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Abstract

With the ever-present threat of quantum computing looming over the world of

cryptography, researchers have been investigating how best to replace existing

cryptographic schemes with those that can withstand quantum attacks. Our research

contributes to the area of resource estimation, a field concerned with analysing the

amount of real-world resources (both temporal and spatial) required for a quantum

computer to compromise a given cryptographic scheme using the best known current

methods. We present a circuit to perform Prange’s algorithm, a variant of quantum

information set decoding. We embed our construction within an error-correction

scheme in order to calculate the overhead costs incurred by fault-tolerance. Our

analysis shows that current proposed parameters for code-based cryptography provide

a much larger security margin than required for their specified security level, and

as such could be reduced to improve performance whilst still ensuring quantum

immunity.
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Chapter 1

Introduction

1.1 The World of Quantum Computing

Quantum computing’s first inception was in the 1980s. Following the groundbreaking

work of Benioff [11] and Feynman [34], who demonstrated a quantum mechanical

model of computing, and observed that efficient simulation of quantum systems was

seemingly impossible for classical computers. In the years that followed, researchers

were able to uncover various algorithms demonstrating the potential power that a

quantum computer could be capable of [12, 13, 24, 85]. However, there were doubts

about the practical uses of such algorithms and the feasibility of quantum computers,

especially with a lack of any method to keep a quantum system error-corrected,

rendering computations obsolete. But everything changed in 1994, when Peter Shor

unveiled a quantum algorithm able to solve the integer factorization and discrete

logarithm problems in polynomial time, a feat that classical computing has been

unable to achieve [83]. The difficulty of solving integer factorization and discrete

logarithms serve as the basis of security for many of the world’s most popular

cryptosystems, such as RSA [75] and ElGamal [30], the existence of an efficient

algorithm to solve these problems has caused researchers to start seeking alternative

security schemes based on alternative primitives. Needless to say, the invention of

Shor’s algorithm sparked huge interest in the field, which showed no signs of slowing

in the years that followed, as Shor presented the first quantum error-correcting

scheme [84]; additionally, Lov Grover demonstrated a quantum search algorithm

offering a quadratic improvement versus its classical counterpart [48].

Ever since, the world of quantum computing has exploded. At the time of writing,

quantum computing has become a multi-billion dollar industry worldwide with

significant investments from large companies such as Google, IBM, Microsoft, and

Amazon, as well as seeing the creation of quantum ’start-ups’ like Rigetti, Cambridge

Quantum, and Oxford Quantum Circuits. With all this investment, research has

been chasing two major developments: quantum hardware, and quantum algorithms.

Current progress within quantum hardware has been aimed at demonstrating quan-
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tum supremacy; where a quantum computer is able to perform a computation that

could not be performed on a classical computer in any feasible amount of time

(regardless of the importance of the problem). Currently, due to device limitations

and engineering difficulties, there has been no widely accepted demonstration of

quantum advantage, although there has been signs of companies such as Google

inching ever closer [92]. On the algorithmic side, research has been investigating what

potential problems could be solved with quantum computing and how technology

will be affected by the introduction of quantum computers to the world.

Within the industry of information security, research has mostly been centred around

the dawn of post-quantum cryptography, how we can ensure security against quantum

adversaries utilizing algorithms such as Shor’s and Grover’s. With the majority

of modern cryptography at risk of quantum attacks, NIST (National Institute of

Standards and Technology) issued a call-to-arms for submissions of quantum secure

cryptography [22]. Following the NIST report, candidates have been shortlisted such

that security standards can be adjusted to accommodate the ever-looming threat of

quantum attacks.

1.2 Research Aims and Motivations

The aim of this thesis is to contribute to the field of resource estimation. In this

context, resource estimation means to provide an approximation of the real-world

costs, both spatial and temporal, of running a quantum algorithm on quantum

hardware. The specific algorithms of interest to us are those that attack post-

quantum cryptography schemes. The motivation behind this body of work is to

provide those within the industry a more realistic assessment of the threat that a

specific algorithm poses by factoring in the overhead costs required to run a large scale

quantum algorithm (namely error-detection and error-correction) fault-tolerantly

[42].

The idea behind resource estimation is a relatively new field, and as such, there have

been a number of recent papers aiming to either improve or establish new estimates

of the cost for quantum attacks against classical cryptographic schemes. Currently,

this research can mostly be divided into two groups, those investigating how best to

construct Shor’s algorithm as a method of attacking RSA [38, 41, 44, 69] and elliptic

curve based cryptosystems [41, 76], and those constructing Grover’s oracles to attack

a variety of symmetric-key cryptosystems such as AES [41, 47, 50, 54, 59] and SHA

[4, 41, 50].

The primary contribution of our research is to investigate the advantage Grover’s

algorithm provides against code-based cryptography, a family of asymmetric crypto-

graphic algorithms and one of the leading candidates for post-quantum security [22].
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The inspiration behind this work is research detailing methods of how to perform

the information set decoding (ISD) attack using a quantum computer [15, 55, 56],

leading to recommendations of increased key sizes to ensure quantum immunity.

However, this increase in key size comes at a significant cost, both in the spatial

requirements for storing a large key, and the temporal cost of computation for en-

cryption and decryption of large keys [80]. By extending previous research, we hope

to find more realistic lower bounds for quantum ISD by factoring in overhead costs of

implementation and error-correction required to run said algorithm fault-tolerantly,

allowing us to provide new security guidelines for parameter selection of code-based

cryptosystems, whilst still ensuring quantum immunity.

1.3 Thesis Structure

We begin this work in Chapter 2 by detailing the relevant background knowledge

of quantum computing, resource estimation, linear codes, code-based cryptography,

and the information set decoding algorithm. In Chapter 3, we detail our efforts in

constructing a fault-tolerant quantum circuit to perform information set decoding

and analyse the impact of our construction on current proposed post-quantum

immune code-based cryptosystems. Finally, in Chapter 4 we compare our work with

a recent publication by Perriello, Barenghi, and Pelosi [71] who also investigated the

construction of quantum information set decoding circuits.
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Chapter 2

Background

This chapter introduces the key background information and notation we will be

using for the main body of this thesis. We will discuss the details of the quantum

circuit model, Grover’s algorithm, quantum error-correction, resource estimation,

and finally, code-based cryptography and the information set decoding algorithm.

2.1 Quantum Bits & Circuits

Within classical computing, the fundamental unit of information is the bit ; each

bit is a binary integer and can either be 0 or 1. In quantum computing, we use

the quantum bit, or qubit for short. While there are many physical interpretations

of qubits, the underlying mathematical object remains the same; a single qubit is

a two-state quantum system and similarly to classical computing, the two-states

are |0⟩ and |1⟩. The symbol ’| ⟩’ is known as a ket, and forms part of the Bra-Ket

notation used for denoting quantum states. Bits and qubits differ in that while a bit

can only be 0 or 1, a qubit can be a state that is a complex linear combination of

both |0⟩ and |1⟩. We refer to such combination states as being in superposition:

|ψ⟩ = α0 |0⟩+ α1 |1⟩ , α0, α1 ∈ C (2.1)

Another way to represent the state of a qubit is by using a two-dimensional vector. By

using |0⟩ and |1⟩ to form an orthonormal basis we can again describe superposition

states as a linear combination:

|0⟩ =

1
0

 , |1⟩ =

0
1

 (2.2)

|ψ⟩ =

α0

α1

 (2.3)

The downside of quantum computing is that while it is possible for us to compute
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with qubits in superposition, if we are ever to observe the state of a qubit, we are

only able to receive either 0 or 1. We refer to this process of observing a qubit as a

measurement. The output of a measurement is probabilistic, where the probability is

dependent on the value of the coefficients (or amplitudes) α0 and α1. More formally,

the probability of measuring a 0 is |α0|2, and a 1 is |α1|2, from this we can also infer

that |α0|2 + |α1|2 = 1. Measurement will also alter the state of the qubit irreversibly,

and cause any superposition state to collapse into either |0⟩ or |1⟩ correlated with

the output we received.

Of course, we are also able to extend this definition to multi-qubit states. One such

method is to simply represent multiple qubits as a tensor product (⊗) of single qubit
states, one example of such a state is |10⟩:

|10⟩ = |1⟩ ⊗ |0⟩ =

0
1

⊗
1
0

 =


0

0

1

0

 (2.4)

As with single qubit states, we are also able to have superposition states over two

qubits, which can be represented as a linear combination of the four basis states, in

this case, 00, 01, 10, and 11:

|ψ⟩ = α00 |00⟩+ α01 |01⟩+ α10 |10⟩+ α11 |11⟩ =


α00

α01

α10

α11

 (2.5)

More generally speaking, an n-qubit state can be represented as:

|ψ⟩ =
∑

x∈{0,1}n
αx |x⟩ (2.6)

Where x ∈ {0, 1}n represents all unique n-length strings composed of 0 and 1, αx ∈ C,
and

∑
x∈{0,1}n|αx|2 = 1.

However, looking closely at the above definition, it is possible for us to have a state

that cannot be expressed as a tensor product state (as in eq 2.4). For example if we

have a state where α00 = α11 = 1/
√
2, and α01 = α10 = 0:

|Φ⟩ = 1√
2
(|00⟩+ |11⟩) (2.7)

In this instance, it is impossible for us to describe this state as a tensor product of

two separate qubit states, we refer to such states as being entangled. These states
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exhibit uniquely quantum behaviour. If we were to measure the first qubit and find it

in the state |0⟩, which is true with a 50% probability, we would know with certainty

that the second qubit will also be in the state |0⟩, as the first measurement would

collapse the overall state to |00⟩.

Equipped with the knowledge of qubit states, superposition, entanglement, and mea-

surement, we will now look at how we can manipulate qubit states in order to perform

computations. In classical computing, the fundamental operations are Boolean func-

tions often represented by logic gates. Rather unsurprisingly, the quantum equivalent

is the quantum logic gate. However, rather than being a representation of a Boolean

function, quantum gates are unitary operators and are usually described as unitary

matrices. A matrix, U , is considered unitary if and only if U †U = UU † = 1, where

U † is the complex transpose of U and 1 is the identity matrix. Unitary matrices come

with two rather important properties: the first is that quantum gates preserve the

probability amplitudes of quantum states, ensuring that our measurement outcomes

still sum to 1, and the second is that quantum gates are, by definition, reversible.

To demonstrate an example of a quantum gate, let’s delve into the Hadamard gate:

H =
1√
2

1 1

1 −1

 (2.8)

In order to evaluate the action of a gate on a qubit, we multiply the matrix of the

gate with the state vector, showing how the application of the gate will evolve our

quantum system:

H |0⟩ =
1√
2

1 1

1 −1

1
0

 =
1√
2

1
1

 =
1√
2
(|0⟩+ |1⟩) = |+⟩ (2.9)

H |1⟩ =
1√
2

1 1

1 −1

0
1

 =
1√
2

 1

−1

 =
1√
2
(|0⟩ − |1⟩) = |−⟩ (2.10)

Looking at the behaviour of the Hadamard gate, we can see that if used on a basis

state, the output is in superposition; often, you will find these states labelled as

|+⟩ and |−⟩, as they frequently they occur in quantum computing. But what if we

applied our gate to a superposition state? As unitary gates, such as the Hadamard

gate, are linear, we can simply apply the operation distributively on all parts of the

state :

U(α0 |0⟩+ α1 |1⟩) = α0U |0⟩+ α1U |1⟩ (2.11)

To demonstrate this, we shall take a look at how applying a second Hadamard gate

will affect the output from the above equations (2.9 & 2.10):
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H |+⟩ = H(
1√
2
(|0⟩+ |1⟩))

=
1√
2
(H |0⟩+H |1⟩)

=
1√
2
(
1√
2
(|0⟩+ |1⟩) + 1√

2
(|0⟩ − |1⟩))

=
1√
2
(
√
2 |0⟩)

= |0⟩

(2.12)

H |−⟩ = H(
1√
2
(|0⟩ − |1⟩))

=
1√
2
(H |0⟩ −H |1⟩)

=
1√
2
(
1√
2
(|0⟩+ |1⟩)− 1√

2
(|0⟩ − |1⟩))

=
1√
2
(
√
2 |1⟩)

= |1⟩

(2.13)

One additional feature we learn from applying the Hadamard gate to the states |+⟩
and |−⟩ is that the Hadamard gate is self-inverse i.e., H = H†; a more formal way to

show this is that HH = 1. Hadamard is an example of a single-qubit gate, however,

it is also possible to define multi-qubit gates. One common example of such gates

are the controlled-gates. Given a single-qubit unitary operator U , we can construct a

controlled-U gate, CU :

U =

u00 u01

u10 u11



CU =


1 0 0 0

0 1 0 0

0 0 u00 u01

0 0 u10 u11


(2.14)

When CU is applied to a two-qubit system, the behaviour can be quite extraordinary:

|00⟩ 7→ |00⟩

|01⟩ 7→ |01⟩

|10⟩ 7→ |1⟩ ⊗ U |0⟩ = |1⟩ ⊗ (u00 |0⟩+ u10 |1⟩)

|11⟩ 7→ |1⟩ ⊗ U |1⟩ = |1⟩ ⊗ (u10 |0⟩+ u11 |1⟩)

(2.15)

The first qubit is unchanged by the operation, however, the second qubit will have U

applied to it, if and only if the first qubit is in the state |1⟩. It is for this reason that
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when looking at controlled gates we refer to the first qubit as the control and the

second qubit as the target. To give an example of a such a gate, let us look at one of

the most important gates in quantum computing, the controlled-not gate. This gate

is the controlled form of the Pauli X gate, which is sometimes referred to as a NOT

gate, as it acts as a bit flip operation when used on a qubit in a computational basis

state:

X =

0 1

1 0

 X |0⟩ = |1⟩

X |1⟩ = |0⟩
(2.16)

CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


CNOT |00⟩ = |00⟩

CNOT |01⟩ = |01⟩

CNOT |10⟩ = |11⟩

CNOT |11⟩ = |10⟩

(2.17)

The CNOT gate resembles the behaviour of the classical XOR gate, and as such,

has numerous uses in computation. It is also worth noting that it is also possible

to construct gates with more than a single control or target qubit. A frequently

encountered gate in this category is the Toffoli gate, which is simply a CNOT gate

with two controls and a single target. By using a Toffoli gate on a target qubit fixed

in the state |0⟩, it is analogous to the classical AND gate acting on the target qubits.

Over the course of this body of work, we will be constructing quantum algorithms

using circuit diagrams. Armed with the basic knowledge of qubits and gates, we can

now discuss the notation used in such diagrams. In this model, the horizontal axis

represents time, moving from left to right. Qubits are denoted by single lines known

as wires and often have labels to show their input and output states. Qubits can be

collated together to form a quantum register and are represented with a diagonal

line across the wire with a number representing their size. Any operations on a qubit

are visualized by a square box placed over the qubit wire(s) it operates on with a

label to identify the gate. While this notation is the standard for arbitrary gates,

there are some commonly used gates that deviate from this norm e.g., CNOT gates.

A controlled-gate places a ’dot’ on the wire that is the control and links to the gate

it is controlling with a vertical line. Table 2.1 contains some of the most commonly

encountered symbols used in quantum circuit notation, and to show an example of a

full quantum algorithm in circuit notation, we have included the teleportation circuit

[13] in figure 2.1.
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Symbol Description

|0⟩ H |0⟩ Single qubit wire in the state |0⟩.

|0⟩ n |0⟩ Quantum register containing n qubits.

|0⟩ H |+⟩ Quantum gate, H, acting on a single
qubit.

|1⟩
|0⟩

|1⟩
|1⟩

CNOT gate, the first qubit is the con-
trol and the second is the target.

|0⟩ 0 Measurement gate, the wire transforms
to a classical wire after measurement.

Table 2.1: Common symbols and their description used in quantum circuit notation.

|ψ⟩
|0⟩
|0⟩

H
H

X Z |ψ⟩

Figure 2.1: Quantum circuit for the teleportation algorithm [13]. This algorithm
contains Hadamard gates, H, controlled-not gates, measurements and classically
controlled quantum gates.

Now that we have covered the basics of notation around quantum computing and

quantum circuits, we will move on to looking at Grover’s algorithm. This algorithm

is central to the resource estimation that we will be performing later in this work.

2.2 Grover’s Algorithm

Assume there is some collection of unsorted data and you wish to find one specific

entry in that collection. Classically, there is only really one way to approach this

problem; you evaluate each item until you find the one you were looking for. If the

number of items you have to search through is N , this ’method’ would require O(N)

evaluations to find your desired entry. Originally designed by Lov Grover in 1996

[48], Grover’s algorithm demonstrates an approach whereby it is possible to find a

solution in O(
√
N) evaluations. We shall begin by demonstrating this algorithm

visually to gain a better understanding of how it operates.

Assume we have a collection of 8 entries and our goal is to try to find one specific

entry. We will begin by having a quantum register that holds these 8 entries as states

in superposition, each with the same amplitude. To represent this, we use a bar chart,

where the length is the amplitude of each state, the red bar is our desired state (4th

from the left), and the dotted horizontal line represents the mean of our amplitudes.

After the system has been prepared in uniform superposition of the search space, the
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next step in Grover’s algorithm is to apply an operator that will invert the phase of

our solution state. Due to measurement probability being equal to |αx|2, where αx is

the amplitude of state x, this step has not changed the probability of measuring our

goal state. However, it has altered the mean, such that the amplitude of the non-goal

states are now greater than the mean and the goal state is now less than the mean.

From here, the third step of Grover’s algorithm is to apply an inversion about the

mean, where we apply an operation to each state to change their amplitude from α

to α′ = µ+ (µ− α) or equivalently α′ = 2µ− α. This results in the amplitude of the

goal state increasing, whilst decreasing the amplitude of the non-goal states.

(a) Input state (b) Phase inversion (c) Inversion about the mean

Figure 2.2: Effects of applying both steps of Grover’s algorithm to a state in equal
superposition.

At this stage, we could measure our register and with a decent probability could find

our goal state. However, if we were to apply both steps again we found that the

amplitude of our goal state increases even more.

(a) Input state (b) Phase inversion (c) Inversion about the mean

Figure 2.3: Applying a second iteration of Grover’s algorithm to the out from
figure 2.2, resulting in the amplitude of the goal state increasing further.

What if we were to try to apply the same process a third time? The output from

the second iteration differs from the first in that the non-goal states already have a

negative phase. This means that once we apply phase inversion, all states have a

negative amplitude, and the inversion about the mean causes the amplitude of the

goal state to decrease (fig. 2.4).
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(a) Input state (b) Phase inversion (c) Inversion about the mean

Figure 2.4: Result from applying a third iteration of Grover’s algorithm to the out
from figure 2.3, causing the amplitude of the goal state to decrease.

This behaviour is why it is important for us to be careful of the number of iterations

of Grover’s algorithm. If we repeat the process either too few or too many times, we

end up with a lower than expected probability of measuring the goal state, which in

turn will lead to a decrease in probability of measuring the goal state. Thankfully,

the number of iterations can be calculated easily and is equal to ⌊π
4

√
N⌋, where N is

the total size of our search space. In the example above N = 8, which implies the

optimal number of iterations is ⌊
√
8⌋ = 2, which was demonstrated when the third

iteration caused the amplitude of our goal state to decrease.

From this, we can define Grover’s algorithm:

1. Prepare the system in uniform superposition over all N states

2. Apply phase inversion to the goal state

3. Apply inversion about the mean over all states

4. Repeat steps previous two steps ⌊π
4

√
N⌋ times

Now we shall discuss how we can construct a circuit to perform Grover’s algorithm.

In order to prepare the system in uniform superposition of all N states, we apply

Hadamard gates to n = ⌊log2N⌋ qubits in the state |0⟩:

H⊗n |0⟩⊗n =
1√
n

∑
x∈{0,1}n

|x⟩ , (2.18)

where {0, 1}n is the set of all n-bit strings

It should be noted at this point, if N is not a power of 2, then we will have more

than N states in our superposition, and as such, the search space will increase. This

increase in search space requires an increase in the number of Grover’s iterations we

need to perform. Next, to apply phase inversion, we will utilize a technique known

as phase kickback. This technique leverages the fact that applying an X gate to the

state |−⟩ results in the state having a negative phase applied to it:
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X |−⟩ = − |−⟩ (2.19)

If, we instead use a CNOT gate targeted on the state |−⟩, we find that the phase

affects the whole state:

CNOT |0−⟩ = |0−⟩

CNOT |1−⟩ = |1⟩ ⊗X |−⟩

= |1⟩ ⊗ − |−⟩

= − |1−⟩

(2.20)

If we were to place the control qubit in superposition, we find that only the component

of the state where the control is |1⟩ is affected by the phase:

CNOT |+−⟩ = 1√
2
(CNOT |0−⟩+ CNOT (|1−⟩))

=
1√
2
(|0−⟩+ CNOT (|1−⟩))

=
1√
2
(|0−⟩ − |1−⟩)

(2.21)

Now, assume we have an oracle function f , where f(x) = 1 if, and only if, x = a

where a is our goal state and f(x) = 0 otherwise. If we are to implement f as a

quantum gate Uf : |x⟩ |y⟩ 7→ |x⟩ |f(x)⊕ y⟩, then by having y = |−⟩ we will only

apply the negative phase to the goal state:

Uf

[
|x, 0⟩ − |x, 1⟩√

2

]
=

[
|x, f(x)⟩ − |x, f(x)⊕ 1⟩√

2

]
= |x⟩

 |f(x)⟩ −
∣∣∣f(x)〉

√
2

 (2.22)

By rewriting this state, we can see how this will perform our phase inversion of the

goal state:

(−1)f(x) |x⟩ |−⟩ =

−1 |x⟩ |−⟩ , if x = a

+1 |x⟩ |−⟩ , if x ̸= a
(2.23)

Finally, we need to perform our inversion about the mean. The operator used in this

stage is Grover’s diffusion operator and is usually expressed as 2 |ψ⟩ ⟨|ψ| − 1, where
|ψ⟩ = 1√

n

∑
x∈{0,1}n |x⟩ and ⟨|ψ| = |ψ⟩

†. To construct this operator all we need to

perform is H⊗nU0H
⊗n, where:

U0 |ψ⟩ =

− |ψ⟩ , if |ψ⟩ = |0⟩

|ψ⟩ , if |ψ⟩ ≠ |0⟩
(2.24)
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n
H

H
Uf

H U0 H . . .

. . .

Repeat ⌊π
4
· 2n/2⌋ times

Grover’s Diffusion Operator

Figure 2.5: Quantum Circuit for Grover’s Algorithm, involving phase kickback
and Grover’s diffusion operator which are both to repeated O(

√
N) times before

measuring the top n qubits.

Using this we can now draw up the quantum circuit to perform Grover’s algorithm

(fig 2.5).

Grover’s algorithm can also be generalized to apply to problems where there is more

than one goal state, often known as amplitude amplification [18]. To do so we simply

need to modify the phase inversion step such that our oracle function f will give

f(x) = 1 if and only if x ∈ A, where A is a set of all goal states, and f(x) = 0

otherwise.

(−1)f(x) |x⟩ |−⟩ =

−1 |x⟩ |−⟩ , if x ∈ A+1 |x⟩ |−⟩ , if x /∈ A
(2.25)

Using this new kickback operation, we can apply the algorithm exactly as we did

previously. Depending on the number of iterations, all goal states with equally high

amplitude, as well as all non-goal states with equally low amplitude would be in

a state of superposition, which we can then either perform further computations

with, or measure to sample one goal state. Once again, we need to be careful with

the number of iterations we perform to have the best probability of measuring a

goal state. Assuming one knows the total number of goal states, we need to iterate

⌊π
4

√
N / |A|⌋ times, where |A| is the size of the set A. It is also of importance to note

that in the case where the size of A is unknown, there exists the quantum counting

algorithm, which can be run first to calculate the number of solutions before moving

on to perform Grover’s search [19].

Another modification that can be made to Grover’s is adjusting the search space of

the algorithm. In the previous example, we established a uniform superposition over

all states of 3 qubits by applying Hadamard to all the qubits; we then applied the

same operations before and after the U0 gate of our diffusion operator. If we were

instead to apply an operator V that establishes a superposition
∑

x∈X |x⟩ over some

pre-determined set X, and then apply V and V † before and after the U0 respectively,

we have in effect adjusted the search space of our Grover’s search. The result of

this modification allows us to further alter the formula for number of iterations

required to ⌊π
4

√
|X| / |A|⌋, where |X| is the size of the set containing all states we
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are searching over, and |A| once again is the size of set containing all our goal states.

As an example, let us investigate searching for the state |0110⟩ over two different

spaces: all possible 4 qubit states vs. all possible 4 qubit states where the last qubit

is |0⟩ (another way to think of this is searching for the number 6 in the integers 0-15

vs. even integers in 0-15).

|0⟩⊗4

|1⟩

H

H

H

H

H

U6

H

H

H

H

U0

H

H

H

H

(a) Searching over all possible states.

|0⟩⊗4

|1⟩

H

H

H

H

U6

H

H

H
U0

H

H

H

(b) Searching over even states

Figure 2.6: Two variations of Grover’s algorithm to search for the number 6. By
removing the Hadamard from the last qubit we fix its value at |0⟩ and so our
superposition state only contains even states.

Iteration Fig. 2.6a Fig. 2.6b

1 .473 .781

2 .908 .945

3 .961 .330

Table 2.2: Probability of measuring a goal state for each of the variants of Grover’s
algorithm (fig. 2.6) after each iteration.

From table 2.2, it is clear to see that by reducing the search space we have reduced

the required number of iterations from 3 to 2 at the detriment of only a 2% loss in

probability. Of course, this example is highly trivial as we could simplify the circuit

to not include the fourth qubit and rephrase the problem to finding the state |0110⟩
over four qubits to finding the state |011⟩ over three qubits, if we knew the last qubit

was fixed at |0⟩. However, what this example is trying to demonstrate is that in

order to limit the search space of Grover’s, we must first prepare our state using

some unitary operator V and that we must modify our diffusion such that we apply

V and V † before and after U0 (see fig. 2.7), allowing us to reduce the overall number

of iterations.

2.3 Resource Estimation

As mentioned in our introduction, the goal of resource estimation is to try approximate

costs of running a quantum algorithm. The motivation behind this research stems

from the threat that quantum algorithms such as Shor’s and Grover’s pose to

currently deployed cryptographic systems. While large-scale quantum computing is
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Figure 2.7: Quantum Circuit for a Grover’s Algorithm when searching over a set of
elements, X.

still very much in the distant future, reliably migrating to new forms of cryptography

is a slow process; due to the complexities of establishing new security standards.

Resource estimation allows us to more accurately ascertain the requirements necessary

for a quantum computer to be capable of breaking current cryptographic systems.

Simultaneously, it also provides insight into the development of large-scale quantum

algorithms, including circuit and gate synthesis, and fault-tolerance.

For our analysis, we will be following the framework established by Amy et al. [4]

(which was further explored by Gheorghiu and Mosca [41]). The methodology splits

our approach into four layers (see figure 2.8), starting from a broad algorithmic

level, all the way down to individual qubits. The reason for this choice of framework

is due to its modular approach; as quantum computing lies in its infancy, there

is a constant stream of new research impacting various subsections of the field.

Modularity affords us the ability to observe which layers have been impacted by new

research, and subsequently, update pre-existing estimates with relative ease. This

ensures up-to-date estimates whilst also highlighting the impact of new research.

Whilst Chapter 3 will discuss more of the specifics of each of these layers, we will

now provide a high-level overview of the processes undertaken in each and at the

end discuss the final metric of cost that we are aiming to derive in this analysis.

Classical query model

Logical layer

Fault tolerant layer

Physical layer

Figure 2.8: The Resource estimation framework first introduced in Amy et al. [4].

2.3.1 Classical Query Model

In the first layer, we evaluate the cost of an attack based on how many times we

need to run or query a ’black box’. A black box is a system defined purely by its
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inputs and outputs rather than its internal workings; this definition can be quite

vague as it is dependent on the specific attack being evaluated. One of the most

common interpretations of this layer is to evaluate an attack based on how many

Grover iterations we need to make. For example, in the case of [4] when evaluating

the number of Grover iterations to make against SHA-256, the size of the search

space is 2256 and so the total number of queries, or Grover iterations, is 2128. While

this can be a useful metric, it assumes that all queries are equally expensive. In the

next layer, we go deeper into the workings of this black box in order to decipher how

expensive these queries are.

2.3.2 Logical Layer

During the logical layer, we construct and analyse quantum circuits required to

implement our queries. Here, we will compute cost based on the circuit depth, gate

count, and total number of logical qubits, including ancillae.

Definition 2.3.1 (Circuit Depth). If every gate costs a unit time-step, the depth

of a quantum circuit is the fewest number of time steps required to perform said

quantum circuit. Gates which act on no common qubits can be performed in the

same time step.

Definition 2.3.2 (Gate Count). The total number of gates included in a quantum

circuit from input to output.

Definition 2.3.3 (Logical Qubits). A logical qubit specifies how a single qubit

should behave in a quantum computation and is not subject to error.

Definition 2.3.4 (Ancillae Qubits). An auxiliary qubit, often used for the temporary

storage of intermediary values that will be uncomputed later.

Typically, during this stage, we will synthesize down to a universal gate set; a set

of gates that we can use to express any unitary operation. Technically, such an

endeavour is impossible with anything less than an uncountable set of gates, as the

number of possible quantum gates is equally uncountable. To solve this problem, we

instead deem a gate set universal if it is able to approximate any quantum operation

[67]. A universal gate set aids heavily in the implementation of quantum algorithms

as quantum hardware need only be capable of performing the gates included in such

a set, and any gates outside the set can be converted using a compiler.

The most common method for creating a universal gate set is to use the Clifford

set (H, S, and CNOT ) and extend it to include one additional non-Clifford gate,

usually the T -gate. We refer to this set as the Clifford+T gate set, and define the

gates as follows:
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H =

1 1

1 −1

 , S =

1 0

0 i

 , CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 , T =

1 0

0 e
iπ
4



The reasoning behind this approach is due to the fact that Clifford gates are easy

to keep fault-tolerant using stabilizer codes [45], the basis of most current quantum

error correcting codes, however, alone do not form a universal set, and in fact can be

efficiently simulated classically [46].

As quantum error correction is one of the major contributing factors to large-scale

quantum algorithms, it is often important at this stage to look ahead to later layers

and make optimizations that will influence our final cost metric. For example when

working with Clifford+T we will look to minimize the depth and count of our T -

gates specifically, as they are often vastly more expensive to construct on quantum

hardware than the Clifford gates. We will discuss the details of why this is the case

in the next section.

2.3.3 Error Correction and the Fault-Tolerant Layer

Up until this point, we have only considered quantum computations that behave

ideally; the unfortunate truth is that physical quantum systems are subject to a

considerable amount of noise. When building physical quantum computers, the

qubits often take the form of individual atomic-scale physical systems, such as atoms,

photons, or trapped ions. Despite the best efforts of quantum engineers to isolate

these systems, there is still unwanted environmental factors that are able to become

entangled with our qubits and generate noise. This noise can cause decoherence

of our qubits, which will ultimately render our computations obsolete. As the size

of our quantum computations increase, so too does the impact of noise due to the

increase in requirements of both qubits and time.

In the early years of quantum computing, the idea of error-correction seemed impos-

sible; whilst classical error-correction was a well established practice, it relied upon

observing the state of our data in order to correct it, a process that when applied to

qubits, would collapse our states and ruin our quantum computation. However, Shor

[84] and Steane [87] both managed to derive a solution to this problem by spreading

the information of one qubit onto several entangled qubits. We are able to make

specifically-crafted measurements to retrieve information about an error (if one has

occurred) without disturbing our quantum state. In the years that have followed

since, there has been numerous improvements to quantum error-correction schemes,
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however, they still operate similarly; first we encode multiple physical qubits to

form logical ones, then we can perform gate operations periodically performing our

measurements to detect and correct any errors, and finally decode our qubits back

to their original form.

During the fault-tolerant layer, we choose an error-correction scheme and compute

the resources necessary to keep our logical circuit fault-tolerant. Fault-tolerance in

this setting refers to being able to correct errors faster than they are created to avoid

decoherence. Current error-correction schemes seem to place the desired overall error

probability of an algorithm to be around 1% in order to be considered fault-tolerant

[37].

The current best known quantum error-correcting code is the surface code[39].

We omit the specifics of this scheme and instead refer interested parties to read

[39]. However, at a high-level, the surface code encodes logical qubits using a two-

dimensional lattice of physical qubits. The distance, d of our surface code refers to

size of these lattices, a code with distance d can correct ⌊(d− 1)/2⌋ errors. Physical
qubits are divided into data qubits and measure qubits. After performing a logical

operation on our system, we perform a surface code cycle, where the surrounding

measure qubits will perform a stabilizer measurement of the data qubit in order to

detect and correct errors.

The cost of error-correction is often linked with the overall number of T -gates used

in a computation. The reason for this is that every T gate requires us to prepare a

magic state:

|AL⟩ = |0⟩+ e
iπ
4 |1⟩ (2.26)

We prepare our magic states inside distilleries or factories, specialized circuits

independent of the rest of our computation and embedded within their own surface

code. Each time we wish to perform a T -gate within our circuit we must distil a

magic state, that cannot be reused. Furthermore, magic state distillation is not a

perfect process and each magic state produced is done so with some error. The

amount of error can be reduced by increasing the sizes of our distilleries, however

this inevitably comes at the cost of requiring more qubits, and time. We detail the

process of constructing suitable distilleries in section 3.3, for now we note that the

main objective of this layer is to construct suitably sized distilleries, and determine

the code distance required to perform our computation fault tolerantly.

2.3.4 Physical Layer

In the final layer, we need to compute the total number of physical resources required

to run our fault-tolerant algorithm. The resources will be defined based on the error

24



correction schemes, and parameters we use. By the end of this layer, we will have

our final cost represented as number of physical qubits and the total amount of

time required to run our algorithm. From this we can derive a single number that

represents our cost:

Cost = log2(# of physical qubits×# of seconds) (2.27)

While there are other possible representations of cost, such as log2(# logical qubits×
# surface code cycles) used in [4], we have chosen to represent costs based on physical

qubits and seconds. The intention behind this is two-fold: first to allow for a clear

comparison between classical cryptographic techniques that often report cost similarly,

usually referred to as bits of security, and secondly to allow for comparison between

our results, and any future methods that may not rely on surface code techniques.

2.4 Code Based Cryptography

Having now discussed the foundations of quantum algorithms and the methods

behind resource estimation, we will now look at the foundations of the cryptosystem

that we will be estimating an attack against. This section follows the literature [52,

72, 91] to cover the core concepts behind classical linear error-correcting codes and

how they can be used as a building block for asymmetric cryptography. We then go

on to cover information sets and how they can be used in information set decoding,

the best known generic attack against code-based cryptosystems.

2.4.1 Linear Codes

Linear codes are another form of error correcting code. Not too dissimilar from the

previously discussed quantum error correcting codes, the goal is to be able to recover

a message that has been distorted by error introduced from a noisy communication

channel [82]. The core idea remains the same; we encode messages by adding

redundant information such that if any error were to occur during transmission, the

message is still able to be decoded such that the original message can be obtained

free from any error. The methodology for encoding and decoding, and the number

of errors that can be corrected is dependent on the method used, as well as the size

of the error-correcting code employed. Error-correction schemes that correct more

errors are typically more expensive as they require more redundancy, reducing the

ratio of message bits to redundant bits. To put it simply, a linear code is one where

any linear combination of codewords will also result in a codeword. More formally,

we can define a linear code as a vector subspace:

Definition 2.4.1. (Binary Linear Code) An [n, k, d] linear code C is a k-dimensional

subspace of the n length vector space Fn
2 , where F represents a finite field. The
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vectors belonging to C are referred to as codewords. The minimum Hamming distance

between two distinct codewords is d.

By taking the basis vectors of this vector space and using them as rows of a matrix,

G, we are able to encode messages by multiplying them with G. It is for this reason

that we refer to this as a generator matrix of the code. Generator matrices can also

be represented in systematic (or standard) form — a systematic code is one where

we append the redundant information to the end (or start) of the original message.

Definition 2.4.2. (Generator Matrix) The row space of a generator matrix, G ∈
Fk×n

2 , forms the codewords of a linear code, C. To generate a codeword, x, for a

message, m, x = mG. The systematic (or standard) form of a generator matrix is

G = [1k|P ] where 1k is the k × k identity matrix and P ∈ Fk×(n−k)
2 .

Once we have sent our encoded message over our channel, the receiver is able to verify

if a codeword is valid by multiplying it with a corresponding parity-check matrix.

The result of this multiplication will give you the syndrome. If the syndrome is 0,

then the codeword is valid and no error has occurred. We can find the parity-check

matrix for any code if we possess a generator matrix for the code in systematic form.

Definition 2.4.3. (Parity-Check Matrix) Given a linear code, C, any matrix H ∈
F

(n−k)×n
2 with HcT = 0, ∀c ∈ C and rank(H) = n− k, is a parity-check matrix of

the code. Given a generator matrix in systematic form G = [1k|P ], the parity-check

matrix is H = [P T |1n−k].

Definition 2.4.4. (Syndrome) Given a parity-check matrix H ∈ F(n−k)×n
2 of a code

C and a vector x ∈ Fn
2 , we refer to the output of s = HxT , as the syndrome of x. A

syndrome of 0 indicates x ∈ C.

But what if we do not possess a generator matrix in systematic form? Thankfully,

it is possible for us to convert any generator matrix of a code to systematic form

using a sequence of elementary row operations and column permutations, detailed in

algorithm 1 [52]. If the first k columns of the generator G are linearly independent

then we do not require the use of column permutations, which results in G′ (our

systematic form generator) producing an equal code to G, whereas if we require the

use of column permutations the codes are only equivalent. Two codes are equal if

given the same message, both will produce the same codeword, and equivalent if one

code can be derived from the other by a permutation.
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Algorithm 1 systematicForm

Input: Generator matrix, G ∈ Fk×n
2

Output: Generator matrix in systematic form, G′ = [1k|P ]
1: for all j ∈ {1, . . . , k} do

2: if Gjj = 0 then

3: if ∃ i > j where Gij ̸= 0 then

4: swap rows i and j

5: else if ∃ h > j where Gjh ̸= 0 then

6: swap columns j and h

7: end if

8: end if

9: for all i ∈ {1, . . . , k}, where i ̸= j and Gij ̸= 1 do

10: add row j to row i

11: end for

12: end for

To summarize, when sending a message the sender will first encode their message (as

a binary string of length k) by multiplying it with a generator matrix to receive their

length n codeword. After transmission, the receiver can then multiply the received

codeword with the corresponding parity-check matrix. If the resulting syndrome

x ̸= 0 then we can deduce that an error has occurred and use our corresponding

decoding algorithm to correct up to t-many errors, where t ≤ ⌈d−1
2
⌉. If more than t

errors occur, our decoding algorithm will incorrectly decode to a different codeword

than was originally sent1. If instead our syndrome x = 0, then we can determine

that either no error has occurred or that enough error has occurred that the original

codeword has been distorted into a different codeword (the likelihood of this outcome

relies entirely on how many errors your code is capable of detecting and how noisy

the channel is). The specifics of decoding strategies is dependent on the exact

error-correcting code you are using; we omit these details from this work as they are

not necessary, and instead refer interested parties to [52]. In the next section, we

will demonstrate an example of how it is possible to use a linear code as the basis of

a public-key encryption scheme.

2.4.2 McEliece Cryptosystem

The first and perhaps most well-known code based cryptosystem was developed

in 1978 by Robert McEliece [65]. This algorithm is an asymmetric or public-key

encryption algorithm, where there exists two keys: a public-key and a private-key.

1There does exist algorithms that attempt to correct more than d−1
2 errors, known as list-

decoding algorithms, that will output a list of close codewords. While these have use in code-based
cryptosystems for this analysis we will assume that t ≤ ⌈d−1

2 ⌉.
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The public key is openly available information that is used to encrypt a message

that can be sent to an intended party. The receiver can then use the corresponding

private key in order to decrypt and obtain the original message.

We will now explain the three core details behind McEliece, how we generate our

pair of keys, how to encrypt a message, and how to decrypt the message. To aid our

explanation we will be using the Alice and Bob notation introduced in [75], in this

scenario Bob is attempting to send a message to Alice securely.

Key generation In order to create a public and private key, Alice does the following:

1. Alice selects a binary [n, k] linear code C able to correct t errors with an

efficient decoding algorithm A, this code will give her a k× n generator matrix

G

2. Alice selects a random n× n permutation matrix P

3. Alice selects a random k × k binary invertible matrix S

4. Alice then scrambles G by computing G′ = SGP

5. (G′, t) is the public key and (S, P,A) is her private key

Encryption

If Bob wishes to send a k-length message m to Alice using her public key (G′, t):

1. Bob computes the codeword c = mG′

2. Bob selects a random n-length vector e with exactly t ones i.e., wt(e) = t

3. Bob then adds the error to the codeword to obtain his ciphertext y = c+ e

Decryption

Alice receives the ciphertext y from Bob and then can decrypt using her private key

(G′, S, P ) to obtain the original message, m:

1. Alice multiplies the ciphertext y with the inverse of P to obtain c′ = yP−1

2. Alice uses her decoding algorithm A to decode c′ into m′

3. Alice recovers the original message using the inverse of S, m = m′S

The security of this algorithm is reliant upon the NP-hard linear decoding problem,

that states that it is hard to decode a general linear code[14]:

Problem 2.4.1. (Linear Decoding Problem) Given a random generator matrix

G ∈ Fk×n
2 of a linear code C and a vector y = mG+ e, e ∈ Fn

2 , wt(e) = t, recover

the message, m.
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However, this problem frequently is rephrased as a different, yet equivalent problem,

the syndrome decoding problem [35]:

Problem 2.4.2. (Syndrome Decoding Problem) Given a random parity-check matrix

H ∈ F(n−k)×n
2 , and a syndrome s ∈ Fn

2 , find the error vector e ∈ Fn
2 with wt(e) = t,

such that HeT = s.

The main idea behind McEliece, is that while the linear code C has an efficient

decoding algorithm, the code C ′ (the code generated by G′) is a general code and

therefore is NP-hard to decode, assuming that it has been sufficiently obfuscated.

The McEliece cryptosystem has so far managed to stand the test of time and resisted

cryptanalysis for over 40 years which have, for the most part, only required minor

adjustments to the scheme overall [10, 16, 29, 64, 88]2. Despite this, initially the

system failed to gain much popularity due to the large key sizes, especially when

compared to the vastly more popular RSA encryption scheme [75]. However, with the

threat of quantum computing (namely Shor’s algorithm [83]) condemning the future

of RSA, the search for post-quantum cryptography has caused McEliece and other

code-based cryptosystems to become a key area of research, with ’Classic McEliece’

managing to reach round 3 of the NIST post-quantum submissions. [1, 17].

2.4.3 Information Sets and Information Set Decoding

In this section, we will cover the details of information sets, and the information

set decoding (ISD) algorithm first presented by Prange [73]. The ISD algorithm is

a generic, message recovery attack against code based cryptosystems. This means

that if we are able to acquire a ciphertext, we can use ISD to recover the original

message, irrespective of what code-based system it was encrypted with. ISD exploits

the presence of information sets which exist due to the inherent redundancy within

linear error-correcting codes; the amount of redundant bits for an [n, k, d] linear code

is r = n− k. Because of this redundancy, if we assume we have a codeword, c, with

no errors s = HcT = 0, then we are able to discard up to r-many bits and still be

able to recover the original message. We define an information set as any set that

contains the remaining n− r = k bits of the codeword, from which we are able to

use to recover the message.

Definition 2.4.5. (Information Set) Given an [n, k, d] linear code, C with a corre-

sponding generator matrix G ∈ Fk×n
2 . An information set, I, is any k-combination

of the index set for columns of G i.e., I ⊆ {1 . . . , n}, that gives rise to a submatrix

GI ∈ Fk×k
2 with rank(GI) = |I| = k.

2McEliece as described above is not chosen-ciphertext or “IND-CCA2” secure, there are tech-
niques for ensuring IND-CCA2 security, one such method can be found in [31].
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Definition 2.4.6. (Combination) A k-combination of a set S is a subset of k distinct

elements of S. The total number of k-combinations for a size n set is equal to the

binomial coefficient
(
n
k

)
= n!

k!(n−k)!
.

Using this property of information sets, we are able to decode a message if we assume

that the rows of the error vector, indexed by our information set, are equal to zero

[53]3:

Theorem 1. Given a vector y = c + e and an information set I where the rows

indexed by I of the error e gives rise to eI = 0, it is possible to decode c to recover

the original message as m = yIG
−1
I .

Proof. GI is a square matrix with full rank, therefore invertible. For any codeword

c = mG, we have yIG
−1
I = (c + e)IG

−1
I . As eI = 0, we find cIG

−1
I = (mG)IG

−1
I .

Using the observation that the jth row of c is only computed from linear combinations

of the entries in the jth row vector of G, we can replace cI = (mG)I = mGI to get

mGIG
−1
I = m.

Before we continue with the full definition of ISD, we will first rephrase definition

2.4.5 in order to define information sets in terms of parity-check matrices. The reason

for doing so is purely to keep in line with the standard notation of ISD algorithms.

Section 2.4.1 shows how we can construct a corresponding parity-check matrix, in

the case that the public key we have access to is a generator matrix (as was the case

with McEliece shown in section 2.4.2).

Definition 2.4.7. (Information Set of a Parity Check Matrix) Given an [n, k, d]

linear code, C with r = n − k redundant bits and a corresponding parity check

matrix H ∈ Fr×n
2 . An information set I, is any k-combination of the index set for

columns of H, i.e., I ⊆ {1 . . . , n} with complement I∗ := {1, . . . , n} \ I, that gives
rise to a submatrix HI∗ ∈ Fr×r

2 with rank(HI∗) = |I∗| = r.

We can now define the information set decoding algorithm as originally stated by

Prange [73]. At its core, Prange’s algorithm is a brute-force searching algorithm

that attempts to find the error vector, e, in order to solve the syndrome decoding

problem. The algorithm will permute the columns of the parity-check matrix, H,

which will also permute the positions of 1s in e. The goal is to find a permutation

π, such that the weight of the first k positions of π(e) are error-free, allowing us to

decode. More formally:

1. Choose uniformly at random an information set I

2. Select a permutation matrix π ∈ Fn×n
2 that corresponds to permuting the

I-indexed columns to the right-hand side of H, giving Hπ = Hπ

3This assumption is valid so long as n− k ≥ t, as it is possible for all 1s in the error vector to
be contained in the redundant n− k bits.
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3. We now have a new (unknown) error ϵ = eπ−1 obtained by permuting the

I-indexed columns of e to the left-hand side

4. Use elementary row operations R to bring Hπ to systematic form Ĥ = RHπ =

[Q|1r]

5. Apply the same operations R to the syndrome ŝ = sR

6. We now have ϵ ·ĤT = ŝ which we can rewrite as [ ϵI | ϵI∗ ]
[
QT

1r

]
= QT ϵI+ϵI∗ = ŝ

At this stage, we now need to check whether our criterion ϵI = 0 has been satisfied.

To check this criterion, we observe that if it were satisfied, then the Hamming weight4

of ŝ would be equal to t as wt(ϵ) = wt(ϵI∗) = wt(ŝ) = t. If we find that ŝ satisfies

this weight condition then we can recover the original error vector as e = ϵπ [53]. If

our criterion has not been met, then we repeat the entire process with a different

information set. We present a fully detailed version of Prange in algorithm 2.

Theorem 2. Only the original error vector e satisfies wt(e) = t as long as t ≤ ⌊d−1
2
⌋.

Proof. Let’s assume there is another error vector e′ ̸= e where He′T = s, and

wt(e′) ≤ ⌊d−1
2
⌋. The syndrome of our original error vector e is also HeT = s,

therefore He′T = HeT . Equivalently, this gives us H(e′ − e)T = 0. From definition

2.4.4 we find that HxT = 0 indicates x ∈ C, therefore we find (e′− e) ∈ C. However,

(e′ − e) has weight, wt(e′ − e) ≤ ⌊d−1
2
⌋ + ⌊d−1

2
⌋ ≤ d − 1, which is less than the

minimum distance d of the code C and therefore cannot be a codeword of C →
Contradiction.

Finally, let us discuss how expensive this whole algorithm is. The main cause of cost

is the number of guesses we need to make for π. The probability that a randomly

chosen group of columns satisfies the criterion of ϵI = 0 is
(
r
t

)
/
(
n
t

)
[56], however we

also need to factor in the probability that there is a chance that our systematic form

operation could fail (due to requiring column permutations), which occurs roughly

29% of the time [7], which adjusts our probability to PrPrange = (0.2887 ·
(
r
t

)
)/
(
n
t

)
giving us an average of ItrPrange = (1/PrPrange) iterations before we expect to find

a solution. Over the years there have been many improvements to the ISD algorithm

[10, 29, 60, 64, 88]; whilst we won’t discuss the specific details of these variants, they

essentially all function in the same manner to Prange, however, rely on different

criteria to be met for ϵI , which increase the overall probability of finding a correct

permutation at the cost of more expensive checks. Algorithm 2 can be adjusted to

any of these variants by simply adjusting the search function.

4The Hamming weight, wt(x), is equivalent to the Hamming distance between x and 0
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Algorithm 2 isdPrange

Input:
Parity check matrix, H ∈ Fr×n

2

Cipher text, y = c+ e
Error weight, t = wt(e)

Output:
Error vector, e

1: s← HyT

2: while true do
3: Ĥ, π, ŝ← randomize(H, s)
4: success, ϵ← search(Ĥ, ŝ, t)
5: if success = true then
6: e← πϵ
7: return e
8: end if
9: end while

10: function randomize(H, s)
11: Choose a random permutation matrix π ∈ Fn×n

2

12: Hπ ← Hπ
13: Ĥ ← systematicForm(Hπ)

// Return false if we require column operations, as our chosen permutation does
not give rise to an information set
// Store row operations as R
// We now have Ĥ = RHπ = [Q | 1r]

14: ŝ = sR
15: return Ĥ, π, ŝ
16: end function

17: function search(Ĥ, ŝ, t)
18: if wt(ŝ) = t then
19: ϵI ← 0 ∈ Fk

2

20: ϵ← [ ϵI | ŝ ]
21: return true, ϵ
22: else
23: return false,0
24: end if
25: end function
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Chapter 3

Resource Estimation of Quantum

Information Set Decoding

In this chapter, we will be detailing our research into estimating the resources required

to perform quantum information set decoding (QISD). We will be following the

methodology set out in [4], detailed in section 2.3. The sections of this chapter follow

the layers of this methodology as follows:

• Section 3.1 — Classical query model

• Section 3.2 — Logical layer

• Section 3.3 — Fault tolerant and physical layers

• Section 3.4 — Analysis of results

We will begin by demonstrating how to perform Prange’s algorithm using a quantum

computer, before constructing the circuit using our chosen gate set. After which, we

will embed our circuit within a suitable error-correction code such that it is deemed

fault-tolerant. Finally, we provide an analysis of the level of security that proposed

code based parameters ensure against a quantum adversary.

3.1 Quantum Information Set Decoding

The first work published with a goal to creating a quantum variant of ISD to attack

code-based cryptography was by Bernstein [15] in 2010. Bernstein’s paper looked at

the idea of using Grover’s search to speed up the classic Prange ISD algorithm. As

detailed in section 2.4.3, Prange’s algorithm is a search algorithm that attempts to

find a correct permutation, equal to selecting r = n− k columns of the parity-check

matrix and moving them to one side of the matrix. We deem a permutation correct

if it gives rise to an information set, I, such that the criterion ϵI = 0 is satisfied,

which can be verified using wt(ϵ) = t. Bernstein observed that if we prepare a
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Algorithm 3 quantumPrange

Input:
|π⟩, n length register initialized to |0⟩
|H⟩, n× r Parity-check matrix
|s⟩, Syndrome
|Aux⟩, auxiliary qubit initialized to |−⟩

Output:
π, column permutation

1: Prepare uniform superposition of all combinations in register |π⟩
2: Apply permutations |π⟩ to |H⟩
3: Perform row reduction to the last r columns of |H⟩
4: Apply the same row operations from line 3 to |s⟩
5: Calculate weight of |s⟩
6: Apply oracle function wt(|s⟩) = t to |Aux⟩
7: Reverse operations 2-5
8: Apply Grover’s diffusion operator to |π⟩
9: Repeat lines 2-8 ItrqPrange =

π
4

√(
n
t

)
/(0.2887 ·

(
r
t

)
) times

10: π ← measure |π⟩
11: return π

state containing all possible column selections, we can use Grover’s search with

an oracle function that tests if the resulting sub-matrix is full rank and produces

an ϵ that satisfies our criterion, allowing us to reduce the expected run time of

Prange’s algorithm. Algorithm 3 shows the details of this quantum variant of Prange,

equivalently figure 3.1 details a high-level quantum circuit of quantum Prange.

The goal of this section is to determine the number of queries we need to make, in

our particular case this is equivalent to calculating the number of Grover’s iterations.

Noting that Grover’s requires π
4

√
N/|A| iterations, as N is the size of the search

space and |A| is the size of the set of solutions, it can equally be thought of as

1/Pr, where Pr is the probability that a random n ∈ N also satisfies n ∈ A. For

Prange’s algorithm, we know that the probability of finding a correct permutation

is PrPrange = (0.2887 ·
(
r
t

)
)/
(
n
t

)
, therefore, we can derive that the optimal number

of Grover’s iterations for Prange’s algorithm is ItrqPrange =
π
4

√
1/PrPrange. Table

3.1 shows the number of Grover’s queries evaluated for a number of parameter sets

proposed by the Classic McEliece NIST submission [17]. It is worth to note here,

that while we could simply stop our analysis at this point, the aim of our research is

to find a lower bound of required resources for performing QISD. In doing so, we are

able to help better inform researchers to the capability of QISD and the requirements

necessary for optimally ensuring quantum-immunity.
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|π⟩
|H⟩
|s⟩
|−⟩

Prep.
Permute

SysForm

wt(ŝ) = t

SysForm−1

Permute−1
Diffusion

Oracle function, Uf

Repeat
π
4

√(
n
t

)
/(0.2887 ·

(
r
t

)
)

Figure 3.1: High-level quantum circuit for Performing Prange’s algorithm

Parameters Grover Iterations

n k t

3488 2720 64 71.94

4608 3360 96 92.99

6688 5024 128 131.72

6960 5413 119 132.27

8192 6528 128 150.61

Table 3.1: Required number of Grover iterations to perform quantum Prange against
proposed Classic McEliece parameter sizes [17]. We represent Grover iterations as
log2(Itr).

3.2 Construction of Quantum Prange

With the first layer of our methodology complete, we can now begin to detail our

attempts to construct quantum circuits to perform quantum Prange. We will begin

this section with defining how we will be modelling cost during this layer, in order

to explain what we are attempting to optimize for. After which, we will describe

quantum circuits to perform the state preparation, permute, weight, and diffusion

subroutines of quantum Prange (see figure 3.1). It should be noted at this point that

we do not present a quantum circuit for the sysForm routine (sometimes referred to

as row reduction or Gaussian elimination), however, we will show in our analysis in

section 3.4 that in spite of this, we can still derive useful results due to how expensive

the other routines are, namely state preparation.

3.2.1 Cost Model

In order to help our optimizations during this layer, we will first make the assumption

that our computation will be running on a quantum computer that uses a surface

code architecture in order to achieve fault tolerance. This is motivated by current

research suggesting surface codes are the best-known method for error-correction

[39].

35



Assumption 1. The resource costs of a large scale quantum computation can be

well approximated by the resource costs required to run that computation on a surface

code based quantum computer.

The impact of this assumption, whilst not obvious, helps give us a better cost metric

for our overall analysis. The surface code (introduce in section 2.3.3) typically is

implemented to work over the Clifford+T gate set, where it is able to perform

fault-tolerant Clifford gates with relative ease. The downside of course is the heavy

cost incurred when using T -gates, as these require the expensive processes of state

injection and distillation in order to be produced at a low enough error rate for large

scale quantum computations. Using this fact, we will assume that T -gates are what

we intend to optimize for and will report as our costs at this stage.

Assumption 2. The resource costs of a computation performed on a surface code

based quantum computer can be well approximated by the resource costs required to

perform only the T -gates of that computation.

This gives us two important details to account for when constructing our circuits;

the first is that we intend to report our costs using three values, number of logical

qubits, T -gate count, and T -gate depth. The second detail extends from this, as it

also implies that all Clifford gates in our constructions will be deemed ’free’, as they

will not contribute directly to any of these metrics.

Definition 3.2.1 (T -Gate Count). The T -count is the total number of T -gates

included in a quantum circuit from input to output. Let T c
U denote the T -count for

an arbitrary unitary operator U .

Definition 3.2.2 (T -Gate Depth). Given a quantum circuit with a gate-depth, d.

The T -depth of the circuit is the number of time-steps that contain one or more T

gates. Let T d
U denote the T -depth for an arbitrary unitary operator U .

3.2.2 Common Quantum Circuits

We will begin our construction by first looking at some common circuits that will be

used in multiple places within our construction. To begin with it helps for us to have

a definition of the three Pauli operators (often referred to as X, Y , and Z) as they

are frequently used. We provide constructions for each of these gates in figure 3.2; it

is important to note that all of these operators can be constructed using only single

qubit Clifford gates and as such can be deemed free based on our cost model.

The next operator we will be in need of is the Toffoli gate. The Toffoli gate can be

seen as an extension of the controlled-NOT gate, where it has two controls rather

than one. This will cause the state of the target qubit to flip if, and only if, both

control qubits are in the |1⟩ state. This gate has many uses, most notably is when

the target qubit is set to |0⟩ it acts as a logical AND operator on the control qubits.
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Z ≡ S S

X ≡ H Z H ≡ H S S H

Y ≡ S Z X S ≡ S S S H S S H S

Figure 3.2: Construction of the Pauli operators using only Hadamard H and phase
S gates belonging to the Clifford group.

|a⟩
|b⟩
|c⟩

|a⟩
|b⟩
|c⊕ (a · b)⟩

Figure 3.3: Quantum circuit notation for a Toffoli gate. The dots correspond to the
control qubits, and the ⊕ denotes the target qubit of the gate. The output state on
the qubit |c⟩ is equal to c XOR (a AND b).

There have been many attempts to construct minimal circuits for Toffoli gates,

however, the current best known approach in the literature requires T c
Tof = 7, and

T d
Tof = 3 [3]. There does exist a depth 1 construct presented by Selinger [79], however

this construction comes at the cost of 4 ancillae per Toffoli gate (although these

ancillae can be reused). The debate of using ancilla to reduce T -depth is one that

will come up numerous times throughout our construction, for now we will simply

show the available options and discuss the different approaches in later sections.

There does also exist another optimization trick, where if one Toffoli gate is later

uncomputed by another, then both gates in the pair can omit 3 T -gates from their

cost [8].

Furthermore, it’s possible for us to extend the Toffoli to include an arbitrary number

of controls. We refer to this gate as amixed polarity multiple control Toffoli (MPMCT)

gate. The MPMCT is a Toffoli gate that contains c > 2 control or anti-control bits,

an anti-control acts in the same manner as a control however will only apply the

gate if the anti-control is in the |0⟩ state. Di Matteo, Gheorghiu, and Mosca [25]

demonstrate that by using n− 1 ancillae they are able to perform such a gate where

c ≥ 4 with a T -count of T c
MPMCT = 12c− 20, and a T -depth of T d

MPMCT = 4c− 8.

Importantly, the n− 1 ancillae are returned to their original state after use and so

can be reused if we need to perform multiple MPMCT gates in succession.

The final common constructions we will be presenting here are those for quantum

arithmetic, namely addition, subtraction, and comparison. Currently, there is a

multitude of methods for addition each with their own pros and cons depending on

whether you wish to use more space (ancillae) or time (circuit depth) [23, 27, 28,

43, 90]. The most common method for performing addition is a quantum variant

of the ripple carry adder, originally proposed by Vedral, Barenco, and Ekert [90]
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|x⟩
|y⟩

|x⟩
|y⟩
|x · y⟩

,

=

|x⟩
|y⟩
|0⟩ H H

|0⟩ |0⟩

T †

T †

T

T

S

|x⟩
|y⟩
|x · y⟩

Figure 3.4: Circuit notation and construction of AND gate with T c
AND = 4, T d

AND = 1
and requiring 1 ancilla. Notation is from [43] and the construction is from [54].

|x⟩
|y⟩

|x · y⟩

|x⟩
|y⟩ = ,

|x⟩
|y⟩

|x · y⟩ H

S

S
X

S†
|x⟩
|y⟩
|0⟩

Figure 3.5: Circuit notation and construction of AND† gate requiring zero T gates.
Notation is from [43] and the construction is from [54].

and further improved by Cuccaro et al. [23]. The ripple carry adder works by using

Toffoli gates to calculate the carry for each set of bits recursively, after which the

carry bits can then be uncomputed, and the sum can be calculated using CNOT

gates. This construction leads to using 2n− 1 total Toffoli gates and a single ancilla

to find the sum of two n-bit integers, however, we can form the Toffoli gates into

n− 1 compute-uncompute pairs with one additional Toffoli. Using the values from

above, each of these pairs have a T -count of 8, leading to a total T -count of 8n− 1

with a depth of 2n+ 1.

Gidney [43] proposes a cheaper alternative to Toffoli gates that they refer to as

temporary logical-AND gates. These logical-AND gates require the use of an ancilla

qubit (to store the output) but only require T c
AND = 4 and T d

AND = 1, and require

zero T -gates to uncompute (see figures 3.4 & 3.5). Utilizing these new gates, the

authors propose a new scheme for quantum addition, requiring only a T -count of

4n− 4 and a T -depth of n− 1 at the cost of an additional n− 1 ancillae. We report

the costs of the adders from [23] and [43] in table 3.2.

Now we have established the costs required to perform addition, we can use the same

constructions to also perform subtraction and comparisons by utilizing signed binary

integers (either ones or twos complement). To find a − b we can simply calculate

a+ (−b), where −b is the corresponding complement of b. To compare two signed

Method T -Count T -Depth Ancilla

Cuccaro [23] 8n− 1 2n+ 1 1

Gidney [43] 4n− 4 n− 1 n− 1

Table 3.2: Comparison of time vs. space for using Toffoli or AND gates to perform
ripple carry addition.
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integers, a and b, all we need to do is calculate the sign bit of the output from a− b;
if the sign bit is 0, then a ≥ b, or a < b if the sign bit is one.

3.2.3 State Preparation

We can now start with the first stage of our circuit, state preparation. The goal of

this portion is to create a superposition over our search space. In our use case, we

are attempting to search over a subset of permutations that are equal to choosing

r-many columns of the parity-check matrix H. As permutation matrices are rather

large to store as well as difficult to prepare for our specific case, we instead propose

to prepare a superposition of all possible combinations (see definition 2.4.6). We

will represent combinations as binary strings of length n equal to the size of set,

each with weight r, where the positions of the 1s correspond to selection of columns.

As an example, if we had a set S = {1, 2, 3, 4, 5, 6}, where each entry corresponds

to an index of a column in a matrix, the binary string 100110 would represent the

combination C ⊂ S = {1, 4, 5}. Within the literature of quantum mechanics, there

exists such a state that is a superposition of all n-length binary strings with fixed

weight r, known as Dicke states [26].

Definition 3.2.3. (Dicke State, |Dn
r ⟩) A uniform superposition of all n-qubit states

|x⟩, with Hamming weight, wt(x) = r, i.e.,

|Dn
r ⟩ =

(
n

r

)− 1
2 ∑
x∈{0,1}n,wt(x)=r

|x⟩

Dicke states have a number of uses within quantum computing, such as quantum

metrology [89], quantum game theory [70], quantum networking [74], and quantum

optimization (QAOA) [33, 49]. Due to the variety of uses, the question of efficiently

preparing Dicke states is one of great importance. Over this section, we will present

two possible methods the first is our own design utilizing the combinatorial number

system, and the second is an algorithm proposed by Bärtschi and Eidenbenz [9].

Combinatorial Number System

The combinatorial number system (CNS), is a bijective correspondence between

natural numbers (including 0) and combinations. CNS has uses in classic computing

as a means to directly generate a combination from a specific index [58]. CNS comes

from an observation by Lehmer [61], who demonstrated that given a combination of

choices {cr, cr−1, . . . , c1} from the set {1, . . . , n} where n > cr > cr−1 > · · · > c1 ≥ 0

we can compute a value N =
∑r

i=1

(
ci
i

)
, this N has a unique value such that

0 ≤ N <
(
n
r

)
. This means that given any integer, N , such that, 0 ≤ N <

(
n
r

)
,

we are able to find its corresponding r-combination of n elements. To transform a
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combination to its corresponding integer in CNS we use a ranking algorithm, the

inverse of this process (converting an integer to a combination) uses an unranking

algorithm, we present the ranking and unranking algorithms for CNS in figures 4

and 5 respectively.

Algorithm 4 cnsRank

Input:
bit string, x ∈ {0, 1}n

Output:
integer N

1: N ← 0
2: r ← 1
3: for all i ∈ {0, . . . , n− 2, n− 1} do
4: if xi = 1 then
5: N ← N +

(
i
r

)
6: r ← r + 1
7: end if
8: end for
9: return N

Algorithm 5 cnsUnrank

Input:
integers r, n, N such that 0 ≤ N <

(
n
r

)
Output:

bit string out, representing Nth rank r-combination of n elements
1: out← {0}n
2: for all i ∈ {n− 1, n− 2, . . . , 0} do
3: if N ≥

(
i
r

)
then

4: N ← N −
(
i
r

)
5: outi ← 1
6: r ← r − 1
7: end if
8: end for
9: return out

We can construct a state preparation method as follows: we begin by preparing a

register in superposition of all integers 0 ≤ N <
(
n
r

)
using Hadamard gates, from

which we use cnsUnrank on all integers in the register simultaneously in order to

create our Dicke State. In order to construct such a circuit, we require a quantum

implementation of cnsUnrank, which itself requires two key components:

1. Arithmetic (discussed in section 3.2.2)

2. Calculation of binomial coefficients

The biggest hurdle to overcome in performing cnsUnrank is the latter of those two,

as we need to compare and subtract different binomial coefficients depending on
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the value of r, which varies over the superposition. There exists efficient algorithms

for classically computing such values in O(r) time and O(1) space, however, rely

upon extensive use of both multiplication and division [40] which are both expensive

processes to perform on a quantum computer. There is potential that with some

fine-tuning, this arithmetic-based approach could be a faster method by constructing

quantum circuits that multiply by a fixed number, due to the fact that it uses known

multiplicands and divisors, however, we instead will be using an approach based on

quantum RAM (lookup tables). qRAM is analogous to classical RAM by computing

all required binomial coefficients ahead of time we can construct a circuit that can

search for a value corresponding with a specific address:

∑
j

αj |j⟩ |0⟩
qRAM−−−→

∑
j

αj |j⟩ |bj⟩ (3.1)

Where
∑

j αj |j⟩ is the address(es) of the query we are making to the qRAM and |bj⟩
is the jth memory location. How to efficiently construct such a circuit is a question

of great importance to quantum computing as many algorithms require the existence

of qRAM such as HHL [51]. Di Matteo, Gheorghiu, and Mosca [25] performed a

resource estimation on two variants of qRAM: either loading classical data to be

stored on quantum bits (known as bucket-brigade [6]) or constructing a network of

n-bit MPMCTs that are controlled on the address bits and will set the relevant bits

in the output register. In our implementation, we plan to use the MPMCT approach

for two reasons: firstly the binomial coefficients to be calculated would require a

large amount of space to store and query using bucket brigade methods and secondly

as we know the contents of our memory we can employ optimization strategies [81]

to reduce the overall cost. As an example of how to implement our qRAM, assume

we have a known value n that we wish to compute
(
n
r

)
for 0 ≤ r ≤ n/2, choosing

n = 6 we obtain the table 3.3.

Address Output

00 00001

01 00110

10 01111

11 10100

Table 3.3: Memory table of
(
6
r

)
, where address is the value of r and output is the

corresponding binomial coefficient.

Figure 3.6 shows an implementation of table 3.3 using MPMCT gates. Each MPMCT

uses controls that check for a specific address and then sets the corresponding

output bits. The cost of this implementation is dependent on the number of bits

we need to set, as well as the cost of each individual MPMCT gate. Using the

costs from section 3.2.2, the cost of an n-controlled MPMCT (where n ≥ 4) is
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|a0⟩
|a1⟩

|0⟩
|0⟩
|0⟩
|0⟩
|0⟩

H H H

Figure 3.6: qRAM implementation of table 3.3 using MPMCT gates to set the output
for its corresponding address.

T c
MPMCT = 12n − 20, T d

MPMCT = 4n − 8 requiring an additional n − 1 ancillae.

The number of MPMCT gates required depends on the specifics of the data, from

table 3.3 we have a total of 9 qubits in the output register set to 1, and 11 qubits

set to 0. Therefore, it is cheaper for us to construct MPMCT gates to set the 1s of

the output, if we had a table with a greater number of 0s then we would instead

initialize the output to |1⟩⊗n using X gates and apply MPMCT gates to set relevant

qubits to 0.

There is also a further adjustment that we must consider if we desire to trade space

for time, if we were to fan out our address register in order to make copies we could

perform more MPMCT gates in parallel at the cost of ancillae qubits. We are limited

in the number of gates we can do in parallel based on the maximum number of

operations on any one output qubit, for example in figure 3.6 the 3rd output qubit

(5th from the top) is operated on 3 times therefore the lowest depth we can achieve

is 3. Figure 3.7 demonstrates how we can construct a 3 depth MPMCT variant by

creating two additional copies of the address register.

|a0⟩
|a1⟩

|0⟩
|0⟩

|0⟩
|0⟩

|0⟩
|0⟩
|0⟩
|0⟩
|0⟩

Figure 3.7: Parallel qRAM implementation of table 3.3 using control fan out to
achieve an MPMCT depth of 3.

42



If we assume we have a memory table with addresses of length n corresponding

to an m-length output with w many total bits to set (either 1s or 0s, whichever is

fewer) and a maximum of d operations to be performed on any one output qubit,

then we can calculate the cost of implementation using an MPMCT qRAM, we

show these costs on table 3.4 including both the sequential and parallel variants. It

is also important to note that there is further room for optimization of MPMCT

qRAM circuits however, these techniques rely on abusing the specific structure of an

MPMCT network for a given data set [66, 81].

Method T -Count T -Depth Ancilla

Sequential w(12n− 20) w(4n− 8) n− 1

Parallel w(12n− 20) d(4n− 8) ⌊w
d
⌋n+ ⌈w

d
⌉(n− 1)

Table 3.4: Cost estimate for implementation of a generic, non-optimised, qRAM
using an MPMCT with T c = 12n − 20 and T d = 4n − 8 using n − 1 ancillae, not
included in the table is the space required to store both the input and output qubit
registers.

With the building blocks laid out for arithmetic and calculation of binomial coeffi-

cients, we can detail our construction of cnsUnrank and the costs to perform such

a function. Looking once more at algorithm 5 the first step of each iteration is

to perform a qRAM lookup on address r for our values of
(
i
r

)
. For each of our n

iterations, we will require a different memory table ti; the number of entries for a

given table are dependent on the possible values of r, as i is fixed and decrements

every iteration but, r varies for each input value N . For example tn−1 will always

be of size 1 as during the first iteration the value of r is the same throughout, tn−2

will be of size 2 as the value of r will have decreased for some values of N in the

superposition but not for others. This pattern increases until the rth iteration where

|tn−1−r| = r+1 however, from here there are no more possible values of r and as such

the size of table shall remain at r + 1 until, i < r at which point the size decreases

by 1 each iteration until the final table t0 will be of size 2. Table 3.5 demonstrates a

full table for a smaller example of
(
12
4

)
, from this analysis we can calculate that the

total number of qRAM queries we must make is r(n− r) + n however as the first

table is only of size 1 (and thus does not require a qRAM implementation) the total

number of table entries is r(n− r) + n− 1 which can be simplified to kr + n− 1 as

r = n− k. The algorithm begins with a register |N⟩ containing the superposition of

input integers to unrank, including a sign bit, |r⟩ will originally be set to its relevant

input value, we then require two registers initialized to |0⟩ one to hold the output

of the qRAM lookup and the second to store the output bit string. We start by

performing our qRAM lookup then subtracting its output from N , we then set the

output bit based on the sign bit of N and then perform a controlled addition to

43



|r⟩
|0⟩

|Nsign⟩
|N⟩
|outi⟩

qRAM

Sub Add

qRAM
Dec

Repeat n times

Figure 3.8: Black box implementation of algorithm 5 in order to create a superposition
of r-combinations of n elements.

reverse the subtraction in the event that N <
(
i
r

)
, we then reverse our qRAM, and

finally we decrement r only if the output has been set to 1. Figure 3.8 shows the

process required to perform cnsUnrank and table 3.6 shows the T -count and T -depth

cost of running the whole algorithm.

Table no. Values

t11
(
11
4

)
t10

(
10
4

)
,
(
10
3

)
t9

(
9
4

)
,
(
9
3

)
,
(
9
2

)
t8

(
8
4

)
,
(
8
3

)
,
(
8
2

)
,
(
8
1

)
t7

(
7
4

)
,
(
7
3

)
,
(
7
2

)
,
(
7
1

)
,
(
7
0

)
t6

(
6
4

)
,
(
6
3

)
,
(
6
2

)
,
(
6
1

)
,
(
6
0

)
t5

(
5
4

)
,
(
5
3

)
,
(
5
2

)
,
(
5
1

)
,
(
5
0

)
t4

(
4
4

)
,
(
4
3

)
,
(
4
2

)
,
(
4
1

)
,
(
4
0

)
t3

(
3
4

)
,
(
3
3

)
,
(
3
2

)
,
(
3
1

)
,
(
3
0

)
t2

(
2
3

)
,
(
2
2

)
,
(
2
1

)
,
(
2
0

)
t1

(
1
2

)
,
(
1
1

)
,
(
1
0

)
t0

(
0
1

)
,
(
0
0

)
Table 3.5: Example table of values that need to be classically computed and imple-
mented as qRAM for n = 12, r = 4.

Bärtschi and Eidenbenz Method

Bärtschi and Eidenbenz [9] present an alternative method to preparing Dicke states.

This approach relies upon constructing a unitary Dn,r
1, that takes an input state

|0⟩⊗n−r |1⟩⊗r and will output the corresponding Dicke state |Dn
r ⟩. In the paper, they

demonstrate that it is possible to construct such a unitary by using split and cyclic

shift or SCSn,r gates recursively. These gates will not alter a state composed only of

all-zero or all-one, however if acting on a state with zeroes appended with ones, will

create a superposition where a zero has been permuted to the last qubit.

1In the original publication, the authors use the notation Un,r. To prevent confusion with our
oracle functions, Un, we have re-labelled this operator.
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Process T -count T -depth

qRAM wti(12R− 20) dti(4R− 8)

Subtract 4N − 4 N − 1

ctrl-Add 8N − 8 9N + 6

Decrement 4R− 4 R− 1

1 round wti(12R− 20) + 12N + 4R− 16 dti(4R− 8) + 10N +R+ 4

n rounds 2W (12R− 20) + 12Nn+ 4Rn− 16n 2D(4R− 8) + 10Nn+Rn+ 8n

Table 3.6: Total costs to run cnsUnrank in order to obtain a register in uniform
superposition of r-combinations of n elements using qRAM (parallel approach) to
load pre-computed binomial coefficients, where R = ⌊log2 r⌋+ 2, N = ⌊log2

(
n
r

)
⌋+ 2,

wti = no. of bits to set in ti and W =
∑n−1

i=0 wti , dti = depth of bits to set in ti and
D =

∑n−1
i=0 wti . This algorithm requires 2N +R+n logical qubits, plus an additional

max (⌊wti

dti
⌋)n+max (⌈wti

dti
⌉)(n− 1) ancillae.

Definition 3.2.4. (Split & Cyclic Shift) A unitary operator, SCSn,r, where for all

l ∈ 1, ..., r, where r < n:

SCSn,r |0⟩⊗r+1 = |0⟩⊗r+1

SCSn,r |0⟩⊗r+1−l |1⟩⊗l =

√
l

n
|0⟩⊗r+1−l |1⟩⊗l +

√
n− l
n
|0⟩⊗r−l |1⟩⊗l |0⟩

SCSn,r |1⟩⊗r+1 = |1⟩⊗r+1

Using an inductive approach (lemma 2 from the original paper), the authors were

then able to derive the following equation to construct an arbitrary Dn,r using only

SCS gates:

Dn,r :=
r∏

l=2

(SCSl,l−1 ⊗ 1⊗n−l) ·
n∏

l=r+1

(1⊗l−r−1 ⊗ SCSl,r ⊗ 1⊗n−l)

As an example, if you wanted to create the state |D5
3⟩ you would start with the state

|0⟩⊗2 |1⟩⊗3 and apply the operations (1 ⊗ SCS5,3), (SCS4,3 ⊗ 1), (SCS3,2 ⊗ 1⊗2),

(SCS2,1 ⊗ 1⊗3), we demonstrate this example in figure 3.9.

What remains now to show is how we can construct SCSn,r, using Clifford+T gates.

The authors demonstrate a method using r-many controlled Y -rotation gates, where

if the control qubit is in the |1⟩ state then Ry(θ) is applied to the state where,
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|0⟩
|0⟩
|1⟩
|1⟩
|1⟩

SCS5,3

SCS4,3
SCS3,2

SCS2,1

|D5
3⟩

D5,3

Figure 3.9: Quantum circuit to implement D5,3 using recursive SCS gates.

Ry(θ) =

cos( θ2) − sin( θ
2
)

sin( θ
2
) cos( θ

2
)


Ry(θ) |0⟩ = cos(

θ

2
) |0⟩+ sin(

θ

2
) |1⟩

Ry(θ) |1⟩ = − sin(
θ

2
) |0⟩+ cos(

θ

2
) |1⟩

(3.2)

Each of the r-many gates implements one of the mappings for l ∈ 1...r given by

definition 3.2.4. The authors define two more operators named (i) and (ii)l, where

(i) is a two qubit gate to implement l = 1 and (ii)l is a three qubit gate to implement

the other r − 1 choices for 2 ≤ l ≤ r.

(i) |00⟩ → |00⟩

|11⟩ → |11⟩

|01⟩ →
√

1

n
|01⟩+

√
n− 1

n
|10⟩

(ii)l |000⟩ → |000⟩

|001⟩ → |001⟩

|010⟩ → |001⟩

|111⟩ → |111⟩

|011⟩ →
√
l

n
|01⟩+

√
n− l
n
|10⟩

Ry(2cos
−1
√

1
n
)

Ry(2cos
−1
√

l
n
)

To continue on from our example before, if we wanted to perform an SCS5,3 gate, we

would construct a circuit using one (i) gate followed by (ii)2 and (ii)3. Figure 3.10

shows a full implementation of D5,3 using (i) and (ii)l gates. In total this construction

requires (n − 1) controlled rotation, CRy gates and (n − r)(r − 1) +
∑r

i=3(i − 2)

two-controlled rotation, CCRy gates. The total depth cost of this construction is

also linear in n, this is due to (ii)r of SCSn,r being capable of running in parallel

with up to r∗ := ⌊ r+1
3
⌋ − 1 many other gates, namely (ii)r−3, (ii)r−6, ..., (ii)r−3r∗ of

SCSn−1,r, SCSn−2,r, ..., SCSn−r∗,r.
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√
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√
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√
1
2 GHOST

|D5
3⟩

Figure 3.10: Quantum circuit from [26], to perform D5,3 using SCS gates.
√

l
n
-gates

are shorthand for Ry(2cos
−1
√

l
n
), mapping |0⟩ →

√
l
n
|0⟩+

√
n−l
n
|1⟩.

In order to perform our controlled rotations using Clifford+T , we use a CNOT

gate to conditionally apply an X-gate, this X will then cause any Y -rotations to

be inverted due the axis being orthogonal i.e, XRy(θ)X = Ry(−θ). Looking at

figure 3.11, we can see that when the control qubit is in the state |0⟩, we rotate the

target qubit by Ry(θ/2) immediately followed by Ry(−θ/2) returning the qubit to its

original state. However, when the control is in the state |1⟩ the target will be rotated
by Ry(θ/2) twice, causing a total rotation of Ry(θ). We use the same principle for

our two-control CCRy gate, however, this time we now split the angle up into four

parts where the gates will cancel each other out in the event that either none, or

one, of the controls is in the state |0⟩ and rotate the state by Ry(θ) if both controls

are in the |1⟩ state.

Ry(θ) =
Ry(θ/2) Ry(−θ/2)

Figure 3.11: Implementation of a controlled Y -rotation utilizing CNOT gates to
invert the second rotation gate if the control is in the state |1⟩.

Ry(θ)
=

Ry(−θ/4) Ry(θ/4) Ry(−θ/4) Ry(θ/4)

Figure 3.12: Implementation of a two-controlled Y -rotation utilizing CNOT gates
to invert the Y -rotation gates.

Breaking up our CRy and CCRy gates allows us to calculate the total number of

single qubit rotations, #Ry, we require:

#Ry = 2 ·#CRy + 4 ·#CCRy = 4rn− 2r2 − 2r − 2n+ 2

= 2(n− 1)2 − 2(k2 − k)
(3.3)

Now all that remains is a method to construct arbitrary Y -rotation gates using

the Clifford+T gate set. This topic is one of great importance and as a result has

been thoroughly explored with many proposed algorithms to synthesize an arbitrary

rotation gate within some margin of error ϵ. One of the major reasons behind this

research is that by synthesizing arbitrary rotation gates, we can synthesize any single
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qubit unitary [57, 78]. The major result we will be using in our analysis is from

Ross and Selinger [77], who demonstrated that with access to a factoring oracle

i.e., a quantum computer, it is possible to optimally synthesize a Z-rotation, within

a margin of error ϵ, using O(log(1/ϵ)) T -gates, which can easily be extended to

apply for both Y and X rotations, as they only differ by Clifford operators [78].

Their results also show that even without such an oracle, their algorithm still finds

a solution using 3log2(1/ϵ) + O(log(log(1/ϵ))) in the typical case. Due to current

estimates [44] demonstrating that Shor’s algorithm is relatively inexpensive compared

to our analysis, it seems fair to assume that we are able to synthesize single qubit

Y -rotations using 3log2(1/ϵ) many T -gates. The value of ϵ is chosen such that the

total sum of error for each rotation gate is negligible e.g., 0.01%, giving ϵ < 0.0001
#Ry

.

From this we can derive the total cost of the Bärtschi and Eidenbenz method:

T c
BE = 3log2(

#Ry

0.0001
) ·#Ry

T d
BE = 3log2(

#Ry

0.0001
) · (2 ·#CRy +

4 ·#CCRy

r∗
)

Comparison of Methods

The previous sections introduced two possible methods for the state preparation step

of our circuit. But the question remains as to which method is optimal. We report

on table 3.7 the cost to implement both methods for the parameter sets outlined in

table 3.1.

Parameters CNS B&E

n k t T c T d T c T d

3488 2720 64 1.20× 1033 7.64× 1029 1.40× 1031 6.50× 1028

4608 3360 96 8.50× 1039 3.43× 1036 7.66× 1037 2.20× 1035

6688 5024 128 1.08× 1052 3.15× 1048 8.95× 1049 1.92× 1047

6960 5413 119 1.56× 1052 4.65× 1048 1.28× 1050 2.96× 1047

8192 6528 128 7.57× 1057 2.03× 1054 6.09× 1055 1.30× 1053

Table 3.7: Comparison of costs for two methods of preparing a Dicke state for various
proposed parameter sets of Classic McEliece [17].

It is clear to see that the Bärtschi & Eidenbenz (B&E) method surpasses CNS in

both count and depth of T -gates, further more CNS requires additional space as it

needs to hold both the integer N , the n-length Dicke state, and requires additional

ancillae for performing the qRAM look up, whereas the B&E method constructs

the Dicke state in place and requires no additional space. However, CNS does have

one key advantage over B&E, where B&E prepares the entire Dicke state, CNS is
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able to prepare only parts of the state dependent on the values of N provided. This

allows for our construction to be easily run distributively, across multiple quantum

computers if desired. Furthermore, CNS as presented in this work is suboptimal, as

we have ignored a number of potential optimization tricks for our qRAM [25, 66, 81],

or alternative implementation approaches, that require a deeper knowledge of the

internal structure. Ultimately, for our analysis, we will still use the costs of the B&E

as we won’t be analysing distributed costs, but due to the importance of Dicke states,

we felt it worthwhile to present CNS as a potential alternative in future analysis.

3.2.4 Permuting the Parity-Check Matrix

With a method now set out for achieving a Dicke state, the next stage in the algorithm

is to be able to apply the combinations to the parity-check matrix H to achieve Hπ.

The goal of this process is to use a combination to select its respective r-many chosen

columns (represented by 1s) of H so that they can be confirmed, via row reduction,

if they form an information set. One particular facet that will feature in this section

is that Prange’s algorithm only requires us to perform operations on the selected

columns, a trait that is not shared by the other ISD variants. This allows us to save

on space as we only need to store the required columns of H.

With that in mind we move on to the construction of a circuit that loads only the

columns selected by a given combination state. First, as H is public and classically

stored we are able to load its respective columns using a network of X gates. However,

we need to find a method of only loading the columns specified by the combination.

The method we propose in this section is to create a matrix of qubits where each row

will have at most one non-zero entry and each column will have exactly one non-zero

entry. We will then use each row of this matrix to determine which column of H is

loaded and where. We begin by defining two operators used in our construction:

Definition 3.2.5. (Prepend 1s) Unitary operator, PREn, acting on n+ 1 qubits

with a control qubit and n targets, where for all l, with 0 ≤ l < n:

PREn |1⟩ |1⟩l |0⟩n−l = |1⟩ |1⟩l+1 |0⟩n−l−1

PREn |0⟩ |1⟩l |0⟩n−l = |0⟩ |1⟩l |0⟩n−l

Definition 3.2.6. (Eliminate 1s) Unitary operator ELIM , acting on n qubits, where

for all l, with 1 ≤ l ≤ n:

ELIM |0⟩n−l |1⟩l = |0⟩n−l |1⟩ |0⟩l−1
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Figure 3.13: Quantum circuit implementation to generate a matrix to be used for
permuting the parity-check matrix for the Dicke state |D5

2⟩. Where |D5
2⟩i and |A⟩i

indicates the i-th qubit of the Dicke state and i-th row of the matrix respectively.[
0 1 1 0 0

]

0 0

0 0

0 0

0 0

0 0

→

0 0

1 0

0 0

0 0

0 0

→

0 0
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0 0
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→
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1 0
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1 1

0 0

→

0 0

1 0

1 1

1 1

1 1


Figure 3.14: Matrix representation of Fig. 3.13, looking at one such r-weighted string,
01100, that is part of the Dicke state |D5

2⟩ and showing how each PRE gate and
CNOT effects the matrix state |A⟩.

We now use an r × n matrix of ancillae, |A⟩ with all entries set to |0⟩, we then

iterate through qubits i ∈ 1, ..., r of the Dicke state using PREi on the i-th row of

|A⟩ controlled on |Dn
r ⟩i making sure to use CNOT gates after each PRE gate to

copy the completed row down to the next. Once we reach PREr we can abuse what

we know of the structure of the Dicke state, and rather than increase to PREr+1

we can continue to use PREr as we know there will be at most r 1s in the state.

We continue to use PREr another n− 2r times at which point we can then perform

PREi for i ∈ r, ..., 1 as we again can determine which positions must have a 1 based

on the fixed weight of the Dicke state. This gives us a total of n PRE gates. Figure

3.13 shows an example of how to use our PRE gates to prepare our ancilla matrix

for the state |D5
2⟩, figure 3.14, shows what the matrix |A⟩ would look like for one of

the strings contained in |D5
2⟩.

After we have applied all of our n PRE gates, we then perform ELIM on each

column of |A⟩, this will result in every column having only one non-zero value and

each row having at most one non-zero value, an example of how to construct ELIM

50



|0⟩
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|0⟩
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Figure 3.15: Implementation of ELIM using cascading CNOT gates.

=

Figure 3.16: Construction of a Fredkin gate using 2 CNOT gates and a Toffoli gate.
When the top control qubit is set to |1⟩, the target qubits will swap positions.

is given in figure 3.15. We will then iterate through each entry of |A⟩, if the entry

aij is equal to 1, then we will load the ith column of H into the jth column of Hπ

conversely if it is equal to 0 then we ignore it. The circuits for ELIM and loading

can both be performed using only CNOT gates and as such we can assume they are

free in our cost model. This means all that remains is to show a construction for our

PRE gates. In order to construct PREr we will simply use r − 1 cascading Fredkin

gates (also known as controlled-SWAP gates) which, if the control qubit is in the |1⟩
state will transform the state |ai,1, ai,2, ..., ai,r−1, ai,r⟩ to |ai,r, ai,1, ai,2..., ai,r−1⟩, after
which a CNOT will transform the qubit into a 1. We show in figure 3.16 that a

Fredkin gate can be constructed using only one Toffoli gate and 2 CNOT gates

[86]. In order to perform PREr we require r − 1 Fredkin gates, figure 3.17 shows an

example for the gate PRE5. From this we can calculate the total cost for permuting

as:

T c
Perm = 7(nr − n− r2 + r)

T d
Perm = 3(nr − n− r2 + r)

We also require an additional nr ancillae to store |A⟩, which can be uncomputed and

reused.

Figure 3.17: Implementation of PRE5 using 4 Fredkin gates and a single CNOT .
When the top control qubit is set to |1⟩ a 1 is prepended to the binary string e.g.,
PRE(|1⟩ ⊗ |11000⟩) = |1⟩ ⊗ |11100⟩.
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|ŝ⟩

|wt(ŝ)⟩

Figure 3.18: Circuit to calculate Hamming weight of a 5 length input constructed
using quantum AND gates.

3.2.5 Hamming Weight & Phase Kickback

We can now move on to the final part of our oracle function, the goal of this section

is to calculate the Hamming weight of our syndrome ŝ and use that to perform phase

kickback, conditioned on wt(ŝ = t). Assuming we have a syndrome of length r = n−k
of unknown weight, we require a temporary register of length R = ⌊log2 r⌋ + 1 to

store a binary integer up to r. We then will use each qubit of ŝ as an incoming

carry to a series of half adders, which will act as a controlled increment gate. As an

example, if we wanted to compute the hamming weight of a syndrome of length 5,

we require 3 qubits to store the sum, then let us assume we have a gate INCi, which

will increment an i qubit register by 1, we are able to use INCi a maximum of 2i

times before having to scale up to INCi+1. Therefore, for our example of length 5

we will use 1 INC1, 2 INC2, and 2 INC3 gates. To implement our INC gates we

will use the adder built from AND gates introduced in section 3.2.2, giving us the

cost of T c
INCi

= 4(i− 1), T d
INCi

= i− 1, and i− 1 ancillae to store the output of our

AND gates. Figure 3.18 shows our example of a syndrome of length 5 implemented

using AND gates.

The largest increment gate required is R, which we need to use a total of (r+1)−2R−1

times, with each copy costing 4R − 4. We can then sum the cost of the smaller

increment gates using
∑R−1

i=1 2i−1(4i− 4) = 2R+1(R− 3) + 8.

Once we have calculated the total weight of ŝ the last step is to apply phase kickback

using our register initialized to |−⟩, this is easily performed using just one R sized

MPMCT gate with the controls set to our desired weight t. After we have applied

our MPMCT gate the last step is to uncompute our weight function which is done

by running the whole circuit in reverse such that it acts as a decrement gate. We

display a summary of the costs of this section in table 3.8.
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Process T -count T -depth Ancilla

INC1≤i<R 2R+1(R− 3) + 8 2R+1(R− 3) + 8 R− 1

INCR (4R− 4)(2R − 2r − 2) (R− 1)(r − 2R−1 + 1) R

MPMCT 12R− 20 4R− 8 R− 1

Total 8r(R− 1)− 2R+3 + 20R− 12 2r(R− 1)− (11 · 2R) + 3(2R + 2)R+ 6 R

Table 3.8: Total cost to perform phase kickback based on a Hamming weight function
constructed using AND gates where r = n− k and R = ⌊log2 r⌋+1. Total ancillae is
reduced by reusing the ancillae, total cost also includes the extra step of uncomputing
the weight function.
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X
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Figure 3.19: Construction of U0, using single qubit gate operations and one MPMCT
gate.

3.2.6 Grover’s Diffusion Operator

The final piece required for our construction is Grover’s diffusion operator. In section

2.2 we detailed that to perform the diffusion operator we implement the gates V U0V
†,

over our input qubits where V is the operation used to prepare our search space, and

V † is its respective inverse. In our case V is dependent on whether we’re using the

CNS or B&E method of state preparation, in the case of CNS V , and V † are the

Hadamard gate as we are searching over integers, whereas B&E is prepared directly

and so V would be the same algorithm as outlined in that section. Ultimately, these

costs are the same as with the CNS method we are still required to uncompute our

state preparation prior to diffusion. What remains to be analysed is how to construct

the gate U0. Using equation 2.24, we are able to construct this operator by first

applying X gates to all of our input qubits followed by using a multiply-controlled

Z gate, and then finally returning our qubits to their original state by applying X

gates again. Figure3.19 demonstrates how we can instead construct U0 by replacing

the controlled Z gate with two Hadamard gates and an MPMCT gate. Overall the

cost of U0 is equivalent to a single MPMCT gate, with a number of controls equal

to the number of input qubits we have, in the case of CNS unranking the cost is

T c = 12N − 20, T d = 4N − 8, and uses N − 1 ancillae, where N = ⌊log2
(
n
r

)
⌋ + 2,

and for B&E the cost is T c = 12n− 20, T d = 4n− 8, and uses n− 1 ancillae.

3.2.7 Putting it all Together

With our construction outlined, we can now derive the full cost for our circuit.

Table 3.9 shows a breakdown of the costs for each part of our circuit for a single

parameter set, n = 3488, k = 2720, t = 64, from this we can see that the cost of state
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preparation is the major bottleneck of quantum Prange, contributing over 99% of

the overall T -count. Table 3.10 shows the overall costs for the suggested parameters

for Classic McEliece [17].

Process T -count T -depth

State preparation 1.40× 1031 6.50× 1028

Permute 1.31× 1029 5.65× 1028

Hamming weight 2.14× 1026 1.51× 1026

Diffusion 1.88× 1026 6.30× 1025

Total 1.41× 1031 1.22× 1029

Table 3.9: Full costs for running our construction of quantum Prange, for parameters
n = 3488, k = 2720, t = 64. The algorithm also requires 3.28× 106 logical qubits,
including ancillae.

Parameters
T -count T -depth Logical Qubits

n k t

3488 2720 64 1.41× 1031 1.22× 1029 3.28× 106

4608 3360 96 7.69× 1037 3.44× 1035 7.32× 106

6688 5024 128 8.98× 1049 3.05× 1047 1.40× 107

6960 5413 119 1.28× 1050 4.61× 1047 1.32× 107

8192 6528 128 6.11× 1055 2.01× 1053 1.64× 108

Table 3.10: Costs of running quantum Prange, given in terms of T -gates and qubits
(including ancillae) for parameter sets suggested in [17].

3.3 Fault Tolerance

The next stage of our methodology is to take our circuit constructions and embed

them within a suitable error correction scheme such that they can be considered

fault-tolerant. In section 3.2.1 we made the assumption that we intend to use the

surface code scheme, this is due to current research indicating that surface codes

are the best-known method for fault-tolerant quantum computing. There are a

number of papers available discussing different methods of estimating algorithms

using surface code error correction schemes [4, 25, 36, 38, 63]. For our estimates we

will be using the ’defect’ approach introduced in [38], while this approach may report

larger estimates than the more recent ’lattice surgery’ methods [38, 63], unfortunately

the lattice surgery methods do not report methodologies for handling algorithms as

large-scale as the one we present here.
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Algorithm 6 Estimating the required number of rounds of magic state distillation
and the corresponding distances of the concatenated codes

Input:
pg, pout

Output:
d = [d1, . . . , di]

1: d← empty list [ ]
2: p← pout
3: while p < pin do

4: Find minimum odd integer di such that 192di(100pg)
di+1

2 < p
2

5: p← 3
√
p/70

6: d.prepend(di)
7: end while
8: return d

As discussed in section 2.3.3, in order to perform T -gates on the surface code we

require magic states, |AL⟩. We prepare these states faultily with error probability pin

using state injection, and then use dedicated circuits known as magic state distilleries

in order to purify them to our desired fidelity. As errors are additive, our required

error rate is pout = 1/T c. For our analysis we will be using the Reed-Muller 15-to-1

distillation scheme, which takes 15 magic states of error rate pin in order to produce

one magic state with an error rate pout = 35p3in[20]. Using the results from [62],

we assume that our injected states have an error rate equal to the per gate error

rate of the surface code pg. We will follow the most commonly reported optimistic

value for the per gate error rate of pg = 10−4. This means using our Reed-Muller

distillation schemes we are only capable of producing magic states with error rate

pout = 3.5×10−11, which is insufficient for the number of T -gates in our constructions.

However, it is possible for us to concatenate multiple layers of distilleries in order

to further purify our states, if we produce 15 states of error rate 3.5× 10−11, and

then use them as input to another distillery we are able to achieve error rates of

35(3.5× 10−11)3 = 1.50× 10−30. This same process can be repeated until we have

states of sufficiently high fidelity. Algorithm 6, first presented in [4], provides a

method for estimating the number of layers of distillation to produce magic states of

our desired fidelity, as well as the surface code distances required to keep our magic

state distilleries fault-tolerant.

We will now detail the process of resource estimation of a surface code based fault-

tolerant quantum computation for the parameter set n = 3488, k = 2720, t = 64.

From table 3.10, we have T c = 1.41× 1031, therefore our desired error rate for our

magic states is pout = 1/T c = 7.09× 10−32. Using algorithm 6 assuming pg = 10−4,

we find that we require 3 layers of distillation with code distances, d1 = 7, d2 = 15,

d3 = 35.

Our first layer of distillation requires the most resources, in order to supply enough
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magic states to successive layers we require Nd1 = 16× 15× 15 = 3600 logical qubits

encoded on a distance d1 = 7 surface code2. Using results from [39], we find that

we require ⌈2.5 × 1.25 × d21⌉ = 154 physical qubits per logical qubit, giving us a

total footprint of Nd1 × 154 = 5.54× 105 physical qubits, and completes a round of

distillation in 10d1 = 70 surface code cycles.

The second layer of distillation requires Nd2 = 16× 15 = 240 logical qubits encoded

on a distance d2 = 15 surface code, which requires ⌈2.5× 1.25× d22 = 704⌉ physical
qubits per logical qubit, for a total of Nd2 × 704 = 1.69× 105 physical qubits and

completes a round of distillation in 10d2 = 150 surface code cycles.

Finally, the third layer of magic state distillation uses a distance d3 = 35 surface

code, which uses ⌈2.5× 1.25× d23⌉ = 3829 physical qubits per logical. This gives us

a total footprint of 16× 3829 = 6.13× 104 physical qubits, and completes a round of

distillation in 10d3 = 350 surface codes cycles.

We are able to reuse the qubits required for the first layer of distillation in the

second and third layers, for this reason the total number of physical qubits for

our concatenated distillation scheme is 5.54 × 105, and can produce a sufficiently

error-prone magic state in 70 + 150 + 350 = 570 surface code cycles. Furthermore,

as the second layer of distillation has a smaller footprint than the first, we can

simultaneously produce ⌊(5.54× 105)/(1.69× 105)⌋ = 3 magic states per round of

distillation. Therefore, to produce our 1.41× 1031 T -gates, a single distillery would

require tdist = 570× (1.41× 1031/3) = 2.68× 1033 surface code cycles.

We now have to calculate the surface code distance required to keep our logical

qubits in our circuit error-free. Fowler and Gidney [36] show that the error rate per

logical qubit per code cycle can be approximated as:

PL(pg, d) = 0.1(100pg)
(d+1)/2 (3.4)

As we require a total error probability for our whole algorithm to be below 1%, we

can solve the following inequality to find a sufficient code distance, d:

logical qubits× surface code cycles× PL(pg, d) < 0.01 (3.5)

From table 3.10 we find that the total number of logical qubits for our parameter set

is 3.28× 106, and we previously found that the total number of surface code cycles

required to produce our T -gates is 2.68× 1033, giving us a surface code distance of

d = 41. Using a d = 41 surface code requires ⌈2.5 × 1.25 × 412⌉ = 5254 physical

qubits per logical qubit, giving us a total of 5254× 3.28× 106 = 1.72× 1010 physical

qubits.

2The Reed-Muller scheme requires 16 logical qubits, 15 to hold our magic states that are
consumed and an additional ancilla that can be reused.
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Using only one distillery we are able to produce 3 magic states per 570 code cycles,

therefore the time taken to produce all T c = 1.41×1031 would require (T c/3)×570 =

2.70× 1033 surface code cycles. However, by adding more distilleries we can reduce

this time significantly at the cost of some additional qubits. Let Tw = T c/T d denote

the T -width of an algorithm, the width tells us the average number of T -gates

per layer of T -depth. If we construct enough distilleries such that we can distil

Tw magic states per round of distillation, then we are able to execute our circuit

in a time proportional to our T -depth, rather than T -count. Continuing on with

our example values, we have Tw = 1.41× 1031/1.22× 1029 = 115, as each distillery

produces 3 magic states per distillation round we would therefore require ⌈Tw/3⌉ = 39

distilleries in total. The number of physical qubits required for 39 distilleries is

39× 5.54× 105 = 2.16× 107.

We can now derive the full cost of our surface code implementation of quantum

Prange. We require 1.72 × 1010 + 2.16 × 107 = 1.73 × 1010 physical qubits and

570 × 1.22 × 1029 = 6.95 × 1031 surface code cycles. Assuming the time taken to

perform a single surface code cycle tsc = 1µs [36, 63], our computation will take

6.95× 1025 seconds. We detail the results of our resource estimation for all proposed

parameter sets in table 3.11.

57



Proposed Classic McEliece Parameter Set — [n, k, t]

[3488, 2720, 64] [4608, 3360, 96] [6688, 5024, 128] [6960, 5413, 119] [8192, 6528, 128]

P
ra
n
ge

T -count 1.41× 1031 7.69× 1037 8.98× 1049 1.28× 1050 6.11× 1055

T -depth 1.22× 1029 3.44× 1035 3.05× 1035 4.61× 1047 2.01× 1053

Logical qubits 3.28× 106 7.32× 106 1.40× 107 1.32× 107 1.64× 108

Code distance 41 47 61 61 67

Physical qubits 1.71× 1010 5.05× 1010 1.63× 1011 1.54× 1011 2.30× 1012

D
is
ti
ll
er
ie
s Logical qubits per distillery 3600 3600 3600 3600 3600

No. of distilleries 39 56 147 139 101

Code distances [7, 15, 35] [9, 17, 43] [9, 21, 55] [9, 21, 55] [11, 23, 61]

Physical qubits 2.16× 107 5.12× 107 1.34× 108 1.27× 108 1.38× 108

T
ot
al
s Physical qubits 1.72× 1010 5.06× 1010 1.63× 1011 1.54× 1011 2.30× 1012

Seconds 6.95× 1025 2.37× 1032 2.59× 1044 3.92× 1044 1.91× 1050

Cost 119.85 143.11 184.78 185.28 208.10

Table 3.11: Estimation of the resources required to run quantum Prange against proposed parameter sets of Classic McEliece [17]. We define
cost as log2 (# of physical qubits×# of seconds).
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Parameters Classical
Security

Quantum
Security

Security
Reduction (%)n k t

3488 2720 64 195 119.85 38.54

4608 3360 96 240 143.11 40.37

6688 5024 128 320 184.78 42.26

6960 5413 119 321 185.28 39.48

8192 6528 128 358 208.10 41.87

Table 3.12: Comparison of cost estimates to perform Prange’s algorithm using a
classical computer, versus a quantum computer against proposed parameter sets of
Classic McEliece [17]. Classic estimates obtained from [32].

3.4 Analysis

We have presented an estimate for performing Prange’s algorithm fault-tolerantly

on a surface code based quantum computer, using our construction we have derived

estimates for attacks against the proposed parameter sets of Classic McEliece [17],

one of the leading candidates of the NIST post-quantum cryptography standard-

ization process [1]. In table 3.12, we compare the cost of our quantum attack with

current estimates for classical variants of Prange’s algorithm against the same Classic

McEliece parameter sets [32]. Näıvely, we would expect for the cost of our quantum

algorithm to cut our classical bit security in half as Grover’s algorithm allows us to

search a space of size 2n in O(2n/2) versus classical exhaustive search which takes

O(2n). However, table 3.12 shows that on average the reduction is only around 40%.

Note, that despite our construction not factoring in the row reduction process of

Prange’s algorithm (the process commonly used to benchmark Prange’s algorithm

[15]) we still find a 10% overhead due to excessive costs incurred by preparation of

our Dicke state, if we were to assume that row reduction is more expensive than our

state preparation, this overhead would only increase further.

Finally, we will analyse the post-quantum security of the proposed Classic McEliece

parameters. NIST’s call for proposals set out various levels of post-quantum security

defined by the computational effort required for a quantum adversary to perform

Grover’s search against different symmetric key cryptosystems. The proposed param-

eters for Classic McEliece fall under levels 1, 3, and 5 in order for these parameter sets

to meet the criteria of these security levels they must be as computationally hard to

break as AES 128, 192, and 256 respectively [68]. In order to compare our costs with

that of AES we have performed the same fault-tolerant resource analysis discussed

in section 3.3 for the constructions of AES from [54], we summarize these results in

table 3.13, and provide a comparison of these costs with those of our construction of

quantum Prange in table 3.14. From these results we can see that not only do the

parameter sets meet the required benchmark for their suggested security level, but
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AES 128 AES 192 AES 256

G
ro
ve
r

T -count 1.60× 1024 7.63× 1033 6.07× 1043

T -depth 1.75× 1021 7.45× 1030 3.38× 1040

Logical qubits 3329 3969 6913

Code distance 31 41 51

Physical qubits 1.00× 107 2.09× 107 5.62× 107
D
is
ti
ll
er
ie
s Logical qubits per distillery 240 3600 3600

No. of distilleries 913 205 599

Code distances [13, 29] [9, 15, 39] [9, 19, 49]

Physical qubits 1.26× 108 1.87× 108 5.48× 108

T
ot
al
s Physical qubits 1.36× 108 2.08× 108 6.04× 108

Seconds 7.33× 1017 4.70× 1027 2.60× 1037

Cost 86.37 119.56 153.46

Table 3.13: Fault-tolerant resource analysis of the AES constructions from [54], we
report cost as log2 (# of physical qubits×# of seconds).

Security Level AES Cost
McEliece Parameters

Prange Cost Security Margin
n k t

1 — AES 128 86.37 3488 2720 64 119.85 33.48

3 — AES 192 119.56 4608 3360 96 143.11 23.55

5 — AES 256 153.46

6688 5024 128 184.78 31.32

6960 5413 119 185.28 31.82

8192 6528 128 208.10 54.64

Table 3.14: Proposed Classical McEliece parameter sets [17], and their suggested
security level, compared against the cost of breaking the respective AES schemes.
We define cost as log2 (# of physical qubits×# of seconds).

in fact exceed it by a large margin. One of the most notable parameter sets is [3488,

2720, 64] which was suggested by the authors of Classic McEliece to achieve level 1

security (comparable to AES 128) but actually meets the requirements for level 3

security (comparable to AES 192). We observe that, with respect to our estimates

of quantum Prange, these results are indicative of proposed parameter sets being

rather conservative in their security assumptions, and as a result have space to be

lowered while still ensuring the correct level of post-quantum security.
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Chapter 4

Comparison with Recent Work

During the writing up of our research a new publication by Perriello, Barenghi, and

Pelosi [71] was released, this research sought to answer the same question as our work,

i.e., calculating overhead costs of implementing a quantum circuit for information

set decoding. In this chapter we explore their work and compare their findings with

our own.

4.1 Summary of Our Work

First let us quickly summarize our contributions presented in this work. We presented

a quantum circuit implementing the majority of Quantum Prange (first shown in [15]),

the method of state preparation using CNS is, to the best of our knowledge, the first

attempt to use such a method in the preparation of Dicke States. We then continued

by providing a resource estimate to perform QISD using our circuits fault-tolerantly,

deriving estimates for the costs of attacking the five proposed parameter sets of

Classic McEliece [17]. In order to gauge the security provided by these parameter

sets, we performed the same fault-tolerant resource estimate for the construction of

AES presented in [54]. This allowed us to come to the conclusion that the proposed

parameter sets provide a significantly larger level of security than is necessary.

4.2 Summary of Results

We will now detail the work of [71]. In the paper the authors present a complete

quantum circuit to perform Prange’s algorithm, they use their construction in order

to derive gate counts for attacking a variety of parameter sets for two proposed

post-quantum code based cryptosystems; BIKE [5] and Classic McEliece [17]. The

authors compare the gate counts of their construction with the asymptotic costs

reported in [15]. They report a total gate cost smaller than the asymptotic cost

by approximately a factor of 24. Furthermore, they translate their constructions

into the Clifford+T gate model in order to provide their costs in terms of T -count,
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T -depth, and number of logical qubits. Using these values they compare their costs

versus the AES implementation of [93] in order to determine the security level of

proposed code-based parameter choices for BIKE and Classic McEliece. Their results

conclude that both investigated cryptosystems suggest parameter sizes that require

considerably more effort to be broken than the symmetric ciphers they are compared

against to determine their security level.

4.3 Comparison with our Work

To compare our work with that of [71], we will look at three facets; the approach,

constructions, and conclusions of both bodies of work.

First let’s discuss the approach taken across the two bodies of work. The authors of

[71] only discuss the construction of Prange’s variant of ISD, similar to our work,

the parameters investigated in [71] look at a parameter set for each of the NIST

post-quantum security levels for two different cryptosystems, whereas our analysis

only features the five parameter sets of Classic McEliece. One of major differences

between the two pieces of work, is that the authors of [71] only evaluate the cost

of their circuit in terms of logical gate counts, and make no attempt to produce

fault-tolerant estimates, in contrast our work analyses the overheads incurred by

performing our quantum circuits fault-tolerantly, following the methodology of [4].

The second part of comparison is the constructions presented. The methods used for

construction differ slightly, however overall report similar costs. One of the major

differences in construction is that in our work we omit a construction of the row

reduction function of Prange however, we show in our analysis that even without such

a construction, the overheads incurred by state preparation lead to some meaningful

analysis. In contrast, the authors of [71] provide details of such a construction. We

provide on table4.1 a breakdown of the T -count for each process involved in quantum

Prange for the Classic McEliece parameter set [3488, 2720, 64]. We note at this

stage that there appears to be some issues with the reported T -count figures of [71],

in the work they state that when synthesizing Y -rotation gates that ϵ = 10−15 is

sufficient, however their constructions feature significantly more than 1/ϵ Y -rotation

gates. Furthermore, they state X gates require a T -count of 4, and Fredkin (referred

to as CSWAP) gates require a T -depth of 4. We present in section 3.2.2 and section

3.2.4 respectively different figures for these values, however we should note that these

don’t wildly affect the overall resource estimates.

Finally, we note that the conclusions drawn by the authors of [71] align with the

same conclusions drawn in section 3.4 of our work. Specifically, that the current

proposed parameter suggestions for code based cryptosystems suggest parameter
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Process
T -count

[71] [this work]

Dicke state 1.16× 1031 1.40× 1031

Permute 2.15× 1031 1.31× 1029

Row reduction 1.76× 1032 —

Hamming weight 3.05× 1026 2.14× 1026

Diffusion 3.12× 1026 1.88× 1026

Total 2.09× 1032 1.41× 1031

Table 4.1: Comparison of T -count estimates from [71] and our work, for each process
required to perform quantum Prange against proposed Classic McEliece parameters
[3488, 2720, 64].

sets that exceed the security requirements of their respective post-quantum security

levels, with regard to attacks utilizing quantum Prange.
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Chapter 5

Conclusions and Future Direction

We have investigated the construction of a quantum information set decoding algo-

rithm. Using our construction we were able to estimate the overhead incurred due to

the expensive process of error-correction required to keep our algorithm fault-tolerant.

We discussed the impact that this estimate has on current proposed parameters

of the Classic McEliece cryptosystem, notably that the suggested parameter sizes

were conservative in their security estimates and as such present opportunity to

be decreased whilst still maintaining the same level of post-quantum security. Our

results corroborate with those from the recent publication by Perriello, Barenghi,

and Pelosi [71].

During our analysis a number of key areas of for further research can be identified.

First is the investigation of other variants of information set decoding, in our work

we only investigated Prange’s algorithm, however, research has presented quantum

versions of more advanced ISD variants [55, 56].

Another key piece of research is the lattice surgery techniques [36], which claims to

reduce the overall physical qubit requirement by roughly a factor of 5, leading to

reducing the number of bits of security by approximately 2 bits. While this number

does not invalidate our results, it would be an interesting area of research to further

investigate the impact of lattice surgery on large scale quantum computations.

Furthermore, our constructions are by no means final, or optimal. We specifically

chose to follow a methodology that allows for our estimates to be updated such that

any improvements to our circuits can be easily adopted. We note, that one potential

avenue for improvement is the usage of optimization algorithms such as T -par [2].

Finally, as the area of research continues to expand there will likely be numerous

new results that impact our estimates. Ultimately, this was our motivation behind

our choice of methodology as it allows for easier adoption of new research. The

most likely areas to change are improvements to quantum error-correcting codes

and distillation that could boast significant reductions during the fault-tolerant

layer. One particularly interesting area of research is the possibility of new attacks
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impacting the very first layer of the stack, by being able to reformulate or find new

algorithms that apply to code-based cryptography such as those found in [21].
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