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The rapid increase of senior population worldwide is challenging the existing health-
care and support systems. Recently, smart home environments are utilized for ubiq-
uitous health monitoring, allowing patients to stay in the comfort of their homes.
In this dissertation, a Cloud-based Smart Home Environment (CoSHE) for home
healthcare is presented, which consists of ambient intelligence, wearable computing,
and robot technologies. The system includes a smart home which is embedded with
distributed environmental sensors to support human localization. Wearable units
are developed to collect physiological, motion and audio signals through non-invasive
wearable sensors and provide contextual information in terms of the resident’s daily
activity and location in the home. This enables healthcare professionals to study daily
activities, behavioral changes and monitor rehabilitation and recovery processes. The
sensor data are processed in a smart home gateway and sent to a private cloud, which
provides real-time data access for remote caregivers. Our case studies show that con-
textual information provided by ubiquitous computing can help better understand
the patient’s health status. With a robot assistant in the loop, we demonstrated
that the CoSHE can facilitate healthcare delivery via interaction between human and
robot.
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CHAPTER I

INTRODUCTION

In this chapter, we first present the motivation of this work. Then, the challenges,

objectives, and contributions are described. The organization of this dissertation is

outlined at the end of this chapter.

I.1 Motivation

Based on the statistics from the National Institute on Aging [1], the world population

is aging rapidly. There are around 125 million people aged 80 and older in 2015 all

over the world. This number is expected to triple by 2050. And according to the U.S.

Bureau of the Census [2], by 2020 there will be more than 20 million people whose

age is over 75 as shown in Fig. I.1. However, human functionalities are more likely

to deteriorate at an older age, which can lead to diseases such as heart problems,

stroke, respiratory disorder, dementia, etc. With the demographic shift, there is a

need to keep older adults healthy, functionally able and independent. Elderly people

are an important asset to society. The life experience and wisdom they have gained

over the years make them a vital social resource. Providing older people with age-

friendly physical and social environments helps them live an independent life and also

improves the active participation, thus maximizes their contribution to the society

[3].

Elders have the option of going to adult day care, long-term care, nursing homes,

hospice care, and home care. Even though all these options support the health,

nutritional, social support, and daily living needs of older adults, the feeling of in-
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Figure I.1: U.S. Population 60+ by Age: 1960-2050.

dependence is lost. Elders would prefer to stay in the comfort of their home where

they feel more confident than moving to expensive adult care or healthcare facilities

as revealed in the surveys conducted in the United States [4] and Europe [5]. Hence if

older adults are able to complete self-care activities on their own, maintaining inde-

pendence can provide them with a sense of accomplishment and ability to maintain

independence longer [6]. The best way to support them is to provide a physical en-

vironment that promotes the development and use of innovative technologies that

encourage active aging [3]. As a result, building a Smart Home Environment has

recently become a main research focus. Home automation that provides security, en-

tertainment, and energy conservation and tailored to the elderly would be the perfect

use of technology to achieve this. A smart home for elderly has to satisfy not only

those demands but also the need for health monitoring.

According to [7], there were more than 360,200 cases of out-of-hospital cardiac

arrest in the US. Seventy percent of the cases occurred in homes or residence, but only

about 46% of people get the immediate help before professional help arrives. There is

obviously a need for health monitoring that can continuously measure physiological

signals, especially heart signal, of human and give timely alert.

In order to continuously collect vital signals such as electrocardiogram (ECG),
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blood oxygen level (SpO2), or breath signal, while the older adults stay at home, a

solution of using smart garments has been proposed by researchers in both academia

and industry. A smart garment should deliver the functionality while ensuring com-

fortability. Its functionality can be achieved by using medical sensors and a small

computing platform, which are integrated in the garment, to collect, process, store

and transmit the data. To ensure comfortability, the garment should be designed in

such a way that it operates seamlessly, dons and doffs easily, and is washable. Among

the signals collected, ECG is a crucial one that represents the electrical activity of

the heart. It is possible to utilize ECG for diagnosis in terms of physical health

problems such as cardiovascular diseases, disorders of heart rhythm, sudden cardiac

arrest, etc. [8, 9], and even mental health problems such as anxiety disorders, mood

disorders, depression, etc. [10, 11]. The ECG signal is sensitive to motion-induced

noises, therefore, if unreliable signals are used for processing, there is a high possi-

bility of getting false alarms. If human body activity can be recognized and human

location can be estimated, useful context information will be provided and may be

used as prior knowledge for health diagnosis. For example, it is normal that the heart

rate increases when the human is running. But it may be abnormal if the heart rate

suddenly increases while taking a rest, and in this case, medical intervention should

be considered.

Therefore, to enable context-aware health monitoring, it is essential that the lo-

cation of the older adult can be tracked. By knowing the human position along with

daily activity, we can achieve a better understanding of the older adult regarding

where he/she is and what he/she is doing. Based on that, more accurate health

monitoring can be achieved. The combination of a smart home and a smart garment

can help achieve this goal. In the case of anomalies, medical interventions should be

provided by a caregiver or a doctor. For those older adults who live alone at home, a

robot assistant, which is aware of the human health status and able to interact with
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the human, can be used to provide timely intervention.

I.2 Challenges

In this section, we discuss some research challenges in building a home healthcare

system that is able to monitor the human context information and health status

while providing interventions.

I.2.1 Hardware setup

The smart home environment should consist of low cost and unobtrusive sensors,

with a capability of human localization without violating the resident’s privacy. The

localization system needs to be easy to use and maintain.

The wearable unit, including non-invasive physiological sensors and a computing

engine, should be well designed to be embedded in a garment. The garment should

be able to provide reliable vital signs while making the wearer feel comfortable. Since

the battery life is a critical issue for embedded systems, power awareness should be

taken into consideration in hardware design.

I.2.2 Physiological data collection

It may be difficult to recruit older adults to participate our experiments, in which they

have to wear a smart garment and perform daily activities in our smart home environ-

ment. The hesitation to wear a garment with embedded electrical wires and circuits

and the health condition of the older adults are the main obstruction. Moreover, use-

ful datasets of older adults regarding their health concerns need to be continuously

collected using environmental and/or wearable sensors, from which the data can be

used to perform early diagnosis of medical problems. In order to build such datasets,

it requires a large population of older adults from whom the physiological data can

be collected.
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I.2.3 Robot development

A robot assistant should be developed and equipped with the capabilities of talking

with the human, approaching to the human, and understanding the human context

information and health status to have proper responses. This requires the robot

appearance and human-robot interaction to be carefully designed. Also, it needs a

system to support efficient information transmission, which can enable the integration

of the robot into the smart home environment.

I.3 Objectives

In this dissertation, we focus on developing a Cloud-Based Smart Home Environment

(CoSHE) which can provide both physiological and contextual information of the

resident, while a robot assistant can provide healthcare services. The objectives of

this proposal consist of:

• Developing a smart garment that is comfortable to wear for continuous collection

of physiological signals.

• Developing a cloud-based system to store and process data collected from both

home sensors and wearable sensors.

• Developing algorithms to provide context information such as body activity and

indoor human location.

• Developing algorithms to monitor human hydration status and recognize nega-

tive emotion.

• Developing an interactive conversation mechanism of the robot to assist human

when health issues are detected.

5



I.4 Contributions

The contributions of our work are depicted in Fig. I.2 and summarized as follows:

Figure I.2: System overview.

1. We have developed several wearable health-kits consisting of a sensor platform

and microprocessors such as Arduino [12] and Intel Edison [13]. The sensors

can collect physiological signals including electrocardiography (ECG), oxygen

saturation (SPo2), and respiration. The kit is embedded in our own garment

designs in which textile electrodes and conductive fabric and threads are used.

The garment prototypes are washable and comfortable to wear for long-term

data collection.

2. We have developed a cloud-based smart home environment consisting of three

major components: (1) a smart home with passive infrared (PIR) sensors, (2)

a wearable unit that consists of the smart garment and other sensors such as

an Inertial Measurement Unit (IMU), a smartwatch and a microphone, and (3)

a private cloud infrastructure. With the private cloud, information is stored

and shared among different components, which makes it a complete ecosystem
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supporting healthcare applications. Remote caregivers and the robot can access

the human physiological data along with the contextual information.

3. We have developed algorithms to extract context information such as human

body activity and human location from home and wearable sensors data. Data

from the IMU is used to detect body activity and estimate the velocity and

heading angle. The array of PIR sensors on the home ceiling is used to roughly

estimate the human location. Along with a behavior-based map, human motion

data and home sensor data are then fused in a particle filter to derive the human

location.

4. We have built a health monitoring system based on the CoSHE environment,

which is able to recognize negative emotion using the fusion of ECG signal and

facial expression, and monitor hydration based on drinking sound recognition

and activity level estimation.

5. We have built a healthcare delivery system using a robot assistant that pro-

actively engages the human in conversation when the health monitoring system

raises a red flag. Through interactive conversations, the robot can remind the

human to drink water and help improve the human emotion when the human

is in negative emotion.

I.5 Outlines

The organization of this dissertation is as follows:

• Chapter 1 presents the motivation and contribution of this research.

• Chapter 2 describes the design of the smart garment.

• Chapter 3 introduces the CoSHE system and its components.

7



• Chapter 4 presents the context information that CoSHE provides and the meth-

ods of recognizing human body activity and tracking human location in an

indoor environment.

• Chapter 5 introduces healthcare applications enabled by the CoSHE system,

including hydration monitoring and emotion recognition.

• Chapter 6 introduces opportunities for healthcare delivery through a robot as-

sistant.

• Chapter 7 presents the future works and concludes the dissertation.
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CHAPTER II

SMART GARMENT DEVELOPMENT

This chapter first presents the smart garment we develop and the wearable sensors we

use to collect physiological signals. Next, it describes the data acquisition mechanism

and shows some acquired data.

II.1 Introduction

As mentioned in the previous chapter, the adults are likely to have more health-

related issues when aging. The age factor often affects their mobility and reduces

the frequency of clinic visits, not to mention difficulties they may confront with if

they live in rural areas. Apparently, there is a demand for a medical device that can

continuously measure physiological signals, process and give alerts to the older adults

while they stay at their own home. In addition, the device needs to be easy to use

and comfortable to don, doff and wear for a long time without affecting their daily

activities. To satisfy those requirements, a smart garment seems to be one of the best

solutions. In the next section, a literature review of smart garments is presented.

II.2 Related Work

There are currently a few products available on the market, such as Healthwatch [14]

and Hexoskin [15], which can be used in medical or sports applications. Wearable

electrodes are embedded in those smart garments in order to continuously monitor

physiological signals while maintaining wear comfort. The signals collected normally

include ECG (Electrocardiogram) and respiration, from which features such as heart
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rate and respiration rate can be extracted. There are also research projects performed

by universities and institutes, which focused on developing textile sensors using con-

ductive fabrics and conductive inks. In [16], Paul et al. developed biomedical sensors

using dry electrodes and conductive ink to collect ECG and EMG (Electromyography)

signal. In [17], recent advanced techniques in smart textile was surveyed thoroughly,

and both advantages and disadvantages of each technique were discussed, for example

flexibility, ergonomics, low power consumption, integration and autonomy. In [18],

Ankhili et al. developed a washable ECG monitoring underwear able to record and

transmit wiredlessly the ECG signal. However, in order to make those products or

prototypes to be widely used, there are improvements the need to be made. To ensure

comfort, the ECG electrodes in such products are designed so that they do not stick

on human skin, and do not tightly press the skin. The ability of electrodes to conduct

the signal from the body to the health monitoring system is very sensitive to body

movement, and variation in the space between the electrode and the skin creates arti-

ficial noise within the signal. Therefore, the artificial noise in these signals might hide

important features for analysis or could easily lead to a false alarm. Classifying move-

ment is an essential component of the process of determining the relationship between

textile electrode signal quality and the subject’s physical movements, and provides

an important foundation for the development of viable medical-quality textile-based

sensing systems. In the next sections, we present two smart garment prototypes and

the acquired data from the garments.

II.3 Garment prototype 1

The health kit, as shown in Fig. II.1, consists of a sensor platform and an Arduino

with Bluetooth integrated. The sensor platform is a circuit board which physiological

sensors such as ECG, SPo2, air flow, and respiration and accelerometer sensors can

connect to. This figure also shows several kinds of sensor that can collect different

10



physiological data from the human body.

Figure II.1: Health kit.

II.3.1 ECG Sensor

The ECG sensor includes three disposable electrodes which often include a metal snap,

an Ag/AgCl sensing element and an adhesive hydrogel. One end of the electrode

is attached to the human skin at locations such as under right clavicle (positive

electrode), under left clavicle (neutral electrode) and at lower left abdomen (negative

electrode) as shown in Fig. II.2. The other is connected to the sensor platform where

the analog ECG signal will be amplified and transmitted to the Arduino board where

the signal will be converted from analog into digital. By using these electrodes, ECG

lead-II is collected and it reflects the electrical activity of the heart.

II.3.2 SPo2 Sensor

The SPo2 sensor measures the amount of oxygen dissolved in the blood, based on

the detection of Hemoglobin and Deoxyhemoglobin. Two different light wavelengths,

which are the red light and infrared light, are used to measure the actual difference

in the absorption spectra of HbO2 and Hb. Most SPo2 sensors work on extremities
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Figure II.2: The positions of the electrodes.

such as fingertip, toe, or earlobe. The SPo2 sensor in our setup is used on the finger,

and its outputs include two values which are the percentage of hemoglobin molecules

in the arterial blood and heart rate. That percentage is considered normal when it

is in the range of 95 to 99. If the value is between 88 and 94 percent, the hypoxic

drive problem may be present. And if the value is 100 percent, it can indicate carbon

monoxide poisoning. These digital values are then transmitted to the sensor platform

through wires.

II.3.3 Respiration Sensor

The respiration sensor is an inductive plethysmography belt that is worn over the chest

to measure chest movement when human breaths in and out. The belt goes with an

inductive interface cable which is able to convert inductance changes into voltage.

The mechanism is based on Farada’s Law in which a current applied through a loop

of wire generates a magnetic field normal to the orientation of the loop, and that a

change in the area enclosed by the loop creates an opposing current within the loop

directly proportional to the change in the area (Lenz’s Law). The output voltage is

week so it needs to be amplified for the sensor platform to acquire [19]. By using the

respiration sensor, changes in chest volume and respiratory rate can be estimated.
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Thus, abnormality in respiratory rate can be detected, which is one of the earliest

indicators of physiological instability.

II.3.4 Airflow Sensor

The air flow sensor is used to measure nasal thermal airflow changes as well as the

nasal temperature air. This sensor has a flexible thread which fits behind the ears,

and two prongs which are placed in the nostrils to measure breathing. The airflow

sensor and respiration sensor both measure breath but in different places of the body

and different phases of respiration circulation. Normally, there should be a constant

delay between those two output signals. By using both, we can validate the signals

as well as detect abnormality in some senses.

Figure II.3: How the health kit works.

II.3.5 Garment design

After the hardware is tested, a smart garment prototype is developed which integrates

all electronic parts so that physiological signals can be collected when it is worn. To

make it more comfortable, the standard ECG electrodes are replaced by textile ones,
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and the normal electric wires are replaced by conductive threads. Several types of

conductive fabric are tested such as conductive felt fabric and conductive metalized

nylon fabric. There is a trade-off between picking up good signals and the com-

fort. Because good signals are acquired if the contact between electrodes and skin is

durable, which can be achieved by using the sticky material or pressure to hold the

electrode, it may cause red itchy or rash on the skin. After several testing, conductive

metalized nylon fabric is chosen because it has great conductivity and is easy to sew

by the fusing method. The smart garment prototype is shown in Fig. II.4.

Figure II.4: Smart garment prototype 1.

With this prototype, a single lead ECG signal is collected from the garment using

Lead-II configuration. The use of single lead ECG is shown to provide sufficient

information for detecting heart rate, studying arrhythmias and heart rate variability

which can be used by doctors for monitoring and diagnosis. The signal is amplified and

sampled at an optimal sampling rate of 200Hz. The respiration belt is an inductive

transducer which measures the changes in thoracic or abdominal circumference during

respiration. These measurements can indicate inhalation, expiration and breathing
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strength which can be used to derive the respiratory rate. The respiration data is

sampled at 20Hz.

II.4 Garment prototype 2

Another smart garment prototype is designed to embed additional sensors. Its main

purpose is similar to the previous version, i.e. to pervasively collect physiological

signals and activity data. The data collected from this system includes Electrocar-

diogram ECG, Acoustic Activity and Body Activity. The signals are sampled and

framed using The Intel Edison compute module. The data is timestamped to al-

low synchronization with ambient sensors in the smart home. Our wearable system

components are shown in Fig. II.5. The additional components are described as

follows.

Figure II.5: Wearable unit components.

Smartwatch:

The eZ430-Chronus smartwatch is used to collect hand activity data. It uses the

CC430F6137 MCU with a 915MHz wireless transceiver. The watch has integrated 3-

axis accelerometer with a measurement of ±2g. The accelerometer data is wirelessly

transmitted to the home gateway at 33Hz.

Acoustic Sensor:

A throat microphone is used to record audio signals from the throat area. The
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Figure II.6: Smart garment prototype 2.

throat microphone absorbs vibrations from the wearer’s throat instead of sound sig-

nals which allows picking up sounds in extremely noisy and windy environments. It

has a sensitivity of -66dB ± 3db and can pick up sound signals from 20Hz-16000Hz

which is sufficient for detecting drinking and other activities. The acoustic signal is

sampled at a rate of 16000Hz.

Embedded Computer:

The Intel Edison compute module is used to collect and process signals, classify

drinking and body activities. It is a high performance embedded platform with a

dual-core 500MHz Intel Atom CPU and WiFi and Bluetooth support with minimal

power consumption [13]. In addition to its higher performance compared to other

embedded devices, its low profile makes it an ideal solution for wearable applications.

A USB sound adapter with the 48K/44.1KHz sampling rate and 16bit ADC/DAC is

used to interface the throat microphone to the embedded controller. A 9V alkaline

battery is also used to power the system.

Garment design:

The prototype is designed as a slimming compression tank top, which allows the

textile electrodes to have a better contact with the human skin. It has a pocket in

16



front of the chest to store a 3D box containing the electrical board as shown in Fig.

II.6.

II.5 Signal Acquisition Result

II.5.1 Signals collected using standard electrodes

All sensors are connected to the sensor platform which is a conditioning circuit, and

the analog signals are converted to digital signals on the Arduino board and trans-

mitted to a mobile device or computer using Bluetooth as shown in Fig. II.3. These

physiological data are synchronized with data from smart home in the server. In Fig.

(a) 10-second length signal of ECG and respiration.

(b) 10-second length signal of heart rate, Spo2, and airflow.

Figure II.7: Physiological signals collected using wearable sesnsors.

II.7a, physiological signals such as the ECG signal, airflow signal and respiration sig-
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Figure II.8: ECG signal affected by artificial noise.

nal in 10 seconds frame are shown in real-time in Matlab. These signals are collected

when the subject is in sitting position and at a sampling rate of 250 Hz. Fig. II.7b

displays the sample result showing breath, heart rate and oxygen concentration in

blood while the subject is moving. The ECG signal quality is easy to get affected

by artificial noise. For example, when the human walks, jogs or runs, the collected

ECG becomes worse as shown in Fig. II.8. It is because the contact between ECG

electrodes and human skin is affected by the movement. All other sensors return

relatively good signals regardless of movement intensity. ECG, however, has more

potential for analysis, and many studies have been done using ECG for health prob-

lem diagnosis. Most of them are conducted when the subject is resting, e.g. lying or

sitting, partly because of ECG signal’s sensitivity to movement noise. Therefore, an-

alyzing and processing ECG signal as well as other physiological data when human is

moving, e.g. doing daily activities, is a challenge for researchers. An idea to overcome

this problem is to combine context information. By knowing where the human is and

what the human is doing, we can somehow adaptively filter physiological signals to

reduce the impact of the movement noises.
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Figure II.9: ECG signals collected by using standard electrodes and textile electrodes.

II.5.2 Signals collected using textile electrodes

An experiment is performed to compare the ECG signal collected using the garment

with embedded textile electrodes to the one collected by standard electrodes on the

same subject at the same time. The data are collected from 3 male subjects sitting

on a chair for multiple trials, and each trial lasts 5 minutes. Sample acquired data are

shown in Fig. II.9. We use a Pan Tompkins algorithm [20] to recognize the R peaks of

the signals. The heart rate (beat per minute) can be extracted by using the formula

HeartRate = (60 × fs)/RR, where fs is the sampling frequency of the ECG signal

and RR is the R-R peak interval. Heart rate variability (HRV) is another important

feature extracted from ECG signal. It measures the changes in time between R-R

intervals and can be given an estimate of a person’s autonomic nervous system. The

HRVs are calculated by taking the root mean sum of the squared differences between

RR intervals in a time frame of 4-second from the both systems. The Pearson’s

correlation is used to measure the strength of the linear relationship between those

two HRVs. The correlation coefficient is calculated to be 0.98, which means the HRVs
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from both systems have almost perfectly positive linear relationship. The change in

the mean is calculated to be 5 ms. This preliminary result shows that the ECG signals

collected from the textile electrodes are acceptable in terms of HRV extraction.

II.6 Summary

In this chapter, we introduced two garment prototypes to collect physiological sig-

nals, body movement signal, and throat sound. The textile sensors and conductive

threads are embedded in the garment to facilitate its functionality and comfort. An

Arduino and an Intel Edison are used to process and transmit the acquired signals.

The garments with textile electrodes can be used in experiments while keeping the

subjects comfortable when wearing them. The physiological signals collected from

the garments include ECG, respiration, airflow, and Spo2. In addition, motion signal

and throat sound can also be collected. It was demonstrated that the ECG signals

collected using textile electrodes are reliable to extract the HRV, which is an essential

feature used in many studies. Since the garment prototypes are designed for human

to wear for long term health monitoring, more tests should be conducted to make

sure the comfort is maintained while good signals are continuously acquired.
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CHAPTER III

CLOUD-BASED SMART HOME ENVIRONMENT (CoSHE)

In this chapter, we present a Cloud-Based Smart Home Environment (CoSHE) for

home healthcare. A smart home environment is a setup with ambient sensors to

provide context information. The cloud infrastructure is then described as a means

to provide a data storage function and real-time data access for remote caregivers.

III.1 Introduction

Besides dealing directly with physiological information, recognizing the context of

residents, such as what they do, or where they are in the home can provide important

information for health status evaluation. For example, time spent in sedentary behav-

iors, such as sitting or lying down, may be an indicator of cardiovascular disease [21].

Another application can be for patients recovering from a stroke where monitoring of

re-learning everyday living skills such as eating, going to the bathroom, and dress-

ing can facilitate evaluation of rehabilitation and recovery process [22]. The CoSHE

system is built to enable health monitoring by providing physiological signals with

context recognition. This enables healthcare professionals to study daily activities,

behavioral changes and monitor rehabilitation and recovery processes.

III.2 Related Work

Advances in the development of telehealth and portable hospital-grade technologies

allow healthcare providers to deliver in-home medical services that were previously

available only in hospitals [23]. According to Grönvall et al. [24], older adults with
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severe heart conditions can conduct self-heart diagnosis by measuring their weight,

blood pressure, pulse, and cardiac activity and report to the hospital through online

questionnaires. Hospital nurses will contact patients if something unexpected hap-

pens. However, the significant amount of work required from the nurses reduces the

system efficiency. The ACCENT (Advanced Component Control Enhancing Network

Technologies) Home Care System [25] is another system for telehealth and telecare.

Even though this system has been originally designed for general applicability, its

idea and architecture cover most of the essential components needed for telecare ser-

vices in home environments. This system was developed with the following issues

in mind: management, conflicts, policies, and interface of home care. The recent

technical innovations have led to the development of smart sensors, cloud comput-

ing, and big data analysis, which have been applied to home healthcare. Real-time

telemonitoring of diverse bio-signals and video consultations are two main growing

approaches for home-based care, both in research and commercial systems [26]. The

existing smart home projects often combine environmental and wearable sensors. For

example, environmental sensors may include PIR (Passive Infrared Sensor), RFID

(Radio Frequency Identification), ultrasonic, camera, microphone, or pressure sen-

sors. Wearable sensors are often used in smart healthcare applications for measuring

body temperature, respiration, cardiac activity (ECG - Electrocardiogram), blood

oxygen saturation (SpO2), perspiration (GSR - Galvanic Skin Response), muscle

activity (EMG - Electromyogram), brain activity (EEG-Electroencephalogram) and

motion (accelerometer and gyroscope).

Numerous smart home research projects have been conducted in the US, Europe,

and Japan with many of them focusing on different approaches to providing health-

care [27, 28, 29, 30, 31, 32, 33]. The Aging In Place project at the University of

Missouri started in 2000, and it has been constantly developed with the main goal

of meeting the desire of older adults to remain independent in their own home [27].
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An integrated sensor network is installed to monitor health and enhance the safety of

older adults. Additionally, functionalities are added to supplement registered nurses

by giving an alert when abnormal changes in the health signals of an older adult are

detected [34]. Smart Medical Home is another project conducted by the University of

Rochester, which is set up in a five-room house equipped with environmental sensors,

bio-sensors, and a video camera system. It is designed to maintain health, diag-

nose and treat disease. Other projects such as the Aware Home at Georgia Institute

of Technology [28], the Gator Tech Smart House at University of Florida [29] and

the CASAS at Washington State University [30] are all aimed at designing a smart

home-based health monitoring platform. These kinds of projects are often equipped

with typical devices such as a motion tracking system, an ultrasonic location track-

ing system, a smart floor, and a smart bed, along with a software system providing

artificial intelligence to assist the elderly. They can track the location, recognize the

activities of the resident, assist those with cognitive difficulties, or help with diabetes

management. There are many other smart home projects including the CareLab in

Germany, ProSafe in France, ENABLE in the Netherlands, CareNet in the UK and

Ubiquitous Home in Japan [31]. Recently a project called VictoryaHome was funded

by the European Ambient Assisted Living Joint Program [32] which is focused on as-

sisting older adults and caregivers in their homes. This system can help older adults

live more independently by providing services including monitoring health, safety and

facilitating social contact. The system can serve as a medication reminder, check ac-

tivity, and detect falls by using a wearable smart belt-clip. Other functions such as

virtual visit are achieved using a robot named Giraff [33]. This enables older adults

and their remote caregivers or relatives to make video calls, and the caregivers can

remotely control the robot to move around and check the older adult through the

robot’s camera. The VictoryaHome Cloud was established to facilitate telecommuni-

cation and data transmission for all the previously mentioned functions. However, no
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Figure III.1: The architecture of the Cloud-based smart home healthcare system.

environmental and medical sensors are used in the VictoryaHome, and as a result, it

cannot monitor real-time health status and context information.

The above review of existing systems, which is summarized in TABLE III.1, shows

that many of them can only provide a limited amount of information regarding the

resident’s health condition. Some of them lack the ability to provide health monitor-

ing or healthcare delivery. Some projects do not equip either physiological or home

sensors. Essentially, complete information is critical to accurately assessing the pa-

tient’s health condition. This can be achieved by developing a comprehensive system

which integrates wearable physiological sensors to collect bio-signals, a smart home

environment with unobtrusive environmental sensors to understand the person’s daily

activities and a cloud platform to aggregate the data and provide analytics. CoSHE

is built as a comprehensive system which supports all of the above functions and

further provides a platform for health monitoring, early detection, and prevention of

different health problems.
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Table III.1: Smart home projects.

Project
Wearable
sensor

Home
sensor

Robot
assistant

Remote
monitoring

The Aging
In Place
[27]

-Accelerator
-No physiological
sensors

-Mat, bed
-Cameras

No No

Gator Tech
Smart House
[29]

-Actigraph watch
(accelerator
and pulse sensor)

-Door sensor
-Infrared
motion
-Cameras

No No

CACAS
[30]

No

-Door, bed
sensor
-Infrared
motion

No Yes

Victorya
Home[32]

-Smart belt-clip
(accelerator)
-No physiological
sensors

No Yes Yes

CoSHE

-Smart shirt
(ECG and
respiration sensor)
-Smartwatch,
IMU (accelerator
and gyroscope)

-Passive
Infrared
(PIR)

Yes Yes

III.3 System Architecture

The cloud-based smart home environment consists of three major components: a

smart home setup, a wearable unit, and a private cloud infrastructure. The wear-

able units are used to collect physiological and body activity information through

non-invasive, wearable sensors. Smart home ambient sensors are used for collect-

ing motion and activity information from a human subject as discussed in Chapter

2. Data from the wearable units and environmental sensors are processed by a home

gateway where pre-processing, indoor localization and activity recognition algorithms

are implemented. The data is then sent to our private cloud infrastructure which pro-

vides users and remote caregivers with comprehensive physiological data with context

information. The following subsections detail the three major components of our sys-
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Figure III.2: Smarthome testbed setup.

tem architecture as shown in Fig. III.1.

III.3.1 Smart Home

The Smart Home environment consists of a 16x22 ft. testbed equipped with envi-

ronmental sensors, a human subject with wearable sensors, mobile devices such as

smartphone and a home gateway. The floor layout and an overview of the smart

home testbed are shown in Fig. III.2.

Home Sensor Network: The environmental sensors include a network of PIR

sensors and Grid-EYE thermopile array sensors. These sensors are distributed on the

testbed ceiling in a configuration and the data is transmitted to the home gateway

through the ZigBee protocol. PIR sensors detect the IR radiations emitted by the

heat of objects. The sensor in the device is split into two parts such that they detect

the change in the radiation caused by motion in its field of view. The changes in the

amount of IR radiation are reflected by the voltage generated. It is demonstrated

in Fig. III.3, when a human walks in the field of view of the PIR sensor. The PIR

sensor used in our research is Panasonic EKMC1601111 [35], and its specifications
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Figure III.3: The principle of PIR sensors.

are shown in Table. III.2

Our experimental setup uses the OptiTrack Camera system as shown in Fig. III.2

for evaluating our context recognition and classification algorithms against the ground

truth. The smart home setup and sensor placement, sensor calibration and operation

are presented in [36].

III.3.2 Cloud Infrastructure

The Smart Home Healthcare Cloud is implemented using the Private Cloud Infras-

tructure we built in our lab. This system is set up using the open source Cloud

Orchestration Software, OpenStack Juno. Three server nodes and a storage server

Table III.2: PIR Panasonic EKMC1601111 specification.

Item Performance characteristics
Detection performance Standard detection type
Current consumption (in standby mode) 170A
Lens color White
Detection distance 5m
Output type Digital
Output current (during detection period) 100A
Detection area (Horizontal) 82
Detection area (Vertical) 94
Detection zone 64

27



(a) Cloud setup. (b) Cloud architecture.

Figure III.4: Private cloud infrastructure

are used in the setup as shown in Fig. III.4. Most of the cloud management ser-

vices including the message queue (MQ), authentication, databases, and networking

are implemented on the Controller node. Two Compute nodes host KVM hyper-

visors and client services which will create a virtualized environment for instances.

Block storage is implemented using the storage server to provide a persistent stor-

age for running instances. Our cloud provides an Infrastructure-as-a-Service (IaaS)

solution for different research and educational purposes. OpenStack Sahara project

is also deployed to allow for rapid configuration, reliable auto-deployment and scal-

ing of Hadoop Clusters in our cloud infrastructure. The Hadoop framework allows

distributed processing of large data sets across clusters.

The Smart Home Healthcare Cloud is set up using a four-layered cloud architecture

by adopting the Software as a Service (SaaS) cloud resource provisioning model based

on our system requirements. The four layers and their functions are described as

follows:

• Service Presentation Layer: is the interface for the Wireless Application Pro-

tocol WAP, Application Programming Interface API and WEB services. This
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layer provides data access for remote users [37].

• Cloud Engine Layer: uses the Message Queue (MQ) cluster to distribute and

manage jobs among the data processing and cloud storage clusters using message-

driven scheduling [37].

• Data Processing Layer: uses the Data Processing cluster for implementing data

mining algorithms on the physiological and context data. This will allow medical

professionals and researchers to study relationships between daily activity and

health condition, understand behavioral changes and cause-and-effect studies.

The algorithms process sensor data transmitted from the front end and write it

on the cloud storage using the MQ.

• Cloud Storage Layer: serves data resources for the cloud using the Storage

Cluster [37]. These resources include user information, physiological and envi-

ronmental data, and context information.

We used a hybrid data storage model, which is comprised of a relational database

and non-relational database. MySQL is used as a Relational database for storing

all structured data such as user information, sensor type, data format, and sampling

rate. On the other hand, the Non-relational database MongoDB (NoSQL) is used

to store sensor data. We used NoSQL because medical sensor data such as ECG

and respiration have much higher temporal resolution than other sensors like PIR,

Accelerometer, Spo2, etc. In order to have rapid access to these data for a real-time

application, NoSQL provides the ability to adapt with distributed storage which is

taken care of by Hadoop File System (HDFS) and MapReduce in the cloud. Our

database tables include the information as shown in Table. III.3. The demographic

and diagnosis information can be filled in by the care giver and the care taker will be

provided access to the database through the WEB API.
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Table III.3: Data stored in the CoSHE database.

Demographic information Context information Health Status
Full name Location in home ECG raw data
Date of birth Body activity Heart rate
Sex Respiration rate

Blood oxygen concentration
Negative emotion
Hydration status

III.4 Summary

In this chapter, we presented our CoSHE system for home healthcare, which consists

of a smart home and a cloud infrastructure. The smart home is equipped by a network

of environmental sensors and a motion capture and tracking system. It provides an

environment to conduct and validate experiments including but not limited to human

localization and tracking, walking pattern classification, and abnormal patterns of

daily activities detection. The cloud infrastructure provides a vast storage, large

memory, fast processing units and a bunch of services, which supports IoT (Internet

of Thing) and big data applications. In our research, the data from the environmental

and wearable sensors can be sent to the cloud where they are stored and processed to

provide meaningful information. The smart home, cloud infrastructure, and wearable

units make CoSHE to be a comprehensive system that is able to provide context

information and health status of the human and the real-time access from remote

caregivers.
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CHAPTER IV

CONTEXT AWARENESS IN CoSHE

In this chapter, we describe two types of context information provided by CoSHE,

which are human body activity and human location.

IV.1 Body Activity Recognition

Human daily activity is a key factor that affects directly the accuracy of health sta-

tus inference. Body movement can cause artificial noise while recording physiological

signals thereby requiring data preprocessing. On the other hand, human activity

should be taken into account while making decisions based on recorded physiological

signals. For example, fast heart rate inferred by ECG signal is not necessarily consid-

ered tachycardia, if at the current moment human activity is recognized as vigorous

running. But, if the heart rate is suddenly high while the human is still, there might

be a health problem and further assistance may be needed.

IV.1.1 Related Work

Using wearable sensors to recognize body activity has been studied by many re-

searchers for years and the most broadly used sensor are accelerometers [38]. The

possible reason is that the accelerometers are inexpensive, low power consumption

and it is now embedded in many gadgets such as smartwatches, smartphones, and

other wearable technology devices.

In [39], Bao and Intille recognized body activities using five biaxial accelerometers,

which were worn on different parts of the body such as the thigh, hip, and wrist. Af-
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Figure IV.1: An inertial measurement unit (IMU).

ter accelerometer data were collected from 20 subjects, features such as mean energy,

frequency-domain entropy and correlation of acceleration were extracted. Totally, 20

activities like walking, sitting, scrubbing, standing still, watching TV, etc. were rec-

ognized by using decision tree algorithm with the average accuracy of 80%. Kwapisz

et al. [40] used phone-based accelerometers to classify body activities. Data was col-

lected from 29 people with a cell phone was in the front pants leg pocket, while they

performed different activities like walking, jogging, ascending stairs, and descending

stairs. The sampling rate was 20 samples per second. The data was divided into

10-second segments to extract features such as mean, standard deviation, the time

between peaks, etc. The classification accuracy of their body activity recognition was

90%. In [41], acceleration data from a chest sensor strap was used to classify 5 human

activities such as walking, running, sitting, ascending, and descending. It resulted in

95.7% overall accuracy.

IV.1.2 Hardware Setup

Our body activity recognition system uses a smartwatch and thigh worn IMU. The

smartwatch was used since it can be conveniently worn by the user in a daily scenario.

However it does not provide enough information for classifying complex activities as

the thigh worn sensor and as a result, we used it for classifying basic daily activities

whereas the thigh worn IMU was used for our location tracking application.

The IMU node we developed consists of a VN-100 orientation sensor module from
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VectorNav, Inc.[28], for motion sensing, an XBee RF module for wireless communi-

cation, and a power management unit to prolong the battery life. The picture of the

IMU node is shown in Fig. IV.1. The motion data include orientations (roll, pitch,

and yaw), 3-dimension (3D) accelerations, 3D angular velocities, and 3D magnetic

field. The sensor has a very small footprint, similar to a quarter. The typical op-

erating voltage range is from 3.1 to 5.5V, and the power supply current is 65mA in

the normal operation mode. This IMU is attached to the right thigh of the human

subject to sense the human movement.

IV.1.3 Methodology

A set of experiments is carried out on 6 subjects whose age ranges from 25 to 35 for

classifying 10 activities. Each subject wears the IMU on the right thigh and performs

different activities for 15 minutes including static postures (lie, sit, and stand) and

dynamic activities (walk, turn left, turn right, stand-to-sit, sit-to-stand, sit-to-lie, and

lie-to-sit), which are labeled by numbers from 0 to 9. 3-axial linear acceleration and

3-axial angular rate at a constant rate of 20 Hz are captured. The data are labeled

manually during the experiments by using a wireless keypad with each key being

assigned to a corresponding activity.

The raw signal is put through a filter to reduce noise and then features are ex-

tracted using a sliding window method with 2-second window width and 1-second

step size. Both time domain and frequency domain features are extracted for the ac-

celeration and angular rate data. The time domain features included mean, standard

deviation, median, maximum and minimum values of magnitude, squared sum of

magnitude angular rate below 25 percentile and 75 percentile. Features in frequency

domain include spectrum peak frequency below 5 Hz, number of peaks in magnitude

spectrum of angular rate below 5 Hz, and integral of magnitude spectrum from 0 to

5 Hz. The data consists of 6000 observations, which were split into 70% train and
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30% validation sets. Several features having high skewness and kurtosis were Log and

Square Root transformed.

From the total set, seven important features are selected using the stepwise regres-

sion. These features include the mean and the variance of magnitude of acceleration,

the number of peaks in acceleration magnitude spectrum below 5 Hz, the squared

sum of magnitude of acceleration below 25 percentile, the number of peaks in the

magnitude spectrum of angular rate below 5 Hz, the squared sum of magnitude an-

gular rate below 75 percentile and 25 percentile. Several models are then applied

to classify activities, including k-Nearest Neighbor, Decision Trees, and Neural Net-

works. Gradient Boosting Decision tree results in the highest classification accuracy.

The configuration of the Gradient Boosting model has training proportion 60, the

number of iteration 50, shrinkage parameter 0.1 and Square Loss Function with the

base learner of maximum branch 2 and maximum depth 2.

IV.1.4 Experiment Results

As a result, the misclassification rate is 0.1 in training data and 0.13 in validation

data. In other words, the accuracy of classification is 90% in training data and 87%

in validation data. Fig. IV.2 shows the classification rate and confusion matrix

of 10 activities using the validation data, in which the blue (lightly shaded) region

represents correct classification and the remaining part represents misclassification.

This result is then used to support human localization in the next subsection.

Another experiment is done with the smartwatch, and the accelerometer data

from the smartwatch are used to classify activities such as Sitting, Standing, Lying,

Walking, Climbing Up and Downstairs, Jogging and Running. The data were first

filtered using a moving average filter and framed into a window size of 2s with 50%

overlap. 13 time and frequency domain features are extracted from each frame and

89.12% body activity level classification accuracy is achieved using Gradient Boosting

34



Decision Tree. A sample application of this contextual information is shown using

the Hydration Monitoring Application on section V.

(a) Activity classification chart for 10 activities.

(b) Confusion matrix.

Figure IV.2: Activity recognition result.

The models are implemented on the gateway to classify daily activity and the

labels are continuously sent to the cloud for online monitoring purpose. All raw data

including timestamp, acceleration, and angular rate are uploaded to the cloud every

24 hours for storage and future analysis.
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IV.2 Indoor Human Localization

Indoor human monitoring plays an important role in living assistance and emergency

detection. For example, to save energy and provide human comfort, human location

can be used to trigger home automation tasks such as automatically controlling lights

and air conditioners. Knowledge of human location can also help domestic service

robots to better assist people.

IV.2.1 Related Work

Numerous researches have been conducted in developing smart homes, social robots

and assistive technology for elderly care [42]. This section reviews research in indoor

localization, which is a key technology to develop such elderly care applications.

Researchers have developed various techniques to localize residents in indoor en-

vironments [43]. Basically, we can classify them into infrastructure based methods

and non-infrastructure based methods. In infrastructure based methods, either active

beacons or passive sensors like cameras/motion detection sensors are deployed in the

environment to help localize the human. In non-infrastructure based methods, only

wearable body sensors are used for localization.

Active infrastructure based methods can provide a good tracking accuracy. Active

Badge [44], Active Bat [45] and Cricket [46] are three examples. Active Badge was

developed at Olivetti Research Laboratory and it used the diffuse infrared technology.

They used a network of sensors placed around the building with each room having

at least one sensor. The human carried a tag that could emit a unique code for

approximately a tenth of a second every 15 seconds (a beacon) in order for the sensors

to detect it. A master station, also connected to the network, polled the sensors

for badge ’sightings’, processed the data, and then made it available to clients that

could display it in a useful visual form. When a sensor received signals from the

tag, the human was known to be in that room. The Active Bat system developed
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by AT&T uses the ultrasonic location technique to locate the resident based on the

principle of trilateration. The Bat (a transmitter) emitted a short pulse of ultrasound

signal to the receivers mounted at known locations on the ceiling. Using the time

of flight of the pulse, the distance of the Bat from each receiver was calculated and

the 3D position of the Bat was determined [45]. Cricket [46] is another example

that used the ultrasound technology to localize a human. Cricket indoor location

system consisted of location beacons and listeners. Beacons were transmitters being

attached to the ceiling of buildings and receivers called listeners were attached to

the devices that required location information. Active beacons transmitted location

information and an ultrasonic pulse. The passive listener captured this information

to calculate its distance from the beacon [46]. In[47], WiFi RSS (Received Signal

Strength) fingerprints were used to detect person location and estimate the velocity.

Based on the 802.11n channel state information, a method was proposed to estimate

the moving speed and distance of a subject. It would work for a big area such as a

large office environment where a network of access points is deployed. The localization

accuracy is within 2m. However, this method is not suitable for an apartment where

only one or two access points are available.

Passive infrastructure based methods use cameras or simple motion detection

sensors. Cameras can be used to locate humans more accurately. For example, Easy

Living used two sets of stereo color cameras for tracking multiple humans [48]. Even

though this method provided a practical person-tracking solution, there is always

privacy concern when cameras are used. In [49] multiple cameras and floor sensors

were used to localize a human in a smart home environment. The system consisted of

three components: camera localization, sensory floor localization, and condensation

tracker. The presence of a person was detected by the sensory floor by measuring the

pressure variation. The cameras detected the person by using background subtraction

and human template matching. The condensation tracker was used to improve the
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accuracy of localization. Recently, passive infrared (PIR) sensors have been used to

detect and localize humans because of their simplicity and less privacy concern. In

[50], a method was proposed to detect and localize the human inside homes using

PIR sensor networks. Multiple PIR sensors were installed on the ceiling. In the

initial offline training phase, a unique identifying set for each of the location regions

was saved as a fingerprint. Using this fingerprint database as a lookup table, the

identifying set from the online testing phase was mapped, from which the target

location was recognized. Luo and Chen [51] proposed a technique to track the path of

a human using PIR sensors. An array of PIR sensors was placed in a room so that the

sensing areas of two or more sensors overlap. The experiment was conducted on a test

bed in which a total of 12 sensors are placed to ensure the maximum overlap and the

full coverage of the test area. A location accuracy of 0.5m was achieved by the system.

In [52, 51], PIR sensors were used to localize humans and track human movement.

The accuracy of these PIR-based location systems greatly depends on the distribution

density of sensors and the intersection of the field of views (FOVs) of the sensors.

To reduce sensory uncertainty, multi-sensor techniques and data fusion algorithms

are usually adopted. In [53], Yang et al. developed a low-cost and small-size human

tracking system based on PIRs and wireless sensor network. A localization method

based on detecting angle bisectors of PIR sensors and data fusion was presented.

Then, Kalman filtering and particle filtering were employed for target tracking. In

[54], Ibrahim Al-Naimi presented an automatic identification and tracking method by

combining data from PIR sensors and floor pressure sensors. In [55], a method using

PIR and RF for localization was proposed to deal with the RSS variation issue that

caused a significant localization error. PIRs were used to identify the rough area,

then the position of the person was estimated by applying the K Nearest Neighbor

(K-NN) algorithm to the fingerprints inside that area. That method can reduce

the localization error; However, the accuracy has not been validated through real
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experiments.

Non-infrastructure based methods do not rely on any environmental devices or

sensors. Instead, body-worn sensors are typically used. Location tracking based on

wearable sensors has been investigated by several researchers. Personal dead reckon-

ing (PDR) [56, 57] is the most common technique. Foxlin [58] developed an inertial

sensor based NavShoe system which utilizes a complementary extended Kalman filter

(EKF) to dynamically estimate an error state vector consisting of accelerometer and

gyro biases, velocity, location, and attitude errors. His method results in an error

of about 1% of the walking distance. Ojeda et al. [57] developed a Zero Velocity

Update (ZUPT) based method that compensates the accelerometer bias and achieves

an error of about 2% for short walks. Stirling et al. [59] built a PDR system that uses

foot acceleration to estimate the stride length and the detection of the stance phase

to resolve the step heading. Jirawimut et al. [60] presented a PDR method where

the compass bias error and the step size error were estimated online using a Kalman

filter. However, due to the nature of dead reckoning, PDR-based human tracking suf-

fers unbounded growing errors. Mezentsev et al.’s study [56] showed that for medium

accuracy PDR systems the two-dimensional location error grows proportionally to

the square root of time.

There has been also existing work that combines both environmental infrastruc-

ture and wearable sensors for improved location tracking. Some researchers proposed

a hybrid solution in which IMUs are added to aid localization. The gyroscope, ac-

celerometer, and magnetometer in the IMU are used to yield relative positioning

information. Meanwhile the absolute reference is obtained using other methods such

as light sensing [61] and WiFi signal strength [62, 63]. For example, in [62], researchers

used WiFi signal strength to determine the absolute reference and use a dual-axis ac-

celerometer, a gyroscope, and a pressure sensor to provide additional information. A

method based on a Kalman filter and a particle filter was proposed which fuses the
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heterogeneous information from two independent data sources. However, in indoor

environments, the heading angle inferred by the magnetometer in an IMU sensor

is not reliable due to the magnetic disturbances caused by electronic devices, metal

structures of the building, etc. Also because of the slowly increasing drift of a gyro-

scope, a small drift may result in big errors after a sequence of integration processes

[64]. A summary of the indoor localization methods is described in table IV.1.

Table IV.1: Indoor localization methods

Technology Pros Cons

Infrastructure based methods

IR [44] Low cost Low accuracy (at room level)

Ultrasonic [45] High accuracy, low energy consumption Affected by noise, expensive

RF and ultrasound [46] Low cost Signals may be reflected or blocked by walls

WiFi [47] Low cost Not good for small area

Camera [48, 49] Multi-person tracking Privacy violated

PIR [50, 51, 52, 53] Low cost Low accuracy

PIR and floor sensor [54] High accuracy Expensive

PIR and RF [55] RSS variation is reduced The accuracy is not much improved

Non-infrastructure based methods

IMU [56, 57, 58] Small design, one single unit Not stable due to drift issue, heading errors, magnetic errors

Hybrid methods

IMU and Wifi [62, 63] Good for large environment Not good for small apartment

In this research, we adopt a sensor fusion based approach to integrate both en-

vironmental sensors and wearable motion sensors. We use PIR sensors as the en-

vironmental sensors and IMU as the wearable motion sensor. More importantly, in

order to significantly improve the localization accuracy, we utilize the human activ-

ity/location correlation, based on a Bayesian filtering framework. In other words, by

recognizing human activity and integrating with a pre-known map of furniture in the

testing environment, the accuracy of localization and tracking is greatly improved.

IV.2.2 Methodology

This section presents the detailed methodology for the proposed indoor human local-

ization system.
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A. Overview

The proposed approach adopts a sensor fusion strategy that combines motion data

from the human body and PIR sensor data from the environment for human local-

ization. In addition, this approach takes advantage of the correlation between the

human locations and their activities in home environments for improved accuracy.

Figure IV.3: Overview of the approach.

The overview of the approach is depicted in Fig. IV.3. The data from the IMU

sensor, which includes 3D acceleration and angular rate, are inputs to the following

three modules: Activity Recognition, Velocity Estimation, and Heading Estimation.

From these modules the human body activity, velocity, and heading are derived,

respectively. Meanwhile, the data from the array of PIR sensors are also collected.

These two channels of information are fused through a Particle Filter module to

estimate the location of the human. The behavior-based map, as prior knowledge,

represents the correlation between human’s location and his activity. In this map,

the position of walls and furniture (such as table, chair, and bed), as well as other

facilities, are pre-known. This map basically encodes the location probability of the

resident when he is conducting certain activities such as walking, sitting and lying.

This is important information that can be used to improve the localization accuracy

in a Bayesian filtering framework.

In the next sections, we will first introduce the observation model of the PIR

sensors and the IMU based motion model. Then we will discuss the behavior-based
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map. Finally, we describe the sensor fusion algorithm that combines the PIR and

IMU data for human localization.

B. Observation Model of PIR Sensor

In our Smart Home setup, eight PIR sensors are deployed on the ceiling in a con-

figuration as shown in Fig. IV.5. This configuration is determined to ensure that

the sensors can cover the majority of the apartment area. The detecting area of the

PIR sensors is circular on the floor and their radius can be changed by adjusting the

cylindrical lens covers. In this study, the radius is set to be 1.1m.

Figure IV.4: Top view of the mock apartment. Dotted circles denote the field of view
of the PIRs.

The array output of 8 PIR sensors is one of the following cases: (1) Only one PIR

is active. The human should be in one of the color areas as shown in Fig. IV.5(b).

(2) Two PIRs are active. The human should locate in the overlap area of those 2

sensors as shown in Fig. IV.5(c). (3) No PIR is active. The human is outside of all

PIR sensing areas as shown in Fig. IV.5(d).

Based on the PIR sensor observation model mentioned in [65], our PIR sensor
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Figure IV.5: PIR sensing area. (a) PIR configuration; (b) One PIR is active; (c) Two
PIRs are active; (d) No PIR is active.

model is expressed by Equation (IV.1)

P (zPIR,ik |sk) = (IV.1)
pzk

PIR,i
(1− p)1−zPIR,i

k if |sk − Ci| ≤ ri

qzk
PIR,i

(1− q)1−zPIR,i
k if ri ≤ |sk − Ci| ≤ ri + ε

1− zPIR,ik if |sk − Ci| ≥ ri + ε

where p is the probability of detection, q is the probability of false alarm. zPIR,ik

is the binary output from PIR sensor i at time k, which takes value from {0,1}. sk is

the human state which is the 2D location. According to [65], the parameter p and q

are estimated from measurements (p = 0.7, q = 0.05), but it is not realistic when we

consider the distance between the human and the sensor. We discovered that false

alarm may occur when the human is not in the sensing range, but not too far away

from the sensor, which is depicted by the gray area as shown in Fig. IV.6. If the

human is far away (out of the dashed circle), the false alarm rate q becomes 0. It is

possible that false negative (miss) may occur because of the sensor’s failure. In our
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setup, the probability of miss can be reduced because we can use the wearable IMU

to detect if there is a human motion. If there is human motion from the IMU and the

PIR sensor is off, that implies a false negative and which can be corrected. If there

is no human motion from the IMU, there is no need to update the human location.

Therefore, the final values of those probabilities are p = 0.9 and q = 0.05.

Figure IV.6: Sensing regions of a PIR sensor.

C. IMU-Based Motion Model

The IMU sensor attached to the human body can provide important information

regarding the activity and motion of the wearer. Here we derive the motion model of

the wearer using the data obtained from the IMU. We first recognize human’s activity,

based on that the moving velocity is estimated. Then we compute the heading based

on the gyro output.

Velocity estimation: Once the walking activity is detected, the velocity vk is es-

timated by integrating the acceleration during the swing phase of each step, which

includes a stance phase and a swing phase [58]. When the stationary stance is de-

tected, or the activity is recognized as standing, sitting, or lying the velocity is reset

to zero to eliminate accumulated errors. vk is estimated by using Equation (IV.2) as
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follows

vk =


axyTs + vk−1 if swing phase

0 if stance phase;

or standing, sitting, lying

(IV.2)

where axy = ax+ay is the horizontal acceleration, Ts is the sampling period. To detect

the stationary stance, we apply thresholds to both the magnitude of the acceleration

|am| =
√

(a2
x + a2

y + a2
z) and the magnitude of angular rate |wm| =

√
(w2

x + w2
y + w2

z).

The stance phase is recognized if 9m/s2 < |am| < 11m/s2 and |wm| < 30o/s.

Heading estimation: Heading provides walking direction and this information can

be directly read from the outputs (yaw, pitch, and roll) from the IMU. However, in

indoor living environments, due to the magnetic disturbance caused by many devices

such as computers, microwave, and other electrical appliances, the accuracy of heading

read from the IMU is neither accurate nor reliable. This problem has been observed

in many experiments we conducted inside our testbed.

Therefore, we developed a different approach to estimating the walking direction.

In our approach, the angular rate from the IMU is used to estimate the heading

changes when the human is walking. Similar to velocity estimation, the heading

angle change can be estimated by integrating the angular rate over time. It is clear

that the drifts of the gyroscope may lead to poor results since the errors are also

integrated. In order to overcome this problem, we utilize the result from activity

recognition, in which turning right and turning left are detected. The time t0 when

the human starts turning, and the time t1 when the human finishes that turning are

recorded. Then the estimated heading θk is calculated by adding the amount of angle

change to the previous heading angle θk−1 and the measurement noise N(0, σθ) which

has zero mean and a standard deviation value of σθ). The standard deviation is set
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to π/6 based on the measurements obtained in our experimental testing.

P (θk) = N(θk−1 + wzTs, σθ) (IV.3)

Now we can derive the motion model of the human,

sk = f(sk−1) + nk (IV.4)

where the state vector sk = [xk, yk]
T , nk is the process noise. The propagated position

can be expressed by the following equationxk
yk

 =

xk−1 + Tsvk cos(θk) + nk

yk−1 + Tsvk sin(θk) + nk

 (IV.5)

where vk and θk are the velocity and heading at time k sampled from normal distri-

bution N(vk, σv) and N(θk, σθ) with velocity mean vk and heading mean θk which are

estimated from the acceleration and angular rate information as mentioned earlier.

The standard deviation σv and σθ are set to 20% of the mean velocity and π/6 rad

respectively.

D. Behavior-Based Map

A human’s location and behavior in a home environment are highly correlated. For

example, when the human is detected as sitting, it means that he may be sitting

on a chair in the dining area, on an armchair in the living room, on the bed, or on

the toilet. Based on the location estimate in the most recent time steps, we can find

which furniture is actually involved. Therefore the position of that furniture, which is

pre-known, can be used to determine the human position and the error accumulation

can be prevented, allowing the location accuracy to be significantly improved. In this

sense, the activities serve as virtual landmarks in human localization.

To facilitate such behavioral landmark-assisted localization, we introduce the con-

cept of the behavior-based map and conduct the location inference in a Bayesian
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(a)

(b)

Figure IV.7: (a) Sit and lie map. (b) Walk and stand map.

framework through particle filtering. Basically, the behavior-based map can be rep-

resented by an accessibility probability function (APF) which can be defined as

P (sk|ak) = ϕ

here ϕ is the probability of being at location sk when the human is conducting activity

ak which can be either sit, lie or walk. We assume the furniture location in the

testbed is fixed as shown in Fig. IV.4, and the human can walk anywhere except

places occupied by furniture and walls. Fig. IV.7(a) shows the sit and lie map which

is applied when the human activity is recognized as sitting or lying. In this map,

the red color means high probability for sitting or lying, and the blue color means

extremely low probability for sitting or lying. For the walk and stand map as shown

in Fig. IV.7(b), if the place is occupied by the furniture such as the table or the wall,

P (sk|ak) is set to almost zero, which implies that a human will not walk in that area.

The behavior map will be utilized to improve the location estimate, as explained in
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Figure IV.8: Particle filter diagram.

the next section.

E. Human Localization through Sensor Fusion

By fusing the two channels of information: PIR data and IMU data, we can derive

a more accurate location estimate than using only one of them. The fusion is done

in a Bayesian filtering framework. Although Kalman filtering is a popular method

used in many navigation systems, the requirement of the linear model and Gaussian

noise is not satisfied in our case. Therefore, we choose particle filtering for human

localization with multiple data sources.
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The particle filter, or Sequential Monte Carlo, is one of the numerical methods to

estimate posterior density function P (sk|z1:k) of system state sk given the observation

data up to time k, z1:k. It is an iterative process consisting of two main steps,

prediction and update, which employs two models, system model (or motion model)

and measurement model. Each particle represents a possible state, and all particles

can approximate the posterior probability distribution of the state. The prediction

step is based on the state motion model P (sk|sk−1), in which the propagation of

particles utilizes velocity and heading angle estimates provided by the IMU. The

propagation of particles is expressed by Equation (IV.5). The update step is based

on the observation model P (zk|sk), in which the PIR data and activity information

derived from the IMU data are used to compute the weight of each particle. Locations

of particles with more weight mean they are closer to the true state. At the end of

the loop is the resampling step which removes low-weight particles and generates new

particles with normalized weight. The whole process of particle filtering is described

in Fig. IV.8.

Here we explain how to update the weight of particles. We need to calculate the

likelihood of the observations zik = [zPIR,ik , zIMU,i
k ] given a human location sk

P (zik|sk) = P (zPIR,ik , zIMU,i
k |sk)

= P (zPIR,ik |sk) · P (zIMU,i
k |sk)

Here

P (zIMU,i
k |sk) =

∑
ak

P (zIMU,i
k , ak|sk)

∝
∑
ak

P (zIMU,i
k , sk|ak) · P (ak)

=
∑
ak

P (zIMU,i
k |ak) · P (sk|ak) · P (ak)

=
∑
ak

P (zIMU,i
k |ak) · P (ak|sk) (IV.6)
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Therefore we have

P (zik|sk) = P (zPIR,ik |sk)
∑
ak

P (zIMU,i
k |ak) · P (ak|sk) (IV.7)

The above equation calculates the likelihood of observing the PIR data zPIR,ik and IMU

data zIMU,i
k given that the location sk of the human is known. With the correlation

between activity and location P (ak|sk), the behavior-based map is integrated into

the update step. The weight of each particle is updated to generate the posterior

distribution P (sk|z1:k). Let wPIR,ik ≈ P (zPIR,ik |sk) be the weight of ith particle at

time k based on the PIR sensors, and wIMU,i
k ≈ P (zIMU,i

k |sk) be the weight based on

the IMU sensor. P (zIMU,i
k |sk) can be calculated according to Equation (IV.6). The

updated weight should be the product of these two weights and the previous weight

wik = wPIR,ik · wIMU,i
k · wik−1 (IV.8)

If the number of particles with low weight reaches a certain threshold, the resam-

pling should be conducted. Otherwise, the particle filter will degenerate when there

are only a few high weighted particles, which leads to a poor approximation of the

state estimate. The effective number of particles Neff is used as the indicator of

degeneracy [66], which is calculated as follow

Neff =
1∑N

1 (wik)
2

(IV.9)

where N is the total number of particles. If Neff is less than a threshold Nt, the resam-

pling will kill particles with low weight and high-weight particles are replicated. After

resampling, the particles become more concentrated in higher probability area of the

posterior, and the state is estimated based on the mean of the posterior distribution.

ŝk = E
[
sik
]

=

∑Nk

i=1 s
i
k × wik∑Nk

i=1 w
i
k

(IV.10)

and the covariance matrix is

Pk =
N∑
i=1

wik(s
i
k − ŝk) (IV.11)
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Algorithm 1 The Particle filtering for human localization Initial

1: Particles’ parameters {si1, wi1, θi1, N}, i = 1, ..., N
2: T : total number of observations
3: for k = 2 : T do
4: Estimate vk, k and recognize human activity ak based on the observation data
zIMU
k

5: Prediction Step:
6: Propagate particles according to Eq. (IV.5).
7: Update Step:
8: Assign the particle a weight wik according to the observation zPIRk , and
zIMU
k .

wik =wPIR,ik × wIMU,i
k × wik−1

=
∑
ak

[
P (ak|sk)P (zIMU

k |ak)
]
× P (zPIRi,k |sk)wik−1

9: end for
10: Normalization wik =

wi
k∑N

i=1 w
i
k

11: Estimate: calculate ŝk according to

ŝk = E
[
sik
]

=

∑Nk

i=1 s
i
k × wik∑Nk

i=1w
i
k

where: Nk: Number of remaining particles at step k
12: procedure Re-sampling
13: Calculate Neff = 1∑N

i=1(wi
k)2

14: Set Nt = resample percentage×N
15: if Neff < Nt then
16: stk, w

t
k
′
i=1:N = resample stk, w

t
ki=1:N

17: end if

Algorithm 1 shows how the particle filtering algorithm is employed for human local-

ization.

IV.2.3 Experiment Results

A. Environment Setup

For the human localization, experiments are conducted with six human subjects, who

are asked to follow the same trajectories marked on the floor in a mock apartment
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built in our lab. Each human subject is asked to move around the mock apartment.

They wear a cap with reflective markers on it, enabling the head location to be tracked

by the OptiTrack system as the ground truth. Regular daily activities are performed:

standing, walking, sitting, and sleeping. One IMU motion sensor is used, which is

attached on the right thigh of the human subject. Eight PIR Sensors are placed on

the ceiling at a standard ceiling height of 2.45m. The PIR data is read every 0.05s

from each sensor (sampling rate of 20Hz). The radius of each PIR sensor is restricted

to be 1.10m by a cylindrical lens cover. The server PC is responsible for collecting the

data from the PIR sensors and the IMU sensor. Based on these data, the server PC

estimates the human’s location in the apartment and derives the movement trajectory

of the human.

B. Evaluation

An experiment is conducted by following a scenario in which the human starts at the

entrance door area, and we assume that their initial position and heading are known.

The human subject enters the apartment triggering the PIR at the front door and

the system starts performing localization and tracking. The human is asked to go to

the dining table area and sit on the chair, go to the kitchen area, go to the living

room and sit on the armchair, and stop on the way to the bedroom. In Fig. IV.9,

the result of localization and tracking of six subjects is shown. The green line is

the ground truth obtained from the OptiTrack system, and the red dashed line is

the estimated trajectory. The length of the trajectory is approximately 35m. The

Table IV.2: Summary statistics of distance error (D).

S1 S2 S3 S4 S5 S6
Max of D (m) 0.592 0.631 0.601 0.552 0.612 0.582
Mean of D (m) 0.141 0.155 0.130 0.121 0.139 0.135
Std of D (m) 0.105 0.110 0.118 0.101 0.113 0.102
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Figure IV.9: Result of localization and tracking. Solid lines denote ground truth and
dashed lines denote estimated trajectories.

distance error between the ground truth and the estimated lines is calculated for each

human subject as shown in Table. IV.2. On average, the mean of distance error is

0.137m.

In Fig. IV.10(a), with the same trajectory, the level of accuracy is reduced if the

human subject just walks and no sitting or lying is performed. And Fig. IV.10(b)

shows the result of localization and tracking when only PIR sensors are used. In this

case, the accuracy depends only on the sensor distribution, the number of sensors,

and sensor field of view. And those parameters are already preset in our testbed, thus
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(a)

(b)

Figure IV.10: (a) Localization and tracking without activity recognition. (b) Local-
ization and tracking when using only PIRs.

the accuracy is extremely reduced. The mean of distance error is around 2m.

Another experiment was conducted, in which the human subject was asked to wake

up, go to the restroom, have breakfast and go out. A typical result of a human subject

is picked up and shown in Fig. IV.11. The length of the trajectory is approximately

45m and the mean of distance error is 0.125m.

Obviously, by employing activity recognition and taking advantage of the cor-

relation between activity and furniture locations, the accuracy of localization and

tracking is significantly improved.
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Figure IV.11: Another result of localization and tracking.

IV.3 Summary

In this chapter, we demonstrated that the context information can be generated from

our CoSHE system based on the home and wearable sensors. We studied the problem

of human localization in an indoor environment. We proposed a method that uses a

particle filter to fuse data from both environmental sensors (PIR) and wearable sensor

(IMU) for human localization. Then acceleration and angular rate data from the

IMU sensor worn on the human body are used for body activity recognition, velocity

estimation, and heading estimation. The PIR sensors provide external rough tracking

of the human location. The human body activity is used as virtual landmarks that

help reduce location errors. Since we only use one wearable motion sensor, our method

has the advantage of reducing the obtrusiveness to the wearer, while maintaining high

accuracy of indoor localization. We conducted experiments in a mock apartment and

the accuracy of the proposed method is evaluated. The context information does not

only provide insights of human daily activity, movement pattern, human tracking but

also can be supportive information for healthcare inferences and services.

55



CHAPTER V

WELL-BEING MONITORING

In this chapter, two case studies are conducted to evaluate the usability of our system

in real time monitoring for both physical and mental well-beings. Firstly, we present

the capability of the system in body hydration monitoring. Secondly, the ability to

detect negative emotions is demonstrated.

V.1 Body Hydration Monitoring

V.1.1 Introduction

Water is an essential component of the human body with numerous functions in-

cluding nutrient transport, body temperature regulation, and solvent for different

substances. The average healthy adult has 45-75% body water composition and the

body adapts to changes in water intake and losses to keep its water balance. Consum-

ing too much water causes Hyponatremia (water intoxication) and a very minimal

consumption results in Dehydration which in critical cases can both result in severe

illness including swelling in the brain and loss of short-term and long-term memory

[67],[68]. Healthy hydration is, therefore, essential for the normal functioning of the

body. This can be achieved by using a cumulative analysis of drinking habits, activity

context, and environmental conditions.

In recent years a number of hydration recommendation systems and gadgets have

been developed in the form of smartwatches, mobile apps and smart garments. How-

ever, most of them are not able to measure the actual daily fluid intake and also rely

on user input to understand daily activity. Moreover, some systems use accelerometer
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data to recognize physical activities. Their activity classification, however, relies on

set cut-points which cannot efficiently generalize to different demographic groups and

a variety of physical activities [69].

In this case study, we present a hydration monitoring application called Auto-

Hydrate which overcomes the above shortcomings through automatic detection of

drinking and physical activities. The system is comprised of an embedded computer,

a throat microphone, and a smartwatch. The embedded computer is used to collect

and process the signals in real time. The throat microphone records sound from the

throat area and the smartwatch is used to collect body activity data. The hydration

monitoring algorithm runs on the embedded computer and real-time feedback is trans-

mitted to our private cloud database, which can be accessed via Internet-connected

devices. The system has a very minimal form factor and can be worn conveniently

for longer periods.

V.1.2 Related Work

A. Acoustic Sensors for Tracheal Activity Recognition

Acoustic sensor based systems use a microphone worn around the throat to collect

acoustic signals. The signals are transmitted to a controller hardware through wired

or wireless communication [70]. A range of time, frequency and cepstral domain

features are then extracted for classification. Yin et al. [71] had achieved an average

accuracy of 84.9% for food type recognition, 97.6% for liquid food intake and 99.7%

for solid food intake using Hidden Markov Models HMM and Decision Tree. Koji et

al. [70] classified 12 activities including eating, drinking, speaking and laughing using

SVM and obtained F-measure of 79.5%. The authors also validated the real world

application of their method with a small user study. Temiloluwa et al. [72] achieved

an F1 score of 86.6% using 5-Nearest Neighbor 5-NN and 86.7% using Naive Bayes.

Yin et al. [73] also classified eating activities with an accuracy of 86.82% and 98.35%
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using KNN and SVM respectively.

B. Estimated Energy Requirement

The human body fluid requirement varies depending on the body activity level, en-

vironmental and medical conditions. It is difficult to set a single level of intake

requirement that would assure adequate hydration in all conditions. The Institute

of Medicine, Dietary Reference Intakes committee has therefore established an Ade-

quate Intake AI for different sex and age groups [74]. The study is conducted on more

than 1200 individuals using doubly labeled water technique and a series of regression

equations are established for Estimated Energy Requirement EER in Kcal per Day

[67]. These equations take into account the sex, age, weight, height and physical

activity of the subject.

V.1.3 AutoHydrate Application

A. Hardware Description

AutoHydrate consists of an acoustic sensor for recording sounds from the throat area,

a smartwatch for sensing body activity and an embedded computer for collecting and

processing the data. The embedded computer continuously collects the signals and

classifies drinking and body activities in real time. The system architecture and

hardware components are illustrated in Fig. II.5, which includes a high sensitivity

throat microphone to record audio signals from the throat area, a smartwatch is to

collect activity data, and an Intel Edison compute module to collect and process

signals, detect drinking sound, and classify body activities.

B. Drinking and Body Activity Recognition

Two types of activity recognition are carried out in this study, drinking activity

recognition and body activity recognition. Our system uses the algorithm shown
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in Fig. V.1 to provide real-time hydration information to the user. The following

subsections will detail each stage of the algorithm.

Figure V.1: Hydration monitoring algorithm.

• Preprocessing

The preprocessing step has two stages. In the first stage, the audio signal is

sampled at 16000Hz and filtered using a low pass filter. Based on our analysis

and work done in [70] most of the energy of a drinking sound lies below 5000Hz

and therefore we have used a low pass FIR filter with 5500Hz cutoff frequency.

The audio signal is framed into a window of size 500ms with 50% overlap. We

have chosen this window size to include a maximum drinking segment.

A weighted moving average filter is used to remove noise from the accelerometer

data. This is then framed into 66 (2 seconds) samples with 50% overlap.

• Feature Extraction

A careful selection of features is critical for accurate classification. Based on our

analysis and review of work done in [71], [70] and [72] we extract time domain,

frequency domain and cepstral domain features from the acoustic signal. These

features are selected optimally based on our evaluation of the system’s recog-

nition performance while using the minimum number of features to minimize

computation for real-time operation.

– Time Domain Features: Zero-Crossing Rate
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– Frequency Domain Features: Total Spectrum Power, Sub-band Powers,

Spectral Centroid, Spectral Spread, Spectral Flux, Spectral Rolloff

– Cepstral Domain Features: Mel Frequency Cepstral Coefficients (MFCC)

For classifying body activities from the accelerometer data, we extract time

domain and frequency domain features the same way as we do in session 4.1.2

• Drinking Activity Recognition

Support Vector Machines have been widely used in audio classification problems

[70], [75], [76]. SVM classifies data by constructing a hyperplane wx + b = 0

for a given set of training vectors belonging to separate classes (x1, y1), ...(xi, yi)

where xi ε R
n and yi ε {−1,+1}. It also uses linear models to implement

non-linear class boundaries by transforming the input space using a nonlinear

mapping into a new feature space. A linear model is then constructed in the

feature space which represents a nonlinear decision boundary in the original

space. We have used Gaussian Radial Basis function as our mapping function.

The SVM algorithm provides a binary classification which is +1 for drinking

activity detected or -1 for drinking not detected.

• Body Activity Recognition

The use of Decision tree for body activity recognition is discussed in [77]. De-

cision Tree is a hierarchical model that recursively separates the input space

into class regions. Its aim is to find the smallest tree possible. In order to

achieve that it looks for the best attribute that would make the data as pure as

possible after the split. Gradient Boosting is a form of ensemble model which

is a sequential iteration of several decision trees. It starts with developing a

decision tree as a base learner and the second base learner is built to fit the

pseudo residuals of the previous base learner. It readjusts weights for misclassi-

fied observations at each step which are then given higher weight than correctly
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classified ones. The readjustment is carried out until its loss function reaches

a threshold. We have used the Gradient Boosting Decision Tree algorithm to

classify activities into four categories as summarized in Table V.1.

Table V.1: Body Activity Classification

Activity Description
Sedentary Sitting on chair, Lying, Standing

Light Walking
Moderate Going Up/Down stairs
Vigorous Jogging, Running

• Hydration characteristics Based on the result of drinking sound recognition, we

can track water intake with an assumption of the average size of one gulp of

water. With activity level estimation, the EER can be calculated based on the

daily EER calculation published by Institute of Medicine, Dietary Reference

Intakes committee as shown in the Table V.2 [67]. Body hydration requirement

and energy intake are related by the relationship: 1mL of fluid per kcal [68].

Some characteristics of hydration monitoring are as follow:

FlAI = c1y + PA(c2w + c3h) + c4 (V.1)

Flin = 20.09
N∑
i=1

hi(n) (V.2)

PA = P ∗ argmax(
1

M

M∑
j=1

gj(m)) (V.3)

Where FlAI is the adequate fluid intake based on y (age), w (weight), h (height)

and PA (physical activity coefficient), The coefficients c1 − c4 are included in

Table. V.2 for different demographics. Flfood is the amount of fluid consumed

from solid food and Flmet is the metabolic fluid. Flin is the amount of fluid

taken for N number of 500ms audio recordings in an hour period and hi(n) rep-

resents detected drinking sounds. PA represents the physical activity coefficient
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Table V.2: Estimated Energy Requirement

Sex Age Estimated Energy Require-
ment in Kcal/day

M 9-18 88.5−61.9y+PA(26.7w+903h)+
25

F 9-18 135.3 − 30.8y + PA(10.0w +
934h) + 25

M 19+ 662 − 9.53y + PA(15.91w +
539.6h)

F 19+ 354− 6.91y+PA(9.36w+ 726h)

where gj(m) represents our Decision Tree classifier for M number of 2s activ-

ities in an hour. The activity with maximum detections in the 1 hour period

is scaled by the activity coefficient P which varies for different age groups. For

example males 19+ years old have P = 1.00 for Sedentary, 1.11 for Light, 1.25

for Moderate and 1.48 for Vigorous activity based on calculations by [67].

We can utilize this information to give a further recommendation to the human

as mentioned in Section 6.3.

C. Experimental Result

Three different sets of experiments are conducted to evaluate our system. These

include drinking activity recognition, body activity recognition, and hydration mon-

itoring. The participants are instructed to wear our system as shown in Fig. V.2.

We have 10 healthy and normal weight participants of average age 28.2 in our

study, and the data from 8 subjects is used in our analysis. All participants are

allowed to drink 500ml of water under a normal pace. The participants take an

average of 24.89 gulps to drink 500ml water and the average amount of water per

gulp is 20.09ml. For training the drinking detection algorithm, 213 drinking sounds

are used and the classification is evaluated using the following metrics.
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Figure V.2: The setup of the AutoHydrate system.

Accuracy =
TP + TN

TP + TN + FP + FN
(V.4)

Precision =
TP

TP + FP
(V.5)

Recall =
TP

TP + FN
(V.6)

F −measure = 2 ∗ Precision ∗Recall
Precision+Recall

(V.7)

Table V.3: Drinking Detection Results using 8-Fold Cross-Validation

Prediction
Recall

Drinking Not Drinking
Actual
Activity

Drinking 263 49 84.3
Not Drinking 41 706 94.5

Precision 86.5 93.5

Where TP is True Positive, TN is True Negative, FP is False Positive, FN is False

Negative. We have used 8-fold cross-validation or leave-one-participant-out method

for evaluating our classifier. The detection results are included in TABLE V.3.

The data from 6 subjects were used for evaluating the body activity recognition

algorithm. The subjects were instructed to perform a set of activities which belong

to one of the four activity categories. The activities include Sitting, Standing, Lying,
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Walking, Going Downstairs and Upstairs, Jogging and Running. Our detection results

using 6-fold cross-validation are shown in TABLE V.4.

The combined system has a classification accuracy of 91.5% and 89.12% for Drink-

ing Activity and Body Activity respectively as can be seen from Table. V.5. The use

of K-fold cross-validation shows that our system can detect a new user input at the

high accuracy level. This will make it easily adaptable for new users.

Table V.4: Result of Body Activity Level Recognition using 6-Fold Cross-Validation

Prediction
Recall

Sedentary Light Moderate Vigorous

Actual
Ac-
tivity

Sedentary 721 10 19 48 90.35
Light 84 142 40 28 48.29
Moderate 63 18 229 52 63.26
Vigorous 57 6 25 443 83.43

Precision 77.95 80.68 73.16 77.58

Table V.5: Final Detection Results

AC PR RE F
Drinking recognition 91.5 86.5 84.3 85.4

Body Activity recognition 89.12 77.58 83.43 80.39

A small qualitative survey is conducted on all the participants, which include 10

graduate students with the age from 26 to 37 years old. The results show that 87.5%

of the users believe a wearable reminder will help them stay hydrated. While more

than 55% of the users rated 5 for the ease of use, 33% of the users rated the system’s

comfort 3 on a scale of 1(poor) - 5(best). Moreover, around 50% of the users believe

this system can benefit anyone.
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V.2 Negative Emotion Recognition

V.2.1 Introduction

Along with physical health, mental health is also crucial to human life quality. Mental

health includes human’s emotional, psychological, and social well-being. According to

[78], positive emotional states have a relationship with healthy patterns of responding

in cardiovascular activity and the immune system. On the other hand, negative emo-

tional states influence unhealthy patterns of physiological functioning and lowered

immune activity. Many studies focusing on negative affect have revealed that nega-

tive affect including emotional states such as nervous, upset, angry, anxious, hostile,

or depressed may increase human’s susceptibility to illness [79, 80]. For example, hos-

tility, anger, and aggressiveness are considered risk factors for coronary heart disease

[81]. Apparently, it is crucial to help human get out of negative emotions to reduce

the chance of developing physical health problems. In this case study, we develop an

application which can recognize negative emotions by using ECG data collected from

our smart shirt and human face expression. The result of negative emotions detection

is uploaded in real-time to our private cloud and accessible to remote caregivers.

V.2.2 Negative Emotion Recognition using ECG

A. Related Work

Emotion Elicitation Methods: Human’s emotions are not constant, as they may

change according to environmental conditions, memories, mood, etc. Therefore, it is

certain that using the same stimuli techniques may elicit different emotions for dif-

ferent individuals. Even for the same person but in different situations, different

emotions may be elicited. Furthermore, the same emotion may have different inten-

sities. Therefore, it is not a trivial to verify what emotion is felt by the subject in

an experiment [82]. Stimuli techniques used by researchers often ask participants to
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watch film clips, look at pictures, listen to music, or participate in a computer game.

In [83], the elicitation method used in experiments is to let participants watch a

series of short movie clips with easy-to-understand content to induce emotions such

as anger, frustration, amusement, fear, surprise, and sadness. Between each clip, they

have to give feedback about the emotion elicited, and the intensity of that emotion.

In [84], a study is conducted to evaluate the level of anxiety of three patients who

are classified as euthymic, depressed or mixed-state. They first experience a resting

state by closing their eyes for 5 minutes, then opening for another 5 minutes. Then,

a sequence of images with different arousal and valence is shown to the subjects in

6 minutes and they have to give comments on the images. The images are from

the IAPS (International Affective Picture System) database, which is widely used for

eliciting emotions.

In [85], a study is conducted on male subjects who love to listen to music. The

experiment is done in a quiet room to make sure that the subjects can experience

the emotions. They are asked to pick four songs that are able to evoke emotional

memories and certain moods corresponding to the four target emotions.

Another experiment, in [86], is conducted to elicit frustration by asking partici-

pants to play a computer game. They are supposed to complete the game in a certain

amount of time to win a prize. However, at some points in time, the computer mouse

is interfered to not follow the subjects’ intention without their awareness. The frus-

tration is induced after each failed mouse-click.

Emotion Data Collection: In [87], it is claimed that all emotions can be char-

acterized in terms of judged valence (pleasant or unpleasant) and arousal (calm or

aroused). Figure V.3 shows some named emotions as coordinates in the arousalvalence

space [88]. The relation between physiological signals and arousal/valence is estab-

lished in psychophysiology that argues that the activation of the autonomic nervous
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Figure V.3: A two-dimensional representation of emotional state.

system (ANS) changes while emotions are elicited [89]. Electrocardiogram (ECG)

[90, 91, 11], Electroencephalography (EEG) [92, 93, 94], Electromyogram (EMG)

[95, 96], or Skin Conductivity [96, 97] are physiological signals mostly used for emo-

tion recognition. Another reason why physiological signals are chosen is that it is

impossible or extremely difficult to control the natural physiological reactions of our

body, such as changes in temperature, skin conductance or heart rate. On the other

hand, it is possible to recognize emotions using facial expression, audio signals, body

pose, gestures, etc. However, people are able to consciously control their own expres-

sion. Thus, physiological signals seem to be more reliable sources of information than

human’s expressions.

There are several public datasets that can be used for emotion recognition, for

example, RECOLA [98] and DECAF [99]. The RECOLA dataset is obtained through

experiments on 23 participants, in which their audiovisual and physiological data were

collected. The video and audio data are recorded at 25fps and 44.1 kHz, respectively.

The bio-signals include ECG and Electrodermal Activity (EDA). In addition, the

participants’ personal information, such as age, gender, and mother tongue are also
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recorded. The annotations are performed using the ANNEMO web-based annotation

tool by six people, three females and three males. The label of emotions, represented

as valence and arousal, is marked with a frame rate of 40ms. The DECAF dataset

is collected from 30 participants (14 females and 16 males). The recorded biosig-

nals include brain signal ( Magnetoencephalogram -MEG), ECG, Bi-polar horizontal

Electro-oculogram (hEOG) and Bi-polar trapezius Electro-myogram (tEMG). The

Near-Infra-Red (NIR) facial data are also recorded. The emotional status is elicited

by letting the participants watch different music videos and movie clips.

Emotion Recognition: In general, physiological signals are involuntary reactions

of the human body and they are difficult to be faked. Thus, recognizing emotion

based on physiological signals tends to have more reliability than external behaviors

like facial expression or speech. Such signals as electrical activities of human brain

and heartbeat have been mostly used in research of emotion recognition [100], [101],

[102]. Compared to the brain signal, which needs a complicated system to acquire,

the means used to collect the heartbeat signal are much simpler and easier to apply

in practice. Nowadays, ECG signal can be acquired from the human body through

wearable ECG sensors in the form of a smart shirt.

ECG-based emotion recognition has recently been adopted in areas such as hu-

man health and human-computer interaction. The ECG signal can be collected and

processed in many different ways. For example, in [10], the authors propose a method

to perform ECG synthesis, signal decomposition, and feature extraction based on the

Empirical Mode Decomposition) (EMD) method. They use the International Affec-

tive Picture System (IAPS) dataset and their own dataset for emotion recognition.

Classification of arousal and valence is conducted but the accuracy is not high. In

[90], based on ECG, Heart Rate Variability (HRV) is calculated. Time and frequency

domain analysis is applied for feature extraction. Several nonlinear indices are ex-
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tracted based on Approximate Entropy, Lagged Pointcare Plot and the Detrended

Fluctuation Analysis (DFA). Their experimental results show a recognition accuracy

of 84.72% on the valence dimension, and 84.26% on the arousal dimension. In [103],

the non-linear feature Hurst is computed using Rescaled Range Statistics (RRS) and

Finite Variance Scaling (FVS) methods. Several new Hurst features are proposed by

combining the existing RRS and FVS methods with Higher Order Statistics (HOS).

The accuracy of classifying six emotional states (happiness, sadness, fear, disgust,

surprise and neutral) is 92.87%, and 76.45% using random and subject independent

validation respectively.

B. Acquisition Setup for Emotion Elicitation

Recent developments of Virtual Reality (VR) technology provides 3D immersive envi-

ronment and has more impact on user emotion reactions. By wearing the VR goggle

to watch videos, the wearer is almost fully isolated from the ambient environment, so

it can minimize unwanted intervention from outside affecting his/her emotion. This

equipment works with 3D videos, 360◦ videos, and even normal 2D videos. In our

research, we use the Oculus Rift headset, as shown in Fig. V.4, and a set of videos

to conduct experiments to induce participants’ emotion. Compared to other studies

using the traditional way of watching 2D videos, our method is expected to help par-

ticipants induce their emotions easier. Videos are manually classified into different

categories corresponding to emotional states such as anger, disgust, fear, sadness,

neutral, calm, and happiness.

In the next section, several models are built to classify negative emotions based

on two datasets, one from our experiment and one from DECAF dataset, which was

conducted by researchers at University of Trento [99].
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Figure V.4: Emotion elicitation using Oculus Rift.

Figure V.5: An ECG signal of 4 seconds in length.

C. Methodology

We use the smart shirt to collect the ECG data from the human. The raw ECG

signal is filtered using a bandpass filter within the frequency band 5-15 Hz to remove

unwanted noise, for example, electrical and muscle noise. Then, features are extracted

using a sliding window of 4-second width and 2-second step size. The ECG signal

ready for analysis has a sampling rate of 250 Hz as shown in Fig. V.5. From the

ECG data, the heart rate and heart rate variability can be derived by detecting

R peaks. Features in time and frequency domain, as well as nonlinear features,

are extracted as the input to the classification models. However, in this paper, we

focus on recurrence quantitative analysis (RQA), which is a method of nonlinear data

analysis, to investigate the dynamics of heart’s electronic reactivity to the emotion

changes. There are only a few studies applying RQA on ECG signal to recognize
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Figure V.6: ECG time-delayed mutual information.

Figure V.7: False nearest neighbors test used for choosing dimension.

human emotion. Recently, Goshvarpour et al. [104] indicated that the RQA is one

of the most significant features to differentiate two groups, men or women, based on

ECG responses while watching sad images. It has also been shown that nonlinear

features have the advantage in physiological signals processing to deal with negative

affect.

Recurrence Plot (RP): The RQA measures are calculated based on recurrence

plots, which is a graph visualizing the times that a phase space trajectory travels to

the same place again [105]. The definition of the RP is shown below

Ri,j = Θ(εi − ‖~xi − ~xj‖), ~xi ∈ Rm, i, j = 1, ..., N, (V.8)

where N is the number of considered states xi, εi is a threshold distance, ‖ · ‖ a

norm and Θ(·) the Heaviside function. In our case, only one time series of ECG signal

is available, the phase space can be reconstructed by embedding dimension and time
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Figure V.8: ECG time-delayed embedding state space.

delay.

~xi = (u(i), u(i+ τ), ..., u(i+ τ(m− 1))), (V.9)

where u(i) is the time series, τ is the embedding time delay and m is the embedding

dimension. To estimate the time delay, we use mutual information analysis [106], and

the time delay τ which minimizes the mutual information is selected. As shown in

Fig. V.6, the delay time τ = 14 is chosen. The embedding dimension m of the ECG

signal is determined by using the False Nearest Neighbors (FNN) method [107]. An

appropriate dimension is selected in such a way that most of the nearest neighbors do

not move apart significantly in the next higher dimension. As shown in Fig. V.7, the

embedding dimension m = 5 is selected. The ECG time-delay embedding state space

is shown in Fig. V.8. Each point of the phase space trajectory xi is evaluated if it

is close enough to another point of the trajectory xj (less than a specified threshold

ε). In the 2-D recurrence plot, the states at time i and time j are denoted by black

points if Ri,j ≡ 1 and white points if Ri,j ≡ 0. Fig. V.9 and Fig. V.10 show the

recurrence plots of 4-seconds ECG data corresponding to non-negative and negative

emotion label, respectively, with τ = 14, m = 5 and ε = 0.07.

RQA measures: Based on the RP, the RQA measures such as RR, DET, LMAX,

VMAX, ENT, TND, LAM, and TT are extracted[108].

• Recurrence rate RR: The percentage of recurrence points in an RP: RR =
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Figure V.9: Recurrence plot of ECG signal with non-negative emotion.

Figure V.10: Recurrence plot of ECG signal with negative emotion.

1
N2 sum

N
i,j=1Ri,j

• Determinism DET: The percentage of recurrence points which form diagonal

lines:

DET =
∑N

l=lmin
lP (l)∑N

l=1 lP (l)

• Longest diagonal line LMAX: The length of the longest diagonal line:

LMAX = max ({li; i = 1, . . . , Nl})

• Longest vertical line VMAX: The length of the longest diagonal line:

VMAX = max ({vi; i = 1, . . . , Nv})

• Entropy ENT: The Shannon entropy of the probability distribution of the di-

agonal line lengths p(l):

ENT = −
∑N

l=lmin
p(l) ln p(l)
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Figure V.11: (a) Original valence values; (b) New label with two categories: Negative
and Non-negative.

• Trend TND: The paling of the RP towards its edges:

TREND =
∑Ñ

i=1(i−Ñ/2)(RRi−〈RRi〉))∑Ñ
i=1(i−Ñ/2)2

• Trapping time TT: The average length of the vertical lines:

TT = TT =
∑N

v=vmin
vP (v)∑N

v=vmin
P (v)

• Laminarity LAM: The percentage of recurrence points which form vertical lines:

LAM =
∑N

v=vmin
vP (v)∑N

v=1 vP (v)

Where

N the number of points on the phase space trajectory.

Nl - the number of diagonal lines in the recurrence plot.

Nv the number of vertical lines in the recurrence plot.

P (l), P (v) - the histogram of the line lengths of diagonal/vertical lines.

Ñ - the maximal number of diagonals parallel to the LOI which will be considered

for the calculation of TND.
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Classification: The emotional state labels include negative (1) and non-negative

(0). Negative emotions include anger, disgust, fear, and sadness, and non-negative

emotions include calm, happiness and excitement. In terms of valence and arousal,

we consider valence less than 0 negative emotion and valence greater than or equal

to 0 non-negative emotion.

We apply the same methodology of data preprocessing and feature extraction to

the RECOLA and DECAF dataset for comparison purpose. However, we need to do

some extra data processing on emotion labels. In the RECOLA dataset, an emotion

in terms of valence and arousal is labeled by six annotators every 40 ms. The valence

value fluctuates significantly in small amounts of time, which is not feasible for the

heart signal to react properly to the emotion changes. To deal with this issue, first,

we take the average of all valence values evaluated from six annotators. A median

filter is applied to smoothen the valence, and then the valence values are converted to

a binary format with 0 as the threshold point. A sliding window with 4-second width

and 2-second step size is used to loop through the labeled data. A window threshold

σ is used, which determines the unique label of the whole window size of the data, i.e.

1000 data points. If there are more than σ% of 1000 data points with the same label,

then that label is assigned to the window. Otherwise, the window of data is not used

for training. The σ value is chosen at 70%, 80% and 90%. In the DECAF dataset,

an emotion label is assigned to a whole session of the experiment in which a person

watches a movie clip. In this case, the label is kept unchanged and the preprocessing

method is applied the same way as we do on our dataset.

An issue common to all three datasets after the binary label is created, as shown

in Fig. V.11, is that the label becomes imbalanced, i.e. the observations with negative

emotion are significantly less than the ones with non-negative, which may cause bias

in the classification. Therefore, we perform under-sampling to make two classes of the

label similar to each other. The emotion label and the RQA measures extracted from
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Table V.6: Result of negative emotion classification.

Our
Dataset

RECOLA
DECAF

70% 80% 90%
Neural
Network

0.821 0.771 0.65 0.599 0.53

Decision
Tree

0.813 0.747 0.638 0.63 0.60

Gradient
Boosting

0.828 0.741 0.7 0.598 0.533

SVM RBF 0.769 0.671 0.639 0.609 0.529

the ECG data are used as input to the classification models. Multiple classification

models such as Logistic Regression, Gradient Boosting, and Neural Network have

been built.

D. Experiments and Results

Experimental Setup and Data Collection: The experiment is conducted in a

dark room so that the participants can be immersed in the virtual environment as

much as possible. There are totally 10 participants, who are students in the age

between 26 and 40. Each participant wears our smart shirt with textile electrodes

integrated to collect the ECG signal while watching the videos.

To make sure they really experience the desired emotion, on one hand, we use

different categories of video. On the other hand, a post-interview is conducted after

each video to ask about their feeling. We also equip them with a wireless keypad so

that they can press a button to mark the moment when they feel they are experiencing

a certain emotion during experiments. The 1-minute ECG data around that moment

is marked with the label of that emotion. All data from the shirt and the keypad are

synchronized and sent to a computer wirelessly for storing and data analysis purposes.
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(a) Classification result on our own dataset.

(b) ROC chart.

Figure V.12: Classification result on our own dataset.

Results: A summary of classification result on our dataset is shown in Fig. V.12.

Fig. V.13 and Fig. V.14 show the classification results when applied on the RECOLA

and DECAF datasets, respectively. As shown in Table. V.6, for our dataset, the

Gradient Boosting model has the highest accuracy of classification, which is around

82.8%. The Neural Network results in the highest accuracy when it is applied to the

RECOLA dataset with the window threshold σ = 70%. When applying classification

Figure V.13: Classification result on the RECOLA dataset.
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Figure V.14: Classification result on the DECAF dataset.

models on the DECAF dataset, however, the highest accuracy is only 60%.

The difference in classification accuracy among the three datasets may be caused

by the difference in the way of eliciting emotions and labeling the emotions. In our

data collection process, using the Oculus Rift offers an immersive VR environment

to elicit expected emotions. An emotion label is marked by the participant while

watching movie clips, and the corresponding 1-minute ECG signal is marked too.

That 1-minute ECG reflects the emotion changes, and the training data built up

from such ECG signals has more chances to result in higher accuracy.

V.2.3 Negative Emotion Recognition using Facial Expression

ECG is a physiological signal, therefore it is believed to be a reliable data source to

detect human emotion. However, during the process of data acquisition, the ECG

signal collected does not always have a good quality since it is sensitive to the noise

caused by the body movement. The bad quality of the signal will affect the model’s

accuracy. In this section, we take into account the facial expression, which is a

supplemental source of data for emotion recognition.

A. Review of Image Recognition Systems

Automated and real-time facial expression recognition has played an important role

in human-computer interaction, social robots, and healthcare [109]. Based on modern

psychology, six basic facial expressions are defined as universal emotions, including

happiness, surprise, sadness, anger, fear, and disgust. Facial expression is generated
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by movements of the muscles on eyebrow, mouth, nose, and eyes. Many studies have

been conducted to recognize the human emotion based on the features extracted from

those parts of the face. Traditionally, a typical facial expression recognition system

consists of steps as shown in Fig. V.15. In the image acquisition step, a single image

or image sequences are taken as input of the system, and they can be either grayscale

or color images. The pre-processing is to enhance the quality of the input image by

reducing noise, smoothing, filtering and normalizing the image. The segmentation

step divides the image into homogeneous, self-consistent regions corresponding to

different objects in the image on the bases of texture, edge, and intensity. The feature

extraction step is to extract meaningful information from shape, motion, color, texture

of the facial image. In the classification step, the features extracted from the previous

step become the input of classification models, which classify the image into a certain

category of facial expression. For example, in [110], k-nearest neighbor classifiers and

multilayer perceptron neural networks are used as classification models.

Figure V.15: A traditional facial expression recognition system.

In the past few years, Deep Neural Networks (DNNs) has become a prominent

technique in the field of computer vision [111]. Among DNNs, Convolutional Neural

Network (CNN) is a special kind of multi-layer neural networks, which is used to

recognize visual patterns directly from pixels of 2D or 3D images [112]. And the

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [113] came to be a
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Table V.7: CNN architectures of ILSVRC top competitors.

Year CNN Top-5 error rate Number of parameters
2012 AlexNet 15.3% 60 million
2014 GoogLeNet 6.67% 4 million
2014 VGG Net 7.3% 138 million
2015 ResNet-50 3.6% 25.6 million

benchmark in object category classification on hundreds of object categories and

millions of images. The ImageNet dataset consists of photographs collected from

Flickr and other search engines. They are manually labeled with the presence of one

of 1000 object categories. Many studies have been conducted using this dataset to

build and evaluate their CNN models. AlexNet, GoogleNet, VGGNet and ResNet

are CNN architectures of ILSVRC top competitors and an analysis was performed to

compare those models in terms of accuracy, memory footprint, parameters, operations

count, inference time and power consumption. Table V.7 [114] shows a summary of

those models with their Top-5 error rate and the number of parameters.

B. Facial Expression Databases

There are several online databases that provide collections of facial images along with

emotion labels. The labels are annotated manually or automatically. In this study, we

collect facial images databases that have the emotion annotation being done manually

in discrete emotion labels, for example, sadness, happiness, fear, disgust, etc. Below

is a brief description of the datasets we use for training and testing our negative

emotion detection models.

AffectNet: AffectNet database [115] contains more than 1,000,000 facial images

collected from the Internet by querying three major search engines using 1250 emotion-

related keywords in six different languages. About half of the retrieved images were

manually annotated for the presence of seven discrete facial expressions and the in-

tensity of valence and arousal. Up to now, AffectNet is the largest database of facial
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expression, valence, and arousal in the wild enabling research in automated facial

expression recognition.

MUG: MUG (Multimedia Understanding Group) is a research group of the Infor-

mation Processing Laboratory of the Electrical and Computer Engineering Depart-

ment of the Aristotle University of Thessaloniki. MUG facial expression database

[116] includes the recordings of 77 Caucasian subjects. There are totally and 1462

labeled facial images. The subjects were asked to perform the six basic expressions,

which are anger, disgust, fear, happiness, sadness, and surprise.

JAFFE: Japanese Female Facial Expression (JAFFE) database [117] contains 213

images of 7 facial expressions (6 basic facial expressions + 1 neutral) posed by 10

Japanese female models. Each image has been rated on 6 emotion adjectives by 60

Japanese subjects.

ISED: Indian Spontaneous Expression Database (ISED) [118] contains facial im-

ages of 26 Indian participants, which are categorized into 4 emotion classes: happiness,

surprise, sadness, and disgust.

CK+: The Extended Cohn-Kanade Dataset [119] includes facial behavior of 210

adults recorded using two hardware synchronized Panasonic AG-7500 cameras. Par-

ticipants were 18 to 50 years of age, 69% female, 81% Euro-American, 13% Afro-

American, and 6% other groups.

RFD: Radboud Faces Database [120] contains portrait images of 49 models in two

subsets: 39 Caucasian Dutch adults (19 female), and 10 Caucasian Dutch children (6

female). All models showed eight facial expressions including neutral, anger, sadness,

fear, disgust, surprise, happiness, and contempt, with three gaze directions. In this
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Figure V.16: Sample images of facial expression databases.

dataset, faces are captured by five cameras with different angels (0◦, 45◦, 90◦, 135◦,

and 180◦). Sample images of facial expression databases are shown in Fig. V.16.

C. Methodology

We follow a transfer learning approach to develop our CNN network, i.e. starting from

a network pre-trained on the generic ImageNet dataset. We choose GoogLeNet to

be the CNN architecture to apply on our datasets. The GoogLeNet was the winning

architecture on ImageNet 2014 and it has much less number of parameters compared

to other deep neural network architectures. Fine-tuning a network with transfer

learning is faster and easier than training a network from scratch with randomly

initialized weights. Learned features can be transferred to a new task of emotion

classification using a smaller number of training facial images. Our transfer learning

method is shown in Fig. V.17.
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Figure V.17: Transfer learning method.

The facial expression dataset used in the transfer learning is AffectNet. However,

we just consider the portion that has been manually labeled and matched with the

labels when classified by Microsoft Azure [121]. This helps increase the reliability of

the ground truth of the dataset. The number of images used for transfer learning is

17,534 and the number of images for testing is 1,427. The image files are located in

7 different folders corresponding to 7 classes of emotion. Out of 17,534 images used

for building models, 70% and 30% of the images are used for training and validation,

respectively.

GoogLeNet has used over a million images to train, learned rich feature representa-

tions for a wide range of images and it can classify images into 1000 object categories.

GoogLeNet takes an image of size 224x224x3 as input and then generates a label for

the object in the image with the probabilities for each of the object categories. In

order to retrain the GoogLeNet to classify facial expression images, the last three

layers of the GoogLeNet should be replaced. These three layers, ’loss3-classifier’,

’prob’, and ’output’, contain information on how to combine the features that the

GoogLeNet extracts into class probabilities and labels. Three new layers added to

the layer graph include a fully connected layer, a softmax layer, and a classification

output layer. The output size of the final fully connected layer is to 7, which is the

number of emotion classes in the new dataset.
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(a) The training process and result of the facial expression classification model.

(b) Examples of faces classified by the facial expression classification model.

Figure V.18: Transfer learning using GoogLeNet for 7-emotion recognition.

D. Results

Seven emotions recognition Before training, some parameters need to be speci-

fied. When performing transfer learning, a large number of epochs is not necessary, so

we set the number of epochs to 6. The mini-batch size is 32, the initial learning rate

is 0.0005, the validation frequency is 5. We also freeze the weights of earlier layers in

the network by setting the learning rates in those layers to zero, which helps speed

up network training. The number of frozen layers is set to be 0, 10, 110, and 141 for

each training. The network is configured and trained by the Matlab Deep Learning

Toolbox with the usage of a single GPU.

A result of the network trained with first 10 layers frozen is shown in Fig. V.18.

The validation accuracy is 90.06%. More details of the result are shown in Table
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Table V.8: Result of transfer learning using GoogLeNet.

Accuracy
141 Layers
Frozen

110 Layers
Frozen

10 Layers
Frozen

No Layers
Frozen

Microsoft
Azure

Validation accuracy 54.63% 79.58% 90.06% 96.58%
Applied on MUG 30.42% 42.89% 59.60% 66.08% 61.34%
Applied on JAFFE 15.57% 26.42% 42.45% 38.68% 31.13%
Applied on ISED 33.41% 44.39% 54.44% 57.94% 57.24%
Applied on CK+ 35.92% 56.63% 66.67% 76.05% 84.78%
Applied on RFD 46.13% 53.30% 71.86% 82.90% 80.06%

V.8. We test our final model on other datasets such as MUG, JAFFE, ISED, CK+,

and RFD. Microsoft Azure, which is considered a benchmark, is also used to classify

facial images in those datasets. The network with no layers frozen turns out to be

better than any network trained with layers frozen. Its validation accuracy is 96.58%.

Compared to Microsoft Azure, it is a little bit better on all test datasets except the

CK+ dataset.

Negative Emotion Recognition: Another model is trained using the transfer

learning method based on the previous model trained with seven emotions. The

difference of this model is in the final fully connected layer, in which the parameter is

set to 2 for binary classification purpose. The dataset is regrouped in 2 classes, which

are Negative containing Sadness, Anger, Disgust and Fear emotion and Non-negative

containing Happiness, Neutral, and Surprise emotion.

The result of negative emotion detection model is shown in Fig. V.19, which has

a classification accuracy of around 93.8% on the validation set. In the next section,

this Face-based negative emotion detection model along with the ECG-based model

built in the previous part are combined together in a fusion model.

V.2.4 Multimodal Fusion Framework

Our robot assistant is equipped with cameras for human interaction purpose, so it

is able to capture images of the environment. We can utilize images of the human
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(a) Result of the Face-based negative emotion classification model.

(b) Examples of faces classified by the Face-based negative emotion classification model.

Figure V.19: Transfer learning using GoogLeNet for negative emotion recognition.

face for emotion recognition. Facial expression can be integrated along with ECG

signals to complement each other in order to recognize human emotion more reliably.

For example, when the robot is too far away from the human to collect the voice, or

the lighting condition is poor then the physiological signals acquired from the shirt

can be used. However, the shirt cannot be worn all the time, or in some cases in

which the human has vigorous activities such as doing exercises, the signals collected

from the shirt may not be good for emotion detection, then the information from

facial expression and voice should be used instead. Therefore, the approach of fusing

multiple sensors to detect emotion may result in higher accuracy in emotion detection.

There are two approaches of fusion: Fusion at feature level and fusion at decision

level. The feature-level fusion requires all data sources to be synchronized during the

data acquisition step so that separated feature vectors of each single model can be
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combined together to build a feature vector to be the input of a final model. The

decision-level fusion, on the other hand, lets each model do its own classification task,

then their outputs are fused to give a final result. The decision-level fusion is suitable

to our negative emotion detection. In our system, ECG signals are collected and

processed using a smart garment, whereas face images are captured and processed

using the robot camera. We can reduce the workload and communication bandwidth

of raw sensor data transmission, thus prolong the battery life of the smart garment

and allow physiological data and human health status to be updated seamlessly.

There are several decision rules for binary classification problem, for example

maximum likelihood (ML), maximum a posterior probability (MAP), Bayes’ mini-

mum average cost rule [122], and Hidden Markov models (HMM) decision fusion.

The concepts of likelihood ratio test (LRT), the probabilities of false positive and

false negative, and Bayes theorem are often employed by those decision rules. We

choose the Bayes’ minimum average cost rule for the decision fusion in the negative

emotion recognition.

A. Contextual Factors

We need to consider different scenarios that affect the data acquisition and subse-

quent classification result. Since the ECG signal is collected by using skin-contact

textile electrodes, it is sensitive to the body movement which causes the loose contact

between the electrodes with the human skin. The quality of the ECG signal has an

impact on the accuracy of the ECG model. If the ECG signal is significantly degraded

due to the human activities, the ECG-based model should be ignored. Regarding the

negative emotion detection based on face image, in the case of the camera being un-

able to capture the face, the Face-based model should not be employed. If an image of

a portion of the face is captured, the subsequent detection output of the model should

have a lower accuracy compared to a captured image of a full face. An experiment
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Figure V.20: A setup to simulate human movement while human face is captured.

was conducted to quantify the relationship between the accuracy of the Face-based

model and the yaw angle of the face, which is considered an input for the decision

rules. Another purpose of this experiment was to find out if human activities have

impact on the ECG signal, which assists a decision to reject or not the ECG-based

model.

In the experiment, we used a setup of a treadmill to simulate the human move-

ment and three cameras in front of the treadmill to capture human face at different

angles. The setup is shown in Fig. V.20. Six people were recruited to perform the

experiments. They were asked to stand still, walk and run on the treadmill while

showing 7 emotional expressions on their face, including happiness, surprise, neutral,

sadness, fear, disgust and anger. The motion data, ECG signals, and face images

were collected.

We build a test set of facial expressions captured at different angles from 6 people.

88



Table V.9: Yaw angle categories and corresponding model accuracies.

Yaw Angle
Accuracy of Face-based negative

emotion detection model
|Y A| <= 10◦ 88.53%

10◦ < |Y A| <= 25◦ 85.61%
25◦ < |Y A| <= 40◦ 83.64%
|Y A| > 40◦ 70.59%

Figure V.21: Examples from the test set including facial images with different yaw
angles.

The data set of facial images are grouped into 2 classes: Negative (sadness, fear,

disgust and anger) and Non-Negative (happiness, surprise, and neutral). We further

categorize the data set based on the yaw angle of the face, which is calculated based on

the head pose estimation using Convolutional Neural Networks and adaptive gradient

methods [123]. An example is shown in Fig. V.21, in which the negative degrees

mean the head turning to the right, and the positive degrees mean the head turning

to the left. The yaw angle (YA) categories are |Y A| <= 10◦, 10◦ < |Y A| <= 25◦,

25◦ < |Y A| <= 40◦, and |Y A| > 40◦. The Face-based model, which is trained in

the previous section, is applied on each category and the classification accuracies are

shown in Table V.9. It shows that this model is affected by the yaw angle of the face

when recognizing the negative emotions. There is a variation of the accuracy level

among the categories of the yaw angle. The accuracy is significantly lowered when

|Y A| > 40◦.

We also build a dataset including ECG signal and motion data to investigate

the relationship between human activity levels and the quality of the ECG acquired.

Each person performs activities such as standing, walking (velocity less than 4 mph)
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Figure V.22: Sample dataset of ECG signals and human activities.

Figure V.23: Normal heart rate ranges corresponding to activity levels.

and jogging/running (velocity greater than 4 mph) on the treadmill while the ECG

is collected. The sample data collected is shown in Fig. V.22. The ECG and the

motion data are divided into small observations which comprise of 4-second chunks

of data. In order to label the ECG data as good or bad, we calculate the heart

rate from the ECG signal and compare to its normal range corresponding to each

activity level as shown Fig. V.23 [124, 125]. The Maximum Heart Rate (MHR) is

calculated by using the formula MHR = 207 − 0.7 × age. The normal ranges of

heart rate are 60 - 100 bpm (beat per minute), 50% - 70% MHR, and 70% - 85%

MHR for sedentary(e.g. standing), moderate (e.g. walking) and vigorous activity

(e.g. jogging,running), respectively. In our dataset, the heart rate is calculated based
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Figure V.24: Labeling the data based on the normal ranges of heart rate.

on R-R intervals detection using Pan Tompkins algorithm [20]. If the heart rate is in

the normal range regardless of the age, the ECG is labeled as good; Otherwise, the

ECG is labeled as bad as shown in Fig. V.24. The results show that in the category

of vigorous level, 98% of observations have the heart rate out of the normal range

(100.8 - 158.1 bpm). It means the ECG is unacceptable if activity level is vigorous.

In the categories of moderate and sedentary level, the heart rates are in the normal

ranges (72 - 130.2 bpm, and 60 -100 bpm, respectively).

B. Methodology

If the ECG signal is good and the face is captured, a decision rule is employed in

consideration of the weights determined by the probability of false alarm (false positive

rate) and the probability of miss (false negative rate) of each individual models. The

weight of the Face-base model is also affected by another parameter, which is the yaw

angle of the face. The methodology overview is described in Fig. V.25.

Let us consider two hypotheses:

• H0: The observation is labeled as Non-negative emotion.

• H1: The observation is labeled as Negative emotion.
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Figure V.25: Decision fusion diagram used to recognize the negative emotion.

The priori probabilities of the two hypotheses are denoted by P (H0) = P0 and

P (H1) = P1. The decision of the ECG-based and Face-based negative emotion de-

tection model is denoted by E and F , respectively and they can output 0 or 1, for

example

• E = 0: The observation is detected as Non-negative emotion using ECG-based

model.

• E = 1: The observation is detected as Negative emotion using ECG-based

model.
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Table V.10: Fusion Rule based on two individual models.

E (ECG-based model) F (Face-based model) Fusion
0 0 Fu1
0 1 Fu2
1 0 Fu3
1 1 Fu4

The final decision after fusing the two models is denoted as Fu = f(E,F ), which also

can be 0 or 1 as shown in Table. V.10.

The probability of false alarm is denoted as PFE and PFF , and the probability of

miss is denoted as PME and PMF for the ECG-based and Face-based model respec-

tively.

• ECG-based model: PFE = P (E = 1|H0) and PME = P (E = 0|H1)

• Face-based model: PFF = P (F = 1|H0) and PMF = P (F = 0|H1)

Based on [122], the optimum decision rule is given by the likelihood ratio test as

follow

P (E,F |H1)

P (E,F |H0)

H0

≶
H1

P0 · (C10 − C00)

P1 · (C01 − C11)
(V.10)

in which, C01 is the cost of misses and C10 is the cost of false alarms. The values of

C01 and C10 can be selected due to a variety of criteria. In this case study, we consider

the false alarm not a costly problem. We use a robot, which is mentioned in the next

chapter, to interact with the human when a negative emotion is detected. The false

alarms can increase the frequency of the robot interaction with the human. It may

cost more power and other resources, but it is not a big concern. On the other hand,

getting the older adults, especially who are living alone, involved in conversations

with the robot is crucial for them to maintain an active social life. In the case of

misses, when the human truly has a negative emotion which is not detected, there

is no interaction from the robot. We definitely want to reduce the chance of its

occurrence. Therefore, we evaluate the cost of misses (C01) higher than the cost of
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false alarms (C10). Also, there is no cost when the classification is correct, which is

C00 = C11 = 0. The Equation V.10 becomes

P (Fu|H1)

P (Fu|H0)

H0

≶
H1

P0 · C10

P1 · C01

Using Bayes rule, we have

C01 · P (H1|Fu) · P (Fu)

C10 · P (H0|Fu) · P (Fu)

H0

≶
H1

1

The log-likelihood ratio test is

log
C01 · P (H1|Fu)

C10 · P (H0|Fu)

H0

≶
H1

0

log
C01 · P (H1)·P (Fu|H1)

P (Fu)

C10 · P (H0)·P (Fu|H0)
P (Fu)

H0

≶
H1

0

log
C01 · P1

C10 · P0

+ log
P (Fu|H1)

P (Fu|H0)

H0

≶
H1

0

Under the assumption of conditional dependence among local sensor observations

(face images and ECG signals), we have

log
C01 · P1

C10 · P0

+ log
P (E|H1) · P (F |H1)

P (E|H0) · P (F |H0)

H0

≶
H1

0

log
C01 · P1

C10 · P0

+ log
(1− PME)E · (PME)1−E · (1− PMF )F · (PMF )1−F

(PFE)E · (1− PFE)1−E · (PFF )F · (1− PFF )1−F

H0

≶
H1

0

log
C01 · P1

C10 · P0

+ E · log
1− PME

PFE
+ (1− E) · log

PME

1− PFE

+F · log
1− PMF

PFF
+ (1− F ) · log

PMF

1− PFF

H0

≶
H1

0

log
C01 · P1 · PME · PMF

C10 · P0 · (1− PFE) · (1− PFF )
+ E · log

(1− PME) · (1− PFE)

(PFE) · (PME)

+F · log
(1− PMF ) · (1− PFF )

(PFF ) · (PMF )

H0

≶
H1

0
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Therefore, we have a final decision rule which can be expressed as

Fu =

1, if a0 + a1 · E + a2 · F > 0

0, otherwise

Where, the weight a0, a1 and a2 are given by

a0 = log
C01 · P1 · PME · PMF

C10 · P0 · (1− PFE) · (1− PFF )

a1 = log
(1− PME) · (1− PFE)

(PFE) · (PME)

a2 =α · log
(1− PMF ) · (1− PFF )

(PFF ) · (PMF )

Because the Face-based model has different accuracy levels when applying into facial

images with different yaw angles of the face, it yields a better classification accuracy

for images with small yaw angle of the face. The weight a2 should be adjusted by a

penalty parameter α according to the yaw angle of the face. We have

α =



0.8853, |Y A| <= 10◦

0.8561, 10◦ < |Y A| <= 25◦

0.8364, 25◦ < |Y A| <= 40◦

0.7059, |Y A| > 40◦

(V.11)

C. Results

Assuming there are outputs from ECG-based and Face-based models, to validate

the decision fusion, we picked RECOLA dataset which includes both ECG signal

and facial images. The test dataset includes 2560 observations, in which there are

422 negative emotion observations and 2138 non-negative emotion observations. The

ground truth valence labels measured by 6 annotators are grouped in every 4-second,

averaged out and compared with a threshold to determine a label in the test dataset

as non-negative or negative emotion.

We apply both ECG-based and Face-based emotion recognition models on that

test dataset. The probability of false alarm and probability of miss of each model are
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Table V.11: Confusion matrices of negative emotion recognition models.

ECG-based
model

Face-based
model

Fusion
model

0 1 0 1 0 1

Actual Emotion
0 1719 419 1680 389 1668 470
1 247 175 200 291 93 329

Figure V.26: A summary of the fusion rule.

calculated. Since we evaluate the cost of false alarm C10 less than the cost of miss

C01, we assume C10 = 2 and C01 = 2.5. By applying Equation V.11, we can calculate

the final decision of the fusion model. The confusion matrices of 3 models are shown

in Table V.11. The weight a0, a1, a2 are calculated, in which a0 = −0.98, a1 = 0.46

and a2 = α · 0.70. The accuracy of the fusion model is 78%, compared to 74% of

the the ECG-based and 77% of the Face-based model, when they are applied on the

RECOLA test set.

In other scenarios where contextual information affects the quality of the ECG

signal and the availability of the facial image, the Model Selection module is used to

select one model to result the output. If the ECG is not acceptable, Face-base model

is selected. If human face is not captured, ECG-based model is selected. If the ECG

is unacceptable and the face is not captured, no output is generated from the system.

A summary of the fusion is shown in Fig. V.26.
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V.2.5 Summary

In this chapter, we described two case studies of how to utilize CoSHE in well-being

monitoring, the body hydration monitoring and negative emotion detection. The

body hydration monitoring was done by detecting drinking sound and body activ-

ity levels with the accuracy of 91.5% and 89.12%, respectively. It can provide the

information of the amount of fluid taken, daily activity, and amount of fluid that

should be taken for the day. However, the comfort of the throat microphone needs

to improved and the system power consumption needs to optimized. Regarding the

negative emotion, it can be detected by ECG signal and facial expression with the

accuracy of 82.8% and 93.8%. A decision fusion model was built from ECG-based

and Face-based model. It can expand the capability of recognizing the negative emo-

tion in more scenarios of daily life. In the decision rule, the human activity levels

can assist the decision whether or not the ECG is good to be used in recognizing

the negative emotion. The face angle is another factor included in the decision rule

to adjust the weight of the Face-based negative emotion recognition model. In the

next chapter, we introduce a robot assistant that can interact with the human via

conversations in case of anomalies.
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CHAPTER VI

HEALTHCARE DELIVERY THROUGH A ROBOT ASSISTANT

This chapter introduces a robot assistant, its hardware components and functionali-

ties. Then, two use cases demonstrating how the robot is used in hydration reminder

and emotion regulation applications are presented.

VI.1 Introduction

The CoSHE itself can provide human context information and human health status,

which can be accessed in real-time by a remote caregiver or doctor. Then, the remote

caregiver should contact the older adult or if needed to double check or give out

necessary instructions, for instance. However, there are cases when the caregiver

cannot reach out to the older adult via phone or video chat, especially when the

adult has an issue, for example, an injurious fall or having symptoms of a stroke in a

private area. A robot assistant is a good solution in such cases. The robot assistant

is useful if it is able to understand the human context information and health status,

move to the human location, and interact with the human. In our study, the robot

assistant is integrated into the CoSHE system to form a closed-loop healthcare system

as depicted in Fig. VI.1. The robot assistant is able to access the cloud database

and query the context information as well as the health status of the human. It is

responsible for delivering healthcare services whenever the health monitoring system

raises a red flag, i.e., when dehydration status is detected or negative emotions are

recognized.
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Figure VI.1: Closing the loop with a robot assistant.

VI.2 Robot Assistant

The robot assistant, as shown in Fig. VI.2, is built on a Pioneer P3-DX base with an

approximately 1.5 m-long aluminum frame holding up a touchscreen monitor which is

used for video communication and graphic user interface [126]. The robot is equipped

with various sensors and devices which include a laser rangefinder (LRF), a vision

system, an auditory system, an Intel NUC minicomputer, and batteries. The LRF,

a Hokuyo URG-04LX-UG01 [127], is a low-power LRF with a distance range up to

5600 mm, an angle range up to 2400, and an accuracy of 30 mm. The vision system

is built using an Asus Xtion Pro Live RGB and Depth (RGB-D) camera [128], a

pan-tilt unit, and a control board. The auditory system is built by extending the

built-in microphone array of the PS3eye camera [129]. It features four microphones

and employs technologies for echo cancellation and background noise suppression.

This allows the auditory system to be used for speech recognition, sound localization,

and sound separation in noisy environments. The microphone array operates with

each channel processing 16-bit samples at a sampling rate up to 48 kHz per channel

and a large dynamic range of signal-to-noise ratio up to 90 dB.
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Figure VI.2: Robot assistant.

This robot delivers healthcare services by engaging the human in interactive con-

versations in order to help the human get out of negative emotions if the negative

emotions are detected, and reminding the human of drinking more water if dehydra-

tion status is detected. To facilitate such interactive conversations, we utilize Google

APIs to provide functions such as converting voice to text, analyzing intents and

actions, etc. A general diagram of the interactive conversation method is shown in

Fig. VI.3.

• Automatic Speech Recognizer is the component used to convert human voice to

a sequence of words. The robot assistant is programmed to utilize the function-

alities of Google Cloud Speech API, in which neural network models are used to

recognize over 80 languages and variants, with transcripts available immediately

after speaking.
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Figure VI.3: Interactive conversation method.

• Natural Language Interpreter is responsible for extracting the structure and

meaning of the input text, which is enabled by Google Cloud Natural Language

API. An example of text structure analyzing is shown in Fig. VI.4.

Figure VI.4: Natural language interpreter.

• Dialogue State Tracker and Dialogue Response Selection are supported by the

Google API AI. We combine the API AI with the expression evaluation in our

emotion regulation system, which is implemented inside the robot assistant.

This allows the conversations to be tracked properly.

• Natural Language Generator is used to generate textual summaries from the

input data set. In our case, the input data is only from what the human

says during the conversation. Other factors, such as human emotion or context

information, are not considered. This output response text is generated through
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templates, rules-based workflows, and intent-driven approaches.

• Text-to-Speech Synthesizer is used to convert normal language text into speech

with proper tones of voice. Google text-to-speech is used in the robot assistant.

VI.3 Hydration Reminder

VI.3.1 Hydration Recommendation

Based on [67], the recommended fluid amount is calculated as follow.

Flrecom = FlAI − Flin − Flfood − Flmet (VI.1)

Where FlAI and Flin are provided by the health monitoring service as mentioned in

Section 5. FlAI is calculated based on the human’s activity level and BMI index such

as weight and height. Flin is calculated based on drinking sound recognition. Of the

total fluid requirement, we account 1000mL intake from solid foods and 350ml from

metabolic water per day. The difference between the adjusted fluid requirement and

amount of water drunk is recommended to the human every 1 hour to keep a healthy

hydration state.

VI.3.2 Interactive Conversation

Knowing the human’s dehydration status, the robot assistant can approach the human

location to start a conversation. The conversation, in this case, is to remind the human

of drinking more water if a necessary amount of water intake is recommended. When

talking with the human, the robot tries to encourage the human to drink at that

moment. If the human is reluctant to drink, the robot will persuade the human to

drink water.

The content of the conversations is stored in the database, which can be used to

improve the conversations in the future. For example, as shown in Fig. VI.6 (b),
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Figure VI.5: The loop of hydration reminder.

based on the history of conversations, we may know that in the last 30 days, there

are 3 times in which the human agrees to drink right after the first time of reminder

from the robot, and there are 2 times that the human agrees to drink right after the

third time of reminder from the robot along with dehydration knowledge provided.

A sample conversation between the robot and the human is described as follows.

• Robot: Hi Minh, Would you like to drink something now?

Human: No I am watching TV

• Robot: Minh, you need at least 300 ml of water to keep you hydrated?

Human: I know I will go grab a cup of water after this TV show.

• Robot: Hey Minh, do you know that dehydration may cause diabetes?

Human: Really yes I will go drink now thank you.

• Robot: You are welcome Minh.
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(a) Interactive conversation for reminding hydration.

(b) Analytics of conversations.

Figure VI.6: Hydration reminder application of the robot assistant.

VI.4 Emotion Regulation

VI.4.1 Distraction method

As already mentioned, negative emotional states can be considered risk factors for

physical diseases and illness. Therefore, it is desirable to get the human out of neg-

ative emotion once it occurs. One of the solutions is to distract them. In [130],

the laboratory studies show that directing depressed people to focus on positive dis-

tractions can reduce their negative affect. Those studies also show that inducing

depressed people to distract from negative thoughts leads to relatively more positive
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appraisals of situations, better problem solving, and less distress. According to [131],

Figure VI.7: Emotion regulation with the robot assistant.

through experiments conducted, the authors claim that people can be distracted from

negative emotions by loading their working memory. The more working memory is

being used by a distracting activity, the less room will remain for negative emotions

to persist. Experimental results from [131] demonstrate that solving a math problem

is an effective way to load working memory. The participants in those experiments

report that their negative emotion is reduced after solving math problems.

As shown in Fig. VI.7, through the wearable unit, the human’s ECG and move-

ment signal are processed and transmitted to the cloud to update negative emotion

status and the human latest location. This information is shared with the robot assis-

tant. If the negative emotion is detected, it can approach the human and start talking

to distract the human from the negative emotion. In addition to health monitoring,

human also receives the healthcare delivery from the robot assistant, which forms a

closed-loop healthcare system. Based on the above theory, we implement our robot

assistant in such a way that it can talk with the human and encourage them to do

some math problems.
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(a) Interactive conversation for distraction.

(b) Analytics of conversations that include several intents and their frequency of being
invoked and likelihood of ending the conversation.

Figure VI.8: Emotion regulation application of the robot assistant.
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VI.4.2 Interactive Conversation

According to the literature above, one of the best ways to distract humans is to make

them actively use their working memory area, for example solving a simple mathe-

matics problem. Therefore, our idea is to design a robot that is able to talk with the

human through interactive conversations. We develop several types of conversation

with different complexity level to adapt to different intensities of the negative emo-

tions the human may have. The conversations between the human and the robot are

stored in the cloud, which may be used for analysis and improving the interactive

conversations in the future as shown in VI.8. A sample conversation between the

robot and the human is described as follows.

• Robot: Hi Minh, how are you doing now?

Human: I am a little bit sad

• Robot: I am sorry that you feel sad. Can you join me playing something? Can

you give me two numbers, please?

Human: It’s OK. Number 7 and number 3

• Robot: What is summation of 7 and 3?

Human: It is 10.

• Robot: Awesome, it’s correct. What are you feeling now, Minh?

Human: I am still sad

• Robot: I am sorry that you are still sad. Can you do multiplication of 7 and 3

and plus 5

Human: It is 24, correct?

• Robot: No, it’s wrong. Can you try one more time?

Human: Oh, it is 25.
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Figure VI.9: Interactive conversation evaluation.

• Robot: Awesome, it’s correct. How do you feel now, Minh?

Human: I feel better now.

• Robot: I am glad that you feel better now. Do you want to chat with me for a

while?

Human: No, I have to go out.

• Robot: Ok, bye for now.

VI.4.3 Result

An experiment is conducted with ten subjects to evaluate the interactive conversation.

Participants’ emotion is induced by letting them watch emotional videos through

Oculus or normal screens. Negative emotions such as sadness and disgust are focused

in the experiment. During the experiment, ECG signal from the participants is

collected using our smart shirt. They are also required to use a wireless keypad to

give feedback when they feel a certain emotion as shown in Fig. VI.9. This data may

be used for later analysis. After finishing watching and the negative emotions being

induced, the individual goes through our interactive conversation system. Finally,
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(a) Human with negative emotions being distracted by interactive conversation.

(b) Arousal level being distracted by interactive conversation.

Figure VI.10: Experimental result.

a survey is conducted in which they are asked if they really experience a certain

emotion with a level of intensity (from 1 to 10), and if they feel distracted or not

after attending the conversation, including following options:

• Not distracted at all

• Distracted (or somewhat distracted)

The survey result shows that out of ten people, six people feel sad and four people

feel disgusted with 5.3 and 7.3 as the mean of arousal respectively. Our experiment

shows that 90% of people get somewhat distracted or distracted and that people who

have higher intensity seem to be more likely to be distracted. The result is shown in

Fig. VI.10.
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VI.5 Summary

In this chapter, we introduced a robot assistant which makes the CoSHE a closed-

loop healthcare system. Via the cloud system, it is aware of context information

and health status of the human. It can perform hydration reminder and emotion

regulation via interactive conversations with the human. The conversations are built

by utilizing Google services such as speech recognition, dialogue building and text-

to-speech. They are designed to help the human keep hydrated if the dehydration is

detected, and distract the human if he or she falls in the negative emotion. However,

the interactive conversation still needs to improve. One existing problem, which is

common for most computer dialogue systems, is that the robot cannot deal with

any arbitrary input from human. It can only respond to expected human’s inputs,

which are included in the robot program. Another problem is that the robot has

limited understanding of the human’s contextual information, which leads to poor

conversations. The human emotion is an important contextual input that may help

the robot produce more human-like conversations, which is considered a future work

of this research.
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CHAPTER VII

CONCLUSIONS AND FUTURE WORKS

VII.1 Conclusion

This dissertation has presented my work in developing a cloud-based smart home

environment supporting health care applications. Below is a summary of the main

contributions.

• We have developed smart garments with embedded electrical circuits to col-

lect physiological signals such as electrocardiography (ECG), oxygen saturation

(SPo2), and respiration. Textile electrodes and conductive threads are used.

• A cloud-based smart home environment has been developed, which provides a

complete ecosystem that supports health care applications. Remote caregivers

are able to keep track health status and contextual information of the human

living inside.

• We have developed algorithms to recognize human body activity and track of

human location using information from an IMU and an array of PIR sensors,

which are fused in a particle filter.

• We have developed a health monitoring system that can recognize negative emo-

tions of the human based on the ECG signal. It also can monitor dehydration

status and detect negative emotion.

• A healthcare delivery service has been implemented on the robot assistant that

can distract the human from negative emotions and remind to drink more water.
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• With the robot assistant and smart garment, the CoSHE becomes a closed-loop

healthcare system. It will be a potential application if the system is implemented

in places where elderly people reside, especially for those who want to live

independently or have difficulties in traveling to clinic.

VII.2 Future Work

Our work can be extended in the following directions in the future.

• Emotion fusion

Human face captured by the robot camera and the ECG acquired by the smart

garment are already fused in a decision fusion. We can extend the capability

of recognizing negative emotions in even more scenarios if a model using the

human voice is included. It is a valuable data source when the ECG quality is

bad and the human face is not captured.

What we need to do next is to build a setup to perform new experiments in

which we can collect ECG signal, the human face expression and the human

voice at the same time when certain emotions are induced. The current setup

using Oculus covering a part of the human face will not let the facial expression

to be perfectly captured. One option is not using the Oculus to induce emotion

while the experiment is conducted. This way we can capture the whole human

face, but we need to build a new environment, which should be isolated, to

induce emotion by letting human watch videos. The other option is to still keep

the Oculus. Using Oculus helps human get better isolated from the ambient

environment and is easier to induce emotion, but only the human’s mouth

area is exposed to be captured, and it may cause difficulty in facial expression

detection.

Furthermore, we would like to improve the emotion recognition system so that
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it can detect more emotions of the human. Once different types of emotion have

been detected, they will be crucial input for the interactive conversation model,

thus help the robot appropriately react with more contexts based on human

emotions.

• Cognitive assessment

A big problem of older adults when aging is mental disorders such as dementia,

cognitive impairment, etc., which cause disability. Developing an automatic cog-

nitive assessment application utilizing our robot assistant’s functionalities can

be considered in near future. Furthermore, through interactive conversations,

not only cognitive assessment can be implemented, but the robot assistant can

also provide cognitive training to the older adults to help them enhance their

cognitive abilities.

Cognitive assessments are valuable tools in assessing neurological conditions.

They are critical in measuring deficits in cognitive function in an array of neu-

rological disorders and during the ageing process. Automation of cognitive

assessments is one way to address the increasing burden on medical resources

for an ever increasing ageing population.

Walking speed is considered an indicator of mild cognitive impairment [132].

Our home and wearable sensors are able to collect motion data of human in the

daily life. The data of each elderly person collected in long-term will establish

a large dataset stored in the cloud. The cognitive assessment tool can provide

ground truth label for the dataset. This may enable predictive models for early

detection of mild cognitive impairment using walking speed.

• Other issues and directions

The smart home and smart garments can be considered IoT (Internet of Things)

devices that are connected to the Internet to facilitate the communication with
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remote caregivers. However, the daily life activities at home and health status

of the older adults are sensitive information and need to be protected from hack-

ers. Privacy and security issues during the process of storing and transmitting

human data should be addressed.

Power consumption is a common problem in systems where data is frequently

transmitted wirelessly between a network of sensor nodes and a center node

where data is processed. A solution for that is to embed more tasks in the

sensor nodes where algorithms should be implemented to process data and only

send out the inferred output.

Robot emotion model should be developed to allow the robot to express its

emotion, for example by showing a smiling face, or a sad face, by changing the

tone of voice, or by performing physical movements. The robot emotion model

would take all contextual information provided or sensed from both environment

and human. Input data may be video signal, audio signal, human actions,

human language, human emotion, human health state, etc. Output of the

robot emotion model is the robot’s reaction.
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