65 research outputs found

    Horizontal Correlation Attack on Classic McEliece

    Get PDF
    As the technical feasibility of a quantum computer becomes more and more likely, post-quantum cryptography algorithms are receiving particular attention in recent years. Among them, code-based cryptosystems were first considered unsuited for hardware and embedded software implementations because of their very large key sizes. However, recent work has shown that such implementations are practical, which also makes them susceptible to physical attacks. In this article, we propose a horizontal correlation attack on the Classic McEliece cryptosystem, more precisely on the matrix-vector multiplication over F2\mathbb{F}_2 that computes the shared key in the encapsulation process. The attack is applicable in the broader context of Niederreiter-like code-based cryptosystems and is independent of the code structure, i.e. it does not need to exploit any particular structure in the parity check matrix. Instead, we take advantage of the constant time property of the matrix-vector multiplication over F2\mathbb{F}_2. We extend the feasibility of the basic attack by leveraging information-set decoding methods and carry it out successfully on the reference embedded software implementation. Interestingly, we highlight that implementation choices, like the word size or the compilation options, play a crucial role in the attack success, and even contradict the theoretical analysis

    A toolbox for software optimization of QC-MDPC code-based cryptosystems

    Get PDF
    The anticipated emergence of quantum computers in the foreseeable future drives the cryptographic community to start considering cryptosystems, which are based on problems that remain intractable even with strong quantum computers. One example is the family of code-based cryptosystems that relies on the Syndrome Decoding Problem (SDP). Recent work by Misoczki et al. [34] showed a variant of McEliece encryption which is based on Quasi Cyclic - Moderate Density Parity Check (MDPC) codes, and has significantly smaller keys than the original McEliece encryption. It was followed by the newly proposed QC-MDPC based cryptosystems CAKE [9] and Ouroboros [13]. These motivate dedicated new software optimizations. This paper lists the cryptographic primitives that QC-MDPC cryptosystems commonly employ, studies their software optimizations on modern processors, and reports the achieved speedups. It also assesses methods for side channel protection of the implementations, and their performance costs. These optimized primitives offer a useful toolbox that can be used, in various ways, by designers and implementers of QC-MDPC cryptosystems

    Differential Power Analysis of a McEliece Cryptosystem

    Get PDF
    This work presents the first differential power analysis of an implementation of the McEliece cryptosystem. Target of this side-channel attack is a state-of-the-art FPGA implementation of the efficient QC-MDPC McEliece decryption operation as presented at DATE 2014. The presented cryptanalysis succeeds to recover the complete secret key after a few observed decryptions. It consists of a combination of a differential leakage analysis during the syndrome computation followed by an algebraic step that exploits the relation between the public and private key

    Curves, codes, and cryptography

    Get PDF
    This thesis deals with two topics: elliptic-curve cryptography and code-based cryptography. In 2007 elliptic-curve cryptography received a boost from the introduction of a new way of representing elliptic curves. Edwards, generalizing an example from Euler and Gauss, presented an addition law for the curves x2 + y2 = c2(1 + x2y2) over non-binary fields. Edwards showed that every elliptic curve can be expressed in this form as long as the underlying field is algebraically closed. Bernstein and Lange found fast explicit formulas for addition and doubling in coordinates (X : Y : Z) representing (x, y) = (X/Z, Y/Z) on these curves, and showed that these explicit formulas save time in elliptic-curve cryptography. It is easy to see that all of these curves are isomorphic to curves x2 + y2 = 1 + dx2y2 which now are called "Edwards curves" and whose shape covers considerably more elliptic curves over a finite field than x2 + y2 = c2(1 + x2y2). In this thesis the Edwards addition law is generalized to cover all curves ax2 +y2 = 1+dx2y2 which now are called "twisted Edwards curves." The fast explicit formulas for addition and doubling presented here are almost as fast in the general case as they are for the special case a = 1. This generalization brings the speed of the Edwards addition law to every Montgomery curve. Tripling formulas for Edwards curves can be used for double-base scalar multiplication where a multiple of a point is computed using a series of additions, doublings, and triplings. The use of double-base chains for elliptic-curve scalar multiplication for elliptic curves in various shapes is investigated in this thesis. It turns out that not only are Edwards curves among the fastest curve shapes, but also that the speed of doublings on Edwards curves renders double bases obsolete for this curve shape. Elliptic curves in Edwards form and twisted Edwards form can be used to speed up the Elliptic-Curve Method for integer factorization (ECM). We show how to construct elliptic curves in Edwards form and twisted Edwards form with large torsion groups which are used by the EECM-MPFQ implementation of ECM. Code-based cryptography was invented by McEliece in 1978. The McEliece public-key cryptosystem uses as public key a hidden Goppa code over a finite field. Encryption in McEliece’s system is remarkably fast (a matrix-vector multiplication). This system is rarely used in implementations. The main complaint is that the public key is too large. The McEliece cryptosystem recently regained attention with the advent of post-quantum cryptography, a new field in cryptography which deals with public-key systems without (known) vulnerabilities to attacks by quantum computers. The McEliece cryptosystem is one of them. In this thesis we underline the strength of the McEliece cryptosystem by improving attacks against it and by coming up with smaller-key variants. McEliece proposed to use binary Goppa codes. For these codes the most effective attacks rely on information-set decoding. In this thesis we present an attack developed together with Daniel J. Bernstein and Tanja Lange which uses and improves Stern’s idea of collision decoding. This attack is faster by a factor of more than 150 than previous attacks, bringing it within reach of a moderate computer cluster. We were able to extract a plaintext from a ciphertext by decoding 50 errors in a [1024, 524] binary code. The attack should not be interpreted as destroying the McEliece cryptosystem. However, the attack demonstrates that the original parameters were chosen too small. Building on this work the collision-decoding algorithm is generalized in two directions. First, we generalize the improved collision-decoding algorithm for codes over arbitrary fields and give a precise analysis of the running time. We use the analysis to propose parameters for the McEliece cryptosystem with Goppa codes over fields such as F31. Second, collision decoding is generalized to ball-collision decoding in the case of binary linear codes. Ball-collision decoding is asymptotically faster than any previous attack against the McEliece cryptosystem. Another way to strengthen the system is to use codes with a larger error-correction capability. This thesis presents "wild Goppa codes" which contain the classical binary Goppa codes as a special case. We explain how to encrypt and decrypt messages in the McEliece cryptosystem when using wild Goppa codes. The size of the public key can be reduced by using wild Goppa codes over moderate fields which is explained by evaluating the security of the "Wild McEliece" cryptosystem against our generalized collision attack for codes over finite fields. Code-based cryptography not only deals with public-key cryptography: a code-based hash function "FSB"was submitted to NIST’s SHA-3 competition, a competition to establish a new standard for cryptographic hashing. Wagner’s generalized birthday attack is a generic attack which can be used to find collisions in the compression function of FSB. However, applying Wagner’s algorithm is a challenge in storage-restricted environments. The FSBday project showed how to successfully mount the generalized birthday attack on 8 nodes of the Coding and Cryptography Computer Cluster (CCCC) at Technische Universiteit Eindhoven to find collisions in the toy version FSB48 which is contained in the submission to NIST

    Do Not Bound to a Single Position: Near-Optimal Multi-Positional Mismatch Attacks Against Kyber and Saber

    Get PDF
    Misuse resilience is an important security criterion in the evaluation of the NIST Post-quantum cryptography standardization process. In this paper, we propose new key mismatch attacks against Kyber and Saber, NIST\u27s selected scheme for encryption and one of the finalists in the third round of the NIST competition, respectively. Our novel idea is to recover partial information of multiple secret entries in each mismatch oracle call. These multi-positional attacks greatly reduce the expected number of oracle calls needed to fully recover the secret key. They also have significance in side-channel analysis. From the perspective of lower bounds, our new attacks falsify the Huffman bounds proposed in [Qin et al. ASIACRYPT 2021], where a one- positional mismatch adversary is assumed. Our new attacks can be bounded by the Shannon lower bounds, i.e., the entropy of the distribution generating each secret coefficient times the number of secret entries. We call the new attacks near-optimal since their query complexities are close to the Shannon lower bounds

    Cryptography based on the Hardness of Decoding

    Get PDF
    This thesis provides progress in the fields of for lattice and coding based cryptography. The first contribution consists of constructions of IND-CCA2 secure public key cryptosystems from both the McEliece and the low noise learning parity with noise assumption. The second contribution is a novel instantiation of the lattice-based learning with errors problem which uses uniform errors

    Introduction to Quantum Cryptography

    Get PDF

    Decryption Failure Attacks on Post-Quantum Cryptography

    Get PDF
    This dissertation discusses mainly new cryptanalytical results related to issues of securely implementing the next generation of asymmetric cryptography, or Public-Key Cryptography (PKC).PKC, as it has been deployed until today, depends heavily on the integer factorization and the discrete logarithm problems.Unfortunately, it has been well-known since the mid-90s, that these mathematical problems can be solved due to Peter Shor's algorithm for quantum computers, which achieves the answers in polynomial time.The recently accelerated pace of R&D towards quantum computers, eventually of sufficient size and power to threaten cryptography, has led the crypto research community towards a major shift of focus.A project towards standardization of Post-quantum Cryptography (PQC) was launched by the US-based standardization organization, NIST. PQC is the name given to algorithms designed for running on classical hardware/software whilst being resistant to attacks from quantum computers.PQC is well suited for replacing the current asymmetric schemes.A primary motivation for the project is to guide publicly available research toward the singular goal of finding weaknesses in the proposed next generation of PKC.For public key encryption (PKE) or digital signature (DS) schemes to be considered secure they must be shown to rely heavily on well-known mathematical problems with theoretical proofs of security under established models, such as indistinguishability under chosen ciphertext attack (IND-CCA).Also, they must withstand serious attack attempts by well-renowned cryptographers both concerning theoretical security and the actual software/hardware instantiations.It is well-known that security models, such as IND-CCA, are not designed to capture the intricacies of inner-state leakages.Such leakages are named side-channels, which is currently a major topic of interest in the NIST PQC project.This dissertation focuses on two things, in general:1) how does the low but non-zero probability of decryption failures affect the cryptanalysis of these new PQC candidates?And 2) how might side-channel vulnerabilities inadvertently be introduced when going from theory to the practice of software/hardware implementations?Of main concern are PQC algorithms based on lattice theory and coding theory.The primary contributions are the discovery of novel decryption failure side-channel attacks, improvements on existing attacks, an alternative implementation to a part of a PQC scheme, and some more theoretical cryptanalytical results
    • …
    corecore