the one side, the inferred difference atoms are relayed from the foreground
to the background theory for evaluation. On the other side, unsatisfiable conjunctions found by
the background theory are reported back to the foreground solver in the form of conflict clauses.
The process is started by grounding the input in the form of the general problem definition and
the specific problem instance resulting into a variable-free representation of the specification.
The foreground ASP solver subsequently assigns and propagates decisions conforming to the
conflict-driven clause learning (CDCL) paradigm. The background difference logic solver man-

62

3.3 Theory Propagation

ages a constraint graph generated from the corresponding difference atoms. Thus, whenever an
additional difference atom is inferred, the constraint graph is updated with the corresponding
vertices and edge. A shortest path algorithm is subsequently applied to the graph that is used
to compute job start times and to determine if the constraints form a negative cycle render-
ing the conjunction of constraints unsatisfiable. If a negative cycle is detected, the background
theory analyzes the reason of the negative cycle, generates a corresponding conflict, and relays
it back to the foreground solver to exclude that specific set of constraints from the search. If
no negative cycle is detected, the schedule is checked whether all periodicity constraints are
fulfilled in subsequent iterations of the execution of the system. Failing this test leads to addi-
tional difference constraints that have to be added to the constraint graph and the negative cy-
cle checks have to be conducted anew. If the test has passed and there are no further decisions
to be taken, the solving process terminates with a valid implementation found. Otherwise, the
search is continued in the foreground solver until the entire search space has been covered.

3.3.2 Stateful Propagation

The background theory is implemented as a stateful propagator. That is, the constraint
graph is iteratively updated and not build from scratch each time a new theory atom is inferred.
If the foreground solver has to backjump to a previous decision level due to an encountered
conflict, the constraint graph has to revert the corresponding changes as well. Therefore, the
background theory keeps track of all changes throughout the solving process.

The implementation of the propagator consists of four phases: init, propagate, undo, and
check. The init phase is executed at the start of solving. Here, all &diff atoms are extracted
from the variable-free representation of the problem and the associated information regarding
corresponding vertices and edge weights is saved. Moreover, the literals that correspond to the
difference atoms are inserted into a watch list, in order to invoke the theory solver whenever
they are assigned throughout solving.

The actual theory evaluation is performed in the propagate phase. Whenever an atom in the
watch list gets assigned by the ASP solver, the theory propagation is invoked where the con-
junction of difference constraints is checked for consistency. As detailed in Section 3.2.2, this
is done by translating the difference atoms into a constraint graph and performing a shortest
path analysis originating from a dedicated vertex v0. As the propagator is invoked each time
a difference constraint is assigned, only a partial assignment is available. Thus, the constraint
graph is updated incrementally throughout the solving process. The advantage of this method-
ology is that invalid subsets of difference constraints are recognized early, potentially pruning
large regions of the search space without the need to wait for a full assignment. Although the
Bellman-Ford algorithm [131, 132] is considered the fastest algorithm for that problem, it does
not support an incremental operation. Hence, applying Bellman-Ford would require the re-
evaluation of the entire graph each time new a difference constraint was assigned and its corre-
sponding edge was added. Instead, whenever a new constraint is added to the constraint graph,
an algorithm based on the incremental consistency checking algorithm proposed by [134] and
[135] is utilized. The algorithm, sketched in Figure 3.15, is able to detect negative cycles and
determine the shortest path to each vertex if no negative cycle exists in an incremental process.

Moreover, it allows ignoring vertices that are not influenced by the addition of edges implied
by the assignment of additional constraints. A potential, initialized with zero, is assigned to
each vertex of the constraint graph. Each time a difference constraint u − v ≤ w is inferred,

63

3 System Synthesis with Partial Assignment Evaluation

1: function add_edge(u w→ v)
2: if u.potential + w < v.potential then
3: v.potential← u.potential + w
4: heap.push← v
5: v.from← u

w→ v
6: while heap ∧ ¬u.from do
7: s← heap.pop
8: for ∀s c→ t do
9: if s.potential + c < t.potential then

10: if ¬t.from then
11: t.potential← s.potential + c
12: heap.push← t
13: t.from← s

c→ t
14: else
15: heap.revert← t

Figure 3.15: Pseudocode of the incremental consistency checking algorithm based on [135]

the constraint graph is updated with the corresponding edge, denoted as u
w→ v. Subsequently,

the graph is traversed starting at the source vertex u of the new edge. Thereby the vertex
potential of the successor vertex v is updated if the weight of the corresponding edge decreases
its potential. Only if the potential has been decreased, the corresponding vertex is marked as a
starting point for further traversal, rendering a conditional breadth-first search. This procedure
is repeated until either the initial source vertex u is reached or the there are no more vertices
marked for traversal. In the former case, the algorithm has detected a negative cycle in the
graph, i.e., the conjunction of the underlying difference constraints of the graph is proven to be
unsatisfiable (inconsistent). The latter case implies that the addition of the new edge u

w→ v
does not lead to a negative cycle and the vertex potentials correspond to their shortest path. In
the worst case, each vertex of the graph is traversed once, leading to a runtime of O(m+n log n),
with m and n representing the number of edges and vertices, respectively [135]. Although the
complexity is identical to the Dijkstra algorithm, it allows handling of negative edge weights.

If a negative cycle is detected, the conjunction of constraints inferred by the foreground
solver are known to be unsatisfiable. Hence, a conflict clause has to be generated to prevent
the solver from making the same decisions again. In its simplest form, the entire conjunction
of difference constraints is used as conflict clause. However, providing a minimal reason is
beneficial to prune the search space more effectively. The advantage of the algorithm at hand
is the ability to automatically provide the edges that lead to a negative cycle. This information
can be directly used to generate a minimal conflict clause as only the conjunction of edges in
the negative cycle render the constraint graph infeasible.

The conflict clause returned to the foreground solver triggers a backjump in the search. As
a result, theory atoms in the form of difference constraints inferred previously may become
unsatisfied. Thus, the constraint graph has to be reverted accordingly and the undo phase is
executed. To this end, the theory propagator keeps track of the history tied to the various
decision levels of the ASP solver. Whenever an edge is added to the graph and a potential of a
vertex is updated according to the partial assignment of the current decision level, the change
is pushed onto a stacked trail. Jumping back to a previous decision level, the foreground solver
informs the background theory about the desired decision level. Using the trail of changes, the
state of the constraint graph at this decision level can be easily regained without the need to

64

3.3 Theory Propagation

1

2

3

4

5

(a) Application Graph

1 2 3 4 5 t

rz

ry

rx

1

5 2
3

(b) Partial assignment

1 2 3 4 5 t

rz

ry

rx

1

52
34

(c) Complete Assignement

Figure 3.16: Scheduling anomaly shown on the example of a simple application graph consist-
ing of two independent applications.

rebuild the entire graph.
Note that the validity of this approach using partial assignments for constraint and domi-

nance checks depends on the properties of the corresponding objective functions. Only if the
objective function is assignment monotonic, pruning decisions based on the incomplete imple-
mentation is possible. Hence, the quality of an implementation candidate must not improve
with further decisions made. With respect to area and energy requirements, this property
holds trivially, i.e., the selection of additional mappings implies more energy to be consumed
and potentially requires additional resources to be allocated. However, regarding the latency
in self-timed systems, a scheduling anomaly may occur. It is a phenomenon where executing
an additional task or sending a message packet over a link may influence the schedules of sub-
sequent jobs. In turn, this influence may reduce the overall end-to-end latency of the entire
system, and thus, preventing an assignment monotonic behavior. An example of a scheduling
anomaly is given in Figure 3.16. The application in Figure 3.16(a) shall be implemented on the
three resources rx, ry, and rz, with corresponding execution times of w(1, rx) = 1, w(2, rz) = 1,
w(3, ry) = 2, w(4, ry) = 2, and w(5, rz) = 2. When only the first four mappings are decided,
a self-timed schedule as given in Figure 3.16(b) is deduced. As task t4 is not yet bound to a
resource, the start time of its successor t5 is not constrained and can start at time step 0. In
turn, this delays the execution of t2 and subsequently t3 resulting in an end-to-end latency of
5 time units. Assume, the deadline of the task t3 to be 4. Hence, the partial assignment would
not adhere to the constraints, and should be removed. When, in the next step, the task t4 is
assigned to resource ry, the execution of t5 is delayed by 2 time units. Hence, t2 can be exe-
cuted earlier and both t3 and t5 can start in parallel. This leads to reduced end-to-end latency
of 4. Prematurely removing the solutions would have incorrectly excluded the solution from
the search. Hence, excluding the implementation, e.g., due to a missed deadline or similar, be-
fore a complete assignment is available is not valid if a fully self-timed behavior is considered.

A possible remedy to this problem is the waiver of partial assignment checking and only ap-
plying the synthesis on complete assignments. However, this would limit the pruning capabili-
ties of the approach. This can be avoided by the introduction of fixed priorities between tasks
forcing a specific execution order. This way, delays that are introduced by additional decisions
cannot decrease the end-to-end latency of the entire system. For the running example of Fig-
ure 3.16, assume the fixed priority t5 ≻ t2), i.e., t5 is always executed before t2. Binding task t4
now does not influence the execution order. Instead, t2 is executed at time step 4, increasing the
end-to-end latency of the system. Hence, the partial assignment could be safely pruned from the
search. The search would then continue, eventually assigning the priority t2 ≻ t5, always forc-
ing t5 to be executed after t2. In the end, with this, the solution in Figure 3.16(c) is obtained.

65

3 System Synthesis with Partial Assignment Evaluation

3.4 Evaluation

In this section, the proposed ASP-based approach is evaluated. To allow for an extensive
supply of specification instances for the evaluation, the section starts with addressing the
problem of creating test instances. Here, a systematic instance generator is proposed that
permits designing test instances following regular patterns and properties. In particular, the
degree of parallelism of the generated instances can be specified, although each instance is
unique. Thus, not only one problem instance is generated but a set of individual specifications
with similar characteristics. The remainder of this section evaluates the synthesis approach
with a set of instances obtained by the proposed instance generator. Here, the superiority of
partial over full assignment checking is shown on the basis of a number of problem instances.

3.4.1 Test case generation

While, in recent time, many design space exploration (DSE) techniques to the system-level
synthesis problem of embedded systems design have been proposed, a systematic approach on
how to produce a viable set of variant test cases with definite similar properties is not available.
In the following, a methodology is proposed for the test case generation of DSE techniques and
a versatile and easily expendable instance generator based on ASP is presented that is able to
produce hard synthesis problem instances.

However, the specific problem instance in use is another important factor when evaluating a
DSE technique as differently structured applications and assumptions can lead to both easier
and harder optimization problems. On the one hand, in order to evaluate the performance of
different DSE approaches with respect to each other, it is imperative that the DSE inputs are
similar and easily reproducible. On the other hand, for the development of new techniques,
test cases that represent a specific class of problems are desired to cover a large input space.
Thus, variant test cases with similar properties must be used to get meaningful results on the
performance of a DSE technique for specific classes of problem instances.

In this section, a methodology for generating system-level problem instances is proposed. The
generator utilizes the constraint solving capabilities of ASP to define the desired characteristics
of generated test cases. The most important properties of the generator are listed below:

• Systematic generation: Rules encoded in ASP guarantee the compliance to desired
characteristics of the resulting test case. This involves the number of tasks, messages,
processing and communication elements as well as communication behavior of the appli-
cation.

• Varied test cases: Utilizing the stable model semantics of ASP, the generator produces
variant instances with similar characteristics as described above while the shape of the
generated applications differ. This is important to evaluate DSE techniques with respect
to various classes of applications.

• Modularity: The generation of application and architecture templates are independent
of each other, allowing the exchange of rules individually. Furthermore, as of the modular
structure, additional domain-specific properties can be added easily.

• Platform independence: The generator is implemented in ASP allowing it to be
executed on each system on which a compatible ASP solver is installed.

66

3.4 Evaluation

1

2

3

(a) Series pattern

1

2 3

4

(b) Parallel pattern

•

(c) Terminal pattern

Figure 3.17: Different patterns considered in the series-parallel graph generation.

The generator is designed to generate specification instances that comply to the system model
presented in Section 3.1. That is, it generates an application graph, a platform template, and
the mapping options connecting the former two. Therefore, the generator is separated into
three individual modules: the application module (Section 3.4.1.1), the architecture module
(Section 3.4.1.2), and the mapping module (Section 3.4.1.3). The constraint generation of the
resulting instances is more complicated as the generated problem shall not be trivially solvable
but simultaneously not unsatisfiable. Optimally, the hardness should be adjustable to be able
to generate more diverse instances. While randomly assigning hard constraints may be possible,
a more elaborate technique is proposed in Section 3.4.1.4.

3.4.1.1 Application Module

For the application generator module, applications are considered to be modeled as series
parallel graphs (SPGs). In this way, a wide range of application characteristics can be described
by one versatile encoding. An SPG is a fully connected graph that consists of series and
parallel patterns3-7. While a series pattern can be used to model direct dependencies between
two tasks (or subapplications) of an application, a parallel pattern models possible concurrent
execution of two subapplications. As an example, consider applications A1 and A2 in Figure 3.1
on page 46. The former can be described as a parallel pattern where tasks t2 and t3 are able
to execute concurrently (and in arbitrary order). That is, they are only dependent on their
common predecessor task t1. The latter application, on the other hand, represents a series
pattern where task t5, t6, and t7 have to be executed in a strict order as they form a dependency
chain. Depending on the dominance of series or parallel patterns, the application allows for
less or more concurrency, respectively.

An SPG is constructed recursively: Initially, an SPG has the form of a series (Figure 3.17(b)),
parallel (Fig. 3.17(a)) or terminal (Fig. 3.17(c)) pattern. While terminal nodes determine the
stop criterion of the recursive construction process, each node of the series and parallel patterns
contains itself one of the patterns. Hence, nodes 1, 2, 3, and 4 in Figure 3.17 are in turn replaced
by another pattern. Given a fixed number of series and parallel patterns to be generated, s and
p respectively, this results in an overall number of 1+2 ·s+3 ·p tasks and 2 ·s+4 ·p messages.

The encoding of the series-parallel is depicted in Figure 3.18. At first, series and parallel
patterns are inferred from the input patterns/3 facts, defining the number of series and parallel
patterns for application Ai ∈ A, viz. NS, NP, and A. Lines 3 and 4 define that both series and
parallel are valid patterns. Afterwards, for each node of the parallel (line 5) and series (line
6) patterns, a child pattern is selected. That is, either another pattern or a terminal node
3-7Note that without loss of generality, we only consider binary parallel patterns in this paper. This can be easily

extended to parallel patterns with more than two branches.

67

3 System Synthesis with Partial Assignment Evaluation

1 s e r i e s (P,A) :− pat t e rns (NS,NP,A) , P=1 . .NS .
2 p a r a l l e l (P,A) :− pat t e rns (NS,NP,A) , P=NS+1 . .NP+NS .
3 pattern (P,A) :− s e r i e s (P,A) .
4 pattern (P,A) :− p a r a l l e l (P,A) .
5 1 { conta in s (P1,P2,N,A) : pattern (P2,A) , P1!=P2 ; conta in s (P1,term (N) ,N,A) } 1 :−

↪→ p a r a l l e l (P1,A) , N=1 . . 4 .
6 1 { conta in s (P1,P2,N,A) : pattern (P2,A) , P1!=P2 ; conta in s (P1,term (N) ,N,A) } 1 :−

↪→ s e r i e s (P1,A) , N=1 . . 3 .
7 :− conta in s (P1,P2,X,A) , conta in s (P1,P2,Y,A) , X!=Y.
8 conta in s (P1,P2,A) :− conta in s (P1,P2,_,A) .
9 :− conta in s (P1,P2,A) , conta in s (P3,P2,A) , pattern (P2,A) , P1!=P3 .

10 1{ s t a r t (P,A) : pattern (P,A) }1 :− pat t e rns (_,_,A) .
11 r eachab l e (P,A) :− s t a r t (P,A) .
12 r eachab l e (P2,A) :− conta in s (P1,P2,A) , r eachab l e (P1,A) .
13 :− not r eachab l e (P,A) , pattern (P,A) .
14 conta ins_trans (P1, P2, A) :− conta in s (P1, P2, A) , pattern (P2,A) .
15 conta ins_trans (P1, P3, A) :− conta ins_trans (P1,P2,A) , conta in s (P2, P3, A) ,

↪→ pattern (P3, A) .
16 :− conta ins_trans (P, P, A) .
17 [. . .]
18 0 { i n s t r u c t i o n s (task (TID,A),TYPE,N) :

↪→ N=@getValue (ins t r_min , in s t r_max , seed , (TID,A,TYPE)) } 1 :− task (TID,A) ,
↪→ TYPE=1 . . in s t r_nr .

19 :− 0 #count {TYPE,(TID,A) : i n s t r u c t i o n s (task (TID,A),TYPE,_) } 0 , task (TID,A) .
20 i n s t r u c t i o n _ e x i s t (TYPE) :− i n s t r u c t i o n s (_,TYPE,_) .
21 :− not i n s t r u c t i o n _ e x i s t (TYPE) , TYPE=1 . . in s t r_nr .

Figure 3.18: Application Generator Module

is selected. To prevent invalid pattern constructs, lines 7-16 contain rules to prohibit several
decisions. Line 7 provides that no pattern is contained at two different positions of another
pattern. Lines 8 and 9 prohibit the situation that a pattern is contained in two different
patterns at the same time, while lines 10-13 guarantee that the graph is fully connected for
each application. Finally, lines 14-16 provide the transitive closure of the graph and make sure
no cycle is present (a pattern must not contain itself transitively).

Note that for sake of brevity, the deduction of output predicates task/2 and message/2
encoding tasks and messages for a specific application is not given in Figure 3.18. In short, each
terminal node represents one task and the messages (including send/2 and receive/2 atoms)
are deduced from the edges between terminal patterns. Lines 18 to 21 assign intermediate
properties to each task that are subsequently used by the mapping generator. That is, each task
is characterized by its individual instruction mix. Therefore, the generator expects a number
of different instruction types as input, i.e., instr_nr. As encoded in line 18, each task may
contain a specific number of instructions of each instruction type in the range from instr_min
to instr_max. Again, instr_min and instr_max are inputs of the generator. As an example, a
task may consist of 50 type-1 instructions (e.g., integer) and 20 type-2 instructions (e.g., floating
point) but has no type-3 instructions (e.g., memory operations). Another task, on the other
hand, may only consist of 30 type-2 instructions. The actual number of instruction of each type
is selected randomly by a function implemented as a Python callback3-8. The 4-ary callback
3-8The results of callback functions are evaluated during grounding but is not part of standard ASP syntax.

Instead, it is unique to the utilized ASP solver clingo.

68

3.4 Evaluation

•

• •

•

•

•

• •

•

•

•

•

•

•

•

• •

•

•

• •

•
•

•

•

•

•

•

• •

•

•

•

•

•

•

Figure 3.19: Three variant applications with similar characteristics. Each application contains
one series and two parallel patterns, i.e., as input for the generator the atom
patterns(1,2,1) was used.

function getValue(min,max,seed,ID) returns a random integer value between min and max
based on the seed. To reduce grounding overhead, this is done only once for each task ID.
Lines 19 and 20 guarantee that each task consists of at least one instruction type and that each
instruction type is contained in at least one task throughout the application graph, respectively.

An example of three applications with similar characteristics is depicted in Figure 3.19.
Here, the input patterns(1,2,1) is used, specifying to generate an application containing one
series pattern, two parallel patterns and having the ID "1". Although, the exact characteristics
vary between the three applications, the degree of parallelism is identical. Furthermore, each
application consists of 1 + 2 · 1 + 3 · 2 = 9 terminal nodes and 2 · 1 + 4 · 2 = 10 edges.

3.4.1.2 Architecture Module

The hardware architecture module generates a 3-dimensional grid of routers that are each
connected to a processing element via two independent communication links. An example of
a resulting platform is given in Figure 3.1 on page 46. Here, the routers r1 − r4 form a grid of
size 2× 2× 1 and are connected to four processing elements p1− p4. The encoding is shown in
Figure 3.20. At first, the number and IDs of routers are determined by interpretation of the
input atom resources/3 that represents the grid size in each dimension X, Y , and Z. For
each router, an accompanying processing element (processor/4) is inferred in line 2 before

1 route r (ID,X,Y,Z) :− ID=X+NX∗(Y−1)+NX∗NY∗(Z−1) , r e s o u r c e s (NX,NY,NZ) , X=1 . . NX,
↪→ Y=1 . . NY, Z=1 . .NZ.

2 p r o c e s s o r (ID,X,Y,Z) :− route r (ID,X,Y,Z) .
3 route r (ID) :− route r (ID,_,_,_) .
4 p r o c e s s o r (ID) :− p r o c e s s o r (ID,_,_,_) .
5 l i n k (route r (N) , p r o c e s s o r (N)) :− route r (N,_,_,_) , p r o c e s s o r (N,_,_,_) .
6 l i n k (route r (M) , r o u t e r (N)) :− route r (M,X,Y,Z) , r ou te r (N,X+1,Y,Z) .
7 l i n k (route r (M) , r o u t e r (N)) :− route r (M,X,Y,Z) , r ou te r (N,X,Y+1,Z) .
8 l i n k (route r (M) , r o u t e r (N)) :− route r (M,X,Y,Z) , r ou te r (N,X,Y,Z+1) .
9 l i n k (X,Y) :− l i n k (Y,X) .

10 0{ cp i (p r o c e s s o r (RID),TYPE,N) : N=@getValue (cpi_min,cpi_max,seed, (RID,TYPE)) }1
↪→ :− p r o c e s s o r (RID) , TYPE=1 . . in s t r_nr .

Figure 3.20: Architecture Generator Module

69

3 System Synthesis with Partial Assignment Evaluation

1 N{ map(ID, task (T,A) , p r o c e s s o r (R)) : p r o c e s s o r (R) ,ID=@getId (m, (T,A,R)) }N :−
↪→ task (T,A) , N=@getValue (map_min, map_max, s e e d , (T,A)) .

2 :− map(ID, T, R) , i n s t r u c t i o n s (T,TYPE,_) , not cp i (R,TYPE,_) .
3 wcet (MID,TIME) :− map(MID, T, R) ,

↪→ TIME=#sum{CYCLES,TYPE : i n s t r u c t i o n s (T,TYPE,INS) , cp i (R,TYPE,IPC) ,
↪→ CYCLES=INS∗CPI} .

Figure 3.21: Mapping Generator Module

both 4-ary predicates router/4 and processor/4 are projected to unary predicates in lines 3
and 4. Lines 5 to 9 define the communication links (link/2) between routers and processing
elements. At first, a link is created between a router and its processing element having the
same ID. Afterwards, in lines 6 to 8, a link between each two neighboring routers is added.
Finally, the last link rule assures bidirectional links between elements. The last lines generate
random cycles per instruction (CPI)3-9 values for each processing element and instruction type.
Similar to the task generated by the application module, the actual values are chosen randomly
in the range of specified minimum and maximum values by a callback function. Although, a
processing may not support a specific instruction type, each processing element must support
at least one instruction type and each instruction type has to be supported by at least one
processing element. As an example, assume two processing elements. While the first may
represent a general-purpose CPU and, thus, supports any instruction type, the second one may
represent an ASIC that only supports one type of instructions (e.g., AES operations).

Note that while the architecture generator presented here, can only generate NoCs organized
in a regular mesh, it can be adapted easily to support other topologies. This does neither
interfere with the application nor the mapping module.

3.4.1.3 Mapping Module

Given the application and architecture module, for the completion of a problem instance,
mapping options have to be determined. To this end, in the mapping module, a random number
of mapping options is generated for each task that has been created by the application module.
Afterwards, timing requirements are determined based on instruction count, instruction type,
and CPI values as generated in the application and architecture modules.

The encoding is given in Figure 3.21. Line 1 generates a random number of mapping options
map/3. Therefore, two callback functions are evaluated during grounding. First, the function
getValue/4 works similar to the callbacks in the application and architecture modules and
returns a random number ranging from map_min to map_max. It is used to determine the
number of mapping options generated for a specific task. The binary callback function getID/2
determines a unique identifier for each mapping option. It is based on the identifiers of the
task, the resource it is mapped to, and the application. The first parameter m is the prefix
of the mapping identifier. As an example, a mapping option allowing a task with ID 2 to be
executed on a resource with ID 5 may result in the mapping ID “m1x2x5”. Line 2 guarantees
that no mapping is inferred, that binds a task to an incompatible processing element. That is,
if the processing element does not support a specific instruction type, no task containing such
3-9At system level, the timing is generally not cycle accurate. However, as the term CPI is commonly known, it

is used here as a performance metric in a more general sense, i.e., time units per instruction.

70

3.4 Evaluation

instructions must be mapped to that resource. Finally, the WCET for a specific mapping option
are calculated in line 3. Here, the instruction count of the task and the CPI of the resource
are combined. For each present instruction type, the instruction count is multiplied with the
corresponding CPI. Then, by accumulating the interim results, the WCET of the mapping
option is determined. This way, the WCETs of different task-resource combination are more
consistent than generating the values randomly. For instance, consider a generated mapping
option m = (t, pi) The task t is characterized by an instruction count of 50, 100, 20, and 0
for the instruction types 1, 2, 3, and 4, respectively. The processing element pi supports all
instruction types and has corresponding CPIs of 2, 4, 3, and 1. Now, the resulting WCET of m
corresponds to 2·50+4·100+3·20+1·0 = 560. Another processing element pj may not support
instruction type 3, i.e., the atom cpi(processor(pj),3,N) is not part of the stable model.
Thus, the mapping option m = (t, pj) is not viable due to the integrity constraint in line 2.

3.4.1.4 Constraint Generation

Generally, in order to evaluate system synthesis approaches, it becomes imperative to provide
a large variety of test cases. To this end, the generator is used to generate different problem
classes with varying characteristics. That is, each problem instance that belongs to a specific
class has similar characteristics including the number of series and parallel patterns, the size
of the architecture, and the range of property values. Utilizing each of the generated problem
instances as input, the synthesis is carried out and can be evaluated with respect to varying
problem instances.

In addition to the properties discussed above, real system implementations have to fulfill
several constraints, like maximum power dissipation, timing, and cost requirements. One
possible approach to deal with such demands in the generator is to utilize random numbers.
However, a random constraint generation does not work properly as the problem instance
would tend to either be over-constrained (i.e., there are no feasible solutions to be found) or
under-constrained (i.e., every solution found during the search is feasible). Unfortunately, as
the system synthesis problem is NP-complete, non-trivial upper bounds (and lower bounds) of
constraints are hard to calculate.

As a remedy, the present generator utilizes a different approach. To allow the generation
of instances of varying hardness, i.e., the difficulty of finding a valid implementation, a two-
phased approach is proposed in the following. In a first step, a problem instance is generated
as elaborated above. Here, no validity constraints or extra-functional constraints are specified.
Hence, an implementation is assumed to be valid as soon as it is feasible. In a second step, each
problem instance is synthesized a predefined number of times. The resulting implementations
are then analyzed regarding their extra-functional properties. To create the final problem
instances, this information is used to calculate validity constraints by weighting the analysis
results with a user-specified complexity factor. The actual synthesis framework used to obtain
these implementations is not significant. However, the obtained implementations should cover
a diverse as possible area of the search space. A purely systematic approach, as employed by an
ASP solver in its default configuration, is therefore not the optimal choice as small variations
between two solutions generally only result in marginal changes of the properties. Instead, for
generating the test instances for the following evaluations, the solver is configured in a way
that a share of the decision variables are assigned randomly. Hence, the search does not strictly
follow the CDCL approach. This way, the solver jumps more frequently through the search

71

3 System Synthesis with Partial Assignment Evaluation

Table 3.1: Problem instances for the synthesis benchmark

Group |A| series parallel |T | |C|

I 1 2 4 17 20
II 2 5 5 27 30
III 3 9 7 42 46
IV 4 10 11 57 64
V 5 13 12 67 74

space and individual implementations are more diverse. The downside of this approach is
that the search results in more conflict states which deteriorate the performance of the search.
However, the experiments in the following show that the generation of the test instances only
takes up a fraction of the time spent on the actual synthesis. As an alternative approach, the
interim implementations may be synthesized by meta-heuristic approaches such as evolutionary
algorithms (e.g., [92]). Yet, this is out of scope of the present thesis.

3.4.2 Experiments

The following section provides an experimental evaluation of the proposed synthesis frame-
work with the focus on the partial assignment checking. Therefore, it presents the difference be-
tween two semantically equivalent solving methodologies. The first implements partial assign-
ment checking enabled by the proposed tight integration of foreground and background solvers
into one uniform framework. The second approach assumes loosely coupled solvers where the
background propagators are only able to evaluate full assignments. Both approaches utilize an
identical encoding and the basic framework presented in this chapter. In the remainder, first
the experimental setup is presented before the results are discussed.

3.4.2.1 Experimental Setup

For the evaluation of the proposed approach, five sets of problem instances have been gener-
ated with the generator presented in Section 3.4.1. The characteristics of the problem instances
are given in Table 3.1. As depicted, the problem instances of each group share common prop-
erties, i.e., the number of independent applications |A|, the degree of parallelism (viz. series
and parallel pattern count), and the number of tasks and messages |T | and |C|, respectively.
In each group I – V, ten individual problem instances have been generated. Furthermore, the
hardness of the resulting instances has been varied. Therefore, the complexity factor has been
set to 1.00 (least hard), 0.90, 0.94, and 0.88 (most hard) to specify the validity constraint of
the maximum allowed latency. Ultimately, this results in 200 individual problem instances that
shall be synthesized once with the proposed partial checking approach and once with an equiva-
lent full assignment checking approach. Hence, in total, 400 synthesis runs have been executed.

The full assignment approach uses the very same input files as the proposed approach.
However, the implemented background propagators are only triggered as soon as the foreground
ASP solver has decided the truth value of all decision variables. An early detection of invalid
assignments is therefore not possible. However, the QF–IDL solver still provides minimal
reasons for invalid designs. Thus, even with full assignment checking, the conflict clauses of the
propagators can prune entire invalid regions (i.e., induced by negative cycles) from the search

72

3.4 Evaluation

space, but only at a later time. Although both approaches provide minimal reasons for invalid
solutions, the traversal of the search space might differ. Depending on which negative cycle,
and hence, conflict clause, is detected first, the CDCL search takes alternating paths through
the design space. As a result, the actual acquired implementation3-10 can vary between partial
and full assignment approaches.

The direct comparison of the proposed synthesis framework with other approaches from the
related work, such as [75, 92, 102] are not considered in the following. The reason for this de-
cision is two-fold. First, the input models of different approaches differ from the proposed ap-
proach. This makes an adaption of the problem instances problematic as assumptions cannot
be easily translated from one approach to the other. For example, the communication infras-
tructures in [75, 92] are modeled as busses while the proposed model considers a more elabo-
rate NoC with on-chip routers. The work of Biewer et al. [102] assumes acyclic applications
while the proposed approach can model cyclic behavior in the application. Second, the utiliza-
tion of different solving techniques inevitably leads to different paths through the search. For
example, in [102], an external QF–IDL (respectively ILP) solver is used to determine valid-
ity of potential implementations. Together, these differences potentially mask the effects that
shall be studied by the experiments in the following. Hence, the setup is chosen to particularly
compare the differences of full and partial assignment checking.

Each synthesis run has been executed on an Intel Core i7-4770 at 3.4 GHz with 32 GiB main
memory running Ubuntu 16.04.7 LTS. The timeout for each run was set to 1800 s.

3.4.2.2 Results

The results of the synthesis runs are depicted in Table 3.2. Here, each degree of hardness
is contemplated individually and further subdivided by the different specification groups as
explained above. The full and partial assignment approaches are represented by four columns.
The first column indicates the number of instances that could be solved within the 1800 s
time limit. In the second one, the average time required to solve each individual problem
instance is shown, i.e., the time after which a valid implementation has been found by the
synthesis framework. The last two columns state the average numbers of choices made and
conflicts encountered by the foreground ASP solver, respectively. Note that for the calculation
of the time, choices, and conflicts, only the synthesis runs were considered for which a valid
implementation was found (or the instance was proven to be unsatisfiable). For example, in the
first row, the average solving time for the full assignment approach only considers six problem
instances, while in the partial assignment approach, nine runs are considered. A more detailed
summary of the results can be found in Tables A.1 and A.2 in the appendix where all runs are
considered for the calculation.

The most apparent result shown in Table 3.2 is the difference in the number of solved in-
stances between full and partial assignment approaches. While the proposed approach utilizing
partial assignments finds valid implementations for 92.5 % (185 out of 200) of the problem in-
stances, the full assingment approach can only solve 24 % (48 / 200) within the specified time
limit. Furthermore, the average time required by the partial assignment approach is almost
always less than for the other approach. There are a few exceptions to this trend: group I in-
stances, and group III instances with a hardness of 0.88. However, these are only artifacts due

3-10Note that the synthesis stops after the first valid implementation is found. Not stopping the search will
eventually provide the exact same set of implementations for both approaches.

73

3 System Synthesis with Partial Assignment Evaluation

Table 3.2: Results of the test instances for the full and partial assignment checking synthesis
runs. The individual columns represent the mean values of all solved instances.

Full Assignments Partial Assignments
Hardness Group Solved Time [s] Choices Conflicts Solved Time [s] Choices Conflicts

1.00

I 6 0.319 7.83 · 103 1.38 · 103 9 1.045 1.82 · 104 9.87 · 103

II 9 463.117 2.33 · 107 2.64 · 105 10 135.955 1.17 · 106 9.73 · 105

III 6 8.654 6.35 · 104 5.67 · 101 10 4.723 1.25 · 104 4.81 · 103

IV 1 28.017 9.24 · 104 7.30 · 101 10 9.038 1.28 · 104 1.40 · 103

V 0 – – – 10 20.350 2.81 · 104 2.27 · 103

0.94

I 5 0.901 3.97 · 104 3.76 · 103 9 65.610 8.40 · 105 7.14 · 105

II 5 730.881 3.55 · 107 4.16 · 105 10 100.205 8.23 · 105 6.60 · 105

III 3 6.775 5.75 · 104 5.70 · 101 10 5.211 1.46 · 104 4.88 · 103

IV 1 16.601 6.87 · 104 4.00 · 101 10 4.939 8.97 · 102 2.78 · 101

V 0 – – – 10 30.128 4.88 · 104 5.25 · 103

0.88

I 4 186.428 1.57 · 107 1.80 · 105 9 222.738 4.18 · 106 3.58 · 106

II 3 358.781 1.70 · 107 1.92 · 105 8 243.216 1.78 · 106 1.53 · 106

III 3 7.570 5.23 · 104 5.37 · 101 10 25.021 1.06 · 105 5.24 · 104

IV 0 – – – 10 5.101 1.31 · 103 6.90 · 101

V 0 – – – 10 32.800 6.30 · 104 8.27 · 103

0.83

I 1 4.027 2.13 · 105 1.32 · 104 5 346.815 4.58 · 106 4.07 · 106

II 0 – – – 5 310.054 2.60 · 106 2.12 · 106

III 1 6.560 5.04 · 104 8.60 · 101 10 99.586 4.80 · 105 3.56 · 105

IV 0 – – – 10 10.196 1.54 · 104 2.23 · 103

V 0 – – – 10 73.721 1.53 · 105 1.81 · 104

Total 48 185

to the utilized calculation methodology. As explained above, only solved instances are consid-
ered here. Hence, if a specific instance cannot be solved by the full but can be solved by the
partial approach, the solving time is influenced in the latter. This is the case for all the out-
liers. For example, one particular instance has been solved by the partial assignment approach
in around 7 s while it could not be solved by the full assignment approach. In fact, each spe-
cific problem instance has been solved faster with the proposed approach.

A second observation regards the complexity of the problem instances. The complexity of
the problem instances within a hardness category, i.e., the amount of decision variables induced
by the number of tasks and messages, grows with an increasing group ID. However, the results
show that this does not necessarily hold for the solving complexity of the problem instances.
Especially, this becomes apparent for the problem instances of group II. On average, this group
takes significantly more time than the other problem instances, even if they are composed of
much more tasks and messages. This clearly shows that the characteristics alone is not decisive
to categorize a problem instance as more or less complex to solve. Instead, other factors may
play a major role such as the particular mapping options as well as routing decisions that have to
be taken and the heuristics used by the solver. That is, if an unfavorable heuristic is chosen, the
design space is traversed ineffectively and valid regions may not be found early. Hence, altering
the heuristic can lead to better, but also worse, solving times for different instances. While a
different heuristic may, on the one hand, be beneficial for finding an initial solution, on the other
hand, this often does not hold if the design space is to be traversed completely, e.g., to prove
unsatisfiability or perform a DSE (q.v. Chapter 4). The detailed consideration of heuristics is,

74

3.5 Chapter Summary

however, out of scope of the present thesis and the interested reader is referred to [136].
Furthermore, altering the hardness of the problem instances yields noticeable changes. Note

again that the problem instances in the different hardness categories are identical but with
varying strict validity constraints. In general, the smaller the latency threshold for a valid
design is, the fewer instances can be solved within the given time limit. While this behavior
is more prominent for the full assignment approach, where only 20 % of all problem instances
have been solved in the 0.88 category, the number of solved instances by the partial assignment
approach also decreases slightly. However, the average solving time does not strictly follow
that trend. The only problem instances that require more solving time on average with an
increasing hardness are the ones of group I. For remaining problem instances, the influence on
the solving time appears somewhat random. For example, the problem instances of group II
have been solved faster (by the partial approach) in the 0.94 category than in the previous
two. Again, this behavior can be explained by the chosen path through the decision tree.
Consider the necessary schedulability test as defined in Equation (3.2) that can be easily
encoded directly in ASP. If the accumulated WCETs of a partial binding already exceeds the
specified periodicity on any allocated processing element, the assignment can be pruned from
the search. This happens earlier when the constraints are stricter. Hence, the partial binding
is already excluded by the ASP solver and a different search path is taken. Ultimately, this
change steers the solver farther away from the invalid region earlier. Note, however, that this
does not hold for other problem instances or even stricter constraints as shown for category
0.88 instances, where for two problem instances, no valid implementation has been found at
all. More restrictive validity constraints do not generally translate to more complex searches.
On the one hand, it may help in finding better solutions faster but, on the other hand, it may
also lead to more timeouts, depending on the specific problem instance.

As a conclusion, the experiments show a clear advantage of the partial assignment checking
for the synthesis at ESL. In particular, the number of solved problem instances within the
given time limit of 3600 s is nearly four times higher than with the conventional approach.
Furthermore, even the solving time of the individual instances is usually lower. While the
advantage of partial assignment checking is less apparent for small problem instances, large
instances significantly profit from the proposed methodology.

3.5 Chapter Summary

This chapter proposed a systematic approach to the system synthesis problem, i.e., the
transformation of a behavioral specification into a structural implementation that has to adhere
to several feasibility and validity constraints. The considered specification model provides for
the definition of cyclic, deadline-constraint, and periodic applications, interconnected hardware
platform templates, and mapping options connecting tasks and processing elements. The novel-
ty of the approach is the tight integration of feasibility and validity checks into one uniform
encoding. This is enabled by the use of ASPmT. It allows for the exchange of common variables
between specialized solvers. In particular, timing constraints are hard to verify with Boolean
logic as it would result in a further design space explosion that is dependent on the specific
timing constraint. Instead, QF–IDL can determine a schedule in polynomial time and be
used to automatically verify timing constraints. Furthermore, the solving process of QF–IDL
automatically provides a minimal reason whenever an implementation candidate is identified to
be invalid. Therefore, the solver determines the schedule on the basis of a constraint graph and

75

3 System Synthesis with Partial Assignment Evaluation

a shortest-path algorithm. If the latter detects a negative cycle, the involved nodes represent
a minimal reason for the unsatisfiability of the problem instance. The tight integration of
foreground ASP and background QF–IDL solvers further permits the evaluation of partial
assignments. That is, even if the ASP solver only has been assigned a subset of all decisions,
the background propagator can evaluate whether it is still possible to acquire a vaild schedule.
In case a negative cycle is already detected for the partial assignment, the remaining decision
variables do not have to be assigned further. Instead, a conflict clause, excluding the partial
assignment only, is provided early during search and allows pruning entire invalid regions from
the search space. Note that this is only possible if the problem is assignment monotonic, i.e.,
deciding subsequent variables must not improve the properties of the solution. In this thesis,
this is enforced by the utilization of introduced priorities to the tasks that prevent scheduling
anomalies.

The proposed framework is finally evaluated through a total of 200 randomly generated
problem instances, categorized into sets of ten instances with common properties. Therefore,
a modular instance generator, also based on ASP, is proposed that allows the generation of
series-parallel applications that shall be implemented onto regularly interconnected process-
ing elements implementing a NoC. The framework differs from related work mainly by tightly
coupled foreground and background solvers that allow the checking of partial assignments. To
avoid effects that potentially mask the benefits of the partial assignment checking, a direct
comparison to related work has not been conducted. Instead, specifically the influence of the
partial assignment has been evaluated. The results clearly show the benefit of the proposed
approach over a synthesis where only full assignments can be analyzed, e.g., when the schedu-
lability analysis is outsourced to an external integer difference logic (IDL) solver, as in [102].
While the proposed approach is able to synthesize more than 90 % of the specified problem
instance, the synthesis analyzing full assignments is incapable to determine valid implemen-
tations of more than 75 % of the problem instances. Especially, problem instances with strict
timing constraints provide a significant challenge if only full assignments can be checked.

76

4
Symbolic Design Space Exploration

The previous chapter addressed the problem of finding one valid solution to the system syn-
thesis problem. From a given specification consisting of an application, an architectural hard-
ware template, a set of mapping options and their corresponding properties, an allocation, a
binding, and a schedule is derived. The resulting implementation adheres to given functional
requirements but extra-functional requirements are not considered. In reality, extra-functional
properties additionally contribute to the quality of the system and are used to compare dif-
ferent valid implementations with one another. In addition to timing properties, commonly
evaluated properties are power consumption, production costs (which are mainly impacted
by area requirements), reliability, interoperability, versatility, and others. The classification
into functional and extra-functional properties as well as their individual importance is highly
application-specific. While, for example, the power that is consumed by a system is generally
not considered to be functionally important, it becomes essential if only a limited power source
(e.g., battery-powered system, implants) is available. Even when two properties are consid-
ered extra-functional, they may be of different importance to the quality of the entire system.
Timing properties, for example, contribute more to the quality of a high-performance comput-
ing cluster than its monetary costs. However, monetary costs play a more important role in
small-scale embedded systems.

This chapter, however, pursues a more general approach where each specified objective is
considered to be equally important. Hence, the aim is to find an implementation that is opti-
mal with respect to the whole set of objectives. Optimizing multiple objectives simultaneously,
generally prevents the existence of one optimal implementation as individual objectives often
conflict with each other. For instance, an implementation providing a high performance pre-
vents power or cost-efficient designs and a small area design may reduce reliability as a failure
of a component cannot be compensated. As outlined in Section 2.3 of this thesis, the result
of a multi-objective optimization run is therefore a set of compromise implementations orga-
nized in a Pareto-front. Optimally, the entire design space is explored to guarantee finding all
Pareto-optimal candidates. Even though this chapter deals with the exploration at system-
level, a complete search is normally only possible for small-sized systems in reasonable time.
In other cases, only an approximate Pareto-front can be obtained.

In addition to the challenges above, the development of (embedded) systems is a highly
competitive area where the timeframe for new designs is critical. Hence, an efficient design
approach is mandatory to provide for a low time-to-market. This is best achieved through
automated approaches that reduce the necessity of manual interaction to a minimum and
the realization of the exploration at a preferably high level of abstraction. At system-level,
the most influential design decisions can be weighed effectively without the need for detailed
structural information of the individual components. The goal is to find the design properties

77

4 Symbolic Design Space Exploration

of all potential design candidates and provide alternatives to the decision maker (DM) to select
candidates for further investigation at lower abstraction levels.

To summarize, an optimal DSE with multi-objective optimization should provide for the
three following properties:

• Provide for the ability to define both the specification of the system and arbitrary design
objectives.

• Automatically explore the search space for feasible design candidates and evaluate them
with respect to the desired objectives.

• Generate a diverse approximation of the true Pareto-optimal front that contains design
alternatives to be selected by the DM and investigated at lower abstraction levels.

To this end, the remainder of this chapter is separated into three sections. First, the ASPmT-
based approach presented in Chapter 3 is extended towards a multi-objective DSE. In com-
parison to previous related work (e.g., [102]), the optimization is tightly integrated into the
solving process by the development of an additional background propagator. The utilization
of ASPmT provides the same benefits as in the synthesis, i.e., implementations of highly con-
strained specifications are guaranteed to be found if they exist and design points are not un-
necessarily revisited once found. Furthermore, it enables dominance checks of partial assign-
ments and allows the pruning of non-optimal areas of the search early in the decision process
through effective reasoning. Finally, the integrated encoding of background theories and indi-
vidual propagators provides succinct formulation of the multi-objective optimization problem.
In the course of the first section, various alternative exploration techniques are investigated
that show the versatility of the approach.

As dominance checks are already executed on partial assignments, the demands on the archive
holding the non-dominated design candidates increase as these checks have to be executed more
often when compared to conservative approaches. To this end, the second section proposes an
archive management technique based on the Quad–Tree data structure [106]. It is shown that
intermediate dominance checks of partial assignments do not require a complete dominance
check. Hence, a significant portion of the time can be saved when adapting the checking
mechanism accordingly without sacrificing correctness of the approach.

Besides the search for novel designs and the dominance filtering of valid design candidates,
the evaluation process is the third bottleneck in the DSE. Each design candidate has to be
evaluated with respect to its objectives to generate the input for validity and Pareto filters.
Similar to the archive management, the utilization of partial assignments increase the number of
evaluations significantly for each design candidate. Hence, the final section proposes a remedy
to this problem. Here, safe approximations are utilized in a way that allows a much faster
evaluation performance of the specified objectives. The goal is to provide a methodology that
allows for a fast evaluation of a partial assignment while maintaining the correct Pareto-front
in the final archive. To this end, the objective value of each partial assignment is estimated
through a safe approximation until the full assignment is obtained and evaluated accurately.
While this technique requires an objective function to fulfill certain properties to guarantee
correctness, it shows a significant performance improvement in the evaluation of the end-to-
end latency of an implementation.

78

4.1 Search Space Pruning Through Pareto Filtering

Relevant Publications

[3] Kai Neubauer, Christian Haubelt, Philipp Wanko, and Torsten Schaub. “Utilizing Quad-
Trees for Efficient Design Space Exploration with Partial Assignment Evaluation”. In:
23rd Asia and South Pacific Design Automation Conference (ASP-DAC). Jeju, Korea,
Jan. 2018, pp. 434–439. doi: 10.1109/ASPDAC.2018.8297362.

[4] Kai Neubauer, Philipp Wanko, Torsten Schaub, and Christian Haubelt. “Exact Multi-
Objective Design Space Exploration using ASPmT”. In: Design, Automation and Test
in Europe Conference (DATE). Dresden, Germany, Mar. 2018, pp. 257–260. doi: 10.
23919/DATE.2018.8342014.

[6] Kai Neubauer, Christian Haubelt, Philipp Wanko, and Torsten Schaub. “Work-in-Pro-
gress: On Leveraging Approximations for Exact System-level Design Space Exploration”.
In: International Conference on Hardware Software Codesign and System Synthesis
(CODES/ISSS). Sept. 2018, pp. 1–2. doi: 10.1109/CODESISSS.2018.8525974.

[7] Kai Neubauer, Benjamin Beichler, and Christian Haubelt. “Exact Design Space Explo-
ration Based on Consistent Approximations”. In: Electronics 9.7 (June 2020), p. 1057.
issn: 2079-9292. doi: 10.3390/electronics9071057.

[8] Christian Haubelt, Kai Neubauer, Torsten Schaub, and Philipp Wanko. “Design Space
Exploration with Answer Set Programming”. In: KI - Künstliche Intelligenz. Vol. 32. 2-
3. Berlin Heidelberg: Springer Nature, May 2018, pp. 205–206. doi: 10.1007/s13218-
018-0530-3.

4.1 Search Space Pruning Through Pareto Filtering

In order to cope with the ever-increasing complexity of embedded systems, system-level de-
scriptions are utilized to diminish the complexity of finding potentially good solutions which
can then be used as initial starting points for further optimization in lower abstraction levels.
At system level, applications are composed of communicating tasks while the hardware archi-
tecture contains heterogeneous processing elements (e.g. CPU, DSP, GPU) as well as a com-
munication infrastructure like routers and links. Depending on the decisions that have been
made, the qualitative properties of the resulting system implementation may vary considerably
from solution to solution resulting into a multi-objective optimization problem (MOOP). Note
that, without loss of generality, the decisions made during the search are evaluated through
the three objectives latency, energy consumption, and area requirements. These three proper-
ties are commonly used to classify the quality of an implementation. Although other objectives
such as reliability are not considered directly, the presented framework can be easily adapted
to support additional propagators and objective functions.

4.1.1 Exploration Model

The exploration model is based on the system model presented in Section 3.1. Hence, the
input is structured as a specification graph GS = (GA,GP , M,FS) consisting of an application
graph GA, a platform graph GP , a set of mapping options M , and a set of functions FS

assigning properties to each of the elements. Yet, to allow for the evaluation of the additional
energy and area requirements objectives, the specification has to be extended with respective

79

https://doi.org/10.1109/ASPDAC.2018.8297362
https://doi.org/10.23919/DATE.2018.8342014
https://doi.org/10.23919/DATE.2018.8342014
https://doi.org/10.1109/CODESISSS.2018.8525974
https://doi.org/10.3390/electronics9071057
https://doi.org/10.1007/s13218-018-0530-3
https://doi.org/10.1007/s13218-018-0530-3

4 Symbolic Design Space Exploration

properties. This primarily affects the architecture graph and the mapping options, while the
content and constraints regarding the application graph are unchanged. In the architecture
graph, the functions c : VP → N and Estat : VP → N are added to the function set FP . These
assign area costs as well static energy requirements to the computational and communication
elements of the graph, respectively, that have to be considered if a resource is allocated in
the implementation. Regarding dynamic energy consumption, the function Edyn : M → N is
added to the function set FS in the specification graph. Hence, whenever a certain mapping
m = (t, p) is selected, the execution of task t on resource p consumes the specified amount
of energy. Note that the functions Edyn and Estat model energy instead of power. In the
former function, the execution time is known according to the worst-case execution time defined
by the function w. Thus, the energy of an individual mapping option can be calculated at
specification time. In the latter case, a resource is allocated for the entire time period of the
execution. As the model considers a periodic execution of the application, and the periodicity
of the applications is specified initially (or calculated through the hyper-period), the values
assigned to each element are considered to be valid for one iteration. Furthermore, similar to
the specification of individual execution times, different dynamic energy consumption assigned
to individual mapping options model heterogeneity in the hardware platform.

The ASP encoding of the novel properties is conducted similarly to those introduced in
Chapter 3. Thus, the functions c, Edyn, and Estat are encoded through the binary predicates
area/2, dynamicEnergy/2, and staticEnergy/2. In each case, the first parameter identifies
the affected elements, i.e., a particular mapping option identifier in the former predicate and
a resource identifier in the latter two predicates. The second parameter defines the respective
value.

A feasible implementation to a given specification as defined above is evaluated through
the objective functions latency, area, and energy. The values of the respective objectives
are dependent on the actual decisions made regarding binding, routing, and scheduling. They
constitute soft constraints that are to be optimized during the DSE. Without loss of generality,
the DSE is formulated as a minimization problem as follows:

minimize f(x) = (latency(x), area(x), energy(x)),
subject to:

x is a feasible system implementation,

where a feasible system implementation is a solution that adheres to all given mapping, routing,
and timing constraints. Hence, the result of the DSE is, as outlined in Section 2.3, a set
of Pareto-optimal solutions. The next section elaborates on the ASPmT-based optimization
framework used to solve the multi-objective minimization problem.

The area cost yields the accumulated area requirements of every allocated device, which is
calculated as:

area(x) =
∑︂

d∈αD

area(d), (4.1)

with αD denoting the allocated devices, i.e., computational and communicating resources.
Devices that are not allocated in the mapping and routing are assumed to be not implemented
at all and thus, do not increase the area requirements. Accordingly, the indicator variables that
are exchanged between ASP and background theory only need to contain the area requirements
of the devices.

80

4.1 Search Space Pruning Through Pareto Filtering

The calculation of the energy consumption E(x) is separated into the static Estat and the
dynamic part Edyn.

E(x) = Estat(x) + Edyn(x) (4.2)
Estat(x) = P ·

∑︂
d∈αD

Pstat(d) (4.3)

Edyn(x) =
∑︂
m∈β

Edyn(m) + Etrans ·
∑︂
c∈C

hops(c) (4.4)

Again, the static energy arises from the sum of individual power requirements of allocated de-
vices multiplied with the periodicity of the system. That is, the energy is calculated per iter-
ation. The dynamic energy stems from the selected mapping and routing options. As defined
above, the required dynamic energy is associated to each mapping option and is accumulated
to the overall dynamic mapping energy. Furthermore, a message packet that is transferred over
the network also adds to the dynamic energy. Thus, the entire energy consumption of each
message is dependent on the length of the route it takes from the sending to the receiving de-
vice which is obtained by the function hops : C ↦→ N. Note that we assume homogeneous links
and routers here, such that the number of hops can be multiplied with the defined value Etrans,
encoded by routingenergy/1 atoms. The number of hops per message are calculated by the
ASP solver through integrated aggregate atoms that count the number of reached atoms.

Finally, the latency of an implementation is arises from the maximum end time of all tasks,
i.e., the start time of each task obtained through QF–IDL and the WCET of its binding.

latency(x) = max
m=(t,r)∈β

τ(t) + w(m) (4.5)

4.1.2 Optimization Framework

The general overview of the proposed DSE is depicted in Figure 4.1 and essentially consists
of three pillars – the ASP solver clingo in the foreground theory, a set of theory propagators,
and an optimization propagator in the background theory. Similar to the synthesis framework
discussed in the previous chapter (q.v. Figure 3.14), the foreground theory employs the ASP
solver clingo. Thus, a general problem definition and a specific problem, both encoded through
ASP rules, constitute the input of the framework. The input is first grounded into a variable-
free representation which is used to initialize the background theory propagators and lays the
foundation for the foreground ASP solver clingo. The ASP solver utilizes a CDCL-based solv-
ing strategy to explore the search space by assigning and propagating decisions while the back-
ground theory checks these solutions for validity and optimality. In comparison to the synthe-
sis framework, the background theory is split into two consecutive parts while the foreground
theory as well as the input language remains similar with marginal changes necessary to en-
code additional objectives. The theory propagators, as the first part of the background the-
ory, handle the evaluation of individual objectives. This includes the QF–IDL–based latency
calculation detailed in Section 3.2.2 but is extended by further propagators handling the eval-
uation of the system with respect to area and energy requirements. After evaluation, the the-
ory propagators check whether the implementation adheres to given hard constraints such as a
maximum end-to-end latency or area requirements. If an implementation candidate fails this
check, the framework generates a conflict clause, excluding the conjunction of decisions made
from the search space. Note that the theory propagators work on partial assignments. Hence,

81

4 Symbolic Design Space Exploration

Problem Definition

rule1(X,R):-fact1(X,R).

rule2(X):-fact2(X).

:-fact1(X,R),fact1(Y,R).

Problem Instance

Grounding

Foreground Theory

Theory Propagators

CDCL

init

Optimization Propagator

propagate
and assign

ASP decisions

evaluate
objectives
evaluate

objectives
evaluate

objectives

update
archive

generate
conflict clause

restrict
search space

(partial) assignment

yes

yes

no
constraints

met?

no yesdominated?no
complete?

Archive
check

ob
je

ct
iv

e
2

objective 1

rz

ry

rx

Figure 4.1: Overview of the Design Space Exploration Framework working with partial assign-
ments. The theory propagator evaluates the assignments with respect to validity
while the optimization propagator takes control of dominance checks and manages
the archive. At any time, the archive contains all Pareto-optimal found so far.

a set of infeasible decisions is potentially detected early during the search allowing for a more
effective pruning of entire areas of the search space.

After a positive feasibility check, the implementation candidate is relayed to the optimization
propagator. The optimization propagator is realized in a two-step principle. First, it performs
a dominance check of the novel implementation candidate with respect to previously found,
non-dominated solutions that are saved in the archive. Again, if the partial candidate is already
dominated by another solution in the archive, a conflict clause is generated, and the search
space is pruned. Subsequently, if the dominance check has been passed, the propagator checks
whether the assignment is already complete. If not, the search is continued by the foreground
theory. Otherwise, only now, the archive is updated with the novel implementation, i.e.,
dominated solutions are removed from the archive and the current implementation candidate
is added to the archive. A final conflict clause is generated that prohibits finding the same
solution again.

This process is repeated until either all possible solutions are explored or an abortion crite-
rion has been reached. In the former case, the archive contains the true Pareto-optimal front
of possible implementation candidates. Although the optimality cannot be guaranteed in the
latter case, the archive also only contains mutually non-dominated implementation candidates.
They constitute an approximation of the true Pareto-optimal front. In comparison to conser-
vative meta-heuristic approaches, the main advantages of a complete approach is its ability to
prove the infeasibility of a given specification. While a meta-heuristic does not track whether a
specific design point has already been explored, the proposed ASPmT-based approach does not
explore the same design point twice. This eventually results in the termination of the search
and can be used to prove that the constraints imposed on the specification are not satisfiable.

82

4.1 Search Space Pruning Through Pareto Filtering

f2

better→

f1←better

1
2

3
4

5
6

(a) Depth-First

f2

better→

f1←better

12

34

5

6

(b) Breadth-First

Figure 4.2: Optimization Strategies

4.1.2.1 Optimization Strategies

In general, there are two exploration strategies that can be employed when searching for the
Pareto-optimal set of implementation candidates. A depth-first strategy, as for example imple-
mented by the ASP-based preference framework asprin [74], primarily searches for solutions
that improve the convergence of the archive towards the true Pareto-front. After finding an ini-
tial implementation xi, the search engine requires the next solution xj to strictly dominate the
previous one, i.e., xj ≻ xi. Incomparable solutions to xi, i.e., xi ∥ xj , are ignored until the en-
gine cannot find a strictly better implementation. A schematic sketch of the search is depicted
in Figure 4.2(a). The initial implementation, marked by 1, is only replaced by solution 2, 3,
and eventually 4. As solution 4 is situated on the true Pareto-front, visualized as solid line, the
search engine cannot find a strictly better implementation. Afterwards, it starts searching for
an incomparable solution, resulting in implementation 5, followed by 6. Ultimately, only solu-
tions 4 and 6 remain in the archive of non-dominated solutions and are simultaneously proven
to be Pareto-optimal. In contrast, a breadth-first strategy does not require a subsequent so-
lution to be strictly better than the previously found one. Instead, each non-dominated solu-
tion, i.e., either dominating or incomparable, is saved in the archive. Consider Figure 4.2(b) as
an example. Implementation 2 is saved to the archive as an incomparable solution to 1. Sub-
sequently, solution 3 is incomparable to both 1 and 2. As soon as solution 4 is found by the
search engine, the first solution is ousted as it is now dominated. Finally, solutions 5 and 6
are found, with 6 dominating and replacing solution 3. Ultimately, the archive consists of so-
lutions 2, 4, 6, and 5. Unless the entire search space has been explored, none of these solutions
is proven to be Pareto-optimal. Both the breadth-first and the depth-first strategies are com-
plete. Hence, the true Pareto-front is returned eventually. However, when only a fraction of
the search space is explored, they show different behavior. As indicated in Figure 4.2, a depth-
first strategy may converge faster to the true Pareto-front while a breadth-frist strategy finds
diverse solutions more frequently.

Based on the two search strategies, in the following, three deduced implementation variants
are proposed. First, a hybrid approach (H) employs the preference framework asprin [74] to
evaluate linear objectives directly using the ASP solver clingo. Only non-linear objectives (such
as latency) are relayed to a specific background theory to be evaluated. This approach con-
forms to a depth-first search strategy. Each time an implementation candidate is found, the
framework adds a constraint to steer the search towards a strictly better solution. Considering

83

4 Symbolic Design Space Exploration

1: function Optimize(problem Instance I, problem definition E, n)
2: GP ← Ground(E ∪ I)
3: T O, P O ← Instantiate(Analyze(GP))
4: o← 0; i← 0; S ← ∅; unsat ← False
5: while T rue do
6: ret ← Solve(GP, T O, P O)
7: if ret = Unsatisfiable then
8: if i = 0 or unsat then
9: return S

10: S ← S ∪Get_Solution(i)
11: o← o + 1
12: if o = n then
13: return S
14: unsat ← True
15: Remove_Compare_Solution(GP, P O, i)
16: Optimum_Found(GP, P O, i)
17: else
18: unsat ← False
19: i← i + 1
20: Save_Solution(ret, i)
21: if i > 1 then
22: Remove_Compare_Solution(GP, P O, i − 1)
23: Add_Compare_Solution(GP, P O, i)

Figure 4.3: Exploration algorithm used by the optimization framework.

a two-dimensional minimization problem (min(f1(x), f2(x))), for example, an implementation
candidate xi with the objective vector (f1(xi) = 5, f2(xi) = 5) causes the addition of the two
constraints :− f1(x) ≥ 5 and :− f2(x) ≥ 5. Thus, a subsequent implementation xj must evalu-
ate better than 5 in both objectives. If the additional constraints renders the problem unsatis-
fiable, the previously found solution is proven to be Pareto-optimal. It is saved via facts within
the logic program and the search is restarted for incomparable solutions. To this end, the con-
straints added previously are replaced by the less restrictive constraint :− f1(x) ≥ 5, f2(x) ≥ 5.

The other two variants do not use the asprin framework to evaluate the linear objective.
Instead, all objective evaluations and the dominance checks execute in specialized background
propagators. Non-dominated implementation candidates are saved explicitly in an archive.
Within the two theory-based approaches, one conforms to a depth-first search (Tdepth) while
the other follows a breadth-first search (Tbreadth). Hence, the former approach behaves similar
to (H) such that it adds constraints upon finding an implementation candidate to restrict the
search to strictly better solutions. However, as the dominance checks are managed explicitly
through an archive, Pareto-optimal designs are not saved via rules and no constraints are added
after finding a Pareto-optimal implementation. Dominated solutions are discovered throughout
the exploration. The latter approach (Tbreadth) works similarly but does find non-dominated
(i.e., including incomparable) solutions throughout the search.

4.1.2.2 Optimization Algorithm

All three optimization strategies H, Tdepth, and Tbreadth use variants of the algorithm pre-
sented in Figure 4.3. Essentially, it consists of an initialization phase and a loop constantly
searching for optimal solutions. The input parameters of the algorithm are the problem in-
stance I, the problem definition E, and an integer n. The parameter n represents the maxi-

84

4.1 Search Space Pruning Through Pareto Filtering

mum number of optimal solutions to be found where n = 0 signifies to find all optimal solu-
tions. The main difference in the actual implementation of the algorithm lies in the semantic
of an optimal solution. In the hybrid approach H, each Pareto-optimal design point is consid-
ered to be an optimal solution as after each unsatisfiable solving step, the search is restarted
to find further solutions. In contrast, in the theory-based approaches Tdepth and Tbreadth, the
whole set of Pareto-optimal solutions is considered to be one single optimal solution. Here, the
solution archive is stored and managed outside the ASP solver clingo and the search is steered
by adding constraints that trigger the backtracking mechanism of CDCL-based search.

The algorithm first grounds the combined logic program of E and I (Line 1). The optimiza-
tion parameters contained in the resulting ground program GP are analyzed, and the neces-
sary theory TO and optimization background propagators PO are instantiated (Line 2). Ele-
ments of TO and PO are background propagators [42] that are called during solving to ensure
that the current partial assignment is, first, consistent with the theories, and second, not worse
than the previous solution. After the initialization of the state variables, i.e., current num-
ber of optimal solutions o, number of solutions found i, the set of optimal solutions S and the
Boolean variable unsat to indicate unsatisfiabilty, the main loop starts by trying to find a new
solution (Line 6). To this end, as described in Chapter 3, the ground logic program is solved
by the ASP solver while constraint and dominance checks are constituted in the background
theory propagators TO and PO, respectively. The returned value of one solving call equates
either to Unsatisfiable or contains a solution that is better than the previous one and incompa-
rable to already found optimal solutions. In the former case, i.e., if no solution could be found
(lines 7–16), three possibilities arise: first, the original problem is unsatisfiable, viz. i = 0, sec-
ond, it was proven that no further optimal solutions exist, viz. unsat = True, and third, a new
optimal solution was found. In the first two cases, the algorithm stops and the set of optimal
solutions S is returned (Line 9). In the latter case, solution i is optimal and is added to S and
the number of optimal solutions o is incremented by one. If o equals n, the desired number of
optimal solutions is returned. To save the information that no intermediate solution has been
found yet, unsat is set to True. Since the recent solving step could not find a new solution that
is better than solution i, the comparison to solution i is removed from the ground program and
the optimization propagator (Line 15). Subsequently, program and optimization propagator
are configured to ensure that every subsequent model is incomparable to solution i (Line 16).

In case a new solution is found, unsat is set to False, and the solution counter i is increased
by one (lines 18–19). The new solution is saved under identifier i (Line 20). If i equals to 1,
this amounts to finding a random solution to the ground program GP that is consistent with
the theories in TO. If there has been a previous intermediate solution (i > 1), the comparison
to it is removed from the optimization propagator and ground program (Line 21). Nonetheless,
the novel solution becomes the optimal solution candidate (Line 22). After that, the main loop
starts anew by trying to compute the next (better) solution.

Accordingly, the algorithm either computes the desired number of optimal solutions or proves
that there exist less than n. Note that the algorithm is exact and complete. Hence, given
enough time, all optimal models are computed and proven to be optimal. As this is often unre-
alistic in practice, the algorithm supports reporting intermediate results. Thus, if the search is
interrupted at any time, the exploration returns the currently best known approximation set,
i.e., the solution i and the set S.

Note that the solving step (line 6) supports all solving modes of clingo including domain-
specific heuristics [101] and multi-threading [137]. While domain specific heuristics help in

85

4 Symbolic Design Space Exploration

diminishing the overall runtime of the algorithm, multiple threads are used to set up the solver
with different configurations in each thread that leads to varying approaches for covering the
decision space.

4.1.2.3 Preference Specification

Preferences are a core concept of the optimization framework as they form the link between
the foreground and background theories. A preference defines policies on whether a solution
is better than, worse than, or equal to another solution. In general, it consists of a name p,
a type pt and a set of attributes mapped to it. In its simplest form, a preference correlates
with a specific objective, such as the area or energy requirements of the system. For example,
the specification of the preference area is of type sum. Hence, it shall accumulate the cost of
each allocated resource in an implementation to allow for a comparison with another imple-
mentation regarding their area costs. However, a preference type in general is more complex
as it may aggregate multiple sub-preferences and dependencies as one attribute. In the present
DSE framework, for example, the preference type Pareto aggregates three sub-preferences ac-
counting for latency, area, and power consumption. The latency preference type, in turn de-
pends on the QF–IDL theory to acquire the schedule of the individual tasks as detailed in Sec-
tion 3.2.2. Each preference type is implemented as a dedicated propagator in the background
theory that takes control over the evaluation of the found solution. This implies validity checks
of hard constraints and the related generation of conflict clauses if the implementation candi-
date does not fulfill necessary requirements.

While the preference types are defined in the background theory, the specification (or instan-
tiation) is done in the foreground theory. The preference specification declares the specific in-
stances of preference type to be used, maps the required attributes in the form of ASP atoms to
the corresponding preferences, and decides which preference will be optimized. Note that only
one preference, the lead preference, can be optimized. Hence, the remaining ones must be de-
clared as sub-preferences of the lead resulting in a hierarchical preference graph. According to
the desired objectives, four preferences are defined: latency, area, energy, and the lead pref-
erence of type ParetoBreadth or ParetoDepth, depending on the search strategy. Besides the
dependency of latency with respect to the QF–IDL theory, the latency calculation needs the
mapping of each task as an attribute. Both area and energy are of type sum. The area prefer-
ence needs the information of the allocation status of every processing and communication el-
ement to determine the cost of the implementation. In contrast, to calculate the energy of the
system, the information of the allocation, mapping, and routing must be known. The alloca-
tion is necessary to infer the static energy consumption while mapping and routing are utilized
to determine the dynamic energy and communication energy of an implementation candidate.
The preference types ParetoDepth and ParetoBreadth aggregate the previous preference types
and compare two solutions regarding their dominance relation. While the former handles the
comparison of individual solutions (i.e., x1 ≻ x2), the latter is extended towards sets of incom-
parable solutions. Hence, given two sets of non-dominated solutions S1 and S2, S1 is preferred
over S2 if S1 can be obtained by removing dominated solutions from S1 ∪ S2 and S1 contains
at least one non-dominated solution not in S2. For example, the set S1 = {(0, 3), (2, 0)} is pre-
ferred over S2 = {(0, 3), (3, 1), (2, 2)} as the former contains one additional non-dominated so-
lution, i.e., (2, 0), and does not contain dominated solutions from the union S1 ∪ S2.

The resulting preference graph is depicted in Figure 4.4. Each time, a partial assignment

86

4.1 Search Space Pruning Through Pareto Filtering

lead

type: <ParetoX>

area energy latency

type: <sum> type: <sum> type: <latency>

QF-IDL
al

lo
ca

te
/1

ar
ea

/2

al
lo

ca
te

/1
st

at
ic

En
er

gy
/2

bi
nd

/2
dy

na
mi

cE
ne

rg
y/

2

re
ac

he
d/

4
ro

ut
eE

ne
rg

y/
2

bi
nd

/2
wc

et
/2

&d
if

f/
0

Figure 4.4: The resulting preference graph with the lead preference aggregating the three pref-
erences area, energy, and latency. The attributes of each preference consist of
ASP atoms that carry the necessary information to evaluate the objectives.

is decided by the ASP solver in the foreground theory, the lead preference is called. In order
to make a decision, the lead preference, in turn, calls the attached sub-preferences that first
evaluate the (partial) implementation according to the corresponding decisions represented by
the atoms. If the preference depends on a specialized theory (e.g., latency), the theory first
checks the validity before the preference can evaluate the implementation. The sub-preferences
return the results to the lead preference which ultimately returns a final result. Depending on
the lead preference, i.e., ParetoDepth or ParetoBreadth, the implementation is compared to
the currently watched solution or the current set of non-dominated solutions, respectively.

4.1.3 Evaluation

In this section, the proposed DSE and optimization framework is evaluated on the basis of
randomly generated test instances. The focus of the evaluation lies on the performance of the
different optimization strategies H, TDepth, and TBreadth. As the test instances are generally
too large to be explored completely, all exploration runs will result in non-dominated sets that
represent only an approximation of the true Pareto front. Hence, as a second experiment, the
complexity of the underlying synthesis is reduced in two steps. To this end, the message routing
is restricted to a shortest path routing (SPR) in a first and to a dimenstion order routing (DOR)
in a second step. Both methods limit the number of routing alternatives that a message can
take from its sender to the receiver. While SPR still allows all paths that have the shortest path,
DOR only defines one route per sender-receiver pair. On the one hand, this drastically reduces
the complexity of the problem and helps in exploring the search space faster when compared
to an arbitrary length routing (ALR) as presented in Section 3.2 where each possible path is
considered. On the other hand, by restricting the search space, DOR and SPR may introduce
congestion on the links without the ability to find alternative routes. This can ultimately limit
the achievable latency and may lead to worse Pareto front approximations. Hence, if the entire
search was explored, ALR is expected to find solutions that SPR and DOR cannot.

87

4 Symbolic Design Space Exploration

4.1.3.1 Experimental Setup

To evaluate the optimization framework, 30 test instances are generated randomly with the
instance generator presented in Section 3.4.1. They are composed of series-parallel applications
and a heterogeneous platform template organized in a regular grid. Each test instance consists
of one to four applications A that are comprised of |S| series and |P | parallel patterns, resulting
into a number of |A|+2 · |S|+3 · |P | tasks and 2 · |S|+4 · |P | messages per instance. Depending
on the number of applications, the platform template size is accordingly adjusted. For all test
instances with up to two applications, a grid size of 3× 3× 1 is chosen while for instances with
three and four applications, grid sizes of 3×3×2 and 3×3×3 are chosen, respectively. The size
of the applications considered in this evaluation ranges from medium-sized applications with
34 tasks and 40 messages to large-sized applications with up to 166 tasks and 200 messages.
To allow for more realistic specifications, a task is defined by varying number of instructions
randomly selected from four different instruction types. Simultaneously, cycles per instruction
(CPI) and energy per instruction (EPI) values are assigned to each processing element for each
type of instruction. These values are used to calculate the WCET and energy requirements for
each mapping option. All remaining attributes such as area and static power requirements are
generated randomly within a specific range.

The design space exploration is conducted by the proposed framework with every possible
combination of the presented search (i.e.,H, Tdepth, and Tbreadth) and routing (i.e., ALR, SPR,
and DOR) strategies. Hence, for each test instance, nine individual optimization runs have
been conducted. To evaluate the performance of the variant strategies, the quality of the
obtained approximated Pareto-set is calculated with respect to convergence and diversity. As
the true Pareto front is unknown, all non-dominated solutions of each individual optimization
run are accumulated and filtered through a final dominance check. Thus, the combined front
contains all non-dominated solutions and represents the reference front. The convergence of
is calculated by the binary ε-dominance [47] between the reference front and each individual
approximated Pareto set. The ε-dominance represents the closeness of the approximation set
towards the reference set. When comparing the resulting ε values of two approximation sets,
the lower value signifies a better convergence. As no individual set can contain a solution
that dominates a design point in the reference front, the minimum value 1 indicates that all
solutions of the approximation lie on reference front. The diversity of the solutions is calculated
by the entropy method [54]. As detailed in Section 2.3.1, the entropy calculates the flatness
of the distribution of solutions in the non-dominated set. A grid size of 10 is chosen for the
calculation of the entropy. Furthermore, the Gaussian influence function is defined as

Ω(r) = 1
σ ·
√

2π
exp(−r2

σ2)

with σ = 1/6 and r representing the Euclidean distance between a grid point and a solution.
With these parameters, the entropy results in a minimum value of around 2.46 if the approx-
imation set only contains one solution4-1 and increases with larger number of solutions and a
more diverse distribution. Note that the calculation of the entropy is normally not defined for
an empty approximation set, i.e., if no solution has been found. In this case, the entropy is
set to a value of 0. All optimization runs were configured to use eight threads and have been

4-1The exact value depends on the specific location of the solution.

88

4.1 Search Space Pruning Through Pareto Filtering

Table 4.1: Quality for some test instances achieved by the different configurations
Hybrid Theorybreadth Theorydepth|A| |S| |P | Platform I ALR SPR DOR ALR SPR DOR ALR SPR DOR

1 8 6 3× 3× 1 ε
H

1.487
2.472

1.280
2.473

1.139
2.998

1.487
2.989

1.131
3.531

1.275
3.768

1.877
2.473

1.505
2.471

1.894
2.473

1 10 10 3× 3× 1 ε
H

inf
0.000

1.248
2.472

1.288
2.473

inf
0.000

1.153
3.528

1.085
3.514

inf
0.000

1.437
2.473

1.391
2.471

2 11 9 3× 3× 1 ε
H

1.099
2.473

1.194
2.473

1.117
2.473

1.269
3.091

1.178
3.826

1.174
3.741

1.767
2.473

1.767
2.472

1.761
2.472

3 22 27 3× 3× 2 ε
H

1.855
2.473

1.650
2.463

1.477
2.473

1.835
2.501

1.279
3.166

1.309
2.572

1.855
2.473

1.637
2.473

1.594
2.473

4 21 20 3× 3× 3 ε
H

1.610
2.473

1.614
2.471

1.000
2.473

1.510
2.743

1.301
3.043

1.151
3.110

1.615
2.473

1.579
2.472

1.435
2.473

4 24 38 3× 3× 3 ε
H

inf
0.000

1.892
2.472

1.533
2.472

inf
0.000

1.515
2.915

1.103
2.976

1.895
2.473

1.894
2.473

1.837
2.473

executed on an Intel Core i7-4770 with 32 GiB RAM running Ubuntu 14.04. The timeout has
been set to 30 minutes.

4.1.3.2 Results

For sake of brevity, the results of the optimization runs presented in Table 4.1 only constitute
a representative part of all optimization runs. The complete set of results is depicted in the
appendix in Table A.3. For each test instance, represented by the number of independent
applications |A|, the number of series and parallel patterns |S|, |P |, and the platform template
size, the convergence ε and entropy H are given for each individual exploration run. If the
search does not return any valid implementation candidate, the ε-Dominance and Entropy are
set to infinity and 0, respectively.

The results show the differences between the two major search strategies depth-first and
breadth-first. In the two depth-first search strategies H and Tdepth, nearly every exploration
only returns approximation sets that contain one implementation. An exception is the small-
est test instance with one application, eight series, and six parallel patterns paired with DOR.
Here, the set contains two implementations indicated by higher diversity of around 3 compared
to around 2.4 for the rest. In turn, this indicates that a true Pareto-optimal implementation
has been found as otherwise, no incomparable solution would have been explored (q.v., Fig-
ure 4.2(a)). In all other combinations, the Pareto-optimality of the design points can nei-
ther be guaranteed nor falsified as not the entire search space has been explored. Besides the
proven Pareto-optimal design point for the smallest test instance, the implementation candi-
dates found by the hybrid search strategy H outperform the other two approaches with respect
to convergence in eleven further instances. Exemplarily, in the second to last instance in Ta-
ble 4.1, the solution yielded by H in combination with DOR is located directly on the reference
front. The corresponding ε-Dominance of 1 indicates that it dominates all remaining solutions
found by the other approaches combined. The other depth-first search strategy, Tdepth, cannot
find any Pareto-optimal solutions nor solutions that are close to the reference front.

As expected, the breadth-first search strategy, Tbreadth, finds more diverse approximation
sets than other strategies. However, Tbreadth also outperforms the hybrid approach with respect
to convergence in most (16) of the test instances. This indicates that a less restrictive search
strategy may prune the search space more effectively and, thus, favors the exploration of

89

4 Symbolic Design Space Exploration

Table 4.2: Quality by search strategy
H Tbreadth Tdepth

Diversity 0 27 0
Convergence 11 16 0

Table 4.3: Quality by communication model
ALR SPR DOR

Diversity 0 15 12
Convergence 1 9 17

promising regions earlier. A summary of the exploration results with respect to search strategy
is given in Table 4.2.

The second aspect of the experiment is summarized in Table 4.3. With respect to the applied
routing strategy, the restricted, and thus, less complex approaches SPR and DOR clearly
outperform the unrestricted approach ALR. Note that, for each instance, the optimization
runs of all three routing approaches contribute to the reference front. While SPR has a small
advantage over DOR with respect to the diversity of the found solutions, applying DOR yields
solutions closer to the reference front. Although DOR provides the least routing alternatives
for collision avoidance, it yields the best convergence results in more than 50% of the test
instances. The possible reason is twofold. First, preventing the exploration of minor routing
changes allows for larger steps through the decision space. This, in turn leads to a higher
coverage of the search space and the discovery of better implementations early. Second, a minor
change in the decision space often effects only a minor change in the objective space or does not
change the objective vector at all. Hence, many costly but unnecessary evaluations are skipped
compared to SPR and, especially, ALR. Only in one of the 30 instances, the unrestricted ALR
is able to exploit the larger amount of routing options and yield the highest convergence. Due
to the high complexity of ALR, it did not find any solution in eleven optimization runs and was
outperformed by a factor of two in most other cases. If the optimizations were run completely,
ALR is expected to yield equal or higher convergence for each test instance as it can find
routing alternatives that the other two cannot. However, with the problem size considered in
the experiment, the runtime of a complete optimization exceeded 30 days even for the smallest
instance considering the least complex routing scheme DOR. Hence, a complete DSE for larger
instances and more complex routing schemes is not viable due to the exponential character of
the problem. Finally, note that three of the 30 instances did not yield any implementation
candidates for any of the search and routing strategies within the time limit of 30 minutes.

4.1.4 Section Summary

In this section, an extension of the ASPmT–based synthesis framework has been proposed.
The major advantage of the approach is the capability to tightly integrate a complete DSE
with multi-objective optimization within the solving process of the ASP solver clingo. This al-
lows for a succinct and holistic problem formulation within a single framework. Furthermore,
the coupling of the individual solving steps in the fore- and background theories through com-
mon indicator variables provides the ability to share information for sophisticated reasoning.

90

4.2 Archive Management

While the foreground ASP solver explores the decision space systematically, the associated
background propagators evaluate the assignments with respect to validity. As the background
propagators already work on partial assignments, the detection of invalid regions prunes the
search space more effectively when compared to conventional, full-assignment-based approaches
with downstream theories. This advantage not only applies to the validity checks but also to
the optimization propagator. Hence, if an incomplete solution is recognized to be dominated
by an already found solution in the archive, the search can be pruned early. However, the eval-
uation of partial assignments is shown to be only valid if the considered objectives are assign-
ment monotonic. Hence, the assignment of an additional decision must not improve the solu-
tion in any case. To this end, especially the latency evaluation has to be adapted as it may be
subject to a phenomenon called scheduling anomaly. While introducing partial priorities has
been shown to prevent this problem, the restriction has to be considered if further objectives
shall be added to the evaluation and dominance checks. Hence, if one of the objective func-
tions does not conform to assignment monotony, the optimization propagator must not make
any decisions based on partial assignments.

The realization of the optimization framework has been evaluated with respect to three search
strategies. Although the depth-first search strategies (i.e., H and Tdepth) theoretically prefer the
optimization of the convergence first, they have been shown to be outperformed by a breadth-
first strategy in the majority of test instances. The latter yields a higher diversity in all test
cases and a better convergence in around two thirds of the test instances. Independent of the
search strategy, the complexity of the problem can be identified as the major limitation of the
proposed approach. The vast number of mapping and routing options, even for medium-sized
problems prohibits the exploration of the complete search space in a reasonable time. A final
evaluation shows that the quality of the acquired implementations benefits from a reduction
of the complexity. This was shown on the example of the routing substep where a reduced
number of routing options yields better results, although it may lead to congestions of the
links. However, even with these restrictions, a complete exploration is still infeasible.

4.2 Archive Management

The optimization framework proposed in the previous section extends the ASPmT-based
synthesis framework towards multi-objective optimization. Therefore, it benefits from the tight
integration of various background theories and of the ability to process partial assignments.
While the foreground ASP solver allows for an effective exploration of the design space, the
subsequent steps of dominance checks and the evaluation of design points are subject to im-
provement. Induced by the increased number of dominance checks and evaluations, when com-
pared to full assignment checking, both steps can be identified as the bottlenecks of the ap-
proach. To this end, the following two sections concern the improvement of the theory and op-
timization propagators. First, an archive management technique based on the Quad–Tree data
structure and adapted for partial assignment checking is proposed in this section. In short,
it offers an efficient implementation as it avoids unnecessary dominance checks compared to
commonly used list-based archives. A technique based on safe approximations to speed up the
evaluation process is subsequently proposed in the next section.

91

4 Symbolic Design Space Exploration

4.2.1 Quad–Tree data structure

When solving a MOOP, the true Pareto front is generally unknown. Therefore, newly
found solutions are often inserted into a dominance free archive. This property is achieved by
consequently deleting dominated solutions from the archive whenever a better solution is found
during the search. To this end, the Quad–Tree data structure offers an efficient implementation
as unnecessary comparisons can be avoided.

The basic structure (Figure 4.5) of a Quad–Tree for an m-dimensional multi-objective opti-
mization problem consists of a single root node that holds up to 2m − 2 child nodes. Without
loss of generality, only minimization problem are considered in the following. An m-bit index
number, the k-successor, is associated with each child and is calculated as follows [105, 106]:

∀i ∈ [0, m[: ki =
{︄

1, if n[i] ≥ r[i]
0, else.

(4.6)

Here, n and r are m-dimensional vectors containing the fitness values for each objective and
represent the child and the root, respectively and ki represents the i-th bit of k. The k-
successor expresses which objectives of a solution are better (ki = 0) and which are worse or
similar (ki = 1) w.r.t a reference vector and determines on which position a new solution must
be inserted. For instance, node B ⟨20, 20, 21⟩ in Figure 4.5(a) is a 110b-successor of the root
⟨15, 18, 35⟩ as its first two objectives evaluate worse (k0 = k1 = 1) and the third objective better
(k2 = 0). Note that no children with a k-successor equal to 0 or 2m − 1 exist as they would
dominate or be dominated by the reference point, respectively. Informally, an m-dimensional
solution vector x represents the origin of 2m adjoining hyperboxes numbered from 0 to 2m−1
that are occupied by different solution vectors. All solutions located in hyperbox 0 (2m−1)
are better (worse) than x for all objective values. Thus, solutions of these regions must not be
saved as the archive would not be dominance free anymore. This results in a maximum of 2m−2
children per solution. For example, assuming a two-dimensional solution vector x, hyperbox 0
located left below of x and hyperbox 3 located right above of x can not contain incomparable
solutions (see also Figure 2.5 on page 22).

Using Quad–Trees, a new solution can be checked for non-dominance. Given above defini-
tions, solution vectors in the Quad–Tree which may dominate a novel solution n are located in
the subtrees of a root r whose indices contain zeros in the same locations as n. To this end,
for each k, the k-sets S0(k) and S1(k) specify all positions of zeros and ones, respectively and
are defined as follows:

S0(k) = {i | ki = 0, i = 0, . . . , m− 1} (4.7)
S1(k) = {i | ki = 1, i = 0, . . . , m− 1} (4.8)

Formally, only l-successors of r with l < k and S0(k) ⊂ S0(l) have to be traversed. Consider
for example the novel solution vector A in Figure 4.5(a). First, the k-successor is determined
according to Equation (4.6). The new solution may be dominated by children whose index l is
smaller or equal to k and contains zeros at the same positions as k. Hence, with k = 110b, the
novel solution may be dominated by the children with indices 010b, 100b, and 110b.

Analogously, in order to check which solutions of the Quad–Tree are dominated by a new
solution, only l-successors of r with l > k and S1(k) ⊂ S1(l) have to be traversed. For solution
A in Figure 4.5(a) with k = 110b, only the subtree with index l = 110b has to be checked. In

92

4.2 Archive Management

18
15

35

19
14

32
16
12

37
19
12

36
14
18

26
13
21

37
20
20

21 B

19
17

21 A
001 010 011 100 101 110

(a) Original Quad–Tree

18
15

35

19
14

32
16
12

37
19
12

36
14
18

26
13
21

37
19
17

21 A

001 010 011 100 101 110

(b) Updated Quad–Tree

Figure 4.5: Example Quad–Tree with three objectives. The novel solution A (blue) dominates
and thus replaces solution B (red).

the example, A is not dominated by any previously inserted solution, but it dominates vector
B = ⟨20, 20, 21⟩.

Note that the calculation of the k-successor as described by [106] is insufficient to test if
a new vector dominates a solution in the tree. That is, A would be wrongly declared as
001b-successor of B and hence be inserted in the subtree of B at index 001b although A clearly
dominates B. Using this method, the archive would not be dominance free anymore. As a
consequence, here, the use of an additional calculation, called k*-successor , is proposed to test
whether a new vector dominates an already found solution. The difference between k and k∗

will be explained and discussed in the following section.
After identifying a dominated solution in the archive, it has to be deleted (Figure 4.5(b)).

However, deleting a solution from the Quad–Tree is not trivial in the general case. When
deleting a node that itself contains child subtrees, those children have to be reinserted into the
tree. The authors of [106] propose three strategies for updating the Quad–Tree and deleting
dominated solutions. The first method reinserts all children of a deleted node immediately
into the root of the Quad–Tree which may lead to a huge overhead if those children are also
dominated. In the second method, solutions that have to be deleted are marked before only
unmarked vectors are reinserted. Finally, in the third method, the reinsertion is done recursively
while concurrently checking for dominated solutions. This way, the solutions do not have to be
reinserted into the global root of the Quad–Tree but can be processed at lower levels. As the
experiments in [106] show the general preference of third strategy, it serves as a starting point
for the proposed approach described in the following.

4.2.1.1 Quad–Trees for partial assignment evaluation

Compared to multi-objective evolutionary algorithms (MOEAs), CDCL-based approaches
can leverage partial assignment evaluation. That is, as detailed in the previous section, an
incomplete solution can be discarded if it is already dominated by a solution in the archive. As
each partial solution has to be checked whether it is dominated, the ratio of dominance checking
to inserting (and hence deleting) grows with the number of decisions which are necessary
to complete a solution. Consequently, the need for an efficient dominance check becomes
apparent. However, as partial solutions are subject to deterioration throughout the solving,
checking whether a novel solution dominates solutions from the archive must be delayed until
the assignment is complete. As a consequence, the management strategy described in [106]
cannot be used as it performs dominance checks for both directions (i.e., dominates and is

93

4 Symbolic Design Space Exploration

1: function IsDominated(Solution candidate n, Archive root r)
2: k ← KSucc(n, r)
3: if k = 0 then return False ▷ n dominates r
4: else if k = 2m − 1 then return True ▷ r dominates n
5: else
6: L← ⟨l⟩ | l ∈ [1, k] ∧ l⇒ k = 2m − 1
7: for all l ∈ L do
8: if IsDominated(n, getChild(r, l)) then
9: return True ▷ Child dominates n

10: return False ▷ n is not dominated

Figure 4.6: Recursive algorithm checking whether a partial assignment is dominated.

dominated) per step. Therefore, the algorithm is split into two separate steps, namely the
dominance check (Figure 4.6) and the update (Figure 4.7) steps, which are described in the
following.

4.2.1.2 Dominance Check

Figure 4.6 outlines the necessary steps to check if a partial assignment n is dominated by a
vector in the archive. Corresponding to Equation (4.6), the k-successor of the current partial
assignment, represented by its objective vector n is calculated with respect to the root node
r (line 2). If k equals to 0, the partial assignment still dominates the root and the algorithm
returns False (line 3). This signals the solver that the solution is still feasible. Otherwise, if k
equals to 2m−1 (all bits are set to 1), the root of the tree already dominates the novel solution.
Thus, the algorithm will return True and the solver can exclude the partial solution and prune
the search space accordingly. For every other value of k (lines 5 to 10), the children of r have
to be tested. Therefore, first, the l-successors are calculated. The bitwise imply-operator (→)
in line 6 only returns True if the condition S0(k) ⊂ S0(l) is fulfilled. Finally, the corresponding
children l of r are tested recursively if they dominate n (line 8). If any child dominates the novel
solution, represented by n, the algorithm returns True and a conflict clause can be generated.
This process is repeated until all decisions have been made and the solution is complete.

4.2.1.3 Update

At this point, it is clear that the new solution n is not dominated by any vector of the
archive. Hence, such tests can be safely pruned from the final update algorithm shown in
Figure 4.7. Only the two cases where the novel solution n either dominates (lines 4–23) or is
incomparable (lines 24 to 39) to the root r have to be considered. Besides n and r, two Boolean
values insert and parentAlive complete the input parameters of the algorithm. While insert
determines whether the new solution n is supposed to be inserted into the subtree of root r or
not, parentAlive provides the information if one or more predecessor nodes of r were already
dominated by n.

As indicated for the example in Figure 4.5(a), the original k-successor is unable to detect
if a new solution dominates a vector from the archive in every case. Hence, for the update
algorithm, the k*-successor (line 3) is used and defined as follows:

∀i ∈ [0, m[: k∗
i =

{︄
1, if n[i] > r[i]
0, else.

(4.9)

94

4.2 Archive Management

1: function Update(Solution candidate n, Archive root r, insert, parentAlive)
2: reinsert← ⟨⟩
3: k∗ ← K*Succ(n, r)
4: if k∗ = 0 then ▷ n dominates r
5: L← ⟨l⟩ | l ∈ [1, 2m − 2]
6: for all l ∈ L do
7: append(reinsert, Update(n, getChild(r, l), False, False))
8: removeChild(r, l)
9: if parentAlive ∧ insert then

10: r ← n
11: for all t ∈ reinsert do
12: insert(r, t)
13: return ⟨⟩ ▷ nothing to reinsert
14: else if parentAlive ∧ ¬insert then
15: if |reinsert| ≥ 1 then
16: r ← pop(reinsert)
17: for all t ∈ reinsert do
18: insert(r, t)
19: else
20: delete(r)
21: return ⟨⟩ ▷ nothing to reinsert
22: else if ¬parentAlive ∧ ¬insert then
23: return reinsert
24: else ▷ n is incomparable to r
25: if parentAlive then
26: if hasChild(r, k∗) then
27: Update(n, getChild(r, k∗), insert, True)
28: else if insert then
29: insert(r, n)
30: L← ⟨l⟩ | l ∈]k∗, 2m − 2] ∧ k∗ ⇒ l = 2m − 1
31: for all l ∈ L do
32: Update(n, getChild(r, l), False, True)
33: else ▷ Parent is dominated
34: L← ⟨l⟩ | l ∈ [1, 2m − 2]
35: for all l ∈ L do ▷ Check all children
36: append(reinsert, Update(n, getChild(r, l), False, False))
37: removeChild(r, l)
38: append(reinsert, r)
39: return reinsert

Figure 4.7: Recursive algorithm to update the Quad–Tree after a complete assignment has
been found.

Although the only difference between k and k∗ are the "≥" and ">" operators, respectively,
the k*-successor correctly determines whether a vector A dominates another vector B if one
or more objectives of A are smaller than the corresponding objectives of B and at least one
objective is indifferent (cf. A and B in Figure 4.5(a)). Formally, the k*-successor is necessary if
there exist two complementary proper subsets I, J of all indices in the interval from 0 to m− 1
such that A is better in all i ∈ I as well as A and B are indifferent in all j ∈ J objectives:

∃I, J ⊊ [0, m[| J = [0, m[\ I :
∀i ∈ I : A[i] < B[i] ∧ ∀j ∈ J : A[j] = B[j].

If k∗ evaluates to 0, i.e., r is dominated by n, all children of r have to be checked recursively
whether they are also dominated by n and otherwise have to be marked for reinsertion into

95

4 Symbolic Design Space Exploration

the Quad–Tree (lines 4–8). Independent of the truth value of insert, all children of r have
to be traversed recursively with both parentAlive and insert set to False (line 7). In case
insert = True, the novel solution is inserted at the current layer of the Quad–Tree. Otherwise,
the solution is inserted into another subtree with a root different to r. Afterwards, insert and
parentAlive are analyzed. If both parameters equal to True (lines 9–13), n replaces r and
marked nodes are being reinserted into the subtree with the new root r = n. Otherwise, if
parentAlive = True and insert = False, the first vector to be reinserted becomes the new root
(line 16) and the remaining nodes will be reinserted as children of it (lines 17–18). However, if
there are no nodes to be reinserted, r is simply deleted (line 20). Finally, if both parentAlive
and insert are False, the list of vectors to be reinserted is returned (lines 22–23) such that
the nodes can be reinserted at a higher level. Note that the combination parentAlive =
False, insert = true cannot occur as the former indicates that the novel solution has already
been inserted in a higher level of the Quad–Tree. In case n is incomparable to r, i.e., k∗ ̸= 0,
n has to be inserted in the subtree k∗ of r if parentAlive = True (lines 25–32) or r and its
subtrees have to marked for reinsertion if parentAlive = False (lines 33–38). In the former
case, Update is called recursively with the parameters parentAlive = True and insert derived
from the current context if there is already a solution at position k∗ (lines 26–27). Otherwise, n
is simply added at position k∗ if insert = True. Subsequently, all subtrees of r whose position
indices are greater than k∗ and contain ones at the same positions i as in k∗ are checked if they
are dominated by n (lines 30-32). In the latter case (parentAlive = False), all children of r
have to be checked whether they are dominated by n and marked for reinsertion (including r
itself). Finally, the nodes marked for reinsertion are returned to the parent of r.

4.2.1.4 Discussion on k and k*

Note that the k*-successor in Figure 4.7 cannot detect whether A is dominated by B if all
objectives are indifferent but one objective is worse in A. However, as it is already known
that the new solution is not dominated by a vector in the archive, it is unnecessary to detect
this anyway. In general, the k*-successor evaluates a solution better (regarding the number of
zeros) than the k-successor. As the insertion of new solutions is based on k∗, this leads to a
mismatch between check (Figure 4.6) and insertion (Figure 4.7) if one or more objectives are
indifferent to each other. For example, assume the root node r = ⟨5, 5, 5⟩ and a new solution
n = ⟨6, 5, 4⟩. With k∗ = 100b, both vectors are indifferent to each other and thus, n will be
inserted as the child 100b of r. Later, another solution m = ⟨7, 5, 4⟩ is found that is dominated
by n. Even though the check is based on the k-successor which evaluates m with respect to r
as k = 110b, it detects the dominance by also searching l-successors that include 100b. That is,
the difference between k and k∗ does not influence the detection of dominated solutions but is
necessary for their identification as shown in the example in Figure 4.5.

4.2.2 Experimental Evaluation

In this section, the proposed Quad–Tree implementation for partial assignment checking is
evaluated and compared to a traditional list-based approach. To this end, two test series are
executed. The aim of the first test is the evaluation of the scalability of the approach. Therefore,
both approaches are fed with randomly generated Pareto sets of varying sizes. In the second
test series the influence of the insertion is studied. Therefore, the randomly generated test
cases are ordered by the quality of the respective solutions. Hence, this test serves as both a

96

4.2 Archive Management

50
100

50
100

50

100

x y

z

(a) Pareto front

50
100

50
100

50

100

x y

z

(b) All solution vectors

50
100

50
100

50

100
x

z

y

(c) Intermediate steps

Figure 4.8: Experimental setup for three objectives showing (a) the Pareto front, (b) all solu-
tions and (c) the intermediate steps for one solution.

worst-case and a best-case scenario for the two approaches. When Pareto-optimal solutions are
inserted first, it is expected that the Quad–Tree outperforms the list as the costly update can
be skipped in the majority of the time. In contrast, if Pareto-optimal solutions are inserted in
the end, solutions have to discarded regularly and the management overhead of the Quad–Tree
may influence its performance beyond the list-based approach.

As the focus lies on the archive management, the actual DSE is abstracted and only the
virtual partial solutions are given to the archive management. All tests were carried out on an
Intel Core i7-4770 with 32 GiB RAM and implemented in Python 2.7 running on Ubuntu 16.04.

4.2.2.1 Scalability

For testing the scalability of the proposed approach, a design space exploration is simulated
for various complex problems by creating a set of different solutions that are evaluated by
arbitrary objective functions. More precisely, first an m-dimensional spherical Pareto front is
created that consists of a varying number of mutually non-dominated points (Figure 4.8(a)).
Second, along the trajectory from the coordinate origin to each of the points, a specific number
of dominated solutions xi is randomly calculated (Figure 4.8(b)). Each solution, both Pareto-
optimal and dominated, consists of a fixed length list (hops) of intermediate valuations (i.e xi =
⟨xi1, . . . , xihops⟩) to simulate partial assignments (Figure 4.8(c)). Finally, each solution xi is
inserted into the archive. Hence, partial solutions are checked whether they are non-dominated
with respect to all solutions in the archive. If xij is already dominated, xi must not be inserted.

In the experiments, several instances with two to five objectives have been generated resulting
in a varying number of non-dominated solutions that were inserted into a Quad–Tree and a list-
based archive, respectively. Furthermore, the number of intermediate solutions has been varied
from 50 to 200 to achieve a wide range of granularity for the partial assignment evaluation. For
each test case, 20 independent runs have been executed. Figure 4.9 shows the results of the
archiving runs. The x-axis represents the size of the Pareto fronts of the individual instances,
while the y-axis shows the overall runtime of the run and the number of comparisons. While
the former is depicted through the connected line chart, the latter is depicted by the bar chart.
Note that both approaches have been fed with the same ordering of solutions and naturally
result in the same Pareto front. One comparison corresponds to one calculation of k (or k∗,
respectively) in the Quad–Tree and one dominance check for the list-based implementation.

With respect to the number of comparisons, the proposed archive management based on

97

4 Symbolic Design Space Exploration

107

108

109

#
C

om
pa

ris
on

s

102 103 104

101

102

103

Pareto front size

T
im

e
in

s
Quad–Tree

List
Timeout

Figure 4.9: Runtimes (connected line chart) and number of comparisons (bars) for our exper-
iments of various numbers of non-dominated solutions

the Quad–Tree outperforms the list-based approach significantly. Compared to the list-based
implementation, the proposed approach requires approximately half the number of comparisons
in the smaller instances and approximately one to two magnitudes fewer comparisons in the
larger instances to filter the Pareto-optimal solutions. As the list-based archive is not able to
filter the Pareto-optimal solutions within the time limit of 3,600 s, no number of comparisons
can be obtained. The general trend, however, indicates that the gap between the list-based and
Quad–Tree-based approach grows with the size of the Pareto front. The largest test instance as
well as the instance with around 2,000 Pareto-optimal solutions do not follow the trend. The
reason for this behavior is that the ordering of the instances was chosen randomly. If at the
beginning many Pareto-optimal solutions are inserted into the front, much fewer comparisons
have to be conducted as partial assignments can be disregarded.

In the second data series, the average time in seconds needed to filter the Pareto front from
the complete set of solutions is represented by the line chart. For any test with more than
two objectives (all but the first three), the Quad–Tree implementation outperforms the list.
Note that the list even timed out for the last two test cases (timeout set to 3,600 s). The
good performance of the list-based approach for the instances with two objective functions
is expected. Here, the list can be sorted, such that a much more efficient search is possible
compared to three or more objectives. Hence, only a fraction of the list has to be traversed
when checking the dominance of a new (partial) solution. Furthermore, the Quad–Tree archives
are not able to keep the same advantage as indicated by the number of comparisons. The
main reason for this is, that the update and deletion procedures are much more complex than
for linear lists where deleting a particular solution always takes constant time. Hence, while
the list-based outperforms the Quad-Tree archive management for two-objective problems,
especially test cases with numerous mutually non-dominated solutions benefit from the Quad–
Tree archive management as the dominance checks outnumber the deletions from the archive.

4.2.2.2 Ordering

The outliers in the previous set of experiments already indicate a high impact of the ordering
on the performance of the filtering process. Now, the worst and best case scenarios are studied.
The best case ordering corresponds to a lexicographic ordering, i.e., solutions near the Pareto

98

4.3 Evaluation through Safe Approximations

front are inserted first. In contrast, the worst case is an inversely ordered insertion strategy.
Hence, solutions that are already in the archive are less or more often dominated by new
solutions, in the best-case and the worst-case scenarios, respectively.

An ordered insertion of the solutions results in a significant decrease of delete operations
as newly found solutions are already dominated by the archive. Thus, the Quad–Tree data
structure loses its disadvantage over the list. While the relation with respect to the number
of comparisons is nearly identical to the random test cases, the runtime for Pareto filtering
decreases for the Quad–Trees especially for large archive sizes. Considering, for example, an
archive size of approximately 2,500 solutions, the Quad–Tree implementation requires only
400 s (compared to 800 s for the random insertion) while the list-based method runs 3,250 s
(compared to 3,400 s). For the largest considered test case (8,412 solutions), the list times
out while the Quad–Tree finishes in under 550 s (compared to 3,500 s). In the worst case
scenario, the inversely ordered insertion strategy, the execution times of both approaches are
generally higher and also closer together as solutions from the archive must be deleted more
regularly. However, the general trend as seen in the random insertions remains and the Quad–
Tree outperforms the list in most test instances. Only small two-dimensional optimization
problems are filtered by the list (19 s) faster than by the Quad–Tree (31 s). Similar to random
test cases, the Quad–Tree is constantly more than two times faster than the list for large test
cases with three and more objectives.

4.2.3 Section Summary

In this section, an archive management technique has been proposed that is based on Quad–
Trees proposed by Habenicht and Mostaghim et al. [105, 106]. However, the previous work on
this subject did not consider partial assignment checking and could lead to incorrect results
due to the calculation of the child node positions (k*-successor). The additional requirements
of partial assignments include a fast intermediate dominance check. As only one direction has
to be checked regularly, the majority of the original algorithm can be skipped. It only has
to be executed once the assignment is complete. In comparison with a conservative list-based
approach, the overhead for deleting dominated solutions from the archive is significant. Hence,
for small instances and a few objective functions, the list-based approach performs better than
a Quad–Tree implementation. However, with an increasing number of solutions to be filtered,
the Quad–Tree outperforms the list, as fewer solutions have to be compared with others and
the list loses its sorting character of the two-dimensional case. Quad–Trees are shown to work
best when few solutions have to be deleted from the archives. Hence, the performance not
only depends on the size of the Pareto front but instead is mostly influenced by the ordering
in which solutions are added to the archive.

4.3 Evaluation through Safe Approximations

The employment of an improved archive management, as detailed in the previous section,
can help to diminish the time to filter Pareto-optimal solutions. However, the previous steps of
the DSE are not enhanced by this approach. Particularly, while designing complex embedded
systems, the evaluating step is typically the most time-consuming one. Furthermore, it is
frequently executed as it has to be conducted independent of the validity and optimality of a
feasible solution. While at the beginning of an exploration, many implementation candidates

99

4 Symbolic Design Space Exploration

are not dominated by previously found ones, with a progressing exploration, the probability
of finding better, i.e., non-dominated, solutions decreases. The time spent on evaluating such
design points is practically wasted as they will be discarded by subsequent steps. Hence,
diminishing the evaluation time without deteriorating the evaluation quality would increase
the overall exploration performance and significantly improve the applicability of the DSE.

One possibility to accelerate the evaluation is the use of approximations. Thus, instead of
costly calculating the precise objective value of a design point, an estimation is performed.
Due to its lower complexity, the estimation executes in a fraction of the time that is necessary
for the exact calculation. However, the result of an optimization which only utilizes approxi-
mate evaluations might differ from the exploration result obtained from exact evaluations. To
overcome this drawback, this section proposes to combine approximations and exact evalua-
tions whenever possible. That is, the quality of a design point is only calculated exactly if the
approximation already promises good results. This way, the performance improvement of ap-
proximations can be coupled with an accurate optimization process. The applicability of the
approach is conditional to certain requirements that have to be fulfilled by the objective func-
tions. These will be discussed in the following sections.

4.3.1 Safe Approximations

This section details the underlying methodology that allows for the reduction of the number
of expensive objective evaluations in order to accelerate the DSE. Compared to previous works,
the central goal of this approach is to obtain the real Pareto front when the entire search space
has been explored. The final result must include every Pareto optimal solution (completeness)
and must not contain dominated designs (correctness). In order to guarantee these properties,
the combination of safe approximations and the subsequent exact calculation of potentially good
design points are proposed in this section. Keeping in mind that an exhaustive exploration of
the entire search space is in general not viable for complex design problems, completeness and
correctness properties are relaxed in the following in a way that they must hold with respect
to the explored region of the search space. In other words, if coincidently a Pareto optimal
design point is found during DSE, the approach assures that it is not replaced by a suboptimal
design point even if its approximated quality evaluates better. Otherwise, if an optimal design
point is not explored by the underlying search (i.e., by the ASP solver in the present case),
the obtained non-dominated front is not equal to the true Pareto front. This can happen when
only a specific time budget is available for exploration and the search space is too large to be
covered in its entirety.

4.3.1.1 Approximating Objective Functions

When calculating the objective vector of a design point, it has to be evaluated with respect
to each objective function individually. Such evaluations may be costly, when, for example,
time-consuming simulations have to be executed. To accelerate the evaluation, a more cost-
efficient analytical approach can be applied, which results in an approximated objective vector.
However, an approximation often cannot guarantee any or only very vague error bounds for the
desired objective functions. This leads to erroneous results when using these values to obtain
the Pareto front.

Moreover, a precisely bounded error of the estimation, as required, for example, in the work
of Abraham et al. [13], is often not practical for real world objectives such as latency where

100

4.3 Evaluation through Safe Approximations

x1 x2 x

f
(x

)

Exact
Approximation

Figure 4.10: Safe approximation of an analytical function.

many factors (e.g., parallel execution, resource sharing) influence the calculation. Therefore,
the proposed approach does not require strict error bounds of the approximated values. Instead,
the approximation has to guarantee a consistent estimation, i.e., an approximation function
either only exceeds the exact value or vice versa. To this end, a safe approximation is defined
as follows that fulfills these requirements.

Definition 4.3.1 (Safe Approximation): Given an evaluation function f : XF ↦→ R, its
approximation f ′ : XF ↦→ R is a safe approximation if and only if

∀xi, xj ∈ XF : sgn(f(xi)− f ′(xi)) · sgn(f(xj)− f ′(xj)) ≥ 0,

where sgn : R ↦→ {−1, 0, +1} is the sign function.

Informally, for an approximation, applied to any feasible solution, to be considered safe,
it must always be either larger than, smaller than, or equal to the corresponding exact eval-
uation of the same solution. Safe approximations can be further distinguished into under-
approximations and over-approximations.

Definition 4.3.2 (Over- and Under-Approximation): A safe approximation is called
over-approximation f↑ if and only if ∀x ∈ XF : f↑(x) ≥ f(x). Analogously, a safe approxi-
mation is called under-approximation f↓ if and only if ∀x ∈ XF : f↓(x) ≤ f(x).

In the domain of embedded systems design, a typical example for an over-approximation
would be the calculation of the required execution time of a system by simply adding the
WCET of each task without considering possible resource sharing and parallel execution. On
the contrary, the calculation of the execution time would be an under-approximation if com-
munication between dependent tasks is neglected.

A simple analytical example of safe approximations is visualized in Figure 4.10. The approx-
imation, depicted as a dashed line, is always larger than or equal to the exact quality value.
This satisfies the requirement of a safe approximation in general and, specifically, of an over-
approximation. While a safe approximation can reduce the evaluation of an objective function,
the further usage of the sole under- or over-approximated values can lead to misleading results.
Note that, in the current example, the distances between the red and blue lines differ at varying
locations. Hence, the utilization of a safe approximation does not guarantee particular error
bounds. This can lead to a misinterpretation of the quality of a particular solution. Assum-
ing a maximization problem, the approximations f↑(x1) and f↑(x2) in Figure 4.10 suggest that
the solution x1 is superior to solution x2. However, when considering the exactly calculated
objective values f(x1) and f(x2), solution x2 evaluates better and should be favored over x1.

101

4 Symbolic Design Space Exploration

Table 4.4: Pareto front of Approximations as
of Figure 4.11

XV x1 x2 x3 x4

f(x) (2, 10) (6, 6) (7, 9) (10, 4)

xi ∈ XP yes yes no yes

ḟ
↓(x) (1, 9) (5, 5) (3, 3) (9, 1)

xi ∈ X↓
P yes no yes yes

2 4 6 8 10

2

4

6

8

10
x↓

1

x↓
2

x↓
3

x↓
4

x1

x2

x3

x4

f1(x)

f 2
(x

)

XP

X↓
P

Figure 4.11: Exact (blue) and approximated
(orange) Pareto front

The problem aggravates when determining the objective vectors of multi-objective optimiza-
tion problems and subsequently filtering dominated solutions. When only safely approximated
objective values are used to determine the objective vector, the resulting non-dominated front
is not guaranteed to be correct nor complete. In the following, the notation of safe approxima-
tions (i.e., f↑ and f↓) is extended towards multi-dimensional functions. An n-dimensional safe
approximation is denoted by ḟ

↕···↕(x) = (f↕
1 (x), . . . , f

↕
n(x)) with ↕ ∈ {↑, ↓}. The order of the

downwards and upwards arrows (↕ · · · ↕) indicates which dimensions of the function are under-
approximated and over-approximated, respectively. For example, the term ḟ

↑↑↓ denotes a safe
approximation of 3-dimensional function where the first two dimensions are over-approximated
and the third dimension is under-approximated. If each dimension is approximated identically
and the function dimensionality is clear from the context, the notation is shortened to a sin-
gle upwards or downwards arrow, i.e., ḟ

↑···↑ = ḟ
↑ and ḟ

↓···↓ = ḟ
↓, respectively. For the sake of

brevity, the term ḟ
′ denotes an arbitrary safe approximation depending on the context.

Assume, for example, a two-dimensional minimization problem where a set of four feasible
design points XF = {x1, x2, x3, x4} have been found. Subsequently, the individual solutions
are evaluated and transformed into the objective space. When employing the exact (and
costly) evaluation, the objective vectors of the four solutions equate to f(x1) = (2, 10), f(x2) =
(6, 6), f(x3) = (7, 9), and f(x4) = (10, 4) as shown in the first row of Table 4.4 and visualized
as the blue dots in Figure 4.11. When filtering the non-dominated solutions, x1, x2, and x4
remain, while x3 is dominated by x2. In contrast, the evaluation using an under-approximation
results in the objective vectors ḟ

↓(x1) = (1, 9), ḟ
↓(x2) = (5, 5), ḟ

↓(x3) = (3, 3), and ḟ
↓(x4) =

(9, 1). This is shown by the third row in Table 4.4 and the orange dots in Figure 4.11. Hence,
both objectives of each feasible solution are evaluated smaller than with the exact evaluation.
However, filtering the non-dominated design points result in a disparate set of optimal solutions
where x3 replaces x2 as x3 ≻ x2. As a result, the latter non-dominated set is neither correct
(x3 is not optimal) nor complete (x2 is missing).

Although a direct utilization of a safe approximation is therefore not viable, the next section
proposes an improved approach where varying approximation accuracy does not impact the
correctness of the result. While a specific error bound is not necessary for the correctness of
the proposed approach, the impact of the accuracy on the performance is discussed later on.

102

4.3 Evaluation through Safe Approximations

f2

better→

f1←better

B↓

A↓

Non-dominated
front

Regions containing
A and B

Figure 4.12: Under-approximations in minimization problems. The shaded red and blue re-
gions are possible locations of the exact values A and B, respectively.

4.3.1.2 Pareto Optimality with Approximations

Despite the fact that the use of safe approximations alone does not result in the true Pareto
front, they can be used to decrease the amount of necessary exact calculations. The idea is that
the approximated quality vector of a newly found solution is compared against already found
solutions that are currently present in the set of non-dominated designs (the set XP). Only
if the safely approximated quality vector is not dominated by any design point in the archive,
the exact value is calculated. Otherwise, it is directly removed from the search and does not
have to be investigated any further.

Theorem 4.3.1: Given a set of objective functions that are to be minimized (maximized)
f(x) = (f1(x), . . . , fn(x)), a design point x, its under-approximated (over-approximated)
quality vector ḟ

↓(x) (ḟ↑(x)) and a set of exactly evaluated, mutually non-dominated design
points XP , the exactly evaluated quality vector f(x) is dominated by XP if ḟ

↓(x) (ḟ↑(x))
is dominated by a design in XP .

Proof. Without loss of generality, only minimization problems are considered here. If the
approximated quality vector f↓(x) is dominated by XP , at least one design point y ∈ XP

evaluates better in each objective, i.e., fi(y) ≤ f↓
i (x)|i=1,...,n. According to Definition 4.3.2,

the exact evaluation is always larger than the under-approximation f↓
i (x) ≤ fi(x). Due to

the transitivity of the inequality operator, it follows that fi(y) ≤ fi(x), i.e., y ≻ x.

A visualization of the idea is depicted in Figure 4.12 where the objective functions f1 and
f2 are to be minimized. Two feasible design points A and B are found and are first evaluated
approximately through f↓

1 and f↓
2 . As the error bounds of the approximation is unknown, the

real location of the objective vectors of A and B are unknown either. However, due to the
properties of the under-approximation as of Definition 4.3.2 they are situated somewhere in
the shaded red and blue areas, respectively. The objective vector ḟ

↓(A) is already dominated
by the current archive of mutually non-dominated solutions (black line). Hence, it can be
discarded directly. In contrast, the approximation ḟ

↓(B) dominates the front and might be
Pareto-optimal. However, the real objective vector may be dominated by the current solutions
in the archive. To get a definitive result, B has to be evaluated with the exact objective
functions f1 and f2 and compared to the archive again.

103

4 Symbolic Design Space Exploration

exact

unevaluated
approx

im
at

ed

Next
Solution

Feasibility
Check

Approximate

Optimality
CheckEvaluate

Optimality
Check

Update
Archive

init

Figure 4.13: The design flow of the proposed iterative DSE methodology.

Note that the type of safe approximation that has to be used, depends on the optimiza-
tion criterion of the corresponding objective. While minimization problems require under-
approximations, maximization problems require over-approximations for the presented ap-
proach to work. For example, applying an over-approximation to a minimization problem, the
approximated evaluation would not help in reducing the number of necessary exact evalua-
tions. If ḟ

↑(x) was dominated by XP , f(x) is not guaranteed to be dominated by XP as the
exact evaluation is smaller (i.e., better) than the approximation. On the other hand, if the
ḟ

↑(x) is not dominated by the front, the exact value must still be computed to save the solution
and avoid the problems described in the previous subsection. Hence, the exact quality vector
had to be calculated unconditionally for every found solution which led to an inevitable degra-
dation of performance. This requirement is employed on a per-objective basis. Optimization
problems with some objectives to be minimized and others to be maximized are not breaking
the requirement when correct approximations are selected for respective objectives. That is,
for a mixed 2-dimensional optimization problem where f1 had to be minimized and f2 had to
be maximized, only a safe approximation of the form ḟ

↓↑ would be useful. Furthermore, note
that the definition of safe approximations explicitly allows for approximation functions that
are equal to the exact evaluations. If no safe approximation can be determined for an individ-
ual objective, the utilization of an exact evaluation only is still viable. In this case, the perfor-
mance of the presented approach is equivalent to the conventional approach.

The workflow and the integration of the approach into the DSE is shown in Figure 4.13.
During initialization, the archive (representing XP), holding the set of mutually non-dominated
design points, is empty. As can be seen in Figure 4.13, the approach is iterative, i.e., potential
solutions are investigated one after the other. After the feasibility filter provides a feasible
solution x, its quality is approximated by its corresponding safe approximation ḟ

′(x) and
checked for validity4-2 and optimality. As there are no solutions in the archive yet, the first
found solution is not dominated by any other design point and therefore has to be evaluated
exactly. The exact value f(x) is again checked for validity and optimality and finally saved
4-2The validity check is not explicitly shown in Figure 4.13 but is assumed to be induced by the optimality check.

104

4.3 Evaluation through Safe Approximations

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Approximation Time τ

A
cc

ur
ac

y
α

≤ 0.50
0.60
0.70
0.80
0.90
1.00
1.10
1.20
1.30
1.40

≥ 1.50

To
ta

lE
xe

cu
tio

n
T

im
e

Figure 4.14: Impact of approximation accuracy and performance on overall runtime.

into the archive. In the next iteration, the next solution passing the feasibility filter undergoes
the subsequent steps again. However, from now on, the newly found design points are not
automatically non-dominated anymore and have to be checked for Pareto optimality twice if it
is not dominated. Whenever a check fails, the design point x is discarded without the necessity
to perform the remaining steps (dashed lines). This process is repeated until the whole design
space has been explored or an abortion criterion (e.g., timeout) is fulfilled. At this point, the
archive contains either the true Pareto front (if the whole design space was explored) or at least
a complete and correct non-dominated front with respect to the explored region of the design
space, i.e., no designs have been discarded or added wrongfully. Note that with this approach,
the archive XP , at any point in time, only contains exactly evaluated, mutually non-dominated
design points.

4.3.1.3 Accuracy Impact

In comparison to an approach that only uses exact evaluations, the proposed approach needs
one additional validity and Pareto check whenever a promising solution has been found. Thus,
if many approximated solutions are assumed to be non-dominated, many solutions will be
evaluated twice which will undoubtedly deteriorate the overall performance. Otherwise, if the
majority of design points is already found to be worse than the current front, the time for
the costly execution can be saved in many cases. As a consequence, the performance gain of
the presented approach is primarily dependent on the quality, i.e., accuracy and performance,
of the used approximation. Intuitively, the faster and more accurate (low absolute error with
respect to the exact evaluation) the approximation for a given objective function is, the higher
is the gain.

The impact of the approximation accuracy and timing properties on the performance of the
entire exploration are studied in the following. Therefore, multiple optimization runs are sim-
ulated in which the performance and accuracy of the approximation functions are adjusted
systematically. As shown in the graph depicted in Figure 4.14, the accuracy as well as perfor-
mance vary from 5% to 100%. For example, an accuracy of 50% complies to an approximation
function that consistently evaluates the objective 50% worse than exact function. Analogously,
an approximation time of 50% indicates that the approximation takes only half the time of the
exact evaluation. In this series, each exploration run consists of 100000 randomly generated

105

4 Symbolic Design Space Exploration

candidate solutions in the objective space with a convex-shaped Pareto-front. Afterwards each
candidate, with its objective vector scaled by the accuracy factor, is checked for dominance. If
it is considered to be non-dominated by the archive, another dominance is performed with its
exact objective vector. Otherwise, the exact evaluation is skipped and the procedure contin-
ues with the next candidate as shown in Figure 4.13. The number of executed approximations
nA and exact evaluations nE is saved throughout each run. After filtering is complete, the to-
tal execution time is calculated by adding the number of exact evaluations (each requiring one
time unit) and the number of approximations weighted by the corresponding approximation
time: Time = nE + accuracy · nA. Finally, the overall performance, in relation to only using
exact evaluations only is calculated by dividing the total execution time by the number of so-
lution candidates, as an exact evaluation would be necessary for each of them.

As expected, the approach performs best when the accuracy is high and the execution time
of the approximation is low (blue region). However, at an accuracy of 0.5 and below (and even
higher for slower approximations), the overall execution time deteriorates and becomes worse
compared to using a conservative approach (orange region). As indicated above, a low accuracy
leads to fewer approximated solutions being dominated by the front. Hence, many candidates
have to be evaluated twice. Additionally, even highly accurate approximation are not beneficial
if the approximation time approaches that of the exact evaluation. Thus, it is imperative to find
fast and accurate approximation functions to achieve an increase in performance. Note that
in order to show a general trend, this test series made the overly simplified assumption that
approximation accuracy and approximation performance are fixed. This assumption generally
does not hold for real use cases and is not required for the proposed approach to work correctly.
In DSE, the approximation accuracy and evaluation performance are highly dependent on
the application structure and the decisions made during allocation, binding, and scheduling.
For example, if the binding substep would map all tasks to the same resource (assuming no
dependency conflicts), the latency evaluation would be a simple summation of execution times.
On the other hand, if no resource is shared by different tasks, the evaluator had to account for
additional communication delays. This would impact the performance and, at the same time,
the approximation accuracy. Furthermore, the present series does not include the overhead,
e.g., induced by the additional dominance checks, of the proposed approach. On that account,
a more realistic use case is presented in the following sections.

4.3.2 Approximating Symbolic DSE

In the following, the approach, proposed in the previous section, is evaluated by applying it
to the ASPmT-based system-level DSE, presented in Section 4.1. To this end, the latency eval-
uation is replaced by a SystemC-based simulation of each found implementation. While also
started within the background theory of the framework, it offers the possibility to simulate the
behavior in more detail and to acquire exact latency characteristics. The safe approximations
are subsequently designed using the technology presented throughout Chapter 3, i.e., QF–IDL,
but with further considerations to trade-off approximation accuracy and performance. The re-
mainder of this section first presents the implementation of the simulation before the approxi-
mation functions are detailed.

Note that the utilization of the presented approach is, in general, applicable for any opti-
mization (single- and multi-objective) problem where a safe approximation of the respective
objectives can be designed. In particular, in the area of electronic systems design, it can be

106

4.3 Evaluation through Safe Approximations

applied at any abstraction level with few changes compared to the presented use case.

4.3.2.1 Evaluation Functions

While the area and energy consumption evaluations are easy to calculate in the considered
model, the evaluation of the latency is more complex due to resource sharing, concurrency, and
dependent task execution. To obtain an accurate result, the feasible solution is given to a NoC
simulator implemented in SystemC using the transaction-level modeling (TLM) standard. Each
router in the NoC has at most four independent external links as well as one dedicated home link
connected to a processing unit. The processing unit implements the proposed execution scheme
and is interfaced via TLM target and initiator sockets. Messages are transmitted through FIFO
channels using a wormhole switching strategy with source routing. They are split into equally
sized flits and prepended by a configuration dependent number of header flits, which contain
information for the transmission through the NoC. The NoC model is designed to have a near
to flit accurate granularity but keeping a high simulation performance. Therefore, the events
for updating the actual state of all links are dynamically reduced. When a new message arrives
at an input queue of a router, the routing decision is made and the current free space of the
corresponding output queue is determined. Afterwards the simulation is continued until the
time for transmitting all flits currently fitting into the current free space has passed. Then,
either the following flits of the current message are put into the output queue, as with passed
time the queue have new free slots, or the message is completely transmitted to the output
queue and the transmission of a different message can start putting flits into the output queue.
While a message is transmitted on an output link of a router, all other messages destined to
the same output link are blocked until the last flit have been transmitted. Thus, if the amount
traffic in the NoC is low, the simulation will only be activated by the events of a head flit
entering an output queue and a tail flit leaving an input queue. If the NoC handles much of
traffic, the amount of events can increase to the count of flits transmitted. As a credit per
flit based reservation scheme is implemented, which reserves space in the home link of the
destination router, the NoC is deadlock free (except for malicious source routes).

The prioritized self-timed execution paradigm of the tasks is realized by saving tasks accord-
ing to their decided binding into priority queues of the corresponding processors and sorted
through the partial order between them. Furthermore, each task is associated with its depen-
dencies that are resolved whenever the appropriate message has been received, i.e., for each
processor, only the first task can be executed if all of its dependencies have been received. Af-
ter execution, the task is removed from the queue and sends its messages over the NoC towards
the receiving task. If all dependencies have been resolved for the next task in the queue, it can
be executed subsequently. Otherwise, the processor waits for new messages to arrive. Eventu-
ally, each task has been executed, and the queues are empty. The latest finishing equals to the
latency of the system implementation and is returned to the caller.

Obtaining the latency by simulating the system requires numerous indicator variables to be
submitted by the ASP solver. Besides the binding and routing decisions, also the partial order
of tasks has to be communicated. Furthermore, SystemC does not allow restarting a simulation
with different parameters (i.e., bindings, etc.) once a previous run has finished. That is why
the simulation binary has to be executed anew for every implementation and variables must
be exchanged via inter-process communication which is realized via a shared memory interface
in this work. Consequently, the execution of the SystemC simulation is much more expensive

107

4 Symbolic Design Space Exploration

than the remaining two objectives, area and energy. In fact, evaluating an implementation with
respect to its latency takes about three orders of magnitude more time than the evaluations of
its area and energy requirements combined.

After obtaining the quality values for all three objective functions, the validity and Pareto
filters are applied to the implementation. If no constraint violations are detected, and it is
found to be non-dominated regarding already found solutions, the implementation is added
to the archive. Simultaneously, each dominated, previously found implementation is removed
from the archive to guarantee the mutual non-dominance. Finally, if the implementation is not
valid or optimal, a conflict clause is generated that encodes the invalid solution which is then
is returned to the ASP solver to prevent a reevaluation of this solution. The whole process is
repeated until the whole design space is explored or an abortion criterion has been reached.

4.3.2.2 Approximation Functions

In order to employ the proposed approximation-based approach, safe approximations have
to be found for each objective function. Here, an optimal implementation of a particular
specification is one in which latency, area costs, and energy consumption are minimal. Hence,
according to Theorem 4.3.1, under-approximations must be constructed for each of them.

The exact area and energy evaluations of an implementation are fairly inexpensive as they
are calculated analytically. Safely approximating these objectives is not beneficial as no signif-
icant performance gain can be reached while attaining a high accuracy. Therefore, area and
energy characteristics are exactly determined right away without using approximations at all.
Due to the SystemC simulation, the corresponding latency evaluation of an implementation is
much more time-consuming. The design of an accurate, yet high-performance approximation
is imperative to achieve a significant improvement of the overall exploration time. To this end,
the remainder of the section discusses three possible approximations for the latency evaluation.

As detailed in Section 3.2, the latency can be determined by applying QF–IDL in the back-
ground theory. Assume the example binding and routing of a simple application depicted in
Figure 4.15(a). Here, the task t3 depends on the results of its predecessor tasks t1 and t2. As
all three tasks are bound to different computational resources, the results have to be transmit-
ted via the messages c1 and c2. To reach t3, that is bound to r2, the route of message c1 only
consists of one hop, i.e., πc1 = ⟨l1⟩, while the route of message c2 consists of two hops, i.e.,
πc2 = ⟨l2, l1⟩. Note that for the sake of simplicity, communication resources (i.e., routers) are
not shown in Figure 4.15(a). The Gantt chart in Figure 4.15(b) shows the schedule obtained
with the approach discussed in Section 4.1. The accuracy is, with respect to the considered ab-
straction level, highly accurate as collisions are respected for both tasks and message hops. In
particular, message hops hc1,1 and hc2,2 have to be sequenced as they occupy the same link at
the same time. However, ensuring these constraints for large systems involves a huge number
of additional decision variables that have to be explored during the search (viz. Section 4.1).
Each possible overlap of independent tasks has to be considered and prevented through con-
straints. Especially, considering messages on flit level granularity, each possible hop may col-
lide with other flits that are sent simultaneously over the same link. As a result, the increased
evaluation performance is eventually nullified by the increased exploration complexity.

Therefore, three variations are investigated to increase the approximation performance. The
first valid under-approximation for the latency evaluation of an implementation is the complete
neglect of resource sharing constraints, i.e., for both tasks and messages. That is, tasks that are

108

4.3 Evaluation through Safe Approximations

t1

t2

t3
r1 r2

r3 r4

l2

l1
c2

c1

(a) Simplified system implementation of three
tasks and two messages

0 1 2 3 4 5 6 7 t

r1

r2

r3

l1

l2

t1

t2

t3

c2

c2 c1

(b) Resource sharing constraints are considered
for tasks and messages

0 1 2 3 4 5 6 7 t

r1

r2

r3

l1

l2

t1

t2

t3

(c) Resource sharing and dependency con-
straints are discarded for messages

0 1 2 3 4 5 6 7 t

r1

r2

r3

l1

l2

t1

t2

t3

c2

c2
c1

(d) Resource sharing constraints are consid-
ered for tasks only

Figure 4.15: Different under-approximations for the calculation of the latency.

independent of each other are assumed to be executed concurrently even if they are mapped to
the same device at the same time. Only dependency constraints are considered. This approach
reflects the most aggressive approximation. On the one hand, as many theory variables can be
neglected, the complexity of each individual approximation is accelerated. On the other hand,
the accuracy deteriorates significantly for highly parallel applications. As shown in Figure 4.14,
a high accuracy is imperative for the presented approach to be beneficial. As this problem
is not represented by the running example, assume a duplication of the application and their
corresponding binding and routing decisions. In this case, the exact schedule results in a
latency of nine time units. For a schedule that does not respect resource sharing constraints,
the latency equates to six time units. Hence, even with only two tasks overlapping4-3, the error
is already at 33 % (3/9).

A second variation is the omission of communication time but still respecting resource sharing
constraints. This way, dependent tasks are assumed to be scheduled directly after each other,
even if they are bound to different resources. While it resembles a valid under-approximation
for the latency and saves many decision and indicator variables, the achieved accuracy is
particularly low for highly parallel and communication intense applications. An example of this
approximation is depicted in Figure 4.15(c). Even for this small application, the error of the
approximated latency is already around 29 % (2/7). Similar to the first variant, utilizing this
approximation is not expected to improve the overall exploration time as the approximation
is assumed to be non-dominated with respect to the current front for nearly every found
solution. Hence, the exact calculation is still executed each time. A third approximation
function combines both previous variants to a certain extent. Resource sharing constraints are

4-3The task t3 does not overlap with its copy as the resource sharing constraints shift the execution automatically.

109

4 Symbolic Design Space Exploration

assured for computational tasks only (i.e., independent tasks mapped to the same resource are
executed sequentially), the links of the hardware architecture, however, are assumed to have
an unlimited bandwidth and, thus, are not prone to congestion. This way, messages that are
routed over the same link of the network do not interfere with each other. This approach
has two advantages. First, as the number of possible message hops generally surpasses task
mapping options, many additional decision variables can be saved. Second, although all possible
message collisions have to be considered in the encoding, the number of actual collisions in
the implementation are typically lower than within tasks. This is why the accuracy does not
deteriorate as much as with the former two approaches. The schedule in Figure 4.15(d) shows
this approximation approach. Even though the link l1 is already occupied by message c2, c1
is transferred simultaneously. Note that the error has been decreased to around 14 % (1/7).
In fact, if the ASP solver had selected another route for message c2, i.e. via r4, the latency
approximation had the same value as the exact value.

4.3.3 Experiments

In this section, the proposed approach of safe approximations is evaluated by a set of experi-
ments. Therefore, differently sized instances are generated by the instance generator presented
in Section 3.4.1. The remainder of this section first elaborates on the experimental setup, fol-
lowed by experiments regarding the approximation accuracy and the performance of the pro-
posed approach.

4.3.3.1 Experimental Setup

Instead of comparing the proposed approach to the approaches discussed in Section 2.4.3,
a reference DSE, as presented above, is implemented. The experiments are constructed in a
way that they can assess the effect of the proposed contribution (i.e., the usage of safe approx-
imations) only. This way, the reference DSE implies the very same scope and boundary con-
ditions (i.e., models of computation, design time vs. runtime decisions, manual vs. automated
DSE) as the presented approach. Hence, it can be assured that performance and quality differ-
ences stem from the contribution and not from a methodological mismatch. By strictly focus-
ing on obtaining complete and correct Pareto sets by using approximations of the evaluation
functions, a direct comparison to related approaches would be misleading as the premises of
the other works are different. Even worse, as the boundary conditions would be varying, they
could potentially mask the effect of the proposed solution.

The experiments are separated into two categories. First, a set of relatively small instances is
created. Consisting of 11 tasks, 13 messages, and a total of 90 mapping options, the search space
of these instances is small enough to be explored entirely. Thus, this series shows the absolute
improvement of the proposed approach over a traditional one not using safe approximations.
Furthermore, it underpins the claim of correctness and completeness of the methodology. To
this end, it will be shown that Pareto-optimal solutions that are found by the proposed approach
are identical to those found by the traditional DSE. That is, no optimal design points are
missing and no non-optimal design points are present in the final result.

Second, a larger series of medium to large test instances is presented where a full coverage
of the search space is not viable anymore. Therefore, a set of 120 specification instances are
generated with varying properties and complexities as follows. The application, hardware tem-
plate, and mapping options including their corresponding properties (i.e., area, WCET, etc.)

110

4.3 Evaluation through Safe Approximations

Table 4.5: Specification groups with its specific parameters

Group # | A | series parallel | T | | C |

I 1 2 4 17 20
II 1 4 5 24 28
III 1 4 10 39 48
IV 2 4 (2;2) 9 (4;5) 37 44
V 2 7 (3;4) 10 (4;6) 46 54
VI 2 10 (5;5) 11 (4;7) 55 68
VII 3 7 (2;2;3) 12 (4;5;3) 53 62
VIII 3 10 (3;4;3) 13 (4;5;4) 62 72
IX 3 10 (5;4;3) 17 (4;8;5) 74 88
X 4 12 (3;4;2;3) 14 (4;3;3;4) 70 80
XI 4 15 (5;3;3;4) 20 (4;5;5;6) 94 110
XII 4 15 (6;3;4;2) 27 (6;6;6;9) 115 138

are created by the ASP-based specification generator (q.v. Section 3.4.1). For the application
structure, series-parallel graphs are assumed as defined in Section 3.4.1. Hence, each applica-
tion graph consists of a fixed number of series and parallel patterns that are connected with
each other. In this experiment, the heterogeneous target architecture is formed by a regular
3 × 3 mesh implementing a NoC. For realizing the communication, on-chip routers are each
connected to their neighbors and to one processor. Furthermore, each task is assumed to be
composed of a specific mix of instruction types to model differently complex tasks. For exam-
ple, a task may contain 60 integer, 30 floating point, and 10 special operations (e.g., AES) while
a second task is only composed of 30 integer and 10 floating point operations. Each proces-
sor is characterized regarding its general capability, performance (cycles per instruction), and
energy efficiency (energy per instruction) for each instruction type. With this information re-
garding tasks and processors, mapping options as well as their corresponding energy and tim-
ing properties are generated. Note that processors that are not capable of executing a specific
instruction type cannot be chosen as a mapping option for a task that requires this type.

As shown in Table 4.5, the 120 problem instances are organized into groups of ten system
specifications that share common properties in the form of the same number of series and
parallel patterns. Hence, within a group, each application has the same amount of parallelism
as well as number of tasks and messages. Note that the number of series and parallel patterns
of specifications with more than one application is depicted in total and is also broken down by
application in parentheses. For example, the graphs of group VII consist of three applications
where the first one has two series and four parallel patterns, the second has two series and five
parallel patterns, and the third has three series patterns and three parallel patterns. In order to
further investigate the influence of the task execution time to routing delay ratio (ERR), three
versions of each test instance are created totaling 360 individual medium to large instances plus
three small instances. The medium ERR version is created as described above. In contrast,
the high and low ERR versions have different ratios of the task execution times and routing
delays of messages. In high ERR instances, the WCET of each task is increased by a factor
of 10. Analogously, for low ERR, the execution time is decreased by a factor of 10. The goal
of this approach is to investigate the accuracy impact of the approximation used. For higher

111

4 Symbolic Design Space Exploration

I II III IV V VI VII VIII IX X XI XII
30

40

50

60

70

80

90

100

Group ID

ac
cu

ra
cy

/
%

High ERR Medium ERR Low ERR

Figure 4.16: Latency approximation accuracy for different complexity groups and ERRs. Blue
corresponds to the original, red to a low ERR, and orange to a high ERR.

ERRs, a higher accuracy is expected and vice versa.
For the different tests, as described in the following, each optimization instance is executed

three times with a timeout set to one hour4-4. All optimization runs have been executed on an
Intel Core i7 4470 with 32 GiB RAM and running Ubuntu 16.04.

4.3.3.2 Approximation Accuracy

In the first set of experiments, the accuracy of the proposed approximation approach is
investigated with respect to the exact evaluation using the SystemC simulation. To this end,
the ratio of approximated to exact values is determined for each explored implementation.
Hence, the accuracy for one found solution equals the approximated value divided by the exact
objective value. Subsequently, the mean accuracy and variance for each optimization run is
calculated individually. The results for the medium to large instances are shown in the blue
box plot series in Figure 4.16. The boxes represent the 0.25 and 0.75 quantiles of the input data
with the indication of the 0.5 quantile (i.e., median). The lower whisker is the smallest data
that is larger than the lower quartile minus one and a half times inter quantile range (IQR),
i.e., the difference between upper and lower quartile. Analogously, the upper whisker represents
the largest data that is smaller than the upper quartile plus one and a half times the IQR.
In the default configuration, i.e., instances with a medium ERR, nearly all the optimization
runs signify an accuracy higher than 90 %. However, it is apparent that the more complex
test instances reach a higher accuracy. A higher number of tasks that are bound to the same
number of processors leads to a higher average utilization of individual processors. Available
computation time has to be shared and tasks have to postpone their execution even though
the required messages have been received. Thus, the start time of tasks is less dependent on
4-4There is no timeout for the small instances.

112

4.3 Evaluation through Safe Approximations

the routing delay for messages such that an approximation of message transmissions does not
influence the evaluation significantly.

The results of the low and high ERR optimization runs are shown as the red and orange box
plot series in Figure 4.16, respectively. It has to be stated that the general trend is identical
to the original optimization runs, i.e., less complex instances are less accurate and vice versa.
However, the accuracy of the approximation approach differs significantly. While the red series
(low ERR) achieves much lower accuracy, the orange series (high ERR) performs better. This
behavior is expected and can be explained by the utilized latency approximation function. In
high ERR problem instances, compared to the medium ERR instances, the task execution
time has been increased. At the same time, the communication time has not been changed.
Hence, the increase of the ERR. As a consequence, more free time slots are available on the
links of the hardware platform to be used for communication messages. Thus, messages can
be distributed according to more uniform patterns which leads to less congestion. Contrary,
in low ERR instances, the time slots for communication are shorter and more collisions can
happen on the links. As described in the previous section, congestions are not considered by
the utilized approximation function, but instead are assumed to be irrelevant (cf., Fig. 4.15(d)).
In turn, less congestion results in higher accuracy and vice versa.

A second observation is the wide range of achieved accuracies within one group of instances
in the low ERR optimization runs. For instance, the accuracy for group two ranges from about
30 % to nearly 65 %. The reason for that behavior can be justified with the influence of the
structure of a specific instance. Although the number of serial and parallel patterns is the
same within each group, the execution times of tasks differ. This can lead to situations where
multiple messages are sent simultaneously over the communication network, and especially,
over identical links. If the availability of the time slots is simultaneously low (as in the low
ERR instances), this influences the accuracy even more. Hence, the distribution follows a more
uniform pattern for instances with a higher ERR.

Note that the accuracy results of the small test instances show the same trend as for the
large ones. In detail, the accuracy of low, medium, and high ERR runs for the small instances
are 0.49, 0.88, and 0.98, respectively.

4.3.3.3 Performance

While the approximation accuracy only indicates the performance of the utilized approxima-
tion, the performance assessment of the whole approach is presented in the following. Unlike
assumed in Section 4.3.1.3, the accuracy of a utilized approximation is not constant. Different
implementation candidates may induce variant approximation errors. Hence, the overall per-
formance may present a different behavior as indicated by the median accuracy as presented
above. For each instance, a reference DSE that only uses exact evaluation in the background
theory and a DSE implementing the proposed approach are executed. Note that easy to calcu-
late validity checks are carried out in both the reference and the approximation-based DSEs.
In particular, this includes a check for schedulability that is based on the accumulated WCETs
(q.v. Equation (3.2)). If, for any resource, the sum of execution times exceeds the specified
periodicity, and thus, the maximum allowed latency of the application, the evaluation is not
executed. Hence, the reference and the proposed approach do not differ in this aspect.

113

4 Symbolic Design Space Exploration

10−1 100 101 102 103 104
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2
2.1

time / s (log10)

D
ϵ

High ERR Approx
High ERR Exact
Medium ERR Approx
Medium ERR Exact
Low ERR Approx
Low ERR Exact

Figure 4.17: Epsilon dominance Dϵ over runtime for the small test instances. The vertical
bars signify the time when the complete search space of the corresponding run
has been explored. Note that the x-axis is logarithmic.

Small Instances The small instances are explored completely. Thus, absolute performance
numbers can be presented for the proposed approach compared to the traditional methodology
using exact evaluations only. For evaluating the performance of the approach, the ϵ-dominance
[57] is calculated (q.v. Section 2.3.1). In short, the epsilon dominance measures the convergence
of one front to a reference front. A value of Dϵ(A, B) > 1 signifies that A is dominated by the
reference front B and a value of 1 indicates that A lies directly on the reference front. As the
true Pareto front is known for the small instances, a value smaller than 1 is not possible.

Figure 4.17 depicts the experimental results and shows the quality of the obtained non-
dominated fronts over time. The solid lines represent the approximation-based runs while the
dashed lines represent the quality of the traditional approach. The vertical lines at the end show
the overall runtime of the corresponding optimization run. Essentially, there are three impor-
tant observations. First, for medium and high ERR runs, the proposed approximation-based
approach converges faster than the corresponding traditional approach towards the Pareto
front. The optimum is reached approximately one order of magnitude earlier (i.e., 2,893 s
vs. 20,771 s and 2,194 s vs. 23,117 s) with the high ERR run having the largest gap between
approximation-based and exact run. In the high ERR run, only 7,183 (out of 2,103,799; 0.35 %)
solution candidates had to be evaluated exactly while in the medium run, due to the lower accu-
racy, 98,443 (out of 1,936,887; 5.08 %) solutions had to be evaluated exactly. Second, in the low
ERR run, the novel approach performs basically identical to the reference approach. This be-
comes more obvious when the high number of 929,674 (out of 931,351; 99.82 %) necessary exact
evaluations are considered. Hence, both the approximated and the exact evaluations had to be
executed for the low ERR instance. Thus, although a low accuracy deteriorates the performance
significantly, it performs not worse than the traditional approach. Third, in the beginning of
the optimization runs, up until about 10 s, the exact approach outperforms the approximation-
based appraoch. The reason for this behavior is to be found in the solutions in the archive. In

114

4.3 Evaluation through Safe Approximations

I II III IV V VI VII VIII IX X XI XII
0

10
20
30
40
50
60
70
80
90

100

Group ID

Fi
lte

r
R

at
io

/
%

High ERR Medium ERR Low ERR

Figure 4.18: The average Filter Ratio of the instances in the individual specification groups.

the beginning, the search starts with an empty archive. Implementation candidates found early
are thus non-dominated with respect to the current archive and the exact objective values have
to be determined unconditionally. In the proposed approach, the approximated and exact eval-
uations are executed while the traditional approach only has to perform the latter step. That is,
the traditional approach gains an advantage in the early search. After a few solutions have been
found and the archive contains more optimal solutions, the number of necessary exact evalua-
tions decreases and the approximation-based approach starts to outperform the traditional one.

Note that due to the altered instances, the number of solutions and necessary decisions are
not comparable between low, medium, and high ERR runs. The foreground solver might prune
the search space earlier before the background solver is even started in some cases.

Medium and Large Instances To evaluate the performance of the proposed approach for the
medium and large instances, two measurement series were performed. The first series regards
the filter ratio (FR) and its results are shown Figure 4.18. A detailed presentation of the
results can be found in Table A.4 in the appendix. The FR is defined as the relative number of
solutions that can be already removed safely from the search after the approximated evaluation
has been executed in the background theory. That is, it corresponds to those implementations
that would have been unnecessarily evaluated. Figure 4.18 depicts the average filter ratio of
each specification group and each ERR type. Therefore, in every group, each instance has been
analyzed regarding its filter ratio at the end of the one-hour exploration run. The value depicted
in Figure 4.18 is then calculated as the geometric mean of all instance in the corresponding
specification group. When compared to achieved accuracy (q.v. Figure 4.16), the FR is shown
to roughly correlate with the accuracy of the corresponding group. Hence, a high accuracy
results in a high FR. This is shown for the medium, and especially, high ERR instances.
For nearly every considered specification group, the average filter ratio of the latter is 75 %
percent or more, with two outliers in groups V and VIII. That is, the majority of expensive
exact evaluations can be skipped with the proposed approach. However, the influence of the
accuracy is not constant. Especially, in most cases of the low ERR specifications, the FR
is extremely low although an average accuracy of more than 50 % is achieved. For example,
the average FR of 0.021 for the low ERR specification group V indicates that only 2 % of all
solutions can be removed from the search before the exact quality is determined. At the same

115

4 Symbolic Design Space Exploration

time, the approximation was able to achieve a median accuracy of 60 % for specification group
V. In contrast, specification group II can be approximated less accurately, but the filter ratio
is with 7.6 % more than three times higher. It can be concluded that the accuracy is only one
factor for the applicability of the approach.

A second criterion is the hardness of the generated specification. Even if two specifications
belong to the same specification group and achieve a similar accuracy, the FR may differ. As
explained in Section 3.4.1, the hard constraints of individual specifications (especially the pe-
riodicity and execution deadline) are generated by first finding a set of unconstrained solutions
which are subsequently analyzed for their achieved latency. The generated specification is then
assigned with the achieved latency multiplied by a hardness factor smaller than one. Hence,
if for a specific instance, a near-optimal solution was already found in the initial step, the re-
sulting timing constraints are hard to fulfill. In these cases, the solver takes a long time to
find any valid solutions at all. During this period, all solutions have to be evaluated exactly as
the non-dominated archive is still empty. A good example is specification group III (q.v. Ta-
ble A.4). In the high and medium ERR instances, the maximum FR by any of the instances is
nearly one, i.e., practically all solutions could have been excluded by applying the approxima-
tion only. However, both contain instances (minimum FR approaches zero) where only a small
fraction of solutions can be pruned with the help of safe approximations. The rest had to be
evaluated exactly. Specification group XII shows the most significant correlation between ac-
curacy and FR. Here, all three ERR types perform unusually well. The analysis of the indi-
vidual exploration runs show however, that the relatively few solutions have been evaluated in
the background theory. Thus, most assignments are already pruned by the ASP solver through
the necessary but easily calculable schedulability check (q.v. Equation (3.2)). Most of the re-
maining solutions can be subsequently filtered by the safe approximation.

The second series of experiments regards the performance improvement of the proposed
approach with respect to a DSE using exact evaluations only, called reference in the following.
Note that ASP solving is deterministic when supplying the solver with the same random seed.
Thus, executing the same instances leads to comparable results between the reference and the
approximation based approach. As typical, complex DSE problem instances impose a huge
number of decision variables. Therefore, it is impossible to cover the whole design space in
reasonable time. Hence, the performance gain is measured by means of the found feasible
solutions. The idea is, that if the evaluation process is faster, more time can be spent searching
for new solutions in the ASP solver. Figure 4.19 depicts the average improvement of the
twelve specification classes. A complete presentation of the results is shown in Table A.5 in the
appendix. Two observations can be made from the results. First, none of the low ERR instances
is able to significantly outperform the reference implementation. However, the performance
is neither significantly worse. In the worst case, the proposed approach only deteriorates the
DSE by 1 %. The root of this behavior lies again in the low accuracy and successively the low
FR of the used approximation function for these instances. Therefore, for nearly all the found
implementations, both the approximation and the simulation has to be performed. Even for
specification group XII, where the filter ratio was substantially higher than for the rest, the
proposed approach does not improve the overall performance. This indicates again that the
majority of solutions is pruned by the ASP solver and does not reach the background theory.
As a result, the reference and proposed DSEs behave similar.

The second observation is that the improvement decreases with increasing complexity of the
problem instance. While, for the smallest specification group I, the improvements of the high

116

4.3 Evaluation through Safe Approximations

I II III IV V VI VII VIII IX X XI XII
0
1
2
3
4
5
6
7

Group ID

Im
pr

ov
em

en
t

High ERR Medium ERR Low ERR Reference

Figure 4.19: The average performance improvement of the instances in the individual specifi-
cation groups.

and medium ERR instances are nearly six-fold and three-fold, respectively, the improvement
deteriorates with an increasing number of independent applications, tasks, and messages. This
can be explained by the exponential increase of decision variables that have to be explored by
the underlying ASP solver. Thus, it simply takes continuously more time to find a feasible
solution in the design space. However, the proposed approach only improves the evaluation
step of the DSE while the search itself is not altered. That is, according to Amdahl’s law [138],
the overall improvement decreases as more time is spent in non-improvable steps.

A second factor to the poor performance of the more complex instances is again to be found
in the hardness of the instances. Some instances even show a complete (q.v. Table A.4 in the
appendix) failure of the approach where nearly all solution candidates are evaluated exactly
even though the accuracy is virtually 100 %. An analysis of the respective instances shows that
they resemble particularly hard instances where most solution candidates do not conform to
specified timing constraints. Thus, the archive of non-dominated solutions does not contain
any solutions for a very long time. In turn, each solution candidate has to be evaluated exactly.
This deteriorates the performance accordingly and can be observed more frequently in the large
instances. It is expected that performance increases with an exhaustive search space coverage.
However, as the problem is exponentially complex in general, an exhaustive search is generally
not possible in a reasonable time. To summarize, the utilization of safe approximations can be
beneficial if their accuracy and performance are high. While the improvement deteriorates with
larger instances, it still outperforms the reference approach that uses exact evaluations only.

4.3.4 Section Summary

This section regarded the evaluation of solution candidates found during the search. There-
fore, a novel approximation-based approach has been proposed that allows the acceleration of
the evaluation without compromising the correctness and completeness of the DSE. The core
idea is the utilization of safe approximations. With respect to an exact evaluation, a safe ap-
proximation guarantees the value to be consistently lower (viz. under-approximation) or higher
(viz. over-approximation). Only if this approximation indicates a good solution, the exact eval-
uation is executed. Otherwise, the solution candidate can be directly rejected and the exact
evaluation can be skipped entirely. Depending on the characteristics of the individual objec-

117

4 Symbolic Design Space Exploration

tive, either an under-approximation or over-approximation has to be defined for the proposed
approach to work. However, if no such safe approximation can be obtained for one or more ob-
jectives, the proposed approach also allows the use of the exact evaluation only. In this case,
the DSE is identical to a conventional approach. Both the theoretical and experimental anal-
ysis show that accuracy and performance of the approximations have to be high for the pro-
posed approach to improve the DSE effectively. On the one hand, if the accuracy is too low,
the approximation cannot distinguish good and bad solution and exact evaluations have to ex-
ecuted unconditionally. This leads to larger number of calculations than when the exact eval-
uation was executed right away. On the other hand, an approximation that does not perform
significantly better than the exact evaluation is similarly ineffective as the time savings are
not large enough to compensate for the two calculations. However, the DSE used as example
shows that the proposed approach can achieve significant performance gains when the approxi-
mation is defined carefully. Here, the latency objective has been shown to be a good candidate
for defining an under-approximation while the energy and area objectives where calculated ex-
actly only. While the improvement of the proposed approach is shown to be significant for the
small instances (up to one order of magnitude), the improvement in larger instances deterio-
rates, although the accuracy and filter ratio remain high. One possible reason is the exponen-
tially increasing design space. That is, in larger instances, the search in the foreground solver
(viz. ASP) for solution candidates overtakes the evaluation thereof. The former, however, is
not influenced by the proposed approach. As a result, the overall performance gain is less sig-
nificant than for smaller instances.

Finally, the application of the proposed approach is not limited to system-level DSE. In
principle, it can be adopted for every optimization problem, where at least one objective can
be safely approximated according to its optimization criterion. With little effort, it can be
applied to every MOOP (and single-objective optimization problem (SOOP)) approach that
compares newly found solutions with some kind of archive of currently known non-dominated
solutions. This includes many population-based meta-heuristics such as the non-dominated
sorting genetic algorithm (NSGA) and ant colony optimization (ACO).

4.4 Chapter Summary

In this chapter a novel approach to the DSE problem of embedded systems design has been
proposed. It represents an extension to the ASPmT-based synthesis framework introduced in
Chapter 3. Unlike most of the previous work in this area, the DSE is exclusively built on formal
methods that allow for a systematic exploration of the design space. That is, besides the search
for novel solutions, as presented in Chapter 3, the evaluation and optimization steps are tightly
integrated into one framework. This allows a succinct and holistic formulation of the DSE.
Therefore, the utilization of ASPmT offers the benefit of effective reasoning of the Boolean
search as well as the capability of adding various domain specific background propagators and
theories within one closed environment.

As both foreground and background theories are tightly coupled through common variables,
the proposed approach is able to gather information on partial assignments instead of full
assignments only. This already has been shown to be beneficial for the synthesis framework.
However, also the optimization propagator can use information of partial assignments to prune
non-optimal regions of the search earlier during solving. On the downside, the utilization of
partial assignments imposes more work onto the downstream process, i.e., the evaluation and

118

4.4 Chapter Summary

the dominance checks of potential solutions. The latter has been addressed in Section 4.2.
Here, the thesis proposed a methodology to increase the performance of dominance checks.
Based on the Quad–Tree data structure, the section showed how the proposed approach can
save unnecessary dominance checks for partial assignments while maintaining a correct archive
in the end.

Finally, Section 4.3 proposes a novel approach of using approximations in the evaluation
phase without breaking the correctness and the completeness of the DSE. To this end, the
notion of safe approximations is introduced. These are special functions that approximate a
property consistently lower (i.e., under-approximations) or higher (i.e. over-approximation). If
such function can be defined for an objective of the DSE, it can be used to safe evaluation time.
Only if the approximation indicates a good result, the exact evaluation has to be executed. If
this is not possible for each objective of the DSE, the exact evaluation can be used instead in
these cases. The performance of the proposed approach heavily depends on multiple factors.
Although a high accuracy is not imperative for the approach to deliver correct results, it is
essential for a good performance. Besides the accuracy, also the approximation speed-up has
been shown to influence the overall gain. Finally, also the complexity of the problem instance
itself influences the performance of the proposed approximation-based approach.

119

120

5
Conclusion

The thesis at hand proposed a systematic approach to the DSE of embedded computer sys-
tems. To this end, a novel ASPmT-based synthesis framework was first developed. It allows the
transformation of deadline-constraint, periodic, and cyclic behavioral specifications into struc-
tural implementations that conform to various feasibility and validity constraints. The utiliza-
tion of ASPmT provides two essential benefits. First, the problem instance and all synthesis
constraints are formulated by a uniform input language resulting into one succinct and elab-
oration tolerant encoding. Furthermore, compared to other Boolean solving techniques (e.g.,
SAT), the encoding is split into a problem instance and a general problem encoding that can be
reused for every individual instance. Second, it allows the tight integration of the foreground
Boolean ASP and specialized background QF–IDL solvers. While the feasibility constraints
can be effectively encoded with ASP rules, validity constraints are relayed to the background
solver. This technique is imperative as non-linear problems, in particular the latency of the sys-
tem, are not effectively computable with Boolean solvers. Foreground and background solvers
communicate through common variables, allowing for the propagation of conflict clauses from
both sources. In fact, the application of QF–IDL for performing the schedulability analysis
yields a minimal reason if the set of assigned decision results in invalid implementations. Fur-
thermore, the tight integration allows for the evaluation of partial assignment if the objectives
are assignment monotonic. Hence, the background theory can already check the incomplete
implementations for constraint violations. Invalid regions can thus be detected and pruned
from the search space early during the search, which has been evaluated in Section 3.4.2.

Following, in Chapter 4, the synthesis framework has been extended towards a holistic DSE
with multi-objective optimization. To this end, the background theory has been completed with
a Pareto checker and additional specialized propagators evaluating the power consumption and
area costs of implementations. The proposed methodology builds up a propagator tree, with the
Pareto checker at the root that is dependent on its leaf propagators evaluating the individual
objectives. Due to the increased amount of dominance checks required by the previously
introduced partial assignment checking, the thesis proposes further improvements of the archive
management and evaluation steps of the optimization. For the former, the application of a
Quad–Tree data structure is proposed. Thereby, the dominance checks of partial assignments
can be simplified as the archive must not be updated at this point. After a full assignment
has been found, the new implementation is known to be non-dominated, and, at this point,
only the now dominated design points have to removed from the Pareto archive. Furthermore,
due to the tree-based data structure, only a subset of archive solutions have to checked which
further improves the performance of the dominance checks.

Section 4.3 finally proposes an optimization for the objective evaluation through safe approx-
imations. In short, an implementation candidate is first evaluated through a safe approxima-

121

5 Conclusion

tion before only potentially good solutions are evaluated exactly. A safe approximation is there-
for defined to consistently evaluate the corresponding better or worse than the exact method.
For a minimization problem, the approximation has to be consistently smaller (i.e., under-
approximation) and a maximization problem, the approximation must always be larger (over-
approximation) than the exact value would be. Although a high accuracy is not necessarily re-
quired for the proposed approach to work correctly, it has been identified that the accuracy has
a high impact on the performance of the approach. However, it has been experimentally shown
that even a low accuracy does not degrade the performance significantly when compared to a
conventional approach that only uses exact evaluations. Furthermore, the approach is flexible
in the sense, that it does not have to be applied to every objective function in the problem.
If a safe approximation cannot be determined or would not be effective, the objective may be
calculated through the conventional exact evaluation without interfering with other objectives.

5.1 Limitations

While the proposed ASPmT-based DSE addresses and improves drawbacks of current state-
of-the-art approaches, the proposed solutions are still subject to a number of limitations. These
shall be discussed in the following.

The proposed framework follows a strictly systematic approach. Although this guarantees
the complete coverage of the design space in theory as no solution candidate is revisited during
the search, in reality, most problem instances are too complex to be explored completely.
Furthermore, as the search is conducted, in principle, by iterating through the solutions of the
problem, the finding of diverse solutions is delayed. The difference between two subsequently
found solutions tends to be marginal, and, thus, only local changes are applied to the solutions.
In order to advance to more diverse regions in the design space, typically, a large amount of
solutions has to be found first. This especially leads to a problem when the search starts
in a region where no feasible design candidates are present. Then, even finding an initial
solution can be nearly impossible in a reasonable amount of time. While this drawback can
be diminished by the evaluation of partial assignments, it still poses a problem for highly
complex systems. Furthermore, the evaluation of partial assignments is only possible when the
considered objective are assignment monotonic. While applicable for the objective functions
considered in the thesis at hand, it may become a problem if further objectives are to be
evaluated. For example, when evaluating the reliability of a system, the addition of extra
processing or communication resources renders the system potentially more fail-safe. Hence,
the objective would not be assignment monotonic as additional decision could improve the
quality of the system.

The proposed DSE framework makes purely static decisions. This basically reduces the ap-
plicability of the approach to streaming application without any dynamic behavior. Applica-
tions with a data-dependent task set can only be considered to a certain degree with annotated
WCETs. These are typically pessimistic and cannot provide tight bounds. If many dynamic
tasks are present, dynamic binding, routing, and scheduling decisions should be considered at
runtime to be able to find optimal design points. This, however, requires different analysis
models that have not been discussed in the thesis at hand.

Further limitations regard the specification model. First, the model can only represent
strictly periodic tasks. Thus, the definition of sporadic tasks is not possible. Also, the schedula-
bility analysis of the periodic tasks may be pessimistic even for periodic applications where indi-

122

5.2 Future Work

vidual tasks are not required to start at a fixed frequency. Currently, the analysis assumes that
a task restarts exactly after its periodicity. This, however, may not be necessary for all tasks as
long as their dependencies are adhered. In turn, the schedulability analysis can falsely yield the
invalidity of the taken binding decisions. This becomes apparent if independent applications
with varying periodicity are specified. It may be helpful to shift tasks of subsequent iterations
into free time slots instead of requiring exact distances of task instances of different iterations.

Second, multicast messages are not directly supported by the proposed model. Sending
the same message to multi receivers must be split into multiple individual messages as a
workaround. The drawback is a potentially pessimistic schedule. Ideally, both messages could
share at least a few hops before they part and take individual routes to their respective desti-
nations. This is not possible in the proposed framework. Hence, the shared hops are processed
sequentially. In turn, this may yield pessimistic estimations of the acquired latency.

Third, in the hardware model, especially the on-chip routers are assumed to contain unlimited
input buffers to store messages. Whenever multiple messages are routed over a common link
at the same time, the connected router only forwards one message at a time while the rest has
to be stored at the input buffers. In reality, the buffer size is limited. Thus, implementations
containing highly trafficked links may be falsely evaluated in the proposed framework.

Fourth, the framework can exclusively model static behavior. Hence, dynamic behavior
imposed by, for example, data dependent algorithms, user input, and the insertion of additional
or removal of present applications cannot be modeled. Hence, all information must be available
at design time. Furthermore, if at runtime, a component fails, an automatic reconfiguration of
the system is not possible. In this case, a new synthesis had to be carried out.

Finally, the evaluation is executed on the basis of abstract properties that are annotated
within the specification model. In reality, these properties have to be obtained through thor-
ough investigation. The execution time of a task on different resources, for instance, can be
obtained by compiling the task for different architectures. While realistic assumptions are as-
pired, the data source of these properties is not the primary scope in this thesis. It is assumed
that the properties are known when starting the DSE. However, when executed for real appli-
cations, and hence, task mappings, it must be guaranteed that the annotations represent the
worst-case. Annotating average or best-case properties could render the obtained validity of
an implementation useless.

5.2 Future Work

Future work in the area of the thesis at hand should address the limitations discussed above.
In particular, a combination of the proposed ASPmT-based synthesis framework and meta-
heuristical approaches is expected to advance the field of DSE at the ESL. Similar, to SAT-
based techniques used in MOEAs, the proposed synthesis can be used to diminish the problems
of the huge design space as well as the problem of finding initial solutions. Compared to
SAT, the proposed ASPmT encoding is capable of evaluating not only feasibility constraints
but also validity constraints in succinct problem definitions. Furthermore, it has been shown
in [129] that the closed-world assumption employed by ASP benefits the decision-making of
routing decisions. Therefore, the author of the thesis at hand is convinced that an integration
of the here proposed methodology into a state-of-the-art meta-heuristic approach can lead to
significant improvements.

A major concern of future work should be put, however, on the support of dynamism. This

123

5 Conclusion

not only includes the support for data-dependent application but also the dynamic addition
of new functionality at runtime as well as the automatic handling of hardware failures. This
requires a paradigm shift where some decisions are postponed to the runtime of the system.
In turn, it necessitates the adaption of both the specification and the exploration model. To
choose the right model of computation for such design problems, future work must emphasize
on the trade-off between expressiveness and analyzability of the respective models. That is, it
must be evaluated which level of detail is appropriate at the ESL to gather meaningful results
while maintaining a high exploration performance. As a result, the evaluation methods must
fit the model of computation. Here, the (max,+)-algebra in combination with scenario-aware
dataflow graphs [139] provide a promising starting point for further studies. In this context,
it shall be clarified whether the (max,+)-algebra can be applied to partial assignments to
accelerate exploration.

More recently, embedded systems are developed to support more general purpose tasks. This
poses another interesting field of study for future work. In the thesis at hand, the hardware
platform is synthesized with one particular application in mind. However, if the hardware plat-
form shall support a wider range of applications, the synthesis step must be adapted. Defin-
ing, for example, not a single application but instead an entire class of applications provides
interesting questions. How can the platform be optimized for a set of applications? What
model of computation can be used to define application classes? Which communication infras-
tructure shall be derived to trade-off potential contention and implementation complexity? A
further important aspect in the context of supporting more general purpose tasks is the han-
dling of mixed-criticality task sets. That is, the execution of critical tasks has to be guaran-
teed while non-critical tasks may be delayed. The combination of predicable processors (i.e.,
without branch prediction, caches, etc.) with general purpose processors may be one possible
solution to fulfill these requirements.

Considering the hardware platform, a further focus of future work may be the abandonment
of hardware templates in favor of hardware libraries. Hence, the basic structure of the platform
is not predefined but instead, the topology of individual hardware devices, i.e., computational
and communication devices, is decided by the synthesis. This way, the author expects a better
utilization of the hardware resources and less contention in the communication infrastructure.
However, this results in a potentially unbounded design space. Hence, future work in this area
must define constraints that make the problem manageable.

Finally, a tighter integration of expert knowledge in the design process may provide great
opportunities. For example, a decision maker could steer the solving in an interactive process
to study particular regions of the designs space more thoroughly or force global changes in
the decision-making process. Hence, the designer could directly trade off the search regarding
diversity and convergence. It is, however, unclear whether this methodology can still provide
the guarantees of a systematic search, i.e., a complete and correct search where no solution is
visited twice.

As a summary, the outlook of possible future work shows that there are still many open
questions in the area of the design space exploration at the electronic system level. Although,
the thesis at hand provided some optimizations, especially regarding the systematic exploration,
the topic provides many more problems to be solved by future research.

124

A
Appendix

The appendix contains supplementary data to the experiments conducted in the individual
evaluation sections.

A.1 Synthesis – Experimental Results

Compared to the results in Table 3.2, the following two Tables A.1 and A.2 not only consider
solved but all synthesis runs. Therefore, the average runtime, number of choices, and number
of encountered conflicts are calculated for the total number of runs and, in parentheses, only
for the solved instances.

Table A.1: Detailed results of the synthesis experiments for the full assignment runs conducted
in Section 3.4.2

Time (Solved) [s] Choices (Solved) Conflicts (Solved)Hardness Group Solved min max min max min max

720.190 (0.319) 6.94 · 107 (7.83 · 103) 1.03 · 106 (1.38 · 103)I 6 0.177 1,800.0 1.26 · 103 1.99 · 108 4.30 · 102 3.59 · 106

596.806 (463.117) 3.05 · 107 (2.33 · 107) 3.35 · 105 (2.64 · 105)II 9 0.881 1,800.0 1.56 · 103 9.52 · 107 4.00 · 100 9.71 · 105

725.192 (8.654) 1.80 · 107 (6.35 · 104) 1.85 · 105 (5.67 · 101)III 6 5.577 1,800.0 3.49 · 104 4.65 · 107 2.30 · 101 5.08 · 105

1,622.804 (28.017) 2.59 · 107 (9.24 · 104) 3.17 · 105 (7.30 · 101)IV 1 28.017 1,800.0 9.24 · 104 3.08 · 107 7.30 · 101 4.01 · 105

1,800.0 (–) 2.33 · 107 (–) 2.91 · 105 (–)

1.00

V 0 1,800.0 1,800.0 2.05 · 107 2.88 · 107 2.24 · 105 3.56 · 105

900.450 (0.901) 7.77 · 107 (3.97 · 104) 1.36 · 106 (3.76 · 103)I 5 0.221 1,800.0 3.62 · 103 1.86 · 108 7.46 · 102 3.59 · 106

1,265.440 (730.881) 6.38 · 107 (3.55 · 107) 6.83 · 105 (4.16 · 105)II 5 0.874 1,800.0 1.49 · 103 9.41 · 107 5.00 · 100 1.07 · 106

1,262.033 (6.775) 3.02 · 107 (5.75 · 104) 3.05 · 105 (5.70 · 101)III 3 5.314 1,800.0 3.42 · 104 4.59 · 107 2.40 · 101 4.69 · 105

1,621.663 (16.601) 2.61 · 107 (6.87 · 104) 3.05 · 105 (4.00 · 101)IV 1 16.601 1,800.0 6.87 · 104 3.06 · 107 4.00 · 101 3.95 · 105

1,800.0 (–) 2.31 · 107 (–) 2.89 · 105 (–)

0.94

V 0 1,800.0 1,800.0 1.94 · 107 2.45 · 107 2.13 · 105 3.45 · 105

0.88

1,154.568 (186.428) 1.17 · 108 (1.57 · 107) 1.74 · 106 (1.80 · 105)I 4 1.214 1,800.0 5.26 · 104 2.25 · 108 5.21 · 103 3.58 · 106

1,367.634 (358.781) 6.74 · 107 (1.70 · 107) 6.88 · 105 (1.92 · 105)II 3 0.906 1,800.0 2.00 · 103 9.29 · 107 8.00 · 100 1.04 · 106

1,262.271 (7.570) 3.05 · 107 (5.23 · 104) 3.17 · 105 (5.37 · 101)III 3 6.119 1,800.0 4.36 · 104 4.57 · 107 3.70 · 101 4.96 · 105

I

A Appendix

Table A.1: (continued)

Time (Solved) [s] Choices (Solved) Conflicts (Solved)Hardness Group Solved min max min max min max

1,800.0 (–) 2.87 · 107 (–) 3.44 · 105 (–)IV 0 1,800.0 1,800.0 2.73 · 107 3.08 · 107 2.93 · 105 3.99 · 105

1,800.0 (–) 2.32 · 107 (–) 2.86 · 105 (–)V 0 1,800.0 1,800.0 2.06 · 107 2.51 · 107 2.30 · 105 3.31 · 105

1,620.397 (4.027) 1.59 · 108 (2.13 · 105) 2.49 · 106 (1.32 · 104)I 1 4.027 1,800.0 2.13 · 105 2.27 · 108 1.32 · 104 3.59 · 106

1,800.0 (–) 8.96 · 107 (–) 9.63 · 105 (–)II 0 1,800.0 1,800.0 8.36 · 107 9.77 · 107 8.08 · 105 1.09 · 106

1,620.656 (6.560) 3.85 · 107 (5.04 · 104) 4.01 · 105 (8.60 · 101)III 1 6.560 1,800.0 5.04 · 104 4.47 · 107 8.60 · 101 4.80 · 105

1,800.0 (–) 2.91 · 107 (–) 3.41 · 105 (–)IV 0 1,800.0 1,800.0 2.73 · 107 3.10 · 107 2.79 · 105 4.06 · 105

1,800.0 (–) 2.32 · 107 (–) 2.89 · 105 (–)

0.83

V 0 1,800.0 1,800.0 2.03 · 107 2.53 · 107 2.34 · 105 3.34 · 105

Table A.2: Detailed results of the synthesis experiments for the partial assignment runs con-
ducted in Section 3.4.2

Time (Solved) [s] Choices (Solved) Conflicts (Solved)Hardness Group Solved min max min max min max

180.941 (1.045) 2.47 · 106 (1.82 · 104) 2.21 · 106 (9.87 · 103)I 9 0.197 1,800.0 3.71 · 103 2.46 · 107 6.88 · 102 2.20 · 107

135.955 (135.955) 1.17 · 106 (1.17 · 106) 9.73 · 105 (9.73 · 105)II 10 0.708 697.321 2.98 · 102 6.45 · 106 2.00 · 100 5.60 · 106

4.723 (4.723) 1.25 · 104 (1.25 · 104) 4.81 · 103 (4.81 · 103)III 10 2.133 26.548 4.01 · 102 1.20 · 105 2.00 · 100 4.80 · 104

9.038 (9.038) 1.28 · 104 (1.28 · 104) 1.40 · 103 (1.40 · 103)IV 10 4.751 45.926 5.82 · 102 1.20 · 105 1.00 · 100 1.37 · 104

20.350 (20.350) 2.81 · 104 (2.81 · 104) 2.27 · 103 (2.27 · 103)

1.00

V 10 6.732 135.588 6.96 · 102 2.61 · 105 3.00 · 100 2.19 · 104

239.049 (65.610) 4.64 · 106 (8.40 · 105) 4.12 · 106 (7.14 · 105)I 9 0.237 1,800.000 6.74 · 103 3.88 · 107 1.39 · 103 3.47 · 107

100.205 (100.205) 8.23 · 105 (8.23 · 105) 6.60 · 105 (6.60 · 105)II 10 0.759 605.636 3.17 · 102 5.11 · 106 2.00 · 100 4.31 · 106

5.211 (5.211) 1.46 · 104 (1.46 · 104) 4.88 · 103 (4.88 · 103)III 10 2.138 31.526 4.03 · 102 1.42 · 105 0.00 · 100 4.88 · 104

4.939 (4.939) 8.97 · 102 (8.97 · 102) 2.78 · 101 (2.78 · 101)IV 10 4.757 5.436 5.82 · 102 3.02 · 103 2.00 · 100 1.91 · 102

30.128 (30.128) 4.88 · 104 (4.88 · 104) 5.25 · 103 (5.25 · 103)

0.94

V 10 6.713 159.927 6.79 · 102 3.24 · 105 5.00 · 100 3.99 · 104

380.465 (222.738) 6.19 · 106 (4.18 · 106) 5.39 · 106 (3.58 · 106)I 9 0.432 1,800.0 1.89 · 104 2.75 · 107 4.48 · 103 2.41 · 107

554.573 (243.216) 4.18 · 106 (1.78 · 106) 3.66 · 106 (1.53 · 106)II 8 0.769 1,800.0 3.18 · 102 1.39 · 107 3.00 · 100 1.22 · 107

25.021 (25.021) 1.06 · 105 (1.06 · 105) 5.24 · 104 (5.24 · 104)III 10 2.163 181.081 4.01 · 102 8.25 · 105 1.00 · 100 4.46 · 105

5.101 (5.101) 1.31 · 103 (1.31 · 103) 6.90 · 101 (6.90 · 101)IV 10 4.723 6.675 6.01 · 102 4.73 · 103 1.00 · 100 4.09 · 102

32.800 (32.800) 6.30 · 104 (6.30 · 104) 8.27 · 103 (8.27 · 103)

0.88

V 10 6.836 255.519 7.61 · 102 6.01 · 105 5.00 · 100 8.04 · 104

II

A.2 Design Space Exploration – Experimental Results

Table A.2: (continued)

Time (Solved) [s] Choices (Solved) Conflicts (Solved)Hardness Group Solved min max min max min max

1,073.396 (346.815) 1.75 · 107 (4.58 · 106) 1.56 · 107 (4.07 · 106)I 5 0.239 1,800.0 8.07 · 103 3.55 · 107 1.38 · 103 3.17 · 107

1,055.025 (310.054) 8.41 · 106 (2.60 · 106) 7.18 · 106 (2.12 · 106)II 5 26.969 1,800.0 2.36 · 105 1.51 · 107 1.62 · 105 1.30 · 107

99.586 (99.586) 4.80 · 105 (4.80 · 105) 3.56 · 105 (3.56 · 105)III 10 2.188 805.414 4.21 · 102 4.01 · 106 0.00 · 100 3.18 · 106

10.196 (10.196) 1.54 · 104 (1.54 · 104) 2.23 · 103 (2.23 · 103)IV 10 4.735 55.429 5.97 · 102 1.42 · 105 2.00 · 100 2.17 · 104

73.721 (73.721) 1.53 · 105 (1.53 · 105) 1.81 · 104 (1.81 · 104)

0.83

V 10 6.875 202.209 7.06 · 102 4.46 · 105 5.00 · 100 6.72 · 104

A.2 Design Space Exploration – Experimental Results
The following Table A.3 contains the results of all exploration runs conducted in Section 4.1.3.

It is an extended version of Table 4.1.

Table A.3: Extended results of the evaluation of the optimization framework regarding the
quality of obtained solutions (Table 4.1).

H Tbreadth Tdepth|A| |S| |P | Platform I ALR SPR DOR ALR SPR DOR ALR SPR DOR

1 8 6 3× 3× 1 ε
H

1.487
2.472

1.280
2.473

1.139
2.998

1.487
2.989

1.131
3.531

1.275
3.768

1.877
2.473

1.505
2.471

1.894
2.473

1 4 10 3× 3× 1 ε
H

1.564
2.473

1.018
2.473

1.128
2.473

1.749
2.473

1.203
3.452

1.224
3.522

1.749
2.473

1.223
2.473

1.367
2.471

1 6 6 3× 3× 1 ε
H

inf
0.000

1.419
2.473

1.324
2.472

1.590
2.585

1.062
3.652

1.097
3.927

1.784
2.473

1.687
2.473

1.387
2.468

1 10 6 3× 3× 1 ε
H

inf
0.000

1.282
2.473

1.074
2.473

inf
0.000

1.156
3.524

1.109
3.628

inf
0.000

1.687
2.473

1.282
2.473

1 10 10 3× 3× 1 ε
H

inf
0.000

1.248
2.472

1.288
2.473

inf
0.000

1.153
3.528

1.085
3.514

inf
0.000

1.437
2.473

1.391
2.471

2 7 13 3× 3× 1 ε
H

1.479
2.473

1.421
2.473

1.879
2.373

1.340
3.293

1.098
3.630

1.215
3.708

1.624
2.473

1.879
2.473

1.640
2.473

2 8 8 3× 3× 1 ε
H

inf
0.000

1.556
2.470

1.272
2.473

inf
0.000

1.174
3.539

1.077
3.618

inf
0.000

1.556
2.472

1.556
2.466

2 9 12 3× 3× 1 ε
H

1.642
2.472

1.352
2.469

1.216
2.473

1.486
2.619

1.295
3.256

1.196
3.613

1.684
2.473

1.618
2.472

1.678
2.473

2 11 9 3× 3× 1 ε
H

1.099
2.473

1.194
2.473

1.117
2.473

1.269
3.091

1.178
3.826

1.174
3.741

1.767
2.473

1.767
2.472

1.761
2.472

2 12 13 3× 3× 1 ε
H

2.153
2.472

2.088
2.450

1.275
2.473

1.270
3.096

1.055
3.718

1.222
3.430

1.750
2.473

1.494
2.473

1.746
2.473

2 13 16 3× 3× 1 ε
H

1.602
2.467

1.578
2.473

1.356
2.473

1.271
3.130

1.153
3.586

1.196
3.415

1.662
2.473

1.425
2.473

1.779
2.466

3 7 16 3× 3× 2 ε
H

1.945
2.473

1.261
2.473

1.144
2.473

1.917
2.566

1.139
3.182

1.032
3.369

1.908
2.473

1.669
2.473

1.931
2.469

3 10 16 3× 3× 2 ε
H

1.925
2.473

1.434
2.473

1.000
2.473

1.773
2.745

1.594
3.061

1.529
2.949

1.930
2.473

1.608
2.473

1.757
2.473

3 7 24 3× 3× 2 ε
H

2.281
2.473

2.241
2.392

1.098
2.466

2.152
2.512

1.811
3.164

1.134
2.753

2.279
2.473

2.233
2.473

1.401
2.469

3 11 22 3× 3× 2 ε
H

1.806
2.473

1.611
2.472

1.342
2.473

1.737
2.825

1.370
3.285

1.155
3.203

1.826
2.473

1.827
2.473

1.746
2.473

III

A Appendix

Table A.3: (continued)

H Tbreadth Tdepth|A| |S| |P | Platform I ALR SPR DOR ALR SPR DOR ALR SPR DOR

3 22 11 3× 3× 2 ε
H

1.785
2.473

1.592
2.464

1.306
2.473

1.686
2.882

1.073
3.522

1.142
2.976

1.786
2.473

1.786
2.473

1.732
2.473

3 17 22 3× 3× 2 ε
H

1.534
2.473

1.441
2.452

1.085
2.473

1.469
2.706

1.109
3.254

1.152
3.098

1.534
2.473

1.532
2.470

1.152
2.472

3 19 24 3× 3× 2 ε
H

2.283
2.473

2.185
2.472

1.538
2.473

2.274
2.566

1.433
2.579

1.054
3.188

2.106
2.473

1.950
2.473

1.792
2.462

3 22 27 3× 3× 2 ε
H

1.855
2.473

1.650
2.463

1.477
2.473

1.835
2.501

1.279
3.166

1.309
2.572

1.855
2.473

1.637
2.473

1.594
2.473

4 9 16 3× 3× 3 ε
H

1.919
2.473

1.703
2.466

1.000
2.473

1.906
2.645

1.272
3.155

1.272
3.153

1.913
2.473

1.919
2.473

1.272
2.468

4 15 21 3× 3× 3 ε
H

1.289
2.473

1.283
2.467

1.168
2.473

1.283
2.811

1.126
3.422

1.191
3.182

1.289
2.473

1.284
2.444

1.243
2.472

4 12 19 3× 3× 3 ε
H

2.074
2.473

1.617
2.473

1.078
2.473

2.054
2.705

1.130
3.467

1.172
3.041

2.071
2.473

2.071
2.473

1.225
2.471

4 16 24 3× 3× 3 ε
H

1.915
2.473

1.899
2.454

1.067
2.473

1.905
2.475

1.071
3.322

1.073
3.151

1.918
2.473

1.795
2.441

1.733
2.473

4 21 20 3× 3× 3 ε
H

1.610
2.473

1.614
2.471

1.000
2.473

1.510
2.743

1.301
3.043

1.151
3.110

1.615
2.473

1.579
2.472

1.435
2.473

4 18 28 3× 3× 3 ε
H

2.177
2.473

2.134
2.471

1.546
2.473

2.177
2.534

1.265
3.214

1.057
2.655

2.170
2.473

1.686
2.471

1.687
2.473

4 30 19 3× 3× 3 ε
H

1.927
2.473

1.868
2.473

1.015
2.473

1.900
2.602

1.172
2.832

1.070
2.861

1.932
2.473

1.693
2.473

1.930
2.473

4 24 38 3× 3× 3 ε
H

inf
0.000

1.892
2.472

1.533
2.472

inf
0.000

1.515
2.915

1.103
2.976

1.895
2.473

1.894
2.473

1.837
2.473

A.3 Approximation – Experimental Results

The Tables A.4 and A.5 contain the data of the Figures 4.18 and 4.19, respectively. The
data was obtained through the DSE runs conducted to evaluate the proposed approximation-
based approach in Section 4.3.3.

Table A.4: Detailed data regarding the Filter Ratio of Figure 4.18.

Group ID FR (High ERR) FR (Medium ERR) FR (Low ERR)
x̄geom Max Min σ2 x̄geom Max Min σ2 x̄geom Max Min σ2

I 0.983 1.000 0.887 0.001 0.110 1.000 0.000 0.183 0.015 0.200 0.000 0.005
II 0.865 1.000 0.550 0.019 0.016 0.676 0.000 0.041 0.001 0.752 0.000 0.051
III 0.804 1.000 0.267 0.045 0.122 0.955 0.000 0.086 0.001 0.018 0.000 0.000
IV 0.747 0.993 0.438 0.050 0.116 0.988 0.000 0.138 0.001 0.002 0.000 0.000
V 0.525 0.991 0.052 0.075 0.140 0.982 0.003 0.080 0.002 0.017 0.001 0.000
VI 0.686 0.982 0.294 0.073 0.146 0.973 0.002 0.112 0.002 0.003 0.001 0.000
VII 0.710 0.999 0.234 0.074 0.493 0.996 0.134 0.085 0.003 0.024 0.001 0.000
VIII 0.322 0.962 0.001 0.101 0.017 0.915 0.001 0.134 0.003 0.056 0.002 0.000
IX 0.731 0.977 0.201 0.049 0.158 0.854 0.004 0.122 0.011 0.082 0.004 0.001
X 0.803 0.997 0.387 0.042 0.367 0.970 0.003 0.084 0.004 0.027 0.002 0.000
XI 0.613 0.996 0.209 0.077 0.195 0.979 0.009 0.069 0.016 0.292 0.005 0.009
XII 0.945 1.000 0.865 0.002 0.696 1.000 0.161 0.056 0.177 1.000 0.007 0.116

IV

A.3 Approximation – Experimental Results

Table A.5: Detailed data regarding the performance improvement shown in Figure 4.19.

Group ID Improvement (High ERR) Improvement (Medium ERR) Improvement (Low ERR)
x̄geom Max Min σ2 x̄geom Max Min σ2 x̄geom Max Min σ2

I 5.942 6.847 4.060 0.738 1.940 6.849 0.997 5.459 0.999 1.000 0.997 0.000
II 3.004 4.374 1.046 1.041 1.048 1.238 0.998 0.007 0.994 1.000 0.988 0.000
III 2.123 2.564 1.184 0.177 1.279 2.375 0.999 0.164 0.996 0.999 0.991 0.000
IV 2.120 2.809 1.399 0.295 1.475 2.784 1.000 0.474 1.001 1.004 1.000 0.000
V 1.632 2.342 1.035 0.156 1.225 2.261 1.001 0.128 1.004 1.009 0.998 0.000
VI 1.679 2.032 1.176 0.116 1.321 2.020 1.000 0.111 1.000 1.001 0.997 0.000
VII 1.768 2.171 1.136 0.126 1.496 2.170 1.072 0.131 1.002 1.010 0.997 0.000
VIII 1.448 1.907 1.001 0.087 1.153 1.813 0.997 0.101 0.998 1.001 0.994 0.000
IX 1.485 1.679 1.084 0.030 1.230 1.548 0.998 0.048 0.998 1.004 0.994 0.000
X 1.582 1.776 1.203 0.041 1.380 1.722 1.006 0.047 1.003 1.007 0.995 0.000
XI 1.304 1.531 1.085 0.030 1.115 1.523 0.998 0.023 1.001 1.006 0.995 0.000
XII 1.203 1.426 0.998 0.024 1.123 1.380 1.000 0.018 0.997 1.007 0.990 0.000

V

VI

Bibliography

All References

[1] Kai Neubauer, Christian Haubelt, and Michael Glaß. “Supporting Composition in Sym-
bolic System Synthesis”. In: International Conference on Embedded Computer Systems:
Architectures, Modeling and Simulation (SAMOS). Samos, Greece, July 2016, pp. 132–
139. doi: 10.1109/SAMOS.2016.7818340.

[2] Kai Neubauer, Philipp Wanko, Torsten Schaub, and Christian Haubelt. “Enhancing
Symbolic System Synthesis through ASPmT with Partial Assignment Evaluation”. In:
Design, Automation and Test in Europe Conference (DATE). Lausanne, Switzerland,
Mar. 2017, pp. 306–309. doi: 10.23919/DATE.2017.7927005.

[3] Kai Neubauer, Christian Haubelt, Philipp Wanko, and Torsten Schaub. “Utilizing Quad-
Trees for Efficient Design Space Exploration with Partial Assignment Evaluation”. In:
23rd Asia and South Pacific Design Automation Conference (ASP-DAC). Jeju, Korea,
Jan. 2018, pp. 434–439. doi: 10.1109/ASPDAC.2018.8297362.

[4] Kai Neubauer, Philipp Wanko, Torsten Schaub, and Christian Haubelt. “Exact Multi-
Objective Design Space Exploration using ASPmT”. In: Design, Automation and Test
in Europe Conference (DATE). Dresden, Germany, Mar. 2018, pp. 257–260. doi: 10.
23919/DATE.2018.8342014.

[5] Kai Neubauer, Christian Haubelt, Philipp Wanko, and Torsten Schaub. “Systematic Test
Case Instance Generation for the Assessment of System-level Design Space Exploration
Approaches”. In: 21. Workshop Methoden und Beschreibungssprachen zur Modellierung
und Verifikation von Schaltungen und Systemen (MBMV). Tübingen, Germany, Mar.
2018. doi: 10.15496/publikation-25685.

[6] Kai Neubauer, Christian Haubelt, Philipp Wanko, and Torsten Schaub. “Work-in-Pro-
gress: On Leveraging Approximations for Exact System-level Design Space Exploration”.
In: International Conference on Hardware Software Codesign and System Synthesis
(CODES/ISSS). Sept. 2018, pp. 1–2. doi: 10.1109/CODESISSS.2018.8525974.

[7] Kai Neubauer, Benjamin Beichler, and Christian Haubelt. “Exact Design Space Explo-
ration Based on Consistent Approximations”. In: Electronics 9.7 (June 2020), p. 1057.
issn: 2079-9292. doi: 10.3390/electronics9071057.

[8] Christian Haubelt, Kai Neubauer, Torsten Schaub, and Philipp Wanko. “Design Space
Exploration with Answer Set Programming”. In: KI - Künstliche Intelligenz. Vol. 32. 2-
3. Berlin Heidelberg: Springer Nature, May 2018, pp. 205–206. doi: 10.1007/s13218-
018-0530-3.

VII

https://doi.org/10.1109/SAMOS.2016.7818340
https://doi.org/10.23919/DATE.2017.7927005
https://doi.org/10.1109/ASPDAC.2018.8297362
https://doi.org/10.23919/DATE.2018.8342014
https://doi.org/10.23919/DATE.2018.8342014
https://doi.org/10.15496/publikation-25685
https://doi.org/10.1109/CODESISSS.2018.8525974
https://doi.org/10.3390/electronics9071057
https://doi.org/10.1007/s13218-018-0530-3
https://doi.org/10.1007/s13218-018-0530-3

Bibliography

[9] Joachim Falk, Kai Neubauer, Christian Haubelt, Christian Zebelein, and Jürgen Teich.
“Integrated Modeling Using Finite State Machines and Dataflow Graphs”. In: Handbook
of Signal Processing Systems. Ed. by S.S. Bhattacharyya, E.F. Deprettere, R. Leupers,
and J. Takala. Third Ed. Springer International Publishing, Oct. 2019, pp. 825–864.
doi: 10.1007/978-3-319-91734-4_23.

[10] Luise Müller, Kai Neubauer, and Christian Haubelt. “Exploiting Similarity in Evo-
lutionary Product Design for Improved Design Space Exploration”. In: International
Conference on Embedded Computer Systems: Architectures, Modeling and Simulation
(SAMOS). July 2021.

[11] Jim Turley. Embedded Processors by the Numbers. Electronic Engineering Times. url:
https://www.eetimes.com/embedded-processors-by-the-numbers/. Jan. 1999.
Last accessed: Sep. 15 2020.

[12] Michael Barr. Real men program in C. embedded.com. url: https://www.embedded.
com/real-men-program-in-c/. Aug. 2009. Last accessed: Jun. 06 2021.

[13] Santosh G. Abraham, B. Ramakrishna Rau, and Robert Schreiber. “Fast design space
exploration through validity and quality filtering of subsystem designs”. In: HP Labo-
ratories Technical Report 98 (2000).

[14] Christian Haubelt and Torsten Schaub. Skalierbare Entwurfsraumexploration mit
Antwortmengenprogrammierung. Deutsche Forschungsgemeinschaft (DFG) – Projekt-
nummer 269264143. url: https://gepris.dfg.de/gepris/projekt/269264143.
2015. Last accessed: Jan. 19 2022.

[15] Heinz Zemanek. “Zuse, Konrad”. In: Encyclopedia of Computer Science. Ed. by An-
thony Ralston and Edwin D. Reilly. GBR: John Wiley and Sons Ltd., 2003. Chap. En-
cyclopedia, pp. 1877–1878. isbn: 0470864125.

[16] Jürgen Teich. “Hardware/Software Codesign: The past, the present, and predicting the
future”. In: Proceedings of the IEEE 100.Special Centennial Issue (2012), pp. 1411–1430.
doi: 10.1109/JPROC.2011.2182009.

[17] IEEE Standard VHDL Language Reference Manual. IEEE Std 1076-1987. 1987, pp. 1–
218. doi: 10.1109/IEEESTD.1988.122645.

[18] IEEE Standard for Verilog Hardware Description Language. IEEE Std 1364-2005 (Re-
vision of IEEE Std 1364-2001). 2006, pp. 1–590. doi: 10.1109/IEEESTD.2006.99495.

[19] IEEE Standard for Standard SystemC Language Reference Manual. IEEE Std 1666-2011
(Revision of IEEE Std 1666-2005). 2012. doi: 10.1109/IEEESTD.2012.6134619.

[20] Christian Zebelein, Christian Haubelt, Joachim Falk, and Jürgen Teich. “Model-
Based Representation of Schedules for Dataflow Graphs”. In: Workshop Methoden und
Beschreibungssprachen zur Modellierung und Verifikation von Schaltungen und Syste-
men (MBMV). Mar. 2013, pp. 105–116. isbn: 978-3-86009-147-0.

[21] Sander Stuijk, Marc Geilen, and Twan Basten. “Exploring trade-offs in buffer require-
ments and throughput constraints for synchronous dataflow graphs”. In: Design Au-
tomation Conference (DAC). July 2006, pp. 899–904. doi: 10.1145/1146909.1147138.

VIII

https://doi.org/10.1007/978-3-319-91734-4_23
https://www.eetimes.com/embedded-processors-by-the-numbers/
https://www.embedded.com/real-men-program-in-c/
https://www.embedded.com/real-men-program-in-c/
https://gepris.dfg.de/gepris/projekt/269264143
https://doi.org/10.1109/JPROC.2011.2182009
https://doi.org/10.1109/IEEESTD.1988.122645
https://doi.org/10.1109/IEEESTD.2006.99495
https://doi.org/10.1109/IEEESTD.2012.6134619
https://doi.org/10.1145/1146909.1147138

All References

[22] Weichen Liu, Zonghua Gu, Jiang Xu, Yu Wang, and Mingxuan Yuan. “An Efficient Tech-
nique for Analysis of Minimal Buffer Requirements of Synchronous Dataflow Graphs
with Model Checking”. In: International Conference on Hardware/Software Codesign
and System Synthesis (CODES/ISSS). Oct. 2009, pp. 61–70. doi: 10.1145/1629435.
1629445.

[23] Simone Casale Brunet, Marco Mattavelli, and Jorn W. Janneck. “Buffer optimization
based on critical path analysis of a dataflow program design”. In: 2013 IEEE Interna-
tional Symposium on Circuits and Systems (ISCAS). May 2013, pp. 1384–1387. doi:
10.1109/ISCAS.2013.6572113.

[24] Andreas Gerstlauer, Christian Haubelt, Andy D. Pimentel, Todor P. Stefanov, Daniel
D. Gajski, and Jürgen Teich. “Electronic System-Level Synthesis Methodologies”. In:
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 28.10
(Sept. 2009), pp. 1517–1530. doi: 10.1109/TCAD.2009.2026356.

[25] Stephen A. Cook. “The Complexity of Theorem-Proving Procedures”. In: Third Annual
ACM Symposium on Theory of Computing. STOC ’71. New York, NY, USA: Association
for Computing Machinery, 1971, pp. 151–158. isbn: 9781450374644. doi: 10.1145/
800157.805047.

[26] Martin Davis and Hilary Putnam. “A Computing Procedure for Quantification Theory”.
In: Journal of the ACM 7.3 (July 1960), pp. 201–215. doi: 10.1145/321033.321034.

[27] Martin Davis, George Logemann, and Donald Loveland. “A Machine Program for Theo-
rem-Proving”. In: Communications of the ACM 5.7 (July 1962), pp. 394–397. doi: 10.
1145/368273.368557.

[28] Grigori Samuilowitsch Tseitin. “On the Complexity of Derivation in Propositional Cal-
culus”. In: Automation of Reasoning: 2. Ed. by Jörg H. Siekmann and Graham Wright-
son. Springer Berlin Heidelberg, 1983. Chap. Classical Papers on Computational Logic
1967–1970, pp. 466–483. doi: 10.1007/978-3-642-81955-1_28.

[29] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad
Malik. “Chaff: Engineering an Efficient SAT Solver”. In: Design Automation Confer-
ence (DAC). Association for Computing Machinery, 2001, pp. 530–535. doi: 10.1145/
378239.379017.

[30] Niklas Eén and Niklas Sörensson. “An Extensible SAT-solver”. In: Theory and Applica-
tions of Satisfiability Testing. Springer Berlin Heidelberg, 2004, pp. 502–518. doi: 10.
1007/978-3-540-24605-3_37.

[31] Yakir Vizel, Georg Weissenbacher, and Sharad Malik. “Boolean Satisfiability Solvers
and Their Applications in Model Checking”. In: Proceedings of the IEEE 103.11 (2015),
pp. 2021–2035. doi: 10.1109/JPROC.2015.2455034.

[32] Lintao Zhang and Sharad Malik. “The Quest for Efficient Boolean Satisfiability Solvers”.
In: Computer Aided Verification. Springer Berlin Heidelberg, 2002, pp. 17–36. isbn: 978-
3-540-45657-5. doi: 10.1007/3-540-45657-0_2.

[33] Eugene Goldberg and Yakov Novikov. “BerkMin: A fast and robust Sat-solver”. In:
Discrete Applied Mathematics 155.12 (2007), pp. 1549–1561. doi: 10.1016/j.dam.
2006.10.007.

IX

https://doi.org/10.1145/1629435.1629445
https://doi.org/10.1145/1629435.1629445
https://doi.org/10.1109/ISCAS.2013.6572113
https://doi.org/10.1109/TCAD.2009.2026356
https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/321033.321034
https://doi.org/10.1145/368273.368557
https://doi.org/10.1145/368273.368557
https://doi.org/10.1007/978-3-642-81955-1_28
https://doi.org/10.1145/378239.379017
https://doi.org/10.1145/378239.379017
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1109/JPROC.2015.2455034
https://doi.org/10.1007/3-540-45657-0_2
https://doi.org/10.1016/j.dam.2006.10.007
https://doi.org/10.1016/j.dam.2006.10.007

Bibliography

[34] Christian Haubelt, Rainer Feldmann, Jürgen Teich, and Burkhard Monien. “SAT-based
techniques in system synthesis”. In: Design, Automation and Test in Europe Conference
(DATE). 2003, pp. 1168–1169. doi: 10.1109/DATE.2003.1253784.

[35] Michael Gelfond and Vladimir Lifschitz. “The stable model semantics for logic pro-
gramming”. In: Fifth International Conference on Logic Programming. MIT Press, 1988,
pp. 1070–1080.

[36] Vladimir Lifschitz. “What is Answer Set Programming?” In: National Conference on
Artificial Intelligence. Vol. 3. AAAI’08. Chicago, Illinois, July 2008, pp. 1594–1597. isbn:
9781577353683.

[37] Timo Soininen and Ilkka Niemelä. “Developing a Declarative Rule Language for Ap-
plications in Product Configuration”. In: Practical Aspects of Declarative Languages.
Springer Berlin Heidelberg, 1998, pp. 305–319. isbn: 978-3-540-49201-6.

[38] Alain Colmerauer and Philippe Roussel. “The Birth of Prolog”. In: History of Program-
ming Languages—II. Association for Computing Machinery, 1996, pp. 331–367. doi:
10.1145/234286.1057820.

[39] Gerhard Brewka, Thomas Eiter, and Mirosław Truszczyński. “Answer Set Programming
at a Glance”. In: Communications of the ACM 54.12 (Dec. 2011), pp. 92–103. doi: 10.
1145/2043174.2043195.

[40] Vladimir Lifschitz. “Answer set programming and plan generation”. In: Artificial In-
telligence 138.1 (2002). Knowledge Representation and Logic Programming, pp. 39–54.
issn: 0004-3702. doi: https://doi.org/10.1016/S0004-3702(02)00186-8.

[41] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub. “Clingo
= ASP + Control: Preliminary Report”. In: CoRR abs/1405.3694 (2014).

[42] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Max Ostrowski, Torsten
Schaub, and Philipp Wanko. “Theory Solving Made Easy with Clingo 5”. In: 32nd In-
ternational Conference on Logic Programming (ICLP). Dagstuhl, Germany: Leibniz-
Zentrum für Informatik, 2016, 2:1–2:15. doi: 10.4230/OASIcs.ICLP.2016.2.

[43] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. “Solving SAT and SAT Mod-
ulo Theories: From an Abstract Davis–Putnam–Logemann–Loveland Procedure to
DPLL(T)”. In: Journal of the ACM 53.6 (Nov. 2006), pp. 937–977. doi: 10.1145/
1217856.1217859.

[44] Leonardo de Moura and Nikolaj Bjørner. “Model-based Theory Combination”. In: Elec-
tronic Notes in Theoretical Computer Science 198.2 (2008), pp. 37–49. doi: 10.1016/
j.entcs.2008.04.079.

[45] Michael Bartholomew and Joohyung Lee. “Stable Models of Formulas with Intensional
Functions”. In: International Conference on Principles of Knowledge Representation and
Reasoning. Rome, Italy: AAAI Press, 2012, pp. 2–12. isbn: 9781577355601.

[46] Michael Bartholomew and Joohyung Lee. “Functional stable model semantics and An-
swer Set Programming Modulo Theories”. In: International Joint Conference on Artifi-
cial Intelligence (IJCAI). Dec. 2013, pp. 718–724. isbn: 9781577356332.

X

https://doi.org/10.1109/DATE.2003.1253784
https://doi.org/10.1145/234286.1057820
https://doi.org/10.1145/2043174.2043195
https://doi.org/10.1145/2043174.2043195
https://doi.org/https://doi.org/10.1016/S0004-3702(02)00186-8
https://doi.org/10.4230/OASIcs.ICLP.2016.2
https://doi.org/10.1145/1217856.1217859
https://doi.org/10.1145/1217856.1217859
https://doi.org/10.1016/j.entcs.2008.04.079
https://doi.org/10.1016/j.entcs.2008.04.079

All References

[47] Eckart Zitzler, Lothar Thiele, Marco Laumanns, Carlos M. Fonseca, and Viviane G. da
Fonseca. “Performance assessment of multiobjective optimizers: an analysis and review”.
In: IEEE Transactions on Evolutionary Computation 7.2 (2003), pp. 117–132. doi: 10.
1109/TEVC.2003.810758.

[48] Tobias Blickle, Jürgen Teich, and Lothar Thiele. “System-Level Synthesis Using Evo-
lutionary Algorithms”. In: Design Automation for Embedded Systems 3.1 (Jan. 1998),
pp. 23–58. doi: 10.1023/A:1008899229802.

[49] Miqing Li, Shengxiang Yang, and Xiaohui Liu. “Diversity Comparison of Pareto Front
Approximations in Many-Objective Optimization”. In: IEEE Transactions on Cybernet-
ics 44.12 (Apr. 2014), pp. 2568–2584. doi: 10.1109/TCYB.2014.2310651.

[50] Joshua Knowles, L. Thiele, and Eckart Zitzler. “A tutorial on tbe performance assess-
ment of stochastic multiobjective optimizers”. In: TIK Report 216 (Feb. 2006).

[51] David A. Van Veldhuizen and Gary B. Lamont. “Evolutionary Computation and Con-
vergence to a Pareto Front”. In: Late Breaking Papers at the Genetic Programming 1998
Conference. July 1998, pp. 221–228.

[52] Oliver Schütze, Xavier Esquivel, Adriana Lara, and Carlos A. Coello Coello. “Using the
Averaged Hausdorff Distance as a Performance Measure in Evolutionary Multiobjective
Optimization”. In: IEEE Transactions on Evolutionary Computation 16.4 (Feb. 2012),
pp. 504–522. doi: 10.1109/TEVC.2011.2161872.

[53] Kalyanmoy Deb and Sachin K. Jain. Running performance metrics for evolutionary
multi-objective optimizations. Tech. rep. KanGAL Report No. 2002004. Kanpur, India:
Kanpur Genetic Algorithms Laboratory (KanGAL), 2002.

[54] Ali Farhang-Mehr and Shapour Azarm. “An Information-Theoretic Entropy Metric for
Assessing Multi-Objective Optimization Solution Set Quality ”. In: Journal of Mechan-
ical Design 125.4 (Jan. 2004), pp. 655–663. issn: 1050-0472. doi: 10.1115/1.1623186.

[55] Eckart Zitzler and Lothar Thiele. “Multiobjective evolutionary algorithms: a compar-
ative case study and the strength Pareto approach”. In: IEEE transactions on Evolu-
tionary Computation 3.4 (Nov. 1999), pp. 257–271. doi: 10.1109/4235.797969.

[56] Carlos M. Fonseca, Luís Paquete, and Manuel López-Ibáñez. “An Improved Dimension-
Sweep Algorithm for the Hypervolume Indicator”. In: IEEE International Conference
on Evolutionary Computation. Sept. 2006, pp. 1157–1163. doi: 10.1109/CEC.2006.
1688440.

[57] Marco Laumanns, Lothar Thiele, Kalyanmoy Deb, and Eckart Zitzler. “Combining Con-
vergence and Diversity in Evolutionary Multiobjective Optimization”. In: Evolutionary
Computation 10.3 (Sept. 2002), pp. 263–282. doi: 10.1162/106365602760234108.

[58] Yacov Y. Haimes, Leon S. Lasdon, and David A. Wismer. “On a Bicriterion Formulation
of the Problems of Integrated System Identification and System Optimization”. In: IEEE
Transactions on Systems, Man, and Cybernetics SMC-1.3 (1971), pp. 296–297. doi: 10.
1109/TSMC.1971.4308298.

[59] Leonardo Lai, Lorenzo Fiaschi, and Marco Cococcioni. “Solving mixed Pareto-Lexico-
graphic multi-objective optimization problems: The case of priority chains”. In: Swarm
and Evolutionary Computation 55 (2020), p. 100687. issn: 2210-6502. doi: 10.1016/j.
swevo.2020.100687.

XI

https://doi.org/10.1109/TEVC.2003.810758
https://doi.org/10.1109/TEVC.2003.810758
https://doi.org/10.1023/A:1008899229802
https://doi.org/10.1109/TCYB.2014.2310651
https://doi.org/10.1109/TEVC.2011.2161872
https://doi.org/10.1115/1.1623186
https://doi.org/10.1109/4235.797969
https://doi.org/10.1109/CEC.2006.1688440
https://doi.org/10.1109/CEC.2006.1688440
https://doi.org/10.1162/106365602760234108
https://doi.org/10.1109/TSMC.1971.4308298
https://doi.org/10.1109/TSMC.1971.4308298
https://doi.org/10.1016/j.swevo.2020.100687
https://doi.org/10.1016/j.swevo.2020.100687

Bibliography

[60] Saul Gass and Thomas Saaty. “The computational algorithm for the parametric objec-
tive function”. In: Naval Research Logistics Quarterly 2.1-2 (1955), pp. 39–45. doi: 10.
1002/nav.3800020106.

[61] Kaisa Miettinen. “Introduction to Multiobjective Optimization: Noninteractive Ap-
proaches”. In: Multiobjective optimization: Interactive and evolutionary approaches. Ed.
by Jürgen Branke, Jurgen Branke, Kalyanmoy Deb, Kaisa Miettinen, and Roman Slow-
iński. Springer-Verlag Berlin Heidelberg, 2008. Chap. Basics on Multiobjective Opti-
mization, pp. 1–27. doi: 10.1007/978-3-540-88908-3.

[62] Kevin I. Smith, Richard M. Everson, Jonathan E. Fieldsend, Chris Murphy, and Rashmi
Misra. “Dominance-Based Multiobjective Simulated Annealing”. In: IEEE Transactions
on Evolutionary Computation 12.3 (May 2008), pp. 323–342. doi: 10.1109/TEVC.2007.
904345.

[63] John A. Nelder and Roger Mead. “A Simplex Method for Function Minimization”. In:
The Computer Journal 7.4 (Jan. 1965), pp. 308–313. doi: 10.1093/comjnl/7.4.308.

[64] Manuel Lopez-Ibanez and Thomas Stutzle. “The Automatic Design of Multiobjective
Ant Colony Optimization Algorithms”. In: IEEE Transactions on Evolutionary Com-
putation 16.6 (Feb. 2012), pp. 861–875. doi: 10.1109/TEVC.2011.2182651.

[65] Carlos A. Coello Coello and Maximino Salazar Lechuga. “MOPSO: a proposal for mul-
tiple objective particle swarm optimization”. In: Proceedings of the 2002 Congress on
Evolutionary Computation. CEC’02 (Cat. No.02TH8600). Vol. 2. May 2002, pp. 1051–
1056. doi: 10.1109/CEC.2002.1004388.

[66] Eckart Zitzler and Lothar Thiele. An evolutionary algorithm for multiobjective optimiza-
tion: The strength pareto approach. Tech. rep. 43. Eidgenössische Technische Hochschule
Zürich (ETH), Institut für Technische Informatik und Kommunikationsnetze (TIK),
1998. doi: 10.3929/ethz-a-004288833.

[67] Eckart Zitzler, Marco Laumanns, and Lothar Thiele. SPEA2: Improving the strength
Pareto evolutionary algorithm. Tech. rep. 103. Eidgenössische Technische Hochschule
Zürich (ETH), Institut für Technische Informatik und Kommunikationsnetze (TIK),
2001. doi: 10.3929/ethz-a-004284029.

[68] N. Srinivas and Kalyanmoy Deb. “Muiltiobjective Optimization Using Nondominated
Sorting in Genetic Algorithms”. In: Evolutionary Computation 2.3 (1994), pp. 221–248.
doi: 10.1162/evco.1994.2.3.221.

[69] Kalyanmoy Deb, Amrit Pratap, Samir Agarwal, and T. Meyarivan. “A fast and elitist
multiobjective genetic algorithm: NSGA-II”. In: IEEE Transactions on Evolutionary
Computation 6.2 (2002), pp. 182–197. doi: 10.1109/4235.996017.

[70] Kalyanmoy Deb and Himanshu Jain. “An Evolutionary Many-Objective Optimization
Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solv-
ing Problems With Box Constraints”. In: IEEE Transactions on Evolutionary Compu-
tation 18.4 (2014), pp. 577–601. doi: 10.1109/TEVC.2013.2281535.

[71] R. J. Dakin. “A tree-search algorithm for mixed integer programming problems”. In:
The Computer Journal 8.3 (Jan. 1965), pp. 250–255. doi: 10.1093/comjnl/8.3.250.

XII

https://doi.org/10.1002/nav.3800020106
https://doi.org/10.1002/nav.3800020106
https://doi.org/10.1007/978-3-540-88908-3
https://doi.org/10.1109/TEVC.2007.904345
https://doi.org/10.1109/TEVC.2007.904345
https://doi.org/10.1093/comjnl/7.4.308
https://doi.org/10.1109/TEVC.2011.2182651
https://doi.org/10.1109/CEC.2002.1004388
https://doi.org/10.3929/ethz-a-004288833
https://doi.org/10.3929/ethz-a-004284029
https://doi.org/10.1162/evco.1994.2.3.221
https://doi.org/10.1109/4235.996017
https://doi.org/10.1109/TEVC.2013.2281535
https://doi.org/10.1093/comjnl/8.3.250

All References

[72] Hugues Marchand, Alexander Martin, Robert Weismantel, and Laurence Wolsey. “Cut-
ting planes in integer and mixed integer programming”. In: Discrete Applied Mathemat-
ics 123.1 (Nov. 2002), pp. 397–446. doi: https://doi.org/10.1016/S0166-218X(01)
00348-1.

[73] Martin Lukasiewycz, Michael Glass, Christian Haubelt, and Jürgen Teich. “Efficient
symbolic multi-objective design space exploration”. In: Asia and South Pacific Design
Automation Conference (ASP-DAC). 2008, pp. 691–696. doi: 10.1109/ASPDAC.2008.
4484040.

[74] Gerhard Brewka, James P. Delgrande, Javier Romero, and Torsten Schaub. “asprin: Cus-
tomizing Answer Set Preferences without a Headache”. In: Twenty-Ninth AAAI Con-
ference on Artificial Intelligence. AAAI Press, 2015, pp. 1467–1474. isbn: 0262511290.

[75] Martin Lukasiewycz, Michael Glass, Christian Haubelt, and Jürgen Teich. “SAT-deco-
ding in evolutionary algorithms for discrete constrained optimization problems”. In:
IEEE Congress on Evolutionary Computation. 2007, pp. 935–942. doi: 10.1109/CEC.
2007.4424570.

[76] Mario R. Barbacci, Gary E. Barnes, Roderic Geoffrey Galton. Cattell, and Daniel P.
Siewiorek. The ISPS computer description language : the symbolic manipulation of com-
puter descriptions. Tech. rep. Carnegie Mellon University, June 1978. doi: 10.1184/
R1/6610637.v1.

[77] Hugo J. De Man, Jan M. Rabaey, Jan Vanhoof, Gert Goossens, Paul Six, and Luc J. M.
Claesen. “CATHEDRAL-II – A computer-aided synthesis system for digital signal pro-
cessing VLSI systems”. In: Computer-Aided Engineering Journal 5 (May 1988), pp. 55–
66. doi: 10.1049/cae.1988.0015.

[78] Giovanni De Micheli, David Ku, Frederic Mailhot, and Thomas Truong. “The Olympus
Synthesis System”. In: IEEE Design & Test 7.5 (Sept. 1990), pp. 37–53. doi: 10.1109/
54.60605.

[79] Rajesh K. Gupta and Giovanni De Micheli. “System-level synthesis using re-program-
mable components”. In: European Conference on Design Automation (EDAC). Mar.
1992, pp. 2–7. doi: 10.1109/EDAC.1992.205881.

[80] Jean-Marc Daveau, Tarek Ben Ismail, and Amine Ahmed Jerraya. “Synthesis of system-
level communication by an allocation-based approach”. In: Proceedings of the Eighth
International Symposium on System Synthesis. Sept. 1995, pp. 150–155. doi: 10.1109/
ISSS.1995.520627.

[81] Felice Balarin, Yosinori Watanabe, Harry Hsieh, Luciano Lavagno, Claudio Passerone,
and Alberto Sangiovanni-Vincentelli. “Metropolis: an integrated electronic system de-
sign environment”. In: Computer 36.4 (Apr. 2003), pp. 45–52. doi: 10.1109/MC.2003.
1193228.

[82] Jason Cong, Yiping Fan, Guoling Han, Wei Jiang, and Zhiru Zhang. “Platform-Based
Behavior-Level and System-Level Synthesis”. In: 2006 IEEE International SOC Con-
ference. Jan. 2006, pp. 199–202. doi: 10.1109/SOCC.2006.283880.

XIII

https://doi.org/https://doi.org/10.1016/S0166-218X(01)00348-1
https://doi.org/https://doi.org/10.1016/S0166-218X(01)00348-1
https://doi.org/10.1109/ASPDAC.2008.4484040
https://doi.org/10.1109/ASPDAC.2008.4484040
https://doi.org/10.1109/CEC.2007.4424570
https://doi.org/10.1109/CEC.2007.4424570
https://doi.org/10.1184/R1/6610637.v1
https://doi.org/10.1184/R1/6610637.v1
https://doi.org/10.1049/cae.1988.0015
https://doi.org/10.1109/54.60605
https://doi.org/10.1109/54.60605
https://doi.org/10.1109/EDAC.1992.205881
https://doi.org/10.1109/ISSS.1995.520627
https://doi.org/10.1109/ISSS.1995.520627
https://doi.org/10.1109/MC.2003.1193228
https://doi.org/10.1109/MC.2003.1193228
https://doi.org/10.1109/SOCC.2006.283880

Bibliography

[83] Rainer Dömer, Andreas Gerstlauer, Junyu Peng, Dongwan Shin, Lukai Cai, Haobo Yu,
Samar Abdi, and Daniel D. Gajski. “System-on-Chip Environment: A SpecC-Based
Framework for Heterogeneous MPSoC Design”. In: EURASIP Journal on Embedded
Systems 2008 (Jan. 2008). issn: 1687-3955. doi: 10.1155/2008/647953.

[84] Tero Kangas, Petri Kukkala, Heikki Orsila, Erno Salminen, Marko Hännikäinen, Timo
D. Hämäläinen, Jouni Riihimäki, and Kimmo Kuusilinna. “UML-Based Multiprocessor
SoC Design Framework”. In: ACM Transactions on Embedded Computing Systems 5.2
(May 2006), pp. 281–320. doi: 10.1145/1151074.1151077.

[85] Hristo Nikolov, Mark Thompson, Todor Stefanov, Andy Pimentel, Simon Polstra, R.
Bose, Claudiu Zissulescu, and Ed Deprettere. “Daedalus: toward composable multimedia
MP-SoC design”. In: Design Automation Conference (DAC). Jan. 2008, pp. 574–579.
doi: 10.1145/1391469.1391615.

[86] Joachim Keinert, Martin Streubūhr, Thomas Schlichter, Joachim Falk, Jens Gladigau,
Christian Haubelt, Jūrgen Teich, and Michael Meredith. “SystemCoDesigner – an Au-
tomatic ESL Synthesis Approach by Design Space Exploration and Behavioral Synthe-
sis for Streaming Applications”. In: ACM Transactions on Design Automation of Elec-
tronic Systems 14.1 (Jan. 2009). doi: 10.1145/1455229.1455230.

[87] Soonhoi Ha, Sungchan Kim, Choonseung Lee, Youngmin Yi, Seongnam Kwon, and
Young-Pyo Joo. “PeaCE: A Hardware-Software Codesign Environment for Multimedia
Embedded Systems”. In: ACM Transactions on Design Automation of Electronic Sys-
tems 12.3 (May 2008). doi: 10.1145/1255456.1255461.

[88] Seongnam Kwon, Yongjoo Kim, Woo-Chul Jeun, Soonhoi Ha, and Yunheung Paek. “A
Retargetable Parallel-Programming Framework for MPSoC”. In: ACM Transactions on
Design Automation of Electronic Systems 13.3 (July 2008). doi: 10.1145/1367045.
1367048.

[89] Martin Lukasiewycz, Felix Reimann, Fedor Smirnov, and Falko Hoefte. OpenDSE - Open
Design Space Exploration Framework. url: https://github.com/SDARG/opendse.
June 2014. last accessed 2021-05-05.

[90] Mark Thompson, Hristo Nikolov, Todor Stefanov, Andy D. Pimentel, Cagkan Erbas, Si-
mon Polstra, and Ed F. Deprettere. “A Framework for Rapid System-Level Exploration,
Synthesis, and Programming of Multimedia MP-SoCs”. In: International Conference on
Hardware/Software Codesign and System Synthesis (CODES/ISSS). Salzburg, Austria,
Sept. 2007, pp. 9–14. isbn: 9781595938244. doi: 10.1145/1289816.1289823.

[91] Andy D. Pimentel. “Exploring Exploration: A Tutorial Introduction to Embedded Sys-
tems Design Space Exploration”. In: IEEE Design Test 34.1 (Feb. 2017), pp. 77–90.
doi: 10.1109/MDAT.2016.2626445.

[92] Tobias Schlichter, Martin Lukasiewycz, Christian Haubelt, and Jürgen Teich. “Improv-
ing system level design space exploration by incorporating SAT-solvers into multi-
objective evolutionary algorithms”. In: IEEE Computer Society Annual Symposium on
Emerging VLSI Technologies and Architectures (ISVLSI). 2006. doi: 10.1109/ISVLSI.
2006.57.

XIV

https://doi.org/10.1155/2008/647953
https://doi.org/10.1145/1151074.1151077
https://doi.org/10.1145/1391469.1391615
https://doi.org/10.1145/1455229.1455230
https://doi.org/10.1145/1255456.1255461
https://doi.org/10.1145/1367045.1367048
https://doi.org/10.1145/1367045.1367048
https://github.com/SDARG/opendse
https://doi.org/10.1145/1289816.1289823
https://doi.org/10.1109/MDAT.2016.2626445
https://doi.org/10.1109/ISVLSI.2006.57
https://doi.org/10.1109/ISVLSI.2006.57

All References

[93] Mark Thompson and Andy D. Pimentel. “Exploiting Domain Knowledge in System-
level MPSoC Design Space Exploration”. In: Journal of Systems Architecture 59.7 (Aug.
2013), pp. 351–360. issn: 1383-7621. doi: 10.1016/j.sysarc.2013.05.023.

[94] Fabrizio Ferrandi, Pier Luca Lanzi, Christian Pilato, Donatella Sciuto, and Antonino
Tumeo. “Ant Colony Heuristic for Mapping and Scheduling Tasks and Communications
on Heterogeneous Embedded Systems”. In: IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems 29.6 (2010), pp. 911–924. doi: 10.1109/TCAD.
2010.2048354.

[95] Hung-Yi Liu, Ilias Diakonikolas, Michele Petracca, and Luca Carloni. “Supervised de-
sign space exploration by compositional approximation of Pareto sets”. In: Design Au-
tomation Conference (DAC). June 2011, pp. 399–404. doi: 10.1145/2024724.2024818.

[96] Nima Khalilzad, Kathrin Rosvall, and Ingo Sander. “A modular design space exploration
framework for multiprocessor real-time systems”. In: Forum on Specification and Design
Languages (FDL). Sept. 2016, pp. 1–7. doi: 10.1109/FDL.2016.7880377.

[97] Martin Lukasiewycz, Martin Streubühr, Michael Glaß, Christian Haubelt, and Jürgen
Teich. “Combined system synthesis and communication architecture exploration for MP-
SoCs”. In: Design, Automation and Test in Europe Conference (DATE). 2009, pp. 472–
477. doi: 10.1109/DATE.2009.5090711.

[98] Martin Lukasiewycz, Reinhard Schneider, Dip Goswami, and Samarjit Chakraborty.
“Modular scheduling of distributed heterogeneous time-triggered automotive systems”.
In: Asia and South Pacific Design Automation Conference (ASP-DAC). 2012, pp. 665–
670. doi: 10.1109/ASPDAC.2012.6165039.

[99] Nadathur Satish, Kaushik Ravindran, and Kurt Keutzer. “A Decomposition-based Con-
straint Optimization Approach for Statically Scheduling Task Graphs with Communi-
cation Delays to Multiprocessors”. In: Design, Automation and Test in Europe Confer-
ence (DATE). 2007, pp. 1–6. doi: 10.1109/DATE.2007.364567.

[100] Felix Reimann, Michael Glaß, Christian Haubelt, Michael Eberl, and Jürgen Teich.
“Improving platform-based system synthesis by satisfiability modulo theories solving”.
In: International Conference on Hardware/Software Codesign and System Synthesis
(CODES/ISSS). 2010, pp. 135–144. doi: 10.1145/1878961.1878986.

[101] Benjamin Andres, Alexander Biewer, Javier Romero, Christian Haubelt, and Torsten
Schaub. “Improving Coordinated SMT-Based System Synthesis by Utilizing Domain-
Specific Heuristics”. In: International Conference on Logic Programming and Nonmono-
tonic Reasoning (LPNMR). 2015, pp. 55–68. doi: 10.1007/978-3-319-23264-5_6.

[102] Alexander Biewer, Benjamin Andres, Jens Gladigau, Torsten Schaub, and Christian
Haubelt. “A symbolic system synthesis approach for hard real-time systems based on
coordinated SMT-solving”. In: Design, Automation and Test in Europe Conference
(DATE). 2015, pp. 357–362. doi: 10.7873/DATE.2015.0606.

[103] Felix Reimann, Martin Lukasiewycz, Michael Glass, Christian Haubelt, and Jürgen Te-
ich. “Symbolic system synthesis in the presence of stringent real-time constraints”. In:
Design Automation Conference (DAC). 2011, pp. 393–398. doi: 10.1145/2024724.
2024817.

XV

https://doi.org/10.1016/j.sysarc.2013.05.023
https://doi.org/10.1109/TCAD.2010.2048354
https://doi.org/10.1109/TCAD.2010.2048354
https://doi.org/10.1145/2024724.2024818
https://doi.org/10.1109/FDL.2016.7880377
https://doi.org/10.1109/DATE.2009.5090711
https://doi.org/10.1109/ASPDAC.2012.6165039
https://doi.org/10.1109/DATE.2007.364567
https://doi.org/10.1145/1878961.1878986
https://doi.org/10.1007/978-3-319-23264-5_6
https://doi.org/10.7873/DATE.2015.0606
https://doi.org/10.1145/2024724.2024817
https://doi.org/10.1145/2024724.2024817

Bibliography

[104] Roberto Sebastiani. “Lazy Satisfiability Modulo Theories”. In: Journal on Satisfiability
Boolean Modeling and Computation 3 (2007), pp. 141–224. doi: 10.3233/SAT190034.

[105] Walter Habenicht. “Quad Trees, a Datastructure for Discrete Vector Optimization Prob-
lems”. In: Essays and Surveys on Multiple Criteria Decision Making: Proceedings of
the Fifth International Conference on Multiple Criteria Decision Making. Ed. by Pierre
Hansen. Springer Berlin Heidelberg, Aug. 1983, pp. 136–145. doi: 10.1007/978-3-
642-46473-7_12.

[106] Sanaz Mostaghim and Jürgen Teich. “Quad-trees: A Data Structure for Storing Pareto
Sets in Multiobjective Evolutionary Algorithms with Elitism”. In: Evolutionary Multi-
objective Optimization: Theoretical Advances and Applications. Ed. by Ajith Abraham,
Lakhmi Jain, and Robert Goldberg. Springer London, 2005. Chap. Evolutionary Mul-
tiobjective Optimization, pp. 81–104. doi: 10.1007/1-84628-137-7_5.

[107] M. Drozdík, Y. Akimoto, H. Aguirre, and K. Tanaka. “Computational Cost Reduction
of Nondominated Sorting Using the M-Front”. In: IEEE Transactions on Evolutionary
Computation 19.5 (Oct. 2015), pp. 659–678. doi: 10.1109/TEVC.2014.2366498.

[108] Andrzej Jaszkiewicz and Thibaut Lust. “ND-Tree: a Fast Online Algorithm for Updating
a Pareto Archive and its Application in Many-objective Pareto Local Search”. In: arXiv
preprint arXiv:1603.04798 (2016).

[109] Carlos A. Coello Coello, Clarisse Dhaenens, and Laetitia Jourdan. “Multi-objective com-
binatorial optimization: Problematic and context”. In: Advances in multi-objective na-
ture inspired computing. Springer, 2010, pp. 1–21. doi: 10.1007/978-3-642-11218-
8_1.

[110] Radu Marinescu. “Exploiting Problem Decomposition in Multi-objective Constraint Op-
timization”. In: Principles and Practice of Constraint Programming. Springer Berlin
Heidelberg, 2009, pp. 592–607. doi: 10.1007/978-3-642-04244-7_47.

[111] Gianluca Palermo, Cristina Silvano, and Vittorio Zaccaria. “ReSPIR: A Response Sur-
face Based Pareto Iterative Refinement for Application Specific Design Space Explo-
ration”. In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 28.12 (2009), pp. 1816–1829. doi: 10.1109/TCAD.2009.2028681.

[112] Cristina Silvano, William Fornaciari, Gianluca Palermo, Vittorio Zaccaria, Fabrizio Cas-
tro, Marcos Martinez, Sara Bocchio, Roberto Zafalon, Prabhat Avasare, Geert Van-
meerbeeck, Chantal Ykman-Couvreur, Maryse Wouters, Carlos Kavka, Luka Onesti,
Alessandro Turco, Umberto Bondi, Giovanni Mariani, Hector Posadas, Eugenio Villar,
Chris Wu, Fan Dongrui, Zhang Hao, and Tang Shibin. “MULTICUBE: Multi-objective
Design Space Exploration of Multi-core Architectures”. In: IEEE Computer Society An-
nual Symposium on VLSI. 2010, pp. 488–493. doi: 10.1109/ISVLSI.2010.67.

[113] Sebastian Rojas-Gonzalez, Hamed Jalali, and Inneke Van Nieuwenhuyse. “A stochastic-
kriging-based multiobjective simulation optimization algorithm”. In: Winter Simulation
Conference (WCS). Dec. 2018, pp. 2155–2166. doi: 10.1109/WSC.2018.8632322.

[114] Jianxia Zhang, Yizhong Ma, TahoYang, and Lijun Liu. “Estimation of the Pareto front
in stochastic simulation through stochastic Kriging”. In: Simulation Modelling Practice
and Theory 79 (2017), pp. 69–86. doi: 10.1016/j.simpat.2017.09.006.

XVI

https://doi.org/10.3233/SAT190034
https://doi.org/10.1007/978-3-642-46473-7_12
https://doi.org/10.1007/978-3-642-46473-7_12
https://doi.org/10.1007/1-84628-137-7_5
https://doi.org/10.1109/TEVC.2014.2366498
https://doi.org/10.1007/978-3-642-11218-8_1
https://doi.org/10.1007/978-3-642-11218-8_1
https://doi.org/10.1007/978-3-642-04244-7_47
https://doi.org/10.1109/TCAD.2009.2028681
https://doi.org/10.1109/ISVLSI.2010.67
https://doi.org/10.1109/WSC.2018.8632322
https://doi.org/10.1016/j.simpat.2017.09.006

All References

[115] Gereon Onnebrink, Ahmed Hallawa, Rainer Leupers, Gerd Ascheid, and Awaid-Ud-Din
Shaheen. “A Heuristic for Multi Objective Software Application Mappings on Hetero-
geneous MPSoCs”. In: Asia and South Pacific Design Automation Conference (ASP-
DAC). Tokyo, Japan: ACM, 2019, pp. 609–614. doi: 10.1145/3287624.3287651.

[116] Anirban Sengupta, Reza Sedaghat, and Zhipeng Zeng. “Rapid design space exploration
by hybrid fuzzy search approach for optimal architecture determination of multi objec-
tive computing systems”. In: Microelectronics Reliability 51.2 (2011), pp. 502–512. doi:
10.1016/j.microrel.2010.08.003.

[117] Tobias Schwarzer, Joachim Falk, Simone Müller, Martin Letras, Christian Heidorn, Ste-
fan Wildermann, and Jürgen Teich. “Compilation of Dataflow Applications for Multi-
Cores Using Adaptive Multi-Objective Optimization”. In: ACM Transactions on Design
Automation of Electronic Systems 24.3 (Mar. 2019), 29:1–29:23. doi: 10.1145/3310249.

[118] Miguel Angel Aguilar, Abhishek Aggarwal, Awaid Shaheen, Rainer Leupers, Gerd As-
cheid, Jeronimo Castrillon, and Liam Fitzpatrick. “Work-in-progress: multi-grained per-
formance estimation for MPSoC compilers”. In: International Conference on Compilers,
Architectures and Synthesis For Embedded Systems. Oct. 2017. doi: 10.1145/3125501.
3125521.

[119] Stefan Schürmans, Gereon Onnebrink, Rainer Leupers, Gerd Ascheid, and Xiaotao
Chen. “Frequency-Aware ESL Power Estimation for ARM Cortex-A9 Using a Black Box
Processor Model”. In: ACM Transactions on Embedded Computing Systems 16.1 (Oct.
2016), 26:1–26:26. issn: 1539-9087. doi: 10.1145/2987375.

[120] Sumit Mohanty, V. K. Prasanna, Sandeep Neema, and James Davis. “Rapid Design
Space Exploration of Heterogeneous Embedded Systems Using Symbolic Search and
Multi-granular Simulation”. In: Joint Conference on Languages, Compilers, and Tools
for Embedded Systems & Software and Compilers for Embedded Systems. Berlin, Ger-
many, 2002, pp. 18–27. doi: 10.1145/513829.513835.

[121] Zai Jian Jia, Antonio Núñez, Tomás Bautista, and Andy D. Pimentel. “A two-phase
design space exploration strategy for system-level real-time application mapping onto
MPSoC”. In: Microprocessors and Microsystems 38.1 (2014), pp. 9–21. doi: 10.1016/
j.micpro.2013.10.005.

[122] Giuseppe Ascia, Vincenzo Catania, Alessandro G. Di Nuovo, Maurizio Palesi, and Da-
vide Patti. “Efficient design space exploration for application specific systems-on-a-
chip”. In: Journal of Systems Architecture 53.10 (2007), pp. 733–750. doi: 10.1016/j.
sysarc.2007.01.004.

[123] Roberta Piscitelli and Andy D. Pimentel. “Design space pruning through hybrid analysis
in system-level design space exploration”. In: Design, Automation and Test in Europe
Conference (DATE). 2012, pp. 781–786. doi: 10.1109/DATE.2012.6176600.

[124] Fernando Herrera and Ingo Sander. “Combining analytical and simulation-based design
space exploration for time-critical systems”. In: Forum on Specification and Design Lan-
guages (FDL). 2013. doi: 10.1007/978-3-319-06317-1_9.

XVII

https://doi.org/10.1145/3287624.3287651
https://doi.org/10.1016/j.microrel.2010.08.003
https://doi.org/10.1145/3310249
https://doi.org/10.1145/3125501.3125521
https://doi.org/10.1145/3125501.3125521
https://doi.org/10.1145/2987375
https://doi.org/10.1145/513829.513835
https://doi.org/10.1016/j.micpro.2013.10.005
https://doi.org/10.1016/j.micpro.2013.10.005
https://doi.org/10.1016/j.sysarc.2007.01.004
https://doi.org/10.1016/j.sysarc.2007.01.004
https://doi.org/10.1109/DATE.2012.6176600
https://doi.org/10.1007/978-3-319-06317-1_9

Bibliography

[125] Amit Kumar Singh, Anup Das, and Akash Kumar. “RAPIDITAS: RAPId Design-Space-
Exploration Incorporating Trace-Based Analysis and Simulation”. In: Euromicro Con-
ference on Digital System Design. IEEE Computer Society, 2013, pp. 836–843. doi: 10.
1109/DSD.2013.93.

[126] Amit Kumar Singh, Muhammad Shafique, Akash Kumar, and Jörg Henkel. “Resource
and Throughput Aware Execution Trace Analysis for Efficient Run-Time Mapping on
MPSoCs”. In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 35.1 (2016), pp. 72–85. doi: 10.1109/TCAD.2015.2446938.

[127] Robert P. Dick, David L. Rhodes, and Wayne Wolf. “TGFF: task graphs for free”. In:
International Workshop on Hardware/Software Codesign. Mar. 1998, pp. 97–101. doi:
10.1109/HSC.1998.666245.

[128] Sander Stuijk, Marc C. W. Geilen, and Twan Basten. “SDF3: SDF For Free”. In: Pro-
ceeding of 6th International Conference Application of Concurrency to System Design.
Turku, Finland: IEEE Computer Society Press, June 2006, pp. 276–278. doi: 10.1109/
ACSD.2006.23.

[129] Benjamin Andres, Martin Gebser, Torsten Schaub, Christian Haubelt, Felix Reimann,
and Michael Glaß. “Symbolic System Synthesis Using Answer Set Programming”. In:
International Conference on Logic Programming and Nonmonotonic Reasoning (LP-
NMR). Ed. by Pedro Cabalar and Tran Cao Son. Springer Berlin Heidelberg, 2013,
pp. 79–91. doi: 10.1007/978-3-642-40564-8_9.

[130] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Intro-
duction to algorithms. 3rd Edition. MIT press, July 2009. isbn: 978-0262033848.

[131] Richard Bellman. “On A Routing Problem”. In: Quarterly of Applied Mathematics 16.1
(1958), pp. 87–90. doi: 10.1090/qam/102435.

[132] Lester R. Ford. Network Flow Theory. Tech. rep. RAND Corporation, 1956.
[133] Jori Bomanson, Martin Gebser, Tomi Janhunen, Benjamin Kaufmann, and Torsten

Schaub. “Answer set programming modulo acyclicity”. In: Fundamenta Informaticae
147.1 (2016), pp. 63–91. doi: 10.3233/FI-2016-1398.

[134] Daniele Frigioni, Alberto Marchetti-Spaccamela, and Umberto Nanni. “Fully dynamic
shortest paths in digraphs with arbitrary arc weights”. In: Journal of Algorithms 49.1
(Oct. 2003), pp. 86–113. doi: 10.1016/S0196-6774(03)00082-8.

[135] Scott Cotton and Oded Maler. “Fast and Flexible Difference Constraint Propagation
for DPLL(T)”. In: International Conference on Theory and Applications of Satisfiability
Testing. Vol. 4121. Aug. 2006, pp. 170–183. doi: 10.1007/11814948_19.

[136] Martin Gebser, Benjamin Kaufmann, Ramon Otero, Javier Romero, Torsten Schaub,
and Philipp Wanko. “Domain-specific heuristics in answer set programming”. In: Con-
ference on Artificial Intelligence (Jan. 2013), pp. 350–356.

[137] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Javier Romero, and Torsten
Schaub. “Progress in clasp Series 3”. In: International Conference on Logic Programming
and Nonmonotonic Reasoning (LPNMR). 2015, pp. 368–383. doi: 10.1007/978-3-
319-23264-5_31.

XVIII

https://doi.org/10.1109/DSD.2013.93
https://doi.org/10.1109/DSD.2013.93
https://doi.org/10.1109/TCAD.2015.2446938
https://doi.org/10.1109/HSC.1998.666245
https://doi.org/10.1109/ACSD.2006.23
https://doi.org/10.1109/ACSD.2006.23
https://doi.org/10.1007/978-3-642-40564-8_9
https://doi.org/10.1090/qam/102435
https://doi.org/10.3233/FI-2016-1398
https://doi.org/10.1016/S0196-6774(03)00082-8
https://doi.org/10.1007/11814948_19
https://doi.org/10.1007/978-3-319-23264-5_31
https://doi.org/10.1007/978-3-319-23264-5_31

All References

[138] Gene Myron Amdahl. “Validity of the Single Processor Approach to Achieving Large
Scale Computing Capabilities”. In: American Federation of Information Processing So-
cieties (AFIPS) Spring Joint Computer Conference. Apr. 1967, pp. 483–485. doi: 10.
1145/1465482.1465560.

[139] Gustavo Patino Alvarez and Wang Jiang Chau. “Scenario-Aware Workload Characteri-
zation Based on a Max-Plus Linear Representation”. In: Formal Modeling and Analysis
of Timed Systems. Ed. by Martin Fränzle and Nicolas Markey. Cham: Springer Inter-
national Publishing, Aug. 2016, pp. 177–194. doi: 10.1007/978-3-319-44878-7_11.

XIX

https://doi.org/10.1145/1465482.1465560
https://doi.org/10.1145/1465482.1465560
https://doi.org/10.1007/978-3-319-44878-7_11

XX

Acronyms

ACO . Ant Colony Optimization

ADC . Analog to Digital Converter

AES . Advanced Encryption Standard

ALR . Arbitrary Length Routing

ALU . Arithmetic Logical Unit

ASIC . Application-specific Integrated Circuit

ASP . Answer Set Programming

ASPmT . ASP modulo Theories

CAD . Computer Aided Design

CDCL . Conflic-driven Clause Learning

CNF . Conjunctive Normal Form

CPI . Cycles per Instruction

CPU . Central Processing Unit

DCI . Diversity Comparison Indicator

DM . Decision Maker

DOR . Dimension Order Routing

DPLL . Davis-Putnam-Logemann-Loveland Algorithm

DSE . Design Space Exploration

DSP . Digital Signal Processor

EDA . Electronic Design Automation

ERR . Task Execution Time to Routing Delay Ratio

ESL . Electronic System Level

EUF . Equality of Uninterpreted Functions

FR . Filter Ratio

FSM . Finite State Machine

GD . Generational Distance

XXI

HDL . Hardware Description Language

HLS . High Level Synthesis

IDL . Integer Difference Logic

IIR . Infinite Impulse Response

ILP . Integer Linear Programming

IP . Intellectual Property

IQR . Inter Quantile Range

LP . Linear Programming

MOCOP . Multi-objective Combinational Problem

MOEA . Multi-objective Evolutionary Algorithm

MOOP . Multi-objective Optimization Problem

NoC . Network on Chip

NP . Non-deterministic Polynomial Time

NSGA . Non-dominated Sorting Genetic Algorithm

PSO . Particle Swarm Optimization

QF–IDL . Quantifier-free Integer Difference Logic

RAM . Random Access Memory

RTL . Register Transfer Level

SAT . Boolean Satisfiability Problem

SDFG . Synchronous Dataflow Graph

SLDL . System-level Design Language

SMT . Satisfiability modulo Theories

SoC . System-on-chip

SOOP . Single-objective Optimization Problem

SPEA . Strength Pareto Evolutionary Algorithm

SPG . Series Parallel Graph

SPR . Shortest Path Routing

TLM . Transaction-level Modeling

VHDL Very High Speed Integrated Circuit Hardware Description Language

VLSI . Very-large-scale Integration

VSIDS . Variable State Independent Decaying Sum

WCET . Worst Case Execution Time

XXII

Declaration of Authorship
I hereby certify that the thesis I am submitting is entirely my own original work except where
otherwise indicated. I am aware of the University’s regulations concerning plagiarism, including
those regulations concerning disciplinary actions that may result from plagiarism. Any use of
the works of any other author, in any form, is properly acknowledged at their point of use.
The present work has not been submitted to any other examination committee in the same or
similar form, neither abroad nor in Germany.

Rostock, 17.08.2021

M.Sc. Kai Neubauer

	List of Figures
	List of Tables
	Author's Publications
	Authored
	Co-Authored

	Introduction
	Contributions and Limitations
	Thesis Overview
	Funding and Cooperation

	Model-based Design
	Hardware/Software Co-design
	Design Process
	Modeling Approaches
	Synthesis

	Constraint Modeling and Checking
	Boolean Satisfiability
	Answer Set Programming
	Background Theory Solving

	Multi-objective Optimization
	Quality Indicators
	Optimization Approaches

	Related Work
	System Synthesis
	Archive Management
	Approximation
	Test Case Generation

	System Synthesis with Partial Assignment Evaluation
	System Model
	Synthesis Encoding
	Encoding Allocation, Binding and Routing
	Encoding Scheduling Constraints with Integer Difference Logic

	Theory Propagation
	Framework Overview
	Stateful Propagation

	Evaluation
	Test case generation
	Experiments

	Chapter Summary

	Symbolic Design Space Exploration
	Search Space Pruning Through Pareto Filtering
	Exploration Model
	Optimization Framework
	Evaluation
	Section Summary

	Archive Management
	Quad–Tree data structure
	Experimental Evaluation
	Section Summary

	Evaluation through Safe Approximations
	Safe Approximations
	Approximating Symbolic DSE
	Experiments
	Section Summary

	Chapter Summary

	Conclusion
	Limitations
	Future Work

	Appendix
	Synthesis – Experimental Results
	Design Space Exploration – Experimental Results
	Approximation – Experimental Results

	Bibliography

