
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Decryption Failure Attacks on Post-Quantum Cryptography

Nilsson, Alexander

2023

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Nilsson, A. (2023). Decryption Failure Attacks on Post-Quantum Cryptography. [Doctoral Thesis (compilation),
Department of Electrical and Information Technology]. Lunds Universitet/Lunds Tekniska Högskola.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/9a16223b-09dc-4188-b384-bc25b3d83437

Decryption Failure Attacks
on Post-Quantum Cryptography

Alexander Nilsson

Advisors: TODO
Faculty opponent: TODO

Academic dissertation which, by due permission of the Faculty of Engineering at Lund University,
will be publicly defended on TODO at TODO, in lecture hall TODO at the Faculty of

Engineering, for the degree of Doctor of Philosophy in Engineering.

ISBN 978-91-8039-695-0 (print)
ISBN 978-91-8039-696-7 (electronic)
Series of licentiate and doctoral theses
No. 155
ISSN 1654-790X

Alexander Nilsson
Department of Electrical and Information Technology
Lund University
Box 118
SE-221 00 Lund
Sweden

Typeset using LATEX.

Cover image illustrating the study of small details in complex systems.
Generated by the AI DALL∙E 2 using prompt “pencil drawing of complex old
style machine, comical approach”. Edited by Liza Nilsson.

Printed in Sweden by Tryckeriet i E-huset, Lund, 2023.

Compilation no. 9754 based on rev 9d60cd64 from
2023-04-11T23:43:39+02:00

© 2023 Alexander Nilsson
Published articles have been reprinted with permission from the respective copyright
holder.

iii

Abstract

This dissertation discusses mainly new cryptanalytical results related to issues of
securely implementing the next generation of asymmetric cryptography, or Public-
Key Cryptography (PKC).

PKC, as it has been deployed until today, depends heavily on the integer fac-
torization and the discrete logarithm problems. Unfortunately, it has been well-
known since the mid-90s, that these mathematical problems can be solved due
to Peter Shor’s algorithm for quantum computers, which achieves the answers in
polynomial time. The recently accelerated pace of R&D towards quantum com-
puters, eventually of sufficient size and power to threaten cryptography, has led
the crypto research community towards a major shift of focus.

A project towards standardization of Post-quantum Cryptography (PQC) was
launched by the US-based standardization organization, NIST. PQC is the name
given to algorithms designed for running on classical hardware/software whilst be-
ing resistant to attacks from quantum computers. PQC is well suited for replacing
the current asymmetric schemes. A primary motivation for the project is to guide
publicly available research toward the singular goal of finding weaknesses in the
proposed next generation of PKC.

For public key encryption (PKE) or digital signature (DS) schemes to be con-
sidered secure they must be shown to rely heavily on well-known mathematical
problems with theoretical proofs of security under established models, such as
indistinguishability under chosen ciphertext attack (IND-CCA). Also, they must
withstand serious attack attempts by well-renowned cryptographers both concern-
ing theoretical security and the actual software/hardware instantiations. It is well-
known that security models, such as IND-CCA, are not designed to capture the
intricacies of inner-state leakages. Such leakages are named side-channels, which
is currently a major topic of interest in the NIST PQC project.

This dissertation focuses on two things, in general: 1) how does the low but
non-zero probability of decryption failures affect the cryptanalysis of these new
PQC candidates? And 2) how might side-channel vulnerabilities inadvertently be
introduced when going from theory to the practice of software/hardware imple-
mentations? Of main concern are PQC algorithms based on lattice theory and
coding theory.

The primary contributions are the discovery of novel decryption failure side-
channel attacks, improvements on existing attacks, an alternative implementation
to a part of a PQC scheme, and some more theoretical cryptanalytical results.

v

Acknowledgements

I dedicate this thesis to my wife, Sofia, for without you I would not have the
strength or courage to even attempt anything so foolish as to follow my childhood
dream, and now it’s your turn, I love you and support you in this and everything
else.

Moving on, I naturally wish to extend my undying gratitude towards the per-
sons of most material guidance, my supervisors and co-authors. Thank you, Thomas,
for allowing me to sit on your proverbial giant’s shoulders during the writing of
what turned out to be all of the included papers. Not to mention, this entire jour-
ney. Thank you, Paul, for without your bright ideas, experience, and humor the
beginning of my academic career would have failed fast, or at least would have
looked unrecognizably different, and I would’ve been the worse for it. Thank you,
Qian, for you are without a doubt the one who, by sheer brilliance, forced me to
improve my own faculties the most, just to try and keep up with your next great
idea or suggestion, of which there were many.

I further wish to thank my other co-authors, of which there are quite a few.
Thank you Boris and Irina for coming to my aid and rescuing an otherwise doomed
project, on which I had been stuck for quite a while. I have two merged papers and
thus I wish to extend my sincere thanks to my almost accidental co-authors Jan-
Pieter D’Anvers, Frederik Vercauteren, Ingrid Verbauwhede, Clemens Hlauschek,
Norman Lahr, and Robin Leander Schröder for not only allowing the merges in the
first place, but also for being such good sports about the entire endeavor. I would
be happy to repeat the process. Thank you, Joakim and Pegah, for working with
me on my other contributions, not included in this dissertation. From a social
point of view, I will certainly miss our collaboration most of all, you are both
great people and super co-workers. Pegah, you deserve a second thank you for
additionally being such a great office roommate these last few years, even though
most of my work was from home, much due to the pandemic.

Advenica, my first and so far only, permanent position employer holds a special
place in my mind. The people there, past and present, deserve all the acknowledg-
ments I can put into words. Thank you, Marie, CFO and CEO, for approving the
economics of the situation, it’s no small matter and I’m forever grateful. A special
thank you goes to Helena who always was the guiding star against whom I mea-
sured my own potential future at the company. Without your support, none of
this would have happened. Thank you Jonas for spearheading the role of industrial
supervisor when Helena was no longer available, and ensuring the support of the
company when I needed it. Sebastian, you taking over the supervising role from
Jonas deserve a thank you for this of course, but more importantly, you deserve
it for being such a nice friend, coworker, discussion board, and let’s face it, boss,
for some time. I also wish to thank my current boss, Kalle, for always being so
understanding of the practicalities of PhD-studies and how it affected my produc-
tivity at the company, most probably from having a Ph.D. yourself, though you

vi

very rarely bring it up. Håkan, you are undoubtedly the one who saw most of
my plights and most ably and kindly explained to me what I needed to hear, by
drawing from your own extensive experiences of the academic world and how it
applies to the industry. Thank you. There are many many others at the company
with whom I have enjoyed and learned much from, too many to list them all. If
you feel offended that you are not mentioned by name, I’m sorry but there are so
many of you.

Speaking of coworkers, I have not yet mentioned those from the department
in Lund who has been instrumental in showing me what it means to be a Ph.D.
student. On top of those I have already mentioned as my co-authors, I wish to
especially thank Linus, Erik and Jonathan whom I consider to be “the original
Ph.D. students”. Sometimes leading by example, sometimes acting as a deterrent,
you are a gift to humanity. Linus, I’m proud and happy that our always inter-
esting and occasionally deep technical discussions have continued even after your
defense, let’s agree to keep it up. Also, thank you for the LATEX template that this
thesis is based on. Erik, please shut up, I’m already convinced that you are smarter
than me, no need to rub it in (I’m joking of course, don’t shut up). I’m also eter-
nally thankful for your timely and thorough review comments. Martin, you are
such a good lunchmate, workmate, and generally, an amazing person. I’m very
happy that you decided to join us in the industry, at Advenica and in my team, no
less. I’m not going to mention by name all the rest of the department, but if you
know me then I know you and I’m happy to have worked alongside you, I really
am. You are all great people, no exceptions.

I would like to round off with a thank you to my entire extended family for
their support, encouragement and not to mention, their many questions. Mom
and dad, thank you for no less than everything, you’ve defined me in all the things
that matter. My good character traits are yours and my faults are my own. Liza,
thank you for being a great sister, and also for the help with the cover image.
And finally, I would like to thank Ellen, Ebba, Elliot, and Edvin for offering no
particular help in any practical sense of the word but still, somehow, providing that
decisive bit of motivating factor. Without you, this book and the results herein
would lack meaning. Love, dad.

Alexander Nilsson
Lund, April 2023

vii

Contribution Statement

The following papers are included in this dissertation:

Paper I A. Nilsson, T. Johansson, and P. Stankovski Wagner. “Error Amplifica-
tion in Code-based Cryptography”. In: IACR Transactions on Cryptographic
Hardware and Embedded Systems 2019.1 (Nov. 2018), pp. 238–258

Paper II J.-P. D’Anvers, Q. Guo, T. Johansson, A. Nilsson, F. Vercauteren, and
I. Verbauwhede. “Decryption Failure Attacks on IND-CCA Secure Lattice-
Based Schemes”. In: Public-Key Cryptography – PKC 2019. Ed. by D. Lin
and K. Sako. Cham: Springer International Publishing, 2019, pp. 565–598

This paper is the result of a merge of [DVV18] and [GJN19a].

Paper III Q. Guo, T. Johansson, and A. Nilsson. “A Key-Recovery Timing At-
tack on Post-quantum Primitives Using the Fujisaki-Okamoto Transforma-
tion and Its Application on FrodoKEM”. in: Advances in Cryptology – CRYPTO
2020. Ed. by D. Micciancio and T. Ristenpart. Cham: Springer Interna-
tional Publishing, 2020, pp. 359–386

Paper IV A. Nilsson, I. E. Bocharova, B. D. Kudryashov, and T. Johansson. “A
Weighted Bit Flipping Decoder for QC-MDPC-based Cryptosystems”. In:
2021 IEEE International Symposium on Information Theory (ISIT). 2021, pp. 1266–
1271

Paper V Q. Guo, C. Hlauschek, T. Johansson, N. Lahr, A. Nilsson, and R. L.
Schröder. “Don’t Reject This: Key-Recovery Timing Attacks Due to Rejection-
Sampling in HQC and BIKE”. in: IACR Transactions on Cryptographic Hard-
ware and Embedded Systems 2022.3 (June 2022), pp. 223–263

This paper is the result of a pre-publication merge, with [HLS21], due to the
independent discovery of the same weakness.

Paper VI Q. Guo, D. Nabokov, A. Nilsson, and T. Johansson. SCA-LDPC: A
Code-Based Framework for Key-Recovery Side-Channel Attacks on Post-Quantum
Encryption Schemes. Submission Pending. 2023

viii

The table below summarizes the responsibilities Alexander had in each paper:

Paper Writing Concepts Implementation Evaluation

Paper I G# ■ G#
Paper II G# # #
Paper III ■ G#
Paper IV ■
Paper V G#
Paper VI G#

In the table, ■ indicates roles where Alexander took primary or sole responsibility
for the given role while indicates the responsibility was shared with one or more
co-authors. In contrast,G# indicates contribution without taking responsibility for
the role.

In paper I, Alexander was given primary responsibility for implementation and
responsibility for writing the simulation and result sections. The development of
the concept was a group effort though the more senior co-authors took primary
responsibility. The evaluation of the result was mostly handled by the co-authors.

In paper II, Alexander was introduced to the project after the concept was
fully developed, but was given the task of helping with the implementation. The
writing was confined to the sections relevant to the implementation. When the
merge with [DVV18] was decided, Alexander did part of the writing.

In paper III, the basic concept was introduced by the senior co-authors and
was more fully developed as a shared responsibility. The source-code vulnerability
itself was discovered by Alexander who also took full responsibility for the imple-
mentation. The evaluation of the results was shared and the evaluation concerning
prior work was primarily handled by the co-authors.

In paper IV, a similar concept to the final paper was developed by Alexander
together with a co-worker (not co-author) but failed to deliver satisfactory results.
The co-authors of the final paper provided crucial insight into making the concept
work. Alexander took the primary responsibility for implementation. Writing and
evaluation were evenly divided between the co-authors.

In paper V, Alexander found the vulnerability present in the two titular schemes,
the concept was then further developed by the Lund co-authors into real and prac-
tical attacks. The concept and one of the two attacks were independently discov-
ered and published on eprint [HLS21] by the non-LU-based co-authors. After
contact was established between the two groups it was decided a merge would be
beneficial to all parties. Alexander took full responsibility for implementing the
attack against of one the two vulnerable schemes. Writing and evaluation were
split evenly between all the co-authors.

ix

In paper VI, the concept was introduced by the senior co-authors, Alexanders
contribution to the concept was limited to his part of the paper. Alexander took
primary responsibility of one half of the implementation. Writing and evaluation
were shared between all co-authors.

More comprehensive descriptions of each paper’s contributions are available in
Section 7.1.

Other Contributions

The following works have also been published during Alexander’s Ph.D. studies,
but are not included in this dissertation. Listed by descending number of citations.

• A. Nilsson, P. N. Bideh, and J. Brorsson. A Survey of Published Attacks on
Intel SGX. arXiv https://arxiv.org/abs/2006.13598. 2020

• Q. Guo, T. Johansson, and A. Nilsson. A Generic Attack on Lattice-based
Schemes using Decryption Errors with Application to ss-ntru-pke. Cryptology
ePrint Archive, Paper 2019/043. https://eprint.iacr.org/2019/043.
2019 (pre-merge version of paper II.)

• J. Brorsson, P. N. Bideh, A. Nilsson, and M. Hell. “On the Suitability of
Using SGX for Secure Key Storage in the Cloud”. In: Trust, Privacy and
Security in Digital Business. Ed. by S. Gritzalis, E. R. Weippl, G. Kotsis,
A. M. Tjoa, and I. Khalil. Cham: Springer International Publishing, 2020,
pp. 32–47

The work done during this Ph.D. has been funded jointly by Advenica AB
and by the Wallenberg AI, Autonomous Systems and Software Program (WASP)
funded by the Knut and Alice Wallenberg Foundation.

https://arxiv.org/abs/2006.13598
https://eprint.iacr.org/2019/043

List of Abbreviations

This list gives the location of the first use of each abbreviation in this dissertation
for Part I. Uses in Chapter 1 are ignored if they are repeated in Chapters 2 to 7.

AES, Advanced Encryption Standard . , 11
BF decoding, iterative Bit Flip decoding . , 32
BIKE, Bit flIpping Key Encapsulation . , 35
BLISS, Bimodal LattIce Signature Schemes . , 53
BP decoding, Belief Propagation decoding . , 32
BSC, Binary Symmetric Channel . , 29
CCA, Chosen Ciphertext Attacks . , 45
CRQC, Cryptographically Relevant Quantum Computer , 24
CVP, Closest Vector Problem . , 39
DEM, Data Encapsulation Mechanism . , 17
DF oracle, Decryption Failure oracle . , 56
DFA, Decryption Failure Attacks . , 45
DFR, Decoding Failure Rate . , 36
DFT, Discrete Fourier Transform . , 44
DH, Diffie-Hellman . , 15
DHP, Diffie-Hellman Problem . , 16
DLP, discrete log problem . , 16
DSA, Digital Signature Algorithm . , 16
DSS, Digital Signature Scheme . , 16
ECC, Error Correcting Code . , 29
ECDH, Elliptic Curve Diffie-Hellman . , 17
ECDSA, Elliptic Curve Digital Signature Algorithm . , 17
FD oracle, Full-Decryption oracle . , 56
FO transform, Fujisaki-Okamoto transform. , 19
GCHQ, Government Communications HeadQuarters , 14
HQC, Hamming Quasi-Cyclic . , 36
IND-CCA, INDistinguishability under adaptive Chosen Ciphertext Attack . , 13

xii LIST OF ABBREVIATIONS

IND-CPA, INDistinguishability under Chosen Plaintext Attack , 12
ISD, Information Set Decoding . , 32
KEM, Key Encapsulation Mechanism . , 17
LDPC, Low-Density Parity-Check . , 32
LWE, Learning With Errors . , 39
MAC, Message Authentication Code . , 11
MDPC, Moderate-Density Parity-Check . , 32
MLWE, Module Learning With Errors . , 39
MS decoding, Min-Sum decoding . , 32
NIST, National Institute of Standards and Technology , 26
NONCE, Number used only ONCE . , 12
NTT, Number Theoretic Transform . , 44
PC oracle, Plaintext-Checking oracle . , 49, 56
PKC, Public Key Cryptography . , 14
PKE, Public Key Encryption . , 15
PQC, Post-Quantum Cryptography . , 26
pqRSA, post-quantum RSA . , 24
QC-MDPC, Quasi-Cyclic Moderate-Density Parity-Check , 32
QKD, Quantum Key Distribution. , 25
RLWE, Ring Learning With Errors . , 39
RMRS, Reed-Müller and Reed-Solomon . , 36
ROM, Random Oracle Model . , 13
SCA, Side-Channel Attack . , 51
SIKE, Supersingular Isogeny Key Encapsulation . , 27
SP decoding, Sum-Product decoding . , 32
SVP, Shortest Vector Problem. , 39
TRNG, True Random Number Generator . , 14

Contents

Abstract iii

Acknowledgements v

Contribution Statement vii

List of Abbreviations xi

Contents xiii

Overview of Research Field 1

1 Introduction 3
1.1 Dissertation Outline . 5
1.2 Notations and Typesetting Conventions 6

2 Classical Cryptography 9
2.1 Cryptography and Cryptanalysis 9
2.2 Modern Symmetric Constructions 10
2.3 Security Notions . 11
2.4 Public Key Cryptography . 14
2.5 KEMs and DEMs . 17
2.6 FO Transform . 19

3 The Quantum Age 23
3.1 Quantum Computation . 23
3.2 Quantum Apocalypse . 24
3.3 Quantum Cryptography . 25
3.4 Post-Quantum Cryptography 26

xiv CONTENTS

4 Cryptography based on Coding Theory 29
4.1 Introduction to Coding Theory 29
4.2 McEliece . 33
4.3 BIKE . 35
4.4 HQC . 36

5 Lattice-based Cryptography 39
5.1 NTRU . 40
5.2 FrodoKEM . 42
5.3 Kyber . 43

6 Chosen Ciphertext and Side-Channel Attacks 45
6.1 Chosen Ciphertext Attacks . 45
6.2 Side-Channel Attacks . 50
6.3 Classification of Oracles . 56

7 Contributions and Conclusions 59
7.1 Contributions . 59
7.2 Topic relevance . 65
7.3 Lessons learned . 65
7.4 Looking forward . 67

References 69

Included Publications 81

I Error Amplification in Code-based Cryptography 83
1 Introduction . 84
2 Background . 86
3 A New Improved Attack through a Chaining Method for Error

Vectors . 92
4 Implementations and Numerical Results 98
5 Conclusions . 105
6 Further Work . 106
References . 107

II Decryption Failure Attacks on IND-CCA Secure Lattice-Based Schemes 109
1 Introduction . 110
2 Preliminaries . 112
3 Weak-ciphertext failure boosting 116
4 Estimation of the secret . 121
5 Weak-ciphertext attack . 127
6 A weak-key attack model . 129

CONTENTS xv

7 A weak-key attack on ss-ntru-pke 132
8 Conclusion . 140
9 Acknowledgements . 141
References . 141

III A key-recovery timing attack on post-quantumprimitives using the Fujisaki-
Okamoto transformation and its application on FrodoKEM 147
1 Introduction . 148
2 Preliminary . 150
3 A general description of the proposed attack 151
4 The FrodoKEM design and implementation 155
5 The attack applied on FrodoKEM 158
6 Discussion on attacking other schemes 163
7 Conclusions and future works 165
8 Acknowledgements . 166
References . 166
Appendix A . 171

IV A Weighted Bit Flipping Decoder for QC-MDPC-based Cryptosystems 179
1 Introduction . 179
2 QC-MDPC based McEliece cryptosystem 181
3 Decoding of MDPC Codes 181
4 Analysis of BF decoding of MDPC codes 184
5 The new versions of BF decoder 185
6 Simulation . 189
7 Conclusion . 190
Acknowledgments . 191
References . 191

V Don’t RejectThis: Key-RecoveryTimingAttacksDue toRejection-Sampling
in HQC and BIKE 193
1 Introduction . 194
2 Background . 199
3 Timing Attacks on HQC and BIKE 204
4 Evaluation . 217
5 Discussion on Countermeasures 227
6 Conclusions, Lessons, and Future Work 238
References . 239

VI SCA-LDPC: A Code-Based Framework for Key-Recovery Side-Channel
Attacks on Post-Quantum Encryption Schemes 247
1 Introduction . 248
2 Preliminaries . 255

xvi CONTENTS

3 General Description of the SCA-LDPC Attack Framework . . . 259
4 Application to Kyber . 263
5 Application to HQC . 267
6 Experiments . 272
7 Concluding Remarks and Future Work 279
References . 280
Appendix A . 286

Popular Science Summary in Swedish 291

Overview of Research Field

Introduction

CRQCs, or Cryptographically Relevant Quantum Computers, have been theo-
rized to threaten all modern ciphers, to one degree or another. In 1994 Peter
Shor [Sho94] published his seminal paper “Algorithms for quantum computa-
tion: discrete logarithms and factoring”. This work completely undermines the
security of, as it is now known, classical Public Key Cryptography (PKC), by tak-
ing advantage of the properties of quantum mechanics. Later Grover devised the
quantum search algorithm [Gro96] which, in theory [Gro97; Ber10], affects not
only PKC but also symmetric ciphers, the second category of cipher schemes.

The lack of fully realized CRQCs has in the general sense rendered the threat
non-immediate. It is even less of an issue for symmetric cryptography since it
would be enough to simply double the key size since this would keep the quantum
attack complexity on par with the previous classical security level.

For the area of PKC, the situation is a degree more dire and requires spe-
cial attention from the cryptographic community. Quantum safe cryptography,
more commonly referred to as Post-Quantum Cryptography (PQC), concerns it-
self with the design and cryptanalysis of new replacement PKC algorithms. PQC
algorithms are designed to be secure against both classical attacks and quantum
attacks.

The non-immediacy of the threat of CRQCs does not imply that there is no ur-
gency to plan ahead, since it can take decades to complete the migration from clas-
sical PKC to next-generation PQC algorithms. There are many time-consuming
steps to be taken, from the first design of a new encryption or digital signature
scheme to evaluation, standardization, implementation, deployment, and finally
deprecation of old systems. A simple, almost trivial, model to reason about the
urgency of migration is known as “Mosca’s Theorem” [Mos18]. It states, simply
put, that if

x+ y > z

then you have a problem. Here x is the number of years your data has to remain
protected, y is the number of years necessary to migrate the relevant systems to
quantum-safe cryptography. Finally, z is the number of years until CRQCs are

4 Introduction

fully realized.
In an effort to stay ahead of the looming threat, the American National In-

stitute of Standards and Technology (NIST) launched in 2016 a standardization
project for PQC algorithms [NIS16]. The idea was to invite the global academic
cryptography community to submit proposals for next-generation quantum-safe
public key encryption (PKE) and digital signature (DS) schemes. The intention,
then, was to focus the community towards the analysis and evaluation of these
algorithms such that at the end of the project a narrow selection would be an-
nounced. This transparent process would offer academia, industry, and govern-
ments alike a high degree of confidence in the claimed security of each scheme.

At the time of this writing the project has whittled down the original 63 pro-
posals to 4 (1 PKE + 3 DS schemes) accepted for standardization. A final se-
lection from the remaining 3 PKE schemes will be done in the fourth and final
round [Ala+22].

The research area of PQC is relatively new and the ultimate fear is the discovery
of a cryptanalytical breakthrough that allows either classical computers or CRQCs
to break whole families of the underlying computational hardness assumptions,
upon which the security of the schemes depend. This would be devastating to any
affected scheme. It is desirable therefore that any future cryptographic standard
offers alternatives in regard to different families of underlying hardness assump-
tions in the hope that if one fails, we will already have standardized alternatives
that are still secure.

Citing a lack of diversity, NIST has announced a new call for proposals [NIS22]
for DS schemes in the hope that a new scheme might fill some gaps for certain use
cases and offer alternatives in terms of what forms the mathematical foundation
of its security.

There are a few different families, or categories, of encryption schemes [Ala+19].
As already stated, these are divided based on what computational hardness as-
sumption they rely upon. The two most common hardness assumption families
are Lattice-based cryptography and Code-based cryptography. Within both, there
are some different variations to each.

While both families rely on different mathematical principles most family
members share a few properties relevant to this dissertation, these being ciphertext
malleability [Sho01] and decryption failures [Sch+22b; Ara+22; Alb+22; Agu+22].
The former property lets us know that the ciphertext can be modified in a way so
that the effects on the plaintext can be predicted. Sometimes this takes the form
of multiple ciphertext encodings that still decrypts to an identical plaintext. The
latter property refers to the fact that these schemes suffer from a non-zero proba-
bility of decryption failures. Both of these properties can have negative effects on a
PKE’s security. For instance, it has been shown that decryption failures leak some
bits of information about the secret-key [Bol+14; HGS99; HS00; JJ00; How+03;
GN07; Flu16; Din+16; GJS16; Ber+18].

1.1 Dissertation Outline 5

A Decryption Failure Attack (DFA) is an attack where the attacker exploits the
malleability of a scheme and has access to a Decryption Failure oracle (DF oracle)
that, somehow, lets the attacker know whether or not a decryption failure occurs
for that particular ciphertext (which can be arbitrarily crafted). DFAs are classified
under the Chosen Ciphertext Attack (CCA) attack model, though the assumption
of a DF oracle is not quite as strong as the full decryption oracle available in the
CCA model [Sma16].

For schemes that only offer security against the lesser Chosen Plaintext Attack
(CPA) model, it follows naturally that they would be vulnerable against CCA
type of attacks, such as DFAs. It is common then, for CPA secure public-key
encryption schemes to apply a generic transform [HHK17; FO99] to create a CCA
secure encryption scheme. Indeed, this is how the encryption schemes described
in this dissertation have been constructed since it simplifies the security proofs
greatly [Sch+22b; Ara+22; Alb+22; Agu+22; Che+20].

These attack models are very important tools for cryptanalysis [Sma16], but
they do not capture the intricacies of real-world software or hardware implemen-
tations. Even if an encryption scheme, under some clearly defined assumptions, is
mathematically proven to be CCA secure it may still be vulnerable to attacks. In
fact, both hardware and software realizations of any encryption scheme are almost
certainly vulnerable somehow, if naively implemented [KS05].

All implementations, unless specifically protected, leak information about the
inner state of the algorithm. If the leakage has any dependency on a secret (key or
message), it can be used to mount a so-called side-channel attack (SCA) [Koc96].
The side-channel can take the form of timing [BB03; Str10; BT11; Str13; Bru+16;
Kau+16; DAn+19; Waf+19; PT19], power [KJJ99; Ngo+21; Ham+21; GJJ22;
Sch+22a] or electromagnetic emanation [Rav+20; GLG22] variations. Some the-
oretical SCA attacks are generic in that they do not depend on the characteristics
of the leakage medium [Uen+22]. There are even examples of side-channels based
on acoustic measurements from the high-frequency “coil whine” generated by ca-
pacitors inside the CPU [GST14; GST17]. The most powerful SCAs based on
timing variations require no physical access to make leakage measurements and
can therefore be mounted remotely.

How PQC PKE schemes, even though nominally CCA secure, might be at-
tacked by decryption failure attacks using side-channels, is the main topic of this
dissertation.

1.1 Dissertation Outline

This dissertation is organized as follows. Part I contains the “Kappa”, Chapters 1
to 7. Part II contains the included publications, referenced as papers I to VI.
Finally Part III contains the Popular Science Summary in Swedish.

The “Kappa” is first introduced in Chapter 1, where we are now. Here are
also some notations and typesetting conventions introduced. Classical cryptogra-

6 Introduction

phy is summarized in Chapter 2 where upon Chapter 3 follows with information
on the effects of quantum computing and some general introduction to PQC.
Chapters 4 and 5 continues with some more details on coding- and lattice-based
cryptographic schemes, respectively. Chapter 6 finally gets close to the topic of
this dissertation and presents the relevant related works. Chapter 7 is the final
chapter and summarizes the entire Ph.D. project and the included publications.

General Dissertation Focus. Chapters 2 to 6 will give a discussion of the back-
ground information necessary to comprehend this dissertation in a meaningful
way. The idea is that these chapters will make the included publications easier to
follow, compared to reading the individual papers independently. This means that
mathematical strictness is intentionally sacrificed in favor of readability, and in-
depth discussions are sometimes sacrificed in favor of putting the work in a larger
context. It is my hope that this initial intent survives contact with the reality that
is your experience of the printed/electronic book in front of you.

1.2 Notations and Typesetting Conventions

In this dissertation, new acronyms are collated into the list on page xii, with page
references. Only the first appearances in Chapters 2 to 7 are referenced. Here
follows some mathematical concepts and notations necessary to follow along in
this dissertation.

Let N be a positive integer and let a be any integer. We denote the modulo
operation as the postfix operator

a = r mod N , (1.1)

so that r is the least non-negative remainder such that a − r is a multiple of N .
We define the set ZN as the set of all integers modulo N . For any set S we use
#(S) to denote the number of elements in the set. We say that two integers are
relatively prime, or coprime, if their only common positive integer factor is 1. If
a and N are coprime there exists an integer a−1 such that

aa−1 = 1 mod N , (1.2)

then we say that a−1 is the multiplicative inverse of a in ZN .
We note that the triple (ZN , ·,+) is a commutative finite ring since it satisfies

closure, associativity, existence of an identity element, invertibility, and commu-
tativity for both of the two operations addition and multiplication. If p is a prime,
a finite field of characteristics p is denoted Fp and we have that Fp = Zp.

A set of polynomials in X whose coefficients are elements of Fp is denoted
Fp[X] which also forms a ring with the natural definitions of addition and multi-
plications of polynomials, with modulo p for the coefficients. Polynomials, f, are

1.2 Notations and Typesetting Conventions 7

typeset in the non-italics font face to distinguish them from scalar values, s. A
finite ring can be defined as Fp[X]/f(X) where all polynomials are given modulo
f(X). For example, if f(X) = XN + 1, we write Fp[X]/XN + 1, then N − 1
is the maximum polynomial degree.

Consider the selection p = 2 and f(X) = X4 + 1. In this case one could
write the following example, (note the coefficients are either one or zero, due to
reduction modulo p):

h(X) · g(X) = (1 +X +X2)(X +X3) mod X4 + 1

= X +X3 +X2 +X4 +X3 +X5 mod X4 + 1

= 1 +X2.

(1.3)

Just as with integers modulo N , when N is prime one obtains a finite field, so is
Fp[X]/f(X) also a finite field, if f is an irreducible polynomial. Being a finite field,
we know there always exits an inverse g−1 to any polynomial g ∈ Fp[X]/f(X).
In cases where it is clear that the operations are taking place in a stated polynomial
finite field, the mod notation is omitted.

Often, some randomness is needed and the sampling operation of a value x,
from a set of values X, is given by the following operator:

x
$← X, (1.4)

the shape of the distribution is uniform randomness unless otherwise stated in the
surrounding text.

Matrixes and vectors are typeset in bold face, M, v. Matrices are always written
with capital letters. The identity matrix is denoted In×n where n× n denotes the
number of rows and columns of the matrix. For example,

I4×4 =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (1.5)

The transpose of a matrix A is denoted AT. Two vectors can be concatenated and
this is illustrated by a||b.

The support of ann-bit binary vector v inFn
2 is the set of indexes of all non-zero

positions vi of the vector:

supp(v) = {i : vi ̸= 0, 0 ≤ i ≤ n} . (1.6)

The Hamming weight is the number of non-zero positions in a binary vector:

wH(v) = #(supp(v)) . (1.7)

8 Introduction

The Hamming distance is the number of positions that differs in two binary vectors
v and w:

dH(v,w) = wH(v + w). (1.8)

For the sake of brevity and readability, functions and algorithms are defined
with := and listed using the following non-traditional form:

Foo(a, b, c) :=

y

Statement1
Statement2
Statement3

. (1.9)

Where statements 1, 2 and 3 are each executed, in order, for alg. Foo, with inputs
a, b and c.

Classical Cryptography

2.1 Cryptography and Cryptanalysis

Cryptography is an important building block to the very foundation of our mod-
ern, digital, way of life. It started as the art of hiding meaning in writings, of
making things confidential and to make communication eavesdropping proof. It
is the art of using ciphers, to encrypt whatever it is that you have to say and letting
only the intended recipient know your intent.

Today, cryptography is so much more. The subject has grown to encompass
not only confidentiality but also integrity protection, authenticity, signature veri-
fication, interactive proofs, and secure multi-party computation, to highlight just
a few.

It starts with an adversary. This adversary can be anyone. It can be hard-
ened criminals, military combatants, cloud service providers, spies, the combined
resources of governments, or simply your nosy script-kiddie next door. We, as
cryptography practitioners, very seldom discuss who the adversary is, because they
should not have the power to decipher your communications, no matter what. Let
us name our adversary A and assume she is very powerful indeed.

Cryptanalysis refers to the art of analysis with the goal of discovering or dis-
proving weaknesses in cryptographic systems. For each new attack technique dis-
covered, it empowers our adversary A such that it is never possible to put the genie
back in the bottle. It is a fact of life, therefore, that we must continuously adapt
to an ever-increasing adversarial power.

2.1.1 Historical ciphers

Through the ages A has shown her many insidious faces in the most cunning ways.
But more important to the topic of this dissertation is the arms race A’s ever-
increasing attack power is prompting us, the defenders, into. One of the earliest
known examples of confidentiality protection is the development of the Atbash
cipher [RV14], which was originally used to render Hebrew unintelligible except
for those in the know. The key is simple and can have only one value; each letter

10 Classical Cryptography

in the alphabet was replaced by the letter at the same position in the alphabet,
after reversing the sorting order, e.g. ab would have been replaced by zy, if the
English/Latin alphabet was used.

Another early technique was the Scytale [Kel98] used by the early Greeks, the
Spartans in particular. The Scytale was a simple piece of wood whose diameter
provided a sort-of key as a piece of parchment or leather was twined around it,
and without the correct Scytale, whatever was written would be disjointed and
unreadable.

Then we have the well-known Caesar cipher [Sin03] which cannot be excluded
from any list of historical ciphers. This cipher is quite the improvement over the
Atbash cipher in that there are actually n possible keys, where n is the size of the
alphabet. It works simply by taking each letter in the plain text (before encryption)
and shifting it by x positions to the right in the alphabet. If the letter is shifted
beyond the end of the alphabet we wrap around and continue counting from the
letter a.

2.2 Modern Symmetric Constructions

Thus far we have seen ciphers that provide confidentiality protection of a message.
The encryption and decryption process share the same key, which must be known
to all participating parties. We call these symmetric ciphers.

Modern symmetric ciphers are split into block ciphers and stream ciphers. A
stream cipher uses a key k by which it can encrypt the given plaintext. The output
of the encryption is called the ciphertext. And the decryption uses ciphertext
as input and produces the original plaintext as output. The encryption function
must be reversible, otherwise, we would not get back the original plaintext. A
block cipher uses inputs and outputs of size b, we call this the block size. A block
cipher is usually used in the context of a surrounding construction known as the
mode of operation, which enables the cipher to encrypt arbitrarily long messages.
Some modes of operation turn a block cipher into a stream cipher.

There is also the possibility of integrity protection using a concept of a Hash
function (H). These functions require no key and can accept arbitrary long inputs.
The output of a hash function is of fixed length n and a cryptographically strong
hash function must uphold the following properties:

Pre-image resistance Given a hashed value h, it should be hard to find a message
m such that H(m) = h.

Second pre-image resistance Given a message m1, it should be hard to find an-
other message m2 such that H(m1) = H(m2).

Collission resistance It should be hard to find any message pairm1, m2 such that
H(m1) = H(m2).

2.3 Security Notions 11

One step further is the concept of authentication, that is, verifying that the
received data can only have been produced by someone who possesses knowledge
of the authentication key. We call such a construction a Message Authentication
Code (MAC). These are usually constructed from hash functions, but with an
additional secret input, the authentication key.

2.3 Security Notions

From the earliest historical examples above it is quite easy to see that A can force
her way through the ciphers simply by attempting each possible key. We call
this technique brute-force and it can in theory be used to break any cipher which
does not hold the property of perfect secrecy. This property, a concept due to
Claude Shannon [Sha49], colloquially known as the father of information theory,
is equivalent to information theoretic security; The ciphertext may hold no addi-
tional information about the plaintext (beyond its length) for A to uncover. This
is possible only under the following conditions:

• The key is truly random.

• The key is of equal length as the plaintext.

• The key is used only once.

Intuitively, any valid plaintext can be constructed from a ciphertext, they are
all equally likely given a truly random key. Such schemes are in fact unbreak-
able [Sha49], even in the face of a computationally unbounded1 adversary A∞.
For more practical schemes with small keys, another measure of security is re-
quired.

Brute force is a way by which we can measure computational security, or com-
putationally bounded security. For instance, a cipher is considered secure if the
security level, λ, offers a large enough key search space 2λ and there are no known
attacks offering a significant advantage over the brute force technique. One of the
most common ciphers in use today is the Advanced Encryption Standard (AES),
of which the AES-128 variant uses a key size of 128 bits. It is assumed that this
cipher provides λ = 128-bits of security because there are no publicly known
attacks that can do much better than a brute-force attack. To attempt a brute-
force attack would require a decryption attempt with each of the 2128 possible
keys (unless A gets lucky and finds an early match).

Semantic security is an analogy to the perfect secrecy notion under a compu-
tationally bounded adversary Aλ. Informally, it means that an adversary limited
to 2λ operations, cannot glean any additional information from the ciphertext
about the plaintext, beyond its length. It has been shown by Goldwasser and Mi-
cali [GM19] that semantic security is implied by the INDistinguishability under

1I.e. unlimited brute-force ability

12 Classical Cryptography

Chosen Plaintext Attack (IND-CPA) security model. IND-CPA is better suited
for formal security proofs than the concept of semantic security [Bel+97].

Consider a cipher encryption function Ek(m) where k,m is a key and a mes-
sage, respectively. Ciphertext indistinguishability then refers to the inability of the
adversary Aλ to distinguish between two encrypted messages of her own choosing.
It is usually set up as a thought experiment, or a game, like the following:

1. Adversary Aλ receives access to an encryption oracle, Oek , from the chal-
lenger. The encryption oracle is a construct that while encrypting any mes-
sage provided to it and returning the resulting ciphertext, it will never reveal
the encryption key k to the adversary.

2. Adversary Aλ may call Oek or perform any other computational operations
within the computational bound, i.e. less than 2λ operations.

3. Adversary Aλ presents any two distinct chosen plaintexts m0,m1 to the
challenger.

4. The challenger selects a bit b $← {0, 1} uniformly at random. Next the
ciphertext c = Ek(mb) is sent back to Aλ.

5. Adversary Aλ may perform any computational operations within the com-
putational bound, i.e. less than 2λ operations.

6. Adversary Aλ submits a guess b′ of the value b.

7. Adversary Aλ wins the game if b′ = b.

The security game as given above is more specifically known as the left-or-right
indistinguishability notion [Bel+97], as the goal of Aλ is to determine which of
the two plaintexts (left or right) was encrypted. We define the advantage of Aλ

against the encryption scheme Π as

AdvIND-CPA
Π = 2 ·

∣∣∣∣Pr [Aλ wins]− 1

2

∣∣∣∣ , (2.1)

where Pr denotes the probability of a given [condition], a value between 0 and 1,
inclusive. An encryption scheme Π is IND-CPA secure if AdvIND-CPA

Π is small, for
any computationally bounded adversary Aλ. That is, Aλ may receive at most only
a negligible advantage over random guessing.

The reader might here point out that IND-CPA implies non-deterministic en-
cryption. In other words, if the encryption is not random in some way, Aλ may
simply request c∗ ← Oek(m0) in step 2. If c = c∗ in step 5, then in step 6 submit
b = 0, or b = 1 otherwise. Non-deterministic encryption may be achieved by
the inclusion of a Number used only ONCE (NONCE). In such cases we would
redefine the encryption function as Ek(m; r), where r is a NONCE.

2.3 Security Notions 13

Ciphertext malleability of an encryption scheme is a property commonly held
by IND-CPA secure schemes. Consider a known ciphertext c corresponding to the
encryption of the unknown plaintextm. If it is possible for an adversaryAλ to find
a ciphertext c∗, such that the relation of m and m∗ is known and computationally
feasible for the attacker to compute, the cipher is said to be malleable.

Put differently, it is easy to see in the IND-CPA security game that if the rela-
tion m = f(m∗) is within the computational bound (i.e. less than 2λ operations)
then a malleability attacker would break the security of the scheme if the attacker
could somehow gain knowledge of the triple (f, c∗,m∗). The relation f may be
publicly known for the encryption scheme, so that leaves the decryption of c∗ into
m∗. However, the ability for Aλ to decrypt c∗ is only possible with access to a de-
cryption oracle. This is not present in the IND-CPA model. For many use cases,
IND-CPA is quite sufficient due to the setting in which the encryption scheme is
deployed.

However, to properly capture the power of a malleability attack, or other2 at-
tacks that go beyond the chosen plaintext attacks, it is necessary to expand the
attack model. This is done by giving Aλ access to a decryption oracle Odk in
steps 1, 2 and 5 in addition to the already present encryption oracle Oek . INDis-
tinguishability under adaptive3 Chosen Ciphertext Attack (IND-CCA) is such a
model. In this attack model, it is necessary to limit Odk such that it will offer
no decryption of the specific challenge ciphertext c (step 4), otherwise it would
trivially allow Aλ to win the game.

We have already seen how a malleability attacker makes use of the decryption
oracle to attack malleable IND-CPA secure schemes. So, similarly to how IND-
CPA security implied non-deterministic encryption, IND-CCA security implies
non-malleable encryption. Being the stronger security model, it follows that any
IND-CCA secure scheme is always IND-CPA secure, too.

2.3.1 Regarding Hash Functions

The computational security of a hash function is ideally given in terms of its output
size n. For example, finding a pre-image by brute force is done within 2n calls to
the hash function. And by the brithday paradox, a collision is very probable after
hashing 2n/2 messages. Due to the risk of collisions, the output size of the hash
function is usually given as n ≥ 2λ for λ-bit security level.

When encryption schemes are mathematically proven secure in the IND-CPA
or IND-CCA models, they are usually also done so under the Random Oracle
Model (ROM). The ROM is an ideal mathematical construction, used instead of a
concrete hash function. This simplifies the security proofs greatly, and it functions
like the following:

2For examples, see Chapter 6.
3There is an intermediary non-adaptive attack model that we skip over in this dissertation.

14 Classical Cryptography

• There is a black box. The box has unlimited memory and access to a True
Random Number Generator (TRNG).

• The box takes an arbitrarily long sequence of bits m as input.

• If m is not previously seen before, the box uses the TRNG to produce a
truly uniform random number h. Both h and m is remembered.

• If the box has already seen the input m before, it uses its memory to return
the same output h it returned last time.

So the ROM functions like an ideal hash function, the problem is that we do
not know how to construct an ideal hash function. The real hash functions we use
in practice are only approximations of a random oracle. This means, if a cipher
proven IND-CCA secure under ROM is actually insecure, then the security prob-
lem exists in the hash function4, and not in the cipher itself. I.e., many security
proofs are shown to be as good as the security of the selected hash function.

2.4 Public Key Cryptography

To communicate confidentially over an open channel with someone whom you
have never previously exchanged any shared secret with was an ability assumed to
be impossible, for about 2000 years or so [Sin03]. With only symmetric cryptog-
raphy available, both communicating parties must each have a copy of the secret
key, which is used both to encrypt and decrypt.

“The Possibility of Non Secret Digital Encryption” was worked out by James
H. Ellis [Ell70] at the British Government Communications HeadQuarters (GC-
HQ). He figured that there must be a way, following the principles he laid out,
for encryption and decryption to require different keys. In this manner, the en-
cryption key (coupled with a specific user) may be published in a directory for
anyone to read. Thus encryption can be performed by anyone. Decryption, on
the other hand, can only be done by the user holding the corresponding secret de-
cryption key. Ellis had invented the field of Public Key Cryptography (PKC) and
the principles of asymmetric ciphers. Soon thereafter, Clifford Cocks, a coworker
of Ellis, discovered a way to construct a practical scheme following those same
principles. Malcolm J. Williamson, another coworker of Ellis, followed suit and
developed the principles behind the world’s first key exchange algorithm. Unfor-
tunately, all of this was kept secret from the public eye for 27 years, before the
British government declassified the works in 1997 [Sin03].

Fortunately, Whitfield Diffie and Martin Hellman realized the same possibil-
ities in their seminal paper “New directions in cryptography” and invented the key

4or in whatever other assumptions made by the proof, see for example the side-channel discussion
given later in Section 6.2.

2.4 Public Key Cryptography 15

exchange scheme known as Diffie-Hellman (DH) [DH76]. This discovery, even
though more than 5 years later, is independent of the works of Ellis, Cocks, and
Williamson. Ron Rivest, Adi Shamir, and Leonard Adleman invented the RSA al-
gorithm [RSA78] shortly thereafter, the very first practical Public Key Encryption
(PKE) scheme.

The main insights of Ellis, (and Diffie & Hellman) were the following: Suppose
f is a one-way function such that it is easy to compute and hard to compute its in-
verse f−1. Moreover, suppose f−1 can be easily computed by knowledge of some
secret information. In such cases, f is called a trapdoor function and the secret
information is the key to the trapdoor. Assuming the existence of such functions,
Ellis conjectured the possibility of encryption by c = fpk(m) and decryption
m = f−1sk (c), where pk contains the public parameters used for encryption and sk
contains the trapdoor information used for decryption. The understanding is that
f−1 is infeasible to compute without the knowledge of the secret key sk (trapdoor
information) [Ell70; DH76].

The insight of Clifford Cocks (and Rivest, Shamir & Adleman) was finding
such a trapdoor function:

c ← Epk(m) = me (mod N), (2.2)

where public key pk = (e,N) andN is a large composite numberN = pq, with p
and q both primes. Here, e is the public exponent used for encryption. It must be
relatively prime to the Euler totient function ofN , which isϕ(N) = (p−1)(q−1)
since both p and q are prime. In other words, the greatest common divisor (gcd)
of the public exponent and ϕ(N) must be one:

gcd(e, (p− 1)(q − 1)) = 1. (2.3)

A common [Sma16] selection for e is a small prime like 3, 17, or 65537 since the
constraint then holds for all choices of p, q.

The inverse of the encryption function is the decryption function:

m ← E−1pk (c)︸ ︷︷ ︸
Hard tocompute

= Dsk(c) = cd (mod N)︸ ︷︷ ︸
Easy to compute knowing d

, (2.4)

where sk = (d, p, q). Here, d is the private decryption exponent derived during
the key generation process. It should satisfy [Sma16]:

e · d = 1 (mod (p− 1)(q − 1)). (2.5)

As it stands, we have now informally presented the main intuitions of the
“naive RSA” encryption scheme [Sma16]. This non-complete scheme is both de-
terministic and malleable, thus preventing it from being IND-CPA and IND-

16 Classical Cryptography

CCA secure. To achieve those properties more work is needed, but it serves to il-
lustrate the main point well enough: Inverting the encryption function, Eq. (2.2),
was supposed by Williamson and Rivest, Shamir & Adleman, a difficult prob-
lem, and despite many years of concentrated research the supposition still holds.
Here, the trapdoor information is d, and by extension the prime factorization of
N [Sma16].

The RSA pROBLEM states that knowing only c, e and N , find m such that
Eqs. (2.2) and (2.3) hold. The fAcTOR pROBLEM states that given only a composite
N of two primes, factor into primes p and q. A solution for the latter can be used
to solve the former, thus we say that there is a reduction from the RSA pROBLEM
to the fAcTOR pROBLEM. In other words, if an algorithm exists that can solve the
fAcTOR pROBLEM, then the RSA pROBLEM can be solved [Sma16].

It is not known if the opposite reduction exists, that is, if one can solve the RSA
pROBLEM, can one then factor a composite number? Related though, it can be
shown that computing the secret exponent d can be reduced to the fAcTOR pROBLEM
and vice versa; the fAcTOR pROBLEM can be reduced to the computation of d. This
means that the two problems are complexity theoretically equivalent [Sma16].

To summarize, a secret-key recovery attack5 is just as hard as the fAcTOR pROB-
LEM. A message recovery attack6 may possibly be easier to compute, due to the
RSA pROBLEM. No such publicly known algorithms for solving the RSA pROBLEM
exist though [Sma16].

2.4.1 Other Asymmetric Constructions

The RSA algorithm can also be used as a Digital Signature Scheme (DSS). It works
by swapping the public and private keys so that the private key is used to sign (i.e.
encrypt) a message. Then anyone can use the public key to verify the signature (i.e.
decrypt and check for equality). Digital signatures are the analogue to MACs and
are used for message or sender authentication, but it does not require the sharing
of a symmetric key.

In parallel with the RSA pROBLEM, another common mathematical problem
is the DIScRETE LOg pROBLEM (DLP); In any group G and b ∈ G, powers bk, is
defined for all integers k. The integer k then is known as the discrete logarithm
logb(a) = k such that bk = a. The DLP, the computation of such a k, seems to
be a difficult problem. Though there are several groups where this is easy, in the
general case, we know of no efficient algorithm. The DH key exchange algorithm
relies on the DIffIE-HELLMAN PROBLEM (DHP) which can be reduced to DLP.
The DLP also serves as a foundation for the operation and security of the Digital
Signature Algorithm (DSA), a DSS. Normally, DH uses a multiplicative group of
integers, modulo a large prime p.

5Recovery of a secret key parameter (d, for RSA).
6Recovery of a single value of m.

2.5 KEMs and DEMs 17

Elliptic curves function as alternative groups for the DLP and offer shorter keys
for the same security level. Elliptic Curve Diffie-Hellman (ECDH) serves as an
alternative to regular DH. Elliptic Curve Digital Signature Algorithm (ECDSA)
serves as an alternative DSS to either RSA or DSA.

2.5 KEMs and DEMs

While PKC solves many problems related to key distribution and key scheduling,
it is not a good solution for encryption of bulk data. Such schemes are simply too
inefficient. Instead, a symmetric cipher is used for data encryption, whereas some
asymmetric cipher is used to protect the symmetric encryption key. This setup is
what we call the KEM/DEM approach, which is also known as a hybrid7 scheme.
A KEM is a Key Encapsulation Mechanism and refers to the selected PKE scheme.
A DEM is a Data Encapsulation Mechanism and refers to the symmetric encryp-
tion scheme, it can be your favorite block or stream cipher. Three algorithms make
up a KEM, these are

• (pk, sk)← KeyGen() — Generates public and secret key-pairs, at random.

• (c, k) ← Encapspk() — Using public key pk, a uniformly random sym-
metric key k ∈ K is generated and then encapsulated (encrypted) into the
ciphertext c. The key space K is the set of all possible symmetric keys.

• k← Decapssk(c) — Using secret key sk and the previously created cipher-
text c, the key k is decapsulated (decrypted).

The concept then, is for the encryptor to acquire the public key of the recipient,
and use the Encapspk function to generate a ciphertext c and a symmetric key k.
The key is used to either encrypt a one-time payload (object encryption) or to set
up a secure communication channel based on symmetric encryption primitives.
For both options, the ciphertext c must be first transmitted before decryption will
be possible.

The decryption procedure is to decapsulate the ciphertext using the Decapssk
function and the secret key sk. Now the object or the channel can be decrypted
with the symmetric key k.

As an aside, digital signatures have a similar same kind of construction where
one signs not the actual message, but only the hash of the message, since that is
much shorter and of a fixed length. Also, hash algorithms are extremely efficient,
in comparison to any asymmetric algorithm.

7Not to be confused with a hybrid classical and post-quantum scheme.

18 Classical Cryptography

The security game for the KEM construction must be slightly modified when
dealing with KEMs, as opposed to regular PKEs. This is because there is no plain-
text input/output anymore and the output of the encapsulation is instead a sym-
metric DEM key and a ciphertext. Also, considering that we are now exclusively
discussing asymmetric schemes, there is no longer any need for the encryption ora-
cle, since the adversary can encrypt by herself using the public key. The schema for
the security game for IND-CCA security of KEMs is given below without further
ado.

1. The challenger generates (or has previously generated) secret and public keys

(pk, sk)← KeyGen()

and two symmetric keys k0, k1. The first symmetric key is generated uni-
formly at random from the symmetric key space

k0
$← K

and the second symmetric key is given by the KEM encapsulation function

k1, c∗ ← Encapspk()

2. The challenger picks a bit b $← {0, 1} uniformly at random, in secret, and
then transmit pk, kb and c∗ to the adversary Aλ.

3. Adversary Aλ may construct any ciphertext c and call a decapsulation oracle
Odsk for access to the corresponding DEM key

k← Odsk(c) = Decapssk(c)

or perform any other operation, within the computational bound, i.e. less
than 2λ operations. The oracle Odsk is of course prohibited from decap-
sulating the given challenge ciphertext c∗, otherwise the game can be won
trivially.

4. Adversary Aλ submits a guess b′ of the value b.

5. Adversary Aλ wins the game if b′ = b.

The adversary’s advantage in the above game is defined in the same way as for
IND-CPA security of PKE:

AdvIND-CCA
Π = 2 ·

∣∣∣∣Pr [Aλ wins]− 1

2

∣∣∣∣ . (2.6)

2.6 FO Transform 19

Thus the KEM scheme Π is secure if the advantage AdvIND-CCA
Π is small. Put

equivalently, the KEM is secure if the adversary can only gain a negligible ad-
vantage over random guessing when attempting to distinguish between a purely
random key and a DEM key produced by Π.

The previous discussions on ciphertext malleability remain relevant; IND-
CCA security still implies non-malleability. Note however, the encapsulation and
computation of the challenge ciphertext c∗ is honest as it is performed by the
challenger and the key produced in concert is always random, guaranteed by Π.
Therefore, we no longer need to have the notion of non-deterministic encryption
for IND-CPA (KEM) security, due to how the KEM and the security game are
constructed.

2.6 FO Transform

Proving IND-CCA security of a PKE scheme is often an involved and compli-
cated proposition. Much easier is proving IND-CPA security and then apply-
ing a generic transform on top. One such transform was first proposed in 1999
by Eiichiro Fujisaki and Tatsuaki Okamoto in [FO99]. This Fujisaki-Okamoto
transform (FO transform) was later revised by the same authors in [FO13]. The
concept of KEM/DEM hybrid schemes was integrated with the FO transform by
Dent [Den03], which spawned multiple equivalent variations and further security
reduction improvements, by Hofheinz, Hövelmanns and Kiltz in [HHK17]. That
work in particular served as a basis for many IND-CCA security claims of some
newer generations of PKE schemes. Most recently, Hövelmanns, Hülsing, and
Majenz [HHM22] made public a paper showing, among other things, updated
security bounds of the variants of the FO transform with explicit rejections. Being
the most natural variant of the transformation [HHM22], we start by describing
it in the remainder of the current section.

Using any weakly secure non-deterministic PKE scheme Π as the basis of the
transformation we have the triple Π :=

(
KeyGen, Encryptpk,Decryptsk

)
. The

first step of the transform is to construct a deterministic but non-malleable scheme
ΠG := (KeyGen, EncryptGpk, Decrypt

G
sk) such that

EncryptGpk(m) := Encryptpk(m;G(m)), (2.7)

where G(m) is a ROM hash function that replaces the NONCE that was intro-
duced for IND-CPA security, back in Section 2.3, page 12. G(m) fulfills the con-
cept of random coins which ensures that the encryption function is deterministic,
yet returns unrelated and unpredictable ciphertexts whenever m changes.

20 Classical Cryptography

We define DecryptGsk in the following,

DecryptGsk(c) :=

y
m′ ← Decryptsk(c)

c′ ← EncryptGpk(m
′)

if m′ = ⊥ or c ̸= c′ output ⊥
else output m′

, (2.8)

where ⊥ indicates an explicit failure message. Note in the above, the call to
Encryptpk ensures the non-malleability of the scheme by comparing the received
ciphertext with its re-encryption. This result is intuitive for the two cases of cipher-
text modifications c∗ ← f(c). The first case is where the resulting decryption leads
to a possibly related but still distinct value of m′ ̸= m. Consider the properties
of the hash function G; Any change to its input, no matter how small, completely
changes its output, in a way that cannot be predicted (under the random oracle
model). Thus, the condition c ̸= c′, must hold with overwhelming probability.
The second case is where f ensures m′ = m and it is also caught by the compari-
son, though in this case the difference of the ciphertexts c ̸= c′ may be arbitrarily
small. These two cases are discussed more in-depth in paper III.

From the deterministic and non-malleable scheme ΠG it is now possible to
complete the Fujisaka Okamoto transform to construct FO⊥[G,H] := (KeyGen,
Encapspk, Decaps

⊥
sk), a KEM construct of

Encapspk(·) :=

y
m

$←M
c ← EncryptGpk(m)

k← H(m)

output (k, c)

(2.9)

and

Decaps⊥sk (c) :=

y
m′ ← DecryptGsk(c)

if m′ = ⊥ output ⊥
else output k← H(m′)

. (2.10)

H and G represent two domain separated ROM hash functions. Domain separa-
tion means that they with overwhelming probability produce distinct values, even
if given identical input.

It is also possible to define a similar transform FO̸⊥[G,H] with implicit rejec-
tion. This construct is very similar except it does not return any explicit error value

2.6 FO Transform 21

⊥. Instead, Decaps ̸⊥sk with implicit rejection is defined as follows:

Decaps̸⊥sk (c) :=

y
m′ ← DecryptGsk(c)

if m′ = ⊥ output k← H(σ)

else output k← H(m′)

, (2.11)

where σ is a random value stored in, or derived from, the secret key sk. In this
transformation, the designer hides decapsulation failures by creating an unrelated
symmetric key that will not match the Encapspk output value.

The Quantum Age

3.1 Quantum Computation

Consider a system of x possible subatomic particle positions. That gives us 2x
possible configurations where each position is either filled by a particle or not.
Due to quantum level interference where each subatomic particle may affect all
other particles in a wave-like manner, such systems are very hard to model on a
classical computer in a way that does not scale exponentially with the problem
size. In fact, if one would want to understand the quantum evolution of such a
system it cannot be done without tracking every possible configuration, since it is
not feasible to use statistical sampling methods, due to the interference.

In nature, large and complex quantum systems keep on evolving according
to the laws of quantum mechanics, whether we can model or engineer facsimi-
les of them or not. So then, might one flip the problem on its head and instead
utilize the subatomic particle/waveform duality and its interactions to solve com-
plex computational problems, faster than conventional computers? (It is a leading
question, the answer is yes.)

The fundamental piece of information, due to Shannon [Sha49], is a single bit.
A qubit in a quantum system can, similarly, be described as being either 0 or 1,
but it can also be in a superposition of these two values. A qubit thus represents
the most fundamental information-carrying object in a quantum system. When
measured, a qubit’s state ”collapses” to either 0 or 1, but the outcome depends on
the probabilities of each state. Quantum entanglement is the concept where if one
measures one of two entangled qubits, one automatically gains some knowledge of
the state of the other qubit, i.e. the state probabilities are connected and collapse
at the same time.

To compute with a quantum system of multiple logical1 qubits one may first
initialize the system into a uniform superposition of all possible solutions to the

1Logical qubits differ from physical qubits in that that they are stable over time and do not
suffer from effects such as quantum decoherence. A logical qubit may be constructed from multiple
physical qubits with the aid of quantum error correction algorithms.

24 The Quantum Age

input problem. Then a series of quantum gates form a so-called quantum cir-
cuit, doing operations on all superpositioned configurations simultaneously. After
completing the quantum circuit the state probabilities are no longer uniform and,
if correctly implemented, the correct solution is likely to be given when measured.

Quantum computation offers time complexity reduction to some problems but
it does not provide advantages over conventional computation in the general sense.
Also, problems which are undecidable in classical computing are also undecidable
with quantum computation.

3.2 Quantum Apocalypse

In 1994, Peter Shor published his seminal paper ”Algorithms for quantum compu-
tation: discrete logarithms and factoring” [Sho94]. In it, Shor capitalizes on the
quantum phenomenons described above, to solve the integer factorization and dis-
crete logarithm problems such that it scales polynomially with the problem size.

Time complexity concepts such as ”polynomial time” alluded to above, have
not been discussed so far in this thesis. But it is sufficient to know that exponential
time algorithms scale, well, exponentially, in runtime with the size of its input. On
the other hand, polynomial time scales much slower since the scaling function is
expressed as a polynomial, albeit with an arbitrarily high degree. Sub-exponential
time is an intermediary classification that is not-quite exponential, but still more
expensive to solve than polynomial time problems, asymptotically.

In other words, quantum computers have the ability to run Shor’s algorithm
and thereby solve the integer factorization problem, not in sub-exponential time
(like the best classical methods), but in polynomial time. Shor’s algorithm works
by evaluating a periodic function on a superposition of all inputs within a wide
range. Then applying a quantum Fourier transform, one obtains an approximate
superposition of periods of the function. Measuring this superposition results in
a random period, but the correct answer is more probable. Thus by applying the
algorithm several times, the correct answer can be determined. One of the key
insights of Shor’s was to use the modular exponentiation function, the period of
which informs on the factors of the composite number. With the period, the
factors can then be computed using a classical algorithm.

A quantum computer with enough logical qubits to solve the RSA problem
we call a Cryptographically Relevant Quantum Computer (CRQC). Postulating
that CRQCs will exist in the near future, then [Ber+17b] suggests that the RSA
public parameters should scale to the size of one gigabyte in size, to remain secure2.
Though, in this case the public modulus n is a composite of not two, but 223
unique 1024-bit primes. This modified RSA scheme is called post-quantum RSA
(pqRSA). Doing it this way implies 2110 quantum gates using ≈ 234 qubits to

2The submission also mention one terabyte keys as a “feasible” option, presumably depending
on one’s security requirements.

3.3 Quantum Cryptography 25

break pqRSA, which should be safe even in the long term. Needless to say, there are
some usability concerns with pqRSA which would mandate users to look elsewhere
for their encryption needs. DH, ECDH, or ECDSA offer no safe havens either
since Shor’s algorithm works just as well on discrete logarithms over both finite
multiplicative groups of integers and elliptic curve groups.

Grover’s algorithm [Gro96] is another threat posed by quantum computers.
This algorithm can be more generally applied to break any encryption scheme,
though the impact is more limited. Grover’s algorithm can be most easily explained
as a way of speeding up a search through an unsorted database to find one specific
entry. Sometimes it is better explained as finding the roots of any generic function
f using

√
N instead of N evaluations of f . It works by initializing the quantum

state into a uniform superposition of all possible input values (the database, or
inputs to the function). The details of the algorithm itself remain outside the
scope of this thesis, but the gist of it is two operations. One operation marks the
correct answer in the database, and one amplifies this answer in the quantum state,
making it more likely to be the final output once the quantum state collapses. After
repeating these two operations

√
N times, the correct answer will stand out from

the rest of the probabilities.
The consequence of the quadratic speedup provided by Grover’s algorithm is

that the number of bits of security provided by symmetric encryption schemes is,
in effect, halved. That is, AES with a 128-bit key can in theory be broken by 264
quantum operations. If true3, the obvious solution then is to use 256-bit keys for
symmetric ciphers.

While the consequences appear manageable for symmetric encryption, just
about all asymmetric cryptography that has been in use up to today will be severely
affected by the coming of CRQCs (due to Shor’s algorithm) and thus replacements
must be sought. The rest of this chapter will discuss some techniques to this effect.

3.3 Quantum Cryptography

As mentioned, pqRSA does not appear to be a viable choice due to the size of
the public key as well as the slow execution time of key generation, encryption,
and decryption. However, quantum technologies can not only be used to break
cryptography but can also be used as a physics-based foundation of security. The
key idea is that the encoding of information into quantum states can be done in a
way that is impossible to copy and intercept without detection.

Quantum Key Distribution (QKD) capitalizes on this idea in order to securely
generate a secret key, to be used by quantum-safe symmetric ciphers, by sending a
series of quantum particles, such as photons, between two parties. Upon receiving
these particles they are measured to determine their quantum state, which cannot

3There is evidence [NIS18] to suggest that it might not be. Some say that Grover’s algorithm
will not achieve the full quadratic speedup, in practice, due to its serial nature, among other things.

26 The Quantum Age

be done by a third party without detection by the original parties. That is, on a
physics level, one can be sure of the absence of eavesdroppers, and thus the security
of the generated symmetric key.

In short, QKD can be used to establish new symmetric keys that can then be
used by classical symmetric algorithms. The main drawbacks are the requirements
of a pre-existing authenticated (but not encrypted) communication channel be-
tween the two parties as well as the obvious dedicated physical link (e.g. fiber cable)
between the same.

3.4 Post-Quantum Cryptography

Considering that neither pqRSA nor QKD appears to be practical paths forward in
the face of potential CRQCs one must look elsewhere for replacement algorithms
of RSA, DH, DSA and elliptic curve-based variants.

Quantum safe cryptographic algorithms, better known as Post-Quantum Cryp-
tography (PQC), is the term used that encompasses the next generation of asym-
metric encryption solutions. PQC algorithms are encryption algorithms running
on classical computers, designed to be impervious to quantum computers.

Right now a number of standardization efforts are underway, with the purpose
to unify and focus the research community toward the goal of achieving trustwor-
thy and performant PQC algorithms. Premier among those is the PQC standard-
ization project by the American National Institute of Standards and Technology
(NIST).

The research area PQC and the standardization project PQC are, in the gen-
eral and specific case, working towards the next generation of asymmetric crypto-
graphic standards, specifically KEM and DSS algorithms. The PQC project is a
transparent endeavor but the ultimate power resides with NIST. In the first round,
2016, 63 proposals were accepted as fulfilling the submission requirements. This
prompted the global cryptography research community to focus much of their
attention on breaking or otherwise evaluating these proposals. The number of
surviving proposals has been reduced after each of the first three rounds. As of this
writing, there are now one key encapsulation mechanism and three digital signa-
ture schemes selected for standardization. Additionally, there is a fourth and final
round to select one or two additional KEM algorithms from the remaining three
surviving candidates.

The KEM scheme to be standardized is:

• CRYSTALS-Kyber

The remaining candidates for possible standardization are:

• Classic McEliece

• BIKE

3.4 Post-Quantum Cryptography 27

• HQC

• SIKE – Withdrawn due to [CD23].

The following strong KEM schemes are no longer candidates for the PQC project,
but are relevant to this dissertation:

• FrodoKEM

• NTRU

This dissertation does not consider signature schemes, therefore they are not listed,
although they are indeed a major part of the upcoming standard.

As shown in Section 2.4, the security of an asymmetric encryption algorithm
must be based on a trapdoor function of good renown. That is, easy to calculate
one way, and expensive to invert without knowledge of the trapdoor key. For
instance McEliece, BIKE, and HQC, listed above, are based on error-correcting
codes which will be discussed in more detail in Chapter 4. The remaining three
mentioned schemes are of course Kyber, FrodoKEM, and NTRU which use trap-
door functions related to lattices, the topic of Chapter 5.

Earlier in the NIST PQC project, a few more categories of trapdoor functions
could be found among the candidates. These include hash-based, multivariate-
based and schemes based on supersingular elliptic curve isogenies, but they are
not very relevant to this dissertation. Though, the latter category includes Su-
persingular Isogeny Key Encapsulation (SIKE), which should be noted for being
selected as a Round 4 finalist until it was withdrawn due to a new attack [CD23].
SIKE operated on supersingular elliptic curves, which are a special kind of elliptic
curves that are not smooth and continuous, but rather curves which define only
a limited number of points. Isogenies are special mappings between different el-
lipitic curves, which preserve some important group properties. The security of
SIKE was dependent on the hardness of finding such isogenies.

The risks of an unexpected cryptanalytical breakthrough that affects an entire
family of algorithms, such as lattice-based schemes, must be mitigated. In fact,
this is the ultimate reason why NIST elected to keep only non-lattice schemes for
possible standardization, side-by-side with Kyber, in round four. The idea is that if
such a breakthrough does occur, there will already be a standardized replacement
algorithm ready.

Cryptography based on
Coding Theory

This chapter provides background knowledge of ciphers based on coding theory.

4.1 Introduction to Coding Theory

By adding redundancy to messages via special encodings one can be certain to suc-
cessfully decode a received codeword and recover the transmitted message, even in
the presence of noisy channels. These channels can have many different charac-
teristics, but the most important case for this dissertation is the Binary Symmetric
Channel (BSC). The BSC model is a memory-less channel whose transmitted bits
are all equally likely to flip, according to some probability p.

Coding theory is used in many places, such as CDs, WiFi/radio, wired com-
munication, error-correcting memory in servers, hard drives, and satellite com-
munications. Practically in all places where storage or transmission must remain
robust in the face of read or transmission errors. In quantum computation, error
correction plays a central role due to the inherent noisiness of quantum mechanics.

There are many ways to construct such Error Correcting Codes (ECCs) and
they may be specially tailored for the error rate and other characteristics of the
channel model. The core principle remains the same however, by adding redun-
dancy one lowers the transmission rate R of the channel but increases the number
of errors that can be reliably handled.

Usually, one may encrypt a k-symbol message with r-symbols of redundancy
resulting in a n = k + r symbol long codeword. Such an encoding has the rate
R = k/n and this means that per single symbol of information that is to be
transmitted, the number of transmitted symbols is actually 1/R.

Taking a k-symbol message m ∈ Fk
q one may construct the corresponding

valid codeword by multiplying with a generator matrix G ∈ Fk×n
q :

c = mG. (4.1)

30 Cryptography based on Coding Theory

The shape and structure of the generator matrix are specific to the encoding scheme
in question, but in general, we say that it is of systematic form if the first k×k part
is comprised of an identity matrix. That is if G = [I||Q]. A systematic generator
matrix has the property that the transmitted message is placed verbatim at the start
of the codeword such as

c =
[
m0 m1 . . . mk−1 ck ck+1 . . . ck+r−1

]
, (4.2)

where ci for k ≤ i < k + r is the added redundancy symbols.
In this chapter we consider only messages with binary symbols (q = 2) and the

(n, k)-codes C we have begun to describe can also be described as a k-dimensional
subspace of Fn

2 . In other words, the space of k dimensions is described, redun-
dantly, in n dimensions such that the only valid codewords are given by C.

We say that the minimum distance of all valid codewords

d = min({dH(a, b) : ∀ a, b ∈ C, a ̸= b}) (4.3)

gives the error detection limit d − 1 of the code C. The error correction limit is
often denoted t = (d− 1)/2.

Next, we introduce the parity check matrix H ∈ Fr×n
2 such that it represents

the nullspace or kernel of the code C. That is,

cHT = 0 (4.4)

must be fulfilled for all valid codewords. For instance, consider the parity check
H ∈ F4×8

2 corresponding to a (8, 4) block code

H =

0 1 0 1 1 0 0 1
1 1 1 0 0 1 0 0
0 0 1 0 0 1 1 1
1 0 0 1 1 0 1 0

 . (4.5)

The following equations must be satisfied for a valid codeword

v1 + v3+ v4 + v7 = 0

v0+ v1+ v2 + v5 = 0

v2 + v5+ v6+ v7 = 0

v0 + v3+ v4 + v6 = 0

. (4.6)

All codes related to this discussion are linear, which means that the sum of two
codewords

c0 + c1 = m0G + m1G = (m + m)G (4.7)

4.1 Introduction to Coding Theory 31

is also a valid codeword. Same with the parity check matrix:

H(c0 + c1) = Hc0 + Hc2 = 0 + 0 = 0. (4.8)

According to the channel model (often the BSC), an error e is introduced,
during transmission, to the codeword such that the received vector v = c+e differs
from what was originally transmitted. The syndrome s of the received vector v is
given by

s = vHT = (c + e)HT = eHT. (4.9)

That is, a valid code word, with no symbol errors, results in the all-zero syndrome
given in Eq. (4.4). Note how the result of each equation in Eq. (4.6) corresponds to
the value at the same position si of the syndrome. That is, each non-zero position
of the syndrome is the result of an unsatisfied parity check.

A Tanner graph is a certain kind of bi-partite graph, useful for visualization
of linear codes. It displays the relationship between code symbols and the parity-
check sums that check on them. The example H given in Eq. (4.5) have the cor-
responding Tanner graph representation in Fig. 4.1. Here we see that the symbols
are given by elements vi of the received vector. In this example, each symbol is
connected to two parity check equations.

+

C0

+

C1

+

C2

+

C3

v0 v1 v2 v3 v4 v5 v6 v7

Figure 4.1: The Tanner graph representation of H

The Tanner graph representation informs us on the relationship of each given
symbol in the received vector (called a variable node, at the bottom of the graph)
and we may use these to check the validity of each symbol through its parity check
equation (called a check node, at the top of the graph).

Tangential to this discussion, is the concept of source compression coding (or
simply source coding). This is a way of utilizing coding theory where instead of
adding redundancy to a message one instead transmits only the redundancy sym-
bols. Thus, a low entropy message can be reconstructed from fewer symbols and
thereby achieving a compression scheme. Source coding is utilized in paper VI.

The DEcODINg pROBLEM, serves as the security foundation of code-based schemes.
It requires the adversary to find the closest codeword c ∈ C to a given received vec-
tor v ∈ Fn

2 . Let v = c + e and assume there exists a closest codeword. Note that
finding e is equivalent to finding c.

32 Cryptography based on Coding Theory

The SyNDROME DEcODINg pROBLEM is to compute a minimal weight e given s
such that He = s. Note that the syndrome decoding is equivalent to the regular
DEcODINg pROBLEM since a received vector can be constructed easily by assuming
the all-zero codeword and a systematic form generator matrix. This is because a
parity check matrix can easily be constructed from a systematic form generator
matrix:

G =
[
I Q

]
H =

[
QT I

]. (4.10)

Here the trailing identity matrix in H corresponds to the r-bit redundancy where
each bit corresponds to a single parity check equation. Thus

v =
[
0 0 . . . 0 s0 s1 . . . sr−1

]
(4.11)

is a valid received vector for the given syndrome.
Considering only large matrices H, general decoding for random codes is a

very hard problem. Information Set Decoding (ISD) is one general algorithm,
but it runs in exponential time. Though, by careful design of the code C and
the parity check matrix H in particular, decoding can be performed efficiently.
Code-based cryptography exploits this difference in order to construct a one-way
trapdoor function.

Relevant to this dissertation is primarily Low-Density Parity-Check (LDPC)
codes and variants Moderate-Density Parity-Check (MDPC) and Quasi-Cyclic
Moderate-Density Parity-Check (QC-MDPC) codes. We will briefly mention bi-
nary Goppa codes also, in relation to the first described code-based cryptosystem,
McEliece in Section 4.2.

4.1.1 LDPC codes and their decoding

LDPC codes due to Gallager [Gal62] are linear block codes that are constructed
using sparse Tanner graphs and they have very good decoding properties. This
construction is their primary distinguishing factor, namely the sparseness of the
Tanner graph. Even for huge codes, the number of connected edges, to each node,
is very small. Consequently, the number of non-zeroes per row of H is also small.

The example LDPC code given in Fig. 4.1 is not very good, for three reasons.
First, it is very small and will therefore not achieve very good error correction
performance. Second, it is not a sparse graph, mainly due to its size, so it is not
really an LDPC. And third, it contains short cycles of length 4. For example, you
may revisit node v3 by v3 → C0 → v7 → C2 → v3. A good performing LDPC
code on the other hand will be long, of low row weight and lack short cycles.

These codes can be decoded using various decoding techniques such as Be-
lief Propagation decoding (BP decoding), Sum-Product decoding (SP decoding),
Min-Sum decoding (MS decoding) approximation and iterative Bit Flip decoding
(BF decoding). We will here focus on BF decoding also due to Gallager [Gal62].

4.2 McEliece 33

1. Decoding begins by calculating the syndrome s as per Eq. (4.9). If it is equal
to the zero vector, stop the decoding.

2. For each connected variable node (symbol in the received vector), count the
number of failed parity checks fi (syndrome bits).

3. Identify the set S of symbols where fi is large.

4. Flip the symbols (bits) in the set S .

5. Repeat steps 1 to 4 until we are done (all parity checks are satisfied) or we
have reached a pre-determined maximum number of iterations.

If the pre-determined maximum number of iterations in step 5 is reached, we
declare a decoding failure. How the set S in step 3 is determined is subject to a
number of different strategies, but the most common in regular BF decoding is to
use an empirically determined threshold δ like so S = {fi : fi ≥ δ, 0 ≤ i < n}.

4.2 McEliece

In 1978 Robert J. McEliece proposed [McE78] the very first PKE based on a hard
problem from coding theory. This system is built upon random binary Goppa
codes and the ciphertext is comprised of a valid codeword plus a random error
vector.

A seemingly random generator matrix is the public key (details will follow) and
by selecting a random codeword and error vector the adversary finds it difficult to
recover the error-free codeword. The decoding can proceed efficiently only by
knowledge of the underlying structured code in the secret key.

The security level of the McEliece system has remained stable despite many
efforts to attack it for the last 40+ years. The system has also prompted much
other related work, most notably by Neiderreiter [Nie86] who proposed a more
efficient variant while preserving the security of the scheme.

Let Γ be a choice of C, a length n random binary Goppa code [McE78] of
code dimension k with minimum distance d = 2t + 1. Here t ≈ r/ log2(n)
which gives us the additional public parameters n = 1024, k = 524, r = 500
and t = 50 from the original paper [McE78].

The secret key is comprised of Γ with the corresponding structured generator
matrix G and the two additional matrices P ∈ Fn×n

2 and S ∈ Fk×k
2 . P is a

permutation matrix and S must be invertible such that SS−1 = I. The parameters
n, k, r, t are public. We also require an efficient decoding algorithm for Γ. The
public key then is G′ = SGP, which is a k × n generator matrix for a new,
unstructured looking, code.

The message m is encrypted like so:

c = mG′ + e, (4.12)

34 Cryptography based on Coding Theory

where e is a random error vector of Hamming weight wH(e) = t.
The decryption proceeds as follows. Compute

cP−1 = mG′P−1 + eP−1 = (mS)G + eP−1. (4.13)

Since P is strictly a permutation matrix, it is now possible to use the efficient
decoder for the structured code Γ to remove the noise eP−1 and recover mS. Then
it is a simple matter of calculating the plaintext by m = mSS−1

Lacking the secret key, the adversary’s task is to decode c to the nearest code-
word mG′ which is the hard general DEcODINg pROBLEM, if G′ does not expose
any structure.

The Neiderreiter variant used by the Classic McEliece submission to the NIST
PQC standardization effort will now be described, very briefly, just to highlight
the differences.

The scheme uses the invertible matrix S ∈ Fr×r
2 and the permutation matrix

P ∈ Fn×n
2 , similar to before. This variant uses a parity-check matrix H ∈ Fr×n

2
for the sampled binary Goppa code Γ. The secret key is H, P and S. The public
key is the scrambled parity-check matrix K = SHP ∈ Fr×n

2 .
Encryption does away with the Generator matrix by assuming the all-zero code

word. Instead, the plaintext is simply a random error vector e of weight wH(e) =
t. The ciphertext then is the syndrome

s = Ke. (4.14)

Here the adversary is required to solve the t-error correcting problem for the scram-
bled parity check matrix. This is equivalent to the DEcODINg pROBLEM given by
the original McEliece variant.

Decryption using the secret key is done by computing

S−1s = S−1Ke = S−1(SHP)e = H(Pe). (4.15)

Plainly, it is now possible to use a syndrome decoder for H to find Pe, since
wH(Pe) = t, and thus the plaintext e = P−1Pe.

A CCA secure KEM scheme can be had by using the general FO transform on
either the original or the Neiderreiter variant.

The advantage of the McEliece scheme over other PQC algorithms is that it of-
fers small ciphertexts, efficient encryption/decryption, and a very good (and long)
security analysis track record. The main disadvantage however is the slow key
generation and considerable storage and memory requirements of the public key.

4.3 BIKE 35

4.3 BIKE

The Bit flIpping Key Encapsulation (BIKE) KEM scheme is a code-based cryp-
tosystem based not on random Goppa codes, but rather structured quasi-cyclic
moderate density parity check codes that were designed to improve the size disad-
vantage of the McEliece cryptosystem.

MDPC codes have a slightly higherw ≈
√
n number of non-zeroes in the par-

ity check matrix than LDPC codes, which affects decoding negatively, but have
other properties useful for cryptography. In order to reduce the storage size re-
quirement of the matrices the QC-MDPC variant uses binary cyclic submatrices
of square dimensions in its parity check matrix. For example, a QC-MDPC code
of rate R = 1/n0 is given by

H =
[
H0 . . . Hn0

]
, (4.16)

where

Hj =

hj,0 hj,1 . . . hj,k−1

hj,k−1 hj,0 . . . hj,k−2
...

. . .
...

hj,1 hj,2 . . . hj,0

 j ∈ {0, 1, . . . , n0}. (4.17)

We see that Hj can be completely represented by the first row hj of each submatrix,
using only a rotating shift operation for the subsequent rows.

The BIKE cryptosystem is constructed as a Neiderreiter variant of McEliece,
instantiated by QC-MDPC codes of n0 = 2, R = 1/2, with each cyclic block of
size r and with error correction limit t ≈

√
n. The private key is H, represented

by (h0, h1), each of length r and such that wH(h0) = wH(h1) = w/2.
Due to the QC-MDPC construction, there is no need for any scrambling or

permutation matrices. The public key is

h = h1h−10 . (4.18)

Of course, h0 must be invertible, which is ensured during key generation.
The plaintext is a random error vector e = (e0, e1), of weight wH(e) = t and

the ciphertext is:
s = e0 + e1h. (4.19)

Decryption with the secret key is calculated as

sh0 = e0h0 + e1hh0 = e0h0 + e1h1, (4.20)

which can be recovered back to the original e = (e0, e1) with a syndrome decoder.
Decryption without the secret key requires the adversary to solve a variant of

the general SyNDROME DEcODINg pROBLEM since the public key h appears un-

36 Cryptography based on Coding Theory

structured.
The public keys are more than a hundred times smaller compared to McEliece’s

due to the structure of the QC-MDPC codes. However, BIKE occasionally suffers
from decoding failures. That is, by some small probability the decoder fails to
recover the error vector from a valid ciphertext. This is due to the probabilistic
nature of the BF decoder for these kinds of LDPC-derived codes. The rate of
failures is called the Decoding Failure Rate (DFR).

To construct an IND-CPA or IND-CCA secure KEM, some additional op-
erations are necessary. The idea, if not the particulars, are the same as previously
discussed for the FO̸⊥[G,H] transform in Section 2.6. Those details are described
in the specification [Ara+22] and to some extent in paper V. It is relevant to note
that the IND-CCA security is conditional on the DFR being lower than 2−λ.
This has been shown by modeling and extrapolating empirical simulations to be
the case, but there is as yet no proof [Ara+22], which is why only use cases where
IND-CPA security is enough are recommended.

4.4 HQC

The Hamming Quasi-Cyclic (HQC) KEM scheme [Agu+22; Agu+18] takes a dif-
ferent approach than McEliece and BIKE. It depends on two types of codes,
a public decodable (n, k)-code C used for the trapdoor and correct decryption
purposes and a random (n, 2n) quasi-cyclic (actually double circulant) code for
security guarantees.

The code C must be publicly agreed upon, before starting the key generation.
This is currently defined as a Reed-Müller and Reed-Solomon (RMRS) shortened
and concatenated code. The details of this RMRS code will not be discussed here,
as the scheme would work for any code with error-correcting capacity δ. Other
public parameters are the set of polynomials R = F2[X]/(Xn − 1), code size n
and the target Hamming weights w, we and wr.

The key generation is comprised of

• The quasi-cyclic, uniformly random, parity check matrix h $←R.

• The two vectors (x, y) $←R2 of low weight wH(x) = wH(y) = w

• The syndrome s = x + hy.

The secret key is (x, y) and the public key is (h, s).
The encryption function first samples e, r1 and r2 such that wH(e) = we

and wH(r1) = wH(r2) = wr. Encryption then is mainly comprised of the two
equations

u = r1 + hr2 (4.21)

and
v = mG + sr2 + e, (4.22)

4.4 HQC 37

where Eq. (4.21) is the calculation of a noisy syndrome, as generated by h. This
constitutes a quasi-cyclic variant of a general (i.e. hard) SyNDROME DEcODINg
pROBLEM. Equation (4.22) represent the plaintext encoded by the public code
C which is rendered undecodable by moving past the decoding threshold δ of C,
due to s. The ciphertext is the tuple (u, v).

Decryption is done by running the public decoder

m = C.Decode(v− uy), (4.23)

which works because

wH(v− uy) ≤ δ

wH((x + hy)r2 − (r1 + hr2)y + e) ≤ δ

wH(xr2 − r1y + e) ≤ δ

(4.24)

is true with overwhelming probability. The DFR is upper bounded by a theoretical
analysis of the error vector distribution of xr2 − r1y + e.

In other words, an attacker without knowledge of the secret key is faced with
either 1) decoding the code word v, which is infeasible due to the noise being
greater than δ, i.e. the closest code word is not the correct one. Or 2) decoding the
syndrome u, due to the random parity check matrix h, which is also infeasible as
previously discussed. Or 3) solve s for x or y, which is also an infeasible SyNDROME
DEcODINg pROBLEM.

HQC is, as is BIKE and McEliece, an IND-CPA secure PKE scheme, turned
IND-CCA secure KEM by way of a variant of the FO transform. However, unlike
BIKE, HQC is IND-CCA secure without provisional conditions, since the spec-
ification already includes a precise theoretical analysis of the DFR upper bound.

Lattice-based Cryptography

This chapter relates, in part, to the seminal work of Ajtai and Dwork [AD97]
where the authors gave the first cryptographic constructions whose security prop-
erties followed from the hardness of various problems on lattices. This work kicked
off a number of successive improvements and refinements to the proposed cryp-
tographic systems. The most common and successful schemes, as judged from
the perspective of NIST PQC standardization effort, are based on the LEARNINg
WITH ERRORS (LWE) problem, as originally defined by Regev [Reg05].

NTRU-based schemes are unrelated to the Ajtai-Dwork lattice schemes and
they differ from LWE on several points in both construction and pedigree. The
common denominator between the NTRU- and LWE-based schemes is the fact
that the security reductions trace back to the problem that relates to finding the
closest or shortest vectors in an integer lattice of large dimensions. This dissertation
does not pretend to offer any authoritative exposition on the subject of CLOSEST
VEcTOR PROBLEM (CVP) or SHORTEST VEcTOR PROBLEM (SVP), for such infor-
mation any textbook on the subject would suffice, see for example [Sma16], for a
beginner-friendly introduction.

LWE schemes offer several important variations and can be classified into LWE,
RLWE or MLWE schemes. In short:

LWE operates over vectors and matrices of integers modulo q, that is Zq.

RLWE or RINg LEARNINg WITH ERRORS operates over polynomials modulo f
and modulo q for coefficients, that is Fq[X]/f(X).

MLWE or MODuLE LEARNINg WITH ERRORS operates over vectors and matrices
of polynomials modulo f and modulo q for coefficients.

In this chapter, we describe schemes based on NTRU, LWE (FrodoKEM) and
MLWE (Kyber) problems.

40 Lattice-based Cryptography

5.1 NTRU

Here follows a brief description of NTRU1, as it was described in the original 1996
paper [HPS96] due Hoffstein, Pipher and Silverman. Numerous improvements
and changes have been proposed over the years since then. Most notably the NIST
PQC standardization effort included three KEM-like NTRU variants; NTRU-
Encrypt [Zha+17], NTRU-HRSS-KEM [Sch+17] and NTRU Prime [Ber+17a].
NTRUEncrypt and NTRU-HRSS-KEM later merged into the NIST-PQC sub-
mission NTRU [Zha+19]. The simplified version presented below is also denoted
NTRU-HPS, which refers to the original authors, when it must be distinguished
from other variants. A comparison of the NTRU-based NIST-PQC submissions
can be found in [Sch18], due to Schanck. In NTRU all operations are being de-
fined over the finite ring Fq[X]/XN − 1.

NTRU(-HPS) is parameterized over the coprime positive integers (N , q, p),
N is the degree limit of the set of polynomials, q is a relatively large modulus often
selected as a multiple of two and p is a small modulus, most often a prime. One
common choice found in the literature is (251, 128, 3). During key generation
two polynomials f and g are randomly selected.

Polynomial f is saved in the secret key, and must additionally satisfy the re-
quirement of being invertible under modulus q and modulus p. That is, one must
find the inverses fp and fq, like so:

ffp = 1 mod p

ffq = 1 mod q
. (5.1)

The public polynomial h is given by

h = pfqg. (5.2)

Before a message can be encrypted, it must first be converted into a polynomial
m of degree at mostN−1, we limit the coefficients to mod p. This can be done in
a number of different ways, but arguably the simplest is to reinterpret the binary
encoding of the message such that each bit-value corresponds to the coefficient of
their respective position in the message vector. I.e. a common binary encoding of
“NTRU” (01001110 01010100 01010010 01010101) would be reinterpreted
as

m = x30 + x27 + x26 + x25 + x22 + x20 + x18+

x14 + x12 + x9 + x6 + x4 + x2 + 1
. (5.3)

This encoding has a simple conversion procedure, but it disregards the possibility
of the p − 2 other possible coefficients entirely, so it is not size efficient. The

1Some suggestions I have found are that the name is an abbreviation for one of “N-th degree
Truncated polynomial Ring Units”, “Number Theorists ’R’ Us” or “Number Theory Research Unit”.
Or it is simply a given name.

5.1 NTRU 41

NIST-PQC submissions NTRU and NTRU Prime both use more space-optimal
encoding schemes. Regardless of the chosen encoding scheme, we now have our
message polynomial m.

During encryption, a blinding polynomial r is randomly selected and multi-
plied with h in the public key. Finally, m is added to the result to produce the
encrypted polynomial c. Thus,

c = rh + m (5.4)

is the ciphertext.
To decrypt, the polynomial a is calculated, such that

a = fc mod q. (5.5)

The polynomial b
b = a mod p (5.6)

is calculated. Finally, the decryption is done by

m = fpb mod p. (5.7)

Recall that all operations are in the ringFq[X]/XN−1. Thus when calculating
a the following equivalence holds

a = fc mod q

= f(rh + m) mod q

= f(rpfqg + m) mod q

= ffqprg + fm mod q

= prg + fm mod q

. (5.8)

Note here that all coefficients are small in relation to q, thus no modulo reduction
is actually needed. Assuming this to be the case,

a = prg + fm (5.9)

becomes
b = a mod p

= prg + fm mod p

= fm
. (5.10)

And final decryption is thus

fpb = fpfm = m mod p. (5.11)

The security of the NTRU scheme and its variants has been the focus of much

42 Lattice-based Cryptography

research. This dissertation will not repeat its state-of-the-art here. Though, the
reader should be aware of a few important results, as follows.

To date, the most effective attack strategy against NTRU is to utilize so-called
lattice-based attacks. This is why NTRU falls within the lattice-based category of
PQC schemes.

More rigorous specifications than the one presented in this section, introduce
a few more parameters and relations between them, thereby ensuring a few im-
portant properties. One of these properties is the (hopefully low, or non-existent)
probability of large coefficients in the a polynomial. This probability directly af-
fects the probability of decryption failures.

5.2 FrodoKEM

FrodoKEM is a conservative KEM scheme that focuses on security and simplicity.
This cryptosystem relies on the (plain) LWE pROBLEM which relates to solving a
noisy linear system modulo a known integer q. The LWE pROBLEM can be reduced
to several known lattice problems [Reg05].

First, key generation starts from a secret seed from which matrices A ∈ Zn×n
q ,

S ∈ Zn×n̄
q and E ∈ Zn×n̄

q are randomly generated, where n and n̄ are public
parameters of the scheme. The matrix A and

B = AS + E (5.12)

comprise the public key. S and E make up the private key.
To encrypt, matrices S′, E′ and E′′ must first be randomly sampled. The next

step is to calculate
B′ = S′A + E′ (5.13)

and
V = S′B + E′′. (5.14)

Then the message m is encoded with a suitable encoding Frodo.Encode(·), ex-
plained below, and added to V so that the ciphertext c can be constructed, like
so

c ← (C1,C2) = (B′,V + Frodo.Encode(m)). (5.15)

To decrypt one simply calculates

M = C2 − C1S (5.16)

and then M must be decoded back into the decrypted plaintext m′ using the
inverse encoding scheme:

m′ = Frodo.Decode(M). (5.17)

5.3 Kyber 43

To check the correctness of decryption we can summarize the noise terms into
E′′′ as follows

M = C2 − C1S
= (V + Frodo.Encode(m))− (S′A + E′)S
= Frodo.Encode(m) + S′B + E′′ − S′AS− E′S
= Frodo.Encode(m) + S′(AS + E) + E′′ − S′AS− E′S
= Frodo.Encode(m) + S′E + E′′ − E′S
= Frodo.Encode(m) + E′′′

. (5.18)

It is a simple matter for Frodo.Decode(·) (in Eq. (5.17)) to successfully return
m′ = m if the combined noise E′′′ is small in comparison to the elements of
Frodo.Encode(m). In fact, Frodo.Encode(·) is constructed by “upscaling” val-
ues of m and subsequently, when decoding, using a rounding operation followed
by a “downscaling”, for each matrix element k ∈ Zq. The result is such that

Frodo.Decodei,j(Frodo.Encodei,j(k) + e) = k, (5.19)

for each matrix position i, j and any error term e up to a certain limit, as deter-
mined by the FrodoKEM specification.

Care is taken when designing the parameters and how the various matrices are
generated/sampled. For instance, the matrix A is sampled from uniform random-
ness over the whole range Zq while the others in E′′′ use a more narrow gaussian
distribution, centered over zero. The public parameters of the FrodoKEM scheme
ensure a low probability of decoding errors since the elements of S, S′, E′, E and E′′

are (probably) small and therefore the elements of E′′′ remains below the decoding
limit. One can see from Eq. (5.18) that the matrix A acts as a way of masking the
elements of Frodo.Encode(m) due to its multiplication with the secret matrix
S. Without knowledge of S, it is difficult to remove the effects of AS from the
ciphertext, and of course, it is a hard problem to recover S from B = AS + E.

5.3 Kyber

Kyber is of Module-LWE design. So, it operates not on matrices of numbers in
Zq, like FrodoKEM, but over matrices and vectors of polynomials inFq[X]/f(X).
The main advantage is the size of the public key and the speed afforded due to the
additional structure in the secret and public keys. The overall design of Kyber is
similar to other (M/R)LWE designs, which is also the case when compared with
FrodoKEM.

Key generation computes the the secret key s as a random vector of small2

2They have small coefficients; Roughly −q/2 ≪ ai ≪ q/2, where ai is the ith coefficient of
the polynomial a.

44 Lattice-based Cryptography

polynomials. The public key is (A, t), where the matrix A is of small dimensions
(k × k) with k ∈ {2, 3, 4}, depending on security level. t in this instance is
calculated by

t = As + e. (5.20)

The encryption function samples vectors e1, e2, r of random small polynomials,
and then calculates c = (u, v) like so

u = AT r + e1 (5.21)

and
v = tT r + e2 +m. (5.22)

Before inserting the plaintext, it is first encoded by multiplication with a constant
(i.e. upscaling), just like in FrodoKEM, so we get large coefficients.

To decrypt, Kyber uses the secret key in the following:

m′ = v− sTu. (5.23)

The final step then is to reverse the encoding of m′ so that the original plaintext
is reconstructed by rounding and downscaling.

The decryption works for the same reasons as it works for FrodoKEM, and thus
the details are omitted here. It is enough to know that the combined error terms
are, with very high probability, small enough to be discarded by the decoding, or
decompression, as it is called in the case of Kyber.

The main speedup of Kyber vis-à-vis FrodoKEM is that the structure of Kyber
enables the use of the Number Theoretic Transform (NTT) to perform transla-
tion of the problem input to the NTT domain, where polynomial multiplication
is more efficient. NTT is an efficient algorithm, corresponding to the Discrete
Fourier Transform (DFT), but over finite fields instead of the customary complex
numbers. The NTT can be implemented using a variety of different finite fields,
and the choice of field can affect the efficiency of the algorithm.

Chosen Ciphertext and
Side-Channel Attacks

6.1 Chosen Ciphertext Attacks

A chosen ciphertext attack refers back to the security game defined in Section 2.5,
where the attacker is given not only the power to construct whatever ciphertext
he/she wishes but may also be given the decryption of any such ciphertext (except,
of course, the specific challenge ciphertext given by the game). These attacks work
because A) the scheme is not1 proven to be IND-CCA secure or B) the scheme
or implementation leaks some parts of its secret internal state. This latter case is
not allowed in the IND-CCA model, recall Section 2.5, so it does not invalidate
the security proof, but it shows that such proofs often make assumptions that do
not always hold, in practice. In this section, a few different Chosen Ciphertext
Attacks (CCA) will be discussed.

Decryption Failure Attacks (DFA) are sometimes also referred to as reaction
attacks. And true to its name, such an attack considers the reaction of the target
when performing decryptions (or decapsulations, depending on the setting). In
short, a starting valid ciphertext c is generated. Then modifications c′ = c + e
are introduced, first small ones and then progressively larger and larger, until a
decryption failure is detected due to how the target reacts (perhaps by requesting
a retransmission, or through a side-channel). Comparing the errors e causing a
decryption failure with those who do not, the attacker gains some knowledge of
either the message or the secret key.

Generally speaking, the authors of the first attack, presented in the following
section, refer to the affected cryptosystems as closest-point cryptosystems. One
may consider a closest-point cryptosystem as a subclass of schemes with malleabil-
ity and the possibility of decryption failures. See the quote below:

1Or equivalently, there is a proof, but it is faulty.

46 Chosen Ciphertext and Side-Channel Attacks

Each of these systems could be considered a closest-point cryptosystem.
That is, the ability to decode a ciphertext depends upon the ability to deter-
mine the closest “point” to the ciphertext in some linear space. For error-
correcting code systems, this equates to the ability to determine the closest
codeword in the linear space of codewords. For lattice-based systems, this
equates to finding the closest point in a lattice. In all of these systems, one
could consider the class of ciphertexts corresponding to a particular plain-
text to be a sphere surrounding a point in the respective space (where the
boundaries of the sphere are determined by an appropriate distance met-
ric).

By examining ciphertexts that are close to each other in the space (but
possibly in different classes) we can determine the boundaries of this sphere
and hence the center of the sphere. For some of the systems […] the security
of the system relies upon the inability to determine points in the respective
space. […]

We feel that any […] public-key cryptosystem with these properties will
be vulnerable to the same sorts of attacks we present here.

This prescient quote by Hall, Goldberg and Schneier in [HGS99] relates to
the attacks presented in that paper. These include message recovery attacks against
the code-based McEliece cryptosystem and key recovery attacks against the lattice-
based Ajtai-Dwork PKC algorithm [AD97] and its Goldreich-Goldwasser-Halevi
variant [GGH97]. Hall et al. showed that information about the message (in the
case of McEliece) or secret key (for Ajtai-Dwork) can usually be determined, if the
decryption fails. Leaving the attack on the Ajtai-Dwork PKC as a reading exercise
for those interested, the attack on McEliece’s scheme is briefly described in the
following section.

6.1.1 DFA on McEliece

The attack on McEliece assumes one important property of the decoding algorithm
selected by the implementation; The decoder will fail if presented with a vector
with t+ 1 or more errors. Recall, from Section 4.2, that t serves as the decoding
limit of the underlying code. The assumption does not always hold, but in many
cases it does, as shown by Hall et al.

If additional errors, recorded in the extra error vector e, are introduced to the
ciphertext c by simple modulo 2 bitwise addition, we get a modified ciphertext

c′ = c ⊕ e. (6.1)

The intuition behind the attack is this, if the extra error bits are introduced one at a
time and if c′ eventually results in a decryption failure we know, by the assumption
above, that we have exactly t+1 errors. Thus, by finding all bits i ∈ I in c′ which,

6.1 Chosen Ciphertext Attacks 47

if individually flipped, causes the decoding to once again succeed, we gained the
knowledge that those bits must be in error in c′.

This knowledge is enough to completely remove the internal error vector z
from c to get the corrected ciphertext cc. Without the error the original message
can be recreated by applying the technique from [AM87] which only requires the
selection of k error-free positions of c. The selection of k error free positions allows
the attacker to solve for m by setting up the equation

c′c = mG′, (6.2)

where c′c is the selected k positions of cc and G′ is the same k selection of columns
from G.

6.1.2 Bleichenbacher attack on RSA

The term reaction attack might, to the author’s best knowledge, be traced to the
above-cited paper by Hall et al. However, a year prior the Bleichenbacher at-
tack [Ble98] was published. This attack made use of a so-called padding oracle for
RSA using the PKCS#1 v1.5 padding scheme. It was made possible by error mes-
sages explicitly letting users know if the padding of the decrypted messages was
correct, or not. This knowledge could be leveraged by multiplying the encrypted
message with a selected value s such that:

c′ = cse mod N . (6.3)

Sending c′ to the decryption oracle one gets

m′ = (c(se))d = cdsed = ms mod N . (6.4)

The property of RSA showcased above is called the homomorphic property.
It states that some operations on the ciphertext propagate in a predictable way to
the plaintext, even if the plaintext is unknown. This property is what enables the
wholly separate and quite interesting research field of homomorphic encryption,
which allows servers to make calculations on encrypted and unknown data, though
it will not be discussed more in this dissertation.

When the receiver readsm′ it will most likely not adhere to the padding scheme
of PKCS#1 v1.5. The fault of many early implementations was to respond with
an error message, effectively providing a decryption failure oracle of the first two
bytes, which must be 00 and 02, according to the padding scheme.

Trying many choices of s we eventually arrive at one that returns the specific
error message we are looking for. Then we have gained the following information:

2B ≤ ms < 3B mod N , (6.5)

48 Chosen Ciphertext and Side-Channel Attacks

where B = 28(k−2) of which k is the number of bytes of N . Recall, that the first
two bytes are known (here interpreted as the most significant digit, two) and thus
ms must be represented by the k − 2 remaining bytes of the message.

By collecting many valid choices of swe may eventually know enough to recre-
ate m in its entirety.

6.1.3 DFA on NTRU

Following the publication of [HGS99], Hoffstein and Silverman realized in [HS99]
that a similar reaction attack on lattice-based NTRU was possible. The attack on
NTRU follows a similar structure as the one against both the McEliece and the
Ajtai-Dwork schemes and it is described briefly below.

NTRU encryption, see Section 5.1 and Eq. (5.4), is of the form

c = rh + m mod q (6.6)

which, due to Eq. (5.10), informs on the smallest possible modification c′. For
any choice of 0 ≤ i ≤ N a modification in the form of

c′ = c + npX i (6.7)

is likely to successfully decrypt for small choices of n > 0. Conversely, if f has a
matching +Xi term and the intermediate decryption polynomial a has the cor-
responding coefficient within np of the upper bound, of q relation, the assump-
tion of small coefficients no longer holds. This will cause a decryption failure.
Analogously, some negative choices of n informs on −Xi terms of f. How to
reconstruct the secret key from the above information is not shown here, it is a
process of shifting and duplicating the secret coefficients as well as collecting from
multiple messages. It is enough for the above to show why the attack leaks some
information about the secret key. For more details, see [HS99].

A mix of reaction and chosen ciphertext attacks2 on NTRU are [JJ00; Hon+02;
How+03; GN07].

6.1.4 CCA on (M/R)-LWE-based cryptosystem

An attack on RLWE-based key exchange schemes under the static key paradigm
was first reported on by Fluhrer [Flu16]. In this setting, a user is employing a, sup-
posedly, Diffie-Hellman (DH) key exchange drop-in replacement. The idea was
to, like with DH, allow a server to make use of a static key-share while connecting
clients make new, ephemeral, key-shares. Fluhrer showed how RLWE schemes
can be broken in such static-ephemeral settings. The fully ephemeral setting, with
fresh key shares for all parties, is not affected by this attack.

2Chosen ciphertext attacks differs from reaction attacks in that the result of the decryption is
required to mount the attack.

6.1 Chosen Ciphertext Attacks 49

The attack makes use of a key mismatch oracle, to gain information on if a
guessed coefficient of the secret polynomial is correct or not. If the guess is cor-
rect the key agreement is successful and the generated symmetric key matches for
both parties (this can be tested by sending an encrypted message and waiting for
a response). Since the target key-share is static the attacker may submit multiple
guesses and then proceed to the next coefficient once a good guess is confirmed by
the oracle. Those kinds of attacks are also known as misuse attacks since the attack
scenario is the improper reusing of ephemeral-only keys. In other words, they take
advantage of only IND-CPA secure schemes in settings that require IND-CCA se-
curity.

The key mismatch oracle is related to decryption failure oracles in that it tells
m′

?
= m for both key exchange algorithms and KEMs, whereas for PKC and

KEM systems, a decryption failure oracle informs on the same equality but with
the distinction that introduced errors/noise in the ciphertext sometimes results in
m′ with no relation to m due to decoding or correction failures.

Key recovery attacks on both Kyber and FrodoKEM are possible if a decryp-
tion failure can be induced and detected [Rav+20]. In the following, we briefly
describe the attack on FrodoKEM3, although the attack on Kyber is similar. The
attack, at its core, retrieves a single element S[0][0] of the secret matrix. During
encapsulation, the first element of the matrixes B′ and C are carefully selected with
values B′[0][0] = kB′ and C[0][0] = kC and all other elements set to 0.

Briefly recalling the decryption procedure of FrodoKEM, we have

M = C− B′S
m′ = Frodo.Decode(M)

, (6.8)

where m′ is decoded by Frodo.Decode as a scalar value. Though it is interpreted
as a bitstring when values of B′[i][j] are mapped to specific bits, here given in the
notation mi,j . The values of mi,j are given below:

mi,j =

Frodo.Decode(kC − kB′S[0][0]), if i = 0, j = 0

Frodo.Decode(−1 · kB′S[0][j]), if i = 0, j ̸= 0

0, otherwise
. (6.9)

It is possible to select the values of kB′ and kC such that mi=0,j=0 depends only
on S[0][0] and mi,j = 0 for all other values of i, j. Adding a further restriction,
that the decrypted message should take the either value of m′ = 0 or m′ = 1
we obtain a Plaintext-Checking oracle (PC oracle). This can be done since secret
coefficients in FrodoKEM (and Kyber) are given within a range that depends on

3It differs somewhat from the attacks presented in papers III and VI, hence it is included here.

50 Chosen Ciphertext and Side-Channel Attacks

q. As such, some values of S[0][0] results in a message bit of zero and others result
in a message bit of one.

By submitting a number of guesses with different ciphertexts to the PC oracle
it is possible to find out the value of S[0][0]. The other positions of S can be
obtained in a similar fashion by exchanging the zero positions of B′ and C. The
details of key reconstruction are omitted from this description, see [Rav+20] for
more information.

6.1.5 DFA on QC-MDPC based cryptosystems

In 2016, Guo, Johansson and Stankovski showed how to mount a key-recovery
attack on the QC-MDPC cryptosystem [GJS16; GJW18]. The attack on QC-
MDPC, being the antecedent system to the BIKE cryptosystem (see Section 4.3),
is highly relevant to this dissertation due to it being partway the foundation of
papers I and V, as well as being the motivation behind paper IV.

Guo et al. showed how the small probability of decoding failures can be ex-
ploited to reveal dependencies on the secret key. The aim is to, given only the
public-key generator matrix G, recover h0 and thus be able to reconstruct the se-
cret parity check matrix H via the first cyclic sub-matrix H0 for which h0 is the
first row.

By examining the decoding procedure of different error patterns the authors
discovered a correlation between the Decoding Failure Rate (DFR) and matchings
of cyclic pair-wise distances of ones (1’s) in both h0 and the generated error pattern.
In short, if the distance between any two non-zero elements of h0 is d then, shown
empirically, error patterns also containing the same pair-wise cyclic distance d is
measurably more difficult to decode.

The set of distances between any two non-zero elements in a vector is called
the distance spectrum. By collecting the distance spectrum of many error patterns
which fail to decode, the most common distances showed a very strong correla-
tion with the distance spectrum of the secret key. The secret key can easily be
reconstituted from the aggregated distance spectrum of the error patterns.

This attack is very strong in the IND-CPA setting, where the attacker is able
to determine the error pattern, and even construct more difficult error patterns by
increasing its weight. In the IND-CCA setting the process is more expensive due
to no longer being able to choose the error pattern and thus must rely both on
“natural” decoding failures and on some way to distinguish them.

6.2 Side-Channel Attacks

So far it has not been discussed how the target can be observed to make the above
attacks possible. In the case of IND-CCA secure PKC schemes, such information
is not, theoretically, available. By using side-channel information we might how-

6.2 Side-Channel Attacks 51

ever be able to mount a Side-Channel Attack (SCA) to gain exactly the insight
required to implement the various oracles necessary for the attacks.

Essentially, all models are wrong, but some are useful.
— George Box

Security proofs, by their very nature, can only consider side-effects of opera-
tions, if they are explicitly included in the model. Being a challenging proposition,
security proofs typically do not model the leakage of internal states. In the follow-
ing, we only consider a leakage if it relates to, or depends on, non-public input,
in some way. Leakages that depend solely on public information (e.g. the public
key) can by their nature not give-away any further useful information.

A physical (i.e. hardware- or software-) implementation of a cryptographic
system can be leaky by virtue of timing variations [BB03; Str10; BT11; Str13;
Bru+16; Kau+16; DAn+19; Waf+19; PT19], power consumption [KJJ99; Ngo+21;
Ham+21; GJJ22; Sch+22a], electromagnetic emanations [Rav+20; GLG22], acous-
tic signals [GST14; GST17] etc. The list goes on.

Fault injection attacks [Bar+12], which are also known as active side-channel
attacks, is another interesting SCA-related attack vector. In such attacks, a target
system is affected by an external stimulus such that the targeted function misbe-
haves, in some manner. The critical insight is highly dependent on the targeted
system and the fault that is introduced. The commonality lies in the idea that by
comparing the output of correct encryption/decryption with the output of faulty
encryptions or decryptions the attacker can gain some crucial information on the
private inner state of the algorithm. Usually, this is used to attack protected hard-
ware in an adversarial setting, such as smart-cards.

There are many techniques for extracting information from leakages. Such
techniques include simple power analysis [KJJ99], differential power analysis [KJJ99],
template attacks [CRR03], correlation power analysis [BCO04] and test vector
leakage assessment [SM15]. Also, artificial intelligence techniques such as machine
learning and deep learning have increased in recent years.

The focus of this dissertation is towards DFAs against PQC schemes, aided by
SCA. There are software-based timing attacks in papers III and V and a simple
power analysis attack in paper VI. Therefore this section is not intended as a
full primer on more advanced SCA techniques; Instead, we refer the reader to the
respective paper where each technique is introduced. That being said, some related
works are briefly introduced below, related to the aforementioned timing attacks.

6.2.1 Timing Attacks

Timing attacks against PKC algorithms were first introduced by Kocher in his sem-
inal work [Koc96] “Timing Attacks on Implementations of Diffie-Hellman, RSA,

52 Chosen Ciphertext and Side-Channel Attacks

DSS, and Other Systems”. Consider, for example, the RSA decryption operation

m = cd (mod N), (6.10)

where the decryption exponent d is part of the secret key. It was shown that,
for instance, the modular exponentiation above was often implemented by the
“square-and-multiply” algorithm which by timing data leaks bits of the exponent.
In particular, the algorithm is usually implemented such that, for each iteration i of
the algorithm, it checks if the exponent has the particular bit di set (’1’) in the secret
exponent. If that is the case, a conditional multiplication is executed, otherwise
not. Kocher showed how this information could be leveraged to obtain the secret
exponent d by passively observing multiple ciphertexts and timing measurement
pairs. By comparison against a model, each bit of d can be guessed, one at a time
until the whole secret key is reconstructed.

Later, Brumley and Boneh showed that “Remote Timing Attacks Are Practi-
cal” [BB03]. In this work, they showed that it is actually feasible to attack servers
running the, then, latest version of OpenSSL in a close-to-real-world scenario.
This was previously believed to be very difficult due to the inherent noisy environ-
ment of a general-purpose network-connected server with lots of traffic.

In [Str10; Str13] Strenzke showed key-recovery timing attacks against the McEliece
decryption operation. Here the secret permutation and the syndrome inversion
steps were the leaky operations and by constructing invalid ciphertext with a spe-
cific error weight it was possible to distinguish the number of iterations performed
by an inner part of the error correction algorithm. It turned out that this number
was directly correlated to a specific coefficient in the secret error location polyno-
mial, used by the error correction algorithm. In the end, it is possible to build a
list of linear equations which describe the secret permutation. With enough data,
the list of linear equations can be solved by the Gaussian elimination algorithm.

Later, Brumley and Tuveri showed that “Remote Timing Attacks Are Still Prac-
tical” [BT11]. This time Brumley et al. show a timing attack against OpenSSL’s
Montgomery ladder implementation for elliptic curves. The authors managed to
mount a lattice attack that recovered the private key of a TLS server, authenticated
by ECDSA signatures.

D’Anvers et al. [DAn+19] made a timing attack on PQC schemes that utilize
error-correcting codes to reduce the decoding failure rate. They used timing infor-
mation to distinguish between ciphertexts that result in an error before decoding
and ciphertexts that do not contain errors. Of course, this works only if the ECC
decoding algorithm has a variable execution time, which was the case for at least
the NIST PQC submissions LAC and Ramstake. The reason for implementing
it that way was presumably that the algorithm authors did not consider that the
above distinction counted as secret input.

Wafo-Tapa et al. [Waf+19] and Thales Bandiera et al. [PT19] both showed how
to exploit an earlier version of the HQC scheme due to a correlation between the

6.2 Side-Channel Attacks 53

weight of the error to be decoded and the running time of the non-constant time
BCH decoding algorithm (now replaced by an RMRS code and decoder).

6.2.2 Cache Timing Attacks

In [Bru+16] Bruinderink et al. present the first side-channel attack on a lattice-
based signature scheme, using a cache-attack technique (see below). The scheme
in question was the Bimodal LattIce Signature Schemes (BLISS) [Duc+13] and
the target was the discrete Gaussian sampler. The sampler was used to construct a
blinding (or noise) polynomial in order to make the signature statistically indepen-
dent of the secret key. If an attacker learns the noise polynomial for a number of
signatures it is possible to reconstruct the secret key by guessing and linear algebra.

The technique used was the Flush+Reload cache attack. This is an active way
of exploiting timing side-channels that would not otherwise be measurable. It
requires local code execution privileges in order to reveal secret dependent memory
access by inducing and measuring timing variations of neighboring processes.

The processor cache in your computer is a collection (a bank) of memory cells
located inside the processor, used to bridge the speed gap between the fast processor
and the slow primary memory. Several cache layers are typically used, such as L1,
L2 and L3, where L1 is the smallest, fastest and closest to the execution core.
In short, whenever the processor performs memory accesses it looks through the
local caches first and uses the result whenever a match is found. If a match is
not found in any of the caches, then an expensive read operation is performed
on the main memory bank. Due to the small size, strict eviction policies of the
processor determine what data is kept or replaced in the caches. These policies are
hard-coded by the processor manufacturer. Caches are shared between processes
and thus one process may cause an eviction of another process’s data by exploiting
the cache eviction policy of the processor. A cache attack makes use of the fact
that when an attacker uses the same cache as a victim, victim memory accesses
change the state of the cache. The attacker can use the measured timing variations
to check which memory blocks are cached and from that deduce which memory
addresses the victim has accessed.

In [Bru+16] Bruinderink et al. describes the Flush+Reload attack:

A Flush+Reload attack uses the clflush instruction of the x86-64 ar-
chitecture to evict a memory block from the cache. The attacker then lets
the victim execute before measuring the time to access the memory. If dur-
ing its execution the victim has accessed an address within the block, the
block will be cached and the attacker’s access will be fast. If, however, the
victim has not accessed the block, the attacker will reload the block from
memory, and the access will take much longer. Thus, the attacker learns
whether the victim accessed the memory block during its execution.

54 Chosen Ciphertext and Side-Channel Attacks

6.2.3 Constant time implementations

By this time it is clear, and indeed well-known, that cryptographic algorithms
must be implemented in constant time. In cryptography, ”constant time” refers
to an algorithm or implementation that takes the same amount of time to execute
regardless of the input data. However, as per the discussion given in the introduc-
tory paragraphs of Section 6.2, one may relax this constraint slightly. Instead, one
may be implicitly talking about constant time only in relation to secret elements of
the input data. To achieve a constant time implementation we must consider the
following operations [Por17]:

Memory accesses As we have seen above, it is entirely within the realm of possi-
bility for an attacker to glean insight into the spatial and temporal locality
of memory accesses, primarily through cache-timing attacks. Therefore, it is
important to make sure memory addresses do not have any dependency on
a secret element.

The most immediate consequence is that common implementation tech-
niques such as lookup tables cannot be used unless they are small enough to
fit within a single cache-line4.

Conditional jumps The above point on memory access apply also to program
execution flow; Each processor instruction resides in memory and thus a
branching in the execution flow leads to a memory read of the location of
the taken program branch, to find the next instruction for the processor to
execute.

However, it is even worse than that. Today, almost all processors, except
maybe for those intended for constrained environments, have a branch pre-
diction feature, where the processor guesses which branch will be taken, be-
fore the branch condition is executed. This allows the processor to pre-fetch
the next instruction and for instruction pipelining5, considerably improving
performance. If a miss-prediction happens, a detectable delay occurs since
the processor must discard whatever work was performed in advance due
to its (erroneous) branching guess. Branch, or jump, prediction uses both
static rules and a dedicated cache system, which can lead to a similar kind
of attack as against table lookups.

Naturally, this is a problem only if the condition is secret. For instance,
when implementing AES-128, there are ten rounds, so an implementation
may use a loop with a conditional jump that will exit after the tenth round.

4A cache is divided into cache-lines, which is the smallest individually addressable unit of the
cache. One common cache-line size is 64 bytes, for the L1 cache, closest to the processor.

5A performance enhancing technique where processor instructions are broken down into smaller
parts and executed in several steps. Thus freeing up resources for handling the first step of the next
instruction before being finished with the next step of the current instruction.

6.2 Side-Channel Attacks 55

That AES-128 includes ten rounds is not secret, so that specific conditional
jump is not problematic.

Integer divisions Some processor architectures are implemented such that integer
divisions have two code paths, one for all possible inputs and one which is
optimized for small divisors or dividends. Thus the speed of the integer divi-
sion instruction might reveal the size of the inputs. The same problem might
even occur on architectures without hardware support for integer division,
in this case, the program compiler might supply one of its own built-in sub-
routines, with the same input-size dependent optimization. Note that this
problem may occur for both the division and modulo operations (’/’ and ’%’
operators in the C programming language).
Some divisions might be optimized into bit-shifting and bit-masking oper-
ations, depending on the inputs (power of 2 divisions are a trivial example).
However, it can sometimes be complicated to predict the real effects of such
operations, since the C-compiler can make surprising choices. For instance,
if signed types are involved, divisions by powers of two may still involve
some special code with conditional jumps because the C standard mandates
that (-1) / 2 == 0, while most CPUs will right-shift -1 into -1 (arithmetic shift
with sign extension).

Shifts and rotations Processors without hardware support for constant time bit-
shifting operations can leak shift and rotation counts. This is mostly a
legacy problem since almost all modern processors feature a so-called “barrel
shifter”, which is constant time.

Multiplications Another, mostly legacy, problem to watch out for is multiplica-
tions, which on most modern processor architectures are implemented in
constant time. However, some older processors use special code paths for
small inputs, which are faster.

Sometimes even adhering, or rather believing oneself to be adhering, to the
above guidelines might not be enough. Kaufman et al. [Kau+16] showed how a
particular implementation, of Elliptic Curve Diffie Hellman key exchange based
on the curve X25519, could still be subject to a timing attack, even though ad-
hering to strict implementation security guidelines [LHT16]. In this case, the
culprit was in a platform-dependent runtime library that implemented integer
multiplication in an input-size-dependent manner. The integer multiplication
was performed by a constant time Montgomery ladder implementation given
by [LHT16], which was believed to be secure, and indeed it was, on most plat-
forms.

The paper [Kau+16], is quoted below:

Once a security design is implemented, whatever effort is put into pro-
tecting each part of the code, there still remains a strong possibility of a

56 Chosen Ciphertext and Side-Channel Attacks

timing leak. It is virtually impossible to have control over all the param-
eters at stake. Compiler and processor optimizations, processor specificities,
hardware construction, and runtime libraries are all examples of elements
that cannot be predicted when implemented at a high level.

6.3 Classification of Oracles

So far, a number of different attacks have been presented, many of these use differ-
ent kinds of oracles, many based on side-channel information. This section makes
an attempt to gather and categorize them. To be clear, IND-CCA secure schemes
nominally prevent this kind of oracles, (see the discussions the FO transform and
on the CCAs in Sections 2.6 and 6.1). However, as has already been discussed,
undesired side-channel information may still allow these oracles to exist, in prac-
tice. The work of Ravi, Chattopadhyay, D’Anvers and Baksi [Rav+22] is used as
basis for the following listing:

Plaintext-Checking oracle (PC oracle) The key-recovery attack given by [Rav+20],
described briefly in Section 6.1.4 is an example of an attack utilizing a plain-
text checking oracle.
That is, a special low-weight ciphertext is generated, where the decrypted
plaintext depends on only a single coefficient of the secret key. One of two
cases may be observed in the decrypted message; It is either m′ = 0 or
m′ = 1. The plaintext oracle in other words checks for which plaintext is
given during decryption.
The PC oracle can be either binary [DAn+19; Rav+20; Uen+22], as de-
scribed above, or parallel [Raj+22; Tan+22]. In the parallel PC oracle, the
oracle provides more than a single bit of information per query. This is ac-
complished by generating a ciphertext where multiple bits of the decrypted
message depend on different solitary coefficients of the secret key. The paral-
lel PC oracles in the cited works were realized via power/EM-side-channels.

Decryption Failure oracle (DF oracle) DF-based oracles usually start from a valid
ciphertext, which with a very high probability successfully decrypts. Then
the ciphertext is modified bit by bit until a decryption error is detected by
the DF oracle. Once detected the attacker uses the knowledge of decod-
ing/decrypting limits of the cipher scheme, the encrypted plaintext and in-
formation of the performed ciphertext modifications, to gain exact insight
into the secret key.
The attacks presented in Sections 6.1.3 and 6.1.5 are examples of attacks
enabled by DF oracles, as is the power/EM attack in [Bha+21].

Full-Decryption oracle (FD oracle) The final oracle discussed in this dissertation
is the FD oracle. This oracle is able to provide not only a single or a few

6.3 Classification of Oracles 57

bits of information per query, but the entire message. Xu et al. [Xu+22]
showed with an EM/power attack that it is possible to construct ciphertexts
such that all message bits correspond to a unique secret key coefficient.

The FD oracle is simply a special case of the parallel PC oracle where all the
bits of the message are utilized fully, which is only partially the case for the
parallel PC oracle. Examples of FD oracle based attacks are [Xu+22; Rav+21;
Ngo+21; NDJ21; WND22a; WND22b].

Key mismatch oracles (for misuse attacks) are very similar to both binary PC
oracles and DF oracles, although the key mismatch concept is primarily used for
considering the robustness of only IND-CPA secure schemes when improperly
reusing ephemeral keys. Since they are used in different settings and for differing
purposes, this oracle type is not included in the list above.

Decryption failure attacks, as enabled by DF oracles, are the main theme of this
dissertation, as these 1-bit information oracles are the ones that most easily lend
themselves to software-based timing attacks, which has been the main research
goal of this Ph.D. project. This will be discussed more in the following chapter.

Contributions and
Conclusions

This thesis aims to explain how the concept of Decryption failure attacks was fur-
ther developed during Alexander’s research project and how it was used to identify
such weaknesses in relevant next-generation PQC encryption schemes. Only by
identifying such weaknesses early and by attempting to exploit them can the ram-
ifications be known and hopefully be prevented from impacting real-world use
cases.

7.1 Contributions

This dissertation focuses on the intersection of cryptographic software implemen-
tation issues, cryptanalysis and coding theory with some sprinkles of lattice cryp-
tography on top. Let us summarize the different areas of the included papers
below, an illustration is also available in Fig. 7.1.

Crypto implementation Papers III to VI. Of these papers III, V and VI focuses
on discovered issues, or side-channel leakages, in implementations of cryp-
tographic software. Paper IV focuses on an alternative implementation and
improvement of a specific part of a KEM algorithm.

Cryptanalysis Papers I to III, V and VI. All but one of the included papers at-
tempt to improve the state of the art regarding the cryptanalysis of existing
schemes. Three papers (III, V and VI1) find novel source-code vulnerabil-
ities, two papers (I and VI) improve upon existing attacks with new tech-
niques and one paper (II) gives theoretical cryptanalytical results regarding
the practical security level of proposed parameters.

Coding theory Papers I and IV to VI. These papers relate to coding theory either
as an analytical tool (paper VI) or by virtue of relating to the code-based

1Though, the focus is on the new SCA framework, not the power attack.

60 Contributions and Conclusions

La
tti

ce
-b

as
ed

cr
yp

to
gr

ap
hy

Coding theory

Crypto
im

plem
entation

Cryptanalysis

I

II

III
IV

V

VI

Figure 7.1: Venn diagram of the included papers’ contributions.

KEM schemes BIKE (QC-MDPC) and HQC. Notably, McEliece is absent
from this list.

Lattice-based cryptography Papers II, III and VI. Lattice-based KEM schemes is
an important sub-topic of this dissertation and the KEM schemes NTRU,
Kyber and Frodo are subject to various level of scrutiny in these papers.

7.1.1 Paper I: Error Amplification in Code-based Cryptography

This paper expands upon the original ”GJS” attack [GJS16; GJW18], see Sec-
tion 6.1.5, such that IND-CPA secure QC-MDPC based schemes can be attacked
with far fewer oracle queries. The contributions are primarily two-fold.

First, it was explained that a measure of closeness can be exploited for “difficult
to decode” error patterns, such that if one such pattern is obtained then small
modifications to this pattern can with high probability yield new error patterns
with the same properties. Due to the similarities of these patterns, the whole
pattern is not considered in the attack, but rather the differences in the distance
spectrum between pattern ei and ei+1 are considered. In this manner a chain
of error patterns was generated, each pattern being a single modification of its

7.1 Contributions 61

immediate ancestor. Here a modification refers to the move operation of a set
bit into a new unoccupied position in the error pattern. Basically, the algorithm
starts from a “genesis” pattern that it randomly modifies until it finds a single
modification that also results in a decoding failure. Even better, it was shown
that even if the next candidate pattern e∗i+1 does not actually cause a decoding
failure, that is still information that can be incorporated to improve the attack.
Simulations showed a massive increase in the decoding failure rate of the scheme
under attack.

The second major contribution was that the presence of side-channel informa-
tion in the decoder could easily be used to improve the attack and even the act of
finding the genesis pattern. Consider modifications resulting in a pattern that goes
from decoding failure to decoding success. For these one can additionally record,
due to timing information from the decoder, a measure of decoding difficulty. I.e.
if a pattern modification was determined to still be “difficult” to decode it could
be counted in the same manner as a decoding failure in the post-processing step
of the attack.

Even more important though, the process of finding the genesis pattern could
be considerably improved by the side-channel information simply by applying the
chaining method again. The idea was that instead of relying on decoding failures,
we rely instead on a measure of how difficult a pattern is to decode, in relation to
a previous pattern. So, starting from a random pattern, loop through all singular
modifications until a new pattern is found that is “more difficult” to decode and
use that pattern as the new base pattern to modify. Repeat until a decoding failure
is found.

The simulations were implemented in the C programming language.
To summarize this paper, the research community’s awareness related to the

importance of constant time implementations was further reinforced. Also of
import is the knowledge of how the decoding failure rate can be artificially in-
creased by an attacker against only IND-CPA secure schemes. The behavior of the
decoders was simulated while subject to especially hard-to-decode error patterns
and it could be seen that different decoders were affected differently. Knowl-
edge of how different decoders behave is important for DFR analysis and could
potentially affect the static-key security analysis of the QC-MDPC-derived cryp-
tosystem BIKE, which as of this writing, remains a candidate in the NIST PQC
standardization effort.

Though not discussed in the paper, the techniques could be used in an IND-
CCA setting when paired with SCAs, as evidenced by paper V.

7.1.2 Paper II: Decryption Failure Attacks on IND-CCA Secure Lattice-
Based Schemes

This paper is the result of a merge of [DVV18] and [GJN19]. The contributions lie
primarily in the cryptanalysis investigation related to the included KEM schemes’

62 Contributions and Conclusions

decryption failures. Specifically, it contains a study, for each scheme, on the
amount of information that is leaked per recorded decryption failure. A tech-
nique, called failure boosting, details how decryption failures might be gathered
more quickly than the random decryption failure rate would otherwise suggest. It
works by brute-forcing messages which through the FO transform are converted
to a seed that has some small probability of generating a “weak” ciphertext, ac-
cording to the criteria listed in the paper. Depending on if the targeted scheme
incorporates multi-target protection or not, the weak ciphertexts are independent
of the used keys and thus failure boosting may be considered a global one-time
computational trade-off. For schemes with multi-target protection (e.g. Kyber)
failure boosting is useful as a computational trade-off if the attacker has access to
A) a limited number of calls to the decryption oracles or B) if the attacker has
access to a quantum computer with Grover’s algorithm to speed up the search. A
theoretical framework and a python implementation are provided to calculate the
amount of effort required to find one ciphertext that triggers a decryption failure.

A statistical model was developed on the leakage by which the residual entropy
of the secret can be estimated after a certain number of failures is collected. The
estimate of the secret can be used to construct an easier problem that can be solved
faster and the effects on the security level of the targeted scheme could be calcu-
lated. The attacker could significantly reduce the security of some schemes. But
for the targeted schemes, the number of decryption queries required was above
practical limits.

The paper then proceeded to develop a generic weak-key model which exploits
the fact that some ciphertexts have relations to the secret key, which makes the
ciphertext-secret key pair exhibit a higher decryption failure rate. The attack con-
sists of a pre-computation phase where messages and corresponding error vectors
are filtered and gathered. This is followed by a query to the decryption oracle, for
each message. In the final post-processing step, the few resulting decryption errors
are gathered and analyzed to reveal the secret key. The attack model is applied to
the NIST PQC submission ss-ntru-pke. A Rust implementation of parts of the
attack is provided.

This paper is well-cited and has had some influence on NIST PQC scheme
parameter selection.

7.1.3 Paper III: A key-recovery timing attack on post-quantum primi-
tives using the Fujisaki-Okamoto transformation and its applica-
tion on FrodoKEM

This paper firmly establishes the importance of regarding the results of the re-
encryption and ciphertext comparison steps of the FO transform as secret infor-
mation. As such, these steps must be performed in constant time, which was
not the case for a number of different NIST PQC submission implementations.
The generic attack in question was a simple decryption failure attack against any

7.1 Contributions 63

scheme which utilize the FO transform and could be categorized as “closest-point
cryptosystems”, (see Section 6.1), which is primarily lattice-based or code-based
schemes. The attack assumed that the implementers of the targeted KEM scheme
did not consider the re-encrypted ciphertext as secret information, and thus did
not offer any constant time protections for the ciphertext comparison step. Con-
sidering that the original ciphertext is indeed considered public information, it
was an easy mistake to make.

The attack was implemented, in Rust, and simulated against the otherwise
constant time-protected reference implementation of FrodoKEM, duplicated into
the open-source library provided by the Open Quantum Safe project. This paper
directly influences the implementation of the targeted scheme and thus can be said
to have had a real-world impact.

7.1.4 Paper IV: AWeightedBit FlippingDecoder forQC-MDPC-based
Cryptosystems

The contributions in this paper are given by a new “Weighted Bit-flipping” (WBF)
iterative decoder which would be a suitable alternative to the BGF decoder in the
BIKE submission to the NIST PQC standardization process.

This paper’s relevance to the current dissertation’s topic lies not in the paper’s
contents but in its motivation. That is, research into ways of lowering the DFR of
code-based KEMs is relevant for defending against DFAs.

It is explicitly stated in the BIKE specification that implementers may freely
choose between decoders as long as the resulting decoding failure rate is low enough.
For the ephemeral-key use case (recommended by BIKE) it must simply be low
enough to not hinder practical integration into higher-level cryptographic pro-
tocols. In the case of static, or reusable, keys BIKE is IND-CCA secure on the
condition that the DFR is at least as low as 2−λ, where λ is the targeted security
level.

While the static-key use-case is not recommended by the BIKE specification it
was shown in the paper that the simulated DFR of the new WBF decoder, when
extrapolated, indeed appears lower than that of the BGF decoder, which already
appears to be sufficient for the static-key use-case. To combat the extra iterations
required (and thus increased workload) by the WBF decoder a hybrid decoder was
introduced which combined only two iterations of WBF, followed by the BGF
decoder with a reduced number of iterations.

This hybrid decoder showed better DFR than the original BGF decoder, while
not adding as much computational overhead as the pure WBF implementation.

7.1.5 Paper V: Don’t Reject This: Key-Recovery Timing Attacks Due to
Rejection-Sampling in HQC and BIKE

This paper is the result of a pre-publication merge, with [HLS21], due to the in-
dependent discovery of the same weakness. Here the target is the, supposedly,

64 Contributions and Conclusions

constant time-protected software implementations of the BIKE and HQC KEM
schemes. Specifically, it targets the variable-time rejection sampling algorithm.
This paper explains how the dependency on the decrypted plaintext is in fact ex-
ploitable as a key recovery attack via a decryption failure oracle.

Rejection sampling is an efficient algorithm for generating binary vectors of a
fixed weight w. Simply put, it samples w positions pi where 0 ≤ i < w of an
all-zero vector. For each duplicate position pi = pj , where 0 ≤ j < i, the sample
is rejected and a new sampling is attempted, subject to the same condition. This
means that the number of rejections, and thus, resamplings required, depends on
the seed given to the randomness sampling algorithm, (also known as a pseudo-
random number generator). In the case of HQC and BIKE, the seed is (the hash
of) the plaintext during encapsulation. During decapsulation, the seed is (the hash
of) the decrypted plaintext, before being given to the re-encryption step.

If a decoding error occurs in HQC or BIKE, the decrypted plaintext is differ-
ent and thus the seed differs. Subject to a different seed, the rejection sampling
algorithm (probably) requires a different number of rejections to complete. This is
enough to construct a timing-based decryption failure oracle and mount an attack.

The paper is divided into the parts specified in the following. A description of
the generic problem, the specifics on the HQC vulnerability and the same for the
BIKE vulnerability are of course in the paper. How to leverage the described attack
together with the techniques from paper I to attack BIKE, despite an estimated
DFR that corresponds to the security level of the scheme is an important contri-
bution. For some versions of the BIKE implementation an additional check, not
given in the specification, effectively stopped the attack on BIKE. This additional
check, however, opened up an even more efficient message recovery attack, as de-
tailed in the paper. The attack on both schemes was implemented and evaluated,
indicating the practical applicability of the attacks. Some possible countermea-
sures applicable to both schemes, implemented and tested on HQC, rounds off
the paper.

This paper directly influences both the implementations and the specifica-
tions of the targeted schemes and thus can be said to have had a real-world im-
pact [Sen21; DGK23].

7.1.6 Paper VI: SCA-LDPC: ACode-Based Framework for Key-Recovery
Side-Channel Attacks on Post-Quantum Encryption Schemes

This paper introduces a new framework for performing side-channel assisted DFAs
and other CCAs with a reduced number of oracle calls. By utilizing coding the-
ory, and specifically LDPC codes, the framework is practically demonstrated to
considerably improve the attack complexity of two wildly different scenarios, high-
lighting the applicability of the new method.

The first scenario is a novel power attack on Kyber against the latest known
masked open-source implementation. The attack, shows a considerable improve-

7.2 Topic relevance 65

ment over the state of the art, even though the target implementation is a new
protected (masked) version of Kyber-768 from the open-source mkm4 library,
running on a 32-bit ARM Cortex-M4 CPU.

The second scenario is against HQC where the LPDC code is employed in a
source compression coding mode. Due to the low amount of entropy in the noise
vector, this technique enabled reliable and automatically corrected recovery of all
17669 positions of the noise vector with only about 10000 idealized timing-based,
binary, DF oracle calls. The vulnerability used for demonstration purposes was
the timing-based pure software attack on HQC from paper V.

The framework establishes relationships between several positions/coefficients
of secret elements which it can then use with coding techniques in order to either
correct imperfect oracle calls, or like in the attack on HQC use for source cod-
ing purposes. In both cases, the number of required oracle calls is considerably
reduced.

As of this writing, this paper has not yet had the opportunity to make an impact
on the research community. By pure speculation, however, it is not far-fetched to
believe the techniques presented here will be successfully reproduced by others and
used to make future side-channel assisted attacks far more efficient.

7.2 Topic relevance

The great truism of cryptanalysis “Attacks always get better, they never get worse”
applies especially well to papers I and VI. This is an important research topic in
itself because the efficiency of attacks often serves as a measuring stick of how much
effort should be spent on mitigation and prevention. Novel attacks and/or leakages
were the focus of papers III, V and VI and such papers fill an even more important
role in the cryptanalytical research space. After all, design or implementation issues
can only be fixed if they are known. Providing alternative sub-components, as in
the case of paper IV, of ”maybe-to-be-standardized” schemes is one of the things
that drive forward innovation and questions the status quo, even if the alternative
solutions are not selected for inclusion. In the case of paper II the contributions
lie more towards the theoretical nature of cryptanalysis and, while useful in and
of itself, heightens the knowledge and confidence of the research community in a
more general way. Especially in the ever-important regard of what security levels
certain schemes fulfill, and the confidence of those estimates.

7.3 Lessons learned

During this research project I, the author, have learned advanced and up-to-date
specialized knowledge in the fields of Crypto implementation, Cryptanalysis, Cod-
ing Theory and Lattice-based Cryptography, as listed in Section 7.1 and evidenced
by the papers in Part II.

66 Contributions and Conclusions

In a more general sense, I have learned how to conduct research, and how to
navigate my research areas’ different methodologies. For example, I now know
how to build up a theoretical framework (papers II and VI), how to apply it to a
specific problem area and how to generate, aggregate and select results of relevance
for publication. I have learned how to implement simulations (in C and in Rust)
and disseminate the results. I have learned how the area of computer science in
general likes to (or does not like to) structure its papers. This kind of knowledge is
sometimes referred to as tribal knowledge, and I have learned much of the basics
of what my tribe has offered to teach me, though I am still a beginner.

By my own independent discovery of the rejection sampling weakness of HQC
and BIKE (paper V), I have demonstrated a capacity of “scholarly analysis and
synthesis as well as to review and assess new and complex phenomena, issues and
situations autonomously and critically” as one of my learning goals so succinctly
puts it. The same can also be argued for my work with paper IV, though with
less impressive results. In both cases there would not be a paper without my co-
authors’ experience, ability to see a way forward and willingness to put in the work
to make it come through. Still, I believe I pulled my own weight in this regard.
For all papers.

During this research project of 5+ years, I have trained my ability to formulate
research questions, suggest new directions and conduct research according to a
given and, many times, self-determined time-plan. This is not to say that I have
achieved all my deadlines, but I have identified problems in advance and, though
difficult to measure, I believe I have managed the risks associated in a responsible
way.

Through not a trivial process of personal growth, I have learned to present
talks and have oral communications, in English, about my research topic. I have
presented at large conferences (CHES19, CRYPTO20, ISIT21) and been invited
to present a longer version of my talk regarding paper III for a seminar. I have
made successful collaborations with international colleagues at other universities,
of which paper V is a particularly good and recent example.

In addition, I have learned to better identify my own shortcomings and take
action to learn new knowledge in relation to those shortcomings. It is hard to find
a particular example of this when almost all of this dissertation is a summary of
knowledge I did not possess previous to starting this research project.

Learning to teach and to otherwise support the learning of others is something
I have not had much exposure to in this project, being an industrial Ph.D. student.
Regretting this, and in an attempt to compensate, I have offered and completed
multiple seminars and shorter weakly presentations of various cryptography-related
topics at the company which has so gracefully lent me to the university to do re-
search. This has been very fun, and something I hope to continue with in the
future.

Sometimes the discussion of research ethics and morale comes up. What is

7.4 Looking forward 67

okay and what is not? I have considered responsible disclosure2 in relation to
papers III, V and VI but ultimately we decided that all those schemes are quite
explicitly labeled experimental and if any implementations are being used in some
product by some company they should be quite aware of the risks. Anyway, it does
appear to be par for the course, in this tribe.

The whole idea of conducting research with the explicit interest of finding at-
tacks and weaknesses in purely defensive and privacy-protecting computer code
is, on the face of it, reprehensible. This of course is the complete opposite of the
reality when one takes in the larger view of cryptanalytical- (or indeed security-)
related research. This goes deeper than just “design or implementation issues can
only be fixed if they are known”; To use a system, you place a level of trust in that
system to keep your data safe. For cryptographic primitives and their implemen-
tations, the appropriate level of such trust can only ever be gained by relying on a
quite substantial body of work, by well-respected researchers (and other would-be
attackers, if they ever went public with their results). There is an analog to be made
to medicinal research, where new drugs can sometimes take many years to get ap-
proval for general use, and only after all side-effects have been properly identified
and investigated. But if any unexpected side-effect (or in our case, side-channel)
appears, it could undermine the whole process, unless it is somehow handled re-
sponsibly. Similarly, if many well-respected researchers spend enough years trying
to find attacks and weaknesses and only gain marginal results, the level of appro-
priate trust increases substantially. But, as always, “Absence of Evidence does not
mean Evidence of Absence”.

7.4 Looking forward

In this dissertation, we have seen (or will see in papers I to VI) how implementation
issues, even on implementations and primitives that by now are a number of years
old, and under a lot of scrutiny, can still harbor unexpected implementation issues.

Are there more to be found? Almost for certain, but it is my belief that the rate
of pure timing attacks is decreasing since there has been a lot of successful effort
into making implementations constant time. However, I predict that the area of
cache-timing will still be able to uncover more vulnerabilities, just like what hap-
pened with classical crypto in the previous generation of asymmetric primitives.

Also, side-channels such as EM and power variations show no indication of
slowing down either. Protecting against such attacks appears to be a much harder
problem, as the whole threat model shifts in the attacker’s favor.3 This is why I

2Responsible disclosure is the act of providing the owners of a scheme or implementation with
the details of an attack but also giving them enough time to fix the vulnerability before going public
with the information.

3Masking schemes, which are a protection mechanism often used against such attacks, are often
described by what order d they provide protection. For example, a first and second-order (d = 1
and d = 2, respectively) masking scheme split the computations into d + 1 shares, such that they

68 Contributions and Conclusions

believe attacks will continue to be published for the foreseeable future.
Regarding BIKE and the static key vs. ephemeral key use cases, the authors of

the scheme are quite clear in their statement that only the ephemeral key use case
is supported. However, their IND-CCA security proof (conditional on a DFR
analysis of the decoder) and their speed and effort towards fixing our rejection
sampling vulnerability are telling of an ambition towards, perhaps, supporting
also the static-key use-case, in the future. For this to happen, more work on theo-
retically determining the DFR bounds, has to be done. This is one area of future
research that would be suitable for experts in coding theory, and perhaps more can
be done in this area for interdisciplinary research teams.

Signature schemes are also a part of the NIST PQC effort, but none are part
of this dissertation. This would also be an interesting direction to build upon my
research, especially considering that NIST is launching a new call-for-proposals
for PQC signature schemes.

Microarchitectural attacks, Microarchitectural Data Sampling attacks, Tran-
sient execution CPU vulnerabilities and other hardware security bugs in consumer-
level processors have not been touched upon in this dissertation, though I believe
they are, or could be, applicable to many of the implementations of the to-be-
standardized KEM and signature schemes of the NIST PQC effort. This is an
exciting research area and something I myself would like to have more experience
in.

individually reveal nothing about the internal state of the computations. The masking order, d,
can also be referred to as a security parameter but higher-order masking has adverse effects on the
performance of a scheme, as well as being more difficult to implement. It appears that side-channels
are often effective even in the presence of masking schemes, but with higher order, it makes the
attacks more difficult, but never impossible.

References

[AD97] A public-key cryptosystem with worst-case/ average-case equivalence.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.45.7341&rep=rep1&type=pdf. 1997, pp. 284–293.

[Agu+18] C. Aguilar-Melchor, O. Blazy, J. C. Deneuville, P. Gaborit, and
G. Zemor. “Efficient Encryption from Random Quasi-Cyclic
Codes”. In: IEEE Transactions on Information Theory 64.5 (2018),
pp. 3927–3943.

[Agu+22] C. Aguilar Melchor et al. HQC. Tech. rep. available at
https://csrc.nist.gov/Projects/post-quantum-
cryptography/round-4-submissions. National Institute of
Standards and Technology, 2022.

[Ala+19] G. Alagic, J. Alperin-Sheriff, et al. Status Report on the First Round
of the NIST Post-Quantum Cryptography Standardization Process.
https://doi.org/10.6028/NIST.IR.8240. 2019.

[Ala+22] G. Alagic, D. Apon, et al. Status Report on the Third Round of the
NIST Post-Quantum Cryptography Standardization Process.
https://doi.org/10.6028/NIST.IR.8413-upd1. 2022.

[Alb+22] M. R. Albrecht et al. Classic McEliece. Tech. rep. available at
https://csrc.nist.gov/projects/post-quantum-
cryptography/round-4-submissions. National Institute of
Standards and Technology, 2022.

[AM87] C. M. Adams and H. Meijer. “Security-related comments
regarding McEliece’s public-key cryptosystem”. In: Conference on
the Theory and Application of Cryptographic Techniques. Springer,
1987, pp. 224–228.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.45.7341&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.45.7341&rep=rep1&type=pdf
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://doi.org/10.6028/NIST.IR.8240
https://doi.org/10.6028/NIST.IR.8413-upd1
https://csrc.nist.gov/projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-4-submissions

70 References

[Ara+22] N. Aragon et al. BIKE. Tech. rep. available at
https://csrc.nist.gov/Projects/post-quantum-
cryptography/round-4-submissions. National Institute of
Standards and Technology, 2022.

[Bar+12] A. Barenghi, L. Breveglieri, I. Koren, and D. Naccache. “Fault
injection attacks on cryptographic devices: Theory, practice, and
countermeasures”. In: Proceedings of the IEEE 100.11 (2012),
pp. 3056–3076.

[BB03] D. Brumley and D. Boneh. “Remote Timing Attacks Are
Practical”. In: USENIX Security 2003: 12th USENIX Security
Symposium. Washington, DC, USA: USENIX Association, Aug.
2003.

[BCO04] E. Brier, C. Clavier, and F. Olivier. “Correlation power analysis
with a leakage model”. In: Cryptographic Hardware and Embedded
Systems-CHES 2004: 6th International Workshop Cambridge, MA,
USA, August 11-13, 2004. Proceedings 6. Springer. 2004, pp. 16–29.

[Bel+97] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. “A concrete
security treatment of symmetric encryption”. In: Proceedings 38th
Annual Symposium on Foundations of Computer Science. IEEE.
1997, pp. 394–403.

[Ber+17a] D. J. Bernstein, C. Chuengsatiansup, T. Lange, and C. van
Vredendaal. NTRU Prime. Tech. rep. available at
https://csrc.nist.gov/projects/post-quantum-
cryptography/round-1-submissions. National Institute of
Standards and Technology, 2017.

[Ber+17b] D. J. Bernstein, J. Fried, N. Heninger, P. Lou, and L. Valenta.
Post-quantum RSA-Encryption. Tech. rep. available at
https://csrc.nist.gov/projects/post-quantum-
cryptography/round-1-submissions. National Institute of
Standards and Technology, 2017.

[Ber+18] D. J. Bernstein, L. G. Bruinderink, T. Lange, and L. Panny.
“HILA5 Pindakaas: On the CCA Security of Lattice-Based
Encryption with Error Correction”. In: AFRICACRYPT 18: 10th
International Conference on Cryptology in Africa. Ed. by A. Joux,
A. Nitaj, and T. Rachidi. Vol. 10831. Lecture Notes in Computer
Science. Marrakesh, Morocco: Springer, Heidelberg, Germany,
May 2018, pp. 203–216.

[Ber10] D. J. Bernstein. “Grover vs. Mceliece”. In: Proceedings of the Third
International Conference on Post-Quantum Cryptography.
PQCrypto’10. Darmstadt, Germany: Springer-Verlag, 2010,
pp. 73–80.

https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions

References 71

[Bha+21] S. Bhasin, J.-P. D’Anvers, D. Heinz, T. Pöppelmann, and
M. Van Beirendonck. “Attacking and defending masked
polynomial comparison for lattice-based cryptography”. In: IACR
Transactions on Cryptographic Hardware and Embedded Systems
(2021), pp. 334–359.

[Ble98] D. Bleichenbacher. “Chosen ciphertext attacks against protocols
based on the RSA encryption standard PKCS# 1”. In: Annual
International Cryptology Conference. Springer. 1998, pp. 1–12.

[Bol+14] A. Boldyreva, J. P. Degabriele, K. G. Paterson, and M. Stam. “On
Symmetric Encryption with Distinguishable Decryption Failures”.
In: Fast Software Encryption – FSE 2013. Ed. by S. Moriai.
Vol. 8424. Lecture Notes in Computer Science. Singapore:
Springer, Heidelberg, Germany, Mar. 2014, pp. 367–390.

[Bru+16] L. G. Bruinderink, A. Hülsing, T. Lange, and Y. Yarom. “Flush,
Gauss, and Reload - A Cache Attack on the BLISS Lattice-Based
Signature Scheme”. In: Cryptographic Hardware and Embedded
Systems – CHES 2016. Ed. by B. Gierlichs and A. Y. Poschmann.
Vol. 9813. Lecture Notes in Computer Science. Santa Barbara,
CA, USA: Springer, Heidelberg, Germany, Aug. 2016,
pp. 323–345.

[BT11] B. B. Brumley and N. Tuveri. “Remote Timing Attacks Are Still
Practical”. In: Computer Security - ESORICS 2011 - 16th European
Symposium on Research in Computer Security, Leuven, Belgium,
September 12-14, 2011. Proceedings. Ed. by V. Atluri and C. Díaz.
Vol. 6879. Lecture Notes in Computer Science. Springer, 2011,
pp. 355–371.

[CD23] W. Castryck and T. Decru. “An efficient key recovery attack on
SIDH”. In: Springer-Verlag, 2023.

[Che+20] C. Chen et al. NTRU. Tech. rep. available at
https://csrc.nist.gov/projects/post-quantum-
cryptography/round-3-submissions. National Institute of
Standards and Technology, 2020.

[CRR03] S. Chari, J. R. Rao, and P. Rohatgi. “Template attacks”. In:
Cryptographic Hardware and Embedded Systems-CHES 2002: 4th
International Workshop Redwood Shores, CA, USA, August 13–15,
2002 Revised Papers 4. Springer. 2003, pp. 13–28.

[DAn+19] J.-P. D’Anvers, M. Tiepelt, F. Vercauteren, and I. Verbauwhede.
“Timing attacks on error correcting codes in post-quantum
schemes”. In: Proceedings of ACM Workshop on Theory of
Implementation Security Workshop. 2019, pp. 2–9.

https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions

72 References

[Den03] A. W. Dent. “A designer’s guide to KEMs”. In: IMA International
Conference on Cryptography and Coding. Springer. 2003,
pp. 133–151.

[DGK23] N. Drucker, S. Gueron, and D. Kostic. “To reject or not
reject-that is the question. The case of BIKE post quantum
KEM”. In: (2023).

[DH76] W. Diffie and M. Hellman. “New directions in cryptography”. In:
IEEE Transactions on Information Theory 22.6 (1976),
pp. 644–654.

[Din+16] J. Ding, S. Alsayigh, S. RV, S. Fluhrer, and X. Lin. Leakage of
Signal function with reused keys in RLWE key exchange. Cryptology
ePrint Archive, Report 2016/1176.
http://eprint.iacr.org/2016/1176. 2016.

[Duc+13] L. Ducas, A. Durmus, T. Lepoint, and V. Lyubashevsky. “Lattice
signatures and bimodal Gaussians”. In: Annual Cryptology
Conference. Springer. 2013, pp. 40–56.

[DVV18] J.-P. D’Anvers, F. Vercauteren, and I. Verbauwhede. On the impact
of decryption failures on the security of LWE/LWR based schemes.
Cryptology ePrint Archive, Report 2018/1089.
https://eprint.iacr.org/2018/1089. 2018.

[Ell70] J. H. Ellis. “The possibility of secure non-secret digital
encryption”. In: UK Communications Electronics Security Group 8
(1970).

[Flu16] S. Fluhrer. Cryptanalysis of ring-LWE based key exchange with key
share reuse. Cryptology ePrint Archive, Report 2016/085.
https://eprint.iacr.org/2016/085. 2016.

[FO13] E. Fujisaki and T. Okamoto. “Secure integration of asymmetric
and symmetric encryption schemes”. In: Journal of cryptology 26.1
(2013), pp. 80–101.

[FO99] E. Fujisaki and T. Okamoto. “Secure Integration of Asymmetric
and Symmetric Encryption Schemes”. In: Advances in Cryptology –
CRYPTO’99. Ed. by M. J. Wiener. Vol. 1666. Lecture Notes in
Computer Science. Santa Barbara, CA, USA: Springer,
Heidelberg, Germany, Aug. 1999, pp. 537–554.

[Gal62] R. Gallager. “Low-density parity-check codes”. In: IRE
Transactions on information theory 8.1 (1962), pp. 21–28.

[GGH97] O. Goldreich, S. Goldwasser, and S. Halevi. “Eliminating
decryption errors in the Ajtai-Dwork cryptosystem”. In: Annual
International Cryptology Conference. Springer, 1997, pp. 105–111.

http://eprint.iacr.org/2016/1176
https://eprint.iacr.org/2018/1089
https://eprint.iacr.org/2016/085

References 73

[GJJ22] Q. Guo, A. Johansson, and T. Johansson. “A Key-Recovery
Side-Channel Attack on Classic McEliece Implementations”. In:
IACR Trans. Cryptogr. Hardw. Embed. Syst. 2022.4 (2022),
pp. 800–827.

[GJN19] Q. Guo, T. Johansson, and A. Nilsson. A Generic Attack on
Lattice-based Schemes using Decryption Errors with Application to
ss-ntru-pke. Cryptology ePrint Archive, Report 2019/043.
https://eprint.iacr.org/2019/043. 2019.

[GJS16] Q. Guo, T. Johansson, and P. Stankovski. “A Key Recovery Attack
on MDPC with CCA Security Using Decoding Errors”. In:
Advances in Cryptology – ASIACRYPT 2016, Part I. Ed. by
J. H. Cheon and T. Takagi. Vol. 10031. Lecture Notes in
Computer Science. Hanoi, Vietnam: Springer, Heidelberg,
Germany, Dec. 2016, pp. 789–815.

[GJW18] Q. Guo, T. Johansson, and P. S. Wagner. “A Key Recovery
Reaction Attack on QC-MDPC”. In: IEEE Trans. on Inf. Theory
(2018).

[GLG22] G. Goy, A. Loiseau, and P. Gaborit. “A New Key Recovery
Side-Channel Attack on HQC with Chosen Ciphertext”. In:
Post-Quantum Cryptography. Ed. by J. H. Cheon and T. Johansson.
Cham: Springer International Publishing, 2022, pp. 353–371.

[GM19] S. Goldwasser and S. Micali. “Probabilistic encryption & how to
play mental poker keeping secret all partial information”. In:
Providing sound foundations for cryptography: on the work of Shafi
Goldwasser and Silvio Micali. 2019, pp. 173–201.

[GN07] N. Gama and P. Q. Nguyen. “New Chosen-Ciphertext Attacks on
NTRU”. In: PKC 2007: 10th International Conference on Theory
and Practice of Public Key Cryptography. Ed. by T. Okamoto and
X. Wang. Vol. 4450. Lecture Notes in Computer Science. Beijing,
China: Springer, Heidelberg, Germany, Apr. 2007, pp. 89–106.

[Gro96] L. K. Grover. “A Fast Quantum Mechanical Algorithm for
Database Search”. In: Proceedings of the Twenty-Eighth Annual
ACM Symposium on Theory of Computing. STOC ’96.
Philadelphia, Pennsylvania, USA: Association for Computing
Machinery, 1996, pp. 212–219.

[Gro97] L. K. Grover. “Quantum Mechanics Helps in Searching for a
Needle in a Haystack”. In: Phys. Rev. Lett. 79 (2 July 1997),
pp. 325–328.

https://eprint.iacr.org/2019/043

74 References

[GST14] D. Genkin, A. Shamir, and E. Tromer. “RSA key extraction via
low-bandwidth acoustic cryptanalysis”. In: Annual cryptology
conference. Springer. 2014, pp. 444–461.

[GST17] D. Genkin, A. Shamir, and E. Tromer. “Acoustic cryptanalysis”.
In: Journal of Cryptology 30.2 (2017), pp. 392–443.

[Ham+21] M. Hamburg et al. “Chosen Ciphertext k-Trace Attacks on
Masked CCA2 Secure Kyber”. In: IACR TCHES 2021.4 (2021).
https:
//tches.iacr.org/index.php/TCHES/article/view/9061,
pp. 88–113.

[HGS99] C. Hall, I. Goldberg, and B. Schneier. “Reaction Attacks against
several Public-Key Cryptosystems”. In: ICICS 99: 2nd
International Conference on Information and Communication
Security. Ed. by V. Varadharajan and Y. Mu. Vol. 1726. Lecture
Notes in Computer Science. Sydney, Australia: Springer,
Heidelberg, Germany, Nov. 1999, pp. 2–12.

[HHK17] D. Hofheinz, K. Hövelmanns, and E. Kiltz. “A Modular Analysis
of the Fujisaki-Okamoto Transformation”. In: TCC 2017: 15th
Theory of Cryptography Conference, Part I. Ed. by Y. Kalai and
L. Reyzin. Vol. 10677. Lecture Notes in Computer Science.
Baltimore, MD, USA: Springer, Heidelberg, Germany, Nov. 2017,
pp. 341–371.

[HHM22] K. Hövelmanns, A. Hülsing, and C. Majenz. Failing gracefully:
Decryption failures and the Fujisaki-Okamoto transform. 2022.

[HLS21] C. Hlauschek, N. Lahr, and R. L. Schröder. On the Timing Leakage
of the Deterministic Re-encryption in HQC KEM. Cryptology
ePrint Archive, Report 2021/1485, version 20211115:124514
(posted 1636980314 15-Nov-2021 12:45:14 UTC).
https://eprint.iacr.org/2021/1485/20211115:124514.
Aug. 2021.

[Hon+02] J. Hong, J. W. Han, D. Kwon, and D. Han. Chosen-Ciphertext
Attacks on Optimized NTRU. 2002.

[How+03] N. Howgrave-Graham et al. “The Impact of Decryption Failures
on the Security of NTRU Encryption”. In: Advances in Cryptology
– CRYPTO 2003. Ed. by D. Boneh. Vol. 2729. Lecture Notes in
Computer Science. Santa Barbara, CA, USA: Springer,
Heidelberg, Germany, Aug. 2003, pp. 226–246.

https://tches.iacr.org/index.php/TCHES/article/view/9061
https://tches.iacr.org/index.php/TCHES/article/view/9061
https://eprint.iacr.org/2021/1485/20211115:124514

References 75

[HPS96] J. Hoffstein, J. Pipher, and J. H. Silverman. “NTRU: a new high
speed public key cryptosystem”. In: preliminary draft presented at
the rump session of Crypto 96 (1996).
https://www.ntru.org/f/hps96.pdf.

[HS00] J. Hoffstein and J. H. Silverman. “Protecting NTRU Against
Chosen Ciphertext and Reaction Attacks”. In: 2000.

[HS99] J. Hoffstein and J. H. Silverman. Reaction attacks against the
NTRU public key cryptosystem. Tech. rep. Technical Report 15,
NTRU Cryptosystems, 1999.

[JJ00] É. Jaulmes and A. Joux. “A Chosen-Ciphertext Attack against
NTRU”. In: Advances in Cryptology — CRYPTO 2000. Ed. by
M. Bellare. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000,
pp. 20–35.

[Kau+16] T. Kaufmann, H. Pelletier, S. Vaudenay, and K. Villegas. “When
Constant-Time Source Yields Variable-Time Binary: Exploiting
Curve25519-donna Built with MSVC 2015”. In: Cryptology and
Network Security - 15th International Conference, CANS 2016,
Milan, Italy, November 14-16, 2016, Proceedings. Ed. by S. Foresti
and G. Persiano. Vol. 10052. Lecture Notes in Computer Science.
2016, pp. 573–582.

[Kel98] T. Kelly. “THE MYTH OF THE SKYTALE”. In: Cryptologia
22.3 (1998), pp. 244–260. eprint:
https://doi.org/10.1080/0161-119891886902.

[KJJ99] P. Kocher, J. Jaffe, and B. Jun. “Differential Power Analysis”. In:
CRYPTO 1999. Boston, MA: Springer US, 1999, pp. 388–397.

[Koc96] P. C. Kocher. “Timing Attacks on Implementations of
Diffie-Hellman, RSA, DSS, and Other Systems”. In: Advances in
Cryptology – CRYPTO’96. Ed. by N. Koblitz. Vol. 1109. Lecture
Notes in Computer Science. Santa Barbara, CA, USA: Springer,
Heidelberg, Germany, Aug. 1996, pp. 104–113.

[KS05] F. Koeune and F.-X. Standaert. “A Tutorial on Physical Security
and Side-Channel Attacks”. In: Foundations of Security Analysis
and Design III: FOSAD 2004/2005 Tutorial Lectures. Ed. by
A. Aldini, R. Gorrieri, and F. Martinelli. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2005, pp. 78–108.

[LHT16] A. Langley, M. Hamburg, and S. Turner. “RFC 7748: Elliptic
curves for security”. In: Internet Research Task Force (IRTF) (2016).

[McE78] R. J. McEliece. “A Public-Key Cryptosystem Based On Algebraic
Coding Theory”. In: DSN Progress Report 42–44 (1978),
pp. 114–116.

https://www.ntru.org/f/hps96.pdf
https://doi.org/10.1080/0161-119891886902

76 References

[Mos18] M. Mosca. “Cybersecurity in an Era with Quantum Computers:
Will We Be Ready?” In: IEEE Security & Privacy 16.5 (2018),
pp. 38–41.

[NDJ21] K. Ngo, E. Dubrova, and T. Johansson. “Breaking masked and
shuffled CCA secure Saber KEM by power analysis”. In:
Proceedings of the 5th Workshop on Attacks and Solutions in
Hardware Security. 2021, pp. 51–61.

[Ngo+21] K. Ngo, E. Dubrova, Q. Guo, and T. Johansson. “A Side-Channel
Attack on a Masked IND-CCA Secure Saber KEM
Implementation”. In: IACR TCHES 2021.4 (2021). https:
//tches.iacr.org/index.php/TCHES/article/view/9079,
pp. 676–707.

[Nie86] H. Niederreiter. “Knapsack-type cryptosystems and algebraic
coding theory”. In: Prob. Contr. Inform. Theory 15.2 (1986),
pp. 157–166.

[NIS16] NIST. Submission Requirements and Evaluation Criteria for the
Post-Quantum Cryptography Standardization Process.
https://csrc.nist.gov/CSRC/media/Projects/Post-
Quantum-Cryptography/documents/call-for-proposals-
final-dec-2016.pdf. 2016.

[NIS18] NIST. Post-Quantum Cryptography FAQs. 2018. uRL:
https://csrc.nist.gov/Projects/Post-Quantum-
Cryptography/faqs (visited on 04/10/2023).

[NIS22] NIST. Call for Additional Digital Signature Schemes for the
Post-Quantum Cryptography Standardization Process.
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-
sig/documents/call-for-proposals-dig-sig-sept-
2022.pdf. 2022.

[Por17] T. Pornin. Why Constant-Time Crypto? 2017. uRL:
https://www.bearssl.org/constanttime.html (visited on
04/11/2023).

[PT19] T. B. Paiva and R. Terada. “A Timing Attack on the HQC
Encryption Scheme”. In: SAC 2019. Ed. by K. G. Paterson and
D. Stebila. Vol. 11959. LNCS. Springer, Heidelberg, Aug. 2019,
pp. 551–573.

[Raj+22] G. Rajendran, P. Ravi, J.-P. D’Anvers, S. Bhasin, and
A. Chattopadhyay. Pushing the Limits of Generic Side-Channel
Attacks on LWE-based KEMs - Parallel PC Oracle Attacks on Kyber
KEM and Beyond. Cryptology ePrint Archive, Paper 2022/931.
2022.

https://tches.iacr.org/index.php/TCHES/article/view/9079
https://tches.iacr.org/index.php/TCHES/article/view/9079
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/faqs
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/faqs
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://www.bearssl.org/constanttime.html

References 77

[Rav+20] P. Ravi, S. S. Roy, A. Chattopadhyay, and S. Bhasin. “Generic
Side-channel attacks on CCA-secure lattice-based PKE and
KEMs”. In: IACR TCHES 2020.3 (2020). https:
//tches.iacr.org/index.php/TCHES/article/view/8592,
pp. 307–335.

[Rav+21] P. Ravi, S. Bhasin, S. S. Roy, and A. Chattopadhyay. “On
Exploiting Message Leakage in (Few) NIST PQC Candidates for
Practical Message Recovery Attacks”. In: IEEE Transactions on
Information Forensics and Security 17 (2021), pp. 684–699.

[Rav+22] P. Ravi, A. Chattopadhyay, J. P. D’Anvers, and A. Baksi.
Side-channel and Fault-injection attacks over Lattice-based
Post-quantum Schemes (Kyber, Dilithium): Survey and New Results.
Cryptology ePrint Archive, Paper 2022/737.
https://eprint.iacr.org/2022/737. 2022.

[Reg05] O. Regev. “On lattices, learning with errors, random linear codes,
and cryptography”. In: 37th Annual ACM Symposium on Theory of
Computing. Ed. by H. N. Gabow and R. Fagin. Baltimore, MA,
USA: ACM Press, May 2005, pp. 84–93.

[RSA78] R. L. Rivest, A. Shamir, and L. Adleman. “A Method for
Obtaining Digital Signatures and Public-Key Cryptosystems”. In:
Commun. ACM 21.2 (Feb. 1978), pp. 120–126.

[RV14] M. Rydelnik and M. Vanlaningham. The Moody Bible
Commentary. Ed. by M. Rydelnik and M. Vanlaningham. Moody
Publishers, 2014.

[Sch+17] J. M. Schanck, A. Hulsing, J. Rijneveld, and P. Schwabe.
NTRU-HRSS-KEM. Tech. rep. available at
https://csrc.nist.gov/projects/post-quantum-
cryptography/round-1-submissions. National Institute of
Standards and Technology, 2017.

[Sch+22a] T. Schamberger, L. Holzbaur, J. Renner, A. Wachter-Zeh, and
G. Sigl. “A Power Side-Channel Attack on the Reed-Muller
Reed-Solomon Version of the HQC Cryptosystem”. In:
Post-Quantum Cryptography. Ed. by J. H. Cheon and T. Johansson.
Cham: Springer International Publishing, 2022, pp. 327–352.

[Sch+22b] P. Schwabe et al. CRYSTALS-KYBER. Tech. rep. available at
https://csrc.nist.gov/Projects/post-quantum-
cryptography/selected-algorithms-2022. National
Institute of Standards and Technology, 2022.

[Sch18] J. M. Schanck. “A comparison of NTRU variants”. In: Cryptology
ePrint Archive (2018).

https://tches.iacr.org/index.php/TCHES/article/view/8592
https://tches.iacr.org/index.php/TCHES/article/view/8592
https://eprint.iacr.org/2022/737
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022

78 References

[Sen21] N. Sendrier. “Secure sampling of constant-weight
words–application to bike”. In: Cryptology ePrint Archive (2021).

[Sha49] C. E. Shannon. “Communication theory of secrecy systems”. In:
The Bell System Technical Journal 28.4 (1949), pp. 656–715.

[Sho01] V. Shoup. A Proposal for an ISO Standard for Public Key
Encryption. Cryptology ePrint Archive, Paper 2001/112.
https://eprint.iacr.org/2001/112. 2001.

[Sho94] P. Shor. “Algorithms for quantum computation: discrete
logarithms and factoring”. In: Proceedings 35th Annual Symposium
on Foundations of Computer Science. 1994, pp. 124–134.

[Sin03] S. Singh. The Code Book: The Secrets Behind Codebreaking.
Random House Children’s Books, 2003.

[SM15] T. Schneider and A. Moradi. “Leakage assessment methodology: A
clear roadmap for side-channel evaluations”. In: Cryptographic
Hardware and Embedded Systems–CHES 2015: 17th International
Workshop, Saint-Malo, France, September 13-16, 2015, Proceedings
17. Springer. 2015, pp. 495–513.

[Sma16] N. P. Smart. Cryptography Made Simple. Information Security and
Cryptography. Springer, Heidelberg, Germany, 2016.

[Str10] F. Strenzke. “A timing attack against the secret permutation in the
McEliece PKC”. In: International Workshop on Post-Quantum
Cryptography. Springer. 2010, pp. 95–107.

[Str13] F. Strenzke. “Timing attacks against the syndrome inversion in
code-based cryptosystems”. In: International Workshop on
Post-Quantum Cryptography. Springer. 2013, pp. 217–230.

[Tan+22] Y. Tanaka, R. Ueno, K. Xagawa, A. Ito, J. Takahashi, and
N. Homma. Multiple-Valued Plaintext-Checking Side-Channel
Attacks on Post-Quantum KEMs. Cryptology ePrint Archive, Paper
2022/940. 2022.

[Uen+22] R. Ueno, K. Xagawa, Y. Tanaka, A. Ito, J. Takahashi, and
N. Homma. “Curse of Re-encryption: A Generic Power/EM
Analysis on Post-Quantum KEMs”. In: IACR Trans. Cryptogr.
Hardw. Embed. Syst. 2022.1 (2022), pp. 296–322.

[Waf+19] G. Wafo-Tapa, S. Bettaieb, L. Bidoux, P. Gaborit, and
E. Marcatel. A Practicable Timing Attack Against HQC and its
Countermeasure. Cryptology ePrint Archive, Report 2019/909.
https://eprint.iacr.org/2019/909. 2019.

https://eprint.iacr.org/2001/112
https://eprint.iacr.org/2019/909

References 79

[WND22a] R. Wang, K. Ngo, and E. Dubrova. “Making Biased DL Models
Work: Message and Key Recovery Attacks on Saber Using
Amplitude-Modulated EM Emanations”. In: Cryptology ePrint
Archive (2022).

[WND22b] R. Wang, K. Ngo, and E. Dubrova. “Side-channel analysis of
Saber KEM using amplitude-modulated EM emanations”. In:
Cryptology ePrint Archive (2022).

[Xu+22] Z. Xu, O. Pemberton, S. S. Roy, D. Oswald, W. Yao, and
Z. Zheng. “Magnifying Side-Channel Leakage of Lattice-Based
Cryptosystems With Chosen Ciphertexts: The Case Study of
Kyber”. In: IEEE Transactions on Computers 71.9 (2022),
pp. 2163–2176.

[Zha+17] Z. Zhang, C. Chen, J. Hoffstein, and W. Whyte. NTRUEncrypt.
Tech. rep. available at
https://csrc.nist.gov/projects/post-quantum-
cryptography/round-1-submissions. National Institute of
Standards and Technology, 2017.

[Zha+19] Z. Zhang, C. Chen, J. Hoffstein, W. Whyte, et al. NTRUEncrypt.
Tech. rep. available at
https://csrc.nist.gov/projects/post-quantum-
cryptography/round-2-submissions. National Institute of
Standards and Technology, 2019.

https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions

Included Publications

Pa
p
er

I

Error Amplification in
Code-based Cryptography

Abstract

Code-based cryptography is one of the main techniques enabling cryptographic
primitives in a post-quantum scenario. In particular, the MDPC scheme is a ba-
sic scheme from which many other schemes have been derived. These schemes
rely on iterative decoding in the decryption process and thus have a certain small
probability p of having a decryption (decoding) error.

In this paper we show a very fundamental and important property of code-
based encryption schemes. Given one initial error pattern that fails to decode, the
time needed to generate another message that fails to decode is strictly much less
than 1/p. We show this by developing a method for fast generation of undecodable
error patterns (error pattern chaining), which additionally proves that a measure
of closeness in ciphertext space can be exploited through its strong linkage to the
difficulty of decoding these messages. Furthermore, if side-channel information is
also available (time to decode), then the initial error pattern no longer needs to be
given since one can be easily generated in this case.

These observations are fundamentally important because they show that a, say,
128-bit encryption scheme is not inherently safe from reaction attacks even if it
employs a decoder with a failure rate of 2−128. In fact, unless explicit protective
measures are taken, having a failure rate at all – of any magnitude – can pose a
security problem because of the error amplification effect of our method.

A key-recovery reaction attack was recently shown on the MDPC scheme as
well as similar schemes, taking advantage of decoding errors in order to recover the
secret key. It was also shown that knowing the number of iterations in the iterative
decoding step, which could be received in a timing attack, would also enable and

A. Nilsson, T. Johansson, and P. Stankovski Wagner. “Error Amplification in Code-based
Cryptography”. In: IACR Transactions on Cryptographic Hardware and Embedded Systems 2019.1
(Nov. 2018), pp. 238–258

84 Paper I: Error Amplification in Code-based Cryptography

enhance such an attack. In this paper we apply our error pattern chaining method
to show how to improve the performance of such reaction attacks in the CPA case.
We show that after identifying a single decoding error (or a decoding step taking
more time than expected in a timing attack), we can adaptively create new error
patterns that have a much higher decoding error probability than for a random
error. This leads to a significant improvement of the attack based on decoding
errors in the CPA case and it also gives the strongest known attack on MDPC-like
schemes, both with and without using side-channel information.

1 Introduction

Future quantum computers will be able to break cryptography based on integer
factorization and discrete log in polynomial time. This fact pushed cryptographic
research to focus on post-quantum solutions, i.e., finding new primitives based on
more well suited mathematical problems that may still be difficult to solve for a
quantum computer. That is, the new primitives must be efficiently computable on
classical computers, but an adversary must not be able to break the scheme even
if she has access to a powerful quantum computer. This area of research is called
post-quantum cryptography [Ber09].

Code-based cryptography leverages difficult problems in coding theory and
is one of the main techniques enabling cryptographic primitives in this post-
quantum scenario. The classic idea in code-based cryptography is the McEliece
scheme from 1978 [McE78]. However, recently much more attractive schemes
have been proposed, centered around the quasi-cyclic medium density parity check
(QC-MDPC) scheme [Mis+13]. It has a significantly smaller public key than the
McEliece scheme. The QC-MDPC scheme is, like many other similar variants of
code-based cryptographic encryption schemes, based on iterative decoding; it has
a certain probability of decryption failure (for proposed parameters in the range
of 10−4 to 10−8 [HMG13], depending on decoding algorithm, implementation
and chosen parameters). Also, as the decryption step is iterative, it will require a
varying number of rounds before finishing, which leads to varying decoding time
in a standard implementation. This fact opens the door for possible timing attacks
based on the number of required decoding rounds. It was shown by Guo, Johans-
son and Stankovski [GJS16], that decoding errors can be used to reconstruct the
secret key. The attack breaks the chosen-ciphertext attack (CCA) security of the
scheme and provides attackers with a key recovery attack that requires submitting
200-350 million ciphertexts for decryption. This was based on proposed parame-
ters for 80-bit security and the decryption device using an iterative decoding algo-
rithm with a decoding error probability around 10−4. Better decoding algorithms
(with higher complexity) could lower the decoding error and this would lead to
an increase in the complexity of the attack.

Let us briefly recall the idea behind the Guo et al. attack. The authors identified
a dependency between the secret key and decoding failures. They found that if

1 Introduction 85

there were two ones in the key at (cyclic) distance d and the error pattern also
contained two ones at a distance d, then the probability for decoding error is
smaller than in the opposite case. This observation was used to build a so called
distance spectrum of the secret key. A distance spectrum can be viewed as the set
of all distances between any two non-zero bit positions in the key. In order to
build this distance spectrum, the authors simply aggregated the distance spectrum
of each bit pattern in messages which led to a decoding failure. This distance
spectrum can, in a reconstruction step, be used to directly determine the secret
key.

In the recent NIST post-quantum standardization project [Che+16], a number
of code-based schemes have been submitted. Looking through these submissions,
one can see that the above described attack has impact on the security analysis of
such schemes. The attack has also been generalized, analyzed and improved in
different directions. In [Fab+17] the attack was extended to break the QC-LDPC
McEliece scheme presented in [BBC08]. A similar attack on LEDApkc appears
in [FHZ18].

In the Guo et al. paper, it was pointed out that the attack would also extend
to a timing attack. This was fully examined by Eaton et al. in [Eat+18]. Not only
did they provide the framework for a timing attack, but they also gave an extended
theoretical treatment of the attack and showed the dependence on the syndrome
weight in decoding.

1.1 Contributions

In this paper we show a method for generating large quantities of error patterns
that fail to decode for any given iterative decoder. Given one initial error pat-
tern that fails to decode, the time needed to generate another message that fails
to decode is almost negligible. Our method for fast generation of undecodable
error patterns (error pattern chaining) additionally proves that there is a measure
of closeness in ciphertext space such that similar ciphertext messages are roughly
equally difficult to decode. In addition, when side-channel information such as
decoding time or number of iteration used during decoding is also available, then
the initial error pattern no longer needs to be given since one can easily be gener-
ated instead.

These observations are fundamentally important because they show that a, say,
128-bit encryption scheme is not inherently safe from reaction attacks even if it
employs a decoder with a failure rate of 2−128. Extrapolating from the general
ideas of this paper and those of Guo et al., it would seem that failure rates, re-
gardless of their magnitude, appear to convey a potential for security problems.
We further argue that using very low failure rates is, on its own, not enough to
discount such weaknesses, in any cryptographic system.

We also apply our findings towards improving the attacks of Guo et al. and
Eaton et al. We use error pattern chaining to explore the possibility of artificially

86 Paper I: Error Amplification in Code-based Cryptography

and adaptively increasing the error probability and improve on previous works by
extracting much more information from all decoding attempts. We do this in a
chosen plaintext attack (CPA) setting. The attacks are improved in two ways: 1) it
increases the possibility of finding another non-decodable error pattern and 2) it
enables us to extract more information from patterns that can be decoded. If we
additionally consider a timing attack we can improve the attack even further, both
in finding initial error patterns and in performing the main attack.

Simulations show that a distance spectrum can be built from this chain of
errors in a similar manner as in the original attack. This method enables us to use
more than an order of magnitude fewer decoding trials to recover the secret key in
the CPA setting, compared to the original attack of Guo et al. in [GJS16].

Comparing our work with the recent work of Eaton et al. [Eat+18], we im-
prove upon their original attack even without using private information such as
the syndrome weight. When Eaton et al. convert their attack to a timing-based
side-channel attack, they require 225 ≈ 33.5M ciphertexts to fully recover the key
for standard parameters of 80-bit security. Using our idea of chains of related er-
ror patterns, our new attack requires less than 12M ciphertexts without using any
side-channel information, and less than 8M ciphertexts with side-channel infor-
mation.

Taking into consideration the fact that [GJS] has shown that a fully correct
distance spectrum is not necessary to recover the secret key, we show that as few as
310 000 ciphertexts are necessary to perform a successful attack, using a distance
spectrum with 900 errors, for 80-bit security.

It is also clear that this new adaptive approach will be even more beneficial
when the decoding error is very small, which could be expected in a scheme pro-
posed for actual use.

1.2 Paper Organization

In Section 2 we give some background of code-based cryptography, QC-MDPC
and the original reaction attack by Guo et al. [GJS16]. In Section 3 we provide the
theory behind our new method of performing error rate amplification. We also
present how to use this method in an attack against QC-MDPC. Then, in Sec-
tion 4, we describe the results we obtained by implementing the new method and
testing it against a few different decoder implementations. Finally, we conclude
the paper in Section 5.

2 Background

In this section we briefly give some of the basic background information necessary
to follow this paper.

2 Background 87

2.1 Coding Theory and Public-Key Cryptography

We review some basics from coding theory and show its application to public-key
cryptography.

Definition 1 (Linear codes). An [n, k] linear code C over a finite field Fq is a linear
subspace of Fn

q of dimension k.

Definition 2 (Generator matrix). A k × n matrix G with entries from Fq having
rowspan C is a generator matrix for the [n, k] linear code C.

The code C is the kernel of an (n− k)× n matrix H called a parity-check
matrix of C. We have cHT = 0, if and only if c ∈ C, where HT is the transpose
of H .

The code C can be represented by different generator matrices. An important
one is the systematic form, i.e., when each input symbol is directly represented
in a position in the codeword. One can find a k × k submatrix of G forming
the identity matrix and after a permutation one can consider G of the form G =(
I P

)
. If G has such a systematic form then H =

(
−P T I

)
.

We now only consider binary codes, i.e. q = 2. The Hamming weight wH(x)
of a binary vector in x ∈ Fn

2 is the number of nonzero entries in the vector. The
minimum (Hamming) distance of the code C is defined as d = minx,y∈C wH(x−
y), where x ̸= y.

Definition 3 (Quasi-cyclic codes). An [n, k] quasi-cylic (QC) code C is a linear code
such that for some integer n0, every cyclic shift of any codeword by n0 steps is again a
codeword.

In particular, if n = n0k for a QC code, then a generator matrix of the form

G =
(
I P0 P1 · · · Pn0−1

)
is a possible representation of a QC code, where Pi is a k × k cyclic matrix, i.e.
the rows (or columns) of P are obtained by cyclic rotations of the first row. Also,
the algebra of k × k binary circulant matrices is isomorphic to the algebra of
polynomials modulo xk + 1 over F2, allowing an alternative description.

Another useful class of codes is the class of Low-Density Parity-Check codes
(LDPC codes), defined as linear codes that admit a sparse parity-check matrix
H , where sparsity means that each row of H has at most w ones, for some small
w. This sparse matrix can be represented in the form of a bipartite graph, that
consists of n − k upper nodes (named “check nodes”) representing the n − k
parity equations and n lower nodes (named “variable nodes”) representing the n
codeword positions. A variable node is connected to a check node if the variable
is present in that parity check. Each check node is then connected to w variable
nodes. We call this graph representation a “Tanner” graph, which is a frequently
used term in work on iterative decoding algorithms.

88 Paper I: Error Amplification in Code-based Cryptography

2.2 McEliece Cryptosystem

In 1978 McEliece showed how a public key cryptosystem (PKC) could be con-
structed using tools from coding theory. We briefly describe the original McEliece
PKC here. This scheme uses three matrices G,S, P , where G is a k×n generator
matrix of a binary [n, k, 2t + 1] linear code. The original and still secure pro-
posal in [McE78] is to use Goppa codes (see [Gop70; MS77]). Then S is a k× k
random binary non-singular matrix (called the scrambling matrix), and P is an
n× n random permutation matrix (called the permutation matrix). As designers
we compute the new k×n matrix G′ = SGP . The scheme works as follows. The
private key is (G,S, P) and the public key is (G′, t). In encryption, a message
m is mapped to a ciphertext c by c = mG′ + e, where c is the n-bit ciphertext,
m is the k-bit plaintext and e an n-bit error vector with (Hamming) weight t. In
decryption, one uses an efficient decoding algorithm for Goppa codes to decode
c to find the error eP−1, and recover mS and thus m.

Knowing the description of the selected Goppa code G allows efficient decod-
ing, as there are many efficient decoding algorithms for this problem running in
polynomial time. But knowing only the public key G′, the attacker is facing a
decoding problem for a code that looks like a random code, which is a difficult
problem. The attacker can either try to decode an intercepted ciphertext (message
recovery attack) or try to recover the secret matrix G from the public matrix G′

(key recovery attack).

2.3 The QC-MDPC Public Key Encryption System

In [Mis+13], a new powerful version of the McEliece PKC was proposed. It has a
simpler description as it does not use permutation and scrambling matrices as in
the original McEliece construction or in other proposed generalizations [Bal+07;
LJ12]. The idea is to use codes that allow iterative decoding. In coding theory,
this typically involves LDPC codes, but for a cryptographic scheme this is not
secure. LDPC codes have parity-checks with very small Hamming weight and
such parity-checks in a given LDPC code correspond to codewords in the dual
code. Since the dual code can be computed, it is also easy to find low-weight
codewords in the dual code and thus the low-weight parity checks. The solution
proposed in [Mis+13] is to increase the weight of the parity checks to a larger value,
but still small in comparison with the dimension of the code. This makes the task
of finding low-weight codewords in the dual code much more costly. In this way,
key-recovery attacks by searching for low weight codewords are avoided.

Such codes with increased parity-check weight are called Moderate-Density Par-
ity-Check codes (MDPC codes), and they can be decoded with the same decoding
algorithms used to decode LDPC codes. The quasi-cyclic variant of MDPC codes
are called QC-MDPC codes. These are of special interest, since the quasi-cyclic
property allows us to represent the code by a single row of the generator matrix.
Since the public key is a generator matrix, this gives us very compact keys. We

2 Background 89

will now describe the different steps of the QC-MDPC public key cryptosystem
as proposed in [Mis+13]. We will restrict ourselves to n0 = 2, corresponding to
parameters r = k = n/2.

Key Generation

1. Choose an [n, n/2] code in the QC-MDPC family, described by the parity-
check matrix H ∈ Fr×n

2 , such that

H =
(
H0 H1

)
,

where each Hi is a circulant r × r matrix with weight wi in each row and
with w =

∑
wi.

2. Generate the public key G ∈ F(n−r)×n
2 from H as,

G =
(
I P

)
,

where
P =

((
H−11 H0

)T
)
.

Recall, the QC-MDPC scheme has no need for permutation or scrambling ma-
trices.

Encryption

Let m ∈ F(n−r)
2 be the plaintext. Multiply m with the public keyG and add noise

within the correction radius t of the code, i.e., c = mG + e, where wH(e) ≤ t.
The parameter t is obtained from the error correcting capability of the decoding
algorithm for the MDPC code [Mis+13]. The error vector is uniformly chosen
among all binary n-tuples with wH(e) ≤ t.

2.4 Decryption

Let c ∈ Fn
2 be a received ciphertext. Given the secret low-weight parity check

matrix H , a low-complexity decoding procedure is used to obtain the plaintext m.
The authors of [Mis+13] propose the use of Gallager’s bit-flipping algorithm

[Gal62] for the decoding of MDPC codes. This bit-flipping procedure is vital to
the proposed key recovery attack under consideration. The decoding step works
as follows:

1. Compute the syndrome s = cHT . Since mHT = 0, this is equivalently
expressed as s = eHT . Consider the Tanner graph corresponding to H .
Create a counter with an initial value 0 for each variable node.

90 Paper I: Error Amplification in Code-based Cryptography

2. Run through all parity-check equations (rows of H and/or check nodes in
the graph) and for every variable node connected to an unsatisfied check
node, increase its corresponding counter by one.

3. Run through all variable nodes and flip its value if its counter is larger than
a predetermined threshold δj .

4. If all the equations are satisfied, or iteration counter j reached a maximum
value, then stop; otherwise, set all counters to 0, increase j by one, and go
to Step 2.

The decoding procedure will stop if all the parity-checks are satisfied or if the
limit on the maximum number of iterations is reached.

It is well known that this iterative decoding algorithm used with LDPC codes
has an error-correction capability that increases linearly with the length of the
code. MDPC codes have slightly higher parity-check weight than LDPC codes
and this slightly influences the error-correction capability in a negative way. So
the actual performance of this algorithm on MDPC codes is relatively poor com-
pared with that on LDPC codes. More details on the decoding performance can
be found in [Mis+13]. Other variants of this decoding algorithm have been pro-
posed [HMG13; MOG15], to reduce the decoding error probability, involving
changing the flipping and the thresholds, introducing more rounds, or other tech-
niques. The error probability for proposed parameters is still large, for any decod-
ing algorithm, compared to the corresponding security level. For 80-bit security,
it is typically in the range 10−4−10−8, whereas a value of 2−80 would be required
to be more sure that decoding errors would not be a tool in cryptanalysis.

2.5 Proposed Parameters

In [Mis+13], the following parameters were proposed for a QC-MDPC scheme
with 80-bit, 128-bit and 256-bit security level.

Table 1: Proposed QC-MDPC instances with key size and security level.

Parameters

n r w t n0 Key size Security

9602 4801 90 84 2 4801 80
19714 9857 142 134 2 9857 128
65542 32771 274 264 2 32771 256

Implementations of the QC-MDPC scheme [HMG13; MOG15] and a variant
[MHG16] demonstrate excellent efficiency in terms of computational complexity
and key sizes for encryption and decryption on constrained platforms such as em-
bedded micro-controllers and FPGAs.

2 Background 91

Key Recovery Attack

A major attack on the QC-MDPC scheme was recently described in [GJS16]. In
the underlying setting, it uses the assumption that Mallory, taking the role of Alice,
can observe the reaction of Bob, i.e. whether the decryption step was successful
or if there was a decoding error. This is a natural assumption, as if Bob received a
decoding error he would typically need to ask for a retransmission of the message
in some way.

The attack in [GJS16] recovers the secret key. The objective of the key recovery
attack is to recover the parity check matrix H (knowing only G). Obviously, H
can be easily be derived from any Hi, thereby reducing the problem to finding
H0. Since H0 is a circular matrix, it is enough to recover the first row h0.

The key idea is to examine the decoding result for different error patterns. In
particular, Mallory will pick errors from special subsets. Let Ψd be the set of all
binary vectors of length n = 2r having exactly t ones, where all ones are placed
with distance d in the first half of the vector. The second half of the vector is all
zero. The set Ψd guarantees repeated ones at distance d at least t/2 times, where

Ψd = {v = (e, f) | wH(f) = 0, and ∃ distinct s1, s2, . . . , st, s.t. esi = 1, and

s2i = (s2i−1 + d) mod r for i = 1, . . . ,
t

2
, and wH(e) = t}.

Mallory will now send M messages to Bob, using QC-MDPC with the er-
ror selected from the subset Ψd. When there is a decoding error with Bob, she
will record this and after M messages she will be able to compute an empirical
decoding error probability for the subset Ψd. Furthermore she will do this for
d = 1, 2, . . . , U for some suitable upper bound U .

Algorithm 1 Computing the distance spectrum
Input: parameters n, r, w and t of the underlying QC-MDPC code, number of

decoding trials M per distance.
Output: distance spectrum D(h0) (multiplicity vector).

1: for all distances d do
2: Try M decoding trials using the designed error pattern
3: Perform statistical test to decide multiplicity µ(d)
4: Set position d in D(h0) to the multiplicity µ(d)
5: end for

The main observation is that there is a strong correlation between the decod-
ing error probability for error vectors from Ψd and the existence of a distance d
between two ones in the secret vector h0. If there exists two ones in h0 at distance
d, the decoding error probability is much smaller than if distance d does not exist
between two ones.

92 Paper I: Error Amplification in Code-based Cryptography

After sending M × U messages, we look at the decoding error probability in
each Ψd and classify each d, d = 1, 2, . . . , U according to its multiplicity, since
each distance can appear many times. We denote the multiplicity as µ(d). This
provides a distance spectrum for h0, which we denote as D(h0). In this paper the
distance spectrum is presented as a multiplicity vector of length U (as opposed to a
set, which was used in [GJS16]) and defined as

D(h0) = (µ(1), µ(2), . . . , µ(U)).

As an example from [GJS16], for the bit pattern c = 0011001 we have U = 3
and

D(c) = (1, 0, 2) ,

with distance multiplicities µ(1) = 1, µ(2) = 0 and µ(3) = 2.
The procedure for computing the distance spectrum is specified in Algorithm 1.
The final step is to do derive h0 from knowing the distance spectrum D(h0).

This is rather straightforward. Start by assigning the first two ones in a length i0
vector in position 0 and i0, where i0 is the index of the smallest non-zero value
in the empirical D(h0). Then put the third one in a position and test if the two
distances between this third one and the previous two ones both appear in the
distance spectrum. If they do not, we test the next position for the third bit. If
they do, we move to test the fourth bit and its distances to the previous three ones,
etc. After reconstruction, we have restored h0. Reconstruction is possible even
if some smaller fraction of entries in the empirical D(h0) are wrong and/or are
missing. We refer to [GJS16] for more details on the reconstruction part.

The attack was implemented and tested on a proposed instance of QC-MDPC
for 80-bit security. It used about 240M ciphertexts (in the CPA-attack scenario)
and successfully recovered the secret key with low computational complexity.

3 A New Improved Attack through a Chaining Method for
Error Vectors

The main contribution of this paper is to propose a new adaptive way of selecting
error vectors (patterns) which provides an improved attack for the CPA scenario.
We introduce this new chaining method as a way to artificially increase the decod-
ing error rate for codes that use iterative decoders. The chaining method works
by leveraging the knowledge of a single error pattern into finding a new pattern
that is similar to the first pattern. By repeating the process a chain of similar error
patterns is created.

This section will provide a detailed description of both the chaining method
and how it might be used as an attack on the QC-MDPC scheme. We will also
discuss how side channel information might be used to improve the efficiency of
the attack. But first the attack models used in this paper are presented.

3 A New Improved Attack through a Chaining Method for Error Vectors 93

3.1 Attack Models

The following attack scenario is assumed. Bob continuously receives messages,
encrypted with his public key, from Mallory. Mallory is able to detect each time
Bob fails to decrypt any of the messages sent by her. By crafting the messages
sent to Bob in a certain way and doing it a number of times it is possible for
Mallory to recover Bob’s secret key. This is a so called reaction attack, it is similar
in nature to an adaptive chosen ciphertext attack (CCA2), but requires only to know
decryption success or failure, not the result of the decryption. Thus, this attack
model requires weaker assumptions than CCA2, but stronger than CPA (chosen
plaintext attack). This scenario is very similar to the one described by Guo et al. in
[GJS16], although the attacks described here only targets the case when the error
can be freely chosen by Mallory. For definitions on CPA, CCA and CC2 we refer
the reader to [Sma16].

A version of the new attack, where side-channel information is used is also
included. This attack version requires an attack model which additionally allows
timing information to leak about the decoding such that the number of iterations
can be determined. This would be provided by a decoder implementation if it is
not running in constant time.

3.2 Description of the Basic Attack

The chaining method for generation of error patterns works by first finding an
initial error pattern e0, that fails to be decoded. We do this by random selection
and trial until one is found. It will be shown later that the finding of e0 can be
improved upon by utilizing side-channel information (see Section 3.5).

e0

e10

e20
...

eg00

e1

e11

e21
...

eg11

e2 ei

e1i

e2i
...

egii

Figure 1: Visualization of error chains. White and red nodes indicate error patterns
that can and cannot be decoded, respectively. Starting from an undecodable error
pattern e0, we successively generate several new error patterns eg0 by swapping
a randomly chosen 0 and 1 in e0. Once a new undecodable error pattern e1 is
found, it is used as the new base for generating new error patterns. By iterating
this procedure, we end up with a (red) chain of undecodable error patterns.

94 Paper I: Error Amplification in Code-based Cryptography

Let an error pattern ei be given, causing a decoding error. It is known that if
a particular distance d in the distance spectrum D(ei) does not exist in the key
represented by the secret vector D(h0) (e.g. the value of position d in D(h0) is
zero), then the probability of decoding failure is increased [GJS16]. This means
that if we, somehow, can find another similar error pattern, denoted ei+1, that also
fails to be decoded, then the differences between the distance spectra of these two
error patterns should also contribute to error patters which are harder to decode
than the average. We can detect this by measuring an increased decoding failure
rate for such patterns.

We use the following notation. A distance spectrum of a binary vector e of
length 2U is written as D(e) = (D1(e), D2(e), . . . , DU (e)). The difference
between two spectra for vectors ei, ei+1 is defined as the element-wise subtraction
of the two vectors, denoted D(ei) − D(ei+1). We simplify by writing for each
distance d, where 1 ≤ d ≤ U ,

∆Dd = Dd(ei)−Dd(ei+1)

In short ∆Dd indicates the change in the multiplicity for the specific distance d,
when comparing D(ei+1) to D(ei).

It is possible to find an error pattern similar to ei by randomly1 bit-permuting a
copy of ei. In this copy, denoted e′, both a single bit position containing the value 1
and a single bit position with the value 0 are randomly selected. These bits are then
flipped (effectively moving a single bit in the pattern). Afterwards, the new error
pattern is used in the encryption and the corresponding ciphertext is subsequently
sent to Bob. If e′ can be successfully decoded (CASE-0) then it is discarded and
we create a new e′ by again modifying a copy of ei. If the decoding fails (CASE-1)
then ei+1 ← e′ and the bit-permutation procedure is repeated with ei+1 instead
being the new base error pattern (and we increment i). See Fig. 1 and Algorithm 2.

For CASE-1, a distance d is less likely to be added (e.g. Dd(ei+1) > Dd(ei))
if d also exists as a distance in h0. We introduce the vector F to represent the
aggregated distance spectrum of all additions to the spectrum (i.e. ∆Dd > 0).
Similarly the vector G represents the combined distance spectrum of all distance
removals from the patterns in the chain. Running through all differences between
consecutive error patterns ei+1, ei in the created chain, for i = 1, 2, . . ., we update
F and G as

Fd ← Fd +∆Dd if ∆Dd > 0,

Gd ← Gd −∆Dd if ∆Dd < 0,

no change if ∆Dd = 0,

∀d ∈ {1, . . . , U} , (1)

1We wish to remark that there may be other methods of finding modifications that might be
even more effective at amplifying the error rate. Search heuristics such as evolutionary algorithms
or other methods are applicable here.

3 A New Improved Attack through a Chaining Method for Error Vectors 95

By combining the results of M decoding attempts (ciphertexts) the vectors
F and G accumulate all changes to the distance spectra, which in turn gives us
combined distance spectra of statistical significance (provided M is large enough).

For CASE-0 our simulations show that it is not a simple matter of reversing the
logic above; Considering that e′ now leads to successful decoding, additions (in
respect to ei) to the distance spectrum could either be a large contributor towards
the decoding success or a small one. A large contribution would indicate a higher
probability of being represented in the distance spectrum of h0 and a small con-
tribution would indicate a higher probability of not being represented. It will be
shown in later sections that the number of iterations required for decoding plays
a large role of how to interpret distance additions and deletions. The basic attack,
as described in this section, ignore this and simply perform the same operations
described above for CASE-1, although with different output vectors and different
input. The outputs are stored into vectors A and B and for input we use those
error pattern which resulted in decoding successes, instead of failures. So for all e′
with decoding success we consider ∆D = D(ei) −D(e′) and update vectors A
and B as

Ad ← Ad +∆Dd if ∆Dd > 0,

Bd ← Ad −∆Dd if ∆Dd < 0,

no change if ∆Dd = 0,

∀d ∈ {1, . . . , U} . (2)

3.3 The attack when Side-Channel Information is available

Let us consider the scenario where Bob is not using a constant time implementa-
tion. We assume that this will give us information on how many iterations that
were used in the decoding step. In such a scenario it is possible to more efficiently
utilize CASE-0 information when mounting an attack, increasing the amplifica-
tion effect of the chaining method even further.

In practice, that attack is performed in a very similar manner to the one with-
out side-channel information. We simply modify it so that we additionally save
the difference of the distance spectra for each successful decoding (CASE-0) into
different vectors depending on the number of iterations required for the decoding.
Introducing vectors Aj = (A1,j , A2,j , . . . , AU,j) and similarly vectors Bj , where
j runs through the possible values for the number of iterations, we have an update
of the form

Ad,j ← Ad,j +∆Dd if ∆Dd > 0,

Bd,j ← Bd,j −∆Dd if ∆Dd < 0,

no change if ∆Dd = 0,

∀d ∈ {1, . . . , U} . (3)

96 Paper I: Error Amplification in Code-based Cryptography

Algorithm 2 Algorithm for constructing error pattern chains and gathering dis-
tance information, without side channel information.
Input: e0, T,m,G ▷ e0: initial error pattern, T: chain length
Output: A,B,G, F

1: A← zero-vector of length r/2
2: B ← zero-vector of length r/2
3: F ← zero-vector of length r/2
4: G← zero-vector of length r/2
5: e← e0
6: i← 0
7: while i < T do
8: s← distance spectrum of e
9: repeat

10: x← position of a random 1 in e
11: y ← position of a random 0 in e
12: e′ ← copy e
13: flip bits x and y in e′ ▷ Random 1-bit permutation of e

14: s′ ← distance spectrum of e′

15: c← mG+ e′ ▷ Encrypt with e′

16: l← is c decodable? ▷ Attempt to decrypt c

17: for all indexes d of s do ▷ Loop through distance spectrum (DS)
18: j ← s′[d]− s[d] ▷ Value of ∆Dd

19: if j > 0 then
20: if l then
21: F [d]← F [d] + |j| ▷ Save distance additions for decoding successes
22: else
23: A[d]← A[d] + |j| ▷ Save distance additions for decoding failures
24: end if
25: else if j < 0 then
26: if l then
27: G[d]← G[d] + |j| ▷ Save distance deletions for decoding successes
28: else
29: B[d]← B[d] + |j| ▷ Save distance deletions for decoding failures
30: end if
31: end if
32: end for
33: until not l
34: e← e′

35: i← i+ 1
36: end while

3 A New Improved Attack through a Chaining Method for Error Vectors 97

As was explained in the previous section, the number of iterations influences
which distances are more probable to appear or disappear, when comparing D(ei)
and D(e′). Now j is the number of iterations required for decoding error pattern
e′. For a specific implementation of the decoder, there exists a value I where
the probabilities flip. By this we mean that if j < I our simulations show that
distances d that exist in D(h0) are more probable to be represented in Ad,j . Con-
versely, if j ≥ I , the same distances are less likely to be represented in Ad,j .

The simulations show that for Bd,j there is no such property. All distances d,
regardless of j, are less likely to disappear from D(e′) if they exist in h0 (although
the statistical significance varies with both the implementation of the decoder and
with j).

3.4 Performing an attack

Using vectors F,G,A and B, or optionally Aj , Bj , ∀j in place for plain A and
B, one may reconstruct the distance spectrum of h0 with relative ease, provided
the number of samples M is large enough.

An intuitive explanation of the statistical nature of our experiment can be given
by using an alternative representation of the vectors: Divide each element of the
vectors F and G with the number of unsuccessful decoding attempts. The same
is done for Aj and Bj (for each value of j), dividing with the number of success-
ful decoding attempts which correspond to the value of j. If this is done then
the results would be the probability for each d causing the underlying event (for
example, for the F vector, this is the event that a distance d is added to the new
error pattern and it causes a new decoding error).

A straightforward attack would be to simply use, for example, vector F and
directly perform a key recovery using the same algorithm as published by Guo
et al. However, to extract as much information as possible from each decoding
attempt the following formula may be used to calculate a new aggregated distance
vector (considering the case where side-channel information is available);

F +G+

I−1∑
j=1

A′j +Bj

+

 J∑
j=I

Aj +Bj

 , (4)

where
A′j = max (Aj)−Aj + min (Aj) . (5)

Here J is the maximum number of iterations allowed by the decoder imple-
mentation. The reason we calculate A′j for j < I instead of using Aj directly
stems from the fact that the probability relationship for each distance d to occur
in Aj is flipped when comparing with Aj , j ≥ I . This follows directly from the
discussion given in the previous section. We calculate A′j in this manner to pre-
serve the total sum of the vector so that the weighting of each vector is proportional
to the number of samples used to build each vector.

98 Paper I: Error Amplification in Code-based Cryptography

If side-channel information is not available, then the above formula might be
simplified as

F +G+A′ +B, (6)

where
A′ = max(A)−A+ min(A). (7)

We use A′ here for the same reasons as when we are calculating with Eq. (4),
except here we are assuming that the number of ciphertexts resulting in a j below
I is greater than the number of ciphertexts resulting in j ≥ I . This has always
been the case in our simulations and it can be checked by the reader by comparing
the ratio of each iteration in Fig. 2b with the I derived from Fig. 5a. As long as the
assumption holds true the vector A will result in an aggregated distance spectrum
with inverse probabilities compared to, for example, the F vector. The results
added to A vector where j ≥ I will add noise, which is why using side-channel
information provides for a more effective attack.

Eqs. (4) and (6) are simple formulas, and it is conceivable that they might be
further optimized, for example by introducing some weight factor for each vector.
This is not done in this paper and may be regarded as future work.

3.5 Speeding up e0 generation

The algorithm described thus far requires e0 (a first undecodable error pattern)
as input. Depending on the decoding failure rate of the decoder being used this
might not be trivial in practice. As it happens, one might actually utilize the side-
channel attack described above to find the first undecodable error pattern.

This is done by selecting any random error pattern, attempt to decode it, store
the number of iterations required for decoding and modify the pattern similarly
to how we do it in chaining method described above. Then we try to decode the
new pattern, if the number of iterations are lower we discard the modifications and
try again, otherwise we use the modified error pattern as the new point-of-origin
and base the modifications on this new pattern. We keep this up until a pattern
has been found that cannot be decoded. Our simulations show this method offers
significant speedups compared to the standard method of random trial and error.

4 Implementations and Numerical Results

In this section we describe how our simulations2 were made and what results were
produced. First we describe how the simulations were designed. Next, we describe
the different decoder implementations used in this paper and how they affect the
decoding failure rate. We follow up on this by showing the amplification effect
on these different implementations, according to our simulation results. Then we

2Source code available upon request.

4 Implementations and Numerical Results 99

show, using our simulations on the QC-MDPC scheme, that the amount of nec-
essary ciphertexts are indeed significantly reduced compared to the original attack
by Guo et al. Finally, the effect of using side-channel information is analyzed.

4.1 Simulation set-up

All results shown in this paper are based on simulations using the same key and
using parameters for 80-bit security. We have confirmed our findings by rerunning
our simulations using 9 other keys, although those results are not shown here, for
sake of brevity.

During these simulations we make use of the chaining method to find e0, as
described in Section 3.5. We confirm with our simulations that using side-channel
information gives significant speedup. In fact, even though we are using decoder
Q (see below) we can find e0 in a matter of seconds or a few minutes at most.

4.2 Decoder implementations

The decoder implementations used in this paper are based on the descriptions of
B and F , given in [HMG13]. We have also implemented a decoder Q based on
the descriptions provided in [Cho16].

Decoder B

This is the standard Gallager probabilistic iterative bit-flipping decoder imple-
mented as originally described in [Gal62] and later in [HMG13]. Once per itera-
tion the syndrome is computed to determine how many parity checks are violated.
This decoding algorithm is using precomputed threshold values Tj , where j is the
current iteration number. These are used to determine what bits violate at least
Tj parity checks and those that do are flipped. Before starting the next iteration
the syndrome is compared to zero. If it is zero then the algorithm stops. For this
algorithm the maximum number of iterations J is set to 10, and once j > J the
decoder stops and returns a decoding failure. The thresholds, for B, are (as given
in [HMG13]):

28, 26, 24, 22, 20, 18, 16, 14, 12, 10

This algorithm is not constant-time, and extracting side-channel information
would be trivial. In our experiment we have modified it to return the actual num-
ber of iterations and thus removing the noise that would have been introduced by
measuring the amount of time required for decoding (as would be required in a
real attack scenario).

As we can see in Fig. 2a this decoder has a relatively high decoding failure rate
and there are other implementations that perform better in this regard, as is shown
in the next two sections. This is the decoder that was used in [GJS16].

100 Paper I: Error Amplification in Code-based Cryptography

Decoder F

This decoder is a variant of decoder B and is also implemented as described in
[HMG13]. Instead of computing the syndrome once every iteration however, it
directly updates the syndrome as soon as a bit is flipped (this is called an in-place
decoder). It also compares the syndrome to zero after each update and exits before
the current iteration has run its course. It uses the same Tj and J as decoder B. As
can be seen in Fig. 2a this strategy improves the decoding failure rate, compared
to decoder B.

Decoder Q

This decoder is our implementation of QcBits (pronounced ”quick bits”). We
have implemented it according to the description provided in [Cho16]. Our im-
plementation does not implement any of the performance enhancements nor does
it attempt to be constant time. Algorithmically, QcBits appears to be equivalent
with decoder F but with different threshold values Tj and J = 6. It should be
noted however that our implementationQ uses J = 10, since keeping J constant
across all implementations makes comparisons of the decoder characteristics eas-
ier. The thresholds used are, as given in [Cho16] and the published source code of
QcBits:

29, 27, 25, 24, 23, 23, 23, 23, 23, 23

It is worth noting that the last 4 values are not given in [Cho16], since they
stop at 6 iterations, but were instead found in the published source code. As can
be seen in Fig. 2a these 4 last values are indeed not optimal and should probably
instead follow a decreasing formula in the same manner as for decoders B and F .

The author of QcBits claims no decoding failures when decoding 108 cipher-
texts. As can be seen in Fig. 2a we were unable to reproduce this very low decod-
ing failure rate. Our implementation might be flawed, but regardless, decoder Q
shows value to us in our simulations due to its decoding failure rate still beating
the other decoders. This enables us to get a good indication of the amplification
effect of the chaining method, as we will see in the next section.

4.3 Amplification Effect

To test the amplification effect of the chaining method we implemented a small
test routine that generates ciphertexts with error patterns according to our chain-
ing method. We collected 228 number of samples by running the algorithm in 20
threads and thereby creating 20 separate error chains. The entire test was run 10
times (with different keys) for each algorithm. As can be seen in Fig. 2b the ampli-
fication effect is significant regardless of the decoding failure rate of the decoder in
question. In fact, based on the results of these simulations, the amplification effect

4 Implementations and Numerical Results 101

2 4 6 8 10
10−9
10−8
10−7
10−6
10−5
10−4
10−3
10−2
10−1
100

5.05× 10−4

9.59× 10−6

1.08× 10−7

Number of iterations

Pr
ob

ab
ili

ty
Decoder B Decoder F Decoder Q

(a) Without error amplification (uniformly random error patterns). This data is based on
228 number of decoding trials each, for decoders B,F and Q.

2 4 6 8 10
10−9
10−8
10−7
10−6
10−5
10−4
10−3
10−2
10−1
100 2.16× 10−1

1.68× 10−2

8.83× 10−3

Number of iterations

Pr
ob

ab
ili

ty

Decoder B Decoder F Decoder Q

(b) With error amplification (chaining method). This data is based on 228 number of
decoding trials each, for decoders B,F and Q.

Figure 2: In these logarithmic plots the markers indicate by what probability (y-
axis) each of the implementations can decode a message using (exactly) a certain
number of iterations (x-axis). The horizontal lines indicate the decoder failure rate
for each decoder implementation.

102 Paper I: Error Amplification in Code-based Cryptography

appears to increase for decoders with lower decoding failure rate. In these simula-
tions we have only concerned ourselves with H0. In practice, for 80-bit security,
this means that we are only looking at the first half of the 9602-bit ciphertext.

4.4 Chaining Attack

0

0.0150

0.0155

0.0160

0.0165

F (CASE-1)

(a) Decoder B

0
0.01475

0.01500

0.01525

0.01550

0.01575

0.01600

0.01625

0.01650

F (CASE-1)

(b) Decoder F

0
0.0140

0.0145

0.0150

0.0155

0.0160

0.0165

0.0170

F (CASE-1)

(c) Decoder Q

Figure 3: The plot for vector F for decoders B, F and Q. Multiplicity levels
for each distance d ∈ D(h0) are easily distinguished. This data is based on 228

decoding attempts, for each decoder. Blue dots indicate distances that do not ap-
pear in h0 (multiplicity 0). Dark markers indicate those distances that appear in
h0 once (multiplicity 1). Higher multiplicities are marked analogously with less
dark shades of red and with different markers. The horizontal lines represent the
average probability, for each multiplicity. In [Eat+18] Eaton et al. discovered and
discussed the asymmetric nature of in-place decoders. As we can see this asymmet-
ric shape is also found in Fig. 3b and Fig. 3c.

Using Algorithm 2 as presented in Section 3.2 we generated the results shown
in Fig. 3. It is worth noting here that plots of vectors F and G look almost iden-
tical (not shown here), and the underlying data is extremely similar (although not
identical). These results show that the amount of extra information that can be
extracted from using both vectors, instead of only one of them, is extremely lim-
ited.

A simple explanation of why this would be the case is given if one first considers
the fact that each pattern is part of a chain. As such, a distance in the pattern
cannot reasonably be removed from the distance spectrum of the current pattern
ei unless it has first been added to a pattern el, where l < i.

From vector F in Fig. 3 we can easily see that the probability for each of the
distances are stratifying based on the multiplicity of the distance in h0, just as
described in Section 3.2 and in [GJS16]. It is interesting to note that the mul-

4 Implementations and Numerical Results 103

tiplicities are are not separating into layers by an equal amount, for the different
decoder implementations. In Fig. 3 we see as expected that decoder B requires the
least amount of ciphertexts in order to separate into different layers. However it
appears that decoder F unexpectedly requires more ciphertexts thanQ. This is an
interesting discovery that we have not investigated further.

Also noteworthy in Fig. 3 is the asymmetry of the results for the in-place de-
coders. It was, to our knowledge, first discovered and discussed by Eaton et al. in
[Eat+18]. In order to utilize the results of these decoders in a real attack one would
first be required to normalize the vectors according to a regression fitting, before
categorizing each distance by its correct multiplicity.

In order to facilitate the comparison of our results with those of [GJS16], we
will henceforth only consider results from simulations with decoder B. In Fig. 4
we plot the number of errors on the accumulated distance spectrum as a function
of the number of ciphertexts.

To calculate the number of errors we use knowledge of the key to partition each
distance according to its multiplicity in the real key and to calculate the average
of all multiplicities (see Fig. 3). For each distance d in the aggregated distance
spectrum we find the multiplicity that is the closest and use this as our guess.
Again we use knowledge of the key to detect if our guess is correct or wrong.

In Fig. 4 we see that the required number of ciphertexts is in the order of 12M
as compared to the 240M in [GJS16] for CPA security, a speedup of a factor of
20. Since it was noted in Section 4.3 that the amplification effect appears to be
increasing with the use of ”better” decoder implementations we expect the speedup
factor to increase in proportion. However, [GJS16] does not provide any such
numbers for us to compare with.

In [GJS] it was shown that it is in fact not necessary to have a 100% correct
distance spectrum in order to mount an attack. Guo et al. showed that 900 errors
in the distance spectrum can be reliably tolerated (for 80-bit security) and still be-
ing able to successfully recover H in a reasonable time. For comparison, Guo et
al. required 4M ciphertexts to recover a distance spectrum with 900 errors. Our
simulations show this requirement to have dropped to approximately 310 000 ci-
phertexts, for decoderB, using our amplification attack with the chaining method.

4.5 Chaining Attack, With Side-Channel Information

As was explained in Section 3.3, for vector A the probabilities for each distance d
flips depending on if the number of iterations required to decode the ciphertext
is below a implementation dependent threshold value I , or not. By close exam-
ination of Fig. 5a one can see that IB is 5. Although not shown here, we have
similar results for the other decoders: IF = 4 and IQ = 4. Fig. 5b confirms that
there is no such analogous I for vector B, i.e. distances that are removed from the
distance spectrum of ei.

104 Paper I: Error Amplification in Code-based Cryptography

0 2 4 6 8 10 12 14 16 18 20

·106

0

200

400

Number of ciphertexts

Er
ro

rs
in

re
co

ve
re

d
di

sta
nc

e
sp

ec
tr

um
Without side-channel With side-channel

0 2 4 6 8 10 12 14 16 18 20

·106

0

200

400

Number of ciphertexts

Er
ro

rs
in

re
co

ve
re

d
di

sta
nc

e
sp

ec
tr

um

Without side-channel With side-channel

0 2 4 6 8 10 12 14 16 18 20

·106

0

200

400

Number of ciphertexts

Er
ro

rs
in

re
co

ve
re

d
di

sta
nc

e
sp

ec
tr

um

Without side-channel With side-channel

Figure 4: Number of errors in recovered distance spectrum for decoder B. The
number of errors is calculated according to the description given in Section 4.4.
The results plotted are both with and without side-channel information. The cir-
cled values are the lowest number of ciphertexts needed where the number of errors
reach zero (and stays there), with and without side-channel information respec-
tively. For easier viewing y = 0 is shown as a grid line.

Fig. 4 show that the attack can indeed be further improved by utilizing side-
channel information. A simple comparison with [GJS16] gives us a factor of
240/8 = 30, (compared to 20 without side-channel information). We acknowl-
edge that these calculations are based on ideal data which does not depend on
timing measurements and as such provides no measurement errors nor any noise
introduced by, for example, CPU scheduling and cache timings.

Non-constant time decoders

Fig. 6 presents the results of a simple experiment that measures the decoding time
of 216 ciphertext decodings, for each decoder. We argue that these results would
indicate the practicality of using side channel information on non-constant time
decoder implementations, in a close to real world setting. By observing the distri-
butions of the measurements one can quickly see that the number of iterations are
indeed easily distinguishable. It should be noted however that these measurements
are done in-process and do therefore not introduce any additional noise, from for
example, network latency.

5 Conclusions 105

0

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040
A (CASE-0)

1 2 3 4 5 6 7 8 9 10

(a) Plot of vector Aj where 0 < j ≤ 10.

0

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040
B (CASE-0)

1 2 3 4 5 6 7 8 9 10

(b) Plot of vector Bj where 0 < j ≤ 10.

Figure 5: Decoder B: The plot for vectors A and B. The vectors have been con-
verted to show probabilities instead of raw values, for easier understanding of y-
values. This data is based on 228 ciphertexts. The plots show the probability for
decoding success using j (x-axis) number of iterations for each distance in the dis-
tance spectrum. j in this plot is discrete and ranges from 1 to 10 and is indicated
by the grid lines. The wider range of values for certain iterations (e.g. j = 10) are
a by-product of the smaller sample size. In the Fig. 5a we can see that I = 5 since
the probabilities flip for the results where j ≥ 5.

5 Conclusions

In the general case, we have shown that the advertised decoding failure rate of a
decoder implementation might not always tell the whole truth about the security
of the particular implementation. We have shown that knowledge of a single error
pattern might be used as leverage for an attacker to generate other difficult-to-
decode error patterns. We get this amplification effect using the chaining method
described in this paper.

Specifically for QC-MDPC we have shown that using the technique described
in this paper one can mount a successful attack against the scheme using more than
an order of magnitude fewer ciphertexts than previous state-of-the-art attacks, for
CPA security. This is valid without using side-channels or private information
such as syndrome weight. This is the result of both the error rate amplification
and the fact that we can extract information also from decoding successes as well as
failures.

Additionally we have shown that side-channel information can be used to im-
prove the efficiency of the attack, if such information is available. It can also be
used to speed up the discovery of the initial error pattern which we use to bootstrap
the attack.

106 Paper I: Error Amplification in Code-based Cryptography

1 2 3 4 5 6 7 8 9

2

4

6

·107

number of iterations required for decoding (j)na
no

se
co

nd
sr

eq
ui

re
d

fo
rd

ec
od

in
g

Decoder B
Decoder F
Decoder Q

Figure 6: Box plots showing the measurement distribution of the number of
nanoseconds (y-axis) for decoder B, F and Q to decode a single message using
j number of iterations (x-axis). The middle line shows the median and the up-
per and lower edges of the boxes show the upper and lower quartiles, respectively.
The upper and lower whiskers in turn indicate the lowest and highest measure-
ment still within 1.5 IQR (InterQuartile Range) of the upper and lower quartiles,
respectively. The width indicate the relative number of collected measurements
(i.e. the relative reliability) of each box plot. It should be noted that the underly-
ing data has been cleaned from very obvious outliers before generating the plots.
Roughly 216 measurements, for each decoder, was used to generate the data which
is summarized in this figure.

6 Further Work

In this paper we have only presented results related to parameters corresponding
to 80 bits of security. It would be interesting to see how the results scale to 128-
and 256-bit security parameters.

Another point of research would be to continue the simulations using other
decoders based on different techniques. In [CS16], Chaulet et al. present a decoder
which uses dynamically calculated thresholds, and which is able to achieve failure
rates comparable to our decoder Q.

Although Eaton et al. do give a tentative explanation in [Eat+18], the asym-
metric nature of in-place decoders have not been fully explained to our satisfaction
and we would like to have a more complete understanding of the effects of this
asymmetry.

References 107

References

[Bal+07] M. Baldi, F. Chiaraluce, R. Garello, and F. Mininni.
“Quasi-Cyclic Low-Density Parity-Check Codes in the McEliece
Cryptosystem”. In: Proceedings of IEEE International Conference on
Communications, ICC 2007, Glasgow, Scotland, 24-28 June 2007.
2007, pp. 951–956.

[BBC08] M. Baldi, M. Bodrato, and F. Chiaraluce. “A New Analysis of the
McEliece Cryptosystem Based on QC-LDPC Codes”. In: Security
and Cryptography for Networks, 6th International Conference, SCN
2008, Amalfi, Italy, September 10-12, 2008. Proceedings. 2008,
pp. 246–262.

[Ber09] D. J. Bernstein. “Introduction to post-quantum cryptography”.
In: Post-quantum cryptography. Springer, 2009, pp. 1–14.

[Che+16] L. Chen et al. “Report on post-quantum cryptography”. In:
National Institute of Standards and Technology Internal Report 8105
(2016).

[Cho16] T. Chou. “QcBits: Constant-Time Small-Key Code-Based
Cryptography”. In: Cryptographic Hardware and Embedded Systems
– CHES 2016 (Jan. 1, 2016).

[CS16] J. Chaulet and N. Sendrier. “Worst case QC-MDPC decoder for
McEliece cryptosystem”. In: CoRR abs/1608.06080 (2016). arXiv:
1608.06080.

[Eat+18] E. Eaton, M. Lequesne, A. Parent, and N. Sendrier. “QC-MDPC:
A Timing Attack and a CCA2 KEM”. In: International Conference
on Post-Quantum Cryptography. Springer. 2018, pp. 47–76.

[Fab+17] T. Fabšič, V. Hromada, P. Stankovski, P. Zajac, Q. Guo, and
T. Johansson. “A Reaction Attack on the QC-LDPC McEliece
Cryptosystem”. In: International Workshop on Post-Quantum
Cryptography. Springer. 2017, pp. 51–68.

[FHZ18] T. Fabšic, V. Hromada, and P. Zajac. “A Reaction Attack on
LEDApkc”. In: (2018). Cryptology ePrint Archive, Report
2018/140 (2018). http://eprint.iacr.org/.

[Gal62] R. Gallager. “Low-density parity-check codes”. In: IRE
Transactions on information theory 8.1 (1962), pp. 21–28.

[GJS] Q. Guo, T. Johansson, and P. Stankovski Wagner. “A Key
Recovery Reaction Attack on QC-MDPC”. In: Accepted for
publication in IEEE Transactions on Information Theory, final
manuscript in preparation. Full version of [GJS16].

https://arxiv.org/abs/1608.06080
http://eprint.iacr.org/

108 Paper II: Decryption Failure Attacks on IND-CCA Secure Lattice-Based Schemes

[GJS16] Q. Guo, T. Johansson, and P. Stankovski. “A Key Recovery Attack
on MDPC with CCA Security Using Decoding Errors”. eng. In:
Advances in Cryptology - ASIACRYPT 2016 - 22nd International
Conference on the Theory and Application of Cryptology and
Information Security, Proceedings. Vol. 10031 LNCS. Springer
Verlag, 2016, pp. 789–815.

[Gop70] V. D. Goppa. “A new class of linear correcting codes”. In:
Problemy Peredachi Informatsii 6.3 (1970), pp. 24–30.

[HMG13] S. Heyse, I. von Maurich, and T. Güneysu. “Smaller Keys for
Code-Based Cryptography: QC-MDPC McEliece
Implementations on Embedded Devices”. In: Cryptographic
Hardware and Embedded Systems - CHES 2013: 15th International
Workshop, Santa Barbara, CA, USA, August 20-23, 2013.
Proceedings. Ed. by G. Bertoni and J.-S. Coron. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013, pp. 273–292.

[LJ12] C. Löndahl and T. Johansson. “A New Version of McEliece PKC
Based on Convolutional Codes”. In: Information and
Communications Security - 14th International Conference, ICICS
2012, Hong Kong, China, October 29-31, 2012. Proceedings. 2012,
pp. 461–470.

[McE78] R. J. McEliece. “A Public-Key Cryptosystem Based On Algebraic
Coding Theory”. In: DSN Progress Report 42–44 (1978),
pp. 114–116.

[MHG16] I. von Maurich, L. Heberle, and T. Güneysu. “IND-CCA Secure
Hybrid Encryption from QC-MDPC Niederreiter”. In:
Post-Quantum Cryptography. Springer, 2016, pp. 1–17.

[Mis+13] R. Misoczki, J.-P. Tillich, N. Sendrier, and P. S. Barreto.
“MDPC-McEliece: New McEliece Variants from Moderate
Density Parity-Check Codes”. In: Information Theory Proceedings
(ISIT), 2013 IEEE International Symposium on. IEEE. 2013,
pp. 2069–2073.

[MOG15] I. v. Maurich, T. Oder, and T. Güneysu. “Implementing
QC-MDPC McEliece Encryption”. In: ACM Transactions on
Embedded Computing Systems (TECS) 14.3 (2015), p. 44.

[MS77] F. J. MacWilliams and N. J. A. Sloane. The Theory of Error
Correcting Codes. Vol. 16. Elsevier, 1977.

[Sma16] N. P. Smart. Cryptography Made Simple. Information Security and
Cryptography. Springer, Heidelberg, Germany, 2016.

Pa
p
er

II

Decryption Failure Attacks
on IND-CCA Secure

Lattice-Based Schemes

Abstract

In this paper we investigate the impact of decryption failures on the chosen-cipher-
text security of lattice-based primitives. We discuss a generic framework for secret
key recovery based on decryption failures and present an attack on the NIST Post-
Quantum Proposal ss-ntru-pke. Our framework is split in three parts: First, we
use a technique to increase the failure rate of lattice-based schemes called failure
boosting. Based on this technique we investigate the minimal effort for an adver-
sary to obtain a failure in three cases: when he has access to a quantum computer,
when he mounts a multi-target attack or when he can only perform a limited num-
ber of oracle queries. Secondly, we examine the amount of information that an
adversary can derive from failing ciphertexts. Finally, these techniques are com-
bined in an overall analysis of the security of lattice based schemes under a de-
cryption failure attack. We show that an attacker could significantly reduce the
security of lattice based schemes that have a relatively high failure rate. However,
for most of the NIST Post-Quantum Proposals, the number of required oracle
queries is above practical limits. Furthermore, a new generic weak-key (multi-
target) model on lattice-based schemes, which can be viewed as a variant of the
previous framework, is proposed. This model further takes into consideration the
weak-key phenomenon that a small fraction of keys can have much larger decod-
ing error probability for ciphertexts with certain key-related properties. We apply

J.-P. D’Anvers, Q. Guo, T. Johansson, A. Nilsson, F. Vercauteren, and I. Verbauwhede. “De-
cryption Failure Attacks on IND-CCA Secure Lattice-Based Schemes”. In: Public-Key Cryptography
– PKC 2019. Ed. by D. Lin and K. Sako. Cham: Springer International Publishing, 2019, pp. 565–
598

110 Paper II: Decryption Failure Attacks on IND-CCA Secure Lattice-Based Schemes

this model and present an attack in detail on the NIST Post-Quantum Proposal –
ss-ntru-pke – with complexity below the claimed security level.

This paper is the result of a merge of [DVV18] and [GJN19].

1 Introduction

The position of integer factorization and the discrete logarithm problem as a cor-
nerstone for asymmetric cryptography is being threatened by quantum comput-
ers, as their ability to efficiently solve these mathematical problems compromises
the security of current asymmetric primitives. These developments have led to
the emergence of post-quantum cryptography and motivated NIST to organize
a post-quantum cryptography standardization process, with the goal of standard-
izing one or more quantum-resistant public-key cryptographic primitives. Sub-
missions originate from various fields within post-quantum cryptography, such as
lattice-based, code-based and multivariate cryptography.

Lattice-based cryptography has recently developed into one of the main re-
search areas in post-quantum cryptography. Lattice-based submissions to the
NIST Post-Quantum process can be broadly put into one of two categories: NTRU-
based schemes (e.g. [Zha+17; Sch+17a]) and schemes based on the learning with
errors (LWE) hard problem [Reg05]. A lot of research has been done on their
security, such as provable post-quantum secure transformations from IND-CPA
to IND-CCA secure schemes [HHK17; TU16; SXY17; Jia+17], security estimates
of post-quantum primitives [APS15; Alb+18] and provable reductions for various
hard problems underlying the schemes [Reg05; Pei09; LPR10; BPR12; Bra+13]

A striking observation is that numerous proposed Key Encapsulation Mech-
anisms (KEM’s) have a small failure probability during decryption, in which the
involved parties fail to derive a shared secret key. This is the case for the majority
of schemes based on lattices, codes or Mersenne primes. The probability of such
failure varies from 2−64 in Ramstake [Sze17] to 2−216 in New Hope [Sch+17c],
with most of the failure probabilities lying around 2−128. As this failure is depen-
dent on the secret key, it might leak secret information to an adversary. However,
reducing this probability has a price, as the parameters should be adjusted accord-
ingly, resulting in a performance loss. An approach used by some schemes is to
use error-correcting codes to decrease the failure probability. This leads to a re-
duction in the communication overhead, but makes the scheme more vulnurable
to side-channel attacks.

As suggested by the wide range of failure probabilities in the NIST submis-
sions, the implications of failures are still not well understood. In the absence
of a clear evaluation technique for the impact of the failure rate, most NIST
submissions have chosen a bound on the decryption failure probability around
2−128 based on educated guessing. As far as we know, only NIST-submission Ky-
ber [Sch+17b] provides an intuitive reasoning for its security against decryption

1 Introduction 111

failure attacks, but this approximation is not tight. They introduce a methodol-
ogy that uses Grover’s search algorithm to find ciphertexts that have a relatively
high probability of triggering a decryption failure.

1.1 Related Works

The idea of exploiting decryption errors has been around for a long time and
applies to all areas of cryptography [Bol+14]. For lattice-based encryption sys-
tems, the Ajtai-Dwork scheme and NTRU have been a target for attacks us-
ing decryption failures. Hall, Goldberg, and Schneier [HGS99] developed a re-
action attack which recovers the Ajtai-Dwork private key by observing decryp-
tion failures. Hoffstein and Silverman [HS00] adapted the attack to NTRU and
suggested modifying NTRU to use the Fujisaki-Okamoto transform [FO99] to
protect against such attacks. Further work in this direction is given in [JJ00],
[How+03a] and [GN07]. Fluhrer [Flu16] described an attack against Ring-Learning
with Errors (RLWE) schemes. In [Din+16] his work was extended to more pro-
tocols and in [Ber+18] a chosen-ciphertext attack on the proposal HILA5 [Saa17]
was given, using decryption failures.

These attacks are chosen-ciphertext attacks on proposals with only IND-CPA-
security and can be thwarted using an appropriate transformation to a chosen-
ciphertext secure scheme, such as the Fujisaki-Okamoto transformation [FO99].
Hofheinz et al. [HHK17] and later Jiang et al. [Jia+17] proved a bound on the im-
pact of the failure rate on an IND-CCA secure KEM that is constructed using this
transformation, but their bounds are squared in the failure probability in the quan-
tum oracle setting, which seems a very conservative result. Guo, Johansson and
Stankovski [GJS16] proposed a key-recovery attack against the IND-CCA-secure
version of QC-MDPC, which is a code-based scheme. It uses a distinguishing
property that “colliding pairs” in the noise and the secret can change the decryp-
tion failure rate.

1.2 Contributions

In this paper we investigate the requirements for KEM’s to resist decryption failure
cryptanalysis. Having better security estimates can benefit the parameter selection
process, resulting in improved security and efficiency. We focus on IND-CCA
secure KEM’s based on the (Ring/Module) Learning with Errors and (Ring/Mod-
ule) Learning with Rounding paradigms. Nonetheless, the general method can
also be applied to investigate the impact of failures on other schemes.

The exploitation of decryption failures of an IND-CCA secure cryptographic
scheme proceeds in two main steps: obtaining ciphertexts that result in a decryp-
tion failure and estimating the secret based on these ciphertexts. In the first step,
an adversary can use failure boosting to find ‘weak’ input vectors that artificially
enlarge the failure rate of the scheme. In Section 3, we examine how an adver-
sary can generate these ‘weak’ ciphertexts that increase the failure probability. We

112 Paper II: Decryption Failure Attacks on IND-CCA Secure Lattice-Based Schemes

provide a theoretical framework and a Python implementation1 to calculate an
estimate of the minimum effort required for an adversary to obtain one failing
ciphertext.

Once ciphertexts that trigger a decryption failure are collected, they can be used
to estimate the secret. In Section 4, we study how much information is leaked by
the collected failures. We develop a statistical model to estimate the secret from
the failures and determine the residual entropy of the secret after a certain number
of failures is collected. The estimate of the secret can be used to construct an easier
problem that can be solved faster.

Section 5 combines failure boosting and the secret estimation technique from
Section 4 to estimate the security of schemes based on (Ring/Module) Learning
with Errors and (Ring/Module) Learning with Rounding under an attack exploit-
ing decryption failures. We show that an attacker could significantly reduce the
security of some schemes if he is able to perform sufficient decryption queries.
However, for most NIST submissions, the number of decryption queries required
is above practical limits.

In Section 6 we propose a new generic weak-key (multi-target) model exploit-
ing the fact that a fraction of keys employed can have much higher error probability
if the chosen weak ciphertexts satisfy certain key-related properties. The detailed
attack procedure is similar to the attack discussed in the previous sections. It first
consists of a precomputation phase where special messages and their corresponding
error vectors are generated. Secondly, the messages are submitted for decryption
and some decryption errors are observed. Finally, a phase with a statistical analysis
of the messages/errors causing the decryption errors reveals the secret key.

In Section 7 we apply the model to to ss-ntru-pke, a version of NTRUEn-
crypt targeting the security level of NIST-V. The proposed attack is an adaptive
CCA attack with complexity below the claimed security level. We provide a Rust
implementation2 where parts of the attack are simulated.

2 Preliminaries

2.1 Notation

Let Zq be the ring of integers modulo q represented in (−q/2, q/2], letRq denote
the ring Zq[X]/(Xn + 1) and let Rk1×k2

q denote the ring of k1 × k2 matrices
over Rq. Matrices will be represented with bold uppercase letters, while vectors
are represented in bold lowercase. Let AAAij denote the element on the ith row and
jth column of matrix AAA, and let AAAijk denote the kth coefficient of this element.
Denote with AAA:j the jth column of AAA.

1The software is available at https://github.com/danversjp/failureattack
2The software is available at https://github.com/atneit/

ss-ntru-pke-attack-simulation

https://github.com/danversjp/failureattack
https://github.com/atneit/ss-ntru-pke-attack-simulation
https://github.com/atneit/ss-ntru-pke-attack-simulation

2 Preliminaries 113

The rounding operation ⌊x⌉q→p is defined as ⌊p/q · x⌉ ∈ Zp for an element
x ∈ Zq, while abs(·) takes the absolute value of the input. These operations
are extended coefficient-wise for elements of Rq and Rk1×k2

q . The two-norm of a

polynomial a ∈ Rq is written as ∥a∥2 and defined as
√∑

i a
2
i , which is extended

to vectors as ∥aaa∥2 =
√∑

i ∥aaai∥
2
2. The notation a ← χ(Rq) will be used to

represent the sampling of a ∈ Rq according to the distribution χ. This can be
extended coefficient-wise for AAA ∈ Rk1×k2

q and is denoted as AAA ← χ(Rk1×k2
q).

Let U be the uniform distribution. Denote with χ1 ∗ χ2 the convolution of the
two distributions χ1 and χ2, and denote with χ∗n = χ ∗ χ ∗ χ ∗ · · · ∗ χ ∗ χ︸ ︷︷ ︸

n

the

nth convolutional power of χ.

2.2 Cryptographic definitions

A Public Key Encryption (PKE) is defined as a triple of functions PKE = (KeyGen,
Enc, Dec), where the key generation KeyGen returns a secret key sk and a public
key pk, where the encryption Enc produces a ciphertext c from the public key pk
and the message m ∈ M, and where the decryption Dec returns the message m′
given the secret key sk and the ciphertext c.

A Key Encapsulation Mechanism (KEM) consists of a triple of functions KEM
= (KeyGen, Encaps, Decaps), where KeyGen generates the secret and public keys
sk and pk respectively, where Encaps generates a key k ∈ K and a ciphertext c
from a public key pk, and where Decaps requires the secret key sk, the public key
pk and the ciphertext c to return a key k or the decryption failure symbol⊥. The
security of a KEM can be defined under the notion of indistinguishability under
chosen ciphertext attacks (IND-CCA).

Advind-cca
KEM (A) =

∣∣∣∣∣∣P
b′ = b :

(pk, sk)← KeyGen(), b← U({0, 1}),
(c, d, k0)← Encaps(pk),

k1 ← K, b′ ← ADecaps(pk, c, d, kb),

− 1

2

∣∣∣∣∣∣
2.3 LWE/LWR problems

The decisional Learning with Errors problem (LWE) [Reg05] consists of distin-
guishing a uniform sample (AAA,UUU)← U(Zk1×k2

q ×Zk1×m
q) from an LWE-sample

(AAA,BBB = AAASSS +EEE), were AAA ← U(Zk1×k2
q) and where the secret vectors SSS and

EEE are generated from the small distributions χs(Zk2×m
q) and χe(Zk1×m

q) respec-
tively. The search LWE problem states that it is hard to recover the secret SSS from
the LWE sample.

This definition can be extended to Ring- or Module-LWE [LPR10; LS15] by
using vectors of polynomials. In this case, the problem is to distinguish the uni-

114 Paper II: Decryption Failure Attacks on IND-CCA Secure Lattice-Based Schemes

form sample (AAA,UUU) ← U(Rk1×k2
q × Rk1×m

q) from a generalized LWE sample
(AAA,BBB = AAASSS + EEE) in which AAA ← U(Rk1×k2

q) and where the secret vectors SSS
andEEE are generated from the small distribution χs(R

k2×m
q) and χe(R

k1×m
q) re-

spectively. Analogous to the LWE case, the search problem is to recover the secret
SSS from a generalized LWE sample.

The decisional generalized Learning with Rounding (LWR) problem [BPR12]
is defined as distinguishing the uniform sample (AAA, ⌊UUU⌉q→p), with AAA ← U(
Rk1×k2

q) and UUU ← U(Rk1×m
q) from the generalized LWR sample (AAA,BBB =

⌊AAASSS⌉q→p) with AAA ← U(Rk1×k2
q) and SSS ← χs(R

k2×m
q). In the analogous

search problem, one has to find SSS from a generalized LWR sample.

2.4 (Ring/Module) LWE based encryption

Let gen be a pseudorandom generator that expands seedAAA into a uniformly ran-
dom distributed matrix AAA ∈ Rk×k

q . Define enc as an encoding function that
transforms a message m into a polynomial representation, and dec as the inverse
decoding function. A general (Ring/Module) LWE based PKE, consisting of a
key generation, an encryption and a decryption phase, can then be constructed
as described in Algorithms 1 to 3 respectively. The randomness required for the
generation of the secrets SSS′B , EEE′B and EEE′′B during the encryption, is generated
pseudorandomly from the uniformly distributed seed r that is given as an input.

Algorithm 1 PKE.KEyGEN
Input:
Output: Public key pk = (BBB, seedAAA), secret key sk = SSSA.

1: seedAAA ← U
(
{0, 1}256

)
2: AAA← gen(seedAAA) ∈ Rl×l

q

3: SSSA ← χs(R
l×m
q),EEEA ← χe(R

l×m
q)

4: BBB = ⌊AAASSSA +EEEA⌉q→p

Algorithm 2 PKE.ENc

Input: Public key pk = (BBB, seedAAA), message m, randomness r
Output: Ciphertext c = (VVV ′,B′B′B′)

1: AAA← gen(seedAAA) ∈ Rl×l
q

2: SSS′B ← χs(R
l×m
q),EEE′B ← χe(R

l×m
q)

3: EEE′′B ← χe(R
m×m
q)

4: BBBr = ⌈BBB⌉p→q

5: BBB′ = ⌊AAATSSS′B +EEE′B⌉q→p

6: VVV ′ = ⌊BBBT
r SSS
′
B +EEE′′B + enc(m)⌉q→t

2 Preliminaries 115

Algorithm 3 PKE.DEc

Input: Secret key sk = SSSA, ciphertext c = (VVV ′,B′B′B′)
Output: Message m′

1: BBB′r = ⌊BBB′⌉p→q

2: VVV ′r = ⌊VVV ′⌉t→q

3: VVV = BBB′Tr SSSA

4: m′ = dec(VVV ′r − VVV)

Using this general framework, specific schemes can be described with appro-
priate parameter choices. When the ring Rq is chosen as Zq, the encryption is
LWE-based as can be seen in FrodoKEM [Nae+17] and Emblem [Seo+17]. A
value of l = 1 indicates a Ring-LWE based scheme including New Hope [Alk+16],
LAC [Lu+17], LIMA [Sma+17] or R.Emblem [Seo+17]. If l ̸= 1 andRq ̸= Zq, the
scheme is based on the Module-LWE hard problem such as Kyber [Bos+17]. When
referring to Kyber throughout this paper, we will consider the original version that
includes rounding. The special case that χe = 0 corresponds to (Module/Ring)-
LWR-based schemes such as Round2 [Baa+17] and Saber [DAn+18]. In Lizard
[Che+16], a combination of an LWE and LWR problem is proposed. In most
(Ring/Module) LWE based schemes, q = p and no rounding is performed in the
calculation of BBB and BBB′, while t is in most schemes much smaller than q leading
to a drastic rounding of VVV ′.

We defineUUUA,UUU ′B enUUU ′′B as the errors introduced by the rounding operations,
which is formalized as follows:

UUUA = AAASSSA +EEEA −BBBr , (1)

UUU ′B = AAATSSS′B +EEE′B −BBB′r , (2)

UUU ′′B = BBBT
r SSS
′
B +EEE′′B + enc(m)− VVV ′r . (3)

Let SSS be the vector constructed as the concatenation of the vectors −SSSA and
EEEA+UUUA, letCCC be the concatenation ofEEE′B+UUU

′
B andSSS′B , and letGGG = EEE′′B+UUU

′′
B .

An attacker that generates ciphertexts can compute CCC and GGG and tries to obtain
information about SSS. These variables are summarized below:

SSS =

(
−SSSA

EEEA +UUUA

)
, CCC =

(
EEE′B +UUU ′B

SSS′B

)
, GGG = EEE′′B +UUU ′′B . (4)

After the execution of this protocol, the two parties will arrive at the same key
if the decoding dec(VVV ′r − VVV) equals m. The term VVV ′r − VVV can be rewritten as
(EEEA+UUUA)

TSSS′B−SSST
A(EEE

′
B+UUU

′
B)+(EEE′′+UUU ′′B)+enc(m) = SSSTCCC+GGG+enc(m).

116 Paper II: Decryption Failure Attacks on IND-CCA Secure Lattice-Based Schemes

The message can be recovered if and only if abs(SSSTCCC +GGG) < qt for a certain
threshold qt that is scheme dependent.

We will say that a (decryption) failure occurred if the parties do not arrive at a
common key due to a coefficient of abs(SSSTCCC+GGG) that is larger than qt, and will
define F (CCC,GGG) as the probability of a decryption failure givenCCC andGGG averaged
over all SSS, which can be expressed as

∑
SSS P (abs(SSSTCCC +GGG) > qt | SSS)P (SSS).

2.5 Fujisaki-Okamoto transformation

Using the Fujisaki-Okamoto transform [FO99; HHK17], one can transform a
chosen plaintext secure PKE to an IND-CCA secure KEM. On top of the encryp-
tion from the PKE, the KEM defines an encapsulation and decapsulation function
as described in Algorithms 4 and 5, using hash functionsH and G.

Algorithm 4 KEM.ENcApS
Input: Public key pk
Output: Ciphertext c, key K

1: m← U({0, 1}256)
2: r = G(m)
3: c = PKE.Enc(pk,m, r)
4: K = H(r)

Algorithm 5 KEM.DEcApS
Input: Public key pk, secret key sk, ciphertext c
Output: Key K or ⊥

1: m′ = PKE.Dec(sk, c)
2: r′ = G(m′)
3: c′ = PKE.Enc(pk,m′, r′)
4: if c = c′ then
5: K = H(r)
6: else
7: K =⊥
8: end if

3 Weak-ciphertext failure boosting

In this section, we will develop a method to estimate the minimum amount of
work to obtain one ciphertext that triggers a decryption failure. In contrast to
an honest party that generates ciphertexts randomly, an attacker can search for
ciphertexts that have a higher failure probability than average, which will be called

3 Weak-ciphertext failure boosting 117

‘weak’. As CCC and GGG are the only terms with which an attacker can influence
decryption failures, the search for weak ciphertexts boils down to the search for
weak (CCC,GGG). However, the pair (CCC,GGG) is generated through a hash H() with
random seed r, and during decryption it is checked whether the generator of the
ciphertext knew the preimage r of (CCC,GGG). Therefore an attacker is forced to resort
to a brute force search, which can be sped up at most quadratically using Grover’s
algorithm [Gro96].

To find a criterion for our search, we sort all possible (CCC,GGG) according to an
increasing failure probability F (CCC,GGG). This list can then be divided into two sets
using a threshold failure probability ft: weak vectors with a failure probability
higher or equal than ft, and strong vectors with lower failure probability. Let
f() be the deterministic function that generates CCC and GGG from the random seed
r. For a certain ft, we can calculate the probability of generating a weak pair:
α = P (F (CCC,GGG) > ft | r ← U , (CCC,GGG) = f(H(r))), and the probability of a
decryption failure when a weak pair is used: β = P (abs(SSSTCCC +GGG) > qt | r ←
U , (CCC,GGG) = f(H(r)), F (CCC,GGG) > ft).

The amount of work for an adversary to find a weak pair (CCC,GGG) is proportional
to α−1, but can be sped up quadratically using Grover’s algorithm on a quantum
computer, resulting in an expected workload of

√
α−1. On the other hand, the

probability of a decryption failure given a weak pair cannot be improved using
quantum computation assuming that the adversary has no quantum access to the
decryption oracle. This assumption is in agreement with the premise in the NIST
Post-Quantum Standardization Call for Proposals [NIS16]. The expected work
required to find a decryption failure given ft is therefore the expected number of
queries using weak ciphertexts times the expected amount of work to find a weak
ciphertext, or (α ·β)−1 with a classical computer and (

√
α ·β)−1 with a quantum

computer. An optimization over ft gives the minimal effort to find one decryption
failure.

3.1 Practical calculation

For most schemes, the full sorted list (CCC,GGG) is not practically computable, but
using some observations and assumptions, an estimate can be found. The next
three steps aim at calculating the distribution of the failure probability F (CCC,GGG),
i.e. what is the probability of finding a (CCC,GGG) pair with a certain failure probability
f . This distribution gives enough information to calculate α and β for a certain
ft.

First, we can remove the hash H(.) in the probability expression by assuming
the output of f(H(.)) given random input r to behave as the probability distri-
butions (χC , χG), resulting in: α = P (F (CCC,GGG) > ft | (CCC,GGG) ← (χC , χG))
and β = P (abs(SSSTCCC +GGG) > qt | (CCC,GGG)← (χC , χG), F (CCC,GGG) > ft).

Secondly, we assume that the coefficients of SSSTCCC are normally distributed,
which is reasonable as the coefficients are a sum of 2(l · n) distributions that are

118 Paper II: Decryption Failure Attacks on IND-CCA Secure Lattice-Based Schemes

somewhat close to a Gaussian. The coefficients of the polynomial (SSSTCCC)ij will
be distributed with mean µ = 0 because of symmetry around 0, while the vari-
ance can be calculated as follows, after defining χe+u as the distribution of the
coefficients of EEEA +UUUA:

var((SSSTCCC)ijk) =var(
l−1∑
i=0

n−1∑
k=0

CCCijksijk +
2l−1∑
i=l

n−1∑
k=0

CCCijkeijk) (5)

where: sijk ← χs and eijk ← χe+u (6)

=
l−1∑
i=0

n−1∑
k=0

CCC2
ijkvar(χs) +

2l−1∑
i=l

n−1∑
k=0

CCC2
ijkvar(χe+u) (7)

=∥(EEE′B +UUU ′B):j∥22var(χs) + ∥(SSS′B):j∥22var(χe+u) . (8)

Therefore, the variance of the coefficients of SSSTCCC for a given CCC is the same
for all coefficients in the same column. This variance will be denoted as σ2

j for
coefficients in the jth column of SSSTCCC. Furthermore, following the Gaussian as-
sumption, the failure probability given σ2

j is the same as the failure probability
given the jth column of CCC.

In the third step we gradually calculate the distribution of the failure proba-
bility. We start from the distribution of the failure probability of the coefficient
at the ijkth position given σj , denoted with χcoef |σ. This distribution expresses
the probability of finding aGGG so that the failure probability is equal to fijk given
a certain value of CCC (or equivalently σ2

j) and can be expressed as follows:

P (fijk |GGG← χG,CCC) , (9)
(10)

where:

fijk = P (abs(SSSTCCC +GGG)ijk > qt |GGG,CCC) (11)

≈ P (abs(x+GGGijk) > qt |GGG, x← N (0, σ2
j), σ

2
j) . (12)

The distribution χcol |σ, which models the probability of a failure in the jth

column of abs(SSSTCCC +GGG) given σ2
j , can be calculated using the convolution of

the distributions of the mn individual coefficient failures χcoef |σ as follows:

χcol |σ = χ∗nmcoef |σ . (13)

The conditioning on σ2
j is necessary to counter the dependency between the co-

3 Weak-ciphertext failure boosting 119

efficients of the columns of abs(SSSTCCC +GGG), which are dependent as a result of
sharing the same variance σ2

j .
The distribution of failure probabilities in the jth column of SSSTCCC, denoted as

χcol, can then be calculated using a weighted average over the possible values of
σ2
j as follows:

χcol =
∑
lc

P (f | f ← χ∗nmcol,σ)P (σ2
j = lc) . (14)

Finally we can calculate the full failure distribution χFAIL as the convolution of the
m probability distributions corresponding to the failure distributions of the dif-
ferent columns. This convolution does not have the dependency on σ2

j as failures
of different columns are independent conditioned on CCC and GGG, therefore:

χFAIL = χ∗mcol . (15)

From this failure distribution, we can calculate α and β for an arbitrary value
of ft:

α = P (f > ft | f ← χFAIL) , (16)

β =

∑
f>ft

f · P (f | f ← χFAIL)

α
. (17)

We want to stress that this calculation is not exact, mainly due to the Gaussian
assumption in the second step. More accurate estimates could be obtained with
a more accurate approximation in step 2, tailored for a specific scheme. In this
case, the assumptions and calculations of step 1 and step 3 remain valid. For the
estimations of LAC [Lu+17] in subsequent paragraphs, we followed their approach
for the calculation of the effect of the error correcting code. Note that this is not
an exact formula as the inputs of the error correcting code are correlated through
their polynomial structure.

In Fig. 1 we compare the values of α and β calculated using the technique
described above, with exhaustively tested values on a variant of LAC128 without
error correction. For step 2 of the practical calculation, we use both a Gaussian
approximation as well as a binomial approximation that is more tailored for LAC.
We can observe that our estimation of the effect of failure boosting is relatively
close to reality.

120 Paper II: Decryption Failure Attacks on IND-CCA Secure Lattice-Based Schemes

20 22 24 26 28 210 212 214 216

work to generate one weak sample (1/)

2 5

2 4

we
ak

 c
ip

he
rte

xt
 fa

ilu
re

 ra
te

 (
)

test results
estimate (gaussian)
estimate (binomial)

Figure 1: The failure rate of one weak ciphertext (β) as a function of the work
required to generate one weak ciphertext (α) on a classical computer for LAC128
without error correction.

3.2 Applications of failure boosting

Failure boosting is a useful technique in at least three scenarios: first, if there is
no multi-target protection, second, if the adversary can only perform a limited
number of queries to the decryption oracle and third, if the adversary has access
to a quantum computer.

In some (Ring/Module) LWE/LWR schemes, the seed r is the only input to the
pseudorandom generator that generates CCC and GGG. This paves the way to a multi-
target attack where precomputed weak values of r can be used against multiple
targets: after choosing the parameter ft, the adversary can generate weak cipher-
texts in approximately α−1 time (

√
α−1 if he has access to a quantum computer).

Each precomputed sample has then a failure probability of β against every target.
Fig. 2 shows the failure probability of one weak ciphertext versus the amount of
work to generate that ciphertext on a classical computer. Multi-target protection,
for example by including the public key into the generation ofCCC enGGG as proposed
in Kyber [Bos+17] and Saber [DAn+18] is a relatively cheap option to resolve this
issue.

If the adversary can only perform a limited number of decryption queries,
for example 264 in the NIST Post-Quantum Standardization Call for Propos-
als [NIS16], the adversary can use failure boosting to reduce the number of re-
quired decryption queries. To this end, he chooses the parameter ft so that the
inverse of the failure probability β−1 equals the decryption query limit nd, which

4 Estimation of the secret 121

20 235 270 2105 2140 2175 2210 2245 2280

work to generate one weak sample (1/)

2 190

2 168

2 146

2 124

2 102

2 80

2 58

2 36

we
ak

 c
ip

he
rte

xt
 fa

ilu
re

 ra
te

 (
)

Kyber768
FrodoKEM-976
LAC-256
Saber
LizardCat3

Figure 2: The failure rate of one weak ciphertext (β) as a function of the work
required to generate one weak ciphertext (α) on a classical computer.

results in a probability of finding a decryption failure of approximately (1−e−1) ≈
0.63 . To find i failures with similar probability, the failure probability should be
brought up so that β−1 = nd/i. Since the amount of work to generate one
input of the decryption query is approximately α−1 (

√
α−1 quantumly), the to-

tal amount of work expected is α−1β−1, (
√
α−1β−1 quantumly). Fig. 3 shows

the expected total amount of work to find one decryption failure with a classical
computer, versus the failure rate of one weak ciphertext.

An adversary with a quantum computer always benefits from failure boosting,
as the search for weak ciphertexts can be sped up using Grover’s algorithm. How-
ever, this speedup is not quadratic if the adversary has no quantum access to the
decryption oracle. Fig. 4 shows the total amount of expected work to find one
decryption failure, versus the amount of work to find one weak ciphertext on a
quantum computer

√
α−1.

4 Estimation of the secret

Finding a decryption failure does not immediately break the security of the KEM,
but it does provide extra information to an adversary. In this section we will in-
vestigate how much this information leaks about the secret. An adversary that has
obtained ciphertexts that produce decryption failures can use them to make an
estimation of the secret SSS.

122 Paper II: Decryption Failure Attacks on IND-CCA Secure Lattice-Based Schemes

2 190 2 168 2 146 2 124 2 102 2 80 2 58 2 36

weak ciphertext failure rate ()

283

2124

2165

2206

2247

2288

2329

2370

2411
to

ta
l w

or
k

to
 g

en
er

at
e

a
fa

ilu
re

 (1
/

)
Kyber768
FrodoKEM-976
LAC-256
Saber
LizardCat3

Figure 3: The expected amount of work (α−1β−1) on a classical computer, as a
function of the failure rate of one weak ciphertext (β). The red dotted line indicates
a failure rate of 2−64.

20 218 236 254 272 290 2108 2126 2144

work to generate one weak sample (1/)

2104

2128

2152

2176

2200

2224

2248

2272

to
ta

l w
or

k
to

 g
en

er
at

e
a

fa
ilu

re
 (1

/
)

Kyber768
FrodoKEM-976
LAC-256
Saber
LizardCat3

Figure 4: The expected amount of work (
√
α−1β−1) as a function of the work

required to generate one weak ciphertext (
√
α−1) on a classical computer.

4 Estimation of the secret 123

When a failure occurs, we know that at least one coefficient of abs(SSSTCCC+GGG)
is larger than the threshold qt. This leads to a classification of the coefficients in
the set of fail coefficients vf and no-fail coefficients vs. To each coefficient at
position (i, j, k), a vector of integers sss can be associated by taking the coefficients
of SSS:i. Similarly, the coefficient can be linked to a vector of integers ccc calculated
as a function of CCC :j and k, so that the multiplication sssccc equals that coefficient.

No-fail vectors will contain negligible information about the secret sss, but fail-
ure vectors do carry clues, as the threshold exceeding value of the coefficients of
SSSTCCC +GGG implies a correlation between the corresponding ccc and sss. This correla-
tion can be positive, in case of a large positive value of the coefficient, or negative,
in case of a large negative value of the coefficient. Consequently, the fail coef-
ficients can be further divided into the sets of positive vfp and negative vfn fail
coefficients respectively. Moreover, negative fail vectors can be transformed into
positive fail vectors by multiplication with −1. Note that failure coefficients at
position (i, j, k) will only contain information about the jth column of SSS, which
is why the estimation of the columns of SSS can be performed independently.

4.1 One positive failure vector

We will first examine the case where we know one positive fail vector ccc and as-
sociated coefficient GGGi,j,k, which we will denote with g. This corresponds to the
case where one failing ciphertext and the location and sign of the error is known.
The question is how much the knowledge about ccc and g can improve our estimate
of the associated secret sss. Applying Bayes’ theorem and assuming independence
between the coefficients of ccc and sss that are on different positions, we can write:

P (sssi |ccc, g,sssccc > qt − g) ≈P (sssi |ccci, g, sssccc > qt − g) (18)

=
P (sssccc > qt − g |sssi, ccci, g)P (sssi |ccci, g)

P (sssccc > qt − g |ccci, g)
(19)

=
P (
∑j ̸=i

j sssjcccj > qt − g − sssiccci |sssi, ccci, g)P (sssi)

P (sssccc > qt − g |ccci, g)
.

(20)

The improved estimates for the coefficients of sss can in turn be used to get an
estimate sssest that minimizes its variance E[(sssest − sss)2] as follows:

124 Paper II: Decryption Failure Attacks on IND-CCA Secure Lattice-Based Schemes

0 =
d

dsssest,i
E((sssest,i − sssi)

2) (21)

= 2
∑
sssi

(sssest,i − sssi)P (sssi) , (22)

or: sssest,i =
∑
sssi

sssi · P (sssi) . (23)

The estimate of sss gives the estimate of the jth column of SSS, which can be
divided trivially in an approximationSSSA,est of (SSSA):j andEEEA,est of (EEEA+UUUA):j .
These vectors can be used to transform the original (Ring/Module) LWE/LWR
sample (AAA,AAA(SSSA):j + (EEEA +UUUA):j) into a (Ring/Module) LWE alike problem
with a smaller secret variance by subtractingAAASSSA,est+EEEA,est. This results in the
sample (AAA,AAA((SSSA):j −SSSA,est) + (EEEA +UUUA):j −EEEA,est), which is a problem
with smaller secret (SSSA):j − SSSA,est and noise (EEEA +UUUA):j −EEEA,est. We will
call this new problem the simplified problem.

4.2 Multiple fail vectors

Having access to m positive fail vectors ccc(1) . . . ccc(m) from the same column, with
corresponding values of G as g(1) . . . g(m), an adversary can improve his estimate
of P (sss) and therefore obtain a better estimate sssest, assuming that the failure vec-
tors ccci are independent conditioned on sss. This corresponds to knowing m failing
ciphertexts and the location and sign of their errors.

P (sssi |ccc(1) . . . ccc(m), g(1) . . . g(m)) ≈ P (sssi |ccc(1)i . . . ccc
(m)
i , g(1) . . . g(m)) (24)

=
P (ccc

(1)
i . . . ccc

(m)
i |sssi, g(1) . . . g(m))P (sssi | g(1) . . . g(m))

P (ccc
(1)
i . . . ccc

(m)
i | g(1) . . . g(m))

(25)

=
P (sssi)

∏m
k=1 P (ccc

(k)
i |sssi, g(k))∏m

k=1 P (ccc
(k)
i | g(k))

. (26)

Similar to Eq. (20), P (ccci |sssi, g(k)) can be calculated as:

P (ccci |sssi, g, sssccc > qt − g) =
P (sssccc > qt − g |sssi, ccci, g)P (ccci |sssi, g)

P (sssccc > qt − g |sssi, g)
(27)

=
P (
∑j ̸=i

j sssjcccj > qt − g − sssiccci |sssi, ccci, g)P (ccci)

P (sssccc > qt − g |sssi, g)
.

(28)

4 Estimation of the secret 125

In subsequent calculations, each value of the coefficient of g is taken as the
maximum possible value.

4.3 Classification of vectors

The above approach assumes a prior knowledge of the exact position and sign of
the errors. This information is needed to link coefficients of CCC with their corre-
sponding coefficient ofSSS. However, this is not always a trivial problem. For most
schemes there are three sources of extra information that will allow to perform this
classification with a high probability using only a few decryption failures.

Firstly, a large coefficient of GGG would induce a higher failure probability for
the corresponding coefficient of the error termSSSTCCC+GGG. Thus, failures are more
likely to happen at positions linked to that coefficient of GGG. Moreover, a positive
value of the coefficient suggests a positive error so that ccc ∈ vfp, while a negative
value hints at a negative error, or ccc ∈ vfn.

Secondly, as vectors ccc ∈ vf are correlated with the secret sss, they are also cor-
related with each other. Therefore, vectors ccc ∈ vf are more correlated between
each other than a vector ccc ∈ vf with a vector ccc ∈ vs. Moreover, a high positive
correlation suggests that the vectors share the same class vfp or vfn, while a high
negative correlation indicates that the vectors have a different classes. This allows
for a clustering of the fail vectors using the higher than average correlation, under
the condition that the correlation difference is high enough. This correlation dif-
ference is related to the failure rate: a low failure rate implies a higher correlation
because only ciphertexts that are highly correlated with the secret lead to a failure
rate in this case. For example, Fig. 5 shows an estimate of the correlations between
vectors of the classes vfp (pos), vfn (neg) and vs (nofail) in Kyber768. This ap-
proach does not work for schemes with strong error correcting codes (ECC) such
as LAC, as the bit error rate before correction is relatively high for these types of
algorithms, leading to a relatively low correlation between failure vectors.

In case of a ring/module structure of the coefficients of SSS, an additional struc-
ture arises leading to an artifact in which some pairs of no-fail coefficients within
the same polynomial also have high correlation of their corresponding vectors.
Imagine a pair of failure coefficients at positions (i, j, k1) and (i, j, k2) from dif-
ferent decryption failures a, b, with corresponding matrices CCC(a) and CCC(b). The
correlation of the vectors ccc(a) and ccc(b) can be written as Xk1CCC

(a)T
:,j Xk2CCC

(b)
:,j =

Xk1+k2CCC
(a)T
:,j CCC

(b)
:,j , from which is clear that the vectors fromCCC(a) andCCC(b), with

respective positions (i, j, k1− t) and (i, j, k2+ t) have the same correlation. The
clustering will thus result in n classes, with one class containing the failure vec-
tors. Combining this information with the information of the first method gives
an adversary the failure vectors with high probability. Otherwise, an adversary can
estimate the secret n times and check the validity of the result using the (Ring/-
Module) LWE/LWR problem.

126 Paper II: Decryption Failure Attacks on IND-CCA Secure Lattice-Based Schemes

800 600 400 200 0 200 400 600 800
correlation

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

pr
ob

ab
ilit

y

pos-pos
pos-neg
pos-nofail

Figure 5: The probability of a certain value of the correlation between different
classes of vectors in Kyber768.

Finally, for schemes that use error correcting codes to reduce their failure prob-
ability, side channel leakage during the error correction might reveal information
on the presence or position of failure coefficients. Note that if this is the case, it
might not even be necessary to obtain a decryption failure since failing coefficients
could also be collected on successful decryptions where there is at least one failing
coefficient.

4.4 Implications

Figure 6 depicts the relative variance reduction of the secret as a function of the
number of positive failure vectors for various schemes. For schemes that have a
very low failure probability for individual coefficients ofSSSTCCC+GGG, such as Kyber,
Saber and FrodoKEM, the variance of the secret drastically reduces upon knowing
only a few failing ciphertexts. Assuming that the simplified problem, that takes
into account the estimate of the secret, has the same complexity as a regular (Ring/-
Module) LWE problem with similar secret variance, we can calculate the remaining
hardness of the simplified problem as a function of the number of positive failure
vectors as shown in Fig. 7 using the toolbox provided by Albrecht et al. [Alb+18]
using the Q-core sieve estimate.

The effectiveness of the attack declines as the failure probability of the individ-
ual coefficients increases, since the correlation between the secret and the failing
ciphertext is lower in this case. This can be seen in the case of LAC, where the
individual coefficients have relatively high failure rates due to a strong error cor-
recting code. On the other hand, a failing ciphertext will contain multiple errors,
making it easier to collect multiple failure vectors.

5 Weak-ciphertext attack 127

Note that once one or more failures are found, they can be used to estimate the
secret. This estimate in turn can be used to improve the search for weak ciphertexts
by considering F (CCC,GGG) as

∑
SSS P (FAIL(CCC,GGG),SSS), whereSSS is not sampled from

χSSS , but from the new probability distribution χSSSest . Therefore, the search for
weak keys could become easier the more failures have been found. However, we
do not take this effect into account in this paper.

20 21 22 23 24 25 26 27 28

positive failure vectors

0.0

0.2

0.4

0.6

0.8

1.0

re
la

tiv
e

va
ria

nc
e

Saber
Kyber768
FrodoKEM-976
LAC-256

Figure 6: The relative reduction in entropy as a function of the number of positive
failure vectors

5 Weak-ciphertext attack

Using the failure boosting technique from Section 3 and the secret estimation
method from Section 4, we can lower the security of a (Ring/Module) LWE/LWR
scheme on the condition that its failure rate is high enough. To this end, we first
collect i decryption failures using the failure boosting technique, which would
cost approximately i

√
α−1β−1 work. Then, the exact error position and failure

type should be determined for all of the failure vectors using the techniques of
Section 4.3. Based on this information, the secret can be estimated, which in turn
can be used to simplify the (Ring/Module) LWE/LWR problem. These last two
operations require a negligible amount of work compared to finding decryption
failures. Finally, we need to solve the simplified problem, with has a complex-
ity Ssimplified(i) as estimated in Section 4. The total amount of work is therefore
O(Ssimplified(i) + i

√
α−1β−1), which is depicted in Fig. 8 as a function of the

number of failures i. Note that the practical security of Kyber relies on an er-

128 Paper II: Decryption Failure Attacks on IND-CCA Secure Lattice-Based Schemes

20 21 22 23 24 25 26 27 28

positive failure vectors

100

120

140

160

180
se

cu
rit

y

Kyber768
FrodoKEM-976
Saber

Figure 7: The hardness of the simplified problem as a function of the number of
positive failure vectors

ror term EEEA as well as a rounding term UUUA. Both are taken into account in the
security calculation.

Table 1 gives an overview of the original hardness of the scheme before decryp-
tion failure usage S, and the attack cost Ssimplified(i) + i

√
α−1β−1 using decryp-

tion failures for ideal values of i and ft, which are calculated through a brute force
sweep. The number of collected decryption failures i and the expected number
of decryption queries iβ−1 is also included. These values are calculated assuming
that the adversary can perform an unlimited number of decryption queries. From
this table we can see that the security of Kyber and Saber is considerably reduced.
This is due to the fact that finding a failure is easier than breaking the security of
the scheme S. For the case of FrodoKEM976, the security is not affected as the
work to obtain a failure is considerably larger than breaking the security S.

In other situations such as a multi-target attack or having only a limited num-
ber of decryption queries, other values of ft and i will obtain optimal results. For
example in a multi-target attack scenario one would select a higher threshold ft to
be able to efficiently re-use the precomputation workα−1 for weak ciphertexts and
therefore reduce the overall work. A limit on the number of decryptions nd could
make it necessary to increase the amount of precomputational work α−1 in order
to reduce the failure rate β−1 < nd/i. This would make the attack more expensive
or might even invalidate it. For example, the NIST Post-Quantum Standardiza-
tion Process decryption limit is set to 264, which rules out a decryption failure
attack on schemes with a low enough failure rate such as Saber and Kyber, which

6 A weak-key attack model 129

21 23 25 27 29

positive failure vectors

140

150

160

170

180

190

200

at
ta

ck
 c

os
t

Saber
Kyber768
FrodoKEM-976

Figure 8: The full amount of work to break the scheme as a function of the number
of collected decryption failures

can be deduced from Fig. 3. As such, the security of this schemes is not affected
within the NIST framework.

6 A weak-key attack model

In this section we elaborate a weak-key (multi-target) attack model when the adver-
sary can only have a limited number of decryption queries to one user but multiple
users can be queried. We observe that for certain keys, the error probability can be
much higher when applying the failure boosting technique, i.e., choosing ‘weak’
ciphertexts as discussed in Section 3, if the chosen ciphertexts satisfy certain key-
related properties. The major targets are the same as before – lattice-based NIST
post-quantum proposals with CCA security using some CCA transformations.

We set the maximum number of ciphertexts that can be submitted to a node
with a public key to be 2K and we set the maximum number of public keys in
the system to be 2L. Refering again to the NIST Post-Quantum Standardization
Process, they have indicated in their call that at leastK = 64 can be considered. In
the discussion forum [NIS19] for the same project, we have also seen researchers
mentioning that L = 64 can be considered. We will adopt K = L = 64
in the further sections since it seems these values are not questioned, although
larger values of K and L can give more powerful attacks and could definitely be
relevant. For example, comparing with attacks on symmetric schemes, such attacks

130 Paper II: Decryption Failure Attacks on IND-CCA Secure Lattice-Based Schemes

Table 1: The security of different schemes with and without decryption failures

original attack reduction decryption decryption
security cost factor failures queries

Saber 2184 2139 245 77 2131

FireSaber 2257 2170 287 233 2161

Kyber768 2175 2142 233 42 2131

Kyber1024 2239 2169 270 159 2158

LAC256 2293 297† 2196 106 · 56 280

FrodoKEM976 2188 2188 20 0 0

† Note that it seems not straightforward for LAC256 to obtain the exact position
and type of the errors, which is required to obtain this result

may require a number of plaintext-ciphertext pairs that are close to the number of
possible keys (like 2200), and still they are considered valid attacks.

The proposed attack procedure is split in three steps.

1. Do a precomputation step to establish pairs of messages and corresponding
ciphertexts and let informally the set F denote error vectors corresponding
to the different messages, which are equivalent to the (CCC,GGG) pairs chosen
before. These selected error vectors should be with particular properties, e.g,
with large norm and/or with several large entries in certain positions, etc.

2. Send the ciphertexts contained inF and assume that we learn the decrypted
messages. Assume further that a subset have been erroneously decrypted
(wrong decoding due to too large error) and let F ′ be the error vectors caus-
ing decryption failure. The cardinality of this set could be larger than average
if certain properties (related to F) of the secret vector hold. So we submit
the set of ciphertexts to each node holding a public key. The node giving
the largest decryption failure rate is selected as the target public key for the
attack.

3. Do statistical testing on the set F ′ (and possibly the set F) to establish re-
lationships between the secret key and given the noise vectors leading to a
decryption failure. Analyzing their correlation, we may be able to recover
partial secrets, which can considerably reduce the solving complexity of the
underlying hard problem. We are then able to perform a full key-recovery
attack via classic approaches such as lattice reduction algorithms.

Note that the above procedure is very close to the weak-ciphertext attack de-
scribed in the previous sections. One major difference is that here we choose the

6 A weak-key attack model 131

set F of ‘weak’ ciphertexts to be related to the ‘weak’ keys targeted, while in the
prior, the ‘weak’ ciphertexts are chosen to have a larger decryption failure rate
averaged over all keys.

We discuss the three steps briefly. In the precomputation step, we can observe
a first difference between different schemes. Most schemes include the public key
in the generation of the noisy vectors (as input in the hash function generating the
noise). This means that a constructed setF can only be used for a single public key
and a new such set must be constructed for the next public key. For simplicity, we
assume |F| = 2K and note that the number of nodes with a public key is 2L. If
we set the computational complexity of precomputing a setF to be 2λ, the overall
complexity of this first step is 2λ+L. On the other hand, there are also schemes
where error vectors are generated independent of the public key (e.g. LAC). In
such a case the same set F can be used on all public keys and the complexity
is only 2λ. We could also use Grover’s search algorithm to accelerate the pre-
computation step, as discussed in Section 3. However, since the pre-quantum and
post-quantum security goals in the NIST Post-Quantum Standardization Process
are different for a certain security level, this quantum acceleration may not help
us to break the claimed security level of a submission.

For the second step, the idea is that among many public keys, there will be one
where the corresponding secret values have a property that causes more decryp-
tion errors than on average. So to increase the decryption error probability to a
reasonable and detectable level, we consider that a special property in the secret
value is held with probability at least p′, where 0 < p′ < 1. We then assume that
p′ = 2−L, so we can expect that this special property in the secret value holds for
one public key. As mentioned, with respect to the CCA security, NIST restricts
to have at most 264 decryption calls to each user (public key). So in order to dis-
tinguish a special property in the secret value corresponding to a public key, one
needs to get the failure rate for this case to be larger than 2−64.

Finally, in the statistical testing part, we have a set of error vectors that have
caused decryption errors. There seems to be a plethora of methods that can be used
to recover secret values. For instance, the strong maximum-likelihood approach
has been discussed in Section 4 and heuristic approaches can also be applied. A
general approach that we can adopt is to consider a smaller part of the secret vector
under reconstruction, and select the most probable values for this part, based on
the observed error vectors in F . Then one combines such guesses for different
parts and builds an approximation of a secret vector. A good approximation will
mostly be sufficient as it can be used in lattice-basis reduction algorithms.

We note that in many applications, the challenge is to detect the first decryp-
tion failure, since we can usually have adaptive approaches to find more failures
afterwards with a lower complexity. This idea is further demonstrated in the next
section where an adaptive CCA attack on ss-ntru-pke will be presented, and also
in a code-based application [NJS19].

132 Paper II: Decryption Failure Attacks on IND-CCA Secure Lattice-Based Schemes

7 A weak-key attack on ss-ntru-pke

We have applied the described weak-key approach and provide the details of at-
tacking ss-ntru-pke, a version in the submission to the NIST Post-Quantum
Standardization Process – NTRUEncrypt [Zha+17]. Connected is also the prov-
ably secure NTRU [SS11] whose security is based purely on the hardness of Ring-
LWE. NTRUEncrypt with different parameter choices has been around for a long
time and is one of the most competitive lattice-based schemes when it comes to
performance.

Note that our attack in this section is in the pre-quantum (classic) security
framework due to the different security goal for NIST-V when Grover’s algo-
rithm is considered. We adopt the notations from the NTRUEncrypt submis-
sion [Zha+17] throughout this section.

7.1 The ss-ntru-pke scheme

ss-ntru-pke is the version of NTRUEncrypt targeting the highest security level,
being 256 bits. This scheme achieves CCA2 security via the NAEP transform
[How+03b], a transform similar to the Fujisaki-Okamoto transformation with
an additional mask. We give a very brief explanation of the scheme. For most
of the description and details, we refer to [Zha+17]. In the key generation (see
Algorithm 6), two secret polynomials f, g ∈ R are selected, where the coordinates
are chosen from a discrete Gaussian Xσ distribution with standard deviation σ. A
public key is formed by computing h = g/(pf + 1).

Algorithm 6 ss-ntru-pke.KEyGEN

Input: Parameter sets PARAM = {N, p, q, σ} and a seed.
Output: Public key h and secret key (f, g).

1: Instantiate Sampler with XN
σ and seed

2: f← Sampler, g← Sampler
3: h = g/(pf + 1) mod q

We show in Algorithm 7 the encryption algorithm of ss-ntru-pke and in Al-
gorithm 8 the decryption algorithm, both from the original proposal [Zha+17].
In these descriptions, HASH() represents a hash function, and B represents a set
including all binary polynomials with degree at most N − 1. The Pad() opera-
tion is a function to ensure the message has sufficient entropy, and the Extract()
operation is the inverse of Pad().

In each encryption of a message m, two polynomials r, e ∈ R are gener-
ated, where the coordinates are again chosen from a discrete Gaussian distribution
Xσ with standard deviation σ. This randomness source uses a seed generated as
HASH(m, h). This means that each choice of a message m will generate also the

7 A weak-key attack on ss-ntru-pke 133

polynomials r, e ∈ R. Let us denote this by

(r, e) = G(m, h).

Algorithm 7 ss-ntru-pke.ENcRypT
Input: Public key h, message msg of length mlen, PARAM and a seed.
Output: Ciphertext c.

1: m = Pad(msg, seed)
2: rseed = HASH(m|h)
3: Instantiate Sampler with XN

σ and rseed
4: r← Sampler, e← Sampler
5: t = p · r ∗ h
6: tseed = HASH(t)
7: Instantiate Sampler with B and tseed
8: mmask ← Sampler
9: m′ = m - mmask (mod p)

10: c = t + p · e + m′

In decryption, with ciphertext c, one computes the message by computing

f ∗ c =p · r ∗ g + p · e ∗ f + m′ ∗ f.

A decryption error occurs if ||p · r ∗ g+p · e ∗ f+m′ ∗ f||∞ > q/2. This basically
translates to ||r ∗ g + e ∗ f||∞ > q/4 as p = 2 and the last term is much smaller
than the first two.

The proposed parameters for ss-ntru-pke for the security level of NIST-V are
shown in Table 2. The decoding error probability is estimated to be less than 2−80

in [Zha+17].

Table 2: Proposed ss-ntru-pke parameters.

N q p R σ ϵ Security

1024 230 + 213 + 1 2 Zq [x]
xN+1

724 < 2−80 V

7.2 The attack

We now follow the approach of the previous section and describe an attack. The
detailed attack is shown in Algorithm 9, where a more efficient CCA2 version is
adopted. We define an equivalence relation for two polynomials u(x), v(x) ∈ R
if u(x) = xi · v(x)

(
mod xN + 1

)
, or if u(x) = −xi · v(x)

(
mod xN + 1

)
, for

i ∈ Z.

134 Paper II: Decryption Failure Attacks on IND-CCA Secure Lattice-Based Schemes

Algorithm 8 ss-ntru-pke.DEcRypT
Input: Secret key f, public key h, ciphertext c, and PARAM.
Output: result.

1: m′ = f ∗ c (mod p);
2: t = c − m′;
3: tseed = HASH(t);
4: Instantiate Sampler with B and tseed;
5: mmask ← Sampler;
6: m = m′ + mmask (mod p);
7: rseed = HASH(m|h);
8: Instantiate Sampler with XN

σ and rseed;
9: r← Sampler;

10: e = p−1 (t − r ∗ h);
11: if ||e||∞ is big then
12: result = ⊥;
13: else
14: result = Extract(m);
15: end if

Algorithm 9 The CCA2 attack against ss-ntru-pke

Input: A number (say 264) of public keys.
Output: The secret polynomials (f, g) of one public key.

1: (Attack step 1): Collect messages/ciphertexts with special form for all public
keys

2: (Attack step 2): Submit them for decryption and determine a weak public key
h

3: (Attack step 1′): Prepare messages/ciphertexts with special form for this weak
key h

4: (Attack step 2′): Submit them for decryption and collect the decryption re-
sults

5: Use statistical analysis to guess (̂f, ĝ) close to the corresponding secret key
(f, g)

6: Use lattice reduction algorithms to recover the secret key (f, g)

7 A weak-key attack on ss-ntru-pke 135

Attack step 1 – pre-computation.
We pick random messages m and generate corresponding (r, e) = G(m, h)

for a given public key h. We keep only vectors e equivalent to a polynomial that
has the first l (e.g., l = 2) positions with the same sign and each with size larger
than c · σ, where c is a constant determining the computational effort of finding
such error vectors. These vectors form our chosen set F .

We set l = 2 to illustrate the idea in a concrete attack. For one position, the
probability that the entry is larger than cσ is 1− erf(c/

√
2). As we can start from

any position, the probability to have two consecutive positions with the same sign
and entries larger than cσ is pe = N ∗ (1 − erf(c/

√
2))2/2. If we set pe to be

2−120, then c can be as large as 9.193.

Attack step 2 – submit ciphertexts for decryption.
We then send the ciphertexts corresponding to the noise vectors in F to the

decryption algorithm. If the targeted secret key f is also equivalent to a polynomial
that has the first l (e.g., l = 2) positions with the same sign and each with size
larger than cs · σ, where cs is another constant, then the decoding errors can be
detectable. We expect to collect several errors and store their corresponding error
vectors (r, e). The probability to have two consecutive positions with the same
sign and entries larger than csσ is ps = N ∗ (1− erf(cs/

√
2))2/2. If we set ps to

be 2−64, then cs can be as large as 6.802.
If we run 2120 precomputation steps for each stored vector with the desired

properties, then the overall complexity is 2248 since ps = 2−64. Let C1 denote
2 ·cscσ

2. We can then have a coefficient in r∗g+e∗f whose absolute contribution
from these two big entries is at least C1 = 225.97. We consider the probabilistic
behavior of the remaining (2N − 2) positions. As the coefficients of r, g, e, f
are all sampled from a Gaussian distribution with mean 0 and stand deviation
σ = 724, the expected norm of the rest vector in f, g with 2N −2 entries is about√
2N − 2 ·σ. Given a public key, f, g is fixed. Thus, this coefficient of r∗g+ e∗ f

can be approximated as C1 +Φ0, where Φ0 is Gaussian distribution with mean 0
and standard deviation

√
2N − 2 · σ2. As the error appears when this coefficient

is larger than q/4, the error probability3 can be approximated as

Pe =

(
1− erf(

q/4− C1√
2(2N − 2)σ2

)

)
· 1
2
.

We obtain a decoding error probability of 2−57.3 for this example.
Thus we can obtain about 26.7 errors from the 264 decryption trails.

3The error can occur in both directions. We omit the term
(
1− erf(q/4+C1√

2(2N−2)σ2
)

)
· 1
2

as it

is negligible compared with
(
1− erf(q/4−C1√

2(2N−2)σ2
)

)
· 1
2

for C1 a very big positive integer.

136 Paper II: Decryption Failure Attacks on IND-CCA Secure Lattice-Based Schemes

An adaptive CCA attack. If we keep the previous setting, i.e., a CCA1 attack,
the cost is larger than 2248. However, we can adopt a much more powerful attack
model, namely an adaptive CCA (CCA2) attack, consisting of two phases. In
the first phase, the attacker spends half of his computational power to determine a
weak key; in the later phase, he would put all his remaining resources into attacking
this weak key.

To be more specific, we first prepare 263 messages/ciphertexts for each of the
264 public keys. Then we expect two errors corresponding to one key, which can
be claimed as a weak key.

We can also reduce the precomputation work for each key to 289, if there are
264 public keys. We have c = 7.956 and the error probability is 2−62.0, so we
expect to have two errors in the testing stage. We then spend 2216 work on another
precomputation to have 263 messages with c to be 10.351, done only for this weak
key. The error probability in the second phase is estimated as 2−53.0, so we can
have 210 errors. The overall complexity is 2217.

Attack step 3 – statistical analysis.
In this step we will try to recover the secret f. Let us first assume that f has

its two big entries in the first two positions of the vector. Then the position in
e ∗ f where the error occurs, denoted i0, is the position where the two significant
coefficients in e and those in f coincide. We now transform each e in such a way
that its two big entries are also to be found in the first two positions. This is done
by replacing e with the corresponding equivalent vector where the two big entries
are in the first two positions. Assuming M decryption errors, this now gives us
the following knowledge from the received decryption errors:

N−1∑
i=2

e
(j)
i fi +N

(j)
i > q/4− 2 · cscσ

2,

for j = 1 . . .M and where N (j) denotes the remaining contribution to the noise.
Finally we note that assuming that f has its two big entries in the first two positions
is not a restriction, as such an f vector will just be an equivalent vector of the true
f. So we need only to recover f and then check all equivalent vectors.

We next show how to derive more knowledge of f, g with statistical tools.
A heuristic approach. As we have assumed that the two big entries in (f, g)

(or (e, r)) are the first two entries, we use K (or Vi for 1 ≤ i ≤ M) to denote a
vector consisting of the remaining 2N − 2 entries. Thus, the size of K (or Vi) can
be estimated as

√
(2N − 2)σ.

We adopt the heuristic assumptions from [GN07] that all the errors are very
close to the folding bound q/4, meaning that all the messages leading to an error
belong to a hyperplane

Vi · K =
q

4
− C1,

7 A weak-key attack on ss-ntru-pke 137

where C1 is the contribution from the two significant entries.
Thus, the mean vector V̂ of Vi should be close to a scaled vector of K, i.e.,

V̂ =

∑M
i=1 Vi

M
≈ q/4− C1

∥K∥2
K.

We can have an estimation K̂ = (2N−2)σ2

q/4−C1
V̂. If we round the entries of K to the

nearest integer in Zq, we obtain an estimation (̂f, ĝ) of the secret vector (f, g).
The remaining question is how good this estimation can be? We heuristically

answer this question using the central limit theorem.
Each observation Vi with approximated norm

√
2N − 2σ can be viewed as

the summation of the signal point

q/4− C1

∥K∥2
K,

and a noise vector with squared norm

(2N − 2)σ2 − (q/4− C1)
2

(2N − 2)σ2
.

By the central limit theorem, if we have M observations, then the squared
norm (variance) of the noise can be reduced by a factor of M . Hence, the error
norm should be √

1

M
·
(
(2N − 2)σ2 − (q/4− C1)2

(2N − 2)σ2

)
.

As we consider K̂ instead of V̂, the true error norm should be resized as

(2N − 2)σ2

q/4− C1
·

√
1

M
·
(
(2N − 2)σ2 − (q/4− C1)2

(2N − 2)σ2

)
. (29)

Using this formula, we can have a candidate with error norm 0.169
√
2N − 2σ,

assuming that 1024 errors have been collected.

Attack step 4 – lattice reduction.
If (∆f,∆g) = (f, g)− (̂f, ĝ) is small, we can recover it using lattice reduction

algorithms efficiently. Thus, we obtain the correct value of (f, g).
If we have the error size to be only 0.169

√
2N − 2σ, as assumed in the pre-

vious step, using the LWE estimator from Albrecht et al. [Alb+18], it takes about
2181 time and 2128 memory if one uses sieving to implement the SVP oracle in
BKZ. Though the authors of [Zha+17] discussed about memory constraint for ap-

138 Paper II: Decryption Failure Attacks on IND-CCA Secure Lattice-Based Schemes

plying sieving in lattice-based cryptanalysis, we believe it is reasonable to assume
for 2128 memory when considering a scheme targeting the classic 256-bit security
level. Another possibility is to implement the SVP oracle using tuple sieving, fur-
ther reducing the memory complexity to 2117. The time complexity then increases
to 2223, but still far from achieving the claimed 256-security level.

7.3 Experimental results

Table 3: The simulated error rates v.s. the estimated error rates.

q error rate
-estimated- -simulated-

q = 229 2−9.05 2−9.19

q = 229 + 226 2−12.64 2−12.96

q = 229 + 227 2−16.91 2−17.09

q = 229 + 227 + 226 + 225 2−24.62 2−24.57

We have implemented some of the parts of the attack to check performance
against theory. We have chosen exactly the same parameters in ss-ntru-pke as
well as in the attack, except for the q value, which in the experiment was set to
the values shown in Table 3. The reason being that is we wanted to lower the
decryption error rate so that simulation was possible.

We put two consecutive entries in f each of size 6.2 · σ and we generated error
vectors with two large positive entries each of size 9.2 · σ. For such choice, we
first verified the decryption error probabilities, as seen in Table 3. These match
the theoretical results well.

Table 4: The simulated error norm v.s. the estimated error norm. (M = 1024)

q error norm /(
√
2N − 2σ)

-estimated- -simulated-

q = 229 0.487 0.472
q = 229 + 226 0.391 0.360
q = 229 + 227 0.326 0.302

q = 229 + 227 + 226 + 225 0.261 0.250

For each choice of q we then collected up to M = 210+29 = 1536 error vec-
tors and processed them in a statistical analysis step, to get a good approximation
of (f, g). As the heuristic approach described, we first created an approximation

of (f, g), say denoted by (̂f, ĝ), by simply computing f̂i = E ·
∑M−1

j=0 e
(j)
i

M as the

7 A weak-key attack on ss-ntru-pke 139

Table 5: The simulated error norm v.s. the estimated error norm. (q = 229 +
227 + 226 + 225)

M error norm /(
√
2N − 2σ)

-estimated- -simulated-

M = 256 0.522 0.490
M = 512 0.369 0.348
M = 1024 0.261 0.250
M = 1536 0.213 0.212

value in the ith position. Here E is a constant that makes the norm of the vector
to be as the expected norm of f. Clearly, this is a very simple way of exploring the
dependence between fi and ei, but still it seems to be sufficient.

We have plotted the simulated error norms for various q and M in Fig. 9. Fur-
thermore, we show in Table 4 and Table 5 the comparison between the simulated
error norms and the estimated error norms according to Eq. (29).

In the prior table, M is fixed to 1024 and q varies, while in the latter table, q
is fixed to 229 + 227 + 226 + 225 and M varies. We see that in all the cases, the
simulated data match the estimated data well, though the simulation seems always
better than the estimation, i.e., with smaller error norms. Another observation
from Table 5 is that the estimation using the central limit theorem becomes more
accurate when M becomes larger, which is also very reasonable.

7.4 Summarizing the attack

The best attack is a CCA2 type attack where we in precomputation use 289+63 =
2152 operations to derive 263 special ciphertexts that are submitted for decryption.
With probability 2−64 the secret f has the desired property of two consecutive big
entries. If so, we will most likely see several decoding errors and such a weak key
has been detected. When the weak key has been detected, we perform yet another
precomputation that uses 2216 operations to derive 263 additional special cipher-
texts again submitted for decryption. We receive in expectation 1024 decryption
errors and the knowledge from the error vectors will allow us to reconstruct f with-
out too much trouble using lattice reduction algorithms, as experimental results
strongly indicated. The overall complexity is thus approximately 2217 if the SVP
oracle in BKZ is implemented via lattice sieving. Actually, the cost of the lattice
reduction algorithms in the final stage is not the bottleneck, since we can em-
ploy other powerful statistical tools in Step 3 (e.g., the Maximum Likelihood Test
approach) to make this cost negligible.

140 Paper II: Decryption Failure Attacks on IND-CCA Secure Lattice-Based Schemes

25
6

51
2

1
,0
24

1
,5
36

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

#(Errors)

Er
ro

rn
or

m
/
(√

2N
−
2σ

)
error rate= 2−9.19

error rate= 2−12.95

error rate= 2−17.09

error rate= 2−24.57

Figure 9: Error norm as a function of the number of collected error vectors.

8 Conclusion

In this paper we introduced a method to increase the decryption failure rate of a
scheme, based on the search for ‘weak’ ciphertexts. This method benefits an ad-
versary in at least three scenarios: if he has access to a quantum computer, if he
can only perform a limited number of decryption queries or if he wants to stage
a multi-target attack on schemes that do not have the appropriate protection. We
explicitly calculated the effect of failure boosting in these scenarios for various
(Ring/Module) LWE/LWR schemes. We also proposed a method to estimate the
secret key given ciphertexts that lead to decryption failures. The remaining secu-
rity after a certain number of decryption failures was calculated, given the exact
location of the error. We suggested three methods to obtain the exact location of
errors in failing ciphertexts. Finally, we estimated the security of several schemes
under an attack that optimally uses these decryption failures and show that for
some schemes the security is drastically reduced if an attacker can perform suffi-
cient decryption queries. However, for most NIST post-quantum standardization
candidates, the expected number of required decryption queries is too high for a

9 Acknowledgements 141

practical attack. We also identify the changes to this attack under a multi-target
scenario or when an attacker has only access to a limited number of decryption
queries.

We further proposed a generic weak-key attack model against lattice-based
schemes, which is slightly different from the previous attack, based on the ob-
servation that the error probability can be much higher for certain ‘weak’ keys.
We applied this model to attacking ss-ntru-pke, a version in the NTRUEncrypt
submission to the NIST Post-Quantum Standardization Process. Specifically, we
have presented an adaptive CCA attack on the claimed 256-bit classic security
level (NIST-V) of ss-ntru-pke. This attacking idea can be treated as extension
of reaction attacks [GJS16; Fab+17] that already jeopardize the CCA security of
MDPC and LDPC based crypto-systems.

9 Acknowledgements

The authors would like to thank Tancrède Lepoint and the anonymous reviewers
for their helpful comments. They would also like to thank Andreas Hülsing for
interesting discussions. This work was supported in part by the Research Coun-
cil KU Leuven: C16/15/058, by the European Commission through the Hori-
zon 2020 research and innovation programme Cathedral ERC Advanced Grant
695305, by the Research Council KU Leuven grants C14/18/067 and STG/17/019,
by the Norwegian Research Council (Grant No. 247742/070), by the Swedish
Research Council (Grant No. 2015-04528), by the Wallenberg AI, Autonomous
Systems and Software Program (WASP) funded by the Knut and Alice Wallenberg
Foundation, and by the Swedish Foundation for Strategic Research (SSF) project
RIT17-0005.

References

[Alb+18] M. R. Albrecht et al. Estimate all the LWE, NTRU schemes!
Cryptology ePrint Archive, Report 2018/331.
https://eprint.iacr.org/2018/331. 2018.

[Alk+16] E. Alkim, L. Ducas, T. Pöppelmann, and P. Schwabe.
“Post-quantum key exchange – a new hope”. In: USENIX Security
2016. 2016.

[APS15] M. Albrecht, R. Player, and S. Scott. On the concrete hardness of
Learning with Errors. Journal of Mathematical Cryptology. Oct.
2015.

[Baa+17] H. Baan et al. Round2: KEM and PKE based on GLWR.
Cryptology ePrint Archive, Report 2017/1183.
https://eprint.iacr.org/2017/1183. 2017.

https://eprint.iacr.org/2018/331
https://eprint.iacr.org/2017/1183

142 Paper II: Decryption Failure Attacks on IND-CCA Secure Lattice-Based Schemes

[Ber+18] D. J. Bernstein, L. G. Bruinderink, T. Lange, and L. Panny.
“HILA5 Pindakaas: On the CCA Security of Lattice-Based
Encryption with Error Correction”. In: AFRICACRYPT 18: 10th
International Conference on Cryptology in Africa. Ed. by A. Joux,
A. Nitaj, and T. Rachidi. Vol. 10831. Lecture Notes in Computer
Science. Marrakesh, Morocco: Springer, Heidelberg, Germany,
May 2018, pp. 203–216.

[Bol+14] A. Boldyreva, J. P. Degabriele, K. G. Paterson, and M. Stam. “On
Symmetric Encryption with Distinguishable Decryption Failures”.
In: Fast Software Encryption – FSE 2013. Ed. by S. Moriai.
Vol. 8424. Lecture Notes in Computer Science. Singapore:
Springer, Heidelberg, Germany, Mar. 2014, pp. 367–390.

[Bos+17] J. Bos et al. CRYSTALS – Kyber: a CCA-secure module-lattice-based
KEM. Cryptology ePrint Archive, Report 2017/634.
http://eprint.iacr.org/2017/634. 2017.

[BPR12] A. Banerjee, C. Peikert, and A. Rosen. “Pseudorandom Functions
and Lattices”. In: Advances in Cryptology – EUROCRYPT 2012:
31st Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Cambridge, UK, April 15-19, 2012.
Proceedings. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012,
pp. 719–737.

[Bra+13] Z. Brakerski, A. Langlois, C. Peikert, O. Regev, and D. Stehlé.
“Classical hardness of learning with errors”. In: 45th Annual ACM
Symposium on Theory of Computing. Ed. by D. Boneh,
T. Roughgarden, and J. Feigenbaum. Palo Alto, CA, USA: ACM
Press, June 2013, pp. 575–584.

[Che+16] J. H. Cheon, D. Kim, J. Lee, and Y. Song. Lizard: Cut off the Tail!
Practical Post-Quantum Public-Key Encryption from LWE and LWR.
Cryptology ePrint Archive, Report 2016/1126.
http://eprint.iacr.org/2016/1126. 2016.

[DAn+18] J.-P. D’Anvers, A. Karmakar, S. S. Roy, and F. Vercauteren. “Saber:
Module-LWR Based Key Exchange, CPA-Secure Encryption and
CCA-Secure KEM”. In: AFRICACRYPT 2018. 2018,
pp. 282–305.

[Din+16] J. Ding, S. Alsayigh, S. RV, S. Fluhrer, and X. Lin. Leakage of
Signal function with reused keys in RLWE key exchange. Cryptology
ePrint Archive, Report 2016/1176.
http://eprint.iacr.org/2016/1176. 2016.

http://eprint.iacr.org/2017/634
http://eprint.iacr.org/2016/1126
http://eprint.iacr.org/2016/1176

References 143

[DVV18] J.-P. D’Anvers, F. Vercauteren, and I. Verbauwhede. On the impact
of decryption failures on the security of LWE/LWR based schemes.
Cryptology ePrint Archive, Report 2018/1089.
https://eprint.iacr.org/2018/1089. 2018.

[Fab+17] T. Fabsic, V. Hromada, P. Stankovski, P. Zajac, Q. Guo, and
T. Johansson. A Reaction Attack on the QC-LDPC McEliece
Cryptosystem. Cryptology ePrint Archive, Report 2017/494.
http://eprint.iacr.org/2017/494. 2017.

[Flu16] S. Fluhrer. Cryptanalysis of ring-LWE based key exchange with key
share reuse. Cryptology ePrint Archive, Report 2016/085.
https://eprint.iacr.org/2016/085. 2016.

[FO99] E. Fujisaki and T. Okamoto. “Secure Integration of Asymmetric
and Symmetric Encryption Schemes”. In: Advances in Cryptology –
CRYPTO’99. Ed. by M. J. Wiener. Vol. 1666. Lecture Notes in
Computer Science. Santa Barbara, CA, USA: Springer,
Heidelberg, Germany, Aug. 1999, pp. 537–554.

[GJN19] Q. Guo, T. Johansson, and A. Nilsson. A Generic Attack on
Lattice-based Schemes using Decryption Errors with Application to
ss-ntru-pke. Cryptology ePrint Archive, Report 2019/043.
https://eprint.iacr.org/2019/043. 2019.

[GJS16] Q. Guo, T. Johansson, and P. Stankovski. “A Key Recovery Attack
on MDPC with CCA Security Using Decoding Errors”. In:
Advances in Cryptology – ASIACRYPT 2016, Part I. Ed. by
J. H. Cheon and T. Takagi. Vol. 10031. Lecture Notes in
Computer Science. Hanoi, Vietnam: Springer, Heidelberg,
Germany, Dec. 2016, pp. 789–815.

[GN07] N. Gama and P. Q. Nguyen. “New Chosen-Ciphertext Attacks on
NTRU”. In: PKC 2007: 10th International Conference on Theory
and Practice of Public Key Cryptography. Ed. by T. Okamoto and
X. Wang. Vol. 4450. Lecture Notes in Computer Science. Beijing,
China: Springer, Heidelberg, Germany, Apr. 2007, pp. 89–106.

[Gro96] L. K. Grover. “A Fast Quantum Mechanical Algorithm for
Database Search”. In: Proceedings of the Twenty-eighth Annual
ACM Symposium on Theory of Computing. STOC ’96. New York,
NY, USA: ACM, 1996, pp. 212–219.

[HGS99] C. Hall, I. Goldberg, and B. Schneier. “Reaction Attacks against
several Public-Key Cryptosystems”. In: ICICS 99: 2nd
International Conference on Information and Communication
Security. Ed. by V. Varadharajan and Y. Mu. Vol. 1726. Lecture
Notes in Computer Science. Sydney, Australia: Springer,
Heidelberg, Germany, Nov. 1999, pp. 2–12.

https://eprint.iacr.org/2018/1089
http://eprint.iacr.org/2017/494
https://eprint.iacr.org/2016/085
https://eprint.iacr.org/2019/043

144 Paper II: Decryption Failure Attacks on IND-CCA Secure Lattice-Based Schemes

[HHK17] D. Hofheinz, K. Hövelmanns, and E. Kiltz. “A Modular Analysis
of the Fujisaki-Okamoto Transformation”. In: TCC 2017: 15th
Theory of Cryptography Conference, Part I. Ed. by Y. Kalai and
L. Reyzin. Vol. 10677. Lecture Notes in Computer Science.
Baltimore, MD, USA: Springer, Heidelberg, Germany, Nov. 2017,
pp. 341–371.

[How+03a] N. Howgrave-Graham, P. Q. Nguyen, et al. “The Impact of
Decryption Failures on the Security of NTRU Encryption”. In:
Advances in Cryptology – CRYPTO 2003. Ed. by D. Boneh.
Vol. 2729. Lecture Notes in Computer Science. Santa Barbara,
CA, USA: Springer, Heidelberg, Germany, Aug. 2003,
pp. 226–246.

[How+03b] N. Howgrave-Graham, J. H. Silverman, A. Singer, and W. Whyte.
NAEP: Provable Security in the Presence of Decryption Failures.
Cryptology ePrint Archive, Report 2003/172.
http://eprint.iacr.org/2003/172. 2003.

[HS00] J. Hoffstein and J. H. Silverman. “Protecting NTRU Against
Chosen Ciphertext and Reaction Attacks”. In: 2000.

[Jia+17] H. Jiang, Z. Zhang, L. Chen, H. Wang, and Z. Ma. Post-quantum
IND-CCA-secure KEM without Additional Hash. Cryptology
ePrint Archive, Report 2017/1096.
https://eprint.iacr.org/2017/1096. 2017.

[JJ00] É. Jaulmes and A. Joux. “A Chosen-Ciphertext Attack against
NTRU”. In: Advances in Cryptology — CRYPTO 2000. Ed. by
M. Bellare. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000,
pp. 20–35.

[LPR10] V. Lyubashevsky, C. Peikert, and O. Regev. “On Ideal Lattices and
Learning with Errors over Rings”. In: Advances in Cryptology –
EUROCRYPT 2010: 29th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, French Riviera,
May 30 – June 3, 2010. Proceedings. Springer Berlin Heidelberg,
2010, pp. 1–23.

[LS15] A. Langlois and D. Stehlé. “Worst-case to average-case reductions
for module lattices”. In: Designs, Codes and Cryptography 75.3
(June 2015), pp. 565–599.

[Lu+17] X. Lu, Y. Liu, D. Jia, H. Xue, J. He, and Z. Zhang. Lac. Technical
report, National Institute of Standards and Technology. available
at https://csrc.nist.gov/projects/post-quantum-
cryptography/round-1-submissions. 2017.

http://eprint.iacr.org/2003/172
https://eprint.iacr.org/2017/1096
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions

References 145

[Nae+17] M. Naehrig et al. FrodoKEM. Technical report, National Institute
of Standards and Technology. available at
https://frodokem.org/files/FrodoKEM-specification-
20171130.pdf. 2017.

[NIS16] NIST. Submission Requirements and Evaluation Criteria for the
Post-Quantum Cryptography Standardization Process.
https://csrc.nist.gov/CSRC/media/Projects/Post-
Quantum-Cryptography/documents/call-for-proposals-
final-dec-2016.pdf. 2016.

[NIS19] NIST. NIST Post-Quantum Cryptography Forum. https:
//groups.google.com/a/list.nist.gov/g/pqc-forum
Accessed: 2019-01-11. 2019.

[NJS19] A. Nilsson, T. Johansson, and P. Stankovski. “Error Amplification
in Code-based Cryptography”. In: IACR Trans. Cryptogr. Hardw.
Embed. Syst. 2019.1 (2019), pp. 238–258.

[Pei09] C. Peikert. “Public-key Cryptosystems from the Worst-case
Shortest Vector Problem: Extended Abstract”. In: Proceedings of
the Forty-first Annual ACM Symposium on Theory of Computing.
STOC ’09. New York, NY, USA: ACM, 2009, pp. 333–342.

[Reg05] O. Regev. “On lattices, learning with errors, random linear codes,
and cryptography”. In: 37th Annual ACM Symposium on Theory of
Computing. Ed. by H. N. Gabow and R. Fagin. Baltimore, MA,
USA: ACM Press, May 2005, pp. 84–93.

[Saa17] M.-J. O. Saarinen. HILA5. Tech. rep. available at
https://csrc.nist.gov/projects/post-quantum-
cryptography/round-1-submissions. National Institute of
Standards and Technology, 2017.

[Sch+17a] J. M. Schanck, A. Hulsing, J. Rijneveld, and P. Schwabe.
NTRU-HRSS-KEM. Tech. rep. available at
https://csrc.nist.gov/projects/post-quantum-
cryptography/round-1-submissions. National Institute of
Standards and Technology, 2017.

[Sch+17b] P. Schwabe et al. Crystals-Kyber. Technical report, National
Institute of Standards and Technology. available at
https://csrc.nist.gov/projects/post-quantum-
cryptography/round-1-submissions. 2017.

[Sch+17c] P. Schwabe et al. NewHope. Technical report, National Institute of
Standards and Technology. available at
https://csrc.nist.gov/projects/post-quantum-
cryptography/round-1-submissions. 2017.

https://frodokem.org/files/FrodoKEM-specification-20171130.pdf
https://frodokem.org/files/FrodoKEM-specification-20171130.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://groups.google.com/a/list.nist.gov/g/pqc-forum
https://groups.google.com/a/list.nist.gov/g/pqc-forum
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions

146 Paper III: A key-recovery timing attack on post-quantum primitives using the …

[Seo+17] M. Seo, J. H. Park, D. H. Lee, S. Kim, and S.-J. Lee. Emblem and
R.Emblem. Technical report, National Institute of Standards and
Technology. available at
https://csrc.nist.gov/projects/post-quantum-
cryptography/round-1-submissions. 2017.

[Sma+17] N. P. Smart et al. Lima. Technical report, National Institute of
Standards and Technology. available at
https://csrc.nist.gov/projects/post-quantum-
cryptography/round-1-submissions. 2017.

[SS11] D. Stehlé and R. Steinfeld. “Making NTRU as Secure as
Worst-Case Problems over Ideal Lattices”. In: Advances in
Cryptology – EUROCRYPT 2011. Ed. by K. G. Paterson.
Vol. 6632. Lecture Notes in Computer Science. Tallinn, Estonia:
Springer, Heidelberg, Germany, May 2011, pp. 27–47.

[SXY17] T. Saito, K. Xagawa, and T. Yamakawa. Tightly-Secure
Key-Encapsulation Mechanism in the Quantum Random Oracle
Model. Cryptology ePrint Archive, Report 2017/1005.
https://eprint.iacr.org/2017/1005. 2017.

[Sze17] A. Szepieniec. Ramstake. Technical report, National Institute of
Standards and Technology. available at
https://csrc.nist.gov/projects/post-quantum-
cryptography/round-1-submissions. 2017.

[TU16] E. E. Targhi and D. Unruh. “Post-Quantum Security of the
Fujisaki-Okamoto and OAEP Transforms”. In: Theory of
Cryptography: 14th International Conference, TCC 2016-B, Beijing,
China, October 31-November 3, 2016, Proceedings, Part II. Springer
Berlin Heidelberg, 2016, pp. 192–216.

[Zha+17] Z. Zhang, C. Chen, J. Hoffstein, and W. Whyte. NTRUEncrypt.
Tech. rep. available at
https://csrc.nist.gov/projects/post-quantum-
cryptography/round-1-submissions. National Institute of
Standards and Technology, 2017.

https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://eprint.iacr.org/2017/1005
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions

Pa
p
er

III

A key-recovery timing attack
on post-quantum primitives
using the Fujisaki-Okamoto

transformation and its
application on FrodoKEM

Abstract

In the implementation of post-quantum primitives, it is well known that all com-
putations that handle secret information need to be implemented to run in con-
stant time. Using the Fujisaki-Okamoto transformation or any of its different vari-
ants, a CPA-secure primitive can be converted into an IND-CCA secure KEM. In
this paper we show that although the transformation does not handle secret infor-
mation apart from calls to the CPA-secure primitive, it has to be implemented in
constant time. Namely, if the ciphertext comparison step in the transformation is
leaking side-channel information, we can launch a key-recovery attack.

Several proposed schemes in round 2 of the NIST post-quantum standardiza-
tion project are susceptible to the proposed attack and we develop and show the
details of the attack on one of them, being FrodoKEM. It is implemented on the
reference implementation of FrodoKEM, which is claimed to be secure against all
timing attacks. Experiments show that the attack code is able to extract the secret
key for all security levels using about 230 decapsulation calls.

Q. Guo, T. Johansson, and A. Nilsson. “A Key-Recovery Timing Attack on Post-quantum
Primitives Using the Fujisaki-Okamoto Transformation and Its Application on FrodoKEM”. in:
Advances in Cryptology – CRYPTO 2020. Ed. by D. Micciancio and T. Ristenpart. Cham: Springer
International Publishing, 2020, pp. 359–386

148 Paper III: A key-recovery timing attack on post-quantum primitives using the …

1 Introduction

Post-Quantum Cryptography is the area of cryptographic research in the presence
of an, assumed to be practical, quantum computer. It is well known that most of
today’s public-key solutions are insecure under this assumption since they are based
on the difficulty of factoring or the discrete log problem. These two problems can
be solved in polynomial time if a large enough quantum computer exists [Sho94].
Instead, post-quantum cryptography is based on other hard problems, not known
to be broken by a quantum computer. The two most popular areas are lattice-based
schemes and code-based schemes.

Learning with errors (LWE) is a hard problem that is closely connected to
difficult problems in lattices, such as the shortest vector problem. Learning with
errors, or some version of the problem, is used in many of the recently proposed
schemes to build public-key encryption schemes (PKE) and key encapsulation
mechanisms (KEM).

Code-based schemes are similar to LWE schemes, but rely instead on difficult
coding theory problems, like finding a minimum (Hamming) weight codeword
in a binary code. Code-based schemes date back to 1978 and the McEliece PKE
scheme [McE78].

The importance of post-quantum cryptography is highlighted by the fact that
NIST is currently running a standardization project on post-quantum cryptogra-
phy [NIS18] which is in the second round. Most KEM- and PKE-schemes re-
maining in the NIST post-quantum cryptography standardization project (NIST
PQ project) are either lattice-based or code-based schemes.

A very common approach for the above mentioned types of schemes is to con-
struct a public-key encryption scheme that is secure in the chosen plaintext model
(CPA) and then use a generic transformation to transform the scheme into a IND-
CCA secure KEM. An IND-CCA secure primitive is secure in in the model of
indistinguishability under chosen ciphertext attacks. For definitions of these mod-
els, we refer to any textbook on the subject [Sma16]. The most common generic
transformation is the Fujisaki-Okamoto (FO) transformation [FO99] or any of
its many different variants [HHK17]. It gives IND-CCA security in the random
oracle model, and there is also a post-quantum secure version [HHK17]. This is
also the way lattice-based and code-based KEM schemes in the NIST PQ project
are constructed. They all use some version of the FO transformation.

In the implementation of post-quantum primitives, it is well known that all
computations that handle secret information need to be implemented to run in
constant time. Leakage of timing information can give information about se-
cret values. This is a hard problem in practice, as we might not trust just any
programmer to pay enough attention to such issues. There is now much focus
on constant time implementations for the remaining candidates in the NIST PQ
project and much research is devoted to examine cryptanalysis on so called side-
channels [BB03; Koc96]. This includes work showing attacks on schemes with

1 Introduction 149

implementations that leak timing information when processing secret data, such
as the step of decoding an error correcting code inside the decryption scheme.

In this paper we show that even though the FO transformation itself does
not handle secret information apart from calls to the CPA-secure PKE (running
in constant time), it still has to be implemented in constant time. Namely, if
the ciphertext comparison step in the FO transformation is leaking side-channel
information, we can launch a key-recovery attack. The attack is based on generat-
ing decryption failures in the CPA-secure primitive by modifying the ciphertext.
Through timing information we can learn whether a modified ciphertext is de-
crypted to the same message as the original ciphertext, or not.

This kind of attack has not been observed before, as several of the NIST candi-
dates provide implementations that are directly susceptible to the proposed attack.
We mention that at least the round 2 candidates FrodoKEM, LAC, BIKE, HQC,
ROLLO and RQC have all submitted reference implementations that potentially
leaked timing information in the ciphertext comparison step, and thus they might
be susceptible to this attack.

We decided to develop and show the details of the attack on one of them, be-
ing FrodoKEM. FrodoKEM is a lattice-based KEM where the security is based
on the LWE problem. It is a very conservative design with strong security proofs
and its design team contains many very distinguished cryptographers. In the doc-
ument [Nae+19] submitted to NIST, it is claimed that “All our implementations
avoid the use of secret address accesses and secret branches and, hence, are pro-
tected against timing and cache attacks.” An implementation of FrodoKEM that
can be attacked also appears in Open Quantum Safe [OQS20].

The attack on FrodoKEM is detailed in the paper and then implemented on
the reference implementation of FrodoKEM. Using experiments, we show that
the attack code, by measuring the execution time of full decapsulations, is able
to collect enough data for a complete secret key recovery using about 230 decap-
sulation queries. We target the FrodoKEM parameters for the highest security
level.

Previous work: Some previous work on using decryption failures in cryptanalysis
appeared in [How+03a; How+03b]. More recent attacks using decryption failures
on lattice-based schemes are to be found in [Bae+19; Bau+19; Ber+17; Flu16].
None of these attacks apply to CCA-secure schemes unless there is some misuse
of the scheme.

Attacks on CCA secure schemes based on failures were modelled in [DAn+19a]
and a complex attack on an NTRU version was presented. An attack on LAC
[Lu+19] using decryption errors was given in [GJY19].

Side-channel attacks were first proposed by Kocher in [Koc96]. In such an
attack, information obtained through physical measurements is used in the at-
tack, being timing information, power measurements, electromagnetic radiation
or other means. Brumley and Boneh attacked OpenSSL in [BB03], showing
that remote timing attacks are practical. Side-channel attacks on post-quantum

150 Paper III: A key-recovery timing attack on post-quantum primitives using the …

primitives have been proposed on signature schemes like BLISS [Bru+16]. Side-
channel attacks on encryption/KEM primitives have been less successful, but in-
clude [Fac+18] measuring the robustness of the candidates in the NIST PQ project
against cache-timing attacks. An attack on LWE schemes that use error correct-
ing codes for which decoding is not implemented in constant time was given
in [DAn+19b] and the same for code-based schemes are given in [Str10] and [Str13].

Paper organization: The remaining parts of the paper are organized as follows.
Section Section 2 gives basic notation and definitions used later in the paper. In
Section Section 3 we give a high-level description of the attack and describe the
general underlying ideas used to achieve success in building the key parts of the
attack. In Section Section 4 we describe the FrodoKEM scheme and briefly high-
light the weakness in its reference implementation. In Section Section 5 we give
the full details on how to apply the attack on FrodoKEM and recover the secret
key. Results on implementing the attack on the FrodoKEM reference implemen-
tation are given. Finally, we discuss in Section Section 6 a few other round 2
NIST schemes where the reference implementations can be attacked, including
LWE schemes using error correction and pure code-based schemes. Further de-
tails on how the attack could be adapted to LAC is found in the appendix.

2 Preliminary

We start by defining some useful notations used throughout the rest of the pa-
per. In post-quantum cryptography with emphasis on lattice-based or code-based
schemes, it makes sense to consider the message m ∈ M and ciphertext c ∈ C
as being vectors with entries in some alphabet Zq. A PKE is then a triple of al-
gorithms (KeyGen, Enc,Dec), where KeyGen generates the secret key sk ∈ SK
and the public key pk ∈ PK. The encryption algorithm Enc maps the message
to a ciphertext using the public key and the decryption algorithm Dec maps the
ciphertext back to a message using the secret key. Encryption may also use some
randomness denoted r ∈ R, that can be viewed as part of the input to the algo-
rithm. If c = Enc(pk,m; r), then decrypting such a ciphertext, i.e., computing
Dec(sk, pk, c), returns the ciphertext m. Some schemes may have a small fail-
ure probability, meaning that the decryption algorithm fails to return a correctly
encrypted message when decrypted.

A KEM is similarly defined as a triple of algorithms (KeyGen, Encaps, De-
caps), where KeyGen generates the secret key sk ∈ SK and the public key
pk ∈ PK. The encapsulation algorithm Encaps generates a random session key,
denoted as s ∈ S , and computes a ciphertext c using the public key. Applying the
decapsulation algorithm Decaps on a ciphertext using the secret key returns the
chosen session key s, or possibly a random output in case the ciphertext does not
fully match a possible output of the encapsulation algorithm.

3 A general description of the proposed attack 151

Security can be defined in many different models, but most commonly the
analysis is done in the CPA model, where the adversary essentially only have ac-
cess to the public key pk and the public encryption/encapsulation calls. In a CCA
model, the adversary is allowed to ask for decryptions/decapsulations of her choice.
So for example, the notion of IND-CCA for a KEM is defined through the fol-
lowing game: Let the ciphertext c be the encapsulation of the secret key s0 ∈ S .
Consider another randomly selected key s1 ∈ S . The adversary gets the ciphertext
c as well as sb, where b ∈ {0, 1} is randomly chosen. The adversarial task is to cor-
rectly predict b with as large probability as possible and access to the decapsulation
oracle is allowed for all ciphertext inputs except c. For more detailed definitions
of these different security models, we refer to any textbook on the subject, for
example [Sma16].

A very common approach is to construct a public-key primitive that is secure
in the CPA model and then use a generic transformation to transform the scheme
into a IND-CCA secure primitive. A common such generic transformation is the
FO transformation [FO99], which has also many different variants [HHK17]. It
gives IND-CCA security in the random oracle model and include a post-quantum
secure version [HHK17]. This is also the way lattice-based and code-based KEM
schemes in the NIST PQ project are constructed. They use some version of the
FO transformation. We will introduce and investigate the FO transformation in
relation to side-channel leakage in the next section.

3 A general description of the proposed attack

We describe the attack for post-quantum primitives in the form of KEMs, al-
though the attack could work for other types of PKC primitives as well.

Let PKE.CPA.Enc(pk,m; r) denote a public key encryption algorithm which
is secure in the CPA model. Here pk is the public key, m is the message to be
encrypted, and r is the randomness used in the scheme. The algorithm returns a
ciphertext c. Furthermore, let PKE.CPA.Dec(sk, pk, c) denote the corresponding
decryption algorithm. This algorithm returns a message, again denoted m.

We will now assume that the PKE.CPA.Dec(·) call is implemented in constant-
time and is not leaking any side-channel information.

The CCA-secure KEM is assumed to be obtained through some variant of the
FO transformation, resulting in algorithms for encapsulation and decapsulation
similar to algorithms Algorithm 1 and Algorithm 2 shown here.

Here k ∈ K and H1 and H2 are pseudo-random functions generating val-
ues indistinguishable from true randomness, with images R × K and S , respec-
tively. Also, (r′, k′) = (r, k) if m′ = m. The key generation algorithm, denoted
KEM.CCA.KeyGen, randomly selects a secret key sk and computes the corre-
sponding public key pk, and returns both of them. We note that essentially all
KEM candidates in the NIST PQ project can be written in the above form or in
some similar way.

152 Paper III: A key-recovery timing attack on post-quantum primitives using the …

Algorithm 1 KEM.CCA.Encaps

Input: pk
Output: c and s

1: pick a random m
2: (r, k)← H1(m, pk)
3: c← PKE.CPA.Enc(pk,m; r)
4: s← H2(c, k)
5: Return (c, s)

Algorithm 2 KEM.CCA.Decaps

Input: sk, pk, c
Output: s′

1: m′ ← PKE.CPA.Dec(sk, c)
2: (r′, k′)← H1(m′, pk)
3: c′ ← PKE.CPA.Enc(pk,m′; r′)
4: if (c′ = c) then
5: return s′ ← H2(c, k′)
6: else
7: return s′ ← H2(c, skr), where skr is a random seed in sk
8: end if

The side-channel attack is now described using calls to an oracle that deter-
mines whether, in the PKE.CPA.Dec(·) call, a modified ciphertext decrypts to
the same “message” or not. To be a bit more precise, we follow the steps in the
public KEM.CCA.Encaps algorithm and record the values of a chosen m, and
the corresponding computed r and ciphertext c. Then we modify the ciphertext
to c′ = c + d, where d denotes a predetermined modification to the ciphertext.
Finally, we require that the oracle can tell us if the modified ciphertext is still de-
crypted to the same message, i.e., whether m = PKE.CPA.Dec(sk, c′). If so, the
oracle returns 0. But if PKE.CPA.Dec(sk, c′) returns a different message, the ora-
cle returns 1. Finally, we assume that an oracle output of−1 represents a situation
when the oracle cannot decisively give an answer. The high-level construction of
the oracle is given in Algorithm Algorithm 3.

The notation t = Side-channel.information[X] means that side-channel infor-
mation of some kind is collected when executing algorithm X. This information
is then analyzed in the F (t) analysis algorithm. In our case we are collecting the
time of execution through the number of clock cycles and this is the assumed type
of side-channel information. At the end of the paper we discuss and argue for
the fact that other types of side-channel information can also be used, for example
analysis of power or electromagnetic emanations in case of microcontroller or pure

3 A general description of the proposed attack 153

Algorithm 3 Decryption.Error.In.CPAcall.Oracle

Input: m, a ciphertext modification d
Output: b (decryption failure or not)

1: (r, k)← H1(m, pk)
2: c← PKE.CPA.Enc(pk,m; r)
3: c′ ← c + d
4: t← Side-channel.information[KEM.CCA.Decaps(c′)]
5: b← F (t), where F (t) uses the side.channel information to determine

whether PKE.CPA.Dec(c′) returns m or not (b = 0 means returning m,
b = 1 means not returning m, and b = −1 means inconclusive)

6: return b

hardware implementations.
The design of F (t) is clearly a key part of the attack. Assuming we have found

an oracle that can give us decisive answers for some choices of m and ciphertext
modifications d, the final step is to extract information about the secret key used
in the PKE.CPA.Dec algorithm. This part will be highly dependent on the actual
scheme considered, but a general summary is given in Algorithm Algorithm 4.

Algorithm 4 Secret key recovery

Input: n1

Output: the secret key sk
1: for i = 0; i < n1; i← i+ 1 do
2: find (mi, di) such that Decryption.Error.In.CPAcall.Oracle(mi, di)∈

{0, 1}
3: end for
4: Use the determined set {((mi, di), 0 ≤ i < n)} to extract the secret key, by

exploring the relation between the secret key and modifications that cause
decryption errors in PKE.CPA.Dec.

5: return sk

3.1 Designing the oracle for LWE-based schemes

The main question is how to find m and ciphertext modifications d such that the
measured timing information may reveal whether PKE.CPA.Dec(c+d) inside the
KEM.CCA.Decaps(c + d) is returning the same message m or not. The general
idea is the following.

The side-channel information t ← timing.information[X] is simply the time
(clock cycles) it takes to execute X. The ciphertext of an LWE-based scheme, cre-
ated in PKE.CPA.Enc(pk,m; r) may consist of several parts, but at a general level

154 Paper III: A key-recovery timing attack on post-quantum primitives using the …

we may describe it as
c = g(pk,m; r) + e(r),

where e(r) is a vector of small error values, and g(pk,m; r) represents the remain-
ing part of the ciphertext generation in the scheme. Unique for post-quantum
schemes is the property that the error vector e(r) may vary a bit without affecting
the ability to decrypt the ciphertext to the correct message. So if we introduce a
modified ciphertext c′ = c+d, then the new ciphertext c′ = g(pk,m; r)+e(r)+d.
Two things can then happen. Either the modification d is small enough so that
it does not cause an error in decryption and m ← PKE.CPA.Dec(sk, c′); or the
modification d is big enough to cause an error in decryption and m ̸= m′ ←
PKE.CPA.Dec(sk, c′);

An observation is that when we have an error in decryption of c′, receiving
m′ (̸= m), then re-encrypting m′ in the decapsulation (line 3 of Algorithm Algo-
rithm 2) results in a completely different ciphertext, which is not at all similar to
c′. The attack relies on the fact that the side-channel information can be used to
distinguish between the two cases.

The key observation used in the paper is now that if we adopt a ciphertext
modification of the form

d = (00 · · · 0︸ ︷︷ ︸
n−l

dn−ldn−l+1 · · · dn−1),

i.e., we only modify the last l entries of the ciphertext, we have the two different
cases:

Either there is no decryption error, which leads to m = m′ ←PKE.CPA
.Dec(sk, c′), (r, k) = (r′, k′), and c = PKE.CPA.Enc(pk,m′; r′). So in the check
in line 4 of Algorithm 2, (c′ = c), we see that c′ and c are guaranteed identical
except for the last l positions.

If there is a decryption error, on the other hand, i.e., m ̸= m′ ←PKE.CPA
.Dec(sk, c′), then the next step in the decapsulation, (r′, k′)← H1(m′, pk) leads
to completely different values of (r′, k′), which in turn will give a completely dif-
ferent ciphertext c. In particular c′ and c will most likely have different values
already in the beginning of the vectors.

Finally, how can we separate the two cases using timing information? This is
possible since the check in line 4 of Algorithm 2, (c′ = c), involves checking
the equality of two long vectors and a standard implementation would terminate
after finding a position for which equality does not hold. In the first case above,
the first n − l positions are equal and we would have to run through and check
all of them before we terminate. In the second case, however, it is very likely to
terminate the check very quickly. Typical instructions for which this assumption
is true is the use of the memcmp function in C or the java.util.Arrays.equals
function in Java. The analysis function F (t), in its simplest form, is assumed to
have made some initial measurements to establish intervals I0, I1 for the time of

4 The FrodoKEM design and implementation 155

execution in the two cases and returns F (t) = 0 if the number of clock cycles
is in I0, F (t) = 1 if it is in I1 and F (t) = −1 otherwise. In practice, timing
measurements are much more complicated and more advanced methods to build
F (t) should be considered.

4 The FrodoKEM design and implementation

In the next section, we will apply our general attack on the FrodoKEM scheme, a
main candidate of round 2 in the NIST PQ project. FrodoKEM is a lattice-based
KEM with security based on the standard LWE problem. It is a conservative design
with security proofs. In the document [Nae+19] submitted to NIST, it is claimed
that “All our implementations avoid the use of secret address accesses and secret branches
and, hence, are protected against timing and cache attacks.” An implementation of
FrodoKEM that can be attacked also appears in Open Quantum Safe [OQS20].

4.1 The FrodoKEM design

FrodoKEM was firstly published in [Bos+16]. We describe the different algorithms
in FrodoKEM (from [Nae+19]) for the key generation, the key encapsulation, and
the key decapsulation in Algorithm Algorithm 5–Algorithm 7. We refer to the
design document [Nae+19] for all the design details and provide only algorithmic
descriptions of the relevant parts in the design. We now also use the notation from
the design paper.

Briefly, from an initial seed the key generation FrodoKEM.KeyGen generates
the secret and public keys. Note that from pk = (seedA,B), we generate A =
Frodo.Gen(seedA). We have the following equation for a key pair (pk, sk),

B = AS + E, (1)

where B, E, S ∈ Zn×n̄
q and A ∈ Zn×n

q . Note that while A and B are publicly
known both S and E are secrets and S is saved as part of sk to be used in the
decapsulation process, later. Here E, S are error matrices and by this we mean
that the entries in the matrices are small values (compared to Zq) and distributed
according to some predetermined distribution χ.

In an encapsulation, a uniformly random key µ $← U({0, 1}lenµ) is first cho-
sen. It is then used to generate a pseudorandom bit string that in turn determines
error matrices S′,E′,E′′. A ciphertext now contains two parts, one being S′A+E′

and the second part being S′B + E′′ + Frodo.Encode(µ). These matrices are
converted to bitstrings using the Frodo.Pack and Frodo.UnPack algorithms. The
shared key ss is computed using the pseudorandomness generator SHAKE.

156 Paper III: A key-recovery timing attack on post-quantum primitives using the …

Algorithm 5 FrodoKEM.KeyGen
Input: None.
Output: Key pair (pk, sk′) with pk ∈ {0, 1}lenseedA

+D·n·n̄,
sk′ ∈ {0, 1}lens+lenseedA

+D·n·n̄ × Zn×n̄
q × {0, 1}lenpkh .

1: Choose uniformly random seeds s||seedSE||z
$← U({0, 1}lens+lenseedSE

+lenz)
2: Generate pseudorandom seed seedA ← SHAKE(z, lenseedA

)
3: Generate the matrix A ∈ Zn×n

q via A← Frodo.Gen(seedA)
4: Generate pseudorandom bit string

(r(0), . . . , r(2nn̄−1))← SHAKE(0x5F||seedSE, 2nn̄ · lenχ)
5: Sample error matrix

S← Frodo.SampleMatrix((r(0), . . . , r(nn̄−1)), n, n̄, Tχ)
6: Sample error matrix

E← Frodo.SampleMatrix((r(nn̄), . . . , r(2nn̄−1)), n, n̄, Tχ)
7: Compute B← AS + E
8: Compute b← Frodo.Pack(B)
9: Compute pkh← SHAKE(seedA||b, lenpkh)

10: return public key pk← seedA||b and secret key
sk′ ← (s||seedA||b, S, pkh)

In decapsulation, the step M← C−B′S actually computes Frodo.Encode(µ′)+
S′E− E′S + E′′. Since S, S′,E,E′,E′′ all have small entries, also S′E− E′S + E′′

will have somewhat small entries and is regarded as noise. The Frodo.Decode
algorithm removes this noise and returns the initial seed µ′. The decapsulation
then continues by re-encrypting using this seed to get the corresponding cipher-
text B′′||C′. In line 16 the two ciphertexts are compared to check equality. If they
are equal, the correct shared key ss is returned.

The Frodo.SampleMatrix algorithm constructs the matrices with small values
from a distribution described by a table Tχ, as given in algorithms Algorithm 8
and Algorithm 9.

Algorithms Algorithm 10 and Algorithm 11 gives the encoding and decoding
procedures.

Finally, Frodo designs packing and unpacking algorithms to transform matri-
ces with entries in Zq to bit strings and vice versa, as described in Algorithm Al-
gorithm 12 and Algorithm Algorithm 13.

The security parameters of FrodoKEM are listed in Table Table 1.

4.2 A useful observation

A useful observation is that Line 16 in Frodo.Decaps (i.e., Algorithm Algorithm 7)
is, in the reference implementation, implemented in a standard way using the

4 The FrodoKEM design and implementation 157

Algorithm 6 FrodoKem.Encaps

Input: Public Key pk = seedA||b ∈ {0, 1}lenseedA
+D·n·n̄.

Output: Ciphertext c1||c2 ∈ {0, 1}(m̄·n+m̄·n̄)D and shared secret
ss ∈ {0, 1}lenss .

1: Choose a uniformly random key µ $← U({0, 1}lenµ)
2: Compute pkh← SHAKE(pk, lenpkh)
3: Generate pseudorandom values

seedSE||k← SHAKE(pkh||µ, lenseedSE
+ lenk)

4: Generate pseudorandom bit string
(r(0), . . . , r(2m̄n+m̄n̄−1))← SHAKE(0x96||seedSE, (2m̄n+ m̄n̄) · lenχ)

5: Sample error matrix
S′ ← Frodo.SampleMatrix((r(0), . . . , r(m̄n−1)), m̄, n, Tχ)

6: Sample error matrix
E′ ← Frodo.SampleMatrix((r(m̄n), . . . , r(2m̄n−1)), m̄, n, Tχ)

7: Generate A← Frodo.Gen(seedA)
8: Compute B′ ← S′A + E′

9: Compute c1 ← Frodo.Pack(B′)
10: Sample error matrix

E′′ ← Frodo.SampleMatrix((r(2m̄n), . . . , r(2m̄n+m̄n̄−1)), m̄, n̄, Tχ)
11: Compute B← Frodo.UnPack(b, n, n̄)
12: Compute V← S′B + E′′

13: Compute C← V + Frodo.Encode(µ)
14: Compute c2 ← Frodo.Pack(C)
15: Compute ss← SHAKE(c1||c2||k, lenss)
16: return ciphertext c1||c2 and shared secret ss

following code block.
1 // Is (Bp == BBp & C == CC) = true
2 if (memcmp(Bp, BBp , 2* PARAMS_N*PARAMS_NBAR) == 0 && memcmp(C,

CC, 2* PARAMS_NBAR*PARAMS_NBAR) == 0) {
3 memcpy(Fin_k , kprime , CRYPTO_BYTES);
4 } else {
5 memcpy(Fin_k , sk_s , CRYPTO_BYTES);
6 }

We follow the attack strategy from the previous section and assume that the
attacker modifies the c2 part in the ciphertext. If the modification does not affect
the output of Frodo.Decode, the re-encryption procedure will generate the same
tuple (S′,E′,E′′) and the check

1 memcmp(Bp, BBp , 2* PARAMS_N*PARAMS_NBAR) == 0

will be satisfied. Thus,

158 Paper III: A key-recovery timing attack on post-quantum primitives using the …

Table 1: Proposed parameters in FrodoKEM.

n q σ support of χ B m̄× n̄ Security

Frodo-640 640 215 2.8 [−12 . . . 12] 2 8× 8 1
Frodo-976 976 216 2.3 [−10 . . . 10] 3 8× 8 3

Frodo-1344 1344 216 1.4 [−6 . . . 6] 4 8× 8 5

1 memcmp(C, CC, 2* PARAMS_NBAR*PARAMS_NBAR) == 0

will be further executed. On the other hand, if Frodo.Decode outputs a different
message µ′, the first check will fail and the second check after the && operation
will be ignored. This type of mechanics is referred to as Short Circuit Evalua-
tion, and should not be employed to handle sensitive data. This could lead to a
significant difference when comparing the executed time.

More importantly though, the function memcmp is not implemented in a
constant time manner, meaning that if we change only the last part of C it will
lead to a longer execution time. We further explore this feature by only changing
the last part of C to enlarge the timing gap.

5 The attack applied on FrodoKEM

We first mention the adversary model, which is a CCA attack model with tim-
ing leakage. In this model, the adversary A sends a series of (valid or invalid)
ciphertexts to the decapsulation oracleO and could obtain the corresponding de-
capsulation time information. He then performs further analysis to recover the
secret key S.

5.1 The details of the attack

With a call to the PKE decryption function Frodo.Decode, FrodoKEM.Decaps
computes

M = C− B′S = Frodo.Encode(µ) + S′E− E′S + E′′.

The next lemma from [Nae+19] states the error size that can be handled by the
Frodo decode algorithm Frodo.Decode.

Lemma 5.1. Let q = 2D, B ≤ D. Then dc(ec(k) + e) = k for any k, e ∈ Z,
such that 0 ≤ k ≤ 2B and −q/2B+1 ≤ e < q/2B+1. Here dc is the decoding
function and ec is the encoding function.

We start by generating a valid ciphertext (c1||c2), which will be successfully
decrypted. This event happens with probability close to one since the designed

5 The attack applied on FrodoKEM 159

decryption failure probability of the CCA version of Frodo is very low. Let E′′′

denote the noise matrix, i.e.,

E′′′ = S′E− E′S + E′′. (2)

Note that S′,E′,E′′ are known values and E = B−AS due to Eq. (1). If we can de-
termine E′′′, we will have linear equations in the secret key value S. We know that
all the m̄×n̄ entries in the matrix E′′′ belong to the interval [−q/2B+1, q/2B+1) =
[−2D−B−1, 2D−B−1) because the decryption succeed.

We now show how to recover E′′′i,j , the element of the i-th row and j-th
column of E′′′. We first unpack c2 to C by applying Frodo.UnPack(c2) and our
goal is to decide the value x0 such that

E′′′i,j + x0 = 2D−B−1.

If we add a positive value x to the element of the i-th row and j-th column of C
to form C′, then this operation is equivalent to adding x to E′′′i,j . We pack C′

to c′2 and send the new ciphertext (c1||c′2) to the decapsulation procedure. If we
detect a fast execution, we know that a decryption failure occurred and the value
E′′′i,j +x should be outside the interval [−2D−B−1, 2D−B−1). Since x is picked
to be positive, then we know that

E′′′i,j + x ≥ 2D−B−1.

Otherwise, for a slow execution, we know that

E′′′i,j + x < 2D−B−1.

Since it will definitely lead to a decryption failure if choosing x = 2D−B ,
we could start the binary search by setting the initial interval as [0, 2D−B] and
determine x0 by (D −B − 1) different choices1 of x.

Due to the implementation of the memcmp function, we intend to introduce
the added noise at the tail part of c2, to enlarge the time difference. Therefore, we
aim to recover E′′′m̄−1,j ,where 0 ≤ j < n̄, for one valid ciphertext (c1||c2). For
such n̄ entries, the changes in the ciphertext are limited to the last n̄ positions.
Thus, if a decryption error is triggered and the re-encrypted ciphertext is a totally
different one, the timing difference could be large.

LetN denote the number of valid ciphertexts generated. One pair of generated
valid ciphertexts could provide us m̄× n̄ linear equations. For the Frodo parame-
ters, we always have m̄ = n̄ = 8. As described before, we only select n̄ equations
corresponding to the last n̄ entries in E′′′ with the largest time difference. Since we

1Due to the distribution of E′′′
i,j a minor optimization is possible; The binary search midpoint

selection is can be skewed towards the more likely values closer to the middle of the range. This
makes a small reduction in the average number of necessary binary search evaluations.

160 Paper III: A key-recovery timing attack on post-quantum primitives using the …

have n× n̄ unknown entries in S, we need roughly N ≈ n valid ciphertexts for a
full key-recovery if all the collected linear equations are independent2. Then, the
complexity can be roughly estimated as N × n̄× (D−B−1)×Ndis, where Ndis
is the required number of decryption attempts to decide if it is a fast execution or
not.

Last, we point out that if errors occur in the process of recovering the value of
x0, one could use a post-processing step like lattice reduction algorithms to handle
these errors and to fully recover the secret key. In this case, it would be helpful to
reduce the post-processing complexity if a few more equations are collected.

A summary of the attack procedure against FrodoKEM is given in Algorithm Al-
gorithm 14.

5.2 Simulation method

To increase the chances of successfully distinguishing the two outcomes for each
step of the binary search algorithm, the following actions were taken to minimize
the noise in our experiment and improving the accuracy of the measurements.

• Hyper Threading was turned off in BIOS.

• Intel SpeedStep was turned off in BIOS.

• Linux kernel’s scheduling governor was set to ‘performance’.

• All unnecessary processes in the system were turned off for the duration of
the measurements.

• The measurement program’s affinity was set to a single core.

• The remaining system processes’ CPU core affinity were set to the other
remaining cores.

• The measurement program’s priority was set to the highest value.

• The rdtscp instruction were used for measurements. This is a serializing
version of the rdtsc instruction which forces every preceding instruction
to complete before allowing the program to continue. This prevents the
CPU out-of-order execution from interfering with the measurements.

• Before starting the timer the decapsulation function is executed once, with-
out being measured, to warm up the data and instruction caches.

2As q is a large integer, the probability for a matrix to be full-rank is high. One could also collect
slightly more than n ciphertexts to ensure that a full-rank matrix will be obtained.

5 The attack applied on FrodoKEM 161

Despite the actions listed above the noise in the measurements are considerable,
and critically, the amount of noise and the shape of the histogram seems to be non-
constant. We compensate both by increasing the number of samples and also by
attempting a reliability estimation of each set of measurements and discard if they
do not seem to match what we expect. The rest of this section will be dedicated to
explaining how this has been done in the experiment.

Before running the binary search a warmup-phase is executed which ensures
that the CPU frequency stabilizes, branch prediction buffers are populated and the
cache is filled. These measurements are also used to calculate a very rough “cutoff”
limit above which no timing values will be recorded, as they are deemed too noisy
to be of any interest.

We begin by observing that the most significant measurements are those which
are closest to the minimum, since these are the values least affected by noise. In
our experiments, the most effective strategy to distinguish the two distributions
was to simply count the number of measurements whose values are lower than a
certain small threshold.

We establish a good threshold by profiling with a high number of iterations Ip
in 2 stages.

First we generate a set of measurements Mlow, with |Mlow| = Ip, as the first
part of the profiling step by repeatedly measuring with a single ciphertext modified
by a low amount (x = 1). The subsetTlow ⊂Mlow is the fractionFlow of the values
in Mlow whose measurements are smallest, i.e. |Tlow| = |Mlow| ∗ Flow. Flow is a
fixed value in the interval (0..1) and has been determined by experimentation (see
Section Section 5.3).

Llow = max(Tlow) is used to determine the similar fractionFhigh of values from
the second profiling stage Mhigh, whose values were generated by a high amount
of modification (x = 2D−B). That is to say

Thigh = {t|t ∈Mhigh, t ≤ Llow}

and

Fhigh =
|Thigh|
|Mhigh|

.

Flow (fixed) andFhigh (dynamic) are used in the next measurement phase where
the binary search algorithm decides whether or not it is experiencing a “fast” or
“slow” execution for the particular modification x under evaluation.

We use the set of measurements Mx (where |Mx| = Im) to denote the mea-
surements for a certain value of x and Tx the subset of measurements whose values
are lower than Llow, so

Tx = {t|t ∈Mx, t ≤ Llow}.

162 Paper III: A key-recovery timing attack on post-quantum primitives using the …

If
Fx =

|Tx|
|Mx|

is closer to Fhigh than to Flow then we assume E′′′i,j + x ≥ 2D−B−1. Likewise if
Fx is closer to Flow than to Fhigh then we assume E′′′i,j + x < 2D−B−1.

Reliability estimation

As previously mentioned, the measurement noise is considerable, due to the total
run-time of the decapsulation routine being so large relative to the difference we
wish to measure. The probability of making the wrong decision in each step of the
binary search algorithm is non-negligible and therefore some additional checks are
added, as detailed below.

If
Flow +

∆F

4
≤ Fx ≤ Fhigh −

∆F

4
,

where ∆F = Fhigh − Flow, then we deem Fx as too uncertain for us to draw any
conclusions. In such a case we do another round of measurements until either
Fx move beyond one of the limits or we give up. In the latter case we restart the
profiling phase and start over for that particular set of indexes (i, j).

Furthermore we additionally redo the binary search steps when they a) have
not changed direction3 in a number of steps or b) when we have narrowed the
possible range down to a single value and we wish to confirm our findings. For
case a) this helps with detection and recovery of bad early decisions. Case b) is a
way to lower the probability of finding an erroneous value due to a bad decision
later in the binary search.

Lastly we make sureFx ≤ Fhigh+∆F , otherwise we discard the measurements
since they indicates that the profile is no longer valid. In that case we restart with
a new profiling phase for the indexes i, j.

5.3 Results

The results documented in this section were generated4 on a i5–4200U CPU run-
ning at 1.6GHz using the FrodoKEM-1344-AES variant as implemented in the
Open Quantum Safe software library5 (liboqs) and compiled with default com-
piler flags.

In Fig. 1 we see that the timing difference is in the order of ≈ 4800 reference
clock cycles, as measured on our machine. In contrast, the entire FrodoKEM.Decaps

3i.e. if we either continuously lower the upper limit or continuously raise the lower limit for a
number of consecutive steps, then we retry the last step to guard against an earlier erroneous decision.

4Proof of concept implementation available at: https://github.com/atneit/
open-quantum-safe-attacks

5The latest official reference implementation at https://github.com/Microsoft/
PQCrypto-LWEKE appear to be identical to the implementation in liboqs.

https://github.com/atneit/open-quantum-safe-attacks
https://github.com/atneit/open-quantum-safe-attacks
https://github.com/Microsoft/PQCrypto-LWEKE
https://github.com/Microsoft/PQCrypto-LWEKE

6 Discussion on attacking other schemes 163

function requires≈ 12.7M clock cycles, in average, to complete when running on
the same machine. Thus we need to distinguish differences in the running time of
less than 0.04% of the total run-time of a single decapsulation.

Using the method previously described and with Flow = 1% (see the Llow
indication in Fig. 1) we get 85000 measured decapsulations per E′′′i,j value, split
between 10000 × 2 for profiling each index of E′′′i,j and 5000 for each step of
the binary search and confirmation stage. Factoring in retries of the binary search
the average number of decapsulations ends up at ≈ 97000. Using these settings
no incorrect values of E′′′i,j were obtained after collecting data for > 3000 out of
the 1344× 8 = 10752 equations necessary for complete key recovery.

5.4 Summary

For FrodoKEM-1344-AES E′′′ is a matrix of size 1344×8 and the attack as imple-
mented requires 97000× 1344× 8 ≈ 230 measured decapsulations to complete.
With an average runtime of 3.3 positions of E′′′i,j per hour (on the limited hard-
ware described above) we can make a complete key recovery in approximately 136
core-days. This is only taking the data collection phase into account, additional
computation for solving the linear equations is considered negligible in compari-
son.

A strategy to lower the sample complexity would be to improve upon our ad-
mittedly simple distinguisher for the two timing distributions. Another source of
potentially unnecessary samples is the repetition of the profiling phase for each set
of indexes and ciphertexts. It can be argued that a simple timing model could be
developed which would allow for a reuse of information from a single or smaller
number of profiling steps.

The sample complexity can be even lower if we increase the complexity of the
post-processing step using lattice reduction algorithms to deal with any decision
errors that would follow a reduced number of measured decapsulations.

Last, the complexity for attacking Frodo-640 and Frodo-976 will be lower
due to the smaller size of n. The reason is two-folds; we need to collect less equa-
tions and also for a fixed post-process cost (again using lattice reduction tech-
niques), we can handle larger decision errors in the binary search.

6 Discussion on attacking other schemes

The new timing attack could also be applied on the NIST PQC round-2 imple-
mentations of LAC [Lu+19], HQC [Agu+19b], BIKE6 [Ara+19a], Rollo [Ara+19b],
and RQC [Agu+19a], where the non constant-time function memcmp or a short
circuit evaluation is employed in the implementation of the FO transform to check

6The attack discussed using the memcmp function appears to not be applicable to BIKE’s im-
plementation in the Open Quantum Safe project nor the latest reference implementation (available
on https://bikesuite.org).

https://bikesuite.org

164 Paper III: A key-recovery timing attack on post-quantum primitives using the …

0 1000 2000 3000 4000 5000

Reference clock-cycles

0.000

0.005

0.010

0.015

0.020

D
en

si
ty

memcmp only

x = 0

x = 1

x = 2D−B

1.267 1.268 1.269 1.270 1.271 1.272 1.273

Reference clock-cycles ×107

0.00000

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

D
en

si
ty

FrodoKEM.Decaps

x = 0

x = 1

x = 2D−B

Figure 1: Histograms of timing measurements of only the memcmp function-call
(the C = C′ check) and the entire decapsulation function, respectively. The same
ciphertext was sent to the decapsulation function modified in the last position
(i = j = n̄− 1) of Ci,j by the amount x according to the legend. The curves are
the Kernel Density Estimate over the raw measurements. The vertical bar indicates
the Llow value where F1 = 1%. In this graph we see that the cutoff limits are at
5500 and 12730000 respectively, above which no values were recorded. 10000
decapsulations each were measured to generate the two figures.

7 Conclusions and future works 165

the re-encrypted ciphertexts. The similar designs indicate that they should be vul-
nerable to the newly proposed attack and the leaked timing information allows a
key recovery.

The attack should be slightly adjusted when being applied to schemes like LAC
and HQC where additional error-correcting codes are implemented to further re-
duce the decryption failure probability. In their published implementations, ef-
forts have been made to ensure the BCH decoding to be constant-time in LAC
and the recently revised HQC implementation, but a constant-time implementa-
tion for the FO transform do not appear to be considered. This knowledge-gap
could lead to severe security issues. We refer the interested readers to the appendix
for more details on a proposed adaptation of the attack for LAC. The attack on
HQC is similar.

We also noted a similar problem in a java implementation of NTRUEncrypt in
the NTRU Open Source Project [NTR20], using a non constant-time comparison
java.util.Arrays.equals for implementing the FO transform.

For all of the schemes mentioned in this paper we suggest to use the constant-
time counterpart to memcmp (or similar). To do so should not impact the per-
formance of the schemes in any way.

7 Conclusions and future works

We have presented a novel timing attack that can be applied to lattice-based or
code-based schemes that use the FO transformation. It uses timing leakage in
the ciphertext comparison step of the FO transformation and it can potentially
recover the secret key. We applied it on FrodoKEM and implemented the attack
with the result that we, with experiments, extrapolated that enough information
to determine the secret key can be obtained by measuring about 230 decapsulation
calls. Additionally we derived some details of how the attack can be adapted to
work on LAC, see appendix.

The attack applies also a number of other round 2 candidates, although we did
not fully derive the details of the attack for other schemes, nor did we implement
the attack on them.

Note that the current attack could not directly be applied to the submitted
reference implementations of, for example, NewHope [Pop+19], Kyber [Sch+19],
classic McEliece [Ber+19], or the latest implementation of BIKE (including the
BIKE implementation in Open Quantum Safe).

Following the basic idea of the attack on FrodoKEM, one can note that the
bitwise sum of the two ciphertexts to be compared have quite different Hamming
weights in the two cases of generating a decryption failure or not in the call to the
CPA-secure primitive. If a modified ciphertext is decrypted to the same message,
the Hamming weights of the xor differences is very low. Such a scenario opens
up for other types of side-channel attacks like power analysis, since operations on

166 Paper III: A key-recovery timing attack on post-quantum primitives using the …

binary data with different Hamming weight is a typical source of leakage in power
analysis.

8 Acknowledgements

The authors would like to thank the anonymous reviewers from CRYPTO 2020
for their helpful comments. This work was partially supported by the Wallenberg
AI, Autonomous Systems and Software Program (WASP) funded by the Knut and
Alice Wallenberg Foundation, by the Norwegian Research Council (Grant No.
247742/070), by the SSF SURPRISE project and the Swedish Research Council
(Grant No. 2019-04166).

References

[Agu+19a] C. Aguilar Melchor, N. Aragon, S. Bettaieb, L. Bidoux, O. Blazy,
J.-C. Deneuville, P. Gaborit, G. Zémor, et al. RQC. Tech. rep.
available at https://csrc.nist.gov/projects/post-
quantum-cryptography/round-2-submissions. National
Institute of Standards and Technology, 2019.

[Agu+19b] C. Aguilar Melchor, N. Aragon, S. Bettaieb, L. Bidoux, O. Blazy,
J.-C. Deneuville, P. Gaborit, E. Persichetti, et al. HQC. Tech. rep.
available at https://csrc.nist.gov/projects/post-
quantum-cryptography/round-2-submissions. National
Institute of Standards and Technology, 2019.

[Ara+19a] N. Aragon, P. Barreto, et al. BIKE. Tech. rep. available at
https://csrc.nist.gov/projects/post-quantum-
cryptography/round-2-submissions. National Institute of
Standards and Technology, 2019.

[Ara+19b] N. Aragon, O. Blazy, et al. ROLLO. Tech. rep. available at
https://csrc.nist.gov/projects/post-quantum-
cryptography/round-2-submissions. National Institute of
Standards and Technology, 2019.

[Bae+19] C. Baetu, F. B. Durak, L. Huguenin-Dumittan, A. Talayhan, and
S. Vaudenay. “Misuse Attacks on Post-quantum Cryptosystems”.
In: Advances in Cryptology – EUROCRYPT 2019, Part II. Ed. by
Y. Ishai and V. Rijmen. Vol. 11477. Lecture Notes in Computer
Science. Darmstadt, Germany: Springer, Heidelberg, Germany,
May 2019, pp. 747–776.

https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions

References 167

[Bau+19] A. Bauer, H. Gilbert, G. Renault, and M. Rossi. “Assessment of
the Key-Reuse Resilience of NewHope”. In: Topics in Cryptology –
CT-RSA 2019. Ed. by M. Matsui. Vol. 11405. Lecture Notes in
Computer Science. San Francisco, CA, USA: Springer,
Heidelberg, Germany, Mar. 2019, pp. 272–292.

[BB03] D. Brumley and D. Boneh. “Remote Timing Attacks Are
Practical”. In: USENIX Security 2003: 12th USENIX Security
Symposium. Washington, DC, USA: USENIX Association, Aug.
2003.

[Ber+17] D. J. Bernstein, L. G. Bruinderink, T. Lange, and L. Panny.
HILA5 Pindakaas: On the CCA security of lattice-based encryption
with error correction. Cryptology ePrint Archive, Report
2017/1214. https://eprint.iacr.org/2017/1214. 2017.

[Ber+19] D. J. Bernstein, T. Chou, et al. Classic McEliece. Tech. rep.
available at https://csrc.nist.gov/projects/post-
quantum-cryptography/round-2-submissions. National
Institute of Standards and Technology, 2019.

[Bos+16] J. W. Bos et al. “Frodo: Take off the Ring! Practical,
Quantum-Secure Key Exchange from LWE”. In: ACM CCS 2016:
23rd Conference on Computer and Communications Security. Ed. by
E. R. Weippl, S. Katzenbeisser, C. Kruegel, A. C. Myers, and
S. Halevi. Vienna, Austria: ACM Press, Oct. 2016, pp. 1006–1018.

[Bru+16] L. G. Bruinderink, A. Hülsing, T. Lange, and Y. Yarom. “Flush,
Gauss, and Reload - A Cache Attack on the BLISS Lattice-Based
Signature Scheme”. In: Cryptographic Hardware and Embedded
Systems – CHES 2016. Ed. by B. Gierlichs and A. Y. Poschmann.
Vol. 9813. Lecture Notes in Computer Science. Santa Barbara,
CA, USA: Springer, Heidelberg, Germany, Aug. 2016,
pp. 323–345.

[DAn+19a] J.-P. D’Anvers, Q. Guo, T. Johansson, A. Nilsson, F. Vercauteren,
and I. Verbauwhede. “Decryption Failure Attacks on IND-CCA
Secure Lattice-Based Schemes”. In: PKC 2019: 22nd International
Conference on Theory and Practice of Public Key Cryptography,
Part II. Ed. by D. Lin and K. Sako. Vol. 11443. Lecture Notes in
Computer Science. Beijing, China: Springer, Heidelberg,
Germany, Apr. 2019, pp. 565–598.

[DAn+19b] J.-P. D’Anvers, M. Tiepelt, F. Vercauteren, and I. Verbauwhede.
“Timing attacks on error correcting codes in post-quantum
schemes”. In: Proceedings of ACM Workshop on Theory of
Implementation Security Workshop. 2019, pp. 2–9.

https://eprint.iacr.org/2017/1214
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions

168 Paper III: A key-recovery timing attack on post-quantum primitives using the …

[Fac+18] A. Facon, S. Guilley, M. Lec’Hvien, A. Schaub, and Y. Souissi.
“Detecting cache-timing vulnerabilities in post-quantum
cryptography algorithms”. In: 2018 IEEE 3rd International
Verification and Security Workshop (IVSW). IEEE. 2018, pp. 7–12.

[Flu16] S. Fluhrer. Cryptanalysis of ring-LWE based key exchange with key
share reuse. Cryptology ePrint Archive, Report 2016/085.
http://eprint.iacr.org/2016/085. 2016.

[FO99] E. Fujisaki and T. Okamoto. “Secure Integration of Asymmetric
and Symmetric Encryption Schemes”. In: Advances in Cryptology –
CRYPTO’99. Ed. by M. J. Wiener. Vol. 1666. Lecture Notes in
Computer Science. Santa Barbara, CA, USA: Springer,
Heidelberg, Germany, Aug. 1999, pp. 537–554.

[GJY19] Q. Guo, T. Johansson, and J. Yang. “A Novel CCA Attack Using
Decryption Errors Against LAC”. In: Advances in Cryptology –
ASIACRYPT 2019, Part I. Ed. by S. D. Galbraith and S. Moriai.
Vol. 11921. Lecture Notes in Computer Science. Kobe, Japan:
Springer, Heidelberg, Germany, Dec. 2019, pp. 82–111.

[HHK17] D. Hofheinz, K. Hövelmanns, and E. Kiltz. “A Modular Analysis
of the Fujisaki-Okamoto Transformation”. In: TCC 2017: 15th
Theory of Cryptography Conference, Part I. Ed. by Y. Kalai and
L. Reyzin. Vol. 10677. Lecture Notes in Computer Science.
Baltimore, MD, USA: Springer, Heidelberg, Germany, Nov. 2017,
pp. 341–371.

[How+03a] N. Howgrave-Graham, P. Q. Nguyen, et al. “The Impact of
Decryption Failures on the Security of NTRU Encryption”. In:
Advances in Cryptology – CRYPTO 2003. Ed. by D. Boneh.
Vol. 2729. Lecture Notes in Computer Science. Santa Barbara,
CA, USA: Springer, Heidelberg, Germany, Aug. 2003,
pp. 226–246.

[How+03b] N. Howgrave-Graham, J. H. Silverman, A. Singer, and W. Whyte.
NAEP: Provable Security in the Presence of Decryption Failures.
Cryptology ePrint Archive, Report 2003/172.
http://eprint.iacr.org/2003/172. 2003.

[Koc96] P. C. Kocher. “Timing Attacks on Implementations of
Diffie-Hellman, RSA, DSS, and Other Systems”. In: Advances in
Cryptology – CRYPTO’96. Ed. by N. Koblitz. Vol. 1109. Lecture
Notes in Computer Science. Santa Barbara, CA, USA: Springer,
Heidelberg, Germany, Aug. 1996, pp. 104–113.

http://eprint.iacr.org/2016/085
http://eprint.iacr.org/2003/172

References 169

[Lu+19] X. Lu et al. LAC. Tech. rep. available at
https://csrc.nist.gov/projects/post-quantum-
cryptography/round-2-submissions. National Institute of
Standards and Technology, 2019.

[McE78] R. J. McEliece. “A public-key cryptosystem based on algebraic”.
In: Coding Thv 4244 (1978), pp. 114–116.

[Nae+19] M. Naehrig et al. FrodoKEM. Tech. rep. available at
https://csrc.nist.gov/projects/post-quantum-
cryptography/round-2-submissions. National Institute of
Standards and Technology, 2019.

[NIS18] NIST. NIST Post-Quantum Cryptography Standardization.
https://csrc.nist.gov/Projects/Post-Quantum-
Cryptography/Post-Quantum-Cryptography-
Standardization Accessed: 2018-09-24. 2018.

[NTR20] NTRU. NTRU Open Source Project.
https://github.com/NTRUOpenSourceProject Accessed:
2020-02-10. 2020.

[OQS20] OQS. Open Quantum Safe. https://openquantumsafe.org
Accessed: 2020-01-21. 2020.

[Pop+19] T. Poppelmann et al. NewHope. Tech. rep. available at
https://csrc.nist.gov/projects/post-quantum-
cryptography/round-2-submissions. National Institute of
Standards and Technology, 2019.

[Sch+19] P. Schwabe et al. CRYSTALS-KYBER. Tech. rep. available at
https://csrc.nist.gov/projects/post-quantum-
cryptography/round-2-submissions. National Institute of
Standards and Technology, 2019.

[Sho94] P. W. Shor. “Algorithms for Quantum Computation: Discrete
Logarithms and Factoring”. In: 35th Annual Symposium on
Foundations of Computer Science. Santa Fe, NM, USA: IEEE
Computer Society Press, Nov. 1994, pp. 124–134.

[Sma16] N. P. Smart. Cryptography Made Simple. Information Security and
Cryptography. Springer, Heidelberg, Germany, 2016.

[Str10] F. Strenzke. “A Timing Attack against the Secret Permutation in
the McEliece PKC”. In: The Third International Workshop on
Post-Quantum Cryptography, PQCRYPTO 2010. Ed. by
N. Sendrier. Darmstadt, Germany: Springer, Heidelberg,
Germany, May 2010, pp. 95–107.

https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://github.com/NTRUOpenSourceProject
https://openquantumsafe.org
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions

170 Paper III: A key-recovery timing attack on post-quantum primitives using the …

[Str13] F. Strenzke. “Timing Attacks against the Syndrome Inversion in
Code-Based Cryptosystems”. In: Post-Quantum Cryptography - 5th
International Workshop, PQCrypto 2013. Ed. by P. Gaborit.
Limoges, France: Springer, Heidelberg, Germany, June 2013,
pp. 217–230.

References 171

Appendix A: The attack on LAC

In this section, we focus on applying the new attack on LAC [Lu+19]. Similar
procedures can also be used in attacking HQC after some minor modifications,
and the framework is the same as we described here for general schemes with ECC.

LAC is a lattice-based proposal to the NIST Post-quantum Standardization
project that has advanced to the second round. It includes three different versions,
LAC128-v2, LAC192-v2, and LAC256-v2, aiming for the security levels of 128,
192, and 256 bits, respectively. We take LAC128-v2 as an instance to describe
how the new timing attacks can be applied to the LAC proposal. The concrete
parameters of LAC128-v2 are shown in Table Table 2.

Table 2: Proposed parameters of LAC128-v2.

n q R h η Distribution ecc bit-er DFR Security

512 251 Zq [x]
⟨xn+1⟩ 256 400 Ψ1,Ψ

n,h
1 BCH[511, 256, 33] 2−12.61 2−116 I

Notations. Let the modulus be q, and the underlying polynomial ring be R =
Zq/(x

n + 1). The distribution Ψ1 randomly outputs 0 with probability 1/2 and
outputs 1 (or −1) with probability 1/4. For a positive integer h, the distribution
Ψn,h

1 outputs a length-n vector with h/2 ones, h/2 minus-ones, and (n − h)
zeros.

The LAC design. The LAC scheme has an extreme design with a very small q and
therefore the position-wise error probability (denoted as bit-er in Table Table 2) is
rather large. It uses an error correcting codes (ECC) to further reduce the overall
decryption error probability. The concrete code used is a BCH code with length
511, dimension 256, and minimum distance 33. Thus, the error correcting ca-
pability of the employed BCH code is 16. This code is a shorten code and the
parameter η denotes the size of the information and the redundant data. In the
second round submission, the designers employ a compression function to reduce
the ciphertext size in transmission.

The algorithms in the LAC proposal for key generation, key encapsulation, and
key decapsulation can be found in [Lu+19]. We list them here for completeness.

A general approach for attacking schemes with ECC. We now describe the general
attacking framework. Similar to the FrodoKEM, the ciphertext is generally of the
form (c1||c2) and the decoding is done by computing c2 − c1s, where s is the
secret key. In the schemes with ECC, however, the ambient space is a polynomial
ring where a vector can be also treated as a polynomial. Thus, we could mix the
use of the notations of s(x) and s if there is no ambiguity.

The main tool is still to introduce additional noise in the last part of c2, which
can be done by adding a large value to a position in the Euclidean case (for LAC)

172 Paper III: A key-recovery timing attack on post-quantum primitives using the …

or by filliping many bits within a small chunk of positions in the Hamming case
(for HQC). The aim is then to recover the noise variables w.r.t. certain positions,
which are linear functions of the secret key by testing the minimal added noise size
that could lead to a decryption error. The decryption will lead to a fast checking in
the non constant-time FO implementation since the re-encrypted ciphertext are
random vectors leading to a difference at the beginning part of the ciphertexts c1,
as described. However, since the overall decryption error happen only if strictly
more than δ0 position errors occur in the decryption phase, the attack strategy is
less straightforward.

Since one could trigger a position error using the described process of intro-
ducing a rather large noise, the attacker is capable of adding position errors at the
last positions to ensure the number of position errors to be exactly δ0. The attacker
is then capable of detecting if an uncontrolled position is erroneous or error-free
— he could add a big noise to that position and this will lead to a decryption error
if the position is error-free.

The attacker picks a position close to the controlled error positions that are
error-free and tests the error value in that position by the binary search as dis-
cussed in the previous section for FrodoKEM. The error term is generally in the
form ofw(x) = e(x)r(x)−e1(x)s(x)+e2(x), where e(x) and s(x) contain the
secret key information, and r(x), e1(x), and e2(x) could be known from the en-
capsulation algorithm. Thus, we can obtain one linear equation whose unknowns
are the coefficients of e(x) and s(x) from the detected one coefficient (position)
of w(x). Also, note that we already know n linear equations w.r.t. the coefficients
of e(x) and s(x) from the key generation procedure. The attack proceeds by gen-
erating more ciphertexts until a sufficient number of equations are collected for a
full key-recovery.

Dealing with the compression function. In the round-2 submission of LAC, a
ciphertext compression technique is employed, introducing an additional round-
ing error. Thus, the general attack approach should be tweaked to handle this
unknown noise part.

In the reference implementation of LAC128-v2, the comparison between the
ciphertext and the re-encrypted one is implemented as follows.

1 // verify
2 if(memcmp(c,c_v ,CIPHER_LEN)!=0)
3 {
4 //k=hash(hash(sk)|c)
5 hash((unsigned char*)sk ,DIM_N ,buf);
6 hash(buf ,MESSAGE_LEN+CIPHER_LEN ,k);
7 }

Here, c = (c1||c2,compressed), where c1 is a length-512 vector (or polynomial)
and c2,compressed is the compressed ciphertext part of length 200, and cv is the
re-encrypted ciphertext of the same size. Each byte in c2,compressed is the con-
catenation of the 4 most significant bits in the two corresponding positions in

References 173

c2. Thus, the final noise term should include a new polynomial e3(x) from the
compression operation. Since this polynomial is from a rounding operation and
unknown to us, the above general approach can not be directly applied.

On the other hand, it is already shown in [DAn+19a] that if one can detect if a
position is erroneous, then a few thousand such erroneous positions could lead to
a full recovery. We next show in detail the procedure of determining the erroneous
positions, which is an elaboration of the method described in the general attack.

For LAC128-v2, the position-wise decoding is successful if the error variable
corresponding to that position lies in the interval of [−62, 62], and in this case,
the value has a small absolute value with high probability. Let c2 be the vector
of length 400, which will be compressed to c2,compressed of length 200 in the
ciphertext. Then, it will cause a position error with high probability if adding 125
to a position in c2 and compressing the new c2 to c′2,compressed by the compression
function. Since the position error probability for LAC128-v2 is only 2−12.61

(see Table Table 2), it will have δ0 = 16 position errors with high probability
if one adds 125 to the last 16 entries in c2. The threshold δ0 is set to be 16
since the error correcting capability of the employed BCH codes is exactly 16.
With some probability (of about 384/212.6), one could find one position error
originally occurs in the first 384 positions of c2. Thus, it will lead to a different
re-encryption if one adds 125 to the last 16 positions of c2, but not if only 15
positions are changed. After finding this state, the attacker can keep the last 15
positions of c2 added by 125 and also add the i-th position in c2 by 125. He
then compresses the invalid ciphertext and sends it to the decryption oracle. If
the i-th position is already erroneous, the number of position errors will not be
increased and a fast check cannot be detected via the timing channel. All additions
are operated over Zq.

The other LAC versions can be attacked in a similar manner, and the attack
version on LAC256-v2 with the D2 encoding would need a slight adjustment.

174 Paper IV: A Weighted Bit Flipping Decoder for QC-MDPC-based Cryptosystems

Algorithm 7 FrodoKEM.Decaps

Input: Ciphertext c1||c2 ∈ {0, 1}(m̄·n+m̄·n̄)D, secret
sk′ ∈ {0, 1}lens+lenseedA

+D·n·n̄ × Zn×n̄
q × {0, 1}lenpkh .

Output: Shared secret ss ∈ {0, 1}lenss .
1: B′ ← Frodo.UnPack(c1)
2: C← Frodo.UnPack(c2)
3: Compute M← C− B′S
4: Compute µ′ ← Frodo.Decode(M)
5: Parse pk← seedA||b
6: Generate pseudorandom values

seedSE′ ||k′ ← SHAKE(pkh||µ′, lenseedSE
+ lenk)

7: Generate pseudorandom bit string
(r(0), . . . , r(2m̄n+m̄n̄−1))← SHAKE(0x96||seedSE′ , (2m̄n+ m̄n̄) · lenχ)

8: Sample error matrix
S′ ← Frodo.SampleMatrix((r(0), . . . , r(m̄n−1)), m̄, n, Tχ)

9: Sample error matrix
E′ ← Frodo.SampleMatrix((r(m̄n), . . . , r(2m̄n−1)), m̄, n, Tχ)

10: Generate A← Frodo.Gen(seedA)
11: Compute B′′ ← S′A + E′

12: Sample error matrix
E′′ ← Frodo.SampleMatrix((r(2m̄n), . . . , r(2m̄n+m̄n̄−1)), m̄, n̄, Tχ)

13: Compute B← Frodo.UnPack(b, n, n̄)
14: Compute V← S′B + E′′

15: Compute C′ ← V + Frodo.Encode(µ′)
16: if B′||C = B′′||C′ then
17: Return shared secret ss← SHAKE(c1||c2||k′, lenss)
18: else
19: Return shared secret ss← SHAKE(c1||c2||s, lenss)
20: end if

References 175

Algorithm 8 Frodo.Sample

Input: A (random) bit string r = (r0, . . . , rlenχ−1) ∈ {0, 1}
lenχ , the table

Tχ = (Tχ(0), . . . , Tχ(s)).
Output: A sample e ∈ Z.

1: t←
∑lenχ−1

i=1 ri · 2i−1
2: e← 0
3: for z = 0; z < s; z ← z + 1 do
4: if t > Tχ(z) then
5: e← e+ 1
6: end if
7: end for
8: e← (−1)r0 · e
9: return C

Algorithm 9 Frodo.SampleMatrix

Input: A (random) bit string r = (r(0), . . . , r(n1×n2−1)) ∈ {0, 1}n1n2·lenχ , the
table Tχ.

Output: A sample E ∈ Zn1×n2 .
1: for i = 0; i < n1; i← i+ 1 do
2: for j = 0; j < n2; j ← j + 1 do
3: Ei,j ← Frodo.Sample(r(i·n2+j), Tχ)
4: end for
5: end for
6: return E

Algorithm 10 Frodo.Encode

Input: Bit string k ∈ {0, 1}l, l = B · m̄ · n̄.
Output: Matrix K ∈ Zm̄×n̄

q .
1: for i = 0; i < m̄; i← i+ 1 do
2: for j = 0; j < n̄; j ← j + 1 do
3: k =

∑B−1
l=0 k(i·n̄+j)B+l · 2l

4: Ki,j ← ec(k) = k · q/2B
5: end for
6: end for
7: return K = (Ki,j)0≤i≤m̄,0≤j≤n̄

176 Paper IV: A Weighted Bit Flipping Decoder for QC-MDPC-based Cryptosystems

Algorithm 11 Frodo.Decode

Input: Matrix K ∈ Zm̄×n̄
q .

Output: Bit string k ∈ {0, 1}l, l = B · m̄ · n̄.
1: for i = 0; i < m̄; i← i+ 1 do
2: for j = 0; j < n̄; j ← j + 1 do
3: k ← dc(Ki,j) = ⌊Ki,j · 2B/q⌉ mod 2B

4: k =
∑B−1

l=0 kl · 2l where kl ∈ {0, 1}
5: for l = 0; l < D; l← l + 1 do
6: k(i·n̄+j)B+l ← kl
7: end for
8: end for
9: end for

10: return k

Algorithm 12 Frodo.Pack

Input: Matrix C ∈ Zn1×n2
q

Output: Bit string b ∈ {0, 1}D·n1·n2

1: for i = 0; i < n1; i← i+ 1 do
2: for j = 0; j < n2; j ← j + 1 do
3: Ci,j =

∑D−1
l=0 cl · 2l where cl ∈ {0, 1}

4: for l = 0; l < D; l← l + 1 do
5: b(i·n2+j)D+l ← cD−1−l
6: end for
7: end for
8: end for
9: return b

Algorithm 13 Frodo.Unpack

Input: Bit string b ∈ {0, 1}D·n1·n2 , n1, n2.
Output: Matrix C ∈ Zn1×n2

q

1: for i = 0; i < n1; i← i+ 1 do
2: for j = 0; j < n2; j ← j + 1 do
3: Ci,j =

∑D−1
l=0 b(i·n2+j)D+l · 2D−1−l

4: end for
5: end for
6: return C

References 177

Algorithm 14 Timing attack on Frodo.KEM

Input: The public key pk← (seedA,B).
Output: The secret key S.

1: for t = 0; t < N ; t← t+ 1 do
2: Generate a valid ciphertext (c1||c2)
3: for i = 0; i < n̄; i← i+ 1 do
4: Use the binary search to recover E′′′(m̄−1),i
5: end for
6: end for
7: Recover S from E′′′(m̄−1),i values by solving linear equations
8: return S

Algorithm 15 LAC.KeyGen()

Output: A pair of public key and secret key (pk, sk).
seeda

$← S ;
a← Samp(U(R); seeda) ∈ R;
s $← Ψn

σ;
e $← Ψn

σ;
b← as + e ∈ R;
return (pk := (seeda, b), sk := s);

Algorithm 16 LAC.CCA.Enc(pk; seedm)

Output: A ciphertext and encapsulation key pair (c,K).
m← Samp(U(M); seedm) ∈M;
seed← G(m) ∈ S ;
c← LAC.CPA.Enc(pk,m; seed);
K ← H(m, c) ∈ {0, 1}lk ;
return (c,K);

Algorithm 17 LAC.CCA.Dec(sk; c)

Output: An encapsulation key (K).
m← LAC.CPA.Dec(sk, c);
K ← H(m, c);
seed← G(m) ∈ S ;
c′ ← LAC.CPA.Enc(pk,m; seed);
if c′ ̸= c then

K ← H(H(sk), c);
end if
return K;

178 Paper IV: A Weighted Bit Flipping Decoder for QC-MDPC-based Cryptosystems

Algorithm 18 LAC.CPA.Enc(pk = (seeda, b),m ∈M; seed ∈ S)
Output: A ciphertext c.

a← Samp(U(R); seeda) ∈ R;
cm ← ECCEnc(m) ∈ {0, 1}lv ;
(r, e1, e2)← Samp(Ψn

σ,Ψ
n
σ,Ψ

lv
σ ; seed);

c1 ← ar + e1 ∈ R;
c2 ← (br)lv + e2 + ⌊ q2⌋ · cm ∈ Zlv

q ;
return c := (c1, c2) ∈ R× Zlv

q ;

Algorithm 19 LAC.CPA.Dec(sk = s; c = (c1, c2))

Output: A plaintext m.
u← c1s ∈ R;
c′m ← c2 − (u)lv ∈ Zlv

q ;
for i = 0 to lv − 1 do

if q
4 ≤ c′mi <

3q
4 then

cmi ← 1
else

cmi ← 0
end if

end for
m← ECCDec(cm);
return m;

Pa
p
er

IV

A Weighted Bit Flipping
Decoder for QC-MDPC-based

Cryptosystems

Abstract

A new “Weighted Bit-flipping” (WBF) iterative decoder is presented and analyzed
with respect to its Decoding Failure Rate (DFR). We show that the DFR is indeed
lower than that of the BGF decoder as suggested by the BIKE third round sub-
mission to the NIST PQC standardization process. The WBF decoder requires
more iterations to complete than BGF, but by creating a hybrid decoder we show
that a lower DFR compared to that of the BGF decoder can still be achieved while
keeping the computational tradeoff to a minimum.

1 Introduction

It is well-known that quantum computers (QC) can break the ubiquitous public
key cryptosystems (PKC) RSA and ECC as well as the key-agreement protocols
DH and ECDH. This is due to QCs ability to solve the integer factorization and
the discrete logarithm problems in polynomial time. To prepare against the de-
velopment of QCs of sufficient scale to threaten online communications, many
potential replacement algorithms have been suggested [McE78; Ara+17; Bos+17;
Mel+18] in the field of post-quantum cryptography (PQC). The code-based PKC
scheme McEliece [McE78] is one of these proposed replacements. The security of
this PKC is based on hardness of decoding a random linear code (from the field of
coding theory). However, relatively recently, new versions this code-based PKC
were proposed.

A. Nilsson, I. E. Bocharova, B. D. Kudryashov, and T. Johansson. “A Weighted Bit Flipping
Decoder for QC-MDPC-based Cryptosystems”. In: 2021 IEEE International Symposium on Infor-
mation Theory (ISIT). 2021, pp. 1266–1271

180 Paper IV: A Weighted Bit Flipping Decoder for QC-MDPC-based Cryptosystems

One of the more promising PQC candidates is based on the use of quasi-cyclic
moderate density parity-check (QC-MDPC) codes [Mis+13], instead of Goppa
codes. These code-based schemes improves McEliece in several aspects, one being
the simplified description of a code-based PKC without a permutation matrix; an-
other one being the reduced size of the public key. Another key factor in favor
of MDPC codes is that they allow for relatively efficient decoding for a legitimate
user while still ensuring a required level of security for the corresponding public
key. Based on this new idea of using iterative decoding of MDPC codes, a num-
ber of different schemes have since then been published. In particular, the NIST
PQC standardization process’ third round submission schemes BIKE [Ara+17] and
HQC [Mel+18] are relevant this paper.

On the flip side of the coin, much effort is required in both lowering the DFR1

of the iterative decoding process and in increasing the number of correctable er-
rors. Failing to do so affects the legitimate user because it raises the requirement of
the block-size (and therefore communication bandwidth) but more importantly, a
poor DFR performance enables reaction attacks [GJS16; GJW18; NJW19] based
on the observation of uncorrectable error patterns. One decoder is the original
iterative Bit-Flipping (BF) decoder [Gal68] and it, when applied to QC-MDPC
codes, suffers from relatively poor DFR performance due to it originally being
developed for the low-density parity-check (LDPC) codes that are intensively em-
ployed in communication systems. The inefficiency of the BF decoder stems from
the higher probability of MDPC codes to include short cycles in the corresponding
Tanner graph [Mis+13].

A number of different attempts to improve BF decoding of QC-MDPC codes
have been developed in the last couple of years. In particular, the Black-Grey Flip
(BGF) decoder [DGK19] was selected by BIKE due to its quick convergence (i.e.,
good DFR despite a small number of iterations).

Similarities between LDPC codes and MDPC codes allow for a transfer of
ideas which lie behind some improved BF algorithms to the cryptography area.
However, specific features of MDPC codes require significant modifications of
known iterative decoding techniques. Examples of improved BF algorithms of
this type can be found in [BKS19] and [BL18], where BF decoding followed by
post-processing was studied.

Our main contribution in this paper is a new decoder design following an
analysis of belief propagation (BP) decoding. Due to the increased computational
complexity of our decoder, we additionally present a hybrid of our design and that
of the BGF decoder. Both new decoders are evaluated with simulations to confirm
their respective DFRs.

1Decoding Failure Rate, also known as the Frame Error Rate (FER) in the field of coding theory.

2 QC-MDPC based McEliece cryptosystem 181

2 QC-MDPC based McEliece cryptosystem

Key Generation, Encryption and Decryption can be performed in a number of
different ways (e.g., see BIKE specification [Ara+20]), but for the sake of simplicity
and generality we present a summary of the original proposal by Misoczki, Tillich
and Sendrier [Mis+13]. We assume that differences between different variants of
QC-MDPC-based schemes do not affect the relative DFR and/or computational
efficiency of decoding algorithms, although the performance in absolute terms is
expected to depend on the instantiated scheme in question.

We consider the (n, r, w)-QC-MDPC code, where n = n0r. It is defined
through a parity check matrix

H =
(
H0 H1 · · · Hn0−1

)
, (1)

where the r× r submatrices Hi, i = 0, 1, . . . , n0 − 1 are circulant matrices with
row weight wi. Notice that for MDPC codes

∑n0−1
i=0 wi is chosen to be of order√

n logn. In the sequel, for simplicity, we analyze only the case of n0 = 2 and
equal weights wi = w, for i = {0, 1}.

1. Key Generation: Generate two random sequences h0,h1 of length r = n/2
and Hamming weight w. Form circulant matrices H0,H1 as cyclic shifts of
h0,h1, respectively.

Construct a generator matrix G as

G =
(
I | Q

)
,where Q = (H−11 H0)

T
, (2)

where T denotes matrix transposition and I is the identity matrix. The pub-
lic key is G (compactly represented by the first row of Q) and the private
key is H (compactly represented by the sequence h0,h1).

2. Encryption: Generate a random sequence e of lengthn and Hamming weight
t. The ciphertextx for the plaintextm isx = u+e, whereu = (m,mQ).

3. Decryption: Perform iterative decoding of x by using the known matrix H
from Eq. (1). Obtain the plaintext m as the first k bits of the decoded
sequence.

3 Decoding of MDPC Codes

In this section, we briefly recall the iterative decoding algorithms applied to de-
coding LDPC/MDPC codes. There are many implementations of the BF decod-
ing [Gal63], which differ both in complexity and error correcting performance.
For the detailed overview of MDPC-code-based versions see [MOG15; DGK19].
All of these versions are used in the same manner as for LDPC codes, determined

182 Paper IV: A Weighted Bit Flipping Decoder for QC-MDPC-based Cryptosystems

by sparse parity-check matrices. Our motivation is to modify the BF algorithm in
order to take into account that parity-check matrices of MDPC codes are much
denser than those of LDPC codes.

3.1 Belief propagation decoding

We start with describing the soft-decision BP algorithm, which shows close to
optimal performance when used with LDPC codes. In decryption, we interpret
vectors u and x = (x1, . . . , xn) = u + e as the input and output of the bi-
nary symmetric channel (BSC) with crossover probability ϵ = t/n. In order to
apply BP decoding, we transform the hard-decision BSC output to a soft-decision
sequence of log-likelihoods ratios (LLRs) y = (y1, . . . , yn), where

yi = µ(1− 2xi), µ = log
1− ϵ

ϵ
. (3)

BP decoding (alternatively called message passing algorithm) has many differ-
ent implementations. Two of them, namely, sum-product (SP) algorithm [Gal63]
and its approximation, called min-sum (MS) algorithm [FMI99] are well known
in coding theory.

Let V = {1, . . . , n} and C = {1, . . . , r} be the sets of variable and check
nodes (code symbols and parity-checks) of an MDPC code’s Tanner graph and
denote by Z = {zcv} messages exchanged between nodes c ∈ C, v ∈ V . Notice
that number of elements in Z is determined by the number of non-zero elements
in the parity-check matrix H .

SP and MS decoding

1. Initialization: let zcv = yv, v ∈ V , c ∈ C.

2. At each iteration of BP decoding

• For each c ∈ C and all v connected to c compute either

zcv =
∏
v′̸=v

sign(zcv′)ϕ

∑
v′̸=v

ϕ(|zcv′|)

 , (4)

where ϕ(λ) = ln eλ+1
eλ−1 , λ > 0. or

zcv =
∏
v′̸=v

sign(zcv′)α
(

min
v′̸=v
|zv′| − β

)
, (5)

for SP and MS versions, respectively. The constants α > 0 and β ≥ 0
represent a normalization factor and an offset, respectively.

3 Decoding of MDPC Codes 183

• For each v ∈ V and all c connected to v update

zcv = yv +
∑
c′̸=c

zc′v. (6)

3. Compute hard decisions as

uv = sign

(
yv +

∑
c

zcv

)
. (7)

Early termination of the decoding procedure can be done if at each iteration the
sequence of hard decisions is computed according to Eq. (7) and the corresponding
syndrome is evaluated. All-zero syndrome vector indicates that a valid codeword
is recovered. The complexity of the SP version of BP decoding is determined by
the computational complexity of Eq. (4).

Bit-Flipping (BF) decoding

BF decoding is a simple hard-decision version of BP decoding algorithm. The
two originally suggested in [Gal63]. BF algorithms differ in the way the decoding
threshold is chosen.

1. Initialization: compute syndrome s = xHT.

2. At each iteration

• For each c ∈ C and all v connected to c set zcv = sc, where sc is the
c-th component of s.

• For each v ∈ V and all c connected to v compute a number of unsat-
isfied checks (NUC): σv =

∑
c zcv.

• Flip symbols of x at positions v such that σv > maxv σv − δ.

3. Return x.

Early termination can be performed if none of positions were flipped at some
iteration. The parameter δ > 0 determines a tradeoff between DFR and complex-
ity.

3.2 Black-Grey-Flip Decoder (BGF)

Building on the basic BF (Bit-Flipping) decoder we first briefly describe the “Black-
Grey” (BG) decoder2 described in [DGK20b]. On top of the BF algorithm this

2”Black-Grey-Flip” (BGF) is an optimized variant of the BG decoder first found in the BIKE
pre-Round-1 submission CAKE by Sendrier and Misoczki.

184 Paper IV: A Weighted Bit Flipping Decoder for QC-MDPC-based Cryptosystems

decoder utilizes two additional lists (called black and grey, respectively) to keep
track of bit flips which are considered “uncertain”. The bits specified in these
lists are reevaluated against conditions. Bits that meet these conditions are flipped
again, thereby undoing the first flip. Each iteration of the BG implementation is
divided into three steps.

Step
I

Perform a single round of BF decoding, (i.e. flipping bits according to their
NUC value σv and a threshold τ) producing two lists:

• A black list containing all flips performed.
• A grey list containing all flips with a NUC value close to (but not above)

the threshold.

Recompute the syndrome.

Step
II

Another round of BF decoding but this time only consider bits in the black
list. Recompute the syndrome.

Step
III

Another round of BF decoding but this time only consider bits in the grey
list. Recompute the syndrome.

BGF introduces an optimization due to recognizing (see [DGK20b]) that it is
only during the first iteration there are uncertain bits to reevaluate. Steps II and
III are therefore only performed for the first iteration. Leaving only Step I makes
BGF equivalent to BF decoding during the remaining number of iterations. One
can view the relative time-complexity of the BGF decoder as 1× BGrounds + 4×
BFrounds ≈ 7× BFrounds according to [DGK20b].

4 Analysis of BF decoding of MDPC codes

In BP decoding (SP, MS or BF) we associate with nonzero elements of parity-check
matrix H an array of random variables zcv. At decoding iterations, zcv values are
updated depending on syndrome values. In case of BF decoding the Hamming
weight of parity checks determines row-processing errors to next iterations. In
what follows, we try to construct an approximate model of error propagation in
BP decoding.

For a code of rate R defined by a parity-check matrix H with column weight
w, a single error influences w rows with d = w/(1−R) = wn0 nonzero symbols
in each row. In total, N1 = wd variables zcv associated with nonzero elements of
H in w parity checks are affected by a single error. Among them only w elements
belong to the column corresponding to the “true” erroneous variable node. The
other (wd−w) non-zeros can be interpreted as an additional binary noise caused
by correlation between parity checks.

5 The new versions of BF decoder 185

If the number of introduced errors t ≫ 1, then the nonzero symbols of the
binary noise are assumed to be independent and identically distributed. Assume
that a single variable zcv is equal to 1 due to a single channel error with probability

p =
#of affected positions

total # of nonzero elements
=

wd− w

rd
=

w − 1 +R

r
.

If t errors occur then zcv will be equal to 1 if the number of its flips will be odd
and equal to 0, otherwise. The probability of “false” ones caused by odd number
of flips is equal to (see [Gal63])

ε =
1− (1− 2p)t

2
=

1−
(
2(w−1+R)

r

)t
2

. (8)

Below we interpret ε in Eq. (8) as the probability of errors in computing NUCs
induced by the binary noise caused by high correlation of parity checks.

Example 1. Let r = 4801, w = 45, t = 100. It is easy to check that ε = 0.423
and that the expected value of NUC is equal to ϵw = 18.9 for error-free positions and
is equal to (1− ϵ)w = 26.1 for positions in error. These estimates were confirmed by
long simulations. □

What follows from this example is that the information about errors obtained
from NUC values σv is “extremely noisy”. We can expect σv < w/2 for many
error positions and σv > w/2 for many error-free positions In other words, syn-
drome values used in BF decoding for making decisions about bits to be flipped
are typically unreliable. These considerations lead us to the conclusion that syn-
drome values used in BF decoding should be classified and weighted according
to their ‘reliabilities’. Similar ideas are behind one improvement of BF decoding
in [KK10].

5 The new versions of BF decoder

For a given syndrome vector s = (s0, . . . , sr−1), particular values sc = 0 or 1
mean that the number of erroneous (to be flipped) positions θc among positions
involved into the c-th check is even or odd, respectively. Our goal is to find a
statistical criterion for distinguishing between cases θc = 0 or θc ∈ {2, 4, · · · } if
sc = 0 and between cases θc = 1 or θc ∈ {3, 5, · · · } if sc = 1. In other words,
we aim at estimating “reliability” of the syndrome components sc.

Positions v with the number of NUCs σv > w/2 are considered as candidates
for flipping. For a check c, c = 0, . . . , r − 1 let σ[c] = (σ

[c]
0 , . . . , σ

[c]
d−1) be a

sequence of σi = σvi , where vi, i = 0, . . . , d−1 are nonzero symbols of the check
c. We are going to measure reliability of sc as a function of the NUC sequence
σ[c].

186 Paper IV: A Weighted Bit Flipping Decoder for QC-MDPC-based Cryptosystems

Let χ(x) be an indicator function which is equal to 1 if x is true and 0, oth-
erwise. The number of votes for flipping in the c-th parity check can be expressed
as

θc =

d−1∑
i=0

χ(σ
[c]
i > w/2). (9)

To obtain a quantitative measure of reliability we evaluated, empirically for the
MDPC code from Example 1, the following logarithmic likelihood values

rClA0(θc) = log
Pr (ec = 0|sc = 0, θc)

Pr (ec > 0|sc = 0, θc)
, (10)

A1(θc) = log
Pr (ec = 1|sc = 1, θc)

Pr (ec ̸= 1|sc = 1, θc)
, (11)

where ec is the number of errors (out of t introduced errors) in the symbols of the
c-th check. FunctionsAs(θc), s = 0, 1 are identical for all checks c = 0, . . . , r−1
due to the code regularity. This allows to use As(θ) as a reliability measure for the
syndrome value s given that the number of votes for flipping in a check is equal to
θ. Functions As(θ) empirically evaluated for the code of Example 1 are presented
in Fig. 1. We can see that to the syndrome components s corresponding to the
check with a small number of votes θ should be assigned 3–4 times larger weights
than to the components corresponding to checks with large θ.

It follows that after computing syndrome and NUCs, one can compute weight-
ing factors for syndrome component either byA0 or byA1 depending on the value
of the syndrome component. For all variable nodes, the weighted NUC values can
be obtained by adding the reliability info with NUC weighted by 1/2 (chosen em-
pirically). The rest of the algorithm works as in the original BF algorithm with the
threshold equal to the maximal shifted and weighted NUC value. A variable node
with the maximal value of combined reliability and NUC is flipped.

The algorithm shown in Fig. 2 is an approximated version of the theoretical
WBF algorithm described above. Instead of using fixed arrays of weighting coef-
ficients A0, A1, the algorithm searches for minimum numbers of votes separately
for satisfied and unsatisfied checks (lines 6, 7). The contribution of syndrome
components with the smallest number of votes is amplified (lines 10 and 12) by
multiplication with the fixed coefficient 3.

Simulations show that performance of the theoretical and simplified weighted
algorithms are hardly distinguishable.

In Fig. 2, only one position is flipped per iteration. Similarly to the BF decod-
ing, a certain threshold can be selected in such a way that at step 16 in Fig. 2 more
than one flip can be allowed. This modification will make the convergency faster
at the cost of slightly increasing DFR. The simulated WBF decoder in Section 6.2
use this optimization.

5 The new versions of BF decoder 187

0 5 10 15 20 25 30 35 40 45

Number of votes for flipping in a parity check

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

R
el

ia
bi

lit
y

of
 s

yn
dr

om
e

co
m

po
ne

nt

A
0
()

A
1
()

Figure 1: Logarithmic likelihood ratios defined as in Section 5 for syndrome com-
ponents as functions of the number of votes for flipping (NUCs above w/2)

1 function [y,it]= WBF(y,V,C,w,maxit)
2 s=mod(sum(y(V) ,2) ,2) '; % syndrome
3 for it=1: maxit
4 nuc=sum(s(C)); % NUC
5 SM=sum(nuc(V)>w/2,2) '; % votes
6 minSM1=min(SM(s==1));
7 minSM0=min(SM(s==0));
8 REL=2*s-1;
9 mask=(s==0) & (SM <= minSM0 +3);

10 REL(mask ==1)=REL(mask ==1) *3;
11 mask=(s==1) & (SM <= minSM1 +3);
12 REL(mask ==1)=REL(mask ==1) *3;
13 metric=sum(REL(C));
14 [mm ,~]= max(metric);
15 f=find(metric ==mm);
16 [~,J]=min(sum(SM(C(:,f))));
17 s(C(:,f(J)))=~s(C(:,f(J)));
18 y(f(J))=~y(f(J)); % flip
19 if sum(s)==0, return; end
20 end

Figure 2: Matlab program for simplified WBF decoding.

188 Paper IV: A Weighted Bit Flipping Decoder for QC-MDPC-based Cryptosystems

5.1 Complexity and constant-time considerations

A single round of normal BF decoding comprises of the following parts:

• (Re)compute the syndrome

• Check the syndrome Hamming weight.

• Calculate NUCs.

• Check NUCs and flip based on the threshold.

It has been shown to be possible to implement these operations efficiently and
in constant time [DG19]. For WBF decoding we must additionally consider the
following operations:

• Calculate the number of votes to flip, for each syndrome position.

• Find the minimum number of votes. 3

• Determine the reliability of each syndrome value (based on number of votes).

• Determine a new “metric” for each variable node (based on the weighted
syndrome values).

• Find and flip the variables with the highest metric.

It is possible to implement these operations in a constant time manner, since
none of them requires branching or indexing based on secret data. However, to
implement them efficiently is left as out of scope for this paper.

5.2 A hybrid decoder

Accounting for the decrease in interference noise due to a reduction in the number
of error positions, we know that making the right bit-flipping decisions is more
important early in the decoding process. Due to this, one can argue for an opti-
mization of using an adaptable decoding algorithm, which progressively uses less
and less expensive computations (this is exactly the optimization introduced for
the BG decoder to make the BGF decoder) [DGK20b].

To realize such an algorithm while keeping the implementation complexity
low and constant time we look into a hybrid solution where we pair two different
decoding algorithms based on DFR and execution speed criteria.

We consider the pairing of our WBF algorithm together with Black Grey Flip
(BGF) decoder, which has a very quick convergence. We limit WBF to run only

3It might be possible to empirically determine a static threshold to use instead of dynamically
calculate the minimum.

6 Simulation 189

2 iterations, after which we run the (BGF) decoder for 3 iterations. As previously
explained, this means that the BGF decoder will run a single round of BG decoding
followed by 2 rounds of normal BF decoding. The complexity of the combined
algorithm can informally be thought of as 2×WBFrounds + 1× BGrounds + 2×
BFrounds ≈ 2×WBFrounds+5×BFrounds. Appreciating the fact that one round of
WBF requires more computations than one round of BF we recognize that even
this hybrid will be slower than that of the BGF decoder. Our hybrid decoder
can still remain a competitive alternative if properly implemented (e.g., by using
techniques from [DG19]).

6 Simulation

In this section, we present a comparative analysis between our proposed decoders
and the BGF decoder.

6.1 Method

We apply a similar methodology as the one given in [SV20; SV19; DGK20b;
DGK20a]. By using the same parameters as those used by BIKE (security level
1) [Ara+20], we facilitate easier comparisons of different DFR rates. One must
note that we use a different way of encoding messages, which might affect the
DFR rates in absolute terms. However, the relative differences between decoders
are assumed to be unaffected, as previously stated.

6.2 Results

In this section, we present the simulation results of the decoding algorithms stud-
ied in this paper. The data is presented in Fig. 3. Using the same methodology as
in [SV20; SV19; DGK20b; DGK20a], we attempt in Table 1 to estimate a value
of r that achieves a DFR = 2−128. The estimation was made using a simple lin-
ear extrapolation from the last two data points of each graph. This is the most
straightforward and conservative choice [SV20].

Table 1: A summary of the different decoding algorithms. See text for extrapola-
tion method.

Algorithm Max #
Iterations

Average #
Iterations

Extrapolated r
(DFR = 2−128)

WBF 92 34 13379
Hybrid 5 5 13018
BGF 5 5 13660

190 Paper IV: A Weighted Bit Flipping Decoder for QC-MDPC-based Cryptosystems

8
,5
99

8
,6
81

8
,7
47

8
,8
37

8
,9
33

9
,0
13

9
,1
27

9
,2
03

9
,2
93

9
,3
91

9
,4
61

9
,5
39

9
,6
43

9
,7
39

9
,8
17

9
,9
01

10
,0
0
9

10
,1
0
3

10
,1
8
1

10
,2
7
3

10
,3
5
7

2−22

2−14

2−6

22

r

D
ec

od
in

g
Fa

ilu
re

R
at

e
BGF Hybrid WBF

Figure 3: Graph of the DFR as a function of r, for different decoding algorithms.
Minimum 1,000 decryption failures for each data point with each key used for
maximum 10,000 ciphertexts.

In Table 1 the extrapolation does not yield quite the expected values. For in-
stance, the Hybrid decoder performs better than WBF, although the opposite is
clearly visible in Fig. 3. We assume this to be a limitation of the experiment; even
lower DFRs are needed if we want to make certain that we are indeed extrapolat-
ing only the linear part of the curves. The WBF and hybrid algorithms are also
fine-tuned for lower r-values with a high DFR, due to practical reasons. It is pos-
sible that the WBF algorithm can be further tuned for r-values corresponding to
a low DFR.

7 Conclusion

In this paper, we presented a new Weighted Bitflipping iterative decoder (WBF).
We showed that it significantly lowers the DFR for all simulated parameters com-
pared to other decoders. Specifically, we compared it to the Black Grey Flip de-
coder as found in the NIST PQC 3rd round submission BIKE [Ara+20].

Due to the increased computational complexity of the WBF decoder, we pro-
posed a hybrid decoder which combines the quick convergence of the BGF de-
coder with the better DFR of the WBF decoder. This results in a much smaller
computational complexity by lowering the required number of iterations.

References 191

Acknowledgments

This work was partially supported by the Wallenberg AI, Autonomous Systems
and Software Program (WASP) funded by the Knut and Alice Wallenberg Foun-
dation, by the grant PRG49 from the Estonian Research Council and by the ERDF
via CoE project EXCITE. The computations were enabled by resources provided
by the Swedish National Infrastructure for Computing (SNIC) at LUNARC, par-
tially funded by the Swedish Research Council through grant agreement no. 2018–
05973.

References

[Ara+17] N. Aragon, P. Barreto, et al. “BIKE: bit flipping key
encapsulation”. In: (2017).

[Ara+20] N. Aragon, P. S. L M Barreto, et al. BIKE: Bit Flipping Key
Encapsulation Submission for Round 3 Consideration. Tech. rep.
2020.

[BKS19] I. E. Bocharova, B. D. Kudryashov, and V. Skachek. “AVN-based
Elimination of Short Cycles in Tanner Graphs of QC LDPC
Codes”. In: 2019 IEEE International Symposium on Information
Theory (ISIT). IEEE. 2019, pp. 56–60.

[BL18] H. Bartz and G. Liva. “On Decoding Schemes for the
MDPC-McEliece Cryptosystem”. In: arXiv preprint
arXiv:1801.05659 (2018).

[Bos+17] J. Bos et al. CRYSTALS – Kyber: a CCA-secure module-lattice-based
KEM. Cryptology ePrint Archive, Report 2017/634.
https://eprint.iacr.org/2017/634. 2017.

[DG19] N. Drucker and S. Gueron. “A toolbox for software optimization
of QC-MDPC code-based cryptosystems”. In: J. Cryptogr. Eng.
9.4 (Nov. 2019), pp. 341–357.

[DGK19] N. Drucker, S. Gueron, and D. Kostic. On constant-time
QC-MDPC decoding with negligible failure rate. Tech. rep.
Cryptology ePrint Archive, Report 2019/1289, 2019.

[DGK20a] N. Drucker, S. Gueron, and D. Kostic. “On Constant-Time
QC-MDPC Decoders with Negligible Failure Rate”. In: Lect.
Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect.
Notes Bioinformatics). Vol. 12087 LNCS. 2020, pp. 50–79.

[DGK20b] N. Drucker, S. Gueron, and D. Kostic. QC-MDPC decoders with
several shades of gray. Tech. rep. Report 2019/1423. 2020, pp. 1–16.

https://eprint.iacr.org/2017/634

192 Paper V: Don’t Reject This: Key-Recovery Timing Attacks Due to Rejection- …

[FMI99] M. P. Fossorier, M. Mihaljevic, and H. Imai. “Reduced complexity
iterative decoding of low-density parity check codes based on
belief propagation”. In: IEEE Trans. on Commun. 47.5 (1999),
pp. 673–680.

[Gal63] R. G. Gallager. Low-density parity-check codes. M.I.T. Press:
Cambridge, MA, 1963.

[Gal68] R. G. Gallager. Information theory and reliable communication.
Wiley, 1968.

[GJS16] Q. Guo, T. Johansson, and P. Stankovski. “A key recovery attack
on MDPC with CCA security using decoding errors”. In:
International Conference on the Theory and Application of Cryptology
and Information Security. Springer. 2016, pp. 789–815.

[GJW18] Q. Guo, T. Johansson, and P. S. Wagner. “A Key Recovery
Reaction Attack on QC-MDPC”. In: IEEE Trans. on Inf. Theory
(2018).

[KK10] H. Kamabe and S. Kobota. “Simple improvements of bit-flipping
decoding”. In: 2010 The 12th International Conference on Advanced
Communication Technology (ICACT). Vol. 1. IEEE. 2010,
pp. 113–118.

[McE78] R. J. McEliece. “A public-key cryptosystem based on algebraic”.
In: Coding Thv 4244 (1978), pp. 114–116.

[Mel+18] C. A. Melchor et al. “Hamming quasi-cyclic (HQC)”. In: NIST
PQC Round 2 (2018), pp. 4–13.

[Mis+13] R. Misoczki, J.-P. Tillich, N. Sendrier, and P. S. Barreto.
“MDPC-McEliece: New McEliece Variants from Moderate
Density Parity-Check Codes”. In: Information Theory Proceedings
(ISIT), 2013 IEEE International Symposium on. IEEE. 2013,
pp. 2069–2073.

[MOG15] I. v. Maurich, T. Oder, and T. Güneysu. “Implementing
QC-MDPC McEliece Encryption”. In: ACM Transactions on
Embedded Computing Systems (TECS) 14.3 (2015), p. 44.

[NJW19] A. Nilsson, T. Johansson, and P. Wagner Stankovski. “Error
Amplification in Code-based Cryptography”. In: IACR Trans.
Cryptogr. Hardw. Embed. Syst. (2019), pp. 238–258.

[SV19] N. Sendrier and V. Vasseur. “On the Decoding Failure Rate of
QC-MDPC Bit-Flipping Decoders”. In: 11505 LNCS (2019),
pp. 404–416.

[SV20] N. Sendrier and V. Vasseur. “About low DFR for QC-MDPC
decoding”. In: International Conference on Post-Quantum
Cryptography. Springer. 2020, pp. 20–34.

Pa
p
er

V

Don’t Reject This:
Key-Recovery Timing Attacks
Due to Rejection-Sampling in

HQC and BIKE

Abstract

Well before large-scale quantum computers will be available, traditional cryptosys-
tems must be transitioned to post-quantum (PQ) secure schemes. The NIST PQC
competition aims to standardize suitable cryptographic schemes. Candidates are
evaluated not only on their formal security strengths, but are also judged based
on the security with regard to resistance against side-channel attacks. Although
round 3 candidates have already been intensively vetted with regard to such at-
tacks, one important attack vector has hitherto been missed: PQ schemes often
rely on rejection sampling techniques to obtain pseudorandomness from a specific
distribution. In this paper, we reveal that rejection sampling routines that are
seeded with secret-dependent information and leak timing information result in
practical key recovery attacks in the code-based key encapsulation mechanisms
HQC and BIKE.

Both HQC and BIKE have been selected as alternate candidates in the third
round of the NIST competition, which puts them on track for getting standard-
ized separately to the finalists. They have already been specifically hardened with
constant-time decoders to avoid side-channel attacks. However, in this paper, we
show novel timing vulnerabilities in both schemes: (1) Our secret key recovery at-
tack on HQC requires only approx. 866,000 idealized decapsulation timing oracle
queries in the 128-bit security setting. It is structurally different from previously

Q. Guo, C. Hlauschek, T. Johansson, N. Lahr, A. Nilsson, and R. L. Schröder. “Don’t Reject
This: Key-Recovery Timing Attacks Due to Rejection-Sampling in HQC and BIKE”. in: IACR
Transactions on Cryptographic Hardware and Embedded Systems 2022.3 (June 2022), pp. 223–263

194 Paper V: Don’t Reject This: Key-Recovery Timing Attacks Due to Rejection- …

identified attacks on the scheme: Previously, exploitable side-channel leakages
have been identified in the BCH decoder of a previously submitted HQC version,
in the ciphertext check as well as in the pseudorandom function of the Fujisaki-
Okamoto transformation. In contrast, our attack uses the fact that the rejection
sampling routine invoked during the deterministic re-encryption of the decapsula-
tion leaks secret-dependent timing information, which can be efficiently exploited
to recover the secret key when HQC is instantiated with the (now constant-time)
BCH decoder, as well as with the RMRS decoder of the current submission. (2)
From the timing information of the constant weight word sampler in the BIKE
decapsulation, we demonstrate how to distinguish whether the decoding step is
successful or not, and how this distinguisher is then used in the framework of
the GJS attack to derive the distance spectrum of the secret key, using 5.8 × 107

idealized timing oracle queries. We provide details and analyses of the fully im-
plemented attacks, as well as a discussion on possible countermeasures and their
limits.

1 Introduction

The progress in the research field of quantum computing weakens the previously
estimated security guarantees of most currently deployed cryptographic primitives.
In 2017, Michele Mosca [Mos17] estimated that the chance of having a large-
scale quantum computer that breaks RSA-2048 to be 1/6 within a decade and
1/2 within 15 years; or even faster (6-12 years) by having massive investment,
following Simon Benjamin [Ben17]. While such estimates and predictions are
contested [Dya18; Kal20], it is important that the transition to post-quantum
secure cryptographic algorithms happens well before an actual large-scale quantum
computer is being built, as sensitive data might be stored for cryptanalysis at a later
time, for example by surveillance infrastructure such the NSA’s 3-12 exabyte data
center in Utah [Hog15].

The security strengths of the new cryptographic primitives need to be evalu-
ated with regard to possible attacks from classical as well as from quantum adver-
saries. But not only the algorithmic design need to withstand possible (theoretical)
attacks, deployed schemes need to have secure implementations that withstand
practical implementations attacks [HPA21], such as side-channel [Koc96; KJJ99;
Rav+04] and fault attacks [BDL97; BDL01]. Not every cryptographic design has
a straightforward elegant implementation that can be easily secured against all rel-
evant implementation attacks. Daniel Bernstein and Tanja Lange repeatedly (e.g.,
in their analysis of the NIST ECC standards [BL16]) emphasize that a good cryp-
tographic design requires simplicity of a secure implementation, and recommend
that standardization bodies such as the National Institute of Standards and Tech-
nology (NIST) should require simplicity for secure implementations.

Timing attacks, first described by Kocher [Koc96], are arguably one of the
most dangerous implementation attacks (right after more trivial, but still hard to

1 Introduction 195

spot, leakages such as the Heartbleed vulnerability [Dur+14]): an adversary just
needs a communication channel to the target device and a precise timing mea-
surement. It is often possible to mount an attack even remotely over the net-
work [BB05; BT11; Kau+16; Mog+20; Mer+21], without physical access. Crosby
et al. [CWR09] explore the limits of remote timing attacks. Often, timing leaks
that have been mitigated against remote exploitation, such as the Lucky Thirteen
attack [AP13] on TLS, can still be exploited in a Cloud/Cross-VM setup [Ape+15].
These attacks exploit the timing variations which depend on the secret key mate-
rial. When the timing variations include enough information the recovery of the
secret key becomes possible.

In December 2016, the NIST announced a competition [SN16] which aims
to standardize schemes for post-quantum cryptography (PQC) and encouraged
the authors to submit a reference implementation that addresses side-channel at-
tacks in addition to the specification. NIST specifically motivates research to
counter advanced side-channel attacks in the current, third round of the compe-
tition [Moo+20]. The two schemes Hamming Quasi-Cylic (HQC) [Agu+21] and
the Bit Flipping Key Encapsulation (BIKE) [Ara+21] are promising code-based key
encapsulation schemes and alternate candidates in the third round of the compe-
tition. As alternate candidates, they might be standardized by NIST in addition
to the competition finalists in a fourth round. In its latest PQC standardization
status report [Moo+20], NIST lauds HQC for its constant-time improvements,
while voicing serious concerns over BIKE’s side-channel protections and Indistin-
guishability under Chosen Ciphertext Attack (IND-CCA) security.

BIKE can be described as the McEliece scheme instantiated with Quasi-Cyclic
Moderate Density Parity-Check (QC-MDPC) codes [Mis+13], using the equiva-
lent Niederreiter scheme. The specification of BIKE is secure under the Indistin-
guishability under Chosen Plaintext Attack (IND-CPA) notion, where the secu-
rity is related to some hard decoding problems in the Hamming metric. With an
additional assumption on the probability of decryption errors that may occur in
the BIKE decoding step, the scheme is shown to be IND-CCA secure, using the
implicit-rejection variant of the Fujisaki-Okamoto (FO) transformation proposed
by Hofheinz, Hövelmanns, and Kiltz (HHK) [HHK17]. Similarly, the Public Key
Encryption (PKE) variant of HQC is secure under the IND-CPA notion. The Key
Encapsulation Mechanism (KEM) variant of HQC utilizes another variant of the
HHK FO transformation, converting the PKE variant to be secure with regard to
IND-CCA. Many post-quantum secure schemes, e.g., code- and lattice-based, use
the HHK transformation because it is resistant to the decryption errors that can
occur in the decryption procedure of many non-traditional schemes. The attacks
on BIKE as well as on HQC demonstrated in this paper are both possible due
to the specific applications of the FO transformation to the respective underlying
IND-CPA schemes. It is interesting to observe that the process of transforming
an encryption scheme from a less secure to a more secure version introduces more
complexity and hard-to-spot vectors for additional implementation vulnerabilities.

196 Paper V: Don’t Reject This: Key-Recovery Timing Attacks Due to Rejection- …

However, our attacks require a static key setting and an active chosen-ciphertext
attacker, a scenario where one would not employ just an IND-CPA secure scheme.

Related work. Our attacks, though structurally different from previous ones,
build on a history of related side-channel attacks and cryptanalysis, leading to in-
crementally more secure and improved versions of the schemes. Recently, Wafo-
Tapa et al. [Waf+19] and Paiva et al. [PT19] present timing attacks on the non-
constant time implementation of the Bose-Chaudhuri-Hocquenghem (BCH)-dec-
oder of HQC. Both approaches exploit the dependence between the running time
of the decoding procedure and the number of decoded errors. Paiva et al. require
400 · 106 decryption runs for the 128-bit security parameters. Wafo-Tapa et al.
reach a key recovery after just 5441 calls with 93% success rate for the same secu-
rity level. They proposed a constant-time BCH decoding to fix this issue.

Guo et al. [GJN20] show that the FO transformation of various proposed
schemes is vulnerable to a timing attack by exploiting the comparison step in the
decapsulation function, which is usually non-constant time (for example, when
implemented via the memcmp function of the standard C library). The authors
apply this timing attack to the lattice-based scheme FrodoKEM [Nae+20]. The
attack requires 230 decapsulation calls. They state that their attack is applicable to
other proposed PQC schemes, among others, to HQC. They show the applicabil-
ity to LAC [Lu+19] in the appendix but do not explicitly show the effectiveness to
HQC. The countermeasure to avoid the leakage is to use another constant-time
comparison, e.g., as provided by OpenSSL1. However, in the same paper, Guo et
al. describe how, more generally, any timing variance in the FO transformation
that allows to distinguish between modifications that are below or above the error
correction capability of the underlying primitive can in principle be used to mount
key recovery attacks on IND-CCA secure KEM schemes. The research commu-
nity seems to be acutely aware of the need to implement FO-based decapsulation
methods in a constant time manner, as the source code of both HQC and BIKE,
as well as recent discussions on the NIST PQC Forum2 indicate.

An important attack for schemes based on QC-MDPC codes such as BIKE
is the GJS attack [GJS16]. The attack uses an identified dependence between er-
ror patterns in decoding failures and the secret key. This attack assumes that the
scheme is used in a static key setting requiring IND-CCA security. The Error
Amplification attack [NJW18] builds on the GJS attack [GJS16], but improves it
by using only a single initial error vector that results in a decoding failure and
then modifies this in order to efficiently generate many more error vectors caus-
ing a decoding failure. These attacks are avoided in the BIKE scheme by selecting
parameters such that the probability of a decoding failure for properly generated
ciphertexts is very small.

1https://www.openssl.org/docs/man1.1.1/man3/CRYPTO_memcmp.html
2https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/iVbJkCytoog

https://www.openssl.org/docs/man1.1.1/man3/CRYPTO_memcmp.html
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/iVbJkCytoog

1 Introduction 197

Most recently, Ueno et al. [Uen+22] explore a generic side-channel attack of
the FO transformation commonly used in many PQC schemes: by exploiting
side-channel leakage during non-protected Pseudorandom Function (PRF) exe-
cution in the re-encryption of the KEM decapsulation, they demonstrate that Ky-
ber, Saber, FrodoKEM, NTRU, NTRU Prime, BIKE, SIKE, as well as HQC are
vulnerable. The current reference implementation of HQC uses non-protected
SHAKE as the relevant PRF.

Motivation. To the best of our knowledge, none of the previous attacks on HQC
or BIKE, nor attack mitigations for those schemes, considered the non-constant
time rejection sampling routine. Rejection sampling is one method to generate
pseudorandom values from a specific distribution. The first side-channel attack
targeting rejection sampling has been demonstrated at the CHES 2016 against
the lattice-based signature BLISS [Bru+16], exploiting cache-access pattern from
the Gaussian sampler. In contrast to the Gaussian samplers common in lattice-
based schemes, HQC and BIKE use rejection sampling to generate random vectors
with a specific Hamming weight. As we show in this paper, it turns out that the
branching and thus the run-time of the rejection sampling routine in HQC and
BIKE is indirectly in dependence relationship with the key.

This despite the fact that the current HQC specification states that the opti-
mized reference implementation (using the vectorized Single Instruction Multiple
Data (SIMD) instructions on an x86 machine) is now constant-time, and the
source code is well analyzed concerning the leakage of any sensitive information.
More specifically, the authors of HQC claim “to have thoroughly analyzed the
code to check that only unused randomness (i.e. rejected based on public criteria)
or otherwise nonsensitive data may be leaked.” [Agu+21]. However, the specifi-
cation reveals a subtle error: the modular design of the HQC KEM uses the FO
transformation to transform an IND-CPA version of HQC into the IND-CCA
KEM. This IND-CPA version is specified separately as a non-deterministic encryp-
tion scheme, where the Encrypt algorithm generates its randomness within the
function. The specified KEM version then invokes a slightly different HQC.PKE
encryption scheme that fixes the randomness via parameter passing to make the
encryption deterministic. This subtle error in the specification might have hidden
the fact that the rejection sampling invoked by the re-encryption step in the decap-
sulation routine has a dependence to the secret key: from reading this erroneous
specification, it is easy to miss the fact that the rejection sampling in the Encrypt
function is indeed dependent on the secret in the decapsulation. Adding further
to the confusion, the plaintext message m can be chosen by the attacker in the
IND-CPA scheme, and only becomes a secret-depending value in the IND-CCA
KEM due the FO transformation.

On the other hand, the BIKE specification [Ara+21] demands (in the cur-
rent version 4.2a, in Section 3.5 Practical security considerations for using BIKE)
with regard to side-channel attacks only that the decoder must be implemented in

198 Paper V: Don’t Reject This: Key-Recovery Timing Attacks Due to Rejection- …

constant time, but does not mention such considerations for the constant-weight
hashing function, which is supposed to be implemented via rejection sampling.

While HQC uses non-constant time rejection sampling to generate pseudo-
random vectors with a specific Hamming weight in the re-encryption step of the
decapsulation due the employed variant of the HHK FO transformation, BIKE
uses the implicit-rejection version of it, optimized so that it does not invoke the
encryption function during the decapsulation. However, despite dispensing the
re-encryption step, BIKE uses rejection sampling in the plaintext verification of
the decryption step in the decapsulation routine.

Contributions. In this work, we analyze the current KEM variant of HQC and
BIKE and show that they are still vulnerable to timing attacks. More specifically,
we present

• hitherto unconsidered timing variations dependent on the secret key in the
deterministic re-encryption of the KEM decapsulation of HQC, and in
BIKE decapsulation in the plaintext-checking step of the decryption rou-
tine, both due to the non-constant time rejection sampling routines,

• a novel timing attack on the optimized reference implementation of HQC
achieving a full secret key recovery with high probability,

• another novel timing attack on the existing implementations of BIKE achiev-
ing either a full secret key recovery or an efficient message recovery, where
the key recovery attack uses the framework of the GJS attack to derive the
distance spectrum of the secret key, and

• a discussion of possible countermeasures to avoid the identified leakage in
the deterministic re-encryption step.

Our attacks are practical as the exploited timing variation is relatively large
and the number of required idealized decapsulation timing-oracle calls is small.
Idealized means that we assume access to perfect timing information in our attack
implementations. Concretely, we assume we know the number of seedexpander
calls that a decapsulation performed. An evaluation of the attack in different noise
environments is not the focus of our work. Depending on the set-up (e.g. clock-
speed, local or remote, network latency and jitter) the attack may require a differ-
ent number of real decapsulations. In certain scenarios state of the art methods
such as “timeless” timing attacks [van+20] may be employed to obtain significantly
better timing information from remote targets, reducing the number of real de-
capsulations required.

Timeline and Response. The attack on HQC, first described in the master thesis
of one of our co-authors [Sch21] and then later in [HLS21]3, and independently

3eprint version 2021/1485/20211115:124514

2 Background 199

brought to the attention of NIST by the co-authors from Lund University has
been acknowledged by the authors of HQC, who in response started working on
more optimized countermeasures [Gab21]. We further identified that a similar
side-channel exists in BIKE [Sch21; HLS21]. A concrete attack strategy exploiting
the side-channel was discovered concurrently to our work and first published by
BIKE co-author Nicolas Sendrier [Sen21]. To the best of our knowledge, we are the
first to present a fully implemented version of an attack exploiting the identified
side-channel. Also in parallel to the writing of this paper, Nicolas Sendrier [Sen21]
presented a different approach than suggested here to mitigate the vulnerability,
specific to BIKE: Sendrier first shows that the sampling routine we attack can be
slightly biased in BIKE, which allows the use of a novel variant of Fisher-Yates
sampling [Knu97, p.145] that is constant-time.

Organization. The remaining of the paper is described as follows. In Section 2,
we give the preliminaries as well as a description of the specifications of the two
KEM schemes HQC and BIKE, respectively. In Section 3, we explain the identi-
fied timing weakness in the functions that use rejection sampling and we describe
in detail the full key recovery attack on HQC. In the same section we follow up by
describing the details of another type of the attack applied on BIKE. In Section 4,
we then present all the evaluation results from actually implementing the two pre-
viously described attacks. In Section 5, we discuss possible countermeasures and,
finally, Section 6 concludes the paper.

2 Background

In this section, we introduce the background information on the schemes, HQC
and BIKE, and the preliminaries that we require to explain our attacks in the
following sections.

2.1 Preliminaries

We use a notation that we consider as close as possible to both the notations used
by the HQC [Agu+21] as well as the BIKE [Ara+21] specification.

F2 denotes the binary finite field. Both HQC and BIKE use a cyclic polyomical
ring, but with different parameters. So, for an integer n ∈ Z (resp., r ∈ Z in
BIKE), we obtain the ringR = F2[X]/(Xn−1), (resp. R = F2[X]/(Xr−1)).
Elements in R will be represented by lower-case bold letters. These elements can
be interchangeably considered as row vectors in a vector space over F2. Respective
matrices will be represented by upper case bold letters. For h ∈ R, let |h| denote
the Hamming weight of a vector or polynomial h.

200 Paper V: Don’t Reject This: Key-Recovery Timing Attacks Due to Rejection- …

Table 1: The HQC parameter sets [Agu+21]. The base Reed-Muller code is defined
by [128, 8, 64].

RS-S Duplicated RM

Instance n1 k dRS Mult. n2 dRM n1n2 n ω ωr = ωe

hqc-128 46 16 31 3 384 192 17,664 17,669 66 75
hqc-192 56 24 33 5 640 320 35,840 35,851 100 114
hqc-256 90 32 49 5 640 320 57,600 57,637 131 149

2.2 Hamming Quasi Cyclic – HQC

HQC is a code-based post-quantum IND-CCA secure KEM. It is an alternate
candidate in the third round of the NIST PQC competition [Agu+21]. Our work
refers to the recent specification from June 2021. The HQC framework from
which HQC stems was introduced by Aguilar et al. [Agu+18]. Its security is re-
duced to problems related to the hardness of decoding random quasi-cyclic codes
in the Hamming metric. The scheme uses a concatenated code C which combines
an internal duplicated Reed-Muller code with the outer Reed-Solomon code. The
resulting code has a publicly known generator matrix G ∈ Fk×n1n2

2 .
The parameters are listed in Table 1 and we explain them in the following.

The inner duplicated Reed-Muller code is defined by [n2, 8, n2/2] and the outer,
shortened Reed-Solomon code (RS-S) by [n1, k, n1−k+1], with k ∈ {16, 24, 32}
depending on the corresponding security level. The concatenated code C is of
length n1n2. To avoid algebraic attacks the ambient space of vector elements is
of length n which is the first primitive prime greater than n1n2. It defines the
polynomial quotient ringR = F2[X]/(Xn − 1).

HQC.PKE. The PKE variant of HQC consists of the Algorithms 1 to 3. The key
generation in Algorithm 1 samples the elements h, x, and y from R uniformly at
random where the Hamming weights of x and y are ω. The secret key sk consists
of x and y. The public key pk includes h and s = x+h·y. The encryption function
Algorithm 2 first samples the vectors e of weightωe as well as r1 and r2 of weightωr.
The randomness of the sampling is seeded by the additional input θ. Therewith,
the sampling becomes deterministic which is desired for the verification in the
later decapsulation function. The ciphertext is a tuple with u = r1 + h · r2 and
v = mG+s·r2+e. The term mG in ?? 273 corresponds to the encoding procedure
of the concatenated code C. It begins with the external Reed-Solomon code which
encodes a message m ∈ Fk

2 into m1 ∈ Fn1

28
. Then the inner Reed-Muller code

encodes each coordinate/byte m1,i into m̄1,i ∈ F128
2 using RM(1, 7). Finally,

m̄1,i is repeated 3 or 5 times depending on the security parameter to obtain m̃1,i ∈
Fn2
2 . Thus, we get mG = m̃ = (m̃1,0, . . . , m̃1,n1−1) ∈ Fn1n2

2 . The decryption

2 Background 201

Algorithm 1
HQC.KeyGen
Input: param
Output: sk, pk

1: h = Sample(R)
2: x = Sample(R, ω)
3: y = Sample(R, ω)

4: sk = (x, y)
5: pk = (h, s = x+ h · y)

Algorithm 2
HQC.Encrypt

Input: pk, m, θ
Output: c = (u, v)

1: SampleInit(θ)

2: r1 = Sample(R, ωr)
3: r2 = Sample(R, ωr)
4: e = Sample(R, ωe)

5: u = r1 + h · r2
6: v = mG + s · r2 + e

Algorithm 3
HQC.Decrypt

Input: sk = (x, y), c = (u, v)
Output: m

1: m = C.Decode(v−u ·y)

function in Algorithm 3 is to decode the term v− u · y which results in

(mG + s · r2 + e)− (r1 + h · r2) · y
= mG + (x + h · y) · r2 − (r1 + h · r2) · y + e
= mG + x · r2 − r1 · y + e.

Thus, the decoder has to correct the error

e′ = x · r2 − r1 · y + e.

The decoding succeeds if |e′| ≤ δ. The Decryption Failure Rate (DFR) denotes
the probability when the weight exceeds the decoder’s capacity.

HQC.KEM. The authors of HQC decided to use the Hofheinz-Hövelmanns-
Kiltz (HHK) transformation [HHK17] to obtain an IND-CCA secure Key En-
capsulation Mechanism from the IND-CPA secure PKE scheme described before.
In contrast to the original FO transformation, the HHK approach is able to han-
dle decryption failures. The KEM scheme may be used to share securely a random
symmetric key K between two parties. The key generation is the same as for the
PKE. The sender of a message applies the encapsulation function in Algorithm 4
to wrap a randomly chosenK and the receiver executes the decapsulation function
in Algorithm 5 to obtain the same key or aborts if a decryption failure occurs.

The KEM construction requires the three independent cryptographic hash
functions G, K, and H. To encapsulate a randomly chosen message m the ran-
domness θ for the encryption is derived by G(m). The shared key K is a linkage
of both the message m and the ciphertext c and is computed by K(m, c). Finally,
d is derived by computing the hash H(m).

In the decapsulation, the decryption function is invoked with the secret key
sk and the ciphertext c to obtain the message m′. To verify the ciphertext for
integrity, a re-encryption of the message m′ is performed using the randomness θ′

202 Paper V: Don’t Reject This: Key-Recovery Timing Attacks Due to Rejection- …

Algorithm 4 HQC.Encaps

Input: pk
Output: K, (c, d)

1: m = Sample(Fn1n2
2)

2: θ = G(m)
3: c = HQC.Encrypt(pk,m; θ)
4: K = K(m, c)
5: d = H(m)

Algorithm 5 HQC.Decaps

Input: sk = (x, y), (c = (u, v), d)
Output: K

1: m′ = HQC.Decrypt(sk, c)
2: θ′ = G(m′)
3: c′ = HQC.Encrypt(pk,m′; θ′)
4: if c ̸= c′ ∨ d ̸= H(m′) then
5: K =⊥
6: else
7: K = K(m′, c)
8: end if

derived from m′. Then, the procedure checks whether the re-encrypted ciphertext
c′ matches the received c and whether the sent digest d equals the hash value of
the decrypted message m′. If this check succeeds, K(m, c) is output, otherwise
failure.

2.3 Bit Flipping Key Encapsulation – BIKE

BIKE is another code-based post-quantum KEM targeting IND-CCA security,
which is also an alternate candidate in the third round of the NIST PQC compe-
tition. As other candidates, it has updated its specification from round to round
and we consider the specification submitted to the most recent round of the NIST
PQC competition (being round 3) [Ara+21]. It can briefly be considered as the
McEliece scheme instantiated with QC-MDPC codes [Mis+13], using the equiva-
lent Niederreiter scheme. Quasi-Cyclic Moderate Density Parity-Check codes are
similar to more well known Quasi-Cyclic Low Density Parity-Check (QC-LDPC)
codes, but parity checks have a somewhat larger weight (O(n) instead of a con-
stant, where n is the code length). The security of the scheme relies on quasi-cyclic
variants of hard decoding problems from coding theory in the Hamming metric.
The security level it provides is bounded by the complexity of solving these hard
problems with the best known algorithms. In the case of BIKE we have a small
probability of decryption failure, which gives on occurrence an error in decapsu-
lation. Typically, a high security level demands that this probability of failure is
negligible, say 2−128 or even smaller.

Let us now give a brief overview of the specification of BIKE. It is specified
from three main values, being the Hamming weight of the error vector t, the row
weight of the secret parity check matrix w, and the block length r. To achieve a
given security level λ for IND-CPA security, the parameters t and w should be
chosen according to the complexity of solving the underlying hard problems. To
additionally achieve IND-CCA security, one need to make sure that the decryption

2 Background 203

Table 2: BIKE parameters.

Security r w t DFR

Level 1 12,323 142 134 2−128

Level 3 24,659 206 199 2−192

Level 5 40,973 274 264 2−256

failure probability is upper bounded by 2−λ. The block length r does not affect
the computational hardness of the underlying problems much, but do affect the
decryption failure probability.

In setup, one sets the target security level λ and then generates the parameters
(r, t, w) and an additional parameter l, which gives the size of the shared key
output, in bits. We also fix hash functions H,K, L and a decoder Decode. The
message space isM = {0, 1}l and the shared key space isK = {0, 1}l. We return
to the hash functions later. BIKE uses the cyclic polynomial ringR = F2/(X

r−
1); Hw is the secret key space Hw = {(h0, h1) ∈ R2 : |h0| = |h1| = w/2};
finally Et is the set of errors Et = {(e0, e1) ∈ R2 : |e0|+ |e1| = t}.

The BIKE KEM consists of several algorithms. First, the key generationKeyGen
is done as described in Algorithm 6. It creates the secret key sk, consisting of two
low weight vectors h0 and h1 of length r, as well as a special value σ, used in case
of error in decoding. It also creates the public key pk, being a length r vector
computed as h = h1h0

−1. The notation Sample(X) means that we uniformly
pick an element from the set X .

Next, the encapsulation algorithmic Encaps outputs a ciphertext c that con-
tains an encapsulated key value, using only the public key. It first selects a ran-
dom bitstring m of length l. It then hashes this value to a weight t error vector
(e0, e1) ∈ Et. Hashing is done using the special hash function H, which outputs
weight t vectors. A ciphertext is then formed, where the first part is c0 = e0+e1h.
The second part of the ciphertext is c1 = m⊕L(e0, e1). We note that with knowl-
edge of (h0, h1) in the secret key, one can efficiently reconstruct (e0, e1) from c0.
Then one can also reconstruct m from c1. The final step computes a shared key
through K = K(m, c). All steps are illustrated in Algorithm 7.

The decapsulation algorithmic Decaps is the final algorithmic to describe. It
outputs the shared key from the ciphertext c using the secret key. It first computes
the error vector used to create c0 by e′ = Decode(c0h0, h0, h1). HereDecode is a
kind of bit-flipping decoder [Gal62]. The choice of decoder is a trade-off between
efficiency and failure probability. In the BIKE specification, the Black-Gray-Flip
(BGF) decoder is selected. Nextm′ = c1⊕L(e′). If e′ was correctly received, then
m′ = m. This is now checked by computing and comparing if e′ = H(m′). If so,
the shared key is set to K = K(m, c). The steps are illustrated in Algorithm 8.

204 Paper V: Don’t Reject This: Key-Recovery Timing Attacks Due to Rejection- …

Algorithm 6
BIKE.KeyGen
Input: ·
Output: sk = (h0, h1, σ)

pk = h ∈ R
1: (h0, h1) = Sample(Hw)
2: h = h1h0

−1

3: σ = Sample(M)

4: sk = (h0, h1, σ)
5: pk = h

Algorithm 7
BIKE.Encaps

Input: pk = h
Output: K, c

1: m = Sample(M)
2: (e0, e1) = H(m)
3: c = (e0 + e1,

m⊕ L(e0, e1))

4: K = K(m, c)

Algorithm 8
BIKE.Decaps

Input: sk = (h0, h1, σ), c =
(c0, c1)

Output: K
1: e′ = Decode(c0h0, h0, h1)
2: m′ = c1 ⊕ L(e′)
3: if e′ = H(m′) then
4: K = K(m′, c)
5: else
6: K = K(σ, c)
7: end if

3 Timing Attacks on HQC and BIKE

In this section we present the timing attacks on the schemes HQC and BIKE and
the underlying vulnerabilities in both cases.

3.1 The Timing Attack on HQC

In the following, we show how the current optimized HQC implementation [Agu+]
from June 2021 which is specified in [Agu+21] leaks timing information which
enables the construction of a plaintext distinguisher. Then, this distinguisher is
used as a plaintext-checking oracle within existing attacks described in [Bae+19]
to achieve the key-recovery on the, now, deprecated version of HQC using BCH
and repetition codes. Further, we propose an attack that enables the key-recovery
on the current version using Reed-Solomon (RS) and Reed-Muller (RM) codes.

The vulnerability in the HQC implementations. As described in Section 2.2,
the encryption function described in Algorithm 2 requires to sample bit vectors
of a specified Hamming weight ω. The implementation of the sampling function
uses rejection sampling to comply to the security properties, e.g., if a position is
sampled twice. The runtime of the rejection sampling algorithm depends on the
given seed θ. In the KEM version the en- and decapsulation procedures derive the
seed for the encryption function from the message m by G(m). The dependence
on the message in the decapsulation allows us to construct a plaintext distinguisher
which we use to mount a timing attack afterwards.

The Sample function. The considered implementation of HQC implements the
weighted vector sampling in the function vect_set_random_fixed_weight.
For brevity we refer to this function as Sample. In each iteration the function
generates random positions from the range {0, . . . , n − 1} to set a bit at that

3 Timing Attacks on HQC and BIKE 205

crypto_kem_dec

hqc_pke_decrypt m
SHA3 θ

hqc_pke_encrypt

vect_set_random_fixed_weight
(Sample)

×3

seedexpander

×[1,∞)

Legend:

function f

function g

×3
f calls g 3 times

input
output

Figure 1: Visualization of the information flow in the decapsulation function of
the current HQC KEM implementation [Agu+].

position to 1 until w distinct bit positions have been sampled. Concretely, if the
sampled bit position has already been sampled before, the sample is rejected. Oth-
erwise, the bit position is stored in an array. At the end, the vector of weight w is
constructed by setting the bits at the w distinct positions that were sampled. The
number of times a bit position collides with a previously sampled bit position is
directly proportional to the runtime of the algorithm.

The randomness in the Sample function is deterministic and determined by an
eXtendable-Output Function (XOF) implemented by the seedexpander func-
tion. For our analyses we assume that the outputs of the XOF are uniformly,
independent and identically distributed (iid). The XOF influences the path that
is taken through the function and is initialized with the seed θ = G(m). The
message m is obtained from the decoding of the ciphertext c, c.f., ?? 274 in Algo-
rithm 3. This data flow is illustrated in Fig. 1. Therefore, the message m controls
how many iterations the rejection sampling algorithm takes. Further, a rejection
leads to another call of the seedexpander function and, thus, to a large timing
gap.

Additional seedexpander calls. We refer to seedexpander calls which are ex-
ecuted conditionally within the loop in the Sample function, c.f. Fig. 1, as addi-
tional seedexpander calls. For details, we refer to the original source code which
can be found in the file vector.c, line 31, in [Agu+]. In general, unless otherwise
specified, we only count the number of additional seedexpander calls and skip
the default initial call. The seedexpander is initially used to produce 3 ·ωr bytes
of randomness and store it into a buffer. If this randomness is sufficient to generate
ωr distinct bit positions, no additional seedexpander calls are issued. However,

206 Paper V: Don’t Reject This: Key-Recovery Timing Attacks Due to Rejection- …

if even a single sample is rejected the algorithm will need to produce additional
randomness by issuing another seedexpander call. The sampled bit positions
are in the range of {0, . . . , n − 1}. To generate these positions, the algorithm
performs an inner rejection sampling algorithm. The inner rejection sampling al-
gorithm samples a position from {0, . . . , 224 − 1} that is to be reduced modulo
n, where n < 224. However, the position is rejected if it is above the largest
multiple of n that is smaller than 224 which is defined by η :=

⌈
224/n

⌉
n or

UTILS_REJECTION_THRESHOLD in the implementation. This is to avoid biasing
the distribution and discussed in detail in Section 5.2.

Thus, sampling distinct bit positions can fail in two ways: (1) The sampled
position in {0, . . . , 224 − 1} is larger than η or (2) it collides with a previously
sampled one. We can model rejection sampling of a position as a Bernoulli vari-
able with the success probability p = η/224. Each attempt to generate a valid bit
position below n consumes 3 bytes of randomness. If the algorithm succeeds in
picking a distinct bit position in every iteration, it does not need additional ran-
domness. In this case seedexpander is not called within the for loop. However,
if even a single sample fails or collides the algorithm will need to produce addi-
tional randomness, as it now requires more than 3 · ωr bytes. The probability of
all ωr samples succeeding and picking distinct positions out of n bit positions is

p̃ =

ωr−1∏
i=0

(
p
n− i

n

)
which evaluates, for instance, to approx. 81.95% for the hqc-128 parameter set.
Thus, only 1− p̃ ≈ 18.05% of all possible seeds θ result in at least one additional
call to the seedexpander function. The probabilities for all parameter sets are
listed in Table 3.

Decapsulation timing. Inspecting the decapsulation function in Algorithm 5
the timing variation is caused by the invocation of the encryption function using
the seed θ = G(m). Viewing the encryption function in Algorithm 2 we observe
three calls to the previously discussed Sample function. One for each of the ran-
dom vectors: r1, r2, e, where the weight parameters ωr and ωe are equal. Each
of these calls is using the same seedexpander instance, whose randomness de-
pends upon the seed θ. In each of these three invocations there is a 1− p̃ chance
that seedexpander is called at least once within the for loop. Thus, (1− p̃)3 of
messages result in three or more calls to seedexpander.

The Distinguisher

Given a ciphertext c we can distinguish whether the decrypted message m yields
the same timing behavior during the encryption as another ciphertext. We define

3 Timing Attacks on HQC and BIKE 207

Table 3: The approximated probabilities p for successfully sampling a bit position
in the range required for unbiased modulo reduction, p̃ for completing the rejec-
tion sampling routine without exhausting the initially generated randomness, and
for a message that causes at least 3 additional seedexpander invocations.

Instance p (in %) p̃ (in %) (1− p̃)3 (in %)

hqc-128 99.94 81.95 0.58
hqc-192 99.79 65.93 3.95
hqc-256 99.97 79.09 0.91

a distinguisher D as:

DO(c1, c2) := O(c1)
?
= O(c2) (1)

where O = TB(sk, ·) is the decapsulation timing oracle and yields the timing
behavior – the number of seedexpander calls – of the provided ciphertext under
the secret key sk and · ?

= · returns whether the two arguments are equal or not.
The advantage ofD when distinguishing a given ciphertext c1 that decrypts to m1

from another ciphertext c2 that decrypts to a uniform randomly chosen message
m2 is given by:

| Pr
c2

$←C
[DTB(sk,·)(c1, c2) = 1 | Decrypt(sk, c1) = Decrypt(sk, c2)]−

Pr
c2

$←C
[DTB(sk,·)(c1, c2) = 1 | Decrypt(sk, c1) ̸= Decrypt(sk, c2)]|

= | Pr
c2

$←C
[TB(sk, c1) = TB(sk, c2) | Decrypt(sk, c1) = Decrypt(sk, c2)]−

Pr
c2

$←C
[TB(sk, c1) = TB(sk, c2) | Decrypt(sk, c1) ̸= Decrypt(sk, c2)]|

= 1− Pr
c2

$←C
[TB(sk, c1) = TB(sk, c2) | Decrypt(sk, c1) ̸= Decrypt(sk, c2)]

where C is the ciphertext space. The last formula shows that the advantage is
at a maximum when the probability of obtaining the same timing behavior for
another ciphertext c2 that decrypts to a different message is at a minimum. We
can achieve this by minimizing the probability of the timing behavior of c1 by
picking a suitable message m1.

The Secret Key Recovery Attack

By using the observations of the vulnerability analysis to get a distinguisher de-
scribed in Section 3.1 for a secret key recovery we propose the following attack

208 Paper V: Don’t Reject This: Key-Recovery Timing Attacks Due to Rejection- …

idea. We pick a message m that has the property of resulting in 3 additional calls
to the seedexpander function. Regarding the low probabilities in Table 3, we
know that most of the messages do not share this property with our chosen mes-
sage m. Therefore, since we can determine whether a decryption has resulted in
exactly 3 calls or not through the timing behavior, we can distinguish whether a
ciphertext decrypts to the message m with high advantage. Next, we compute a
ciphertext c = (u, v) by manually setting r1 to 1 ∈ R, and r2 and e to 0 ∈ R
during the encryption of m. This ciphertext has the desirable property, that the
error that the decoder has to correct during the decryption is just y, a part of the
secret key:

v− u · y = mG + s · r2 + e− (r1 + h · r2) · y = mG− r1 · y = mG− y. (2)

If we are able to find the error −y = y, we can compute the remaining part of
the secret key as x = s − h · y. Note, that we do not need x as it is never used
during the decapsulation. Further, note that this ciphertext is not valid, since we
cannot fully control r1, r2, or e during the encryption. For valid ciphertexts, these
are derived from m via the XOF and the Sample function. We do not require
a valid ciphertext, as our timing-side channel will reveal information, even if the
ciphertext is rejected by the decapsulation oracle.

To recover the error y we follow the basic principles outlined by Hall et al. [HGS99].
The authors propose adding an error e′ to the ciphertext c until we detect that the
modified ciphertext c′ decrypts to a different message m′. Then, we test for every
bit b in the ciphertext c′, whether flipping it causes the ciphertext to decrypt back
to the original message m. If it does, we know that the bit b is an error bit in the
modified ciphertext c′. Otherwise, b is not an error.

Unfortunately, we cannot directly apply this method to HQC for several rea-
sons: (1) Instead of correcting errors we need to determine the error e of our
original ciphertext c = mG + e. (2) Further, when flipping erroneous bits in
the modified ciphertext it does not decrypt back to the original message in most
cases. Thus, we would not detect that the bit is an error. (3) Finally, the timing
side-channel can not distinguish pairs of messages that induce the same number
of seedexpander calls. Therefore, we sometimes do not detect that our modified
ciphertext does not decrypt to the same message m anymore.

The first issue can be solved by keeping track of the error e′ that we add to
c = mG + e to obtain c′ = c+ e′. If we flip a bit b in e′ to obtain the ciphertext
c′ and it decrypts back to the original message m, we know that b is an error in
c′ = c + e′. Let e′′ = e + e′. If the bit b is set in e′′, then b is set in e if and
only if the b-th bit of e′ is not set. Or in other words, if we did not introduce the
error ourselves, we know that the bit is an error. Otherwise, we know that the bit
is correct. The second issue vastly increases the number of timing oracle calls since
it introduces a very high false negative rate. We do not gain any information if the
ciphertext does not decrypt back to the original message. To address this issue, we

3 Timing Attacks on HQC and BIKE 209

retry the entire function multiple times, with many different e′. Eventually, we
obtain a decision for every bit. The third issue may be solved by obtaining three
or more decisions for every bit, and then obtaining a final decision with a majority
vote.

Our resulting attack approach is detailed in Algorithm 9. First, we need to find
a proper message m which yields 3 additional seedexpander calls. Therefore, we
perform an exhaustive but low effort search. According to Eq. (2), we apply the
modified encryption to m to obtain the initial ciphertext c = (u, v). Further, we
define a proper majority threshold T as the majority of N votes. Afterwards, we
apply Algorithm 10 to find another ciphertext c′ = (u, y+e′) and the correspond-
ing m′ that differs from m. We only add e′ to v because the input to the decoder
evaluates to additional errors just in the secret key part y, c.f., Eq. (3).

Decrypt(sk, (u, v+ e′)) = C.Decode(v+ e′−u ·y) = C.Decode(mG+ e′−y)
(3)

In particular c′ should have exactly one more error bit than the decoder could
correct. From this state, flipping any bit in c′ and checking whether the ciphertext
decodes again reveals whether that bit was an error bit in c or not. We can exploit
this property to recover y later on. Starting from c and an error of e′ = 0, we
iteratively increase the weight of e′ by flipping single, random bits. After each
flip, we send the modified ciphertext to the decapsulation timing oracle DTB(sk,·)

and check if the ciphertext causes a different amount of time in the decryption
operation than our original ciphertext. If it does, we have found a ciphertext c′
that decrypts to a different message m′.

Then, for each bit position b in v+ e′, we flip the bit and send (u, v+ e′+2b)
to the decapsulation timing oracle, where 2b is a vector with the bth bit set. If
we detect that the timing is again equal to the timing of our original ciphertext,
we assume that the decryption yields back the original message m and that the
corresponding bit in the secret key part y is set. Otherwise, we assume that the
ciphertext decrypts to a different message and that there is no error bit set at this
position.

Finally, Algorithm 9 calls Algorithms 10 and 11 multiple times until a majority
is revealed at each bit position for a 0- or 1-bit. To determine the majorities the
counters in t record the total number of votes that have been cast for each bit b.
The counters in r record the number of 1-votes for each bit b, i.e., the number
of votes that the bit b is set. The number of 0-votes for a bit b is computed by
t[b]− r[b]. For a majority either the number of 1-votes or the number of 0-votes
has to exceed ⌊N/2⌋+ 1.

Reducing the number of oracle queries. We can improve the attack by target-
ing a specific word of the duplicated RM code. Specifically, consider that the code
used in HQC is a concatenated code combining an outer RS code with an inner
duplicated RM code. During encoding, each element in the alphabet Fq from a

210 Paper V: Don’t Reject This: Key-Recovery Timing Attacks Due to Rejection- …

Algorithm 9 KeyRecovery

Input: Ciphertext c, parameter N to compute majority threshold T .
Output: y.

1: for b = 0 to n1n2 − 1 do
2: y[b]← 0, t[b]← 0, r[b]← 0
3: end for
4: repeat
5: (c′, bs)← FindDiffMsg(c)
6: e′ ← RecoverError(c′)
7: majority← true
8: T ←

⌈
N
2

⌉
+ 1

9: for b = 0 to n1n2 − 1 do
10: if e′[b] = 1 then
11: t[b]← t[b] + 1
12: if b ̸∈ bs then
13: r[b]← r[b] + 1
14: end if
15: end if
16: if r[b] < T and t[b]− r[b] < T then
17: majority← false
18: end if
19: end for
20: until majority= true
21: for b = 0 to n1n2 − 1 do
22: y[b]← r[b] ≥ T
23: end for
24: return e

word of the outer code is mapped to a message that the inner code can encode.
We can obtain an oracle whether a word of the inner code decoded correctly by
corrupting v such that a single additional corrupted inner code word would result
in a decoding failure. We achieve this by corrupting δ – the error correction ca-
pacity of the outer code – elements of the outer code. We then may add an error
e′ to a single element of words of the RS code. A similar procedure has been pre-
viously described [Bae+19, Ex.15] to attack Lepton [YZ17] which uses BCH and
repetition codes.

The oracle we construct here may also enable faster attacks [Waf+19] if the
noise learning problem [Bae+19] is solved for duplicated RM codes. We do not
implement such a version of the attack as we are not aware of a solution to this
problem.

3 Timing Attacks on HQC and BIKE 211

Algorithm 10 FindDiffMsg

Input: c
Output: c′, flipped bits bs

1: c′ ← c
2: bs←

RandomPermutation([0, . . . , n1n2 − 1])
3: for i = 0 to n1n2 − 1 do
4: Flip bit bs[i] in v of c′
5: if DTB(sk,·)(c, c′) = 0 then
6: return (c′, bs[0, . . . , i])
7: end if
8: end for

Algorithm 11 RecoverError

Input: Modified ciphertext c′
Output: Combined error e

1: e← 0
2: for i = 0 to n1n2 − 1 do
3: Flip bit i in v of c′
4: if DTB(sk,·)(c, c′) = 1 then
5: Set bit i in e
6: end if
7: Flip bit i in v of c′
8: end for

· · ·

n1n2

n2

n− n1n2

Figure 2: An element of F2[x]/⟨xn − 1⟩ and its segmentation into codewords of
the inner code.

Recovering the entire secret key. Using the methods described so far we can re-
cover n1n2 bits of the secret key y. However, we are missing n− n1n2 bits, that
are required for using y during decryption. In Fig. 2 the structure of HQC code-
words is displayed. Depending on the codes used, there are n1 RM or repetition
code codewords. However, n−n1n2 bits of the n bits in total are never used dur-
ing decoding. Thus, these bits cannot be obtained using the methods described so
far. We now show how this situation can be remediated, and how it does not have
a significant impact on the success probability, when the attack accounts for it.
This issue was not addressed in some other attacks against HQC [Waf+19]. Fortu-
nately, the difference between n and n1n2 is small for most parameters. However,
for some parameters the difference could dominate the attack’s complexity, if we
were to brute force every possible combination. The largest difference with the
new parameter sets is 37 bits in hqc-256. We can check whether a combination
of bits is correct by checking whether we can decrypt an honestly encrypted mes-
sage successfully. Fortunately, we can drastically reduce the search space while
retaining a very high success probability. Assuming the number of bits set in the
remaining bits is ≤ 2, the number of ways to pick these bits is

∑2
i=0

(
n−n1n2

i

)
.

This number is low enough for all parameter choices to enumerate using a brute
force search.

212 Paper V: Don’t Reject This: Key-Recovery Timing Attacks Due to Rejection- …

Table 4: Remaining n − n1n2 bits that must be recovered for each parameter
set, the number of ways to pick the remaining bits with a weight of up to 2, the
probability that the weight is 0, and the probability that the weight is ≤ 2.

Instance n1n2 n ω n− n1n2
∑2

i=0

(
n−n1n2

i

)
Pr[Z = 0] Pr[Z ≤ 2]

hqc-128 17,664 17,669 66 5 16 ≈ 98.1% ≈ 100.0%
hqc-192 35,840 35,851 100 11 67 ≈ 97.0% ≈ 100.0%
hqc-256 57,600 57,637 131 37 704 ≈ 91.9% ≈ 100.0%

We now investigate the success probability given this dramatic search space
reduction. We define Yi,o,w to be the number of elements that land inside a region
of i elements when sampling w distinct elements uniformly from a region of i+o
elements. The region i (or “inside”) corresponds to the bits that are set in the
remaining n − n1n2 bits. The region o (or “outside”) corresponds to the n1n2

bits that we have already obtained using the attack. Then the probability that x of
the w distinct elements land inside the region of i elements is:

Pr[Yi,o,w = x] =

(
i
x

)(
o

w−x
)(

o+i
w

)
We now let Z = Yn−n1n2,n1n2,ω. Assuming the attack was successful for all
n1n2 bits, the success probability is approx. 98.1% for hqc-128 when we guess
that all remaining bits are zero, represented by the column Pr[Z = 0] in Table 4.
However, this loss is preventable by brute-forcing the remaining bits. We can
come very close to a success probability of 1, even for a modest search of only≤ 2
set bits.

3.2 The Timing Attack on BIKE

Central elements for our attack are the decoding algorithm and the hash functions,
which are described here a bit more. From the specification we see that the de-
coding step calls Decode(s, h0, h1) which returns either (e0, e1) ∈ R2 such that
e0h0 + e1h1 = s or the failure symbol⊥. First, note that there is no restriction on
the weight of the returned error in the Decode algorithm. Any weight is possible
as long as e0h0 + e1h1 = s. Secondly, if decoding is not successful and the failure
symbol is returned, it has to be coded into a binary value. In existing reference
implementations, failure is indicated by assigning a specific value like (e0, e1) = 0.

For the hash functions used, K and L are considered as standard hash functions,
mapping to l-bit strings. ButH is a special hash function, since its output is a vector
of weight t. It finds its output by a rejection sampling method. Its description is
given in Algorithm 124 and uses also a pseudorandom number generator called

4Compared to Algorithm 3 in the BIKE specification, we fixed line 7 and add a new line for the

3 Timing Attacks on HQC and BIKE 213

Algorithm 12 WAES-CTR-PRF

Input: seed, w (32 bits), len
Output: A list of w different bit-positions in {0, ..., len− 1}.

1: wlist = ϕ; ctr = 0; i = 0
2: s = AES-CTR-Stream(seed,∞) ▷ ∞ denotes ”sufficiently large”

3: mask = (2⌈log2 r⌉ − 1)
4: while ctr < w do
5: pos = s[32(i+ 1)− 1 : 32i] & mask ▷ & denotes bitwise AND
6: if ((pos < len) AND (pos ̸∈ wlist)) then
7: wlist = wlist ∪ pos
8: ctr = ctr + 1
9: end if

10: i = i+ 1
11: end while
12: return wlist, s

AES-CTR-Stream(·)5 in the round-3 submission to NIST. In brief, the algorithm
is producing a list ofw different bit-positions in {0, ..., len−1}, which correspond
to the positions of the ones in the weight t = w error vector of length len = 2n
that should be the output of the H hash function. The first step in the algorithm
is to call AES-CTR-Stream(·) to get a new position value and add it to the list if it
was not previously already selected. The number of required calls for randomness
(the final value of the i variable) varies, depending on the number of collisions
with already selected values.

The situation in BIKE is very similar to the HQC case. Looking at the defini-
tion of Encaps/Decaps (see Algorithms 7 and 8) we have seen that the rejection
sampling takes place in the H function, in order to generate a random error vector
of fixed-weight. A non-constant time implementation of H thus means that we
can distinguish between the cases m = m′ and m ̸= m′ with some probability.
The value m′ directly depends on the ability of the decoder to correctly extract
the error vector e = (e0, e1) from the ciphertext c. This means that we have, as
for the case of HQC, a distinguisher between chosen ciphertexts above and below
the error correction capability of the decoder. This assumes the rejection sampling
algorithm is not implemented in constant time, of course. BIKE officially claims
only a IND-CPA secure scheme with the ephemeral key use-case, although they
claim IND-CCA security if the decoder they use can be shown to have a decoding
failure rate lower than the bit-security level of the scheme.

We are now ready to formulate an attack on BIKE, based on the described
observations. As before, we consider an IND-CCA scenario, where we assume

iteratoration of i, so that it is outside of the if-statement, c.f., line 9 in Algorithm 12.
5In the most recent version, the designers instead employ SHAKE256.

214 Paper V: Don’t Reject This: Key-Recovery Timing Attacks Due to Rejection- …

that we can compute ciphertexts (with encapsulated keys), feed a ciphertext for
decapsulation and observe the output of decapsulation. This may for example be
an attempt to establish a joint key. As this is a timing attack, we also add the
assumption that we get timing information from the decapsulation step.

We leverage the GJS attack [GJS16; NJW18] and use the rejection sampling
vulnerability as way to act as a distinguisher of decoding failure. This attack as-
sumes that the scheme is used in a static key setting requiring IND-CCA security.
The Error Amplification attack [NJW18] builds on the GJS attack [GJS16], but
requires only a single initial error vector that results in a decoding failure and then
modifies this in order to generate many more error vectors. Let us give very brief
descriptions of these attacks.

The GJS Attack

The GJS attack [GJS16; NJW18] was described as an attack on QC-MDPC public-
key schemes, using decryption failures that occur. As BIKE is a QC-MDPC
scheme, the attacks are directly applicable. In our case, the secret key is (h0, h1),
which also determines the secret parity-check matrix of the code to be decoded.
Central is the notion of distance between two ones at position i1 and i2, i1 < i2,
in a vector. It is defined as the smallest value of (i2− i1) and (i1− i2)+ r, where
r is the length of the vector (the smallest distance between the two ones in cyclic
sense).

The distance spectrum for a length r vector x is denoted D(x). It is (in its
simplest form) defined as

D(x) = {d : 1 ≤ d ≤ r/2, d is a distance existing in x}.

It can be extended by also introducing µ(d), where µ(d) is the number of times
the distance d is present in vector x, when d ∈ D(x).

The approach is now to examine the decoding result for different error patterns.
In particular, one picks errors from special subsets. For example, let Ψd be the set
of all binary vectors of length n = 2r having exactly t ones, where all ones are
placed with distance d in the first half of the vector. The other half of the vector is
zero. The construction of Ψd gives repeated ones at distance d at least t/2 times,
where

Ψd = {(e, 0) | ∃ distinct s1, s2, . . . , st, s.t. esi = 1, and
s2i = (s2i−1 + d) mod r for i = 1, . . . , t/2, and |e| = t}

(4)

In the attack phase one sends many messages with the error selected from the
subset Ψd. When there is a decoding error one records this. With enough samples
one can compute an empirical decoding error probability for the subset Ψd. Fur-
thermore, this is done for d = 1, 2, . . . , r/2. The main observation is that there is
a strong correlation between the decoding error probability for error vectors from

3 Timing Attacks on HQC and BIKE 215

Ψd and the existence of a distance d between two ones in the secret vector h0. If
there exists two ones in h0 at distance d, the decoding error probability is much
smaller than if distance d does not exist between two ones.

After sending many messages, we look at the decoding error probability for
each Ψd and classify each d, d = 1, 2, . . . , U according to its multiplicity µ(d),
since each distance can appear not only once but many times. This provides a
distance spectrum for the secret vector h0, which we write D(h0). Finally, from
D(h0) it is an easy task to compute h0. One can even have a smaller number
of wrong values in D(h0) and still be able to compute h0. We list the basic key
reconstruction algorithm from [GJS16] in Algorithm 13 for completeness. The
advanced version that is capable of recovering keys from distance spectrum with
errors is proposed in [GJW19].

Algorithm 13 Key recovery from distance spectrum (from [GJS16])

Input: distance spectrum D(h0), partial secret key h0, current depth l
Output: recovered secret key h0 or message ”No such secret key exists” Initial

recursion parameters: distance spectrum D(h0), empty set for secret key,
current depth 0

1: if l = w then
2: return h0 ▷ secret key found
3: end if
4: for all potential key bits i do
5: if all distances to key bit i exist in D(h0) then
6: Add key bit i to secret key h0

7: Make recursive call with parameters D(h0), h0 and l + 1
8: if recursive call finds solution h0 then
9: if h0 is the secret key then

10: return h0 ▷ secret key found
11: end if
12: end if
13: Remove key bit i from secret key h0

14: end if
15: end for
16: return ”No such secret key exists”

The Secret Key Recovery Attack

The attack now follows the procedure listed in Algorithm 14 and using the dist-
inghuisher in Algorithm 15. Let us step through the different parts of the attack
in more detail.

216 Paper V: Don’t Reject This: Key-Recovery Timing Attacks Due to Rejection- …

Algorithm 14 Pseudo code of attack: BikeAttack(h,w∗,M, I)

1: m← Plaintext such that H(m) is easily distinguishable
by timing attack ▷ Preamble

2: loop
3: Generate random e, of hamming weight w∗

4: if DecodingFailureDistinguisher(e, I) = True then
5: break ▷ Found the first e which causes a decoding failure
6: end if
7: end loop
8: F,G,A,B ← empty vectors ▷ Main body
9: for i← 1,M do

10: e∗ ←Move random non-zero bit in e
11: ∆Dd ← Distance spectrum differences between e and e∗

12: if DecodingFailureDistinguisher(e∗, I) = True then
13: e← e∗

14: Update lists F,G with ∆Dd according to [NJW18]
15: else
16: Update lists A,B with ∆Dd according to [NJW18]
17: end if
18: end for
19: A′ ← max(A)−A+ min(A) ▷ Postamble
20: D ← F +G+A′ +B
21: Recover secret key with distance spectrum D as per [GJS16]

1. We start by finding m such that H(m) is easily distinguishable by a timing
attack. Here we pick m with an extraordinarily distinct timing profile (i.e.
long or short) in the rejection sampling. It means that we have many or few
collisions in Algorithm 12 that makes execution require more or less time,
than the average case. Selection of strategy, as well as details on the number
of calls, will be discussed later.

2. Construct an error pattern e = (e0, e1) with higher than normal Hamming
weight so that we are as close to the decoding limit as possible. We assume
one part of e (w.l.o.g., e1) is an all-zero vector.

3. Calculate c and transmit to target.

4. Determine if m′ ?
= m by timing attack.

5. Repeat from step 2. to collect many e where m′ ̸= m as per GJS attack or
Error Amplification attack

4 Evaluation 217

Algorithm 15 DecodingFailureDistinguisher(e, I)
e0, e1 ← e
c← (e0 + e1h,m⊕ L(e0, e1))
S ← ∅
for i← 1, I do

start← RDTSCP
BIKE.Decaps(c)
stop← RDTSCP
S ← S ∪ (stop− start)

end for
Determine decoding failure f or not with S
return f

6. After sufficiently many errors are collected, we could determine the distance
spectrum statistically.

7. The secret key can be recovered via the reconstruction method in [GJS16] or
the improved reconstruction method in its extended version [GJW19] that
can handle errors in the recovered distance spectrum.

We can check the correctness of this approach. First, L takes input fromR2, so
it delivers a result for any choice of e = (e0, e1). Hence we can build ciphertexts
accordingly. In the decaps step, c0 ∈ R is always a valid input to the decoder.
The decoder delivers an error e′ or a failure. But since the result from the decoder
is fed into the L with input in R2, the failure symbol must be interpreted as a
fixed value in R2 (as is also done in the reference code). Altogether, there are
no problems with the domain and range of functions. We can feed decaps with
ciphertext corresponding to error vectors with higher weight than specified. It is
only in the last check of e′ = H(m′) that it will fail, since H is only delivering
error vectors of weight t.

4 Evaluation

In this section we present the empirical evaluations of both attack approaches de-
scribed in Sections 3.1 and 3.2.

4.1 Empirical Evaluation of the Attack on HQC

To confirm the previously postulated hypothesis about the timing behavior we
performed a leakage assessment by measuring the CPU cycles of the decapsulation
function in the hqc-128 setting for ten million random ciphertexts. Fig. 3a shows
how more seedexpander calls result in an increased running time. We observe

218 Paper V: Don’t Reject This: Key-Recovery Timing Attacks Due to Rejection- …

up to 3 additional seedexpander calls. In Fig. 3b we can see the frequency of
different timing behaviors. As expected, the frequency decreases when the number
of additional seedexpander calls increases. Further, the rate of three additional
calls is low enough to be distinguishable to the other three cases. The probability
of four additional calls is negligible and does not occur.

22
5

22
6

22
7

22
8

22
9

23
0

23
1

23
2

Num. PRNG Samplings

2.4

2.5

2.6

2.7

C
lo
ck

cy
cl
es

×105

Num. Seedexpansions
0 1 2 3

(a) For each observed combination of the
number of additional seedexpander calls
and the number of times a position was at-
tempted to be sampled we show a boxplot of
the number of cycles that the decapsulation
function took.

0 1 2 3

Num. Seedexpansions

0

2

4

N
u
m
.
P
la
in
te
x
ts

×106

(b) Bar plot of the number of additional
seedexpander calls observed for the 10
million random ciphertexts generated. 3 ad-
ditional seedexpander calls corresponds to
the rarest observed timing behavior.

Figure 3: Decapsulation timings and frequency of different timing behaviors. We
observe that the running time of the decapsulation function is proportional to the
number of seedexpansions and that more seedexpander calls are rare. The left
figure shows a standard box plot with the median indicated within the box, which
also shows the quartiles. The whiskers extend to show 1.5 times the interquartile
range.

We have empirically verified the existence of the timing variation by generating
random ciphertexts under a single keypair and measuring the number of cycles that
the decapsulation algorithm required for 100 random ciphertexts. To measure the
number of cycles that an operation takes we use the rdtsc instruction on x86 as
recommended by Intel [Pao10]. Section 5.5 shows whether there is a difference in
decapsulation time between pairs of 100 ciphertexts generated for a single keypair.
We determine whether there is a statistically significant difference using Welch’s
t-test [Wel47] (α = 0.1%). The t-statistic for two distributions X1 and X2 in
Welch’s t-test is computed as:

4 Evaluation 219

X̄1 − X̄2√
s2X1
N1

+
s2X2
N2

(5)

where X̄i, s2Xi
and Ni are the sample mean, variance and size of Xi, respec-

tively. The degrees of freedom are estimated by the Welch-Satterthwaite equation:

ν =

(
s2X1
N1

+
s2X2
N2

)2

(
s2
X1
N1

)2

N1−1 +

(
s2
X2
N2

)2

N2−1

. (6)

The results show that many pairs of ciphertexts emit a statistically significant dif-
ference in decapsulation time. We have performed the same test again focussing
only on the seedexpander function and achieve very similar results.

We implemented the optimized attack against hqc-128 using an idealized tim-
ing oracle that reveals the number of seedexpander calls during the decapsula-
tion. The attack may be implemented analogously for the other parameter sets.
We set N = 5 for the number of samples from which a majority must be formed
for each bit. We performed the attack 6096 times in 114 CPU core hours on a
Ryzen 5900X with 64GiB DDR4 3600MT/s CL18 RAM. Each attack required
a median of 866,143 idealized timing oracle calls. Of the 6096 attacks 5315 were
successful, yielding a success rate of more than 87%. Among the failed attacks,
approx. 26% terminated with less than 3 incorrect bits in the secret key compo-
nent y. An additional brute-force step comprised of approx.

∑3
i=0

(
17,669

i

)
≈ 240

offline decapsulations could therefore further boost the success probability. Fur-
thermore, approx. 86% of the failed attacks terminated with less than 20 incorrect
bits and could therefore drastically reduce the security level of HQC. Thus, even
if we are not able to recover all bits of the secret key we deem it likely that one can
apply the known attacks to the HQC scheme which are listed in [Agu+21] as it will
become feasible to solve the syndrome decoding problem or to mount structural
attacks. We empirically determined the probability distribution of the number
of incorrect bits after an attack and show the cumulative distribution function in
Fig. 4.

4.2 Empirical Evaluation of the Attack on BIKE

The BIKE specification changed in some major ways between round 2 and 3 and
there is now only a single BIKE variant with different security levels. The submit-
ted version of the specification is 4.1. The specification has been updated during
round 3 to version 4.2 in ways relevant to our attack; specifically the PRNG func-
tion used by the H function has been replaced. Though, the side-channel and

220 Paper V: Don’t Reject This: Key-Recovery Timing Attacks Due to Rejection- …

0 25 50 75 100 125
0.85

0.86

0.87

0.88

0.89

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

x

Pr
[in

co
rr

ec
t

bi
ts

≤
x]

Figure 4: Empirical cumulative distribution function of the number of incorrect
bits during the attacks. Approx. 87% succeeded immediately. For those that
failed additional post-processing steps could further improve the success probabil-
ity. The vertical line indicates the weight of the secret key y. Less than 1% of cases
the attack terminated with more incorrect bits than bits are set in the secret key.

the presented attack remains, therefore the changes are discussed only briefly in
section 4.4.

The presented version of the BIKE attack assumes the following pre-conditions:

1. It is possible to generate a decoding failure (and then use the Error Amplifica-
tion attack to generate a chain of related decoding failures). This is possible
due to

• increasing the error weight when crafting the modified ciphertext arti-
ficially increases the DFR.

• the lack of mandated weight-check on the error vector in the decapsu-
lation stage of the BIKE specification.6

2. The timing profile of the H function depends on its input (value of m), i.e.
it is not (or insufficently) protected against side-channels.

3. The attack requires a IND-CCA setting with static key re-use.

We now list some existing implementations and discuss the applicability of our
attack:

6a weight check is discussed in the Design Rational chapter, but left out in the Specification
chapter. It is mentionend in the IND-CCA security reduction to be implicit in the e′ = H(m′)
check, but not in the specification of H.

4 Evaluation 221

• Reference implementation: All versions of the reference implementation of
BIKE fulfills these pre-conditions. But since it is not designed to protect
against side-channels the existence of an attack is not unexpected.

• Protected additional implementation: It should be noted that there is no
submitted official additional implementation in the submission package7 for
NIST PQC Round 3 version of the BIKE specification. The additional im-
plementation folder in the Round 3 submission package is the protected im-
plementation of the BIKE round 2 specification, version 3.28. This version
is vulnerable to the attack presented in this paper, with some minor modi-
fications.

• Github version: Located at github.com/awslabs/bike-kem/ is another im-
plementation, which has an additional weight check on the error vector (not
given in the BIKE specification), located before the call to the H function.
The end result is that in case of decoding failure or an error pattern of weight
̸= t, the input to H is randomized. This renders the described attack much
more difficult to exploit, since we are required to find a decoding failure
without changing the weight of the error vector. On the other hand, the
extra weight check opens up an even more efficient message recovery attack
and we provide a very brief description of this in Section 4.3.

Liboqs from the Open Quantum Safe Project [SM16] appears to use the
same version of the BIKE implementation as the one above. Also, a recent
3rd party Intel Haswell implementation due to [CCK21] that targets the
Intel Haswell family of CPUs to achieve greater speeds than the official im-
plementation appears to be based on the Github version and have copied
the additional weight check.

• 3rd party ARMCortexM4: In the same paper [CCK21], the authors present
a side-channel protected implementation targeting the ARM Cortex M4
processor. This version does not employ the additional weight check and is
thus vulnerable to our attack.

The simulations and experiments related to BIKE in this paper is using the
liboqs implementation for BIKE version 4.1, with the additional weight checks
turned off. This enables us to verify our attack in a close to real world scenario.
Ideally, the experiments would also be performed on the unmodified 3rd party
ARM Cortex M4 implementation. Due to time-constraints however, we restricted
ourselves to the Intel x86 platform-based implementations of the submitted BIKE
version.

7obtained on 2021-12-31 from https://csrc.nist.gov/CSRC/media/Projects/
post-quantum-cryptography/documents/round-3/submissions/BIKE-Round3.zip

8the same is true for the additional implementation found on the bikesuite.org website (Last
checked 2021-12-31)

https://github.com/awslabs/bike-kem/
https://csrc.nist.gov/CSRC/media/Projects/post-quantum-cryptography/documents/round-3/submissions/BIKE-Round3.zip
https://csrc.nist.gov/CSRC/media/Projects/post-quantum-cryptography/documents/round-3/submissions/BIKE-Round3.zip
bikesuite.org

222 Paper V: Don’t Reject This: Key-Recovery Timing Attacks Due to Rejection- …

14
1

14
5

14
9

15
3

15
7

16
1

16
5

16
9

17
3

17
7

18
1

18
5

18
9

19
3

19
7

20
1

20
5

20
9

21
3

21
7

22
1

22
5

22
9

23
3

23
7

24
1

Num. PRNG Samplings θ

102

104

106

108

1010

N
u
m
.
P
la
in
te
x
ts

Num. Seedexpansions
35
36
37
38
39

40
41
42
43
44

45
46
47
48
49

50
51
52
53

54
55
56
57

58
59
60
61

Figure 5: BIKE-L1: Distribution of the number of samplings θ inH to the underly-
ing PRNG function as empirically simulated with approximately 1011 randomly
generated plaintexts. Also presented are the number of seed expansions to the
PRNG function.

The empirical investigation into BIKE-L1 shows the number of expected rejec-
tions by the rejection sampling algorithm in Fig. 5. From the experiment we draw
the following conclusions about the targeted implementation:

1. The number of PRNG samplings θ are equal to the number of sampled bit
positions in e0, e1, therefore θ ≥ T .

2. θ, for BIKE-L1, has an expected value E(θ) ≈ 178.6, over the space ofM.

3. The number of rejections for BIKE-L1 has an expected value of E(θ−T) =
44.6

4. The experiment shows a skewed9 normal distribution with a standard devi-
ation of σ = 7.714

5. The underlying PRNG can serve 4 random samplings before requiring a new
seed expansion.

9Skewed due to the influence of condition θ ≥ T

4 Evaluation 223

14
1

14
5

14
9

15
3

15
7

16
1

16
5

16
9

17
3

17
7

18
1

18
5

18
9

19
3

19
7

20
1

20
5

20
9

21
3

21
7

22
1

22
5

22
9

23
3

23
7

24
1

Num. PRNG Samplings θ

2.66

2.67

2.68

2.69

2.70

2.71
C
lo
ck

cy
cl
es

×106

Num. Seedexpansions
35
36
37
38
39

40
41
42
43
44

45
46
47
48
49

50
51
52
53

54
55
56
57

58
59
60
61

Figure 6: Box plots of 106 timing measurements of BIKE-L1 Decaps per value of
θ. Values of θ with too few available plaintexts (< 10) are not simulated.

To determine the existence of the timing side-channel we observe the timing
distributions of the decapsulation method (Algorithm 8) as a function of θ. As
we can see in Fig. 6 it is indeed possible to distinguish between a high and low θ,
although the variations are slight and we therefore require a relatively large number
measurements for the distinguisher to give accurate outputs.

We performed the BIKE experiments in an HP EliteBook 820-G4 notebook
with Intel Core i5-7200@2.50GHz and 8Gb RAM running on Ubuntu 20.04
LTS. We set Linux scaling governor to ’performance’, turned off hyper threading,
and turned off all extraneous processes.

Interestingly, the number of seed expansion calls does not appear to provide
any noticeable influence on the runtime of the implemented rejection sampling
algorithm. Consequently we must select a plaintext based on θ alone. Each seed
expansion call is a simple call into AES which generally is implemented using the
Advanced Encryption Standard New Instructions (AES-NI) CPU instruction set
extension, which is very fast on modern CPUs.

As previously noted, since it is a one-time pre-computational cost, we can
spend an almost arbitrary amount of computation looking for a good candidate
plaintext which will provide us with a distinct timing profile in the rejection sam-

224 Paper V: Don’t Reject This: Key-Recovery Timing Attacks Due to Rejection- …

pling algorithm.
Since we do not control what new plaintext is generated by decoding failures

our candidate plaintext must cause a timing profile which is measurably distinct
from other likely plaintexts. Likely, in this context, relates to the notion of the
probability of making erroneous decisions for m′ ?

= m. That is, if m′ ̸= m and
|θm − θm′ | < ∆θ, for some value ∆θ for which the distinguisher is no longer
reliable, then the distinguisher may output the wrong decision. The probability
of the decoder randomly returning such an m′ is the most important property to
consider when determining the design and parameters of the distinguisher.

For the attack to succeed the probability of |θm − θm′ | < ∆θ must be mini-
mized. This can be accomplished in two ways. First, by increasing the work-load
of the pre-computation phase we can find a candidate value of m with θm as
high/low as possible. The second way is to reduce the granularity (∆θ) of the
distinguisher by increasing the number of decapsulation measurements.

The probability of a distinguisher failure ϵ can easily determined by simulation.
There are many ways to construct a distinguisher with a reasonably low failure rate
ϵ. We selected a simple strategy where we use the minimum θm and where we
use the 1% lowest measurement as the representative value for each distinguisher
decision. This is done in order to select the value which is as close to noise free as
possible.10

The distinguisher uses 2 phases; the profiling phase and the decision phase. In
the profiling phase we first select (m, θm) and ∆θ such that the probability of
|θm − θm′ | >= ∆θ, for a random θm′ , is less than the targeted ϵ. Then a large
number of measurements are collected for plaintext m∗ where θm∗ = θm +∆θ.
The 1% lowest measurement is selected as a threshold.

In the decision phase a number of decapsulation measurements are collected
and, again, the 1% lowest value is selected. The selected value is compared against
the previously selected threshold. If the measurement value is above the threshold
we guess a decoding failure. If below, we determine decoding successful.

Clearly, the distinguisher can be made more sophisticated using statistical hy-
pothesis testing or machine learning. However, for simply validating the practi-
cality of exploiting this side-channel, this distinguisher is quite sufficient.

Simulations show that we can obtain ϵ ≈ 0.01 by constructing a distin-
guisher with ∆θ = 22. This value is obtained with a candidate plaintext m with
θm = 138 and Nd = 1000 decapsulation measurements, per decision. This
was determined using the above parameters against 104 random error patterns of
hamming weight 157, resulting in a DFR of 0.1369.

To complete the empirical evaluation of the attack we finally perform a full
simulation of Algorithm 14. We have implemented the attack using an idealized

10We don’t select the absolute minimum value as we have discovered that sometimes those values
are impossible outliers. An hypothesis is that they come from instruction-reordering by the CPU
and/or scheduling between CPU cores.

4 Evaluation 225

0 2000 4000 6000

Distance

4.1

4.2

4.3

4.4

N
u
m
.
O
cc
u
re
n
ce
s

×105

Multip.
0

1

2

3

4

(a) Simulated aggregated distance spectrum
using the Error Amplification attack. Listed
in the legend is the various multiplicities
µ(d) of the secret key.

4.1 4.2 4.3 4.4

Num. Occurences ×105

100

101

102

C
ou

n
t

Multip.
0

1

2

3

4

(b) Plotting as histogram, the multiplicities
µ(d) are quite separated and there should
be no errors while determining the distance
spectrum of the secret key.

Figure 7: Data is generated using Nf = 8.5× 106 decoding failures and a distin-
guisher with ϵ = 0.01. For each distance is listed the number of occurrences that
the specific distance was included in an error pattern that resulted in a decoding
failure. The stratification into separate layers for each multiplicity is clearly visible.

oracle that output θ, the number of PRNG samplings performed by H. To show
the real-world applicability of the attack the idealized oracle additionally simulates
ϵ = 0.01, artificially. The simulation results in the graphical representation of the
distance spectrum of the secret key, as seen in Fig. 7.

Due to ϵ, a confirmation step was added where each found decoding failure
was confirmed by an additional set of measurements. Otherwise the Error Ampli-
fication attack is sensitive to bad distinguisher decisions. Due to the chain of error
patterns that is constructed it is critical that consecutive decoding failures are not
missclassified. The extra confirmation step prevents this.

Observed in the figure is a clear picture of the distance spectrum without clas-
sification errors. This figure was obtained after about Nf = 8.5 × 106 decoding
failures in the decapsulation method for BIKE-L1. The simulation used a ham-
ming weight of 149, which using the Error Amplification attack resulted in a DFR
≈ 0.146, a good match for our distinguisher above.

The final step is to do the key recovery, as detailed in [GJS16]. As in [GJS16],
the reconstruction cost is negligible compared with the cost of querying the de-
cryption oracles if the distance spectrum is fully recovered. The reason is that after
quite few steps, the wrong guesses will be rejected with high probability and only
the correct guess path will continue. One could balance the costs of building the
distance spectrum and recovering the secret key, as done in [GJW19], by allowing

226 Paper V: Don’t Reject This: Key-Recovery Timing Attacks Due to Rejection- …

errors in the recovered distance spectrum. As our aim is to demonstrate the new
attack method, for simplicity, we leave this optimization trick for future works.

Finally, we estimate that to perform an actual key recovery we require about
6.7 × 1010 decapsulation measurements, or equivalently, 5.8 × 107 number of
idealized oracle calls. These numbers are given by:

Nf

DFR︸ ︷︷ ︸
Ideal
oracle

×Nd + Nf ×Nd︸ ︷︷ ︸
Confirmation

= Nd ×Nf ×
1 + DFR

DFR
.

We firmly believe that these numbers can be reduced, e.g., by an improve-
ment of the distinguisher by statistical hypothesis testing, machine learning, or
discarding ambiguous results, etc. Further options are optimizing the hamming
weight (and thus the DFR) of the error patterns, allowing for larger ϵ and adding
more confirmation steps, if necessary, allowing errors in the distance spectrum by
trading for increased computational cost in the postprocessing stage, or spending
further computational resources towards finding a more distinct (m, θm).

4.3 Message-Recovery from the New Weight Check

The described key-recovery timing attack on BIKE does not work for the new
Github implementation and other related implementations (say in liboqs), due to
an additional weight check on the error vector before the call to the H function,
a check that is not explicitly specified. However, combined with the timing vari-
ation from the rejection sampling, this new weight check opens a new path for
very efficient message recovery. In this section, we briefly describe such a message
recovery attack.

We first build a distinguisher to distinguish if the weight check fails. In the new
implementation, in Algorithm 8 after the call e′ = Decode() in line 1, the weight
of e′ is checked. If the weight is not t, e′ is assigned a random value, otherwise it
is kept. In line 2, m′ = c1 ⊕ L(e′) and in the next line there is the call to H(m′).

When we submit the same ciphertext to the BIKE decaps oracle multiple times,
the input to the H function call are different random vectors if the weight check
fails; otherwise, if the weight of e′ is t, the inputs will be the same fixed vector.
We can then build a distinguisher assuming that such execution time difference
could be detected statistically after repeating the decaps oracle calls with the same
ciphertext for many times.

With this distinguisher, we could launch a simple message-recovery attack.
Assume that a correctly generated ciphertext c = (c0, c1) = (e0 + e1h,m ⊕
L(e0, e1)) is received. One can now flip the first and the ith bits of c0 (i.e., flipping
the first and the ith bits of unknown e0) and send the new ciphertext to the decaps
oracle multiple times. Even though the decaps output is meaningless, from the
distinguisher using the timing measurement one can detect if the flipped two bits

5 Discussion on Countermeasures 227

have the same value. If they have the same value, the weight of e′ will increase
by 2, but if they have different values the weight of e′ will be t. Since e0 is an
extremely sparse vector, if we have more pairs among the (r − 1) pairs to be the
same, the first bit of e0 should be 0; otherwise, it should be 1. When the first bit
of e0 is decided, one can estimate the ith bit of e0.

Note that one could also flip the first bit of c0 and add the vector Eih to c0,
where Ei is the vector with only the ith position nonzero. This is equivalent to
flip the first bit of e0 and the ith bit of e1. Thus, the value of e1 can be roughly
estimated. We can then employ a post-processing step with ISD (information set
decoding) algorithms to correct some distinguishing errors in the previous steps.

The attack was not implemented since the additional check is not part of the
specification, but we can do a rough estimate of the complexity of such an attack.
If we do a few hundred oracle calls with the same ciphertext and run through 2r
different modified ciphertexts it appears very likely that the attack would be suc-
cessful, since it would allow for some distinguishing errors that an ISD approach
would then correct. In total, we may use several million oracle calls, which is much
less than the described key-recovery attacks. We leave the investigation of its exact
performance for future work. The conclusion is that the added weight check as it
is done in the implementation is only weakening the security of the scheme.

4.4 Updates to the BIKE Specification, Version 4.2

As already mentioned, during Round 3 of the NIST PQC standardization effort,
the BIKE specification has been updated from the submitted version 4.1 to the
latest version 4.2. The specific change that is relevant to our attack is the change
from WAES-CTR-PRF to WSHAKE256-PRF as the pseudo random bit genera-
tion algorithm. Also hash functions K and L now use SHA3-384 instead of the
older SHA384.

The change was done to unify the dependencies of the symmetric primitives,
now the only dependency is the underlying KECCAK sponge construction, whereas
previously both the AES-CTR and SHA-384 primitives were required.

The change is beneficial in the eye of an attacker, at least in software and in the
short term, because the lack of hardware acceleration for the KECCAK primitive
in contemporary CPUs makes the new PRF slower. As a slower PRF is easier to
profile, the number of measurements required should, theoretically, be reduced
proportionally. We leave the confirmation of our hypothesis for future work.

5 Discussion on Countermeasures

To counter our proposed attacks and to remove the exploitable leakage, we see
two ways. When analysing the construction of the KEM version of HQC, one
might argue that finding a different tranformation from the IND-CPA PKE that
eliminates the re-encryption step in the decapsulation might solve the problem.

228 Paper V: Don’t Reject This: Key-Recovery Timing Attacks Due to Rejection- …

BIKE actually manages to optimize away the re-encryption step using the HHK
implicit rejection transform, but still needs to retain the call to the constant-weight
hashing funtion to check for decryption errors. Exploring different options for
IND-CCA transformations in both schemes might be interesting future work.
Short of finding a different IND-CCA transformation, the sampling of a fixed
weight bit vector must be implemented isochronously.

We focus on a constant-time implementation of the algorithm. Since both
attacks we presented exploit a structurally similar side-channel the countermea-
sure we present could be applied to both HQC and BIKE. We implemented and
evaluated the countermeasure for HQC only. We identify two avenues for imple-
menting a low fixed-weight vector sampling algorithm that is constant-time in the
used seed. For the first one we initialize the vector of length n starting with a run of
w set bits. Then we shuffle the array. This will result in a random vector of weight
w. To shuffle the array one could use, e.g., the Fisher-Yates shuffling algorithm
as described in [Knu97, p.145]. A naïve implementation of Fisher-Yates shuffling
will leak timing information, as it will use secret-dependent array accesses. Using
generic methods to make these array accesses constant-time results in an unac-
ceptable asymptotic time complexity. Nicolas Sendrier presents a sophisticated
approach how the Fisher-Yates shuffle can be modified to reduce the time com-
plexity specifically for the use-case of generating random low fixed-weight vec-
tors [Sen21]. For the case of BIKE, he shows that a small bias in the sampling
distribution has a negligible impact on the security of the scheme. His work was
published as a response to the initial pre-print version of our work, which only
contained the attack on HQC and its countermeasure. While we are not aware
of an implementation and concrete evaluation, the decreased time complexity of
Sendrier’s approach makes the method very compelling. Our approach requires
little deviation from the already existing code-base, and allows existing implemen-
tations to be patched with relative ease. Another approach would be to use a
reverse sorting algorithm, using an established sorting algorithm like merge-sort,
as it is proposed in [WSN18] for a Classic McEliece hardware implementation.
The reverse merge-sort induces a slight bias which is solved by a rejection and is
therefore not suitable for a constant-time implementation, unless one can show
that the bias is acceptable. The Benes�-network used in the C reference implemen-
tation of Classic McEliece is aligned to a vector size of a power of 2 which is not
the case in HQC.

We propose an approach that samples the specified number of distinct bit posi-
tions in constant-time and sets the bits in the vector in constant-time. For HQC,
only the distinct position sampling is not constant-time. Our modification results
in an algorithm that is only probabilistically correct and may sample too few dis-
tinct bit positions. The probability of this failure mode can be chosen arbitrarily
small and made negligible.

To obtain our final countermeasure we perform several modifications to the
algorithm. After each modification the algorithm is a fully functioning algo-

5 Discussion on Countermeasures 229

void vect_set_random_fixed_weight(
seedexpander_state *ctx,
__m256i *v256, uint16_t weight) {

- size_t random_bytes_size = 3 * weight;
+ size_t random_bytes_size = 2 * 3 * weight;
- uint8_t rand_bytes[3 * PARAM_OMEGA_R] = {0};
+ uint8_t rand_bytes[2 * 3 * PARAM_OMEGA_R] = {0};

Figure 8: Patch to HQC to remove additional seedexpander calls

rithm, however has different side-channel behavior. The first modification in Sec-
tion 5.1 is very simple: we adjust the size of the randomness buffer to prevent the
seedexpander function from being called a varying number of times in a single
Sample call. It works by finding a loose upper bound for the number of bytes
that the entire Sample function requires. Following, in Section 5.2 we replace
a rejection sampling algorithm used to generate random positions in the range
{0, . . . , n− 1} with a constant time algorithm using modulo reduction of a large
number. In Section 5.3 we then detail how the loose upper bound for the number
of bytes to sample used in Section 5.1 can be tightened by accurately modeling the
distribution of the number of times a number is sampled. We compute parameters
required to make the probability that the number of bytes sampled is insufficient
negligible. The resulting parameters depend upon whether the countermeasure in
Section 5.2 was applied (κ1) or not (κps), as the original version can fail to sample
a number (in the case of a rejection) and our countermeasure always succeeds. As
a final modification in Section 5.4 we modify the the loop that generates random
distinct positions to always perform the same number of iterations κ resulting in
a constant-time algorithm that can fail to produce a result of the expected weight
with negligible probability. The algorithm is approximately correct, because we
always perform κ iterations, even if we would need more iterations because e.g.
many bit positions collided with previously sampled ones. Lastly, we benchmark
the resulting countermeasure and compare it to the original in Section 5.5.

5.1 Remove Additional seedexpander Calls

The first attempt we make to get a countermeasure is to eradicate the concrete
side-channel that we use for the attack. The rejection sampling algorithm gener-
ates new random data using the seedexpander function on demand. It is vanish-
ingly unlikely that a single Sample invocation induces more than one additional
seedexpander call. Therefore, our first, obvious countermeasure is to increase
the number of bytes that are generated initially to double the previous amount.
This results in a patch to the sampling function shown in Fig. 8. However, the al-
gorithm is not constant-time: rejection sampling still performs a different number

230 Paper V: Don’t Reject This: Key-Recovery Timing Attacks Due to Rejection- …

of iterations depending on the message and each random number is also sampled
using rejection-sampling. While the countermeasure increases the effort required
to perform the attack, it could still permit attacks in a low-noise environment to
recover the key. Further, for BIKE the number of seedexpansions is not as large a
factor for the timing distribution and therefore such a patch would not have a lot
of impact for BIKE.

5.2 On Constant-Time Random Number Generation

To further reduce the timing leakage we can try to remove the inner rejection
used for generating random indices into the vector. The inner rejection sampling
is detailed in Algorithm 16. Instead of rejection sampling integers in the range

Algorithm 16 Inner Rejection Sampling Algorithm

Output: Random number in [0, . . . ,m− 1]
1: repeat
2: i

$← [0, 2k)

3: until i <
⌈
2k

m

⌉
m

4: return i mod m

0 ≤ x <
⌈
2k/m

⌉
m, we generate b ≫ log2m random bits and then reduce

the generated integer modulo m to the desired range. This will bias the resulting
distribution if m does not divide 2b, which is the case here. Therefore, we need to
pick a sufficiently large b for the statistical distance to be negligible. In particular
we are interested in minimizing the statistical distance (SD) between the uniform
distribution over {0, . . . ,m − 1} and the distribution generated by x mod m
where x is drawn uniformly at random from {0, . . . , 2b − 1}. We define the sta-
tistical distance between two probability distributionsX and Y over some discrete
domain Ω to be:

SDX,Y =
1

2
·
∑
z∈Ω
| Pr[X = z]− Pr[Y = z]|

Let Um be the uniform probability distribution over {0, . . . ,m− 1}:

Pr[Um = z] =

{
1
z if 0 ≤ z < m

0 otherwise

5 Discussion on Countermeasures 231

Table 5: Statistical distance between the uniform distribution over {0, . . . ,m−1}
and the distribution of random integers from 0 to 2b − 1 reduced modulo m for
hqc-128 (n = 17,669).

b log2 SDUm,M
2b

(approx.)

16 −4
32 −20
64 −52
128 −116
256 −244
512 −502

Additionally, we define the probability distribution Mn which reduces an integer
in {0, . . . , n− 1} modulo m. Its probability distribution is given by:

Pr[Mn = z] =

⌈n/m⌉+1

n if 0 ≤ z < n mod m
⌈n/m⌉

n if n mod m ≤ z < m

0 otherwise

The statistical distance between these two distributions is:

SDUm,Mn =
1

2
·

∑
z∈{0,...,m−1}

|Pr[Um = z]− Pr[Mb = z]| (7)

=
1

2
·

(
(n mod m) ·

∣∣∣∣∣ 1m −
⌈
n
m

⌉
+ 1

n

∣∣∣∣∣+ (8)

(m− (n mod m)) ·

∣∣∣∣∣ 1m −
⌈
n
m

⌉
n

∣∣∣∣∣
)

In Table 5 we computed the statistical distance between the uniform distri-
bution and the modular reduction technique for various numbers of bits b. The
parameter m is the length of the vector in HQC. We leave the choice of an ac-
ceptable statistical distance to the designers of the scheme. For our further testing
we use b = 128.

We can implement a modular reduction of a b-bit non-negative number x
modulo a small number efficiently using basic rules of modular arithmetic. We
can represent x in e.g. base 28 as x = x0+28 ·x1+28·2 ·x2+· · ·+28·(ℓ−1)xℓ−1+
28·ℓ·xℓ where ℓ =

⌈
b
8

⌉
. We split up the computation of x mod m in the following

232 Paper V: Don’t Reject This: Key-Recovery Timing Attacks Due to Rejection- …

way:

x mod m =

· · ·
z1︷ ︸︸ ︷xℓ−1 + 28 · (xℓ mod m︸ ︷︷ ︸

z0

)

 mod m · · ·

 mod m

Generalizing this, we can write an iterative algorithm that computes in iteration i:

zi =

{
xℓ mod m if i = 0

(xℓ−i + 28 · zi−1) mod m otherwise

and zℓ = x mod m. We can implement this algorithm for a random number x
where each xi is drawn from rand_bytes as shown in Listing 1.

Listing 1 Constant time modulo reduction of x mod m in multiple steps where
BYTES_PER_INDEX is

⌈
b
8

⌉
.

uint32_t random_data = 0;
for (uint32_t k = 0; k < BYTES_PER_INDEX; ++k) {
random_data = ((uint32_t)rand_bytes[j++] | (random_data << 8));
random_data %= PARAM_N;

}

Additionally, while a divide instruction is not constant-time in general on most
Instruction Set Architectures (ISAs), reducing modulo a constant is optimized by
the compiler into a sequence of instructions that can be executed in constant time.
The optimization performed by the compiler is a Barrett reduction [MOV97,
p.603]. This can be observed in Listing 2. Here the compiler replaced the idiv
instruction by a series of shifts, additions and multiplications. All of these in-
structions complete with a fixed latency on the Zen 3 ISA according to Agner’s
instruction tables11. To ensure that the compiled result always uses these instruc-
tions, which we have verified to be constant-time, we can copy the compilation
result into an __asm__ volatile block.

5.3 Tight Upper Bound on the Number of Samples Required

We wish to minimize the number of random bytes generated, while still ensuring
that we never run out of randomness during the rejection sampling function so
that we only have to perform seedexpansion once at the beginning of the function.
To this end, we analyze the probability of requiring a certain number of iterations

11https://www.agner.org/optimize/instruction_tables.pdf, accessed on 2021-11-05.

https://www.agner.org/optimize/instruction_tables.pdf

5 Discussion on Countermeasures 233

Listing 2 Modular reduction of an integer a modulo a constant in C and the
resulting Intel-style x86 assembly with optimization level 2 using clang.
#include <stdint.h>

uint32_t f(uint32_t a) {
return a % 23869;

}

f:
mov eax, edi
mov ecx, edi
mov edx, 2948122845
imul rdx, rcx
shr rdx, 46
imul ecx, edx, 23869
sub eax, ecx
ret

in the rejection sampling algorithm. We introduce the random variable Xn,i,ps ,
which is the number of distinct elements after attempting to sample i elements
from {1, . . . , n}with each sample succeeding with the probability ps. The success
probability ps can be used to model the case where the inner rejection sampling
algorithm has to retry sampling an element from {1, . . . , n}, because the sampled
element was not in the required range. Therefore, if a sample fails, it increases
the number of iterations, but no element is sampled. This yields the following
recursive relation:

Pr[Xn,i,ps = w] =

0 if i < w

1 if w = i = 0

ps if w = i = 1

Eq. (10) otherwise

(9)

ps
w

n
Pr[Xn,i−1,ps = w] +(1−ps max(0,

w − 1

n
)) Pr[Xn,i−1,ps = w−1] (10)

We are now sufficiently equipped to compute the probability that the rejection
sampling algorithm requires ≤ i iterations to sample w distinct bit positions.
This query is equivalent to the probability, that after i iterations ≥ w distinct bit
positions have been sampled. We can compute this by simply summing over the
number of distinct positions:

Pr[Xn,i,ps ≥ w] =
i∑

x=w

Pr[Xn,i,ps = x]

Finally, we define the random variable Un,w,ps to be the number of iterations
required to sample w distinct elements out of {1, . . . , n} with each sample suc-

234 Paper V: Don’t Reject This: Key-Recovery Timing Attacks Due to Rejection- …

Table 6: Number of indices κ that must be derivable from the generated random-
ness reservoir to achieve a probability on the order of the security parameter of a
message emitting multiple seedexpander calls. Here, ps is set to

⌈
2k/m

⌉
m/2k

for when the original rejection sampling is used or 1 when the bit position sam-
pling cannot fail due to the use of the constant-time random number generation
scheme.

Instance κps log2(1− (Pr[Un,ωr,ps ≤ κps])
3) κ1 log2(1− (Pr[Un,ωr,1 ≤ κ1])

3)

hqc-128 99 ≈ −134 97 ≈ −129
hqc-192 152 ≈ −193 146 ≈ −195
hqc-256 192 ≈ −261 190 ≈ −259

ceeding with probability ps. Then, the probability of requiring ≤ i iterations is:

Pr[Un,w,ps ≤ i] = Pr[Xn,i,ps ≥ w]

We can use the random variable Un,w,ps to minimize the number of random
bytes that we need to sample. The probability that a message emits≥ 1 additional
seedexpander calls when the randomness reservoir provides sufficient entropy
for κ random indices is:

1− (Pr[Un,ωr,ps ≤ κ])3.

We would like this probability to be negligible. We can compute a suitable κ for
which the probability is ≤ 2−λ where λ is the security parameter. This is done
by increasing κ until the probability is low enough. The number of iterations
depends on the success probability of sampling a random index. When we retain
the original inner rejection sampling algorithm we use the success probability ps to
compute κps . For the constant-time random number generation we use a success
probability of 1 to compute κ1. Note that these probabilities are high enough for
these messages to feasibly exist. However, we deem it infeasible to compute such
messages, as they are so rare.

The results of these computations can be seen in Table 6. Using κ we can
optimize the countermeasure to generate the least amount of randomness to erad-
icate additional seedexpander calls. Note that κ1 ≤ κps , since the rejection
sampling algorithm requires less iterations when every random number genera-
tion succeeds. However, the constant-time Random Number Generator (RNG)
still requires much more random bytes to be generated, since it requires 16 bytes
per index, instead of approx. 3 in expectation.

We can further optimize the runtime of the RNG by using the full width of the
ISA’s registers. Instead of reducing one byte at a time we can reduce 4 bytes at once
by using 64 bit registers and multiplying each intermediate result zi−1 by 28·4, as
we detail in Listing 3. Further performance improvements may be achievable

5 Discussion on Countermeasures 235

Listing 3 Optimization in the random number generation by reducing 4 bytes at
once.
uint32_t rand_bytes[BYTES_PER_INDEX * K_1 / 4] = {0};
// [...]
uint64_t random_data = 0;
for (uint32_t k = 0; k < BYTES_PER_INDEX / 4; ++k) {
random_data = (uint64_t) rand_bytes[j++] + (random_data << 32);
random_data %= PARAM_N;

}

through the use of even wider registers or SIMD instructions to produce multiple
positions at once.

5.4 Constant-Time Monte-Carlo

We can now forge a constant-time algorithm that is approximately correct using
minimal modifications. It fails to produce a correct result with an error-probability
that we can choose to be arbitrarily low. The first step is to always produce the same
number of random positions into the generated vector. Additionally, for each
position we keep track of whether it is needed, i.e., whether the generated index
has already been sampled before and whether we have already sampled enough
unique indices. Using this information, we can then set the bit only if it is needed
– in constant time. However, if we fail to sample enough unique indices, the
algorithm may produce a vector of too low weight. We cannot catch this error
and try again, as that would introduce a timing-variability. Therefore, we must
sample enough positions such that this case does not happen with overwhelming
probability. We can reuse the κ1 listed in Table 6 for this purpose. Using these
parameters the probability that we sample a vector of too low weight is ≤ 2−λ,
where λ is the security parameter.

Concretely, we keep track of the number of unique positions sampled and
whether we need each position by through the count variable and the take array.
We then sample κ1 positions from {0, . . . , n− 1}. Instead of trying to sample a
position again when a position is not unique, we store it unconditionally but keep
track of whether we need the position. The modifications are seen in Listing 4.
The exist variable is 1 iff the position has not been sampled before and i is the
iteration count in {0, . . . , κ1−1}. We refer to the vector of n bits that is modified
by the algorithm as the bit-array.

The next phase of the algorithm uses Advanced Vector Extensions (AVX2) in-
structions to set the sampled bit positions in the bit-array. This algorithm is vec-
torized to process the bit-array in 256 bit chunks. We modify this algorithm to
only include a position if take[i] is set by computing a bit mask that is 1256

236 Paper V: Don’t Reject This: Key-Recovery Timing Attacks Due to Rejection- …

Listing 4 Modifications to the position sampling
uint32_t count = 0;
uint8_t take[K_1];
// [...]
tmp[i] = random_data;
uint8_t not_enough = count < weight;
uint8_t needed = (!exist) & not_enough;
take[i] = needed;
count += needed;

if take[i] == 1 and 0256 otherwise. We then modify the first loop to com-
pute the bitwise and of bit256[i] and the mask stored in take256. This results

Listing 5 Modifications to the set-bit placing algorithm
__m256i take256 = _mm256_set1_epi64x(take[i]) == 1;
bit256[i] = bloc256&mask256&take256;

in bit256[i] being 0256 if the bit is not needed. When this 256 bit vector is
later xor-ed with the aux variable, it will have no impact, since 0 ⊕ x = x. The
modifications are seen in Listing 5.

5.5 Evaluation of the Proposed Countermeasures

The side-channel evaluation results can be viewed in Fig. 9. The number of the
detected difference clearly diminishes as more of the suggested modifications are
applied. In particular, the final countermeasure eradicates all statistically signif-
icant timing differences in the Sample function as can be seen in Fig. 9d. We
conclude that the final countermeasure eradicates all timing-leakage that we could
detect from the algorithm with respect to the seed used by the XOF.

We measure the number of cycles the Sample function requires for random
messages for the original and the three patched versions to evaluate the perfor-
mance impact of the additional instructions. We obtained 1million measurements
and removed outliers that deviate more than 3 standard deviations from the mean.
Additionally, we gave the process a niceness of −20 on a dedicated machine. The
process is pinned to a single core, and all other processes are pinned to different
cores. The results may be seen in Table 7. We collected the mean and median
number of cycles. The median number of cycles is increasing with more patches
applied. We can see that the RNG fix is extremely costly in terms of cycle count
and together with the seedexpander fix induces a 22.8% increase in the median
number of cycles. The main fault is likely that the constant-time RNG method

5 Discussion on Countermeasures 237

20 40 60 80 100

20

40

60

80

100

0

0.25

0.5

0.75

1
·10−3

(a) Original

20 40 60 80 100

20

40

60

80

100

0

0.25

0.5

0.75

1
·10−3

(b) seedexpander fix

20 40 60 80 100

20

40

60

80

100

0

0.25

0.5

0.75

1
·10−3

(c) seedexpander + RNG fix

20 40 60 80 100

20

40

60

80

100

0

0.25

0.5

0.75

1
·10−3

(d) seedexpander + RNG fix + constant iters

Figure 9: P-values for Welch’s t-test testing whether there is a statistically signif-
icant difference between the computation time of the part invoking the Sample
function in the re-encryption of the decapsulation for each pair in 100 cipher-
texts generated for a single keypair. Orange indicates that a statistically significant
difference was detected. The final countermeasure eradicates all statistically signif-
icant timing differences in the Sample function.

generates and processes approximately 5 times the number of random bytes. Fur-
thermore, we observe that the seedexpander patch alone is extremely cheap and
only incurs a 1% increase in the number of cycles.

While fixing the seedexpander side-channel is cheap, it is not sufficient to
obtain constant-time code. We were able to use the constant-time RNG in the
design of further algorithms. Unfortunately, the constant-time RNG comes with
a heavy performance hit, and it is not trivial to decide on a number of bytes to
consume for each generated position. The final modification is constant-time,
however it has a non-zero probability of returning an incorrect result. We choose
this probability low enough for this to likely not be a practical issue.

238 Paper V: Don’t Reject This: Key-Recovery Timing Attacks Due to Rejection- …

Version Median Cycles

original 259,370 (+ 0.0%)
seedexpander fix 261,849 (+ 1.0%)
seedexpander + RNG fix 318,533 (+22.8%)
seedexpander + RNG fix + constant number of iterations 334,628 (+29.0%)

Table 7: Benchmark results in number of cycles for the modifications of the rejec-
tion sampling algorithm. Modifications tested on hqc-128. Cycle counts include
the entirety of the decapsulation function.

6 Conclusions, Lessons, and Future Work

We have presented novel key-recovery timing attacks on HQC and BIKE, where
non-constant-time rejection sampling procedures are implemented for generating
random vectors with a specific weight. The time differences caused by rejection
sampling could leak whether the input message to the deterministic re-encryption
procedure (or to a hash function) in the IND-CCA transformation is unchanged.
Such secret information is sufficient for recovering the secret key of HQC and
BIKE.

The considered implementation of HQC in this work has been found vulner-
able despite the claim of the authors of HQC that the recent code is thoroughly
analyzed so that only unused randomness (i.e., rejected based on public criteria)
or otherwise nonsensitive data is leaked. The identified vulnerability probably has
been hidden from scrutiny because the modular design of the HQC KEM employ-
ing the FO transformation conceals the dependence of the secret key to the rejec-
tion sampling function, due to a subtle error in the specification. In the IND-CPA
version of HQC, encryption is non-deterministic, and thus the variations of the
employed rejection sampling function is of no concern. The KEM/DEM version
of HQC, as specified in Figure 3 in the specification, invokes a slightly different
HQC.PKE encryption scheme than the one described in Figure 2 of the speci-
fication: one that fixes the randomness to make encryption deterministic. Only
because the re-encryption in the KEM decapsulation is deterministic and because
the seed is derived from secret data, non-constant-time rejection sampling be-
comes a problem. This highlights the issue of providing high level definitions
of a cryptosystem: the definition is good enough for an implementer to get the
functionality correct, but hides from manual inspection the ominous dependence
identified and exploited in this work. However, in the case of HQC the specifica-
tion encourages the use of the exploited rejection sampling algorithm. Therefore,
the flaw we identify would likely be implemented by any implementer. This prob-
lem also highlights the need for automated, possibly standardized tools to check
implementations for secret-dependent timing variations.

Regarding BIKE, we have identified a timing variation very similar to the one

References 239

discovered in HQC. This vulnerability can be exploited for a key-recovery attack
on BIKE. We found several vulnerable implementations, including the implemen-
tations in the NIST round 3 submission. Interestingly, in the most recent versions
from Github, an additional weight check before the re-encryption procedure is
employed, which can make the current key-recovery attack version unpractical.
We emphasize that this additional weight check actually weakens the security of
BIKE, since such a weight check allows more efficient message-recovery attacks.
We still suggest to have a fully constant-time implementation of BIKE.

Our proposed countermeasure does incur a heavy performance degradation.
However, it does eliminate all timing-variations that we could detect from the an-
alyzed function. The constant-time variant of the Fisher-Yates algorithm proposed
by Sendrier in a parallel work to ours introduces a slight bias in the uniform dis-
tribution but without an impact on the security properties of the scheme. It is
another very interesting approach and should be considered in upcoming imple-
mentations and research activities as well. Future work could focus on improving
the performance of the mentioned countermeasures through the use of SIMD in-
structions or different algorithms.

Acknowledgements

We would like to thank Dr. Gustavo Banegas for his shepherding care and the
reviewers for their valuable feedback. The work presented in this paper has been
partly funded by the German Federal Ministry of Education and Research (BMBF)
under the project “QuantumRISC” (ID 16KIS1033K) [Qua20], by the Swedish
Research Council (Grants No. 2019-04166 and No. 2021-04602), by the Swedish
Civil Contingencies Agency (Grants No. 2020-11632), by the Swedish Foundation
for Strategic Research (Grant No. RIT17-0005), and by the Wallenberg AI, Au-
tonomous Systems and Software Program (WASP) funded by the Knut and Alice
Wallenberg Foundation. The computations and simulations were partly enabled
by resources provided by LUNARC.

References

[Agu+] C. Aguilar Melchor et al. Optimized implementation of HQC.
available at:https://pqc-hqc.org/download.php?file=hqc-
optimized-implementation_2021-06-06.zip.

[Agu+18] C. Aguilar-Melchor, O. Blazy, J. C. Deneuville, P. Gaborit, and
G. Zemor. “Efficient Encryption from Random Quasi-Cyclic
Codes”. In: IEEE Transactions on Information Theory 64.5 (2018),
pp. 3927–3943.

https://pqc-hqc.org/download.php?file=hqc-optimized-implementation_2021-06-06.zip
https://pqc-hqc.org/download.php?file=hqc-optimized-implementation_2021-06-06.zip

240 Paper V: Don’t Reject This: Key-Recovery Timing Attacks Due to Rejection- …

[Agu+21] C. Aguilar Melchor et al. HQC. Tech. rep. available at
https://csrc.nist.gov/projects/post-quantum-
cryptography/round-3-submissions. National Institute of
Standards and Technology, 2021.

[AP13] N. J. AlFardan and K. G. Paterson. “Lucky Thirteen: Breaking the
TLS and DTLS Record Protocols”. In: 2013 IEEE Symposium on
Security and Privacy, SP 2013, Berkeley, CA, USA, May 19-22,
2013. IEEE Computer Society, 2013, pp. 526–540.

[Ape+15] G. I. Apecechea, M. S. Inci, T. Eisenbarth, and B. Sunar. “Lucky
13 Strikes Back”. In: Proceedings of the 10th ACM Symposium on
Information, Computer and Communications Security, ASIA CCS
’15, Singapore, April 14-17, 2015. Ed. by F. Bao, S. Miller, J. Zhou,
and G. Ahn. ACM, 2015, pp. 85–96.

[Ara+21] N. Aragon et al. BIKE. Tech. rep. available at
https://csrc.nist.gov/projects/post-quantum-
cryptography/round-3-submissions. National Institute of
Standards and Technology, 2021.

[Bae+19] C. Baetu, F. B. Durak, L. Huguenin-Dumittan, A. Talayhan, and
S. Vaudenay. “Misuse Attacks on Post-quantum Cryptosystems”.
In: Advances in Cryptology – EUROCRYPT 2019, Part II. Ed. by
Y. Ishai and V. Rijmen. Vol. 11477. Lecture Notes in Computer
Science. Darmstadt, Germany: Springer, Heidelberg, Germany,
May 2019, pp. 747–776.

[BB05] D. Brumley and D. Boneh. “Remote timing attacks are practical”.
In: Computer Networks 48.5 (2005), pp. 701–716.

[BDL01] D. Boneh, R. A. DeMillo, and R. J. Lipton. “On the Importance
of Eliminating Errors in Cryptographic Computations”. In:
Journal of Cryptology 14.2 (2001), pp. 101–119.

[BDL97] D. Boneh, R. A. DeMillo, and R. J. Lipton. “On the Importance
of Checking Cryptographic Protocols for Faults (Extended
Abstract)”. In: Advances in Cryptology - EUROCRYPT ’97,
International Conference on the Theory and Application of
Cryptographic Techniques, Konstanz, Germany, May 11-15, 1997,
Proceeding. Ed. by W. Fumy. Vol. 1233. Lecture Notes in
Computer Science. Springer, 1997, pp. 37–51.

[Ben17] S. Benjamin. Perspectives on the State of Affairs for Scalable
Fault-Tolerant Quantum Computers and Prospects for the Future.
Presented at the 5th ETSI-IQC Workshop on Quantum-Safe
Cryptography. available at
https://docbox.etsi.org/Workshop/2017/201709_ETSI_

https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://docbox.etsi.org/Workshop/2017/201709_ETSI_IQC_QUANTUMSAFE/TECHNICAL_TRACK/S03_THREATS/UNIofOXFORD_BENJAMIN.pdf

References 241

IQC_QUANTUMSAFE/TECHNICAL_TRACK/S03_THREATS/
UNIofOXFORD_BENJAMIN.pdf. 2017.

[BL16] D. J. Bernstein and T. Lange. “Failures in NIST’s ECC standards”.
In: (2016). available at:
https://cr.yp.to/newelliptic/nistecc-20160106.pdf,
pp. 1–27.

[Bru+16] L. G. Bruinderink, A. Hülsing, T. Lange, and Y. Yarom. “Flush,
Gauss, and Reload - A Cache Attack on the BLISS Lattice-Based
Signature Scheme”. In: Cryptographic Hardware and Embedded
Systems – CHES 2016. Ed. by B. Gierlichs and A. Y. Poschmann.
Vol. 9813. Lecture Notes in Computer Science. Santa Barbara,
CA, USA: Springer, Heidelberg, Germany, Aug. 2016,
pp. 323–345.

[BT11] B. B. Brumley and N. Tuveri. “Remote Timing Attacks Are Still
Practical”. In: Computer Security - ESORICS 2011 - 16th European
Symposium on Research in Computer Security, Leuven, Belgium,
September 12-14, 2011. Proceedings. Ed. by V. Atluri and C. Díaz.
Vol. 6879. Lecture Notes in Computer Science. Springer, 2011,
pp. 355–371.

[CCK21] M.-S. Chen, T. Chou, and M. Krausz. “Optimizing BIKE for the
Intel Haswell and ARM Cortex-M4”. In: IACR TCHES 2021.3
(2021). https:
//tches.iacr.org/index.php/TCHES/article/view/8969,
pp. 97–124.

[CWR09] S. A. Crosby, D. S. Wallach, and R. H. Riedi. “Opportunities and
Limits of Remote Timing Attacks”. In: ACM Trans. Inf. Syst. Secur.
12.3 (2009), 17:1–17:29.

[Dur+14] Z. Durumeric et al. “The Matter of Heartbleed”. In: Proceedings of
the 2014 Internet Measurement Conference, IMC 2014, Vancouver,
BC, Canada, November 5-7, 2014. Ed. by C. Williamson,
A. Akella, and N. Taft. ACM, 2014, pp. 475–488.

[Dya18] M. Dyakonov. The Case Against Quantum Computing. IEEE
Spectrum. available at: https://spectrum.ieee.org/the-
case-against-quantum-computing. 2018.

[Gab21] P. Gaborit. Personal Communication. Nov. 2021.

[Gal62] R. G. Gallager. “Low-density parity-check codes”. In: IRE Trans.
Inf. Theory 8.1 (1962), pp. 21–28.

https://docbox.etsi.org/Workshop/2017/201709_ETSI_IQC_QUANTUMSAFE/TECHNICAL_TRACK/S03_THREATS/UNIofOXFORD_BENJAMIN.pdf
https://docbox.etsi.org/Workshop/2017/201709_ETSI_IQC_QUANTUMSAFE/TECHNICAL_TRACK/S03_THREATS/UNIofOXFORD_BENJAMIN.pdf
https://docbox.etsi.org/Workshop/2017/201709_ETSI_IQC_QUANTUMSAFE/TECHNICAL_TRACK/S03_THREATS/UNIofOXFORD_BENJAMIN.pdf
https://cr.yp.to/newelliptic/nistecc-20160106.pdf
https://tches.iacr.org/index.php/TCHES/article/view/8969
https://tches.iacr.org/index.php/TCHES/article/view/8969
https://spectrum.ieee.org/the-case-against-quantum-computing
https://spectrum.ieee.org/the-case-against-quantum-computing

242 Paper V: Don’t Reject This: Key-Recovery Timing Attacks Due to Rejection- …

[GJN20] Q. Guo, T. Johansson, and A. Nilsson. “A Key-Recovery Timing
Attack on Post-quantum Primitives Using the Fujisaki-Okamoto
Transformation and Its Application on FrodoKEM”. In:
CRYPTO 2020, Part II. Ed. by D. Micciancio and T. Ristenpart.
Vol. 12171. LNCS. Springer, Heidelberg, Aug. 2020, pp. 359–386.

[GJS16] Q. Guo, T. Johansson, and P. Stankovski. “A Key Recovery Attack
on MDPC with CCA Security Using Decoding Errors”. In:
Advances in Cryptology – ASIACRYPT 2016, Part I. Ed. by
J. H. Cheon and T. Takagi. Vol. 10031. Lecture Notes in
Computer Science. Hanoi, Vietnam: Springer, Heidelberg,
Germany, Dec. 2016, pp. 789–815.

[GJW19] Q. Guo, T. Johansson, and P. S. Wagner. “A Key Recovery
Reaction Attack on QC-MDPC”. In: IEEE Trans. Inf. Theory 65.3
(2019), pp. 1845–1861.

[HGS99] C. Hall, I. Goldberg, and B. Schneier. “Reaction Attacks against
several Public-Key Cryptosystems”. In: ICICS 99: 2nd
International Conference on Information and Communication
Security. Ed. by V. Varadharajan and Y. Mu. Vol. 1726. Lecture
Notes in Computer Science. Sydney, Australia: Springer,
Heidelberg, Germany, Nov. 1999, pp. 2–12.

[HHK17] D. Hofheinz, K. Hövelmanns, and E. Kiltz. “A Modular Analysis
of the Fujisaki-Okamoto Transformation”. In: TCC 2017: 15th
Theory of Cryptography Conference, Part I. Ed. by Y. Kalai and
L. Reyzin. Vol. 10677. Lecture Notes in Computer Science.
Baltimore, MD, USA: Springer, Heidelberg, Germany, Nov. 2017,
pp. 341–371.

[HLS21] C. Hlauschek, N. Lahr, and R. L. Schröder. On the Timing Leakage
of the Deterministic Re-encryption in HQC KEM. Cryptology
ePrint Archive, Report 2021/1485, version 20211115:124514
(posted 1636980314 15-Nov-2021 12:45:14 UTC).
https://eprint.iacr.org/2021/1485/20211115:124514.
Aug. 2021.

[Hog15] M. Hogan. “Data flows and water woes: The Utah Data Center”.
In: Big Data & Society 2.2 (2015).

[HPA21] J. Howe, T. Prest, and D. Apon. “SoK: How (not) to Design and
Implement Post-quantum Cryptography”. In: Topics in Cryptology
– CT-RSA 2021. Ed. by K. G. Paterson. Cham: Springer
International Publishing, 2021, pp. 444–477.

[Kal20] G. Kalai. “The Argument against Quantum Computers, the
Quantum Laws of Nature, and Google’s Supremacy Claims”. In:
CoRR abs/2008.05188 (2020).

https://eprint.iacr.org/2021/1485/20211115:124514

References 243

[Kau+16] T. Kaufmann, H. Pelletier, S. Vaudenay, and K. Villegas. “When
Constant-Time Source Yields Variable-Time Binary: Exploiting
Curve25519-donna Built with MSVC 2015”. In: Cryptology and
Network Security - 15th International Conference, CANS 2016,
Milan, Italy, November 14-16, 2016, Proceedings. Ed. by S. Foresti
and G. Persiano. Vol. 10052. Lecture Notes in Computer Science.
2016, pp. 573–582.

[KJJ99] P. Kocher, J. Jaffe, and B. Jun. “Differential Power Analysis”. In:
CRYPTO 1999. Boston, MA: Springer US, 1999, pp. 388–397.

[Knu97] D. E. Knuth. The art of computer programming, Volume I:
Fundamental Algorithms, 3rd Edition. Addison-Wesley, 1997.

[Koc96] P. C. Kocher. “Timing Attacks on Implementations of
Diffie-Hellman, RSA, DSS, and Other Systems”. In: Advances in
Cryptology – CRYPTO’96. Ed. by N. Koblitz. Vol. 1109. Lecture
Notes in Computer Science. Santa Barbara, CA, USA: Springer,
Heidelberg, Germany, Aug. 1996, pp. 104–113.

[Lu+19] X. Lu et al. LAC. Tech. rep. available at
https://csrc.nist.gov/projects/post-quantum-
cryptography/round-2-submissions. National Institute of
Standards and Technology, 2019.

[Mer+21] R. Merget, M. Brinkmann, N. Aviram, J. Somorovsky,
J. Mittmann, and J. Schwenk. “Raccoon Attack: Finding and
Exploiting Most-Significant-Bit-Oracles in TLS-DH(E)”. In: 30th
USENIX Security Symposium, USENIX Security 2021, August 11-13,
2021. Ed. by M. Bailey and R. Greenstadt. USENIX Association,
2021, pp. 213–230.

[Mis+13] R. Misoczki, J. Tillich, N. Sendrier, and P. S. L. M. Barreto.
“MDPC-McEliece: New McEliece variants from Moderate
Density Parity-Check codes”. In: Proceedings of the 2013 IEEE
International Symposium on Information Theory, Istanbul, Turkey,
July 7-12, 2013. IEEE, 2013, pp. 2069–2073.

[Mog+20] D. Moghimi, B. Sunar, T. Eisenbarth, and N. Heninger.
“TPM-FAIL: TPM meets Timing and Lattice Attacks”. In: 29th
USENIX Security Symposium, USENIX Security 2020, August
12-14, 2020. Ed. by S. Capkun and F. Roesner. USENIX
Association, 2020, pp. 2057–2073.

[Moo+20] D. Moody et al. Status report on the second round of the NIST
post-quantum cryptography standardization process. Tech. rep.
Gaithersburg, MD: National Institute of Standards and
Technology, July 2020, pp. 1–27.

https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions

244 Paper V: Don’t Reject This: Key-Recovery Timing Attacks Due to Rejection- …

[Mos17] M. Mosca. The Quantum Threat to Cybersecurity (for CxOs).
Presented at the 5th ETSI-IQC Workshop on Quantum-Safe
Cryptography. available at https://docbox.etsi.org/
Workshop/2017/201709_ETSI_IQC_QUANTUMSAFE/
EXECUTIVE_TRACK/UNIofWATERLOO_MOSCA.pdf. 2017.

[MOV97] A. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of
Applied Cryptography. CRC Press, 1997.

[Nae+20] M. Naehrig et al. FrodoKEM. Tech. rep. available at
https://csrc.nist.gov/projects/post-quantum-
cryptography/round-3-submissions. National Institute of
Standards and Technology, 2020.

[NJW18] A. Nilsson, T. Johansson, and P. S. Wagner. “Error Amplification
in Code-based Cryptography”. In: IACR TCHES 2019.1 (2018).
https:
//tches.iacr.org/index.php/TCHES/article/view/7340,
pp. 238–258.

[Pao10] G. Paoloni. How to Benchmark Code Execution Times on Intel
IA-32 and IA-64 Instruction Set Architectures. Tech. rep. available
at: https://www.intel.com/content/dam/www/public/us/
en/documents/white-papers/ia-32-ia-64-benchmark-
code-execution-paper.pdf. 2010.

[PT19] T. B. Paiva and R. Terada. “A Timing Attack on the HQC
Encryption Scheme”. In: SAC 2019. Ed. by K. G. Paterson and
D. Stebila. Vol. 11959. LNCS. Springer, Heidelberg, Aug. 2019,
pp. 551–573.

[Qua20] QuantumRISC. QuantumRISC — Next Generation Cryptography
for Embedded Systems. 2020.

[Rav+04] S. Ravi, P. C. Kocher, R. B. Lee, G. McGraw, and
A. Raghunathan. “Security as a new dimension in embedded
system design”. In: Proceedings of the 41th Design Automation
Conference, DAC 2004, San Diego, CA, USA, June 7-11, 2004.
Ed. by S. Malik, L. Fix, and A. B. Kahng. ACM, 2004,
pp. 753–760.

[Sch21] L. Schröder. “A Novel Timing Side-Channel Assisted
Key-Recovery Attack Against HQC”.
https://doi.org/10.34726/hss.2022.91042. MA thesis.
TU Darmstadt/TU Wien, 2021.

https://docbox.etsi.org/Workshop/2017/201709_ETSI_IQC_QUANTUMSAFE/EXECUTIVE_TRACK/UNIofWATERLOO_MOSCA.pdf
https://docbox.etsi.org/Workshop/2017/201709_ETSI_IQC_QUANTUMSAFE/EXECUTIVE_TRACK/UNIofWATERLOO_MOSCA.pdf
https://docbox.etsi.org/Workshop/2017/201709_ETSI_IQC_QUANTUMSAFE/EXECUTIVE_TRACK/UNIofWATERLOO_MOSCA.pdf
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://tches.iacr.org/index.php/TCHES/article/view/7340
https://tches.iacr.org/index.php/TCHES/article/view/7340
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-32-ia-64-benchmark-code-execution-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-32-ia-64-benchmark-code-execution-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-32-ia-64-benchmark-code-execution-paper.pdf
https://doi.org/10.34726/hss.2022.91042

References 245

[Sen21] N. Sendrier. Secure Sampling of Constant-Weight Words –
Application to BIKE. Cryptology ePrint Archive, Report
2021/1631, 20211217:142141 (posted 1639750901 17-Dec-2021
14:21:41 UTC).
https://eprint.iacr.org/2021/1631/20211217:142141.
Dec. 2021.

[SM16] D. Stebila and M. Mosca. “Post-quantum Key Exchange for the
Internet and the Open Quantum Safe Project”. In: SAC 2016.
Ed. by R. Avanzi and H. M. Heys. Vol. 10532. LNCS. Springer,
Heidelberg, Aug. 2016, pp. 14–37.

[SN16] N. I. of Standards and T. (NIST). Submission Requirements and
Evaluation Criteria for the Post-Quantum Cryptography
Standardization Process. available at:
https://csrc.nist.gov/CSRC/media/Projects/Post-
Quantum-Cryptography/documents/call-for-proposals-
final-dec-2016.pdf. 2016.

[Uen+22] R. Ueno, K. Xagawa, Y. Tanaka, A. Ito, J. Takahashi, and
N. Homma. “Curse of Re-encryption: A Generic Power/EM
Analysis on Post-Quantum KEMs”. In: IACR Trans. Cryptogr.
Hardw. Embed. Syst. 2022.1 (2022), pp. 296–322.

[van+20] T. van Goethem, C. Pöpper, W. Joosen, and M. Vanhoef.
“Timeless Timing Attacks: Exploiting Concurrency to Leak
Secrets over Remote Connections”. In: USENIX Security 2020.
Ed. by S. Capkun and F. Roesner. USENIX Association, Aug.
2020, pp. 1985–2002.

[Waf+19] G. Wafo-Tapa, S. Bettaieb, L. Bidoux, P. Gaborit, and
E. Marcatel. A Practicable Timing Attack Against HQC and its
Countermeasure. Cryptology ePrint Archive, Report 2019/909.
https://eprint.iacr.org/2019/909. 2019.

[Wel47] B. L. Welch. “The generalisation of student’s problems when
several different population variances are involved”. In: Biometrika
34.1-2 (Jan. 1947), pp. 28–35.

[WSN18] W. Wang, J. Szefer, and R. Niederhagen. “FPGA-Based
Niederreiter Cryptosystem Using Binary Goppa Codes”. In:
Post-Quantum Cryptography - 9th International Conference,
PQCrypto 2018. Ed. by T. Lange and R. Steinwandt. Springer,
Heidelberg, 2018, pp. 77–98.

[YZ17] Y. Yu and J. Zhang. Lepton. Tech. rep. available at
https://csrc.nist.gov/projects/post-quantum-
cryptography/round-1-submissions. National Institute of
Standards and Technology, 2017.

https://eprint.iacr.org/2021/1631/20211217:142141
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://eprint.iacr.org/2019/909
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions

Pa
p
er

V
I

SCA-LDPC: A Code-Based
Framework for Key-Recovery

Side-Channel Attacks on
Post-Quantum Encryption

Schemes

Abstract

Whereas theoretical attacks on standardized crypto primitives rarely lead to actual
practical attacks, the situation is different for side-channel attacks. Improvements
in the performance of side-channel attacks are of utmost importance.

In this paper, we propose a framework to be used in key-recovery side-channel
attacks on CCA-secure post-quantum encryption schemes. The basic idea is to
construct chosen ciphertext queries to a plaintext checking oracle that collects in-
formation on a set of secret variables in a single query. Then a large number of
such queries is considered, each related to a different set of secret variables, and
they are modeled as a low-density parity-check code (LDPC code). Secret vari-
ables are finally determined through efficient iterative decoding methods, such as
belief propagation, using soft information. The utilization of LDPC codes offers
efficient decoding, source compression, and error correction benefits. It has been
demonstrated that this approach provides significant improvements compared to
previous work by reducing the required number of queries, such as the number of
traces in a power attack.

The framework is demonstrated and implemented in two different cases. On
one hand, we attack implementations of HQC in a timing attack, lowering the

Q. Guo, D. Nabokov, A. Nilsson, and T. Johansson. SCA-LDPC: A Code-Based Framework for
Key-Recovery Side-Channel Attacks on Post-Quantum Encryption Schemes. Submission Pending. 2023

248 Paper VI: SCA-LDPC: A Code-Based Framework for Key-Recovery Side-Channel …

number of required traces considerably compared to attacks in previous work.
On the other hand, we describe and implement a full attack on a masked imple-
mentation of Kyber using power analysis. Using the ChipWhisperer evaluation
platform, our real-world attacks recover the long-term secret key of a first-order
masked implementation of Kyber-768 with an average of only 12 power traces.

1 Introduction

NIST [NIS18] is running a standardization process (referred to as the NIST PQ
project) for post-quantum public-key cryptographic algorithms (PQC schemes),
which are supposed to be secure even against attacks from quantum computers.
This is not the case for most public-key algorithms in use today [Sho94]. The
project started in 2017 and just recently the first choices for standardization were
announced. The project is ongoing and round 4 will involve a further examination
of additional schemes. All of the schemes in the NIST PQ project are based on a
variety of hard problems that are believed to be intractable for quantum computers,
and many of them can be categorized as either Public-key Encryption (PKE) or
Key Encapsulation Mechanisms (KEMs). These PKE/KEM schemes are based on
either the Learning with Errors (LWE) problem as introduced by Regev [Reg05]
in 2005 or on code-based problems, initiated in [McE78].

Two such schemes will be considered in this paper. One is CRYSTALS-Kyber
[Sch+20], selected by NIST as the candidate for standardization for KEMs. The se-
curity of Kyber is based on the Module LWE problem and has strong confidence in
its theoretical security, while also offering a good performance. The other scheme
is HQC [Agu+20], a code-based round 4 candidate. Other code-based round 4
candidates are BIKE [Ara+20] and Classic McEliece [Alb+20]. NIST has stated
that one of the schemes HQC or BIKE may be standardized.

LWE- or code-based PKE/KEMs are usually built to be secure against chosen
plaintext attacks (IND-CPA secure) and then transformed to be secure against
adaptive chosen ciphertext attacks (IND-CCA secure) by applying some CCA
conversion method, such as the Fujisaki-Okamoto (FO) transform. The FO trans-
form involves a re-encryption after decryption, which enables the detection of in-
valid ciphertexts and correspondingly return failure. Invalid chosen ciphertexts
that are not proper encryptions of a message will almost always be rejected by the
decryption/decapsulation.

Side-Channel Attacks (SCA) were introduced by Kocher [Koc96] and are a
separate area of research today. For PQC schemes, it is a major concern and NIST
also in the later rounds encouraged more research on the security of PQC schemes
against side-channel cryptanalysis. In relation to this, there has been great research
interest in developing new side-channel attacks on all relevant NIST candidates as
well as studying efficient side-channel protection techniques.

There are many different approaches to SCA on PQC schemes. Following
previous work, we may roughly classify attacks into two main categories. The first

1 Introduction 249

category includes attacks that require either a single trace or at least only few traces
to perform key recovery or message recovery and targets very precise leakages in
an implementation. The second category includes attacks of a more generic type,
exploiting arbitrary leakages in the implementation of the algorithm, but typically
requiring the collection of many traces in the attack phase. These more generic
attacks are modeled by instantiating a side-channel oracle for chosen ciphertexts.
The oracle is explained in more detail in the following.

1.1 Related works

Key-recovery chosen-ciphertext side-channel attacks (KR-CCA-SCA) are attacks
where the adversary recovers the secret key in the scheme by using chosen cipher-
text calls to the decryption or decapsulation algorithm and getting measurement
data from some side-channel.

KR-CCA-SCA attacks on PQC encryption schemes are a well-established re-
search field, as evidenced by numerous publications [DAn+19; Rav+20; Ngo+21;
Xu+22; GJN20; Guo+22; Ham+21; GJJ22; Sch+22; GLG22; Rav+22; She+22].
These attacks can be classified depending on where the information leakages are
detected. The first type of KR-CCA-SCAs [GJN20; Guo+22; Rav+20] exploits
leakages from the two added procedures, the re-encryption and ciphertext com-
parison, of the FO transform, since these two components in the FO transform
depend on the decrypted message vector. There are also KR-CCA-SCAs [Ngo+21;
Ham+21; GJJ22; Sch+22; GLG22] that exploit side-channel leakages from the
CPA-secure decryption, where parts of the decryption procedure will directly use
the secret key.

In [RR], Ravi et al. classified side-channel-assisted CCA attacks on lattice-
based KEMs into three main categories, plaintext-checking (PC) oracle based at-
tacks [DAn+19; Rav+20], decryption-failure (DF) oracle based attacks [GJN20],
and full-domain (FD) oracle based attacks [Ngo+21; Xu+22]. The classification
depends on what kind of answer the oracle gives. In a DF oracle, the oracle an-
swer is simply whether the chosen ciphertext decodes/decrypts to a valid message
or not. On the other hand, a PC oracle and an FD oracle require message recovery
before key recovery can take place. In a PC oracle, the response of the oracle is
whether the chosen ciphertext results in a specific given message upon decryption.
In an FD Oracle, the oracle returns the full message that has been decrypted. As
a result, in a PC oracle based attack, it is possible to recover a maximum of one
bit of secret information from a single side-channel measurement; however, if the
message is of m-bit length (where m is 256 for Kyber), it is possible to recover m
bits of secret information with a FD oracle based attack.

Recently, Tanaka et al. in [Tan+22] and Rajendran et al. in [Raj+22] have
independently proposed a new type of oracle called multi-values PC oracle. This
oracle can extract 8-12 bits of information from a single decapsulation oracle call
through multi-class classification. The multi-values PC oracle can be considered as

250 Paper VI: SCA-LDPC: A Code-Based Framework for Key-Recovery Side-Channel …

a compromise between the PC oracle and the FD oracle, although it is still much
less efficient than the latter.

For general PQC schemes, Ueno et al. [Uen+22] have shown that all round-3
NIST KEM candidates except for Classic McEliece are vulnerable to KR-CCA-
SCAs. However, it was later established in [Sch+22] that the attack detailed
in [Uen+22] is only applicable to earlier versions of the HQC proposal and not
to the recent Reed-Muller-Reed-Solomon (RMRS) version. Schamberger et al.
in [Sch+22] and Goy et al. in [GLG22] very recently proposed new power side-
channel attacks on the RMRS version of the HQC scheme, but their attack only
applied to power analysis with leakages from the CPA decryption. In [Guo+22]
a generic PC oracle based attack on the RMRS version of the HQC scheme has
been proposed, presented in the format of timing attacks.

One central problem in KR-CCA-SCAs is identifying a generic approach to
optimize the selection of chosen ciphertexts, in order to efficiently extract informa-
tion from side-channel measurements. The main obstacles arise from two primary
sources: (1) the inaccuracies that may occur in the construction of oracles, partic-
ularly with the most powerful FD oracles, and (2) the non-uniform distribution
from which secret symbols are generated. To overcome these challenges, it is neces-
sary to incorporate concepts from coding theory, particularly in the areas of source
coding and error correction. Several early research efforts are made to address these
challenges, as documented in [Ngo+21; Qin+21; She+22]. But the existing solu-
tions are limited in scope, either because they are restricted to a specific oracle
or because they are applicable only to particular types of side-channel leakages.
Finally, there is ample room for improvement in terms of attack efficiency.

1.2 Contributions

In this paper, we propose a framework named SCA-LDPC to improve the key-
recovery side-channel attacks on CCA-secure PQC encryption schemes. The basic
idea is to construct chosen ciphertext queries to an oracle that collects informa-
tion on a set of secret variables in a single query. Then a large number of such
queries are considered, each related to a different set of secret variables, and they
are modeled as a low-density parity-check code (LDPC code). The secret variables
are then determined through efficient iterative decoding methods, such as belief
propagation (BP), using soft information.

New concepts. The concept of designing chosen-ciphertexts to gather side-channel
information in a linear parity check is a fresh and innovative approach. This ap-
proach has the potential to provide both source compression and error correction
simultaneously. The reason for this is that the combination of multiple secret en-
tries is typically more closely aligned with the uniform distribution, which allows
for more effective extraction of information from a single side-channel measure-
ment. This source compression gain can result in a substantial improvement for

1 Introduction 251

HQC where secret symbols have an extremely low entropy, as well as a notice-
able improvement for lattice-based schemes. The error correction gain is realized
through the utilization of linear parity checks, which enable the utilization of cor-
rectly recovered coefficients to rectify incorrect decisions. The implementation
of these linear checks in the form of an LDPC code was selected due to its effi-
cient decoding capabilities and its well-known near-optimal performance from an
information-theoretical perspective.

The new framework has significantly transformed the design philosophy of
prior methods for source compression and error correction, as documented in [Ngo+21;
Qin+21; She+22]. The previously proposed methods aimed to achieve full key re-
covery with higher accuracy by introducing additional measurements for each in-
dividual secret symbol, thereby increasing the success rate of symbol recovery. The
new framework, however, proposes a novel approach by allowing for fewer mea-
surements on the secret symbols, leading to a higher level of symbol-level errors,
which are subsequently corrected by the specially designed LDPC codes through
inter-symbol parity checks.

We emphasize that the framework is generic in nature and can be applied to
both code-based and lattice-based schemes, across adaptive and non-adaptive at-
tack models, and in a multitude of side-channel leakage scenarios, including tim-
ing, cache-timing, power, and electromagnetic leakages. To demonstrate the ap-
plicability of the framework, we have instantiated it in two relevant applications:
an adaptive timing attack on an HQC implementation with PC oracles, and a non-
adaptive power attack on a Kyber implementation with FD oracles. The choice of
Kyber and HQC as the primary targets was motivated by their significance, with
Kyber being selected as the primary KEM/PKE algorithm for standardization by
NIST and HQC still being considered for standardization at the end of round-4.

New results. We list the contributions of the paper in the following.

• We introduce a code design method in designing capacity-approaching LDPC
/QC-LDPC codes over binary and non-binary alphabets. Our method es-
tablishes a relationship between oracle calls and parity checks in the LDPC
code, leading to substantial improvements over previous methods in both
noiseless and noisy real-world scenarios. The prior improvement is primar-
ily attributed to source compression, while the latter improvement is the
result of a combination of source compression and error correction.

• We simulate the performance with different noise levels and characterize
the performance of the new approach through a simulation method. The
simulated gains are substantial. For example, when the oracle accuracy is
100%, as is the case for the key misuse oracle or an oracle constructed from
highly reliable side-channels such as cache-timing leaks on an Intel-SGX
platform [HSC], we can recover the secret key of hqc-128 with approxi-
mately 9,000 traces in the PC oracle. Using the same oracle setting as the

252 Paper VI: SCA-LDPC: A Code-Based Framework for Key-Recovery Side-Channel …

ideal oracle in [Guo+22], we have achieved an improvement factor of 86.6,
as we only need about 10,000 traces, compared to the 866,000 traces re-
ported in [Guo+22]. This significant improvement is due to the fact that
the HQC secret entries are sampled from a distribution with extremely low
entropy and the previously known methods (e.g., in [Guo+22]) ignore the
potential source compression gain. In the scenario of perfect FD oracles, the
number of traces required to recover Kyber-768 is only 7, which meets the
Shannon lower bound.

• We perform actual attacks on two target algorithms, Kyber and HQC, in
real-world scenarios. The results of our study demonstrate a close alignment,
or even an improvement, of the real attack performance when compared to
the simulation results. The first attack is a full power analysis on a masked
implementation of Kyber-768. The attack was carried out using the Chip-
Whisperer framework on the open-source mkm4 library in [Hei+22] with the
profiling and attack phases performed on two distinct boards, both equipped
with ARM-Cortex-M4 CPUs. In the real-world scenario, we obtained FD
oracles with varying accuracy levels based on their positions. The average
accuracy was estimated to be approximately 95%. The full secret key was
successfully recovered with an average of 12 traces. In comparison, the sim-
ulation required roughly 17 traces for the same oracle accuracy. The better
performance in the real-world scenario can be attributed to the availability
of soft information and the possibility of some secret symbols having a high
accuracy since they are related to a high-accuracy oracle, which in turn helps
in the correct decoding of other positions through the parity checks of the
specially designed LDPC codes.

The second attack is a full timing attack simulation on HQC, validated with
a real-world timing oracle. The real-life attack performance highly depends
on the targeted platform. On our laptop with an Intel Core i5 CPU, we can
achieve full key recovery against hqc-128 with 218 decapsulation calls.

• The software for attack and simulation will be made open-source.1

It is important to note that, in accordance with previous research, our approach
focuses on recovering the entire secret vector through side-channel leakages. The
sample complexity can be reduced by performing additional post-processing pro-
cedures, such as information set decoding and lattice reduction [Dac+20], to re-
cover a portion of the secret entries. The specific reduction in the number of traces
depends on the permissible amount of computation for post-processing.

Comparison with previous studies in [Ngo+21; Qin+21; She+22]. In [Qin+21],
Qin et al. presented an efficient PC oracle based attack on lattice-based schemes

1https://github.com/atneit/SCA-LDPC

https://github.com/atneit/SCA-LDPC

1 Introduction 253

by adaptively choosing a new ciphertext for decryption based on the side-channel
information obtained from previous power/electromagnetic measurements. Their
approach is similar to the well-known Huffman coding method and can result in
a source compression gain. Shen et al. in [She+22] further extended this work by
proposing a detection coding method to identify incorrectly recovered positions
and to send additional measurements for those secret positions. Note that these
studies are limited to PC oracle based attacks on lattice-based schemes and operate
in adaptive mode, resulting in a more restrictive attack model and lower efficiency
compared to other attacks based on more powerful oracles. For example, when
the oracle accuracy is 95%, it was reported in [She+22] that 3874 traces are re-
quired to attack the Kyber-512 scheme; in contrast, the new attack based on the
FD oracle presented in this paper only requires 12 traces in a real attack (or 17
traces in simulation) to attack the Kyber-768 scheme. Furthermore, from a view-
point of information theory, LDPC codes are attractive due to their near-optimal
performance. As a result, they are expected to provide improved performance in
scenarios where the oracle accuracy is low, compared to the detection codes pro-
posed in [She+22].

A relevant study [Ngo+21] has proposed the extended Hamming coding method
to enhance the FD oracle based power attack on the masked Saber, a round-3
NIST PQ KEM candidate, in the non-adaptive attack model. However, this ap-
proach does not provide any source coding gain and its error correction is limited
to an inner-symbol style, resulting in a lack of inter-symbol connections and a
less potent error correction mechanism. A more detailed comparison of our work
with [Ngo+21] can be found in Section 6.3.

Differences from SASCA. Veyrat-Charvillon et al. in [VGS14] utilized iterative
decoding to introduce a powerful side-channel attack method named soft-analytic
side-channel attacks (SASCA). Their objective was to efficiently exploit the leak-
age of intermediate variables. They observed that secret variables and intermediate
variables are connected by computation functions/gates; thus, the leakages from
variables closely connected to the secret variables can be extracted via iterative de-
coding on the codes built from these connections. It should be noted that the
computation process defines the underlying codes, which are generally non-linear,
and that better cipher design to resist SASCA entails generating a computation
process that leads to a code with poor decoding performance. A coding-theoretical
treatment on SASCA is presented in [Guo+20]. SASCA has been employed for at-
tacking lattice-based scenarios by exploiting leakages from the number-theoretical
transform (NTT) of secret polynomials (e.g., in [PPM17; Ham+21]).

While both attacks use iterative coding, the new SCA-LDPC attack differs
from SASCA in several ways. First, the applicability of SASCA extends to both
symmetric and asymmetric cryptography; in contrast, the SCA-LDPC attacks fall
into the category of PC oracle (and its variants) based KR-CCA-SCAs for lattice-
based and code-based systems, presenting unique advantages for these types of

254 Paper VI: SCA-LDPC: A Code-Based Framework for Key-Recovery Side-Channel …

systems. For instance, similar to the previous PC oracle based KR-CCA-SCAs,
the SCA-LDPC attacks can efficiently exploit leakages from the FO transform or
other procedures in the latter stages of the decapsulation algorithm, for key recov-
ery; SASCA can be more efficient in extracting information from leakages when
the secret key has been used directly or within a few computational steps before,
as seen in the NTT attack instances. Moreover, SCA-LDPC attacks are capable of
exploiting different types of leakages, including timing-related ones that are hardly
exploitable through SASCA. The second primary distinction is that SASCA builds
its code using pre-existing connections formed by the intrinsic structure of the ci-
pher or implementation, whereas SCA-LDPC provides the attacker with greater
flexibility in choosing ciphertexts to create new parity check variables and estab-
lish new connections, ultimately constructing a linear code with near-optimal de-
coding efficiency. Last, SCA-LDPC generates linear parity checks, while SASCA
usually involves non-linear functions.

1.3 Relations to very recent work

The first draft of the work was finalized in October 2022. In December 2022, two
relevant studies [Bac+22; DNG22] on the topic of FD-oracle based attacks on
masked implementations of Kyber were made available on the IACR ePrint web-
site. These works extend the applications of the method proposed in [Ngo+21],
and as such, differ from the direction taken by our framework in its design to-
wards a more efficient information extraction. These two works offer no source
compression gains and the error correction approach is similar to that proposed
in [Ngo+21]. For example, in [Bac+22], the authors constructed a masked and
shuffled implementation based on the first-order masked implementation in [Hei+22]
and reported a minimum required number of traces of 38016. While our re-
ported number is 12, a direct comparison between these two attack instances
is invalid as the targeted implementations differ. In [DNG22], Dubrova et al.
presented a high probability of success in the recovery of message bits from a
masked implementation of Kyber up to the fifth order. Their results suggest that
our SCA-LDPC attack framework may perform effectively even against masked
implementations with a much higher order. Additionally, the authors identified
stronger leakage points from the function masked_poly_frommsg compared to
masked_poly_tomsg found in the initial version of our paper. As a result, we
have revised our approach to utilize the new leakage points reported in [DNG22]
for a more efficient attack.

In January 2023, Huang et al. presented the first KR-CCA-SCA in the con-
text of cache timing attacks in [HSC]. Their results include a novel approach for
using a PC oracle for the KR-CCA-SCA attack on the RMRS version of the HQC
scheme. The accuracy of the PC oracle in the cache scenario is high, with a re-
ported rate of almost 100%. However, their method does not offer any source
compression or error correction gains and requires a significantly higher number

2 Preliminaries 255

of oracle calls compared to our SCA-LDPC framework (i.e., 53857 vs. 9000).
The potential to integrate their attack concept with our SCA-LDPC framework
for source compression and error correction is an area of future investigation.

1.4 Organization

The remaining parts of the paper are organized as follows. In Section 2, we present
the necessary background information. In Section 3, we present a general descrip-
tion of the new attacking framework. We apply the new attack ideas towards
Kyber and HQC, in Sections 4 and 5, respectively. Then, we present the exten-
sive computer simulation results and real-world attacks in Section 6. We finally
conclude the paper and present future directions in Section 7.

2 Preliminaries

We present the necessary background in this section. We first provide the em-
ployed notations and terminology in coding theory, followed by a description of
the two KEM candidates, Kyber and HQC. Finally, we conclude this section by
outlining the threat model.

2.1 Notations and coding terminology

Notation. For a finite set I, the symbol #{I} denotes the number of elements
in I. Let Fq be the finite field of size q, ⌈x⌋ the rounding function, andH, G, and
K three cryptographic hash functions. The central binomial distribution Bµ out-
puts

∑µ
i=1(ai − bi), where ai and bi are independently and uniformly randomly

sampled from . The Bernoulli distribution Berη defines a random variable from
, which is 1 with probability η and 0 otherwise. The notation a $← U denotes
that the entries in a are randomly sampled from the distribution U, where a is a
vector or polynomial. For a set I, a $← I means that the entries in a are uniformly
sampled from the set I at random. For a vector or polynomial a, a[i] refers to the
coefficient of a at the index i. The Shannon’s binary entropy function of a random
variable X is defined as H(X) = −

∑
x∈X Pr [X = x] log2 Pr [X = x] .

Linear codes. The Hamming weight of a vector x is its number of non-zero
elements, denoted by wH (x). We define an [n, k, d]q linear code C as a linear
subspace over Fq of length n, dimension k, and minimum distance d. Here min-
imum distance is defined as the minimum Hamming weight of its non-zero el-
ements. Since a linear code C is a subspace, we can define it as the image of a
matrix G, called a generator matrix. We can also define the code C as the kernel of
a matrix H ∈ F(n−k)×n

q . Here H is called a parity-check matrix of C.

256 Paper VI: SCA-LDPC: A Code-Based Framework for Key-Recovery Side-Channel …

LDPC codes. Low-density parity-check (LDPC) codes are linear codes with a
sparse parity-check matrix first introduced in [Gal62]. LDPC codes can be con-
sidered sparse graph codes because they can be decoded efficiently using iterative
decoding (such as belief propagation [Pea82]) on the Tanner graph, a bipartite
graph with edges corresponding to non-zero elements in the parity-check matrix
H.

Concatenated codes. Forney [For65] in 1965 firstly proposed the concatenated
code construction approach of combining two simple codes called an inner code
and an outer code, respectively, to achieve good error-correcting capability with
reasonable decoding complexity. Let the inner code Cin : Ak → An, the outer
code Cout : BK → BN , and #{B} = #{A}k. The concatenated code is a code
Ccon : AkK → AnN . The key of the concatenated code construction method is
that the decoding can be done sequentially by passing first the inner code decoder
and then the outer code decoder. Typically in the inner code decoding, one can use
a maximum-likelihood decoding approach, while the outer code allows efficient
decoding in polynomial time (e.g. by employing an LDPC code).

2.2 Kyber

Kyber [Sch+20], the KEM version of the Cryptographic Suite for Algebraic Lat-
tices (CRYSTALS), is based on the module Learning with Errors (MLWE) prob-
lem and has been solicited as the KEM/PKE standard in the NIST PQ project.

Kyber achieves the IND-CCA security through a tweaked Fujisaki-Okamoto
transform [FO99] transforming an IND-CPA-secure PKE KyBER.CPAPKE to an
IND-CCA-secure KEM KyBER.CCAKEM. The description algorithms of KyBER.
CPAPKE and KyBER.CCAKEM can be found in [Sch+20]. We include a simplified
description in Figs. 3 and 4 for completeness, where the implementation details
with the Number Theoretical Transform (NTT) are omitted.

In the following, we define the compression function and the decompression
function, i.e., Compq(x, d) and Decompq(x, d), respectively.

Definition 1. The Compression function is defined as: Zq → Z2d

Compq(x, d) =
⌈
2d

q
· x
⌋

(mod 2d). (1)

Definition 2. The Decompression function is defined as: Z2d → Zq

Decompq(x, d) =
⌈ q

2d
· x
⌋
. (2)

The compression and decompression function can be done coefficient-wise if
the input is a polynomial or a vector of polynomials x ∈ Rd

q . The procedure
KDF(·) denotes a key-derivation function.

2 Preliminaries 257

Table 1: Parameter sets for Kyber [Sch+20]

nmod d q µ1 µ2 (du, dv)

Kyber-512 256 2 3329 3 2 (10,4)
Kyber-768 256 3 3329 2 2 (10,4)
Kyber-1024 256 4 3329 2 2 (11,5)

The security parameter sets for the three versions of Kyber, Kyber-512, Kyber-
768, and Kyber-1024 are shown in Table 1. In Kyber q is a prime 3329. LetRq

be a polynomial ring Fq[x]/(x
256+1). Let H0 be a negacyclic matrix from a vector

h0, i.e. the first row is h0, subsequent rows are cyclically shifted, when the value is
moved from the last column to the first one, it is multiplied by -1. Let d denote the
rank of the module, set to be 2, 3, and 4, respectively, for Kyber-512, Kyber-768,
and Kyber-1024. When sampling from central binomial distribution Bµ, Kyber
also has two parameters (µ1, µ2), set to be (3, 2) for Kyber-512 and (2, 2) for
Kyber-768 and Kyber-1024.

2.3 HQC

HQC (Hamming Quasi-Cyclic) [Agu+20] is one of the main code-based IND-
CCA-secure KEMs in the NIST PQ project, which has advanced to the fourth
round. Its security is based on the hardness of decoding a random quasi-cyclic
code in the Hamming metric. In HQC, the base field is F2 and R2 denotes the
polynomial ring F2[x]/(x

n − 1). The multiplication of two polynomials u, v ∈
R2 can be represented as a vector and a circulant matrix, induced from a vector
in Fn

2 . Given y = (y1, y2, . . . , yn) ∈ Fn
2 , its corresponding circulant matrix is

defined as

rot(y) =

y1 yn · · · y2
y2 y1 · · · y3
...

...
. . .

...
yn yn−1 · · · y1

 .

We can write the multiplication of uv as u · rot(v)T or v · rot(u)T. The transpose
of the circulant matrix is the counterpart of the negacyclic matrix.

The detailed description of the IND-CPA-secure PKE version of HQC and
the IND-CCA-secure KEM version can be found in the HQC reference docu-
ment [Agu+20]. We also list them in Figs. 5 and 6 for completeness. The pro-
cedure KeyGen(·) randomly generates two private vectors x, y ∈ R2 with a low
Hamming weight w as the private key. It also generates a random public vec-
tor h ∈ R2, computes s = x + h · y, and returns (h, s) as the public key. The
scheme employs a linear code C with a generator matrix G and generates noise
e, r1, r2 ∈ R2 with low Hamming weight in the encryption. The encryption

258 Paper VI: SCA-LDPC: A Code-Based Framework for Key-Recovery Side-Channel …

Table 2: The HQC parameter sets [Agu+20]. The inner code is the duplicated
Reed-Muller code defined by the first-order [128, 8, 64]2 Reed-Muller code.

RS-S Duplicated RM

Instance n1 k dRS Mult. n2 dRM n1n2 n ω ωr = ωe

hqc-128 46 16 31 3 384 192 17,664 17,669 66 75
hqc-192 56 24 33 5 640 320 35,840 35,851 100 114
hqc-256 90 32 49 5 640 320 57,600 57,637 131 149

function computes u = r1 + h · r2 and v = mG+ s · r2 + e and returns (u, v) as
the ciphertext. In decryption, the secret vector y is an input and it computes

v− u · y = mG + s · r2 − u · y + e︸ ︷︷ ︸
ê

. (3)

Since wH (ê) is small, the decryption function inputs v − u · y to the decoder of
C and can succeed with high probability.

The parameter sets of HQC are shown in Table 2. In the recent version pub-
lished in June 2021, HQC employs a concatenation of outer [n1, k1, n1 − k1 +
1]256 Reed-Solomon (RS) codes and inner duplicated Reed-Muller (RM) codes
built from the first-order [128, 8, 64]2 Reed-Muller code. The encoding proce-
dure first encodes a message m ∈ F8k1

2 to a codeword m̂ ∈ Fn1

28
of the employed

shortened Reed-Solomon codes. It then maps each byte of m̂ to a codeword of
the first-order RM and repeats the RM codeword for 3 or 5 times depending on
the security level to obtain a duplicated RM codeword in Fn2

2 . In summary, we
employ a linear code mG ∈ Fn1n2

2 . The HQC proposal makes all computations
in the ambient space Fn

2 and truncates the remaining n− n1n2 useless bits.
The IND-CCA security of the KEM version of HQC is achieved by the Hof-

heinz-Hövelmanns-Kiltz (HHK) transform [HHK17].

2.4 Threat model

We consider a side-channel-assisted chosen-ciphertext attack on a KEM’s decapsu-
lation algorithm, where the attacker selects ciphertexts and observes specific side-
channel data, such as timing [GJN20], cache-timing [HSC], or power/electro-
magnetic leakages [Rav+20], from the targeted device, which can be a high-end
CPU, low-end CPU (e.g., ARM cortex-M4), or hardware device.

Specifically, we assume that a communication party Alice is using her device for
key establishment. An adversary called Malory sends selected ciphertexts to Alice
to recover Alice’s long-term secret key. Alice runs the decapsulation algorithm and
Malory will fail if the used KEM algorithm is IND-CCA secure. However, the
designed side-channel-assisted CCAs can make the attack successful after a few
such attempts, using the observed side-channel leakages.

3 General Description of the SCA-LDPC Attack Framework 259

This side-channel-assisted CCA attack model is well-established – it is stated
in [Uen+22] that all the NIST round-3 KEM candidates except for Classic McEli-
ece are vulnerable to such attacks exploring leakages from FO transform. The basic
idea is to construct a plaintext-checking(PC) oracle outputting whether Dec(c′) ?

=
m, where c′ is the chosen ciphertext and m is a message vector.

Finally, the attacker recovers the long-term secret keys based on the output of
the PC oracle. Since the PC oracle is generally built from measurements of side-
channel leakages, it cannot be 100% correct, in practice. We denote the accuracy
of the constructed PC oracle ρ, i.e., the oracle outputs the right decision with
probability ρ and the wrong one with probability 1− ρ.

Note that we are discussing general methods for near-optimal CCA SCAs.
This new coding-theoretical approach for reduced sample (trace) complexity can
be applied in various side-channel attacks on various platforms, while the starting
oracle accuracy ρ can be different. A PC oracle with 100% correctness (ρ = 1)
can also be connected to a key misuse attack model, as described in [Qin+21].

Profiled power/EM attacks. Specific to power/EM attacks, we mainly consider
a profiled setting that the adversary has a similar but different device to perform
training activities. Though the adversary has no access to the secret key in the
targeted device, the secret key in the training device can be freely set. We can also
apply the new idea to non-profiled attacks that can build the required abstract
oracles online, but the sample complexity analysis will be different.

Comparisonwith the adaptivemodel in power/EMattacks. The studies [Qin+21;
Raj+22; She+22] proposed efficient adaptive KR-CCA-SCAs on lattice-based pro-
posals. This attack model allows the adversary to select a new chosen ciphertext
based on information obtained from previous power/EM traces, which can be
employed for source coding on secret coefficients. This approach can result in re-
duced sample complexity close to the lower Huffman or Shannon bounds. How-
ever, this attack model is strong for many practical (say IoT) applications since
the adversary needs to have good connections with the device measuring the pow-
er/EM leakages and good computation capability to instantly process the obtained
traces. We highlight that our new SCA-LDPC attack framework eliminates the
requirement and offers source coding gain in a non-adaptive attack model.

3 General Description of the SCA-LDPC Attack Frame-
work

This section presents a new idea of incorporating LDPC codes and soft informa-
tion to design chosen ciphertexts and improve previously established KR-CCA-
SCAs for CCA-secure post-quantum Key Encapsulation Mechanisms (KEMs)

260Paper VI: SCA-LDPC: A Code-Based Framework for Key-Recovery Side-Channel …

and encryption schemes. We propose a novel technique to extract, from a sin-
gle side-channel measurement, information regarding a low-weight parity check
of the secret coefficients, as opposed to information regarding a single coefficient
in previous methods. The sparse system is then solved using iterative decoding
methods, such as belief propagation. This new approach enables the attainment
of both source compression benefits and error correction advantages. This is due
to the combination of several secret coefficients, which leads to a more uniform
extraction of information from a single trace. Additionally, the correct recov-
ery of coefficients facilitates the correction of erroneous decisions through spare
parity-check relations. The adoption of this new method significantly reduces the
number of necessary side-channel measurements. We call the new attack strategy
a framework as it is generic and can be applied to both code-based and lattice-
based schemes, in a multitude of side-channel leakage scenarios including timing,
cache-timing, power, and electromagnetic leakages.

We start this section by assuming the availability of a well-designed LDPC code
with specific dimensions and proceed to explain its utilization for improved side-
channel information extraction. We then in Section 3.2 present a simple method
for constructing such linear codes, the effectiveness of which will be demonstrated
through experiments in Section 6. In addition, we broaden the framework by
introducing a concatenated construction, where the LDPC codes are utilized as
the outer code. This construction is particularly efficient for lattice-based schemes
that feature a large alphabet size or for scenarios where the accuracy of the oracle
constructed from side-channel measurements is limited.

3.1 New attack idea

Given a good linear code with a sparse parity-check matrix Hr×n, there are k =
n− r secret positions to recover. In lattice-based and code-based KEM proposals,
the value k is usually divided into b blocks, each of which has the size of k/b. We
add the constraint that H should have the form of

H =
[
Hr×k| − Ir×r

]
.

Our goal is to recover the first k secret entries si. One parity-check equation, i.e.,
one row in the parity-check matrix H, will introduce one check variable ci for i ∈
{k+1, . . . , k+ r}. We can rewrite each parity-check equation as ci =

∑
j∈I sj

and the size of #{I} is small since the matrix H is of low density.
The secret entries si are typically generated according to a certain secret dis-

tribution. For example, in the lattice-based scheme Kyber, the secret entries are
generated from the central binomial distribution Bµ; in the code-based scheme
HQC, the secret vector is very sparse and each secret entry can be viewed as a
Bernoulli variable Berη, where η is a small positive number. The secret distribu-
tion can be utilized as the prior information for si. Moreover, additional informa-
tion can be obtained through the implementation of side-channel measurements

3 General Description of the SCA-LDPC Attack Framework 261

s1 s2 s3 s4 s5 s6 c7 c8 c9 c10
D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

+

C1

+

C2

+

C3

+

C4

Figure 1: The Tanner graph explanation.

of si, which subsequently updates the relevant distribution. This approach is par-
ticularly beneficial in lattice-based scenarios. We then design new ciphertexts to
obtain side-channel leakages of sparse linear combination ci of sj for j ∈ I . The
side channel information could reveal an empirical probability of ci. The prob-
lem of recovering all si for i ∈ {1, . . . , k} is transformed into a coding problem
through a noisy discrete channel. Note that the design method for ciphertexts that
can reveal partial information of ci, is unique to each proposed scheme and differs
between lattice-based and code-based schemes. This ciphertext design is one main
technical challenge in the proposed attack framework.

Explanation. The attack idea is illustrated in Fig. 1. We assume that 6 secret
coefficients or variables si for 1 ≤ i ≤ 6 need to be recovered. For each si,
we can use the a priori distribution (e.g., in the HQC case), or we have more
traces or oracle calls to get a better knowledge of its distribution (e.g., in the Kyber
case). We show 4 parity checks in this example, and each check connects to a new
variable vi. From side-channel measurements or oracle calls, we got additional
information about these variables. Thus, we could assign the corresponding dis-
tribution to these variables and build a Tanner graph as in Fig. 1. With this sparse
bipartite Tanner graph, we perform iterative decoding to recover the desired secret
coefficients si for 1 ≤ i ≤ 6.

The gain of using LDPC codes. It is essential to select a sparse graph code that
facilitates efficient decoding and renders the key recovery procedure computation-
ally feasible. Therefore, it is natural to examine LDPC codes that have favorable
characteristics from an information-theoretic point of view. We introduce the
variables ci, which are sparse linear combinations of the secret coefficients sj ,
thereby facilitating a more efficient extraction of information from a single side-
channel measurement. This is due to the fact that the distribution of ci is typically
closer to a uniform distribution compared to the distribution of si, resulting in
substantial source compression gains, particularly in the case of HQC and to a
significant extent in Kyber. Further discussions regarding these source compres-
sion gains will be presented in Section 6. Finally, LDPC codes can offer close

262 Paper VI: SCA-LDPC: A Code-Based Framework for Key-Recovery Side-Channel …

to optimal error correction performance, rendering the attack framework efficient
in terms of the number of side-channel measurements required, even when the
oracle constructed from side-channel leakages is highly inaccurate.

Example 2 (The source compression gain for hqc-128). In hqc-128, the length
of y is n = 17669 and the Hamming weight of y is wH (y) = 66. Hence, we can
approximate each position of y as a Bernoulli distribution Berη, where η ≈ 0.0037.
Assume that we have a perfect oracle to inform us of the value of one position from one
oracle call. If we try to recover a bit in y by one oracle call, with Shannon’s binary
entropy function, the obtained information is bounded by 0.0352 bit. If we xor 50
i.i.d. secret positions (as we do later in Section 6) and try to recover the new random bit
from one oracle call, then we can instead obtain 0.6255 bit of information. Thus, from
an information-theoretical perspective, the new framework is much more advantageous.

3.2 Code generation

It has been demonstrated in previous research [RU08] that random sparse linear
codes exhibit superior decoding performance and specific classes of Low-Density
Parity-Check (LDPC) codes, such as [RSU01], can attain error-correction capa-
bilities that approach the Shannon capacity. In this work, we present a straight-
forward code construction method that has shown remarkable results in our ex-
periments.

We first borrow the concept of distance spectrum from [GJS16].

Definition 3 (Distance Spectrum [GJS16]). For a binary vector h ∈ Fn0
2 , we define

its distance spectrum D(h) as

D(h) = {d : 1 ≤ d ≤ ⌊n0/2⌋, d classified as existing in h},

where ”existing in h” means there are two ones in h with distance d or (n0 − d)
inbetween. A distance d can appear many times in the distance spectrum of a given bit
pattern h. We call this number the multiplicity of d.

In our new attack, we first generate QC-LDPC codes with mb blocks of the
parity-check matrix

Hini =

H11 · · · H1b
...

. . .
...

Hm1 · · · Hmb

 ,

where Hij is the circulant matrix (or the negacyclic matrix in the q-ary case) gen-
erated from a binary vector hij for 1 ≤ i ≤ m, 1 ≤ j ≤ b with a low Hamming
weight. We generate the vectors hij randomly with the constraint that only dis-
tances of multiplicity 1 are allowed in its distance spectrum. This can be done
with high probability since the constructed LDPC codes are sparse. The key point
in the design is that a length-4 cycle occurs in the associated Tanner graph if the

4 Application to Kyber 263

multiplicity of a distance in the distance spectrum is larger than 2. By avoiding
such patterns in a block, we can avoid many length-4 cycles; such attempts can
improve the decoding performance as length-4 cycles can substantially hurt the
decoding performance.

We select r rows of Hini (randomly or according to certain rules) to form a
sub-matrix H′ and append −Ir×r, where Ir×r is the identity matrix. Thus, the
parity-check matrix of the final generated code is

H =
[
H′r×n0b

| − Ir×r
]

(4)

Concatenated code construction. The LDPC codes generated from the above
simple approach can serve as the outer code in the concatenated construction. The
inner code can be any linear code such as a repetition code, the extended Hamming
codes, and a further concatenation of the extended Hamming codes and repetition
codes in [Ngo+21]. Moreover, we can include a soft-input-soft-output decoder
(e.g., in [JZ98]) to utilize the soft-information. Note that in the soft-decoding
procedure (e.g., the BP algorithm) of the outer code, only a distribution of each
secret coefficient random variable is required; we could thus employ a code with
an efficient maximum likelihood decoding procedure as the inner code allowing
an efficient calculation of the soft output of the coefficient distribution.

In summary, such concatenated code construction enhances decoding capa-
bility and also balances decoding complexity, as the decoding of both outer and
inner codes is efficient. This construction is particularly effective for lattice-based
proposals or when the side-channel oracle exhibits a low level of accuracy.

4 Application to Kyber

In this section, we outline the details of how the new SCA-LDPC framework
can be applied to Kyber. The attack is more effective for Kyber if we have side-
channel leakages for both si and cj . We demonstrate how to obtain these leakages,
construct inner codes for them, and apply the outer LDPC decoder.

4.1 Basic key recovery attack

In the following, we explain the basic attack to obtain side-channel information
about secret coefficients si. We focus on Kyber-768 mostly because the new
protected implementation [Hei+22] that we target supports only this set of pa-
rameters. For Kyber-768, the secret key is s = (s0, s1, s2), a ciphertext is a pair
(u′, v′). To decrypt a ciphertext, one computes m = Compq(v − sTu, 1), where
u = Decompq(u

′, du) = (u0, u1, u2), v = Decompq(v
′, dv). The common

practice [Rav+20] is to choose a ciphertext that leads to m = (0, 0, . . . , 0) or
m = (1, 0, . . . , 0). In other words, all bits of the message are fixed to 0 except
the first one. This can be done, for example, by setting u0 = (ku, 0, . . . , 0),

264Paper VI: SCA-LDPC: A Code-Based Framework for Key-Recovery Side-Channel …

u1 = u2 = 0 and v = (kv, 0, . . . , 0), where ku, kv are some numbers modulo q.
In this case, the message bits are subject to the following equation.

m[i] =

{
Compq(kv − ku · s0[0], 1), i = 0

Compq(ku · s0[i], 1), i ≥ 1
(5)

By choosing appropriate values for ku and kv, it is possible to force m[i] to
always be zero for i ≥ 1, while the value of m[0] depends on the first secret
coefficient s0[0]. Since secret coefficients for Kyber-768 are taken from the range
[−2, . . . , 2], some of the coefficients are encoded as 0, while others are encoded
as 1. We can use several such ciphertexts with (possibly) different kv and/or ku
to get an inner code of longer length. This way, using an oracle that distinguishes
message (1, 0, . . . , 0) from (0, 0, . . . , 0), the attacker can get the distribution of
a secret coefficient closer to the real value the more ciphertexts he uses.

There are restrictions for the values ku and kv: (1) these values are taken from
the image of Decompq; (2) ku is chosen in a way such that Compq(ku · s, 1) = 0
for any secret coefficient s (follows from Eq. (5)). Thus, one cannot use any code;
even though it is possible to encode each secret coefficient with only ⌈log2(5)⌉ =
3 bits, for any fixed in-advance combination of 3 ciphertexts one cannot fully
determine an arbitrary secret coefficient even with perfect oracle.

One way to solve this problem [She+22] is to choose ciphertexts adaptively
based on the output of the oracle, but we take a different approach. Consider an
FD oracle based attack, i.e., assume that we have a set of oracles (Oi)i∈(0..n−1),
where n is the length of the message. Given a ciphertext, the oracle Oi says if
m[i] = 1 or not. Essentially, the attacker calls all of these oracles at once, giving
them the same ciphertext, this way he can get information about the whole message
to be decrypted, the scenario is the same as in [Ngo+21]. The attacker can create
a ciphertext in the following way, set u0 = (ku, 0, . . . , 0), u1 = u2 = 0, and
v = (kv, kv, . . . , kv), then

m[i] = Compq(kv − ku · s0[i], 1), (6)

i.e., ith bit of the message depends on s0[i]. Thus, from one ciphertext the informa-
tion about the block of 256 coefficients s0 can be obtained. Since there is no more
restriction on m[i] = 0 for i ≥ 1, the amount of possible inner codes increases
greatly. Table 3 shows an inner code from three ciphertexts built from (k′u, k

′
v)

pairs, this code can be used to fully determine 256 secret coefficients with perfect
oracles. Note that to create an actual ciphertext (u′, v′) we need a pair (k′u, k′v)
that maps to (ku, kv) with coefficient-wise function Decompq. The next block
of secret coefficients s1 can be retrieved by setting u0 = 0, u1 = (ku, 0, . . . , 0),
u2 = 0 and so on. Note that the attacker could choose different values in v, this
way different encodings can be used for different message bits (although all those
encodings should have the same ku) and this potentially opens up the possibility

4 Application to Kyber 265

Table 3: Example of an inner code for the secret coefficients. Each value from
the range [−2, . . . , 2] is encoded with 3 bits (columns of the table), therefore, the
secret coefficient could be fully determined with just 3 oracle calls given that the
oracle is perfect.

(k′u, k
′
v)

Secret coefficient
-2 -1 0 1 2

(630, 14) 0 1 0 1 1
(706, 6) 0 0 1 1 0
(706, 10) 0 1 1 0 0

of the adaptive attack. However, such an attack is more complicated since the set
of allowed encodings given the fixed ku is quite limited, and the attacker has to
choose the same ku for all 256 coefficients. We leave it as a potential follow-up
work and focus on the situation where for all message bits there is a fixed in-
advance encoding to be used.

The common approach in the literature is to use just an inner code for secret
coefficients (without outer code) that makes the probability of getting the wrong
coefficient to be very small (with real imperfect oracles), such that the probability
to get all secret coefficients correctly is close to 1. In our approach, however, we use
a shorter inner code that is not sufficient by itself, for example in our real attack
from Section 6.1 we encode each secret coefficient with only 2 bits and encode
the values −2 and 2 the same way, i.e., with only inner code it is impossible to
differentiate between these values.

How to choose inner code. For the fixed in-advance code length ℓ we want
to create an inner code Cℓ that maximizes the information we get from the or-
acles with accuracy ρ. We solve this problem by considering the entropy of se-
cret coefficients. Initially, each of them is distributed according to Bµ, whose
entropy is H(Bµ) ≈ 2.03, for µ = 2. Each value s ∈ Bµ is encoded as
Cℓ(s) – a binary string of length ℓ. Given an output string y of length ℓ from
an oracle (note that y can be different from every Cℓ(s), s ∈ Bµ), consider
the probability Pr [Bµ = s | y] for each s ∈ Bµ. As an example from Table 3,
Pr [Bµ = 0 | 011] = 1 for the perfect oracle, but it is less than 1 for an oracle with
ρ < 1 since we could have reached this y from another coefficient.

To avoid ambiguity, we denote yρ as the output of the oracle with the accuracy
ρ. The conditional distribution Bµ|yρ can be naturally defined as Pr [(Bµ|yρ) = s] =
Pr [Bµ = s|yρ]. Now, the difference between the entropy valuesH(Bµ)−H(Bµ|yρ)
shows how much information the output yρ gives. To assess how good the code

266 Paper VI: SCA-LDPC: A Code-Based Framework for Key-Recovery Side-Channel …

is, we can compute the expectation of this information as

I(Cℓ) =
∑

yρ∈{0,1}ℓ
(H(Bµ)−H(Bµ|yρ)) · Pr [Y = yρ] ,

where Y is a random variable that describes the output of an oracle with accuracy
ρ on a random secret coefficient. The probability of the specific oracle’s output is
computed as follows.

Pr [Y = yρ] =
∑

x∈supp(Bµ)

ρd(yρ,Cℓ(x))(1− ρ)ℓ−d(yρ,Cℓ(x))Pr [Bµ = x] ,

where d(·, ·) is the Hamming distance. To decode a received word yρ, one com-
putes conditional probability Bµ|yρ of secret coefficient, i.e. we use maximum-
likelihood decoding approach.

4.2 Improving the attack using LDPC

The basic attack allows us to compute the conditional distribution for each secret
coefficient using the inner code. Now, following our framework, we create an outer
LDPC code. For it to work, we also need a way to get information about parity
checks ci. Let us describe how to create a ciphertext corresponding to a parity
check. Consider an example: Let u1, u2 and v be as above, but u0 = ku + kux

2,
then

sTu = ku
(
(s0[0]− s0[n− 2]) + (s0[1]− s0[n− 1])x+ (s0[2] + s0[0])x2 + . . .

)
.

Looking at the first message bit

m[0] = Compq(kv − ku · (s0[0]− s0[n− 2]), 1)

and comparing it to Eq. (6), one can recover c0 ← s0[0]−s0[n−2] using a similar
approach as in recovering s0[0]withO0. However, c0 lies in the range [−4, . . . , 4],
therefore the recovery process is more complicated. However, we still use several
different ciphertexts to get an inner code for the check variables. In other words,
there are two inner codes: one for secret coefficients, and another one for check
variables. Each of them helps us to compute conditional distributions, which we
use with outer LDPC code.

Now, let us represent c0 as a vector h0 with values from {−1, 0, 1} such that
c0 = hT

0(s0[0], . . . , s0[n−1]). In general, if u0 = ku ·
∑w

j=1 x
ij , then h0 is a vec-

tor withw nonzero entries at the positions (−ij) mod n, where the entry is 1 if and
only if ij = 0. Let H0 be a negacyclic matrix of the vector h0. With this cipher-
text, the ith message bit is connected to the ith row of H0(s0[0], . . . , s0[n − 1])T.
Note that, unlike in Section 3.1, ci is the sum of secret coefficients, possibly mul-

5 Application to HQC 267

tiplied by -1. However, this does not significantly affect the result since from the
distribution of the coefficient it is trivial to obtain the distribution of the negative
coefficient and vice versa. Thus, we still call ci the sum of secret coefficients.

Let ur = ku ·
∑w

j=1 x
i
(r)
j , r ∈ {0, 1, 2}. Ciphertext (u, v) with the help of

oracles Oi reveals information about 256 parity checks. The parity-check matrix
of the outer LDPC code in this case is of the form

Hini =
[
H0|H1|H2

]
,

where Hj is the negacyclic matrix obtained from the vector connecting c0 and
sj . Due to the FD oracle, parity checks c1, . . . , cn−1 must be negacyclic shifts
of c0. We only demonstrated the parity-check matrix for the outer LDPC code
consisting of block of 256 checks, but there could be several such blocks. Note
that in general, the polynomials ur do not have to use the same w.

There are three main ways to increase the success probability of the attack.

1. Increase the length of the inner code for the secret coefficients. Querying
oracles as in Section 4.1 leads to a more accurate distribution for each coef-
ficient.

2. Similarly, increase the length of the inner code for the check variables, i.e.,
fix the indexes i(r)j and use different (ku, kv).

3. Increase the number of check blocks. The resulting parity-check matrix of
the LDPC code Hini consists of 3×m blocks of negacyclic matrices, where
m is the number of “unique” parity checks c0, cn, c2n, . . .

Creating the best inner code for the check variables that maximizes the amount
of information is a challenging task. An educated guess would be the most accurate
way to describe our approach to tackling this problem.

5 Application to HQC

In this section, we describe the detailed attack on HQC. OHQC denotes a general
side-channel-based PC oracle for HQC, referenced prior-art assumes timing leak-
age, but this is not required. We treat a key-misuse oracle as a chosen-ciphertext
side-channel oracle with 100% oracle accuracy.

5.1 Key-recovery attack with OHQC

In [Guo+22] the authors presented a plaintext checking (PC) oracle based on tim-
ing information due to the use of rejection sampling. In this section, we describe
how the PC attack works and then explain how we can improve it by using our
new SCA-LDPC framework, which is based on coding theory.

268 Paper VI: SCA-LDPC: A Code-Based Framework for Key-Recovery Side-Channel …

Currently, HQC makes use of so-called rejection sampling in the CPA secure
encryption function [Agu+20; Guo+22]. The rejection sampling algorithm is used
to construct random vectors with a specific Hamming weight ω. It works by ran-
dom sampling of bit positions in the vector, and if some positions are sampled
twice, they are rejected. Straight-forwardly implemented, this algorithm leaks
timing information due to the inherently random number of rejections that oc-
cur. The HQC implementations tested in [Guo+22] leak timing information
mainly through the use of so-called “seedexpander” calls. The output of the seed-
expander function is deterministic pseudo-randomness given by an eXtendable
Output Function (XOF). The rejection sampling algorithm uses the seedexpander
function to generate relatively large blocks of randomness, at a time. The timing
distribution, therefore, is highly dependent on the number of seedexpander calls
needed. The minimum number of seedexpander calls occurs when there are no
rejections in the rejection sampling algorithm. In practice, we classify timing mea-
surements based on the number of additional seedexpander calls. They are each
related to one of the four2 distributions S0,S1,S2,S3, listed in increasing order
of rarity.

Prior to the publication of the referenced work, it was believed that this ran-
domness was only dependent on values known to the attacker, in this case, the
plaintext m. The assumption then was that constant time implementation was not
needed for the rejection sampling algorithm. Certainly, it was shown in [Guo+22]
that this assumption is problematic. Although m is indeed known to the at-
tacker, the result of the implicitly carried out comparison m′ ?

= m is not. Here
m′ = decode(c + e′) and e′ is a extra noise supplied by the attacker.

The authors showed a key-recovery attack where, by using the timing infor-
mation due to rejection sampling, knowledge of m′ ?

= m is leaked. The attack
required 866,000 so-called “idealized oracle” (Oideal

HQC) queries for the 128-bit se-
curity setting. The idealized oracle assumes a noise-free environment where a sin-
gle timing measurement is sufficient to determine the membership of Sj (where
j = 3 in [Guo+22]). Unfortunately, this is not sufficient for a 100% correct
oracle, due to reasons explained in the following paragraph.

What follows is a high-level summary of the referenced attack; A plaintext m
is selected according to some criteria useful for the distinguisher. In the case of
timing leakage, the distinguishing property is such that the selected m results in
the timing distribution S3, since it is the one most easily distinguished. The prob-
ability of for any random m′, where m′ ̸= m, resulting in the same S3 timing
distribution is low (0.58% per [Guo+22]). In other words, m′ ?

= m can be dis-
tinguished with a high, yet-not-complete, advantage.

2Strictly, there is no upper bound, but the practical benefit of finding a value for S≥4 is not
worth the exponential effort required [Guo+22].

5 Application to HQC 269

A ciphertext c′ = (u, v) is crafted in the next step such that r1 is 1 ∈ R and r2
and e is 0 ∈ R. By Eq. (3) this results in

v− u · y = mG + s · r2 + e− (r1 + h · r2) · y = mG− r1 · y = mG− y (7)

which makes y the only remaining error for the decoder to correct. Note too that
by knowledge of −y = y it is a simple computation to find the rest of the private
key, since x = s− h · y. Calculating x is quite unnecessary, however, since it is not
used in decapsulation.

Plainly, this crafted ciphertext is invalid and will be rejected in the ciphertext
comparison step of the decapsulation. However, a valid ciphertext is not required
due to the timing leakage in the XOF via the non-constant time rejection sampling
algorithm. The reencryption step immediately preceding the comparison derives
the values of r1, r2 and e from the XOF seeded by m. The single bit information
m′ ?

= m leaks prior to the ciphertext comparison step.
Hall et al. proposed in [HGS99] a way to recover y; An additional error vector

e′ is added to c′. e′ is of just sufficient weight to cause a decoding failure (i.e. m′ ̸=
m is leaked). The basic attack then simply iterates through each bit 0 ≤ i ≤ N
of e′ not already flipped to find those positions that if flipped would result in a
decoding success. If this is the case for any value of i this indicates that the bit was
already flipped in y in the ciphertext.

However, this technique alone is not sufficient to provide decisions on all bits
in the ciphertext. The reason is twofold. First, unflipping a bit in the error pattern
given to the RMRS decoder does not guarantee a decoding success, and secondly
due to the possibility that both m′ and m result in the timing distribution S3, even
though m′ ̸= m. This is modeled by Oideal

HQC, the idealized oracle from [Guo+22],
which though noise-free, is not 100% correct.

The first problem is solved by using many different error patterns e′. The sec-
ond was solved by majority voting, i.e. by gathering three or more decisions for
every bit. Both of these solutions drive up the number of required oracle calls, even
in the ideal timing leakage setting. For the 128-bit security level, this number adds
up to 866,000 oracle calls [Guo+22].

5.2 New improved attack using LDPC codes.

What follows is a description of the new attack listed in Algorithm 1, a PC ora-
cle OHQC is assumed. Like in the original attack [Guo+22] we select a plaintext
with good side-channel detection properties (in the original case this is a timing
property).

The next step is to construct aN×N regular cyclic LDPC parity-check matrix
Hini without cycles of length 4, with a good decoding performance. Hini has a row-
weight of W . This construction is detailed in Section 3.2, with (m = 1, b = 1).
The first row of Hini is the vector hini.

270 Paper VI: SCA-LDPC: A Code-Based Framework for Key-Recovery Side-Channel …

Algorithm 1: O0=repeat
HQC denotes a PC oracle which is repeated as necessary (deter-

mined by empirical study) to achieve better than nominal error rate in the case
of decoding failure; decoding successes are never repeated. O1=repeat

HQC works in a
similar but opposite fashion.

Algorithm 1 HQC new attack algorithm
Input: OHQC, public key
Output: y

1: Select plaintext m ▷ With good side channel distinguishing properties
2: Generate sparse vector hini ▷ According to Section 3.2
3: Construct Hini ▷ From hini by cyclic shifts
4: Craft c′ with r2 = 0, e = 0 and r1 = hini
5: µ← 0N ▷ Initialize message
6: loop
7: e′ ← 0N ,
8: B′ ← random subset of size (dRS − 1)/2 from {0, . . . , n1 − 1}
9: for all B′ ∈ B′ do ▷ Flip (dRS − 1)/2 RM-blocks

10: Flip block B′ in e′
11: end for
12: B

$← {0, . . . , n1} \ B′ ▷ Select a random unflipped block
13: IB ← {Bn2, . . . , B(n2 + 1)− 1}
14: IBe′ , IB0 , IB1 ,← ∅, ∅, ∅,
15: while O0=repeat

HQC (c′ + e′) do ▷ Find an initial error pattern for block B

16: IBe′ ← IBe′ ∪ {i}, where i $← IB
17: e′[i]← 1
18: end while
19: for all i ∈ IBe′ do ▷ Minimize the error pattern
20: e′[i]← 0 ▷ Unflip bit in error pattern
21: if O1=repeat

HQC (c′ + e′) then
22: IB0 ← IB0 ∪ {i} ▷ Satisfied parity check, add i to IB

0

23: e′[i]← 1 ▷ Restore bit in error pattern
24: end if
25: end for
26: for all i ∈

(
IB \ IBe′

)
do ▷ Find unsatisfied parity checks

27: if OHQC (c′ + e′) then
28: IB1 ← IB1 ∪ {i} ▷ If found, store in IB

1

29: end if
30: end for
31: Select rows i ∈ (IB0 ∪ IB1) from Hini and add to H′

32: Construct H = [H′|I]
33: µ← µ | 0#{IB

0 } | 1#{IB
1 }

34: y← DecodeH(µ)[0..n] ▷ Decoder returns the error vector
35: if y correct then ▷ Try to decrypt a valid message
36: return y
37: end if
38: end loop

5 Application to HQC 271

We craft a special ciphertext c′ where r2 = 0, e = 0 and r1 = hini. Similarly
to the case given by Eq. (7) above, this results in

v− u · y = . . . = mG− r1 · y = mG− hiniy (8)

which makes the added noise that the decoder has to correct equal to hiniy. In
other words, each bit position i in c′ correspond to the result of a parity-check
equation over y, given by hini >> i (cyclic shift by i steps) due to the cyclic
nature of our LDPC code.

The Reed-Muller (RM) and Reed-Solomon (RS) concatenated (RMRS) de-
coder, used in HQC, can be attacked in two stages. First we select (dRS − 1)/2
outer RM blocks (each RM block decodes to one RS symbol) to flip in c′ (by XOR
with e′). This results in a state where if one more block is flipped it will result in
a decoding error in the RS decoder. A decoding failure such as that would be
detected by OHQC. We randomly select another block which we denote B.

The next stage is to find which bits IBe′ to flip in the block B that results in a
decoding failure. We do this by flipping bits i ∈ IBe′ such that e′[i] = 1 in block
B until a RM decoding failure occurs. This propagates as a failure symbol to the
RS decoder which is already on the brink of being overwhelmed. This results in a
state where c′ + e′ fails to decode due to too much additional noise in the block
B partition of e′.

An aside on oracle accuracy. The LDPC code helps with recovery from bad
oracle decisions. However, the stateful nature of the new algorithm can cause
certain poor oracle decisions to propagate and result in the algorithm ending up
in a bad state. Such errors occur naturally more often for less accurate oracles. We
compensate for these effects by introducing extra confirmation calls to those oracle
decisions which are most sensitive. These are denoted in Algorithm 1 byOr=repeat

HQC ,
where r ∈ {0, 1} indicates which Oracle outputs are repeated for confirmation.
O0=repeat

HQC means decoding failures are confirmed but decoding successes are not.
The number of repeated oracle calls is determined by empirical study.

After finding an error pattern resulting in decoding failure, the next step is to
reduce the number of flipped bits, in block B. The goal is to find the minimal
pattern that still results in a decoding failure. We do this by unflipping each of the
flipped bits i ∈ IBe′ in block B. This results in one of two cases:

1. If we get a decoding success we record it in IB0 for later use, undo the flip
and then move on to select another bit i ∈ IBe′ .

2. If we still get a decoding failure we try again with another flipped bit i ∈ IBe′ .

Once we have run out of flipped bits in IBe′ to check, we have achieved a
minimal bit pattern in IB0 for block B that results in decoding failure. That is,
the set IB0 contains those bits that result in a decoding success if any are unflipped.

272 Paper VI: SCA-LDPC: A Code-Based Framework for Key-Recovery Side-Channel …

Conversely, when flipped, they have been unambiguously shown to increase the
noise for the RMRS decoder. All bits in IB0 can therefore reliably be assumed to
correspond to a satisfied parity check. So, for each bit i ∈ IB0 we construct3 our
sub matrix H′ by the selection of row i of Hini.

Working from the minimal decoding failure pattern (e′[i] = 1 ∀ i ∈ IB0 and
e′[i] = 0 ∀ i /∈ IB0) for RM block B we can now flip bits that so far have been
left untouched (i /∈ IBe′), one at a time. For each flip, if it results in a decoding
success, then we record it in IB1 . Such a bit must mean that by flipping it we
reduce the noise that the RMRS decoder has to handle. Therefore, this bit can be
reliably assumed to correspond to an unsatisfied parity-check equation, or a ’1’ in
the vector hini y. When all bits have been tested we extend our sub matrix H′ by
the selection of all rows i ∈ IB1 of Hini.

At this time in the algorithm, r number of parity-check equations have been
collected in H′. The remaining step is to construct parity-check matrix H =[
H′r×n|Ir×r

]
and a message vector

µ =

[
0n|0#{IB0

0 }|1#{IB
0

1 } . . . |0#{IBt

0 }|1#{IB
t

1 }
]

(9)

in such a way that we have n zeroes, each representing an unknown bit-value of y
to be recovered. The message is appended by the following redundancies: a single
0 for each satisfied parity-check equation hitherto selected (i ∈ IB0) and a 1 for
each unsatisfied parity check (i ∈ IB1). We do this for all t blocks B that have so
far been selected.

We try to decode the message µ and recover y from the first n bits. We use H as
input and a suitable decoder such as sum-product or the min-sum approximation.

If the decoding is not successful we unflip all bits in block B and unflip all
other blocks. Then we restart the algorithm (using the same ciphertext) and select
another block. The old IB0 and IB1 are saved and re-used in the next decoding
attempt. We continue until successful.

In some cases (for less accurate oracles) one might still fail to decode even after
all outer RM blocks have been exhausted. In such cases, one can simply save µ
and H′ and continue extending them by restarting the algorithm.

6 Experiments

In this section, we show the results of simulations and real-world experiments for
Kyber and HQC.

3or extend if this is not the first selected block/iteration of the algorithm

6 Experiments 273

6.1 Masked Kyber

Software simulations

We introduce software simulations, where we fix the accuracy ρ of each oracle Oi

to be the same.
The attack improves as the weight of the rows in the parity matrix increases.

However, the decoding time increases exponentially with it. In the course of ex-
periments, we found that the valuew = 2 works best, i.e., the parity-check matrix
consists of negacyclic matrices with row weight 2. For Kyber-768, this means that
each check variable is the sum of 6 secret coefficients.

The three main parameters of the attack arem0,m1 andm2, wherem0 andm2

are the lengths of the inner code for the secret coefficients and the check variables,
resp., m1 is the number of blocks of check variables. Recall that Kyber-768 has
3 blocks of 256 secret coefficients, and we assume that from one power trace we
get information about all 256 message bits. This means that we need 3m0 and
m1 ·m2 traces to get the distributions for secret coefficients and check variables,
respectively. The interested reader is referred to Tables 8 and 9 for the actual codes
used in the simulation and in the real attack.

We evaluate our methodology against the majority voting technique, a concep-
tually simple coding approach that can be considered as a repetition code. Majority
voting is a typical approach to ensure that a single secret coefficient can be recov-
ered with high accuracy. This approach has been selected as the baseline attack
method due to its relevance as the most frequently used coding scheme for attack-
ing Kyber in previous literature (e.g., in [She+22]). For majority voting, we choose
the code as in Table 3 and use t votes, i.e., the actual code is repeated t times. We
run 1000 tests and compute the average number of wrong secret coefficients, the
attack is considered successful if this number is less than 1. For our approach, we
choose m0, m1, and m2 such that the total number of traces is minimized and
the average number of errors is close to majority voting. We run 100 tests, and all
tests are done with randomly generated secret keys. The results for a wide range
of accuracy levels are shown in Table 4.

Real-world experiments

We conduct our experiments in the ChipWhisperer toolkit, including the Chip-
Whisperer-Lite board, the CW308 UFO board, and the CW308T-STM32F4
target board with a 32-bit ARM Cortex-M4 CPU. We target the mkm4 library4

in [Hei+22] implementing a first-order masked version of Kyber. The library
is compiled using the -O3 optimization level, which is typically harder to at-
tack [She+22; Ngo+21]. The target board is run at 24 MHz, and the traces are
sampled at 24 MHz.

4https://github.com/masked-kyber-m4/mkm4

https://github.com/masked-kyber-m4/mkm4

274 Paper VI: SCA-LDPC: A Code-Based Framework for Key-Recovery Side-Channel …

Table 4: Comparison with the majority voting for full-key recovery. t is the num-
ber of votes cast, values in the brackets are m0, m1 and m2, resp.

ρ = 0.995 Number of traces Average number of errors
Majority Voting (t = 3) 27 (ref) 0.21/768
Our Method (2, 1, 4) 10 (−63%) 0.37/768

ρ = 0.95 Number of traces Average number of errors
Majority Voting (t = 7) 63 (ref) 0.47/768
Our Method (3, 4, 2) 17 (−73%) 0.16/768

ρ = 0.9 Number of traces Average number of errors
Majority Voting (t = 11) 99 (ref) 0.67/768
Our Method (4, 3, 4) 24 (−75.8%) 0.46/768

We attacked the function masked_poly_tomsg in the first draft of the work
and it was the first power analysis attack on an open-source masked implementa-
tion of Kyber, as far as we know. Then we switched to the function masked_poly_frommsg
similarly to [DNG22]. With this approach, real oracles from side-channel leakages
have better accuracy, leading to a lower amount of traces.

The function masked_poly_frommsg (shown in Algorithm 2) maps each masked
polynomial coefficient to a corresponding message bit during decapsulation. In
one loop the function works on the message bits XORed with random bits; on the
other loop it works with these random bits themselves. Obtaining a power trace
for these two loops allows us to retrieve information about all message bits and
implement the FD oracles Oi.

The attack scenario is the same as in [Ngo+21]. First, there is the profiling stage
during which, using the profiling device D1, we collect 100,000 power traces of
the function masked_poly_frommsg. It is done by generating a random message
which is encrypted using the device’s public key, the resulting ciphertext is passed
to the measured by the ChipWhisperer decapsulation function. Each byte of the
message is computed in the same way, and the power traces corresponding to each
byte are similar. Thus, we can train only 8 neural network models, one for each
bit of the byte. Models are trained for up to 100 epochs. The interested reader is
referred to Table 10 for the architecture of the model.

Each of the 8 models simulates the 32 oracles Oi+8j , j = 0, . . . , 31, with
some accuracy ρi. The oracle behaves like a binary symmetric channel with success
probability ρi, but the model provides soft values, which can be treated as the
probabilities of output being 1 or 0 from the model’s perspective. Thus, the real-
world attack is more powerful since there is more information we can work with.

After the profiling stage, there is the attacking stage. The assumption is that
the attacker has access for a (relatively) short period of time to a similar device
D2. After collecting power traces for decapsulation on chosen ciphertexts, the

6 Experiments 275

Algorithm 2 The attacked function in KyBER.CPAPKE.Dec() (from [Hei+22])
masked_poly_frommsg(uint16_t poly[2][256], uint8_t msg[2][32])

1: ... /* initialization */
2: for i = 0 to 31 do
3: for j = 0 to 7 do
4: mask = -((msg[0][i] >> j) & 1)
5: poly[0][8*i+j] += mask & ((KYBER_Q+1)/2)
6: end for
7: end for
8: for i = 0 to 31 do
9: for j = 0 to 7 do

10: mask = -((msg[1][i] >> j) & 1)
11: poly[1][8*i+j] += mask & ((KYBER_Q+1)/2)
12: end for
13: end for
14: …

Table 5: Accuracy of recovering particular bit for models. Device D1 is the pro-
filing device, and D2 is the device to be attacked.

Device ρ0 ρ1 ρ2 ρ3 ρ4 ρ5 ρ6 ρ7
D1 0.9651 0.9986 0.9985 0.9985 0.9992 0.9995 1.0000 1.0000

D2 0.9390 0.9811 0.9923 0.9023 0.9654 0.8940 0.9404 0.9873

attacker’s goal is to recover the key using the trained models. The Table 5 shows
the accuracy ρi of recovering ith bit for devices D1 and D2.

The experimental results (shown in Table 6) with the average oracle accuracy
of 0.9502 are better than the simulation results with an accuracy of 0.95. There
are two reasons for this: (1) real models provide soft values, making the attack
more powerful; (2) In the simulation, the accuracy of each bit is the same, but for
our LDPC approach, it is more beneficial for some bits to be more reliable than
others.

Table 6: Real-world attack results on the first-order masked Kyber-768. We per-
formed 100 runs of the attack with a random secret key for each run.

Number of traces Average number of errors
Majority Voting (t = 11) 99 0.34/768
Our Method (2, 2, 3) 12 0.82/768

276 Paper VI: SCA-LDPC: A Code-Based Framework for Key-Recovery Side-Channel …

On the other hand, the success of majority voting approach depends on the
worst bit position. In other words, in the real world majority voting works worse
since the bottleneck is the worst bit. The real attack with accuracy from Table 5
uses t = 11 votes, i.e. in total we need 99 traces (instead of 63 as in Table 4). In
this case, our framework uses 86% fewer traces.

6.2 HQC

In order to test the new attack strategy against HQC it is advantageous to make as
close to an apples-to-apples comparison as possible against the results of [Guo+22].
To this end, we model the PC oracle as follows; The success probability for an
oracle query is determined by ρ0 and ρ1, which are the probabilities of correctly
classifying decoding failures and decoding successes, respectively. For the case of
the ideal HQC timing oracle used in [Guo+22] these values are listed in Table 7
and correspond to ρ0 = ρf and ρ1 = ρs. We label the ideal oracle Oideal

HQC.

Table 7: Ideal HQC timing oracle, Oideal
HQC, as modelled with ρf and ρs.

Real
Reported as decoding failure decoding success

decoding failure ρf = 0.9942 1− ρf = 0.0058
decoding success 1− ρs = 0 ρs = 1.0

Simulating real-world attacks with noisy measurements can be done by select-
ing other values of ρ0 and ρ1. For simplicity, we introduce ρ as a single representa-
tive value of PC oracle accuracy, where ρ = ρ0 = ρ1. We label the corresponding
oracle Oρ

HQC.
By empirical study (see Fig. 7) we have selected a row weight of W = 50 in

the constructed LDPC code (for hqc-128). This is close to the upper limit of
our code generation algorithm. Using a bigger W would occasionally require a
more advanced algorithm with backtracking of the random walk. Regardless, the
decoding appears to suffer in reliability for values W > 50. Smaller values of W
require more parity checks and thus make the attack slower.

Some interesting ρ values, corresponding to real attacks, are {1.0, 0.995, 0.95,
0.9}. In Fig. 2 we show the results of simulations using the various oracle models
we have described so far. The results for Oideal

HQC indicate an 86.6 times improve-
ment over the original attack [Guo+22].

We have validated our attack by running a real timing oracle on a Ubuntu
20.04 LTS laptop with Intel Core i5-7200@2.50GHz. Measurement noise was
reduced by turning of hyper-threading and by running in recovery mode. We
used 218 measurements to generate a profile, first of a decoding success and again
of a decoding failure. Measuring 8 decapsulations resulted in an oracle accuracy
of ρOreal

HQC
= 0.951 as determined by 1000 trials. The simulated results for O0.95

HQC

6 Experiments 277

20000 40000 60000 80000 100000 120000

Oracle calls

O0.9
HQC

O0.95
HQC

O0.995
HQC

Oideal
HQC

O1.0
HQC

Figure 2: Experiment for hqc-128. The median number of oracle calls for suc-
cessful key recovery, are 59500, 35250, 18000, 10000, and 9000 respectively for
the listed oracles. For each oracle model, 100 key-recovery simulations ran to com-
pletion.

indicate a real-life key recovery attack of hqc-128 can be done by measuring 23×
35250 ≈ 218 decapsulation calls.

6.3 Discussions

In this section, we present discussions on the performance of the new SCA-LDPC
framework, including its information-theoretical advantages and limitations. Fur-
thermore, we compare the SCA-LDPC framework with the inner-symbol error
correction method proposed in [Ngo+21] and highlight the advantages of the for-
mer.

A non-rigorous information theoretical bound. Assuming that a single side-
channel measurement provides a certain amount of information (denoted by I
bits), and considering the fact that there are k secret symbols that are indepen-
dently generated from a distribution with entropy E bits, it is possible to calculate
a lower bound for the number of measurements required. This can be accom-
plished by dividing k · E by I. Estimation of I can be performed by considering
each recovered message bit as a Bernoulli variable, with a specified probability ρi
of being correct. It is noteworthy that the value of ρi may vary for different secret
positions. This information-theoretical estimation is approximate in nature. It
is subject to limitations arising from the simplicity of the Bernoulli model. Addi-
tionally, near-optimal source coding and channel coding are required to match the
derived lower bound. Notwithstanding these limitations, the estimation suggests
the possibility of improvement, though the extent of such improvement may be
constrained.

278 Paper VI: SCA-LDPC: A Code-Based Framework for Key-Recovery Side-Channel …

The aforementioned lower bound is equivalent to the well-known Shannon
source coding bound when the accuracy of the oracle is 100%, which can be used
to characterize the source compression gain. The results obtained from the FD
oracle based attack on the scheme Kyber-768 exactly meet the lower bound of 7
traces. Conversely, for the PC oracle based attack on hqc-128, 1324 parity checks
were required, a factor of 2.1 times the lower bound of 628 checks.

It has been observed that the difference between the simulated results and the
lower bound increases as the oracle accuracy decreases. For example, in the case
of the PC oracle based attack on hqc-128, when the oracle accuracy drops to
0.95, the ratio of the simulated parity checks to the lower bound increases to
approximately 2.7, as calculated by 2396/880. For the FD oracle based real-world
attack on Kyber-768, based on the message recovery accuracy data presented in
the second row of Table 5, the lower bound was determined to be 9, which is
slightly lower than the 12 traces utilized in the actual attack.

Limitations. Despite the remarkable reduction of necessary side-channel mea-
surements, a gap remains between actual performance and our non-rigorous information-
theoretical lower bound. This gap may be attributed to the requirement of an
extremely long codeword, potentially in the range of tens of millions of bits, for
the LDPC codes to approach optimality. Additionally, it may be a result of the
simplicity and inadequacy of our current code-construction method. More so-
phisticated LDPC code construction techniques could further reduce the required
number of measurements.

Our method vs. inner-symbol error correction. The new SCA-LDPC frame-
work utilizes a system of sparse parity checks to interconnect all the secret symbols.
As a result, accurately determined symbols can be utilized to rectify incorrectly de-
termined symbols, categorizing this method as inter-symbol error correction. On
the other hand, the method presented in [Ngo+21] falls under the category of
inner-symbol error correction, as the utilization of extended Hamming codes in-
creases the possibility of recovering individual secret symbols, which all must be
recovered independently.

Both methods can be applied to the FD oracle based attack on lattice-based
schemes in a non-adaptive attack model. However, the inner-symbol error cor-
rection method presented in [Ngo+21] offers no source compression gain and has
inferior error correction capabilities. For instance, it is demonstrated in [Ngo+21]
that for a platform with an average message bit recovery rate of 0.972, 216 traces,
or 9× 24, are required to recover the long-term secret key of a masked Saber im-
plementation. We utilize the detailed message bit recovery rates recorded in Table
20 of [Ngo+21] to calculate the corresponding lower bound, which is determined
to be 10 traces. This demonstrates a significant gap of 21.6 between the actual
performance in a real-world scenario and the calculated lower bound. While there
is no guarantee that the non-rigorous lower bound will always be attainable, the

7 Concluding Remarks and Future Work 279

small ratio of 1.33, or 12/9, for our SCA-LDPC attack on Kyber, illustrates the
superior efficiency of our method in terms of the required number of traces.

The substantial improvement of the new SCA-LDPC framework can be at-
tributed to various factors, such as the utilization of soft information in the real-
world attack that we conducted. The dominant reason is that all the secret symbols
are interconnected and correlated, and redundant symbols are introduced, allow-
ing for the effective handling of a significant number of symbol-level errors. On
the contrary, in the inner-symbol error correction method, all the symbols (e.g.,
768 symbols in the Saber case) are independent and needs to be successfully recov-
ered, thus precluding the tolerance of any symbol-level errors. Last, in a real-world
attack scenario, several secret positions typically have a higher chance of contain-
ing errors, which can be effectively corrected through the inter-symbol approach,
but may prove to be a bottleneck for the inner-symbol method where all symbols
must be correctly identified independently.

7 Concluding Remarks and Future Work

From coding theory, we have presented a generic framework for key-recovery side-
channel attacks on CCA-secure post-quantum encryption/KEM schemes. Our
design philosophy is to employ randomly generated LDPC codes with efficient
decoding to connect secret coefficients, which introduces additional benefits of
source compression and error correction. We presented simulation results and
real-world experiments on the main lattice-based KEM Kyber and the code-based
KEM HQC. The new attack framework can significantly improve the state-of-the-
art in terms of the required number of side-channel measurements. An explanation
for the substantial improvements is that LDPC codes are considered to have near-
optimal performance from an information-theoretic standpoint.

The sample complexity of the new attack framework can be improved further
by (i) employing a more advanced code-construction method with improved de-
coding performance or by (ii) heavy post-processing such as lattice-reduction or
information-set decoding. An intriguing area of study is to utilize sophisticated
coding-theoretical methods [RU08], such as density evolution or EXIT charts, to
carry out efficient and precise security assessments against proposed attacks.

The new attack framework can be easily applied to several other important
KEM candidates in the NIST PQ project such as FrodoKEM [Nae+20] and Saber
[DAn+20]. It is interesting to investigate its further applications in NTRU [Che+20]
and NTRU prime [Ber+20]. Last, the new attack framework shows the need for
countermeasures such as constant-time implementations or higher-order masked
implementations. Our next step is to evaluate the security of higher-order masked
implementations for Kyber, as Kyber is a future NIST standard. The very recent
work [DNG22] demonstrated a high probability of success in recovering message
bits from a masked Kyber implementation of up to the fifth order. In conjunction

280 Paper VI: SCA-LDPC: A Code-Based Framework for Key-Recovery Side- …

with our simulation results, this suggests higher-order masked implementations
may still be highly susceptible to the present attack framework.

References

[Agu+20] C. Aguilar Melchor et al. HQC. Tech. rep. available at
https://csrc.nist.gov/projects/post-quantum-
cryptography/round-3-submissions. National Institute of
Standards and Technology, 2020.

[Alb+20] M. R. Albrecht et al. Classic McEliece. Tech. rep. available at
https://csrc.nist.gov/projects/post-quantum-
cryptography/round-3-submissions. National Institute of
Standards and Technology, 2020.

[Ara+20] N. Aragon et al. BIKE. Tech. rep. available at
https://csrc.nist.gov/projects/post-quantum-
cryptography/round-3-submissions. National Institute of
Standards and Technology, 2020.

[Bac+22] L. Backlund, K. Ngo, J. Gärtner, and E. Dubrova. Secret Key
Recovery Attacks on Masked and Shuffled Implementations of
CRYSTALS-Kyber and Saber. Cryptology ePrint Archive, Paper
2022/1692. https://eprint.iacr.org/2022/1692. 2022.

[Ber+20] D. J. Bernstein et al. NTRU Prime. Tech. rep. available at
https://csrc.nist.gov/projects/post-quantum-
cryptography/round-3-submissions. National Institute of
Standards and Technology, 2020.

[Che+20] C. Chen et al. NTRU. Tech. rep. available at
https://csrc.nist.gov/projects/post-quantum-
cryptography/round-3-submissions. National Institute of
Standards and Technology, 2020.

[Dac+20] D. Dachman-Soled, L. Ducas, H. Gong, and M. Rossi. “LWE
with side information: attacks and concrete security estimation”.
In: Advances in Cryptology–CRYPTO 2020: 40th Annual
International Cryptology Conference, CRYPTO 2020, Santa
Barbara, CA, USA, August 17–21, 2020, Proceedings, Part II.
Springer. 2020, pp. 329–358.

[DAn+19] J.-P. D’Anvers, M. Tiepelt, F. Vercauteren, and I. Verbauwhede.
“Timing attacks on error correcting codes in post-quantum
schemes”. In: Proceedings of ACM Workshop on Theory of
Implementation Security Workshop. 2019, pp. 2–9.

https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://eprint.iacr.org/2022/1692
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions

References 281

[DAn+20] J.-P. D’Anvers, A. Karmakar, et al. SABER. Tech. rep. available at
https://csrc.nist.gov/projects/post-quantum-
cryptography/round-3-submissions. National Institute of
Standards and Technology, 2020.

[DNG22] E. Dubrova, K. Ngo, and J. Gärtner. Breaking a Fifth-Order
Masked Implementation of CRYSTALS-Kyber by Copy-Paste.
Cryptology ePrint Archive, Paper 2022/1713. 2022.

[FO99] E. Fujisaki and T. Okamoto. “Secure Integration of Asymmetric
and Symmetric Encryption Schemes”. In: Advances in Cryptology –
CRYPTO’99. Ed. by M. J. Wiener. Vol. 1666. Lecture Notes in
Computer Science. Santa Barbara, CA, USA: Springer,
Heidelberg, Germany, Aug. 1999, pp. 537–554.

[For65] G. D. Forney. “Concatenated codes.” In: (1965).

[Gal62] R. Gallager. “Low-density parity-check codes”. In: IRE
Transactions on information theory 8.1 (1962), pp. 21–28.

[GJJ22] Q. Guo, A. Johansson, and T. Johansson. “A Key-Recovery
Side-Channel Attack on Classic McEliece Implementations”. In:
IACR Trans. Cryptogr. Hardw. Embed. Syst. 2022.4 (2022),
pp. 800–827.

[GJN20] Q. Guo, T. Johansson, and A. Nilsson. “A Key-Recovery Timing
Attack on Post-quantum Primitives Using the Fujisaki-Okamoto
Transformation and Its Application on FrodoKEM”. In:
CRYPTO 2020, Part II. Ed. by D. Micciancio and T. Ristenpart.
Vol. 12171. LNCS. Springer, Heidelberg, Aug. 2020, pp. 359–386.

[GJS16] Q. Guo, T. Johansson, and P. Stankovski. “A Key Recovery Attack
on MDPC with CCA Security Using Decoding Errors”. In:
Advances in Cryptology – ASIACRYPT 2016, Part I. Ed. by
J. H. Cheon and T. Takagi. Vol. 10031. Lecture Notes in
Computer Science. Hanoi, Vietnam: Springer, Heidelberg,
Germany, Dec. 2016, pp. 789–815.

[GLG22] G. Goy, A. Loiseau, and P. Gaborit. “A New Key Recovery
Side-Channel Attack on HQC with Chosen Ciphertext”. In:
Post-Quantum Cryptography. Ed. by J. H. Cheon and T. Johansson.
Cham: Springer International Publishing, 2022, pp. 353–371.

[Guo+20] Q. Guo, V. Grosso, F.-X. Standaert, and O. Bronchain. “Modeling
Soft Analytical Side-Channel Attacks from a Coding Theory
Viewpoint”. In: IACR TCHES 2020.4 (2020). https:
//tches.iacr.org/index.php/TCHES/article/view/8682,
pp. 209–238.

https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://tches.iacr.org/index.php/TCHES/article/view/8682
https://tches.iacr.org/index.php/TCHES/article/view/8682

282 Paper VI: SCA-LDPC: A Code-Based Framework for Key-Recovery Side- …

[Guo+22] Q. Guo, C. Hlauschek, T. Johansson, N. Lahr, A. Nilsson, and
R. L. Schröder. “Don’t Reject This: Key-Recovery Timing Attacks
Due to Rejection-Sampling in HQC and BIKE”. In: IACR Trans.
Cryptogr. Hardw. Embed. Syst. 2022.3 (2022), pp. 223–263.

[Ham+21] M. Hamburg et al. “Chosen Ciphertext k-Trace Attacks on
Masked CCA2 Secure Kyber”. In: IACR TCHES 2021.4 (2021).
https:
//tches.iacr.org/index.php/TCHES/article/view/9061,
pp. 88–113.

[Hei+22] D. Heinz, M. J. Kannwischer, G. Land, T. Pöppelmann,
P. Schwabe, and D. Sprenkels. First-Order Masked Kyber on ARM
Cortex-M4. Cryptology ePrint Archive, Paper 2022/058. 2022.

[HGS99] C. Hall, I. Goldberg, and B. Schneier. “Reaction Attacks against
several Public-Key Cryptosystems”. In: ICICS 99: 2nd
International Conference on Information and Communication
Security. Ed. by V. Varadharajan and Y. Mu. Vol. 1726. Lecture
Notes in Computer Science. Sydney, Australia: Springer,
Heidelberg, Germany, Nov. 1999, pp. 2–12.

[HHK17] D. Hofheinz, K. Hövelmanns, and E. Kiltz. “A Modular Analysis
of the Fujisaki-Okamoto Transformation”. In: TCC 2017: 15th
Theory of Cryptography Conference, Part I. Ed. by Y. Kalai and
L. Reyzin. Vol. 10677. Lecture Notes in Computer Science.
Baltimore, MD, USA: Springer, Heidelberg, Germany, Nov. 2017,
pp. 341–371.

[HSC] S. Huang, R. Q. Sim, and C. Chuengsatiansup. private
communication.

[JZ98] T. Johansson and K. S. Zigangirov. “A Simple One-Sweep
Algorithm for Optimal APP Symbol Decoding of Linear Block
Codes”. In: IEEE Trans. Inf. Theory 44.7 (1998), pp. 3124–3129.

[Koc96] P. C. Kocher. “Timing Attacks on Implementations of
Diffie-Hellman, RSA, DSS, and Other Systems”. In: Advances in
Cryptology – CRYPTO’96. Ed. by N. Koblitz. Vol. 1109. Lecture
Notes in Computer Science. Santa Barbara, CA, USA: Springer,
Heidelberg, Germany, Aug. 1996, pp. 104–113.

[McE78] R. J. McEliece. “A public-key cryptosystem based on algebraic”.
In: Coding Thv 4244 (1978), pp. 114–116.

[Nae+20] M. Naehrig et al. FrodoKEM. Tech. rep. available at
https://csrc.nist.gov/projects/post-quantum-
cryptography/round-3-submissions. National Institute of
Standards and Technology, 2020.

https://tches.iacr.org/index.php/TCHES/article/view/9061
https://tches.iacr.org/index.php/TCHES/article/view/9061
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions

References 283

[Ngo+21] K. Ngo, E. Dubrova, Q. Guo, and T. Johansson. “A Side-Channel
Attack on a Masked IND-CCA Secure Saber KEM
Implementation”. In: IACR TCHES 2021.4 (2021). https:
//tches.iacr.org/index.php/TCHES/article/view/9079,
pp. 676–707.

[NIS18] NIST. NIST Post-Quantum Cryptography Standardization.
https://csrc.nist.gov/Projects/Post-Quantum-
Cryptography/Post-Quantum-Cryptography-
Standardization Accessed: 2018-09-24. 2018.

[Pea82] J. Pearl. “Reverend Bayes on Inference Engines: A Distributed
Hierarchical Approach”. In: AAAI. 1982.

[PPM17] R. Primas, P. Pessl, and S. Mangard. “Single-trace side-channel
attacks on masked lattice-based encryption”. In: Cryptographic
Hardware and Embedded Systems–CHES 2017: 19th International
Conference, Taipei, Taiwan, September 25-28, 2017, Proceedings.
Springer. 2017, pp. 513–533.

[Qin+21] Y. Qin, C. Cheng, X. Zhang, Y. Pan, L. Hu, and J. Ding. “A
Systematic Approach and Analysis of Key Mismatch Attacks on
Lattice-Based NIST Candidate KEMs”. In: ASIACRYPT 2021,
Part IV. Ed. by M. Tibouchi and H. Wang. Vol. 13093. LNCS.
Springer, Heidelberg, Dec. 2021, pp. 92–121.

[Raj+22] G. Rajendran, P. Ravi, J.-P. D’Anvers, S. Bhasin, and
A. Chattopadhyay. Pushing the Limits of Generic Side-Channel
Attacks on LWE-based KEMs - Parallel PC Oracle Attacks on Kyber
KEM and Beyond. Cryptology ePrint Archive, Paper 2022/931.
2022.

[Rav+20] P. Ravi, S. S. Roy, A. Chattopadhyay, and S. Bhasin. “Generic
Side-channel attacks on CCA-secure lattice-based PKE and
KEMs”. In: IACR TCHES 2020.3 (2020). https:
//tches.iacr.org/index.php/TCHES/article/view/8592,
pp. 307–335.

[Rav+22] P. Ravi, M. F. Ezerman, S. Bhasin, A. Chattopadhyay, and
S. S. Roy. “Will You Cross the Threshold for Me? Generic
Side-Channel Assisted Chosen-Ciphertext Attacks on
NTRU-based KEMs”. In: IACR Trans. Cryptogr. Hardw. Embed.
Syst. 2022.1 (2022), pp. 722–761.

[Reg05] O. Regev. “On lattices, learning with errors, random linear codes,
and cryptography”. In: 37th Annual ACM Symposium on Theory of
Computing. Ed. by H. N. Gabow and R. Fagin. Baltimore, MA,
USA: ACM Press, May 2005, pp. 84–93.

https://tches.iacr.org/index.php/TCHES/article/view/9079
https://tches.iacr.org/index.php/TCHES/article/view/9079
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://tches.iacr.org/index.php/TCHES/article/view/8592
https://tches.iacr.org/index.php/TCHES/article/view/8592

284 Paper VI: SCA-LDPC: A Code-Based Framework for Key-Recovery Side- …

[RR] P. Ravi and S. S. Roy. Side-Channel Analysis of Lattice-based PQC
Candidates.
https://csrc.nist.gov/CSRC/media/Projects/post-
quantum-cryptography/documents/round-
3/seminars/mar-2021-ravi-sujoy-presentation.pdf.
Accessed: 2022-09-29.

[RSU01] T. Richardson, M. Shokrollahi, and R. Urbanke. “Design of
capacity-approaching irregular low-density parity-check codes”.
In: IEEE Transactions on Information Theory 47.2 (2001),
pp. 619–637.

[RU08] T. Richardson and R. Urbanke. Modern Coding Theory. USA:
Cambridge University Press, 2008.

[Sch+20] P. Schwabe et al. CRYSTALS-KYBER. Tech. rep. available at
https://csrc.nist.gov/projects/post-quantum-
cryptography/round-3-submissions. National Institute of
Standards and Technology, 2020.

[Sch+22] T. Schamberger, L. Holzbaur, J. Renner, A. Wachter-Zeh, and
G. Sigl. A Power Side-Channel Attack on the Reed-Muller
Reed-Solomon Version of the HQC Cryptosystem. Cryptology ePrint
Archive, Paper 2022/724. 2022.

[She+22] M. Shen, C. Cheng, X. Zhang, Q. Guo, and T. Jiang. Find the
Bad Apples: An efficient method for perfect key recovery under
imperfect SCA oracles – A case study of Kyber. Cryptology ePrint
Archive, Paper 2022/563. 2022.

[Sho94] P. W. Shor. “Algorithms for Quantum Computation: Discrete
Logarithms and Factoring”. In: 35th Annual Symposium on
Foundations of Computer Science. Santa Fe, NM, USA: IEEE
Computer Society Press, Nov. 1994, pp. 124–134.

[Tan+22] Y. Tanaka, R. Ueno, K. Xagawa, A. Ito, J. Takahashi, and
N. Homma. Multiple-Valued Plaintext-Checking Side-Channel
Attacks on Post-Quantum KEMs. Cryptology ePrint Archive, Paper
2022/940. 2022.

[Uen+22] R. Ueno, K. Xagawa, Y. Tanaka, A. Ito, J. Takahashi, and
N. Homma. “Curse of Re-encryption: A Generic Power/EM
Analysis on Post-Quantum KEMs”. In: IACR Trans. Cryptogr.
Hardw. Embed. Syst. 2022.1 (2022), pp. 296–322.

[VGS14] N. Veyrat-Charvillon, B. Gérard, and F.-X. Standaert. “Soft
Analytical Side-Channel Attacks”. In: ASIACRYPT 2014, Part I.
Ed. by P. Sarkar and T. Iwata. Vol. 8873. LNCS. Springer,
Heidelberg, Dec. 2014, pp. 282–296.

https://csrc.nist.gov/CSRC/media/Projects/post-quantum-cryptography/documents/round-3/seminars/mar-2021-ravi-sujoy-presentation.pdf
https://csrc.nist.gov/CSRC/media/Projects/post-quantum-cryptography/documents/round-3/seminars/mar-2021-ravi-sujoy-presentation.pdf
https://csrc.nist.gov/CSRC/media/Projects/post-quantum-cryptography/documents/round-3/seminars/mar-2021-ravi-sujoy-presentation.pdf
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions

References 285

[Xu+22] Z. Xu, O. Pemberton, S. S. Roy, D. Oswald, W. Yao, and
Z. Zheng. “Magnifying Side-Channel Leakage of Lattice-Based
Cryptosystems With Chosen Ciphertexts: The Case Study of
Kyber”. In: IEEE Transactions on Computers 71.9 (2022),
pp. 2163–2176.

286 References

Appendix A: Supporting Figures and Tables

Algorithm 3 KyBER.CPAPKE.
KeyGen()
Input:
Output: sk, pk

A $←Rd×d
q

s $← Bdµ1
, where s ∈ Rd

q

e $← Bdµ1
, where e ∈ Rd

q

sk
def
= s

pk
def
= As + e

Algorithm 4 KyBER.CPAPKE.Dec()

Input: sk, c = (c1, c2)
Output: m

u = Decompq(c1, du)
v = Decompq(c2, dv)
m = Compq(v − sTu, 1)

Algorithm 5 KyBER.CPAPKE.Enc()
Input: pk, m, r
Output: c = (c1, c2)

Generate A ∈ Rd×d
q from pk

p = pk

r $← Bdµ1
, where r ∈ Rd

q

e1
$← Bdµ2

, where e1 ∈ Rd
q

e2
$← Bµ2 , where e2 ∈ Rq

u = ATr + e1
v = pTr + e2 + Decompq(m, 1)

c1
def
= Compq(u, du)

c2
def
= Compq(v, dv)

c
def
= (c1, c2)

Figure 3: KyBER.CPAPKE (simplified version)

References 287

Algorithm 6 KyBER.CCAKEM.
KeyGen()
Input:
Output: sk, pk

Generate a pseudo-random coin z

(pk, sk′) def
= KyBER.CPAPKE.

KeyGen()
sk

def
= (sk′, pk,H(pk), z)

Algorithm 7 KyBER.CCAKEM.
Encaps()
Input: pk
Output: c,K

m
$←
256

m = H(m)
(K̄, r) = G(m,H(pk))
c = KyBER.CPAPKE.Enc(pk,m, r)
K = KDF(K̄,H(c))

Algorithm 8 KyBER.CCAKEM.
Decaps()
Input: sk, c
Output: K
m′ = KyBER.CPAPKE.Dec(sk, c)
(K̄ ′, r′) = G(m′,H(pk))
c′ =KyBER.CPAPKE.Enc(pk,m′, r′)

if c = c′ then
K = KDF(K̄ ′,H(c))

else
K = KDF(z,H(c))

end if

Figure 4: KyBER.CCAKEM

• Setup(1λ): generates the global parameters param= (n, k, δ, ω, ωr, ωe).

• KeyGen(param): sample h $← R2, the generator matrix G ∈ Fk×n
2 of

C, sk = (x, y) $← R2
2 such that ω(x) = ω(y) = ω, sets pk = (h, s =

x + h · y), and returns (pk, sk).

• Encrypt(pk,m): generates e $←R2, r = (r1, r2)
$←R2

2 such thatω(e) =
ωe and ω(r1) = ω(r2) = ωr, sets u = r1+h · r2 and v = mG+ s · r2+ e,
returns c = (u, v).

• Decrypt(sk, c): returns C.Decode(v− u · y).

Figure 5: Description of the proposal HQC.PKE [Agu+20].

288 References

• Setup(1λ): generates the global parameters param= (n, k, δ, ω, ωr, ωe).

• KeyGen(param): exactly as in HQC.PKE.

• Encapsulate(pk): generate m $← Fk
2 , which will serve as the seed to

derive the shared key. Derive the randomness θ $← G(m). Generate the
ciphertext c← (u, v) = E .Encrypt(pk,m, θ), and derive the symmetric
key K ← K(m, c). Let d← H(m), and send (c, d).

• Decapsulate(sk,c, d): decrypt m′ ← E .Decrypt(sk, c), compute θ′ ←
G(m′), and (re-)encrypt m′ to get c′ ← E .Encrypt(pk,m′, θ′). If c ̸=
c′ or d ̸= H(m′) then abort. Otherwise, derive the shared key K ←
K(m, c).

Figure 6: Description of the proposal HQC.KEM [Agu+20].

1000 2000 3000 4000 5000 6000

parity checks

10
20
30
40
50
60co

lu
m

n
w

ei
gh

t

Figure 7: Experimental results of varying the column weight of the generated
LDPC code. Weight of 50 appears to require the fewest amount of parity checks
for successful key recovery.

References 289

Table 8: The best inner codes for secret coefficients for given accuracy level ρ.

ρ m0 (k′u, k
′
v)

Secret coefficient
-2 -1 0 1 2

0.995, 0.95 2
(630, 0) 0 1 0 1 0
(706, 6) 0 0 1 1 0

1, 0.95 3

(630, 14) 0 1 0 1 1
(706, 6) 0 0 1 1 0
(706, 10) 0 1 1 0 0

0.9 4

(630, 14) 0 1 0 1 1
(706, 6) 0 0 1 1 0
(706, 10) 0 1 1 0 0
(630, 10) 0 0 1 0 1

Table 9: “Reasonable” inner codes for check variables. We assume that each check
variable is the sum of 6 secret coefficients.

m2 (k′u, k
′
v) Coefficients for check variable, [−12, . . . , 12]

2
(180, 0) 0001100011100011100011000
(423, 14) 0101001010110101001010110

3

(401, 1) 0101001010010110101101001
(630, 11) 0100101001011010010100101
(483, 7) 0101011010101010101010100

4

(636, 5) 0010110100101101001011010
(486, 1) 0101010101010101010110101
(139, 2) 0111000011110001111000011
(630, 9) 0110101101001011010110100

1000 2000 3000 4000 5000 6000

Parity checks

O0.9
HQC

O0.95
HQC

O0.995
HQC

Oideal
HQC

O1.0
HQC

Figure 8: Boxplot of Table 11

290 References

Table 10: The architecture of the neural network used for the real-world attack on
Kyber.

Layer type (Input, output) shape # Parameters
Batch Normalization 1 (64, 64) 256
Dense 1 (64, 64) 4160
Batch Normalization 2 (64, 64) 256
ReLU (64, 64) 0
Dense 2 (64, 32) 2080
Batch Normalization 3 (32, 32) 128
ReLU (32, 32) 0
Dense 3 (32, 16) 528
Batch Normalization 3 (16, 16) 64
ReLU (16, 16) 0
Dense 4 (16, 1) 17
Sigmoid (1, 1) 0

Table 11: HQC number of required parity checks for successful decoding

ρ weight count mean std min 25% 50% 75% max
O0.9

HQC 50 103 3222.33 873.57 1100 2700 3000 3600 6600
O0.95

HQC 50 100 2396 629.40 900 2175 2400 2700 4900
O0.995

HQC 50 100 1623 546.40 1000 1200 1400 1800 3500
Oideal

HQC 50 110 1365.45 261.41 900 1200 1300 1500 2100
O1.0

HQC 50 100 1324 208.47 900 1200 1300 1400 1900

Popular Science Summary
in Swedish

Populärvetenskaplig
sammanfattning

Kvantdatorer bedöms kunna ha kapacitet att knäcka kryptering, även om risken
ligger ett antal utvecklingsår framåt i tiden. Det är ju bra för oss som bryr oss om
säkerhet, men det tar lång tid att bl.a. designa, utvärdera, standardisera, imple-
mentera och distribuera nya kryptalgoritmer. Därför är det av största vikt att det
arbetet startar i god tid.

En säker krypteringsalgoritm utgår från en solid teoretisk säkerhetsgrund, men
vid implementation i mjukvara och/eller hårdvara riskerar man introduktion av
nya sårbarheter. Algoritmens inre tillstånd kan nämligen påverkas eller läckas
genom olika attacktekniker.

Sidokanalsattacker (eng. side-channel attacks, SCA) är en gren inom krypt-
analys och är ett viktigt ben som denna avhandling vilar på. Vid SCA kan man
mäta t.ex. tidsvariationer för att nyttja beroenden mellan indata och tillstånd, eller
utläsa olika exekveringsvägar inom algoritmen. Detta är ett väldigt kraftfullt verk-
tyg för en angripare, då en upptäckt sårbarhet har god chans att kunna nyttjas
över nätverk, och utan fysisk tillgång till det angripna målet. Vissa tidsvariationer
har sitt ursprung i algoritmernas uppbyggnad, d.v.s. beroende på hur den hemliga
nyckeln ser ut kommer beräkningar utföras på olika sätt. Andra tidsvariationer
uppstår vid översättningen från teori till maskinkod.

SCA kan även orsakas av strömförbrukningsvariationer eller variationer av elek-
tromagnetisk strålning. I dessa fall krävs fysisk tillgång för att kunna utföra mät-
ningar. Många användarfall placerar hårdvara som t.ex. smarta kort eller Internet-
Of-Things (IOT) i exponerade miljöer och dessa bör därför vara skyddade, även
mot sådana fysiska attacker.

Denna avhandling handlar i huvudsak om hur insamling av dekrypteringsfel
kan ge en angripare tillräckligt med information för att knäcka antingen den hem-
liga nyckeln eller ett hemligt meddelande. För många krypteringsalgoritmer finns
det nämligen en gemensam egenskap. De har alla en osannolik, men ändå större
än noll, risk för att dekryptering skall misslyckas för korrekt krypterade medde-
landen. Kända krypteringsalgoritmer har valt parametrar så att risken är minimal,
men som forskningen i denna avhandling visar, kan denna egenskap fortfarande
orsaka problem, i vissa fall.

294

Denna avhandling fokuserar på skärningspunkten av implementationsaspek-
ter, kryptanalys, kodningsteori och lite gitter-baserad kryptografi, enligt nedan-
stående beskrivningar.

Implementationsaspekter syftar till forskning på upptäckta brister och sidokanals-
läckage i mjukvaruimplementationerna av kryptalgoritmer. Forskningen
inkluderar även en alternativ implementation av en specifik del av en krypter-
ingsalgoritm.

Kryptanalys innebär försök att förbättra förståelsen för nästa generation av kryptal-
goritmer. I några fall upptäckte vi nya sårbarheter i källkoden, i andra fall
publicerade vi nya strategier för att förbättra redan existerande attacker. Här
återfinns även nya teoretiska resultat kring den praktiska säkerhetsnivån för
några av nästa generations krypteringsalgoritmer, i relation till dekrypter-
ingsfel, som nämnts ovan.

Kodningsteori relaterar till teori kring felrättande koder, antingen som ett ana-
lytiskt verktyg, eller för att de berör kodbaserade krypteringsalgoritmer. Fel-
rättande koder används framförallt för att skicka och ta emot signaler över
olika medium, men kan även användas inom kryptografi då felkorrigering
av slumpmässiga och ostrukturerade koder är ett beräkningsmässigt svårt
problem. Detta kan tillämpas som en god teoretisk grund för säkerheten för
vissa av nästa generationens krypteringsalgoritmer.

Gitter-baserad kryptering är en viktig del av denna avhandling då några algorit-
mer av denna typ utsätts för varierande grad av granskning. Gitter (eng. Lat-
tice) kan liknas vidN -dimensionella koordinatsystem med endast heltalsko-
ordinater, där N i kryptosammanhang är ett stort tal. Kring dessa matem-
atiska konstruktioner kretsar ett antal problem, vars lösningar är mycket
tunga att beräkna. Detta ligger till grunden för säkerheten för många av
nästa generations krypteringsalgoritmer.

“Attacker blir bara bättre, inte sämre” är en välkänd truism inom fältet krypt-
analys. Detta är ett viktigt forskningsområde eftersom den praktiska tillämparheten
ofta används som en måttstock över hur mycket kraft som skall spenderas på att
förebygga och mitigera attacker. Nya, tidigare okända, attacker fyller samma syfte,
fast med något större genomslag i det kryptanalytiska forskningsområdet. Det
beror naturligtvis på att implementationsproblem bara kan fixas om de är kända.
I denna avhandling gav vi också ett förslag till en alternativ subkomponent till en
redan känd kryptalgoritm. Detta ifrågasätter “status quo” och driver innovation,
även om det specifika alternativet i fråga inte har kommit till någon vidare använd-
ning. Slutligen, finner vi även forskningsbidrag som ligger mer åt det teoretiska
hållet och medan det är användbart i sig själv så bidrar det även rent generellt till
den större massan av kryptanalytisk kunskap. Detta höjer förtroendet för den vik-
tiga säkerhetsutvärderingen av nästa generation av kvantdatorsäkra krypteringsal-
goritmer.

	Abstract
	Acknowledgements
	Contribution Statement
	List of Abbreviations
	Contents
	Overview of Research Field
	Introduction
	Dissertation Outline
	Notations and Typesetting Conventions

	Classical Cryptography
	Cryptography and Cryptanalysis
	Modern Symmetric Constructions
	Security Notions
	Public Key Cryptography
	KEMs and DEMs
	FO Transform

	The Quantum Age
	Quantum Computation
	Quantum Apocalypse
	Quantum Cryptography
	Post-Quantum Cryptography

	Cryptography based on Coding Theory
	Introduction to Coding Theory
	McEliece
	BIKE
	HQC

	Lattice-based Cryptography
	NTRU
	FrodoKEM
	Kyber

	Chosen Ciphertext and Side-Channel Attacks
	Chosen Ciphertext Attacks
	Side-Channel Attacks
	Classification of Oracles

	Contributions and Conclusions
	Contributions
	Topic relevance
	Lessons learned
	Looking forward

	References

	Included Publications
	Error Amplification in Code-based Cryptography
	Introduction
	Background
	A New Improved Attack through a Chaining Method for Error Vectors
	Implementations and Numerical Results
	Conclusions
	Further Work
	References

	Decryption Failure Attacks on IND-CCA Secure Lattice-Based Schemes
	Introduction
	Preliminaries
	Weak-ciphertext failure boosting
	Estimation of the secret
	Weak-ciphertext attack
	A weak-key attack model
	A weak-key attack on ss-ntru-pke
	Conclusion
	Acknowledgements
	References

	A key-recovery timing attack on post-quantum primitives using the Fujisaki-Okamoto transformation and its application on FrodoKEM
	Introduction
	Preliminary
	A general description of the proposed attack
	The FrodoKEM design and implementation
	The attack applied on FrodoKEM
	Discussion on attacking other schemes
	Conclusions and future works
	Acknowledgements
	References
	Appendix A

	A Weighted Bit Flipping Decoder for QC-MDPC-based Cryptosystems
	Introduction
	QC-MDPC based McEliece cryptosystem
	Decoding of MDPC Codes
	Analysis of BF decoding of MDPC codes
	The new versions of BF decoder
	Simulation
	Conclusion
	Acknowledgments
	References

	Don't Reject This: Key-Recovery Timing Attacks Due to Rejection-Sampling in HQC and BIKE
	Introduction
	Background
	Timing Attacks on HQC and BIKE
	Evaluation
	Discussion on Countermeasures
	Conclusions, Lessons, and Future Work
	References

	SCA-LDPC: A Code-Based Framework for Key-Recovery Side-Channel Attacks on Post-Quantum Encryption Schemes
	Introduction
	Preliminaries
	General Description of the SCA-LDPC Attack Framework
	Application to Kyber
	Application to HQC
	Experiments
	Concluding Remarks and Future Work
	References
	Appendix A

	Popular Science Summary in Swedish

