29 research outputs found

    Indoor Positioning and Navigation

    Get PDF
    In recent years, rapid development in robotics, mobile, and communication technologies has encouraged many studies in the field of localization and navigation in indoor environments. An accurate localization system that can operate in an indoor environment has considerable practical value, because it can be built into autonomous mobile systems or a personal navigation system on a smartphone for guiding people through airports, shopping malls, museums and other public institutions, etc. Such a system would be particularly useful for blind people. Modern smartphones are equipped with numerous sensors (such as inertial sensors, cameras, and barometers) and communication modules (such as WiFi, Bluetooth, NFC, LTE/5G, and UWB capabilities), which enable the implementation of various localization algorithms, namely, visual localization, inertial navigation system, and radio localization. For the mapping of indoor environments and localization of autonomous mobile sysems, LIDAR sensors are also frequently used in addition to smartphone sensors. Visual localization and inertial navigation systems are sensitive to external disturbances; therefore, sensor fusion approaches can be used for the implementation of robust localization algorithms. These have to be optimized in order to be computationally efficient, which is essential for real-time processing and low energy consumption on a smartphone or robot

    Continuous monitoring of health and mobility indicators in patients with cardiovascular disease: a review of recent technologies

    Get PDF
    Cardiovascular diseases kill 18 million people each year. Currently, a patient’s health is assessed only during clinical visits, which are often infrequent and provide little information on the person’s health during daily life. Advances in mobile health technologies have allowed for the continuous monitoring of indicators of health and mobility during daily life by wearable and other devices. The ability to obtain such longitudinal, clinically relevant measurements could enhance the prevention, detection and treatment of cardiovascular diseases. This review discusses the advantages and disadvantages of various methods for monitoring patients with cardiovascular disease during daily life using wearable devices. We specifically discuss three distinct monitoring domains: physical activity monitoring, indoor home monitoring and physiological parameter monitoring

    Localization as a Key Enabler of 6G Wireless Systems: A Comprehensive Survey and an Outlook

    Get PDF
    peer reviewedWhen fully implemented, sixth generation (6G) wireless systems will constitute intelligent wireless networks that enable not only ubiquitous communication but also high-Accuracy localization services. They will be the driving force behind this transformation by introducing a new set of characteristics and service capabilities in which location will coexist with communication while sharing available resources. To that purpose, this survey investigates the envisioned applications and use cases of localization in future 6G wireless systems, while analyzing the impact of the major technology enablers. Afterwards, system models for millimeter wave, terahertz and visible light positioning that take into account both line-of-sight (LOS) and non-LOS channels are presented, while localization key performance indicators are revisited alongside mathematical definitions. Moreover, a detailed review of the state of the art conventional and learning-based localization techniques is conducted. Furthermore, the localization problem is formulated, the wireless system design is considered and the optimization of both is investigated. Finally, insights that arise from the presented analysis are summarized and used to highlight the most important future directions for localization in 6G wireless systems

    Next-generation IoT: harnessing AI for enhanced localization and energy harvesting in backscatter communications

    Get PDF
    Ongoing backscatter communications and localisation research have been able to obtain incredibly accurate results in controlled environments. The main issue with these systems is faced in complex RF environments. This paper investigates concurrent localization and ambient radio frequency (RF) energy harvesting using backscatter communication systems for Internet of Things networks. Dynamic real-world environments introduce complexity from multipath reflection and shadowing, as well as interference from movements. A machine learning framework leveraging K-Nearest Neighbors and Random Forest classifiers creates robustness against such variability. Historically, received signal measurements construct a location fingerprint database resilient to perturbations. The Random Forest model demonstrates precise localization across customized benches with programmable shuffling of chairs outfitted with RF identification tags. Average precision accuracy exceeds 99% despite deliberate placement modifications, inducing signal fluctuations emulating mobility and clutter. Significantly, directional antennas can harvest over −3 dBm, while even omnidirectional antennas provide −10 dBm—both suitable for perpetually replenishing low-energy electronics. Consequently, the intelligent backscatter platform localizes unmodified objects to customizable precision while promoting self-sustainability

    MEMS Accelerometers

    Get PDF
    Micro-electro-mechanical system (MEMS) devices are widely used for inertia, pressure, and ultrasound sensing applications. Research on integrated MEMS technology has undergone extensive development driven by the requirements of a compact footprint, low cost, and increased functionality. Accelerometers are among the most widely used sensors implemented in MEMS technology. MEMS accelerometers are showing a growing presence in almost all industries ranging from automotive to medical. A traditional MEMS accelerometer employs a proof mass suspended to springs, which displaces in response to an external acceleration. A single proof mass can be used for one- or multi-axis sensing. A variety of transduction mechanisms have been used to detect the displacement. They include capacitive, piezoelectric, thermal, tunneling, and optical mechanisms. Capacitive accelerometers are widely used due to their DC measurement interface, thermal stability, reliability, and low cost. However, they are sensitive to electromagnetic field interferences and have poor performance for high-end applications (e.g., precise attitude control for the satellite). Over the past three decades, steady progress has been made in the area of optical accelerometers for high-performance and high-sensitivity applications but several challenges are still to be tackled by researchers and engineers to fully realize opto-mechanical accelerometers, such as chip-scale integration, scaling, low bandwidth, etc

    Home healthcare using ubiquitous computing and robot technologies

    Get PDF
    The rapid increase of senior population worldwide is challenging the existing healthcare and support systems. Recently, smart home environments are utilized for ubiquitous health monitoring, allowing patients to stay in the comfort of their homes. In this dissertation, a Cloud-based Smart Home Environment (CoSHE) for home healthcare is presented, which consists of ambient intelligence, wearable computing, and robot technologies. The system includes a smart home which is embedded with distributed environmental sensors to support human localization. Wearable units are developed to collect physiological, motion and audio signals through non-invasive wearable sensors and provide contextual information in terms of the resident's daily activity and location in the home. This enables healthcare professionals to study daily activities, behavioral changes and monitor rehabilitation and recovery processes. The sensor data are processed in a smart home gateway and sent to a private cloud, which provides real-time data access for remote caregivers. Our case studies show that contextual information provided by ubiquitous computing can help better understand the patient's health status. With a robot assistant in the loop, we demonstrated that the CoSHE can facilitate healthcare delivery via interaction between human and robot
    corecore