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Saying that you don’t care about the right to privacy because you have nothing to hide is no

different than saying you don’t care about freedom of speech because you have nothing to say.

It’s a deeply anti-social principle because rights are not just individual, they’re collective, and

what may not have value to you today may have value to an entire population, an entire people,

an entire way of life tomorrow. And if you don’t stand up for it, then who will?

“

”– Edward Snowden





ABSTRACT

Humanity’s understanding of quantum physics has finally reached the level where it can be harnessed
to revolutionise society. Radical new technologies will transform a wide range of fields that rely on
sensing, imaging, information processing and communications. In particular, quantum computers
will be able to run algorithms that offer a substantial advantage over their classical counterparts in
trying to solve some of the world’s hardest problems. However, there is an equally significant cost,
as this allows attackers to break the public-key cryptography that underpins both our daily lives and
our critical infrastructure.

Quantum key distribution is one possible defence. It uses single photons to transmit cryptographic
keys, with security reliant on the principles of quantum mechanics. Here, we will endeavour to
overcome some of the challenges that manifest when trying to deploy such a technology in everyday
networks. We present the first demonstration of quantum key distribution as part of a software-
defined architecture, ensuring compatibility with future infrastructure, and incorporating time-
division multiple access to reduce implementation costs. In addition, the development of a hybrid
quantum/post-quantum network acts as a first step towards ensuring quantum key distribution
does not remain an isolated technology.

We also counteract a particularly devastating denial of service attack through the invention of
a new protocol, established on the basis that information-theoretically secure encryption remains
impractical even when the keys are supplied by a quantum device. A wide range of theoretical and
experimental evidence is used to support this hypothesis. Finally, we advance the state-of-the-art
in chip-to-chip quantum key distribution, using wavelength-division multiplexing to introduce
additional flexibility and maximise the secret key rates.
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INTRODUCTION

1.1 Foreword

Quantum computers will have far-reaching effects on society, through efficient simulation of complex

molecules [1, 2], and by providing new insights into machine learning [3–5]. Applications such as

environmental technology and drug design are expected to benefit enormously, however a quantum

computer can also solve the mathematical problems that we use for securing our electronic data.

This will enable cyber attacks to be mounted both on individuals and critical pieces of infrastructure.

To illustrate the scale of the problem, we note that the systems used for controlling our water

supply, sewage, gas pipelines and power grid [6] could all be infiltrated if we do not employ any kind

of countermeasure. Attackers could target the networks on which our medical records are stored,

or to which life-saving equipment is connected, either by stealing login credentials, or through

compromising the distribution of software updates. Additional opportunities will arise for those in

the business of seeding misinformation (colloquially known as fake news), because connections to

legitimate websites will no longer be properly authenticated. Finally, one can only speculate on what

would happen to the world economy if the majority of internet transactions were modified, such that

each payee received a sum of money that was radically different to the amount sent. Individually,

these avenues of attack could cause disruption, economic damage and loss of life. Together, they

could lead to total societal collapse.

In this thesis, we contribute to the development of a new cryptographic ecosystem that will

prevent such a catastrophe from taking place. In particular, we focus on quantum key distribution

(QKD), with a pragmatic view towards how it will be used in the real world. While the main body

of work is centred around techniques for resisting quantum attacks, there are also elements that

will be of wider application within general quantum networks.
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1.2 Thesis Outline

This thesis is structured as follows:

� Chapter 2 contains general background information, beginning with modern cryptography,

summarising symmetric protocols that remain secure in the presence of quantum computers

and asymmetric protocols that do not. We then move to cover some of the main principles

of quantum mechanics that underlie the security of the work described herein. Finally, we

introduce the QKD protocols around which this thesis is primarily focused, and discuss a

number of possible attack vectors.

� Chapter 3 presents work done both in building the Bristol Quantum Network, and as part

of implementing the first demonstration of time-division multiple access QKD. We describe

the construction and characterisation of the first quantum-enabled software-defined network

testbed, and quantify the advantages of a time-shared architecture by evaluating the number of

links that each node can support. Finally, we present the first quantum-secured communication

over the Bristol Quantum Network and discuss the second-generation testbed that is distributed

across the city.

� Chapter 4 justifies the previous chapter’s choice to use a computationally-secure cipher as a

basis for encrypting data. It explores the resource requirements for the classical QKD channel

when a one-time pad is implemented, and contrasts this with the case where QKD is used to

key computationally-secure encryption modes. The results are supported by a review of both

classical and quantum bit rates in a range of scenarios.

� Chapter 5 explores what happens if we accept the conclusion of chapter 4 (in everyday

networks, contemporary ciphers will continue to dominate indefinitely) and relax the security

of QKD in line with the encryption scheme being used. We develop a protocol that acts as

a countermeasure to a new denial of service attack on QKD (identified from the results of

chapter 3) and provide an initial exploration of how well it can withstand an eavesdropper.

� Chapter 6 considers the wider impact of computationally-secure QKD, highlighting the

circumstances in which it is preferable to alternatives. We build the first hybrid quantum/post-

quantum network prototype, designed around these instances. We also demonstrate scenarios

that reduce the trust placed in QKD intermediaries while introducing compatibility with legacy

networks, and explore speed advantages that can be acquired when using QKD instead of

post-quantum cryptography.

� Chapter 7 closes this thesis with a summary of the work done as part of an initial demonstration

of wavelength-division multiplexed QKD using integrated devices, which can augment the

work of chapter 3 or increase secret key rates. Steps towards a monolithic experiment are

also detailed, and early successes have included compressing the receiver chip and electronics
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into a router-sized package that does not need to be mounted on an optical table. Finally,

we present a series of designs for next-generation chip masks, all of which have now been

fabricated by an external foundry.
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Declaration of Work

Parts of this chapter have previously appeared as background material in [7–9].
Where appropriate, some text has been reused, as it was originally written by me.

Here, we present the general background that is necessary to understand both the content of this

thesis, and the motivations behind it. We focus on numerous aspects of modern cryptography,

including the encryption and authentication schemes that will be used throughout, as well as

the public-key cryptosystems that are widely utilised for distributing symmetric keys, but will be

compromised by quantum computers.

Next, we outline the principles of quantum mechanics on which new forms of key distribution

can be based, before segueing into quantum computing and reviewing the size of device required to

break the cryptography described in the previous section. This can be used to inform estimates on

the length of time available before replacement systems need to be fully adopted. We also include a

general discussion of the different ways photonic quantum bits (qubits) can be realised, all of which

will be used at various points in later chapters.

An introduction to quantum key distribution follows, along with a summary of the most relevant

protocols. Finally, we explore a selection of physical vulnerabilities, as these will be a primary focus

of the research presented herein.
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CHAPTER 2. BACKGROUND

2.1 Modern Cryptography

In this section, we will examine a range of constructs that are used to secure communications

across public and private networks around the globe. When speaking with quantum scientists,

these are often referred to as being part of “classical cryptography”, because they sit firmly in the

domain of classical physics. However, computer scientists consider classical cryptography to be

comprised of algorithms such as the Caesar cipher [10], which are insecure and have fallen into

disuse. Thus, to avoid confusion, we will adhere to their convention and refer to the algorithms of

this section as being part of “modern cryptography”. Elsewhere, we continue to identify technology

according the type of physics by which it is governed (for example, “classical networks” and “classical

computers”), with the exception of “post-quantum cryptography” in chapter 6. Once again, this is a

name introduced by modern cryptographers, referring to public-key cryptosystems that continue to

be secure in a world where quantum computers are a reality. Such terminology is slightly unfortunate

in that it could be interpreted as referring to a successor to quantum cryptography, developed using

post-quantum physics. Yet, because alternative names were not proposed before the term became

widespread, we must abide by this convention also.

2.1.1 Symmetric-Key Encryption

Encryption is the oldest and most well-known form of cryptography. Here, we will cover the

mathematically-unbreakable cipher that is often considered to be a leading application of the

quantum key distribution (QKD) protocols in section 2.3.1. We will also give a high-level overview

of the much-more-practical block cipher that is used in real life, along with the cryptosystems in

which it can be implemented.

The Vernam Cipher and One-Time Pad

The one-time pad (OTP) was first invented by Frank Miller in 1882 [11]. Despite this, it was not

until the turn of the 20th Century that it became possible to use his system for the automated

encryption of electronic communications, when Vernam patented a method for implementing the

exclusive-OR (XOR) operation [12]. In a cryptographic context, this is known as the Vernam cipher.

Alice takes her message, m, and represents it as a sequence of bits, which can then be encrypted

such that

c = m⊕ k (2.1)

Here, c is the ciphertext, k is a random secret key and ⊕ stands for addition modulo 2 (see table 2.1).

If Bob is also in possession of the key, then he can decrypt this using a second XOR, because

m= c ⊕ k (2.2)

If k is single-use, the Vernam cipher becomes an OTP, which has been proven secure even against

adversaries with unlimited computational power [13]. Such a property is often referred to as

-6-



2.1. MODERN CRYPTOGRAPHY

TABLE 2.1: Truth table for the XOR (⊕) function, which is equivalent to performing
addition modulo two with no carry. When this is implemented as part of a one-time
pad, x and y correspond either to a single bit of plaintext and a single bit of key, or
to a single bit of ciphertext and a single bit of key.

x y x ⊕ y

0 0 0
0 1 1
1 0 1
1 1 0

“unconditional” or “information-theoretic” security, which simply means there is no mathematical

attack under which the system can be broken. However, it says nothing about physical vulnerabilities

that may arise from a specific implementation, and any technique related to the exploitation of

these is referred to as a side-channel attack.

The Advanced Encryption Standard

Unfortunately, even though the OTP provides the holy grail of security guarantees, it has only ever

found use in niche applications [10]. This is because the length of the key must equal the length of

the plaintext and, as current techniques for key distribution deliver data deterministically, it would

be more efficient and no less secure if they were to directly transmit the message instead. Yet, as we

will discover in section 2.1.3, these methods are still very slow, and so it would be preferable to use

them alongside an encryption scheme that consumes less than one bit of key per bit of message.

Thus, for many years, we have relied on the use of block ciphers, the most prominent of which is

the Advanced Encryption Standard (AES) [14]. This divides the plaintext up into a series of 128-bit

blocks, treated hereafter like separate messages. Each block is encoded as a 4x4 byte-array, and

a symmetric key of length 128, 192 or 256 bits is used to derive a set of so-called “round keys”.

The number derived is dependent on the size of the symmetric key, and this affects how many

times each subsequent operation is invoked (i.e. how many rounds there are). The remainder of the

algorithm is a combination of XORs between one of the round keys and the byte array, as well as

S-box substitutions on each byte (see table 2.2), cyclic shifts of the last three rows of the array, and

multiplications of each column by a pre-defined matrix.

However, using AES to directly encrypt a message is not secure. A perfect encryption scheme

should have an output that appears random, as will be the case for the OTP when used with a

maximally random key. Figure 2.1 shows AES generates ciphertexts that retain the structure of the

plaintext so, to get around this, we must implement block ciphers using special modes of operation,

which we now go on to discuss.
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TABLE 2.2: S-box used in the Advanced Encryption Standard to perform byte-wise sub-
stitutions. In the example highlighted, the byte c9 maps to dd, both of which are
expressed in hexidecimal. Based on figure 7 in [14].

x y 0 1 2 3 4 5 6 7 8 9 a b c d e f

0 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76
1 ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0
2 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15
3 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75
4 09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84
5 53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf
6 d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8
7 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2
8 cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73
9 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db
a e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79
b e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08
c ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a
d 70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e
e e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df
f 8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16

FIGURE 2.1: Demonstrating the effect of directly encrypting the Centre for Quantum
Photonics logo with the Advanced Encryption Standard.
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Ciphertext

Plaintext

Symmetric Key

IV || Counter

⨁

Block Cipher
Encryption

Plaintext

Symmetric Key

IV || Counter

⨁

Block Cipher
Encryption

Plaintext

Ciphertext

FIGURE 2.2: Illustrating (a) the encryption process and (b) the decryption process for a
block cipher running in Counter Mode. IV||Counter represents the concatenation of
a random initialisation vector with a counter that increments sequentially for each
call to the block cipher.

Counter Mode (CTR)

Block ciphers running in Counter Mode [15] can be viewed as a computationally-secure approxima-

tion of the OTP. As depicted in figure 2.2, AES effectively expands a symmetric key, and the output

is used to encrypt a message with the Vernam cipher. That is,

c = m⊕AESk (IV||Counter) (2.3)

and

m= c ⊕AESk (IV||Counter) (2.4)

Such an approach is allowed under the condition that the input to the block cipher cannot be

distinguished from random, as then there is no underlying structure capable of being exploited. The

length of the counter affects the maximum number of times the Advanced Encryption Standard

running in Counter Mode (AES-CTR) can be invoked with the same key. When this wraps around,

the system becomes a two-time pad, and is therefore insecure. However, the counter length must be

balanced off against the size of the initialisation vector, which is responsible for introducing the

required randomness. In the case of AES, it is standard to define both as being 64 bits long [16].

Galois/Counter Mode (GCM)

The Advanced Encryption Standard running in Galois/Counter Mode (AES-GCM) [17] is an authen-

ticated version of AES-CTR. As shown in figure 2.3, the encryption process remains unchanged,
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Ciphertext
Block I

Plaintext
Block I

Symmetric Key

IV || Counter

⨁

Block Cipher
Encryption

Ciphertext
Block II

Plaintext
Block II

Symmetric Key

IV || Counter

⨁

Block Cipher
Encryption

Counter++IV || Counter IV || CounterCounter++

Symmetric Key
Block Cipher
Encryption

⨁

Authentication
Tag

GHASH Hash Key

FIGURE 2.3: Illustrating the mechanisms used for encryption and authentication in
Galois/Counter Mode. Here, we consider only two blocks of plaintext, however the
protocol can be extended to encrypt messages of no more than 239 − 256 bits [18].
GHASH is a hash function that can also be used to authenticate any unencrypted data
to which the ciphertext may be appended. IV||Counter represents the concatenation
of a random initialisation vector with a counter, as in figure 2.2. Based on figure 1
in [17].

outputting ciphertexts based on the XOR of the plaintext with an enciphered initialisation vector,

and using a counter to prevent repetition.

The authentication tag is based on a hash function known as GHASH, using a key that is

derived by enciphering 128 zeroes with the block cipher and symmetric key from elsewhere in

the protocol. This produces an output that is encrypted in the same way as the message, before

being concatenated with the ciphertext and sent to Bob. On receipt, he can confirm authenticity by

calculating an equivalent tag for the ciphertext in his possession. Decryption is then the same as in

figure 2.2.

2.1.2 Symmetric-Key Authentication

Another way of symmetrically authenticating messages is to use a Wegman-Carter message authen-

tication code (MAC) [19]. This has the advantage of being information-theoretically secure, and
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takes the form

τ= hkH
(m)⊕ kM (2.5)

Here, h is a universal hash function keyed with kH, m is the message to be authenticated and kM is

a one-time key used to mask the output of the hash. The authentication procedure goes as follows.

Alice calculates a tag τ that corresponds to a message, and concatenates the two. She sends the

result to Bob. who is also in possession of kH, so can compute an equivalent τ for the message

he received. So long as this matches the tag constructed by Alice, Bob can be confident that the

information has not come from or been modified by a third party.

A set of hash functions is defined to be universal if the upper bound on the collision probability

is equal to that for the case where authentication tags are randomly assigned. More specifically, if

#Hm is the cardinality of the set of hash function outputs then, for m1 6= m2, [20]

Prob
�

hkH
(m1) = hkH

(m2)
�

≤
1

#Hm
(2.6)

Many universal hash functions also have small differential probabilities. That is,

Prob
�

hkH
(m1) = hkH

(m2) + x
�

≈ 0 (2.7)

where x is an arbitrary bit string. We note that this is a slightly stronger condition than simply

requiring there to be no collisions, which would correspond to the case where x = 0. To give an

idea of exactly what we consider to be a small probability, we can consider the hash function used

in Poly1305, for which [21]

Prob
�

hkH
(m1) = hkH

(m2) + x
�

≤
8

2106

¡ |m|max

16

¤

(2.8)

assuming m1 and m2 are each no more than |m|max bytes long.

Naturally, an attacker in possession of m and τ should not be able to obtain any information on

hkH
. However, in the case where multiple messages are authenticated using the same hash function,

then we have an additional condition: mi , τi and mi+1 must reveal no information about τi+1. In

order to fulfil such a requirement, we must mask the output of hkH
, and this is the reason for using

kM to encrypt hkH
(m) in equation 2.5. Care must be taken to ensure that the raw output of the

hash function is never transmitted in the clear, despite it sometimes being recommended for the

initial round [22]. Failure to encrypt the first hkH
(m) is equivalent to deterministically selecting a

one-time key of all zeros, and it has been shown that this can be exploited to generate successful

forgeries [23].

Finally, just as AES-CTR is a computationally-secure alternative to the OTP, there are also

computationally-secure Wegman-Carter MACs, further details on which can be found in chapter 5.
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2.1.3 Public-Key Cryptography for Symmetric-Key Distribution

There is, of course, still a missing part of the jigsaw. The above methods assume that, prior to

running the encryption or authentication algorithm, Alice and Bob somehow managed to share a

symmetric key, using an approach that was free from compromise. While such a task is trivial if the

two parties can meet in person, it is more complex when they cannot.

The most popular solution is to protect the distribution of keys using mathematical problems

that are presumed hard. This, known as public-key cryptography, was first invented by Ellis in

1970 [24], though as he was an employee of GCHQ, it remained classified, and key distribution

over public channels was separately conceived by Merkle a few years later [25].

In this section, we will briefly summarise simplified versions of the most widely-used public-key

cryptosystems. We note that while some of these are capable of encrypting data directly, it is more

efficient to use them as a means for distributing symmetric keys that will then be used in encryption

schemes like AES-GCM.

Diffie-Hellman Key Exchange

Diffie-Hellman key exchange was first published by its namesakes in 1976 [26], though this post-

dated the work of Williamson [27], who invented it independently as part of a body of research

that followed on from the initial work of Ellis, and remained classified for many years.

Protocol 2.1 presents Diffie-Hellman in its original form, the security of which relies on the

assumption that, given V , a prime, and a, a primitive element of Z∗V , it is computationally hard to

find k from ak mod V . This is known as the discrete logarithm problem, where Z∗V is the group of

integers taken from the set {0,1, . . . , V − 1}, and for which the greatest common divisor with V is 1.

In practice, because we choose V to be prime, this makes Z∗V the set of non-negative integers modulo

V . If x is an arbitrary integer, a primitive element of Z∗V is one from which any other element can

be generated by calculating ax mod V .

There are a number of Diffie-Hellman variants, including one based on elliptic curves [28]. This

offers smaller key sizes than the original version, for the same classical security level, and so is the

preferred option in everyday networks. However, if used exactly as presented here, all forms of

Diffie-Hellman are vulnerable to attack. Since Alice and Bob do not authenticate one another, they

have no way of knowing if their messages have been tampered with, and so naturally this can be

exploited. We could get around the problem by using a Wegman-Carter MAC (see section 2.1.2),

but this would require an initial shared secret to have previously been distributed. Therefore, it

is more common to use the public-key equivalent, known as a digital signature. Although we will

not go into full details here, such a scheme can be based on Rivest–Shamir–Adleman (RSA), an

alternative method of key distribution that we explore next.
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Protocol 2.1: Diffie-Hellman Key Exchange [26, 27, 29]

SUMMARY: Alice and Bob each select a bit string and transmit it to the other party, using the discrete
logarithm problem to ensure secrecy against eavesdroppers. The bit strings are then combined to produce
a single, symmetric key.

1. One-Time Setup.

(a) Alice and Bob agree on a prime V .

(b) Alice and Bob agree on a primitive element a of Z∗V . Here, 1 < a < V − 1 and Z∗V is the
multiplicative group of integers modulo V .

2. Secret Generation.

a) Alice generates a random integer 1≤ k1 < V − 1.

b) Bob generates a random integer 1≤ k2 < V − 1.

3. Symmetric-Key Generation.

(a) Alice transmits ak1 mod V .

(b) Bob transmits ak2 mod V .

(c) The symmetric key is defined to be ak1k2 mod V , which Alice can generate by computing
�

ak2
�k1 mod V , and Bob can generate by computing

�

ak1
�k2 mod V .

RSA

Like in the case of Diffie-Hellman, it was classified research that lead to the original discovery of RSA,

this time by Cocks in 1973 [30]. Five years later, Rivest, Shamir and Adleman publicly described the

same idea [31], summarised in protocols 2.2, 2.3 and 2.4. More explicitly, protocol 2.2 details the

generation of an RSA public/private key pair, while protocols 2.3 and 2.4 give an example of how

these can be used to ensure message confidentiality. The public key is made up of two numbers,

one of which is a product of two primes. An eavesdropper with knowledge of said primes would be

able to reconstruct the private key, so we must assume that it is computationally hard to decompose

a large integer into two prime factors. Technically, the security of the scheme relies on the RSA

problem [29], which is slightly more general than this, however integer factorisation is the most

efficient attack that we know of, and is the way in which we will use quantum computers to break

RSA.

As prime numbers are easy to check but hard to find, the quickest approach to key generation

involves selecting a random number (constrained to exclude obvious non-primes), before applying

a primality test, such as the example given in [32]. When using RSA for symmetric-key distribution,

a transport algorithm known as a key encapsulation mechanism (KEM) [33] can offer advantages

over the encryption presented here, as it avoids the need for padding. This will be explored further

as part of chapter 6.

Once again, we have omitted the authentication steps, despite these being essential for security.

Loosely speaking, an RSA digital signature can be implemented by hashing the information that we
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Protocol 2.2: RSA Public/Private-Key Generation [30, 31]

SUMMARY: Alice creates a public/private key pair for use in protocols 2.3 and 2.4.

1. Private Key.

(a) Alice generates two prime numbers V1 and V2, which should be distinct from one another
and differ in length by no more than a few bits.

(b) Alice computes Φ1 = (V1 − 1) (V2 − 1).

(c) Alice generates a random integer F1, where 1 < F1 < Φ1 and gcd (F1,Φ1) = 1. Here,
gcd (x , y) is used to indicate the greatest common divisor of x and y .

(d) Alice computes F2, where 1< F2 < Φ1 and F1F2 ≡ 1 mod Φ1.

(e) The private key is defined to be F2.

2. Public Key.

(a) Alice computes Φ2 = V1V2.

(b) The public key is defined to be (Φ2, F1).

Protocol 2.3: RSA Encryption [30, 31]

SUMMARY: Bob uses Alice’s public key from protocol 2.2 to encrypt a message. Secrecy against eaves-
droppers is assured if the non-trivial factors of the public key cannot be found.

1. Message Conversion. Bob pads his message using a publicly-known scheme such as Optimal
Asymmetric Encryption Padding [35]. The result is represented as an integer 0≤ m< Φ2.

2. Message Encryption. Bob transmits the ciphertext c = mF1 mod Φ2.

Protocol 2.4: RSA Decryption [30, 31]

SUMMARY: Alice uses the private key from protocol 2.2 to decrypt Bob’s message.

1. Message Decryption. Alice recovers the plaintext by computing m= cF2 mod Φ2.

2. Message Conversion. Alice reverses the padding scheme to recover the original message.

wish to authenticate, before encrypting the output with a private key. The result can be decrypted

by anyone in possession of the corresponding public key, meaning they can compare the hash of a

message they received with one that is known to have been computed by Alice [29]. However, in

practice, digital signatures cannot be generated simply by reversing the protocols given here, as a

different padding scheme is required [34].

2.2 Quantum Information

We now move to cover the principles of quantum mechanics that underlie the work of this thesis,

and discuss the effect of quantum computers on modern cryptography. We also provide a summary
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of the most popular approaches for encoding information on quantum states of light.

2.2.1 Quantum Mechanics

Except where otherwise referenced, the following is based on information that can be found in [36]

and [37], both of which provide a comprehensive summary for the less-experienced reader.

Quantum States

Any state of a quantum system can be described by a complex vector of appropriate dimension. A

qubit is a two-level system used for information processing and, in this context, we can define |0〉
(logical zero) and |1〉 (logical one) using two-dimensional vectors, such that

|0〉=

�

1

0

�

, |1〉=

�

0

1

�

(2.9)

Together, these form a basis which, for our purposes, simply means that we can express any vector

in C2 as a linear sum of |0〉 and |1〉. That is, any arbitrary qubit can be defined as

|ψ〉= x0 |0〉+ x1 |1〉=

�

x0

x1

�

(2.10)

where x0 and x1 are complex numbers. Similarly,

〈ψ|= 〈0| x∗0 + 〈1| x
∗
1 =

�

x∗0 x∗1
�

(2.11)

and we refer to
�

|0〉 , |1〉
	

as the Z basis. Throughout this thesis, the X basis will also be used,

defined by {|+〉 , |−〉}. The |+〉 and |−〉 states are superpositions of |0〉 and |1〉, which we express

mathematically as follows:

|+〉=
|0〉+ |1〉
p

2
, |−〉=

|0〉 − |1〉
p

2
(2.12)

We can take the inner product 〈ψ|φ〉 of two arbitrary, normalised states, where

〈ψ|φ〉= 〈φ|ψ〉∗ =







0, for |φ〉 ≡ |ψ⊥〉

1, for |φ〉 ≡ |ψ〉
(2.13)

|ψ⊥〉 is the state that is orthogonal to |ψ〉, so it can be seen that |0〉 and |1〉 are orthogonal to one

another, as are |+〉 and |−〉. However, neither |0〉 nor |1〉 are orthogonal to |+〉 or |−〉, the significance

of which will become apparent as we progress through this chapter.

It is possible to evolve a quantum state through application of an operator, Ô, meaning

|ψ〉= Ô |φ〉

〈ψ|= 〈φ| Ô†
(2.14)
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For qubits,

Ô = x0,0 |0〉 〈0|+ x0,1 |0〉 〈1|+ x1,0 |1〉 〈0|+ x1,1 |1〉 〈1| =

�

x0,0 x0,1

x1,0 x1,1

�

Ô† = x∗0,0 |0〉 〈0|+ x∗0,1 |1〉 〈0|+ x∗1,0 |0〉 〈1|+ x∗1,1 |1〉 〈1| =

�

x∗0,0 x∗1,0

x∗0,1 x∗1,1

� (2.15)

taking care to note that |ψ〉 〈φ| represents the outer product of |ψ〉 and 〈φ|. A particularly significant

set of operators is that defined by the Pauli matrices

X̂ =

�

0 1

1 0

�

, Ŷ =

�

0 −i
i 0

�

, Ẑ =

�

1 0

0 −1

�

(2.16)

from which the etymology of the X and Z bases becomes clear, as they are the eigenbases of X̂ and

Ẑ respectively. Finally, an operator Û is referred to as being unitary if

Û†Û = 1̂ (2.17)

where 1̂ is the identity operator, i.e.

1̂=

�

1 0

0 1

�

(2.18)

Together with the Pauli matrices, equation 2.18 can be used to create a basis into which all C2

operators can be decomposed.

Measurement

Two quantum states can only be reliably distinguished by measurement if they are orthogonal to

one another. We show this using similar techniques to the proof by contradiction in [37], though to

different effect. For each possible measurement outcome i, we can define an operator

M̂i = |ψi〉 〈ψi| (2.19)

If the system is initially in the state |φ〉,

Prob (Outcome i) = 〈φ| M̂†
i M̂i |φ〉 (2.20)

and, naturally,
∑

i

Prob (Outcome i) = 1 (2.21)

If we are to deterministically distinguish between |φ1〉 and |φ2〉 then, based on equation 2.20, we

require
〈φ1| M̂

†
1 M̂1 |φ1〉= 1

〈φ2| M̂
†
2 M̂2 |φ2〉= 1

(2.22)
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In order to fulfil equation 2.21, this means

〈φ1| M̂
†
2 M̂2 |φ1〉= 0 (2.23)

Now,

M̂†
i M̂i = |ψi〉 〈ψi|ψi〉 〈ψi|= |ψi〉 〈ψi| (2.24)

and so equation 2.23 becomes

〈φ1|ψ2〉 〈ψ2|φ1〉= 0 (2.25)

Thus,

〈φ1|ψ2〉= 〈ψ2|φ1〉= 0 (2.26)

Next, |φ2〉 can be expressed using the basis
�

|φ1〉 , |φ⊥1 〉
	

such that

|φ2〉= x |φ1〉+ y |φ⊥1 〉 (2.27)

where |x |2 + |y|2 = 1 and 〈φ1|φ⊥1 〉= 0. This means that, given equation 2.22,

1=
�

〈φ1| x∗ + 〈φ⊥1 | y
∗� |ψ2〉 〈ψ2|

�

x |φ1〉+ y |φ⊥1 〉
�

= |x |2 〈φ1|ψ2〉 〈ψ2|φ1〉+ x y∗ 〈φ⊥1 |ψ2〉 〈ψ2|φ1〉

+ x∗ y 〈φ1|ψ2〉 〈ψ2|φ⊥1 〉+ |y|
2 〈φ⊥1 |ψ2〉 〈ψ2|φ⊥1 〉

(2.28)

From equation 2.26, we know that the first three terms are 0, and that |ψ2〉= |φ⊥1 〉. Therefore,

|y|2 = 1 (2.29)

If equation 2.22 is true then, as a consequence of the fact that |x |2 and |y|2 must sum to 1,

|φ2〉 = |φ⊥1 〉. In other words, two states can only be reliably distinguished if they are orthogonal

to one another. This does not mean that we are unable to distinguish non-orthogonal states, just

that we cannot do so with certainty. For example, if |φ1〉 = |0〉 and |φ2〉 = |+〉, then we can take

advantage of the fact that measuring an X -basis state in the Z basis, and vice versa, will return a

random result. As we show in section 2.3.2, measuring |+〉 with the set of operators

MZ =
�

|0〉 〈0| , |1〉 〈1|
	

(2.30)

will produce an outcome corresponding to either |0〉 or |1〉, each with probability 1
2 . The latter of

these measurement results would be impossible had we been given |φ1〉 so, assuming there is an

equal chance of the system being in either state, this allows us to distinguish |φ2〉 from |φ1〉 with

25% probability.
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No-Cloning Theorem

In addition to the restrictions on quantum measurement that are described above, the work of this

thesis will rely on the fact that it is physically impossible to construct a general machine for producing

perfect copies of two or more distinct, non-orthogonal quantum states. This non-orthogonality

condition is made clearest by the proof in [38], so it is that which we will present here. Alternatively,

one could consider the approach from [39, 40], as it has the benefit of being generalisable to any

arbitrary quantum operation through introduction of an ancilla [41].

Suppose we have two arbitrary quantum states, |ψ〉 and |φ〉, plus a unitary cloning operator Ĉ

that converts a “blank” state |χ〉 into a copy of |ψ〉 or |φ〉. That is,

Ĉ |ψ〉 |χ〉= |ψ〉 |ψ〉

Ĉ |φ〉 |χ〉= |φ〉 |φ〉
(2.31)

where |ψ〉 6= |φ〉. From the above, we can construct the following expression:

〈χ| 〈ψ| Ĉ†Ĉ |φ〉 |χ〉= 〈ψ| 〈ψ|φ〉 |φ〉 (2.32)

Recall that evaluating the inner product of two states returns a number, and so, by taking advantage

of the unitary property described in equation 2.17, we can simplify equation 2.32 to find

〈ψ|φ〉= (〈ψ|φ〉)2 (2.33)

Since 〈ψ|φ〉= 1 requires that |ψ〉= |φ〉, then the only valid solution is 〈ψ|φ〉= 0, which means

the states must be orthogonal (see equation 2.13). Hence, it is impossible to construct a general

device capable of perfectly and deterministically cloning any quantum state.

Unambiguous State Discrimination

Finally, while we cannot obtain full information on a system by cloning or measuring unknown states

from a non-orthogonal set, a third approach still remains. Under certain conditions, it is possible

to perform unambiguous state discrimination, with a chance that the result will be inconclusive.

As indicated, “unambiguous” is not used to mean that none of the measurement outcomes have

ambiguity. Instead, from the measurement outcome we receive, there is no ambiguity as to whether

or not we can work out which state the system was originally in. The example we give here is taken

from [42] and applies to two non-orthogonal quantum states of the kind that may be realised using

single photons. This has been chosen because it nicely illustrates a way in which unambiguous state

discrimination can be performed, without becoming overly complex. Other approaches are set out

in [43] and [44]; these will be of relevance in chapters 5 and 7 respectively.

Consider the situation where we have in our possession a single copy of an unknown quantum

state, defined to be either |ψ〉 or |φ〉, which can be expressed in the {|χ1〉 , |χ2〉} basis such that
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|ψ〉=
1
p

2

�

cos
Λ

2
+ sin

Λ

2

�

|χ1〉+
1
p

2

�

cos
Λ

2
− sin

Λ

2

�

|χ2〉

|φ〉=
1
p

2

�

cos
Λ

2
− sin

Λ

2

�

|χ1〉+
1
p

2

�

cos
Λ

2
+ sin

Λ

2

�

|χ2〉
(2.34)

It is important to note that these may be viewed as qutrits with an unoccupied third level, |χ3〉,
where 〈χ1|χ3〉= 〈χ2|χ3〉= 0. From the output states in [42], we can derive the unitary

Û =









1
2 (cosθ + 1) 1

2 (cosθ − 1) − 1p
2

sinθ
1
2 (cosθ − 1) 1

2 (cosθ + 1) 1p
2

sinθ
1p
2

sinθ 1p
2

sinθ cosθ









(2.35)

which is written in the {|χ1〉 , |χ2〉 , |χ3〉} basis, meaning that it can be used to populate the third

level of the “qutrit”, rotating |ψ〉 and |φ〉 out of a two-dimensional Hilbert space and into a three-

dimensional one. As a result, if we set cosθ = tan Λ2 , then implementing Û on |ψ〉 and |φ〉 leaves

us with

|ψ〉′ =
p

2 sin
Λ

2
|χ1〉+

p
cosΛ |χ3〉

|φ〉′ =
p

2 sin
Λ

2
|χ2〉+

p
cosΛ |χ3〉

(2.36)

The |χ1〉 and |χ2〉 terms are unique to |ψ〉′ and |φ〉′ respectively. Therefore, we can try to establish

whether the initial state was |ψ〉 or |φ〉 by applying the set of measurement operators

Mχ =
�

|χ1〉 〈χ1| , |χ2〉 〈χ2| , |χ3〉 〈χ3|
	

(2.37)

The success probabilities are

Prob
�

|?〉 → |ψ〉
�

= 2 sin2 Λ

2

Prob
�

|?〉 → |φ〉
�

= 2 sin2 Λ

2

(2.38)

where one should be careful to observe that 2 sin2 Λ
2 = 1− cosΛ. As a |χ3〉 term is present in both

|ψ〉′ and |φ〉′, there is a chance we will be unable to identify the original state, given by

Prob
�

|?〉 → |?〉
�

= cosΛ (2.39)

Thus, it is clear that discriminating between non-orthogonal states is possible, and it will be evident

from the measurement outcome if the procedure fails.

2.2.2 Quantum Computing

Quantum computers are famed for their ability to efficiently solve mathematical problems that are

intractable on normal computers, made possible by their ability to implement algorithms that take
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advantage of the superposition states already discussed. In this context, quantum operations are

often referred to as logic gates (see appendix A), and only a specific few of these must be directly,

physically implementable, because this subset can then be used to approximate all others.

While we do not wish to delve into all the intricacies of complexity classes here, a rudimentary

understanding will be helpful in chapter 6. With respect to figure 2.4, P is the set of decision problems

(i.e. questions with a yes/no answer) that are solvable in polynomial time with a deterministic

Turing machine (an abstraction of a classical computer that can be used to simulate any algorithm).

Similarly, PSPACE is the set of decision problems that are solvable in polynomial space. NP is the set

of decision problems solvable in polynomial time with a non-deterministic Turing machine, although

its deterministic counterpart can verify any solution in polynomial time also [45]. The factoring

decision problem on which RSA relies is widely believed to be in NP [37], however the fact that this

can be solved using a quantum algorithm does not necessarily mean a quantum computer can be

represented as a non-determistic Turing machine. An algorithm capable of solving an NP-complete

problem in polynomial time can be repurposed to solve any NP problem in polynomial time, and

it is known that there are no general approaches by which a quantum computer can efficiently

solve problems that are NP-complete [46]. Such a statement does not rule out algorithms that

require specific knowledge of the problem, however it is nonetheless speculated that BQP, the set

of decision problems solvable by a quantum Turing machine in polynomial time with a bounded

probability of error, does not contain all of NP [37].

To summarise, it is known that P ⊆ BQP ⊆ PSPACE and P ⊆ NP ⊆ PSPACE [37]. It is not

known that P 6= NP and NP 6⊆ BQP, though these relations are assumed.

Quantum Attacks on Modern Cryptography

As we have already indicated, there are a number of ways in which quantum computers can be

used to attack both the public- and symmetric-key cryptography outlined in section 2.1. Our current

methods of key distribution (RSA, Diffie-Hellman and techniques based on elliptic curves) will all be

fatally compromised by Shor’s algorithm, which can perform integer factorisation or evaluate discrete

logarithms in polynomial time [47]. Systems that rely on symmetric keys will not be fundamentally

broken, however their security parameters need to be adjusted, because Grover’s algorithm can

speed up brute-force attacks. Given a key space of size #K, the number of steps required to identify

the correct key is only O
�p

#K
�

[48], compared to O (#K) classically.

Table 2.3 summarises the above, quantifying the impact that quantum computing will have on

some of the most widely-used pieces of cryptography, and gives quantum resource estimates in each

case. These values should be taken only as a rough indicator, because trade-offs can often be made

between spatial and temporal resources [49].

To estimate the classical security of RSA, we use the complexity of the General Number Field

Sieve [50], as this is the fastest known algorithm for factoring large integers on a conventional

computer. The National Institute of Standards and Technology (NIST) appears to round the resulting
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P
BQP

NP

NP-complete

PSPACE

FIGURE 2.4: Hypothesised relationship between the polynomial time (P), bounded-error
quantum polynomial time (BQP), non-deterministic polynomial time (NP) and
polynomial space (PSPACE) complexity classes. Based on figure 1.21 in [37].

values down to the nearest symmetric-key security strength in their key management recommenda-

tions [51], for ease of comparison between disparate elements of larger systems.

We also consider the effect that quantum computers will have on elliptic curves. With regards to

notation, ECC (P-256) is used to mean elliptic-curve cryptography with the NIST-approved 256-bit

curve P-256 [28]. It is said that an x-bit curve has x
2 bits of classical security, based on the complexity

of Pollard’s rho algorithm [52], which is the joint-fastest approach to calculating discrete logarithms.

Finally, classical security for symmetric-key cryptography comes directly from the size of the key,

as a brute-force search is the most effective attack if the system is otherwise considered secure. We

note that while Secure Hash Algorithm 256 (SHA-256) has a 128-bit quantum security level, and

so is still considered safe, we use Secure Hash Algorithm 512 (SHA-512) herein. This is because it

has been shown that pre-processing can improve the effectiveness of a quantum search in certain

situations [53], meaning it pays to be conservative with parameter choices in case there are any

unforeseen techniques that could accelerate the attacks in our table.

While all the quantum resource estimates come from the references cited by this thesis, directly

comparing them allows us to highlight some interesting points. First, as noted in [54], we can

see that, for a pre-defined security level, it is easier to break elliptic-curve cryptosystems with a

quantum computer than it is to break RSA. However, less intuitively, fewer qubits are required

to brute force AES with 128-bit keys than are needed to break RSA-2048 and above. Therefore,

while quantum security research quite rightly tends to focus on making key distribution capable

of resisting quantum attacks, it is important that the urgency of upgrading to 256-bit keys is not
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overlooked. RSA-1024 is now considered obsolete [55] so, with regard to the number of qubits

required to compromise encrypted data, AES-128 is currently the weakest link in many modern

systems.

2.2.3 Photonic Quantum Bits

There are a number of platforms on which qubits can be physically implemented, including but

not limited to trapped ions, superconducting circuits and nitrogen-vacancy centres. Given this

thesis focuses on quantum communications, we are fundamentally restricted to choosing some

form of flying qubit. Of the options available, photons interact the least with their surrounding

environment and so offer the easiest approach to building maximally-isolated quantum systems, as

we require. Although typical wavelengths vary depending on the application, our work primarily

targets networks constructed from optical fibres, meaning it is important to occupy an area of the

spectrum that corresponds to a local minimum in the silica loss profile [60]. As a result, we will

use 1310 nm and 1550 nm qubits in the chapters that follow, a choice which is supported by the

availability of low-noise single-photon detectors at those wavelengths.

Mathematically, we can represent a γ-photon number state as |γ〉. Here, the following relations

apply [61]
â |γ〉=pγ |γ− 1〉

â† |γ〉=
p

γ+ 1 |γ+ 1〉
(2.40)

where â† and â are the creation and annihilation operators respectively, a pair of which exists for

each mode of the field. When considering only a single mode, these obey the commutation relation

�

â, â†
�

= ââ† − â†â = 1̂ (2.41)

Therefore, given equation 2.40, we can define the zero-photon number state, |0〉, and one-photon

number state, |1〉, as

|0〉= â |1〉 , |1〉= â† |0〉 (2.42)

This section will explore the different degrees of freedom that can be used to encode logical qubits

onto single photons. Some use the value of γ at different points in space or time to represent |0〉 and

|1〉, while others simply require that γ≡ 1. However, experimentally, a deterministic single-photon

source is difficult to achieve and so, with this in mind, we close with a discussion on coherent states,

which can be used when perfect number states are not available.

Polarisation-Encoded Single Photons

Just like classical light, single photons can be vertically or horizontally polarised. However, if we

introduce a diagonal filter to the light path, immediately followed by a detector, there cannot simply

be a halving of the intensity, as we would observe if the single-photon source were to be replaced
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|H⟩

|V⟩

|A⟩

|D⟩

FIGURE 2.5: The four polarisation states |H〉, |V 〉, |D〉 and |A〉. These can be used to
represent the logical qubits |0〉, |1〉, |+〉 and |−〉.

with a laser. What we find instead is that this measurement process obeys the rules of quantum

mechanics where, as illustrated in figure 2.5, the horizontal, vertical, diagonal and anti-diagonal

polarisations are represented by the quantum states |H〉, |V 〉, |D〉 and |A〉. Mathematically,

|D〉=
|H〉+ |V 〉
p

2
, |A〉=

|H〉 − |V 〉
p

2
(2.43)

with {|H〉 , |V 〉} and {|D〉 , |A〉} defined to be the rectilinear and diagonal bases respectively. Quantum

operations can be implemented using waveplates, which introduce an arbitrary phase, thereby

rotating the polarisation. Hence, it is easy to see that we can encode logical qubits such that

|0〉 .
= |H〉 , |1〉 .

= |V 〉 , |+〉 .
= |D〉 , |−〉 .

= |A〉 (2.44)

Mode-Encoded Single Photons

An alternate approach is to use the spatial modes of the photon in a scheme known as dual-rail

encoding. Here, we consider two light paths, commonly implemented using on-chip waveguides

(see chapter 7), as these provide high levels of control over the relative path length. As shown in

figure 2.6, a photon in the lower rail is said to be in the number state |0〉upper |1〉lower = |01〉, and a

photon in the upper rail is in |1〉upper |0〉lower = |10〉.
A beam splitter can be used to put the photon into the superposition |01〉+|10〉p

2
and, if we introduce

a phase modulator, we can also generate |01〉−|10〉p
2

. More generally, a Mach-Zehnder interferometer

(see section 7.1.3) can be used to implement arbitrary qubit rotations. Therefore, it is once again

easy to see that we can use dual-rail devices to implement logical qubits, where

|0〉 .
= |01〉 , |1〉 .

= |10〉 , |+〉 .
=
|01〉+ |10〉
p

2
, |−〉 .

=
|01〉 − |10〉
p

2
(2.45)

We note that the photon-number representations of |+〉 and |−〉 are inseparable (or Bell states, to

be even more precise), meaning superposition of a single photon over two modes is mathematically

equivalent to the modes becoming entangled with one another.
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Phase Modulator

|01⟩+|10⟩

√2

π
|01⟩−|10⟩

|01⟩

|10⟩
√2

FIGURE 2.6: The four dual-rail states used to represent the logical qubits |0〉, |1〉, |+〉 and
|−〉.

Time-Bin-Encoded Single Photons

A third method of encoding was originally proposed in [62], where each logical qubit is defined

over a pair of time bins. In this work, we will use a scheme that also includes an empty bin at the

end, meaning |t1〉 = |1〉early |0〉late |0〉empty and |t2〉 = |0〉early |1〉late |0〉empty. If the final time bin were

to contain a photon, we could expand our notation such that |t3〉= |0〉early |0〉late |1〉empty, although

this is not used in the formation of logical qubits, which can be expressed as

|0〉 .
= |t1〉 , |1〉 .

= |t2〉 , |+〉 .
=
|t1〉+ |t2〉p

2
, |−〉 .

=
|t1〉 − |t2〉p

2
(2.46)

The states in equation 2.46 may be prepared using the setup shown in figure 2.7. Assuming the

photons are path-encoded when they enter Alice, the asymmetry between the two rails means that

the |10〉 component will reach Alice’s beam splitter after |01〉. More precisely, if both components

begin in the early time bin, and the delay line is of the correct length, then for the upper arm (mode

1),

ât1,1
Delay
−−−→ ât2,1 (2.47)

while for the lower arm (mode 2),

ât1,2
Delay
−−−→ ât1,2 (2.48)

Consequently, if we have a superposition in space, it can be converted to a superposition in time,

where
|01〉+ eiθ |10〉

p
2

→
|t1〉+ eiθ |t2〉p

2
(2.49)

To rotate the logical qubit, we can modulate the relative phase between the first two time bins;

a method which bears strong similarities to that used in dual-rail encoding. Alice’s beam splitter
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Beam Splitter Mirror
A

B

C

D
:E

F :
A C

DB

A
|t1⟩+|t2⟩

√2
: |t2⟩B :

|t1⟩−|t2⟩
√2

D :C |t1⟩:

Single-Photon
Detector

Phase
Modulator

1

2

A

B

C

D

θ=0

θ=π

E

F

BobAlice

θ

FIGURE 2.7: An example setup used for encoding quantum information onto the time-of-
arrival of a single photon.

removes the spatial separation between temporal states, and while a combiner could be implemented

as a way of merging outputs 1 and 2 (defined in figure 2.8a as beam splitter modes 3 and 4), it is

not a cause for concern if this is omitted in practice. As will be described in the next part of this

section, experimental setups use weak coherent pulses rather than true single photons, meaning a

beam splitter with only a single connected output is equivalent to introducing 3 dB of loss.

With regards to the measurement process, a detector with a high enough temporal resolution

would be able to distinguish between time-bins t1 and t2 directly. However, this is only of use if

the qubits were prepared in the Z basis and, to measure in the X basis also, we must implement a

detection scheme like in figure 2.7. The state is divided between two paths that differ in length so,

for the component directed into the longer arm, and using the mode labels in figure 2.8b,

ât1,3
Delay
−−−→ ât2,3

ât2,3
Delay
−−−→ ât3,3

(2.50)
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32

4

1

41

2

3

14

2

3

FIGURE 2.8: Labelling convention for the input and output modes of (a) a single beam
splitter, and (b) two beam splitters connected in series.

Once again, the component that passes through the shorter arm remains unchanged.

Based on the above, it is simple to see that the receiver will transform non-superposition Z-basis

states such that

|t1〉 →
|t1〉+ |t2〉p

2

|t2〉 →
|t2〉+ |t3〉p

2

(2.51)

However, states of the form 1p
2

�

|t1〉+ eiθ |t2〉
�

are a little more complex. With reference to the port

numbers in figure 2.8, the creation and annihilation beam splitter relations are
�

â(†)1

â(†)2

�

= Ĥ

�

â(†)3

â(†)4

�

(2.52)

where Ĥ is defined in appendix A, and Ĥ = Ĥ−1. On Bob’s first beam splitter, we can represent

port 1 as being connected to the upper arm of a dual-rail scheme (though this is not used to form a

qubit), and port 2 as being connected to an unused lower arm, meaning

|t1〉+ eiθ |t2〉p
2

=
1
p

2

�

â†
t1
+ eiθ â†

t2

�

|1〉upper |0〉lower

=
1
p

2

�

â†
t1,1 + eiθ â†

t2,1

�

|00〉

BS
−→

1
2

�

â†
t1,3 + â†

t1,4 + eiθ â†
t2,3 + eiθ â†

t2,4

�

|00〉

Delay
−−−→

1
2

�

â†
t2,3 + â†

t1,4 + eiθ â†
t3,3 + eiθ â†

t2,4

�

|00〉

BS
−→

1

2
p

2

�

â†
t1,1 − â†

t1,2 +
�

1+ eiθ
�

â†
t2,1 +

�

1− eiθ
�

â†
t2,2 + eiθ â†

t3,1 + â†
t3,2

�

|00〉

(2.53)

Given equations 2.51 and 2.53, we can see that, for an unknown state in the Z basis, a click at

time t1 will signify that the initial state was |0〉, while a click at time t3 will indicate a |1〉, regardless
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of which detector we consider. Similarly, under the condition that Alice transmitted in the X basis,

the detector on arm E will only click at time t2 if the initial state was |+〉. If there is a click in the

same time bin, but on arm F instead, this will correspond to Alice having sent a |−〉.
Of course, it is still possible to obtain a click in t2 if Alice generated a qubit in the Z basis. This

means that, in cases where Bob does not know how the state was prepared, he will be forced to

incorrectly conclude that she transmitted either a |+〉 or a |−〉, depending on the arm in which

the t2 detection occurred. In other words, if the state sent by Alice was a |0〉 or a |1〉, then a click

in the middle time bin will correspond to Bob measuring in the wrong basis. Likewise, if Alice

transmitted a qubit in the X basis, and Bob observed a detection event in either t1 or t3, then he

has to attribute it to a state in the Z basis. As before, this is just another way of saying that he has

measured incorrectly and, if Alice later announces her bases, he can discard any erroneous results.

We note that because the detection scheme is passive in nature, its security may be brought into

question if the beam splitters demonstrate wavelength-dependent behaviour [63]. However, the

devices that rely on time-bin encoding herein, have too low a bandwidth to be compromised in this

manner.

Coherent States

Unfortunately, the performance and practicality of single-photon sources is still not yet at a stage

where they can be incorporated with application-oriented quantum technologies. This means that,

for the time being, we must rely on weak coherent pulses instead. Coherent states are eigenstates of

the annihilation operator, meaning [61]

â |α〉= α |α〉

〈α| â† = 〈α|α∗
(2.54)

They can be implemented using lasers attenuated down to the single-photon level and, as a coherent

state is the most classical-like of the quantum states, it is sometimes mistakenly referred to as being

non-quantum. However, they can still become entangled [64] which, in certain cases [65], leads to

stronger violations of Bell-type inequalities when compared to states that take the form

|γ〉 |0〉+ eiθ |0〉 |γ〉
p

2
for γ > 0 (2.55)

There are also practical advantages to using entangled coherent states over those in equation 2.55,

for example in quantum metrology [66].

We can illustrate the relation between coherent and number states using the derivation from [61].

This begins with the observation that a coherent state is a displacement of the quantum vacuum:

|α〉= D̂ (α) |0〉 (2.56)

D̂ (α), the displacement operator, is defined to be

D̂ (α) = eαâ†−α∗ â (2.57)
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and the Baker-Campbell-Hausdorff formula states that

eÔx+Ôy = eÔx eÔy e−
1
2[Ôx ,Ôy] (2.58)

Thus, equation 2.56 can be rewritten as

|α〉= eαâ†
e−α

∗ âe−
1
2[αâ†,−α∗ â] |0〉

= e−
|α|2

2 eαâ†
e−α

∗ â |0〉
(2.59)

Formulating each exponential as a power series means, with reference to equation 2.40,

|α〉= e−
|α|2

2 eαâ†
∞
∑

γ=0

(−α∗â)γ

γ!
|0〉

= e−
|α|2

2 eαâ†
|0〉

= e−
|α|2

2

∞
∑

γ=0

�

αâ†
�γ

γ!
|0〉

(2.60)

Therefore, we can express the coherent state in terms of number states such that

|α〉= e−
|α|2

2

∞
∑

γ=0

αγ
p

γ!
|γ〉 (2.61)

where

α= |α| eiθ (2.62)

We define the number operator as γ̂= â†â, because

â†â |γ〉= γ |γ〉 (2.63)

The mean photon number is the expectation value of the number operator. That is,

µ= 〈α| γ̂ |α〉= 〈α|α∗α |α〉= |α|2 (2.64)

If 0≤ Γ <∞, the probability of a pulse being found to contain Γ photons is given by

Prob (γ= Γ ) = 〈α|Γ 〉 〈Γ |α〉= |〈Γ |α〉|2

=

�

�

�

�

�

e−
|α|2

2 〈Γ |
∞
∑

γ=0

αγ
p

γ!
|γ〉

�

�

�

�

�

2

=

�

�

�

�

e−
|α|2

2 〈Γ |
αΓ
p
Γ !
|Γ 〉
�

�

�

�

2

= e−|α|
2 |α|2Γ

Γ !

= e−µ
µΓ

Γ !

(2.65)
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Using similar techniques to above, we can demonstrate the effect of a beam splitter on a pair of

coherent states [67], which will be of particular importance in section 3.2.1. Given equation 2.56,

the mathematical representation of two coherent states in modes 1 and 2 will be

|α〉1 |α〉2 = D̂1 (α1) D̂2 (α2) |00〉

= eα1 â†
1−α

∗
1 â1 eα2 â†

2−α
∗
2 â2 |00〉

(2.66)

Application of equation 2.52 means

|α〉1 |α〉2
BS
−→ e

α1(â†
3+â†

4)−α∗1(â3+â4)p
2 e

α2(â†
3−â†

4)−α∗2(â3−â4)p
2 |00〉 (2.67)

As shown in appendix B,
�

α1

�

â†
3 + â†

4

�

−α∗1
�

â3 + â4

�

p
2

,
α2

�

â†
3 − â†

4

�

−α∗2
�

â3 − â4

�

p
2

�

= 0 (2.68)

so we can once again apply Baker-Campbell-Hausdorff (equation 2.58) such that equation 2.67

becomes

|α〉1 |α〉2
BS
−→ e

α1(â†
3+â†

4)−α∗1(â3+â4)+α2(â†
3−â†

4)−α∗2(â3−â4)p
2 |00〉

= e
(α1+α2)â†

3−(α∗1+α∗2)â3+(α1−α2)â†
4−(α∗1−α∗2)â4p

2 |00〉

= e
(α1+α2)â†

3−(α∗1+α∗2)â3p
2 e

(α1−α2)â†
4−(α∗1−α∗2)â4p

2 |00〉

= D̂3

�

α1 +α2p
2

�

D̂4

�

α1 −α2p
2

�

|00〉

=

�

�

�

�

α1 +α2p
2

·

3

�

�

�

�

α1 −α2p
2

·

4

(2.69)

Here, when applying Baker-Campbell-Hausdorff for a second time,
�

(α1 +α2) â
†
3 −

�

α∗1 +α
∗
2

�

â3
p

2
,
(α1 −α2) â

†
4 −

�

α∗1 −α
∗
2

�

â4
p

2

�

= 0 (2.70)

because â3 and â4 commute. Now, we place a 100%-efficient single-photon detector on arm 3,

that clicks in the presence of anything other than the vacuum (i.e. it has zero dark counts and is

non-number-resolving). Based on equation 2.65,

Prob (Click in detector 1) = 1− Prob (γ= 0)

= 1−
|α1 +α2|

0

20 × 0!
e−
|α1+α2|2

2

= 1− e−
|α1+α2|2

2

(2.71)

If we place an identical detector on arm 4,

Prob (Click in detector 2) = 1− Prob (γ= 0)

= 1−
|α1 −α2|

0

20 × 0!
e−
|α1−α2|2

2

= 1− e−
|α1−α2|2

2

(2.72)
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Finally, a coincidence will be observed with probability

Prob (Click in both detectors) = Prob (Click in detector 1)

× Prob (Click in detector 2)
(2.73)

2.3 Quantum Cryptography

In the last part of this chapter, we look at how the physics of the previous section can be used to

counteract the catastrophic effect that quantum computers will have on the cryptography used

throughout everyday life. To date, many lines of enquiry have been opened into the advantages

quantum mechanics can provide, exploring ideas such as quantum bit commitment [68–71], quantum

secret sharing [72–74] and quantum digital signatures [75]. However, the greatest focus has been

on QKD, as this has the potential to solve the most urgent and important problem: re-securing the

exchange of cryptographic keys.

2.3.1 Quantum Key Distribution Protocols

The central premise of QKD is as follows: can we create a method for the secure distribution of

cryptographic keys that does not rely on our inability to solve an underlying mathematical problem?

Here, we consider a number of different protocols that fulfil this notion.

BB84

The first QKD protocol was invented by Bennett and Brassard in 1984 [76], and this was fol-

lowed shortly after by a proof-of-principle demonstration in 1992 [77]. Though many alternatives

have emerged since, Bennett-Brassard 1984 (BB84) remains one of the most popular choices for

experimental implementations of QKD.

In protocol 2.5, we summarise this approach to generating cryptographic keys from quantum

states of light. The sifting procedure described in step 4a removes any errors that were introduced

as a result of Bob measuring in the wrong basis. However, discarding half of Alice and Bob’s raw key

will affect the final secret key rate, and so ζ, the sifting efficiency of the protocol, is an important

metric to consider. In the case of BB84, it follows that ζ= 50%.

As can be seen in step 5, the tags used to authenticate the public channel take the form of equation

2.5. The use of a one-time kM means that authenticating every message at the time of transmission

will consume valuable quantum keys to no advantage. In fact, if all the basis announcements were

to be treated individually, more key would be consumed than generated, so it is for this reason that

BB84 delays authentication until the end.
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Protocol 2.5: BB84 [76]

SUMMARY: Alice expands a shared secret with Bob by sending cryptographically-secure bits over a
quantum channel, and reconciliation information over an authenticated classical channel.

1. One-Time Setup. Two (|kinit|/2)-bit secrets are shared between Alice and Bob using out-of-band
communications, a trusted third party or a post-quantum public-key algorithm.

2. Raw Key Exchange.

(a) Alice generates a cryptographically-secure random bit, which is used to select a basis
BA

i ∈ {X , Z}.

(b) Bob generates a cryptographically-secure random bit, which is used to select a basis
BB

i ∈ {X , Z}.

(c) Alice prepares a qubit |ψ〉i by generating a cryptographically-secure random number,
bi ∈ {0, 1}, and encoding it in the basis BA

i .

(d) Alice sends |ψ〉i to Bob, who measures in the basis BB
i .

3. Loop. Step 2 is repeated for the remaining N − i qubits sent from Alice to Bob.

4. Post-Processing.

(a) Alice and Bob publicly reveal their bases and discard all bits for which BA
i 6= BB

i . At this
stage, Alice can also discard any bits corresponding to qubits that Bob failed to detect.

(b) Alice and Bob publicly compare an agreed-upon subset of their remaining bits. If these
differ by more than the security proof allows (usually 11%), the protocol aborts. Otherwise,
the subset is discarded and an error correction protocol such as CASCADE or Low Density
Parity Check is applied to the remaining key, reducing the number of errors to zero.

(c) Privacy amplification is carried out, typically relying on a universal hash function to minimise
the information that an eavesdropper has on the key.

5. Authentication.

(a) The first shared secret is split into a one-time key, kM, and a (|kinit|/2− |kM|)-bit hash key,
kH. Here, |kM|=

�

�hkH
(m)

�

� where ∀kH ,
�

�hkH
(m)

�

�= constant.

(b) Alice calculates m, a concatenation of the messages she transmitted and received over the
public channel. She computes the tag τ= hkH

(m)⊕ kM and sends it to Bob.

(c) Bob calculates m′, a concatenation of the messages he transmitted and received over the
public channel. He computes the tag τ′ = hkH

(m′)⊕ kM and compares it with the one he
received from Alice. If τ 6= τ′, the protocol aborts.

(d) Steps 5a to 5c are repeated for the second shared secret, with Alice and Bob’s roles reversed.

(e) |kinit| bits are taken from the final key and stored for use as the initial shared secrets in the
next round of QKD.

SARG04

In the next section (specifically, attack 2.1), we will see that one of the downsides to using an

attenuated laser in place of a single-photon source is that it creates an opportunity for photon

number splitting (PNS) to be carried out. Scarani-Acín-Ribordy-Gisin 2004 (SARG04) [78] is a way

of modifying BB84 such that an eavesdropper who performs PNS attacks on two-photon pulses
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is unable to gain any information on the qubit. As described in protocol 2.6, instead of making a

simple basis declaration, Alice announces one of the following pairs of states:

�

|0〉 , |−〉
	

,
�

|0〉 , |+〉
	

,
�

|1〉 , |−〉
	

,
�

|1〉 , |+〉
	

(2.74)

Her choice is restricted only in that she must have transmitted one of the states that she announced.

For example, if Alice prepared |0〉, she can inform Bob using either
�

|0〉 , |−〉
	

or
�

|0〉 , |+〉
	

. On the

other hand, if she sent |+〉, then she must choose
�

|0〉 , |+〉
	

or
�

|1〉 , |+〉
	

.

Bob now has to announce whether his measurement result lets him identify the state that

was sent by Alice over the quantum channel. This is effectively unambiguous state discrimination

between the pair of qubits that she declared, although as three out of four measurement results will

be inconclusive, ζ is reduced to 25%.

Protocol 2.6: SARG04 [78]

SUMMARY: Replaces step 4a in protocol 2.5, changing the information that is transmitted over the
classical channel to increase resilience against photon number splitting attacks.

4. Post-Processing.

(a) For each qubit sent, Alice publicly announces a pair of states, one of which she transmitted
and one of which is randomly chosen from the unused basis. Bob announces whether or
not his measurement outcome is consistent with one, and only one, of the states Alice
announced. If his declaration is in the affirmative, the corresponding bit is retained. Else, it
is discarded. At this stage, Alice can also discard any bits corresponding to qubits that Bob
failed to detect.

Quantum Key Distribution with Decoy States

Another way to prevent PNS is through the use of decoy states, as described in protocol 2.7. Here,

Alice varies the mean photon number, µ, that defines each weak coherent pulse, choosing from one

of three possible values [79]. The signal-to-decoy ratio is optimised depending on the setup. For

example, in [80], Prob
�

µsignal

�

= 63.5%, Prob (µweak) = 20.3% and Prob (µvacuum) = 16.2%, where

µweak and µvacuum both correspond to decoy states.

As an eavesdropper has no way of knowing what µ is for each pulse, she cannot use this

information to influence her attack. At the end of the protocol, Bob can see whether the number of

detection events for each value of µ are sensibly scaled relative to one another. If the eavesdropper

has been blocking single photons and letting multi-photon pulses through, the transmission rate for

higher mean photon numbers will be disproportionately large, and so Bob will become aware of the

eavesdropper’s presence.
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Protocol 2.7: Decoy State BB84 [79, 81]

SUMMARY: Replaces steps 2c, 4a and 4b in protocol 2.5, introducing additional intensity states to detect
photon number splitting attacks.

2. Raw Key Exchange.

(c) Alice prepares a qubit |ψ〉i by generating a cryptographically-secure random number,
bi ∈ {0, 1}, and encoding it on a weak coherent pulse in the basis BA

i . She generates a
second cryptographically-secure random number and uses this to decide whether the mean
photon number should be µsignal, µweak or µvacuum.

4. Post-Processing.

(a) Alice announces the mean photon number corresponding to each qubit. If the relative
number of detections for µsignal, µweak and µvacuum does not match the distribution that we
would expect, the protocol aborts. Otherwise, Alice and Bob publicly reveal their bases and
discard all bits for which BA

i 6= BB
i . At this stage, Alice can also discard any bits corresponding

to qubits that Bob failed to detect.

(b) For each µ, Alice and Bob publicly compare agreed-upon subsets of their remaining bits. If
these differ by more than the security proof allows, the protocol aborts. Otherwise, each
subset is discarded, along with the bit values corresponding to µweak and µvacuum. An error
correction protocol is applied to the remaining key so as to reduce the number of errors to
zero.

Quantum Key Distribution with Biased Bases

It has already been noted that the sifting efficiency, ζ, will affect the final key rate. The question

therefore arises as to whether there is a way in which we can increase ζ, without compromising our

security. This turns out to be possible by biasing the bases as described in protocol 2.8. Under such

a scheme, it has been found that, theoretically, [82]

lim
N→∞

ζ= 100% (2.75)

where N is the number of qubits exchanged over the course of the protocol. However, experimentally,

the optimal bias tends to be between 80% and 90% [83, 84] or, for setups that combine decoy-state

and biased basis QKD, between 60% and 95% depending on the loss [85]. As a result, practical

increases in efficiency can be somewhat lower than the asymptotic limit.

2.3.2 Attacks on Quantum Key Distribution

We now introduce an eavesdropper (Eve), who is given the challenge of recovering the key from

the information that passes over the public and quantum channels during a QKD protocol. She may

choose to passively observe the messages going past, or actively interfere in their transmission, and

is constrained only by the laws of quantum mechanics. In section 2.2.1, we showed there is no

measurement operator that can be used to deterministically distinguish between non-orthogonal

states, and that these cannot be deterministically cloned either. Therefore, if Eve intercepts a
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Protocol 2.8: Biased Basis BB84 [82]

SUMMARY: Replaces steps 2a, 2b and 4b in protocol 2.5, increasing the sifting efficiency by biasing the
bases.

2. Raw Key Exchange.

(a) Alice generates a cryptographically-secure random bit, which is used to select a basis
BA

i ∈ {X , Z}, optimally weighted such that 0< Prob
�

BA
i = X

�

< 1
2 .

(b) Bob generates a cryptographically-secure random bit, which is used to select a basis
BB

i ∈ {X , Z}, optimally weighted such that 0< Prob
�

BB
i = X

�

< 1
2 .

4. Post-Processing.

(b) Alice and Bob publicly compare an agreed-upon subset of their remaining bits that were
prepared and measured in the X basis. If these differ by more than the security proof allows
(usually 11%), the protocol aborts. Otherwise, the subset is discarded, and this process is
repeated for the bits that were prepared and measured in the Z basis. As required by the
security analysis [82], any leftover bits that correspond to the X basis are also discarded. An
error correction protocol is then applied to the remaining key so as to reduce the number of
errors to zero.

single photon, she will be unable to make any copies for further examination, and her optimum

measurement strategy will be to guess whether it was prepared in the X basis or the Z basis. She

must then generate a new qubit and send it to Bob, encoded with the bit value she observed in the

basis she chose. However, if Eve guesses incorrectly, she will return a random result, as demonstrated

in equations 2.76 and 2.77, where |+〉 is measured in the Z basis.

〈+| M̂1M̂1 |+〉= 〈+|0〉 〈0|+〉

=

�

〈0|+ 〈1|
p

2

�

|0〉 〈0|
�

|0〉+ |1〉
p

2

�

=
1
2

(2.76)

〈+| M̂2M̂2 |+〉= 〈+|1〉 〈1|+〉

=

�

〈0|+ 〈1|
p

2

�

|1〉 〈1|
�

|0〉+ |1〉
p

2

�

=
1
2

(2.77)

This additional randomness will cause the quantum bit error rate (QBER) to increase, and so

it is possible to tell whether or not an eavesdropper is present, with Alice and Bob terminating

the connection if the QBER goes above a critical threshold. Of course, there are numerous attack

strategies beyond those covered here; Eve could try to entangle the qubits with her own ancillas,

for example. Consequently, full security proofs are required, such as that developed by Shor and

Preskill for BB84 [86], which gives a critical QBER of 11%.
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We can order Eve’s strategies into three groups: individual attacks, collective attacks and general

attacks. Individual attacks are the most constrained, as Eve must apply the same strategy to every

qubit and measure any ancillas before Alice and Bob perform post-processing. Collective attacks also

require Eve to apply a non-adaptive strategy, however she can take advantage of a quantum memory

to measure any ancillas in her possession at the point where she will maximise her information gain.

Finally, general attacks are the most powerful, wherein Eve can implement any quantum-mechanical

operation and adapt her strategy at will [87].

This last sentence is of particular importance. Protocols that resist general attacks are said

to be information-theoretically secure, and such a claim is often misinterpreted to mean QKD is

unbreakable. While it is true that we no longer need to assume any limits on Eve’s computational

power, it is not true that we have removed every assumption altogether; a point which has been

acknowledged since the earliest security proofs [86, 88, 89]. The most extreme assumption we

make is that quantum mechanics represents an inherently probabilistic underlying reality. There is

strong evidence that the universe cannot be described by a theory of local hidden variables [90],

but superdeterminism will always remain an unclosable loophole, and we are yet to find a way

of disproving non-local hidden-variable models like Bohmian mechanics [91, 92]. Some would

argue that assumptions of this nature mean statements of security based on the laws of physics are

incorrect [93]. However, this is a basic misunderstanding as to what the laws of physics actually

are: scientific knowledge based on experimental results [94, 95]. Thus, the set of physical laws is

constantly expanding, and untested hypotheses are excluded by definition, especially if, as in the

examples above, they lack falsifiable predictions that would distinguish them from any competing

proposals.

Yet such a point should not be taken to mean that we make no assumptions of presently-significant

impact. Just like in the case of the OTP, the information-theoretic security of QKD says nothing about

the possibility of side-channel attacks, as these sit outside the mathematical framework described

above. Therefore, for a security proof to remain comprehensively valid when transitioning from

theory to experiment, we must assume (quite falsely) that QKD can be perfectly implemented in all

scenarios.

Of the attacks on BB84 that arise from this assumption being violated, PNS is perhaps the

most well-known. All practical systems use weak coherent states to approximate a qubit, and so

some of the pulses that Alice generates will inevitably contain two or more photons, which Eve

can then siphon off for herself. While protocols 2.6 and 2.7 provably reduce and eliminate the

threat, attack 2.1 can always be mounted on implementations that do not employ some form of

countermeasure.
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Attack 2.1: Photon Number Splitting. Eve performs a quantum non-demolition measurement

on the number of photons in each pulse. She blocks all single-photon terms, and splits those

containing multiple photons. She retains at least one photon in a quantum memory, and allows

the remainder to carry on towards Bob. When Alice announces her preparation bases, Eve

measures the stored photons, returning the same raw key as Alice (assuming zero errors). This

can be sifted correctly when Bob publicly responds to Alice’s original announcement.

Despite the apparently straightforward nature of the above, it should be noted that, from an academic

perspective, PNS is a particularly interesting exploit. Unlike most attacks, it is only dangerous if

the technology required to carry it out is solely available to Eve. In the case where non-demolition

measurements can also be performed by Alice, she could use PNS on herself to create a single-photon

source.

Next, although protocol 2.6 allows the secure generation of key from two-photon terms, unam-

biguous state discrimination can still be carried out on pulses containing three or more photons [78],

as attack 2.2 describes.

Attack 2.2: Unambiguous State Discrimination on ≥ 3-Photon Pulses. Eve performs a

quantum non-demolition measurement on the number of photons in each pulse. She blocks all

single- and two-photon terms, and performs unambiguous state discrimination [43] on those

containing three or more photons. She returns a proportion of Alice’s raw key dependent on the

number of photons measured.

A particularly damaging scenario may unfold if an undisclosed side-channel gives Eve early access

to the basis information on each qubit. In this case, she can carry out attack 2.3, which would

otherwise be considered impossible.

Attack 2.3: Intercept-Resend. Eve extracts information on either Alice or Bob’s bases through

an undisclosed side channel. She then intercepts the qubits, measures each one using a basis that

will not increase the QBER, and resends the results she observed in the bases she measured.

Another way a catastrophic break could occur is if the authentication scheme for the public channel

were to be implemented incorrectly. However, at a theoretical level, attack 2.4 is not something with

which we usually need to be concerned, because Wegman-Carter MACs are information-theoretically

secure.

-37-



CHAPTER 2. BACKGROUND

Attack 2.4: Man-in-the-Middle. Eve intercepts the qubits, measures each one in a random

basis and resends the results she observed in the bases she measured. She conceals this by

modifying Alice’s bases announcement and Bob’s response, along with the authentication tags

for each. Eve can now read all communications encrypted and/or authenticated using the key

she shares with Alice, before forwarding them with or without modification, having re-encrypted

or authenticated using the key she shares with Bob.

There are also several exploits that do not break the confidentiality of QKD, serving only to disable

the link instead. As Eve cannot obtain any information on the message, some may try to argue that

weaknesses of this nature are only a minor concern. Yet there is little point in having an unbreakable

cryptosystem that cannot be used and so, for this reason, the following attacks should be taken as

seriously as any other.

Nonetheless, it would be misleading to categorise these as side-channel attacks, because they are

enabled by features that are integral to the theory of QKD. For example, the randomness introduced

when Eve tries and fails to implement attack 2.3 would normally be used as a way of detecting her

presence. However, as the protocol automatically aborts when the QBER gets too high, this opens

up the opportunity for intentional denial of service (DoS), by artificially increasing the error rate on

the transmission line (see attack 2.5). While sometimes used as an argument against QKD [96], the

risk of this happening is often overstated, as it requires an attacker to have physical access to the

optical fibre, so the development of large-scale quantum networks will mitigate a lot of the damage

by enabling redirection of the signal.

Attack 2.5: Transmission Line Denial of Service. Eve artificially increases the QBER of the

channel to the point where Alice and Bob become aware of her presence and are unable to distill

a secret key. If no alternative channels are available, they must resort to physically locating Eve

in order to restore the connection.

Lastly, the use of a Wegman-Carter MAC to authenticate the public channel means an initial shared

secret is required. Protocol 2.5 leaves open the possibility of distributing this using a post-quantum

public key, as will be explored in chapter 6. Yet QKD implementations traditionally avoid introducing

asymmetric primitives, as then the cryptosystem that they are a part of will no longer be information-

theoretically secure. On the other hand, repopulating the initial secret can be challenging if it is not

shared in this way and Eve interferes with the basis announcements, causing the authentication step

to fail. Even when Alice and Bob have additional keys in reserve, they will be limited in number, so

this defence mechanism is of little to no benefit if Eve repeatedly modifies any messages that are

sent via the public channel. It is on this weakness that attack 2.6 is predicated.
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Attack 2.6: Key Exhaustion. Eve establishes a low-loss connection with Alice and performs

high-bit-rate QKD up to the point where she fails the authentication. She or her agents repeat

this until Alice no longer has enough secret key with which to construct a MAC. Now, Alice must

switch to an alternative method of key distribution to avoid indefinite denial of service.

2.4 Summary

In this section, we have provided a general background to modern cryptography, quantum mechanics

and quantum technologies, all of which are relevant throughout this thesis. We opened by considering

methods for encryption and authentication that rely on Alice and Bob being in possession of a

pre-shared key, before progressing to asymmetric alternatives, which generate keys that have both a

public part and a private part. The latter system is widely used to transport secret keys for use in

symmetric applications.

Next, we covered the principles of quantum mechanics that are fundamental to the security

of QKD. A brief overview of quantum computers included a table of resource estimates reviewing

the level they will need to reach in order to break public-key cryptography, as well as reduce the

security of symmetric-key ciphers and hash functions.

This was followed by a discussion of the different ways in which we can encode information

onto quantum states of light. The underlying properties of coherent states were also summarised,

as these are used to approximate single photons in experimental systems.

Finally, we introduced the main QKD protocols that will be used in the chapters that follow, with

a high-level overview of attacks that can be mounted both in theory and in practice.
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For a communications technology to be of any practical use, it must be capable of more than just

two-party exchanges over a fixed channel. The ability to network large numbers of devices such that

they can all interact with each other is the foundation of the internet. However, it is not enough

for quantum key distribution (QKD) to easily integrate with the infrastructure of today. It must

be compatible with next-generation architectures that will start to become widespread during its

lifetime. Much work has already been done towards the former but, prior to the work presented

here, very little progress had been made with regard to the latter.

Here, we introduce a promising new paradigm for telecommunications: software-defined net-

working. We have run experiments demonstrating how QKD can fit into this environment with

minimal disruption to the classical setup, particularly emphasising the ability for QKD pairings to

be established between different endpoints on a flexible basis, either in the context of a standard

network, or in scenarios where there is an asymmetric number of Alices and Bobs. These tests

constituted the first physical implementation of QKD in a software-defined network (SDN), as

previous research was restricted only to simulations [101, 102]. The topic has since blossomed into

a highly active sub-field [103–113].

We open this chapter by reviewing the numerous quantum networks that have been built across

the world, before introducing the Bristol software-defined metropolitan-area quantum network,

which forms an endpoint to the UK quantum backbone. In section 3.2, we describe the experimental

testbed that was built for emulating different network configurations, enabling QKD technologies

to be trialled prior to deploying them across the city. Finally, section 3.3 focuses on time-division

multiple access QKD, demonstrating the ease with which it can be implemented in an SDN, enhancing

its security through the distribution of virtual network functions.

3.1 State-of-the-Art in Telecommunications Networks

Although QKD can still only be deployed in highly bespoke environments, transitioning experimental

devices beyond the laboratory is no small feat, and a great deal of research has been carried out to

arrive at this point. For countries willing to make large capital investments, purpose-built QKD links

are now physically viable for real-world communications, ensuring the security of government data

against quantum attacks. Here, we provide an overview of the progress that has been made so far,

and summarise the generalised approach to networking with which QKD will need to be shown

compatible if it is to achieve widespread deployment.

3.1.1 Quantum Key Distribution Networks

Quantum key distribution has long been mature enough at the device level to be deployed as a rack-

mounted solution over dedicated fibre in the field. Table 3.1 and figure 3.2 summarise the history of

quantum networks across the world, from the original DARPA implementation in 2004 [114, 115]

to the present. Those of particular note include SwissQuantum [121], the world’s first international
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TABLE 3.1: A history of quantum networks throughout the world [114–145].

June 2004 • DARPA Quantum Network | Cambridge, Massachusetts

March 2007 • CNC Beijing | Beijing, China

October 2008 • SECOQC | Vienna to St Pölten, Austria

October 2008 • Hefei Metro-Quantum Network | Hefei, China

February 2009 • QuantumCity | Durban, South Africa

March 2009 • SwissQuantum | Geneva, Switzerland to CERN, France

May 2009 •
Quantum Cryptography Network for Government
Administration | Wuhu, China

October 2009 • Madrid Quantum Network | Madrid, Spain

March 2010 • Tokyo QKD Network | Tokyo, Japan

December 2011 • Hefei-Chaohu-Wuhu Wide Area Network | Hefei to Wuhu,
China

October 2013 • Battelle Commercial Network | Columbus to Dublin, Ohio

December 2013 • Jinan Metro-Quantum Network | Jinan, China

January 2016 •
Bristol Quantum Network (part of the UK Quantum
Network) | Bristol, United Kingdom

February 2016 • SK Telecom Metro Network | Seoul to Seong-nam,
South Korea

February 2016 • KREONET | Daejeon, South Korea

May 2016 • Shanghai Quantum Network | Shanghai, China

May 2016 • KPN Data Centre Network | The Hague to Rotterdam,
Netherlands

June 2016 • Moscow Quantum Network | Moscow, Russia

June 2016 •
SK Telecom Long-Term Evolution Network | Sejong to
Daejeon, South Korea

August 2016 • Kazan Quantum Network | Kazan, Russia

September 2016 •
Shanghai-Hangzhou Trunk Network | Shanghai to
Hangzhou, China

November 2016 •
Cambridge Quantum Network (part of the UK Quantum
Network) | Cambridge, United Kingdom

January 2017 • Beijing-Shanghai Backbone Network | China

September 2017 • Micius Satellite Network | Beijing, China to Vienna, Austria

October 2017 • CASIC Wuhan Network | Wuhan, China

June 2018 •
UKQNtel (part of the UK Quantum Network) | Cambridge to
Martlesham Heath, United Kingdom

July 2018 • Deutsche Telekom | Berlin, Germany

November 2018 • Phio | Manhattan, New York to Newark, New Jersey
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Micius

FIGURE 3.1: The Micius quantum satellite as seen from the Shanghai ground station.

quantum network, and the Micius satellite (figure 3.1), part of the first intercontinental QKD

link [138, 139]. SECOQC [117] hosted a quantum-secure videoconference, an achievement that has

since been replicated in numerous other locations as a way of demonstrating encryption capabilities.

Finally, the world’s first national quantum backbone runs between Beijing and Shanghai [137, 138],

covering over 2000km, and connecting four cities using 32 trusted nodes. Each of the population

centres are serviced by their own metro networks which, from the information available, contain at

least 94 nodes between them. With a further seven nodes accessible in the form of Micius ground

stations, and six on the currently-separate Shanghai-Hangzhou Trunk [136], it seems fair to say

that this is the closest precursor we have to the quantum internet.

In table 3.1, each network is dated according to when the first link between remote locations

was realised. Where such information was unavailable, the date of the initial press release or journal

submission has been used instead. This was preferable over trying to establish a completion date, as

many of those listed here continue to grow and evolve. For networks like Hefei [118, 119], multiple

generations exist with different architectures. These are grouped into a single timeline entry, dated

according to the initial transmission as part of the first iteration.

A consequence of requiring the sender and receiver to be spatially separated is that the Bristol

Quantum Network to which this thesis contributes, must be listed as beginning in January 2016,

even though preliminary experiments were performed using a loopback configuration in late 2015.

Figure 3.2 is also impacted, because implementations like the Advanced Technology Demonstra-

tion Network (ATDNet) [146] and the entanglement link in the Tokyo QKD Network [125] were

constructed as loopbacks, so have not been marked.

In addition to the above, there are two further criteria for inclusion. We summarise our three

requirements as follows:

� The quantum signals must have passed through at least one piece of equipment that is standard

to an optical network, not including the main transmission line. For example, a switch.
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� A full quantum protocol must have been implemented as part of a specific application. For

example, an encryption scheme that is keyed using Bennett-Brassard 1984 (BB84).

� At least one link must have been constructed for the sake of connecting two or more disparate

locations, and not solely for the purpose of field-testing a quantum device.

Under these conditions, examples like the 144 km link between La Palma and Tenerife [147], and

Micius’ early demonstration of entanglement distribution over 1200 km [148] may be considered

network experiments, but neither is sufficient to constitute a quantum network.

3.1.2 Software-Defined Networks

SDNs are an emerging communications technology which offer increased reconfigurability and

centralised control by deploying data handling rules as software, rather than embedding them in the

firmware of devices. This enables versatile network topologies which are better suited to modern

needs, and bypasses compatibility issues between different proprietary architectures [149].

Traditionally, each forwarding device in the data plane of a network will contain an instruction

set that dictates how different packets should be treated, conditional on characteristics such as port

number, protocol and IP address. A node in receipt of a data packet will scan the header for the

above information and process it accordingly [150], meaning we can share our communications

infrastructure between many end-users without messages arriving at the wrong destination or getting

lost en route. However, this model is naturally inflexible because changes cannot be implemented

on the fly, motivating a drive towards separating the control plane from the data plane, a technique

that is particularly useful for networking trends like cloud computing [149].

As illustrated in figure 3.3, SDNs do just this. Compared to conventional networks, they are

simpler to deploy, more efficient to configure, and less error-prone [151]. Each node is centred

around a switch, the only component through which all signals must pass. By removing inline

devices, and “hanging” them off said switch instead (see figure 3.4), it is possible to achieve full

topological reconfigurability.

The SDN controller used in this work is the Lithium release of OpenDaylight, a Java-based

open-source Linux Foundation project. By utilising the OpenFlow communications protocol [152],

it is possible to modify the forwarding rules contained within a flow table on each switch. Here,

we focus on protecting the data plane as a way of demonstrating the compatibility of QKD with

SDNs. However, this will ultimately prove inconsequential if the control-data programming interface

(PI) and the links between adjacent controllers are not also quantum-secure, as they are both

central points of failure that do not exist in traditional networking paradigms. Therefore, the results

presented herein must only be the first step on the path towards a fully quantum-enabled SDN.
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Application
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System

Network
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FIGURE 3.3: Illustrating the separation between the control plane and the data plane
in software-defined networks, with higher-level applications sitting over the top.
In small, isolated environments, only a single operating system may be required,
however more generally, the controller must communicate with its peers in addition
to accepting requests from the application layer and setting flow rules on network
devices. Of these features, the latter two are managed through the northbound
application programming interface (API) and the control-data programming interface
(PI) respectively.
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FIGURE 3.4: The internal structure of a single node in a software-defined network. All
devices “hang” off a central switch, allowing them to be combined in any arbitrary
configuration, tailored according to the transmission.
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3.1.3 Next-Generation Quantum Networks

The networks to which this chapter contributes are both hosted on pre-existing hardware, with a

software-defined architecture. In the following section, we summarise the topology and physical

characteristics of each.

The Bristol Quantum Network

Built around the Bristol is Open (BiO) metropolitan-scale SDN, the Bristol Quantum Network is a

primary target for the developments presented herein. Although still a research platform, BiO was

designed for prototyping a wide range of technologies, and is representative of future commercial

infrastructure. Therefore, any requirements imposed by QKD have not been taken into consideration

as part of its design, making it the perfect testbed.

The physical topology is shown in figure 3.5, covering three key areas of Bristol: the university,

the city centre, and the railway station. The Centre for Nanoscience & Quantum Information node

was added as part of this work, and matches the rest of the network in terms of core equipment.

Each link is actualised using a bundle of 144 single-mode fibres (SMFs), and while only a small

subset of these are available for each application, the demand-to-capacity ratio was initially low

enough that it was possible to run the quantum and classical signals down separate fibres. The

nodes are all-optical, with each one centred around an OpenFlow-compatible Polatis switch (see

sections 3.2.2 and 3.4.1 for more information).

The first quantum-encrypted message was transmitted over the network at 12:49:19 on 26th

January 2016, as detailed in section 3.4.1. After this, responsibility was passed to other researchers

who have continued its growth.

The United Kingdom Quantum Network

The UK Quantum Network is underpinned by Aurora2, part of the National Dark Fibre Infrastructure

Service, an Engineering and Physical Sciences Research Council National Research Facility. This

exists to enable the development of future internet technologies prior to their deployment across

government and civilian networks. It passes through Telehouse, a critical internet hub and host of

the London Internet Exchange [153]. The quantum layer is a collaboration between the University

of Bristol, University of Cambridge, University of York, Toshiba Research Europe Ltd (TREL) and BT

(formerly known as British Telecom).

Like on BiO, each node contains a Polatis switch, enabling Aurora2 to be operated as an SDN.

However, each link is constructed from only two SMFs, meaning that without a scalable approach

to enable the coexistence of classical and quantum signals on the same fibre (see section 7.4.2), we

are limited to distributing quantum key during pre-allocated time slots.

Figure 3.6 presents a map of the UK Quantum Network. The Cambridge metropolitan section

and the link connecting it to Martlesham Heath have both been officially launched [154, 155], where
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FIGURE 3.5: Physical topology of the Bristol Quantum Network.

FIGURE 3.6: Physical topology of the UK Quantum Network. The nodes in Southampton
and University College London are part of the underlying Aurora2 infrastructure,
however they contain no quantum hardware and would need to rely on the work of
chapter 6 to communicate with the main backbone in a quantum-safe manner.
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the latter of these is a commercial-grade extension to Aurora2, built by BT in collaboration with the

University of Cambridge, the University of York, ID Quantique, the National Physical Laboratory and

ADVA. Connections on the Bristol-to-Cambridge backbone are still under development, although

QKD has been attempted by the author between Bristol and the next-nearest node. Unfortunately,

a university firewall prevented the classical QKD channel from being established via the internet,

however a solution that has since been developed for the Bristol Quantum Network should also be

applicable here, transmitting the public announcements using optical transceivers multiplexed into

the data line. Despite issues surrounding the generation of key, it was still possible to successfully

characterise the optical link, observing negligible cross-talk and negligible dark counts on both

available fibres, with losses of 8.70 and 9.61 dB. These measurements were performed using a

continuous-wave laser, scanning between 1530 and 1560 nm in 10 nm steps, with a launch power

of -0.97 dBm. The intrinsic dark count of the detector was (97.0± 0.1)× 103 counts/s, and it is

relative to this that we define a negligible result.

3.2 A First-Generation Testbed for Quantum Key Distribution on

Software-Defined Networks

Before any device is installed on a third-party network, there must be sufficient evidence that it

will not introduce security holes, performance issues or, in the worst case, generate a conflict that

causes a catastrophic failure. To test the compatibility of both new and well-developed quantum

technologies with SDNs, an experimental laboratory testbed was built based on BiO (see figure 3.7).

It is intended to be used for the last stage of development prior to systems being deployed in the

field, although during the infrastructure testing phase it contained only commercial QKD devices

that are known to work reliably on their own.

In this section, we first introduce the ID Quantique Clavis2, with which a quantum link can

be established. In section 3.2.2, we present the optical switch that is central to each node on BiO,

and demonstrate how it affects the Clavis2. Section 3.2.3 describes how classical information is

transmitted over the network, and section 3.2.4 covers some common devices that are incompatible

with QKD at the present time, quantifying their impact wherever possible.

3.2.1 The Clavis2 Quantum Key Distribution System

The ID Quantique Clavis2 [156, 157] is a researcher-targeted version of the Cerberus “plug & play”

fibre QKD system, capable of automatically compensating for polarisation mode dispersion; an

effect that arises when imperfections in the fibre core disrupt the cross-sectional symmetry, causing

different polarisations to propagate at different speeds. Figure 3.8 is a simplified representation of

the internal optical circuit, and a chronology of operation is given by protocol 3.1. To summarise,

Alice receives a pair of pulses, one early and one late. She encodes the former in either the {0,π} or
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16x16 Polatis Series
1000 Optical Switch

Dell PowerEdge
T630 Server

ID Quantique
Clavis2

Transmitter

ID Quantique
Clavis2

Receiver

Yenista
XTA-50S Tunable
Bandpass Filter

Oz Optics DA-100
Variable Optical Attenuator

ID Quantique ID210
Single Photon

Detector

FIGURE 3.7: Part of the first-generation testbed, capable of emulating any configuration of
the Bristol Quantum Network. The erbium-doped fibre amplifier and programmable
optical processor were loaned from other projects, so are not shown. Similarly, the
server and switch were shared between multiple experiments, so are rack-mounted
elsewhere in the laboratory. The filter and detectors were used for characterising
fibre links, both locally and in the field.
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basis. Bob measures by applying a π
2 phase shift to the late pulse or by leaving it untouched.

From equation 2.62,

α=



























|α| , for θ = 0

−|α| , for θ = π

i |α| , for θ = π
2

−i |α| , for θ = 3π
2

(3.1)

Therefore, if Alice transmitted θ = 0, only detector 1 will click, as evidenced by equations 2.71, 2.72

and 2.73, and assuming that Bob measured in the {0,π} basis. Similarly, if Alice transmitted θ = π

and Bob’s measurement choice remains unchanged, the click will be in detector 2. When sampling

from
�

π
2 , 3π

2

	

, a click in detector 1 corresponds to Alice sending θ = π
2 , while a click in detector

2 indicates θ = 3π
2 was chosen. If Alice and Bob’s bases do not match, it is equally probable that
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Polarising
Beam Splitter

Circulator

Avalanche
Photodiode

Variable Optical
Attenuator

Phase
Modulator

Mirror

Faraday
Mirror

2 1

FIGURE 3.8: Optical schematic for the ID Quantique Clavis2. Although bulk notation has
been used, the actual implementation is in fibre. Classical detectors (not shown) are
used to synchronise the two devices and detect Trojan Horse attacks. Based on figure
4.1 in [156].

only detector 1 or detector 2 will click, and there is also a chance of a coincidence. Of course, these

results are handled in the sifting step.

At the cryptographic level, the Clavis2 relies predominantly on Scarani-Acín-Ribordy-Gisin 2004

(SARG04), which is described in protocol 2.6. However, for attenuations≤ 3 dB, it falls back on BB84

(protocol 2.5) as, in this region, SARG04 is not proven secure. The secret key rate and quantum bit

error rate (QBER) both depend on loss, as illustrated by the experimental data in figure 3.9, which

was taken after Alice and Bob had become fully integrated with the testbed, leading to a 2 dB lower

bound on the attenuation. The optical link is characterised as part of the first key generation round,

meaning the initial secret key rate is lower than those returned thereafter, and this is not included

in the average for each data point. A range of tests are carried out during the characterisation

process, measuring features such as the line length and quantum visibility. The Clavis2 transmits in

the C-band (see table 3.2), with an exact wavelength of 1551.7 nm as standard, and occupies 4U in

a 19 inch rack, where 1U= 1.75 inches.
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Protocol 3.1: Plug & Play [156]

SUMMARY: Hardware protocol adhered to by the ID Quantique Clavis2 QKD system.

1. Preparation of Strong Laser Pulses.

(a) Bob generates a 5 MHz train of bright laser pulses.

(b) Each pulse is split by a 50:50 beam splitter, which directs the two halves into paths of
differing lengths.

(c) The polarisation of the half-pulse in the long arm is rotated by π
2 .

(d) The two half-pulses are incident on a 50:50 polarising beam splitter, offset from one another
in time due to the difference in their travelled path lengths. Both are output through the
same port as a result of the polarisation rotation imparted by the long arm, leaving the Bob
unit and heading towards Alice.

2. State Preparation on Weak Coherent Pulses.

(a) As each pair of half-pulses arrives at Alice, 90% of the power is diverted to classical detectors
for the purposes of synchronisation and Trojan Horse protection (see attack 3.1). Figure 3.8
omits this step.

(b) The half-pulses are reflected by a Faraday mirror, rotating their polarisations by π
2 .

(c) A phase is applied to the later half-pulse in each pair, randomly and uniformly selected from
�

0, π2 ,π, 3π
2

	

.

(d) The light is attenuated into a set of weak coherent pulses before leaving the Alice unit and
heading back to Bob.

3. State Measurement.

(a) Bob’s polarising beam splitter sends the early weak coherent pulse down the long arm, and
the late weak coherent pulse down the short arm, as a result of the rotation imparted by
the Faraday mirror.

(b) A phase is applied to the long arm, randomly and uniformly selected from
�

0, π2
	

.

(c) The two weak coherent pulses arrive on the beam splitter at the same time, interfering
with one another. In the case where Alice and Bob both sample from {0,π}, only a single
detector will click. Bob can establish which phase Alice sent by analysing the output port in
which the detection event occurs. If they both chose

�

π
2 , 3π

2

	

, the outcome is analogous. If
their bases do not match, the measurement outcome is discarded.

Attack 3.1: Trojan Horse. Eve fires a bright laser into Alice and detects the backreflections.

From this, she gains enough information to perform a successful intercept-resend (see attack 2.3)

or read off the bit values directly [158–160].

3.2.2 The Polatis Optical Switch

Central to the testbed was an OpenFlow-compatible Polatis Series 1000 optical switch with 16

input/output pairs [162]. Inside, are two banks of collimators, each containing 16 segments that
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FIGURE 3.9: Showing how (a) the secret key rate and (b) the quantum bit error rate
changes with loss for the ID Quantique Clavis2. Here, connections are established
through a variable optical attenuator, and the equivalent fibre lengths are calculated
assuming a transmission loss of 0.4 dB/km, the worst-case value given by [161]. Each
pass through the optical switch contributes 1 dB of loss, resulting in an extra 2 dB of
attenuation across all cases.

TABLE 3.2: Wavelength bands for optical communications, using the values given in [60].

Band Wavelength (nm)

O (Original) 1260-1360
E (Extended) 1360-1460

S (Short) 1460-1530
C (Conventional) 1530-1565

L (Long) 1565-1625
U (Ultra-Long) 1625-1675

can be aligned using piezoelectric actuators. Light is coupled between the two such that any

input can address any output, as summarised in figure 3.10. This is known as DirectLight beam

steering, and provides a lower-loss, lower-noise alternative to the techniques used in traditional 3D

microelectromechanical system (MEMS) switches.

Figure 3.11 shows the impact of the Polatis on the secret key rate and QBER of the Clavis2. Each

pass through the switch contributes 1 dB of insertion loss, although the quantum signal appears to

suffer no other ill effects. The duration of each key generation round varies slightly as a result of

small environmental fluctuations, such as vibrations in the vicinity of the fibre. This affects both the

amount of post-processing that needs to be performed and the time taken to reach the finite key

limit, the latter of which is dependent on loss.
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FIGURE 3.10: The internal structure of a Polatis optical switch. Each input port connects
to a fibre collimator, and a piezoelectric actuator aligns this with the collimator
corresponding to the desired output. Based on the DirectLight figure in [163].
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FIGURE 3.11: Showing how (a) the secret key rate and (b) the quantum bit error rate of
an ID Quantique Clavis2 changes depending on whether or not the quantum channel
passes through a Polatis switch. Each data point is a single, self-contained round
of quantum key distribution, including all post-processing and error analysis. The
coloured regions represent the standard error on the mean, and the variations in the
time elapsed are a reflection of the time taken to reach the finite key limit.
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3.2.3 SFP+ and QSFP+ Transceivers

The classical optical links were established using a mixture of enhanced small form-factor pluggable

(SFP+) and enhanced quad small form-factor pluggable (QSFP+) fibre transceivers, which provide

data rates of 10 Gbit/s and 40 Gbit/s respectively. SFP+ modules use 64B/66B encoding [164],

generating one 66-bit block for every 64 bits of data. The additional control bits ensure the sender

and receiver remain synchronised by introducing guaranteed bit transitions for every block, which

safeguards clock recovery [165]. This is important for schemes like Non-Return-to-Zero, that do

not send a rest condition in between each bit, meaning Alice and Bob’s clocks can drift if a long

string of successive ones or zeros is transmitted. The QSFP+ specification gives six encoding options,

including 64B/66B, Non-Return-to-Zero and Manchester Code [166], the latter of which represents

zeros as low-high signals and ones as high-low, or vice versa depending on the convention followed.

Both transceiver types are hot-pluggable, meaning they can be introduced to the network without

causing any downtime. The specific modules chosen for the testbed run at 1310 nm, minimising

crosstalk-related noise in the quantum channel. They have a maximum range of 10 km without

amplification, and those that are QSFP+ utilise 64B/66B, enabling them to communicate in a split

configuration with 4× 10 Gbit/s transceivers if required.

3.2.4 Equipment that is Detrimental to Quantum Key Distribution

Unfortunately, not all network devices are as easy to integrate with QKD as the Polatis. Here, we

consider the negative effects introduced by amplifiers and programmable optical processors, as well

as exploring the unique ways in which SDNs can provide a resolution.

Erbium-Doped Fibre Amplifiers

Erbium-doped fibre amplifiers (EDFAs) contain a length of silica optical fibre to which Er3+ ions are

introduced. Russell-Saunders notation
�

2S+1 LJ

�

can be used to represent the fine structure of the ion,

where I indicates a value of 6 for the total electronic orbital angular momentum quantum number

L, S is the total electronic spin quantum number, and J is the total electronic angular momentum

quantum number, defined as [167]

J = |L − S| , |L − S|+ 1, . . . , L + S (3.2)

As illustrated in figure 3.12, a pump laser excites the ions from their ground state into 4 I11/2

which, with a lifetime on the order of 1 µs, rapidly transition to the metastable 4 I13/2 level through

spontaneous emission. If a carrier photon in the range of 1550 nm now enters the EDFA, it will

stimulate decay of the ion back to its ground state, emitting a photon at the same wavelength as the

signal. The specified wavelength is inexact because the Stark effect from local electric fields splits

each energy level into a manifold. The irregular structure of silica means the hyperfine energies

depend on the location of each ion, so the EDFA’s amplification region appears continuous [60, 168].
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FIGURE 3.12: Illustrating the amplification process for Er3+. A 980 nm pump excites the
ion, which quickly decays into a metastable level. Hyperfine splitting is induced by
local electric fields, enabling a range of carrier frequencies to be amplified through a
process of stimulated emission back to ground.

It is well-established that amplifiers in general are incompatible with QKD by virtue of the no-

cloning theorem and the minimum number of photons required for unambiguous state discrimination

(see section 2.2.1). This is no bad thing. If perfect amplification of a quantum state were possible, it

would destroy the security of QKD. However, it is clear from the above that if quantum signals do

enter an EDFA, spurious photons will be generated at the carrier frequency. A simple solution would

be to install a bypass for the quantum channel wherever an EDFA is present, but unfortunately, this

alone is not enough to enable co-existence with classical communications in arbitrary networks.

In figure 3.13, we show that the noise profile of a Nortel Networks EDFA acting on a 1550 nm laser

will easily overwhelm weak coherent pulses at dense wavelength-division multiplexing (DWDM)

wavelengths. It should be noted that the author does not advocate spacing quantum and classical

signals so closely in the same fibre core (see section 7.4.2 for further discussion). Yet some do see it

as a way forward [169–171], and as the aim of this chapter is to begin the transition of QKD into

minimally bespoke networks, it is an approach which must be considered. In addition, such a noise

profile may be problematic if there is inter-core/inter-fibre crosstalk when using multicore/standard

single-mode fibres.

The primary noise source is superluminescence [172], where spontaneously emitted photons are

amplified through stimulated emission. Figure 3.13 shows that, when both signals are in the C-band,

up to 57.24 dB of out-of-band suppression is required to filter superluminescence out, assuming the

Clavis2 can be approximated as a 5 MHz deterministic single photon source running at 1551.7 nm

(i.e. it has an optical output power of -91.94 dBm).

It has previously been suggested that separating the quantum and classical signals into the C-band

and O-band respectively would enable the hard-wiring of quantum bypasses wherever an inline EDFA

is present, with a 1310 nm beam-dump to protect the quantum channel [173]. However, SDNs offer
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FIGURE 3.13: Noise profile for a Nortel Networks erbium-doped fibre amplifier, acting on
a 1550 nm signal.

a simpler and cheaper solution. Their flexibility means amplification is no longer restricted to pre-

defined locations, and switch-centralised nodes make it trivial to route around. From the perspective

of the classical signal, amplifying before transmission is often synonymous with amplifying after, so

under the condition that the classical power remains above the minimum threshold required by the

EDFA, it is possible to avoid polluting quantum wavelengths with superluminescent photons. For

links where amplification needs to happen prior to the classical light reaching its final destination,

SDNs provide a way to intelligently separate it from the quantum channel, whether that involves

commandeering fibres that are known to have minimal crosstalk, or sending the classical and

quantum signals down different routes entirely.

Programmable Optical Processors

Programmable optical processors are multi-function instruments that can replace a range of devices,

including filters, wavelength-selective switches and (de-)multiplexers. In BiO, the 4x16 Finisar

Waveshaper 16000s [174] is used, designed around a liquid-crystal-on-silicon optical processor;

a type of spatial light modulator. The optical schematic for a 1x4 version is shown in figure 3.14,

and figure 3.15 illustrates the impact on a Clavis2 when it is forced to pass through a Waveshaper

configured to act as a bandpass filter that is centred on the quantum channel. The dominant cause

behind an increase in the QBER is the Waveshaper’s ∼ 4.5 dB insertion loss. Naturally, this also leads

to a drop in the key rate, meaning it takes longer to reach the finite key limit, which is why there
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FIGURE 3.14: The internal structure of a Waveshaper programmable optical processor.
Each input can be de-multiplexed over four output ports, with additional filtering or
signal modulation as required. Based on the schematic in [174].

is a significant difference in the times elapsed for each scenario. From the perspective of classical-

quantum co-existence, these effects are not particularly concerning so long as the Waveshaper is used

only for classical processing. The kind of noise profile we experience with an EDFA is not present

here, so the SDN can simply route quantum signals around any programmable optical processors

that are installed in a node. However, in some circumstances, we may wish to wavelength-division

multiplex several quantum channels (see chapters 4 and 7). Here, we are unable to take advantage

of the general-purpose Waveshaper, so conventional multiplexing technologies must continue to be

used.

3.3 Time-Division Multiple Access Quantum Key Distribution

Time-division multiple access (TDMA) is an allocation mechanism that originated in mobile networks

for sharing a single base station amongst multiple terminals [175], and has since spread into wired

home networks [176]. A time-scheduling algorithm sorts each terminal into one or more non-

overlapping slots that can each accommodate a single connection at most. The exact outcome will

be decided by factors such as data rates and the number of units requesting base-station access.

In more generic communications networks, where master-slave relationships do not necessarily

exist, the situation is less simple, as devices may wish to communicate with multiple partners in

quick succession, rather than a lone, centralised hub. Furthermore, application of TDMA techniques
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FIGURE 3.15: Showing how (a) the secret key rate and (b) the quantum bit error rate of
an ID Quantique Clavis2 changes depending on whether or not the quantum channel
passes through a Waveshaper programmable optical processor. Each data point is a
single, self-contained round of quantum key distribution, including all post-processing
and error analysis. The coloured regions represent the standard error on the mean,
and the variations in the time elapsed are a reflection of the time taken to reach the
finite key limit.

to quantum signals will require additional flexibility, as unforeseen changes in key rate could be

induced by environmental factors. Luckily, this kind of malleability is exactly what SDNs pledge to

provide.

In the following section, we use our newly-built testbed to emulate an arbitrary link on BiO,

carrying out both the first demonstration of TDMA-QKD and the first experimental integration of

QKD with an SDN. We begin by outlining the time-sharing scenario, before moving on to discuss the

configuration of the emulator. We conclude with the results of the experiment, discussing ways in

which the performance could be further improved.

3.3.1 A Time-Sharing Model for Cost-Effective Quantum Key Distribution

One of the greatest barriers to widespread deployment of QKD is its financial cost, which is in the

region of £100,000 per system. Therefore, to keep spending at a minimum, each network node will

ideally contain a single transmitter or receiver, shared between every possible connection. However,

without some form of time-scheduling, this will be impossible to manage as networks grow and the

demands on each device increase. Additionally, the complexity introduced by user requirements

cannot be managed through a fixed-ratio split between each connection.
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FIGURE 3.16: A logical diagram of the time-sharing setup. Alice I, II and III are realised by
a single physical unit that can alternate between multiple initial secret keys. Similarly,
the three optical switches are emulated using only one device.

In figure 3.16, we show a logical TDMA configuration, which will be the subject of our emulation.

For a “plug & play” system like the Clavis2, the most expensive components are contained within

the receiver unit, so it makes sense in this scenario to have multiple Alices sharing a single Bob.

In reality, it is likely that each transmitter will also want to communicate directly with multiple

receivers, however this layout is adequate for the benefits we wish to demonstrate.

It is worth noting that, for sufficiently complex networks to which the latter situation applies, the

economic impact of choosing which nodes contain an Alice and which nodes contain a Bob may be

non-trivial to calculate. A simple example is given in figure 3.17, where uncertainty over the future

network topology leads to a dilemma. Even when no ambiguity exists, the optimum configuration is

still an interesting problem for networks with large numbers of highly interconnected nodes, though

further exploration is outside the scope of this thesis.

The keys generated over each TDMA connection are used to secure the dissemination of virtual

network functions. These are a complementary technology to software-defined networking, and

replace specialised network hardware with software running on generic servers, instantiating critical

services such as firewalls [177]. While network function virtualisation is a central part of BiO, it is

also frequently used in data centres where, for distances of up to 10 km, classical information is

often transmitted at 1310 nm [178, 179], increasing the potential for commercial 1550 nm QKD

devices to be multiplexed with pre-existing technologies straight out of the box. This means the
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FIGURE 3.17: Consider a pair of long-distance four-node ring networks. Some combination
of links 1-7 will be added in the future, however the exact plans are unclear. The
simplest two outcomes are for only links 1-6 or only link 7 to be built. In the first case,
nodes X and Y should both contain Bobs, for the reasons outlined in this section. In
the second case, node X should contain an Alice and node Y should contain a Bob (or
vice versa), to ensure the nodes at either end of link 7 can operate with only a single
transmitter or receiver in each. However, at the time of initial construction, there is
no way of knowing which situation to prepare for, and the only way forward is to
apply some form of risk-reward analysis. As the number of combinations and the size
of the network increases, so does the complexity of minimising deployment costs,
even if all future expansions are pre-determined. For critical pieces of infrastructure,
it may not be possible or worthwhile to reconstruct every node if a suboptimal design
has been implemented from the beginning.

work we present here has consequences that reach far beyond the Bristol Quantum Network.

3.3.2 Bristol is Open Emulator

With the experiment defined, our next step is to configure the testbed such that it accurately emulates

an all-optical SDN. Each node of BiO contains a Series 6000n Polatis switch [180], which is nothing

more than a higher-capacity version of the Polatis in our testbed. Therefore, we can set this to route

light through spools of SMF-28e fibre and back into itself, as a way of representing multiple nodes

in a network. It is over these links that Alice and Bob’s quantum channel can be established.

Different fibres were used for each time-share, with lengths of 5 km, 15 km and 25 km, which

corresponds to attenuations of 4 dB, 9 dB and 10.5 dB. These were chosen purely based on their

availability, rather than because they could be used to model a specific link, and for the most part

their loss per km exceeds typical levels due to stresses induced by long-term (mis)use across a large

number of experiments. Thus, while real fibre was useful for demonstrating TDMA-QKD, an Oz

Optics DA-100 variable optical attenuator was also connected to the Polatis to get a full range of

results.
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FIGURE 3.18: A physical diagram of the emulator, based on a Bristol is Open node. The
virtual network function servers have data storage, software encryption and data
transmission capabilities, drawing key from the QKD controller. d1, d2 and d3 are
5 km, 15 km and 25 km long, with attenuations of 4 dB, 9 dB and 10.5 dB respectively.
Light can also be routed into a variable optical attenuator (VOA) or erbium-doped
fibre amplifier (EDFA). The SDN controller communicates using OpenFlow messages
through OpenDaylight.

The classical channel for QKD (referred to as the classical QKD channel hereafter) was created

via the internet, so as to reduce the number of connections into the switch, thereby leaving room

for future expansion. As already discussed in section 3.1.3, it transpired that this approach did not

work when applied to field trials between the University of Bristol and third-party nodes, so the

internet connection was eventually superseded by an additional optical link. It is common for data

centres to transmit classical signals in the O-band, so the transceivers outlined in section 3.2.3 are

adequate for our experiment.

Figure 3.19 shows the interaction of the various software components within the emulator. The

time scheduler runs in the application plane (see figure 3.3), taking responsibility for determining

when Alices I, II and III should be allowed to communicate with Bob, according to both the amount

of key still available on each link and rates of attrition. It differs from a classical time scheduler

in that it must react according to changes in environmental conditions that affect the raw key

rates. For this experiment, we chose to wait until at least one round of QKD had concluded before

allowing a connection to be terminated, rather than defining the width of the time slot in advance.

An alternative approach would be to switch to another link at the end of a fixed window and, if key

generation is incomplete, use a dynamic priority list in the scheduler to resume the session at a later

point. While this prevents other links from running out of key, an avenue that could otherwise be
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FIGURE 3.19: Workflow for the software layer of time-division multiple access quantum
key distribution.

exploited by an attacker looking to denial of service (DoS) the entire network, it introduces greater

complexity on the device side, as a mechanism is required for QKD session resumption. In either

case, monitoring the raw key rate in real time means the SDN can reconfigure the quantum path to

circumvent any bottlenecks, subject to the topology of the network.

Information on the desired Alice-Bob pairing is fed to both the SDN and QKD controllers. Of

these, the former was implemented by a collaborator, along with the programming of the time

scheduler, so no further details will be provided herein. During key generation, Alice and Bob must

authenticate each other using an initial secret key that is stored at an access point on the QKD

controller. To allow for partner swapping over an arbitrary number of links without modifying any

device-specific software, PartnerSwapper was written. This is a C++ program that cycles Bob’s

initial secret key depending on which Alice he needs to communicate with, drawing on a dedicated

key store. Keeping the shared secret separate from other keys on the system ensures it does not

accidentally get used for a different purpose, which would then prevent the store from being

replenished after it empties.

The Clavis2 is controlled by the QKDSequence program, provided by ID Quantique. It also

implements all the necessary post-processing, however to use the key as part of a separate application,

a programme had to be written that extracted it using the proprietary IDQ3P protocol [181]. This

was fed via a key store to the Advanced Encryption Standard running in Galois/Counter Mode (AES-

GCM) which, for the work in this thesis, was implemented using OpenSSL, a free and open-source

C++ library made available under the Apache License Version 2.0.

If enough key has been generated to terminate the quantum link, and no other requests are
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queued, ISKDelete will remove the initial secret key from the access point to ensure it is never

reused. This is not strictly necessary so far as functionality is concerned, because PartnerSwapper

will overwrite anything already stored there. However, from the perspective of trying to minimise

unforeseen exploits, it is an important addition.

3.3.3 Results

Using the setup just described, TDMA-QKD was successfully implemented. Three virtual network

functions were securely delivered over spools of optical fibre to separate emulated servers, using

in-flight encryption with a 256-bit quantum key. Over an attenuation equivalent to the 10 km

maximum range of a 1310 nm data centre network, the Clavis2 generated 34.8± 0.3 kB of secret

key. In contrast, the largest virtual network function was 15.9 GB, meaning 457,569 rounds of

QKD would have been required if the one-time pad (OTP) had been used as the encryption scheme

instead of AES-GCM. From the key rates in figure 3.9, this would have taken over four years to

complete, requiring the author to apply for a significant extension to his PhD.

Of course, in the TDMA scenario, links are unlikely to remain active for more than a few rounds,

and so the average initialisation time of the Clavis2 will have a greater impact on the performance

of the network than would otherwise be expected. The initialisation time is defined as how long it

takes for the first key to be generated once the QKD controller has received a command to open a

quantum channel, as plotted in figure 3.20. We also calculate a theoretical lower bound, for the

situation where the characterisation data from a previous connection can be used without detriment,

allowing the hardware measurements to be skipped at launch. For attenuations greater than 9 dB,

key generation starts to become intermittent, so while a quantum-secure link can be established for

up to 10 dB of loss, the initialisation time is no longer a reliable figure of merit.

Another point to consider is how many Alices can be sustained by a single Bob. Consider the

case where the Clavis2 carries out one round of QKD, generating |k| secret bits. Then, for a block

cipher that takes a |kC|-bit key as input, the number of encryption keys generated over a single link

will be

Kmax =
� |k| − |kinit|

|kC|

�

(3.3)

where |kinit| is the length of the initial shared secret and b·c is the floor function. In the special case

of the Clavis2 paired with AES-GCM encryption, |kinit|= |kC|= 256. Therefore,

Kmax =
�

|k|
|kC|

�

− 1 (3.4)

If the block cipher can encrypt |m|max bits of data under a single key then the total number of bits

that can be encrypted after one round of QKD is

|m|total = Kmax|m|max (3.5)
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FIGURE 3.20: Showing how the time taken to complete the first round of quantum key
distribution changes with loss for the ID Quantique Clavis2. Here, connections are
established through a variable optical attenuator, and the equivalent fibre lengths are
calculated assuming a transmission loss of 0.4 dB/km, the worst-case value given
by [161]. Each pass through the optical switch contributes 1 dB of loss, resulting in
an extra 2 dB of attenuation across all cases.

and so the time taken to exhaust the material provided by the Clavis2 can be expressed as

texhaust =
|m|max

ς

��

|k|
|kC|

�

− 1
�

(3.6)

Here, ς is the amount of classical data that can be transmitted per unit time, i.e. the total information

capacity of the channel minus the number of bits consumed by communication protocol headers.

We call this the adjusted channel capacity, more information on which can be found in section 4.1.

From the above, we find that the maximum number of transmitters for a single Clavis2 receiver

is

Dt =
�

texhaust

tinit

�

=









|m|max

ς





|k|
|kC|
−
¦

|k|
|kC|

©

f

tinit
−

1
tinit











 (3.7)

where tinit is the initialisation time. {·} f indicates the fractional part of a number, which can be

expressed as a Fourier series such that
§

|k|
|kC|

ª

f
=

1
2
−

1
π

∞
∑

i=1

1
i

sin
�

2πi
|k|
|kC|

�

(3.8)
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Equation 3.7 can now be rearranged, such that

Dt =

�

|m|max

ς

�

Rs/t

|kC|
−

1
tinit

�

1+
§

|k|
|kC|

ª

f

���

(3.9)

where Rs/t is the secret key rate of the Clavis2 with respect to time.

Figure 3.21 plots equation 3.9 against loss, recalling that we encrypt with AES-GCM, meaning

|m|max = 239 − 256 (see section 2.1.1). The worst-case scenario is considered, where the classical

transmitter has detailed information on the receiver, so the 11584-bit maximum ethernet pay-

load [182] can be used, consuming 95.3% of the total channel capacity. The discontinuity in the

maximum number of transmitters around 3 dB stems from a jump in Rs/t. A deeper examination of

the data uncovers a matching increase in the number of secret bits generated, implying that the

number of raw bits exchanged per round went up at this point, perhaps overcompensating for the

increase in QBER and reduction in sifting efficiency that arises from the change in QKD protocol.

However, this same jump is not present in the secret key rates used to calculate the upper bounds,

despite an identical trend in the number of bits generated. Thus, the cause of the discontinuity in

Rs/t must lie elsewhere.

The difference between the 3 dB value of Rs/t that we measure and eRs/t, the value predicted by

extrapolating a fit that was applied to the higher-attenuation secret key rates, is

∆Rs/t = Rs/t − eRs/t =
|k|
tinit
−
f|k|
etinit

(3.10)

In a standard initialisation round,
tinit = tchar + |k|tssb

etinit = tchar +f|k|tssb

(3.11)

where tssb is the average time to generate a single secret bit, and tchar is the time taken to perform

characterisation. In contrast, for the upper bound on the number of timeshareable devices,

tinit = |k|tssb

etinit =f|k|tssb

(3.12)

Therefore, in the standard case, we can substitute equation 3.11 into equation 3.10 such that

∆Rs/t =
|k|

tchar + |k|tssb
−

f|k|

tchar +f|k|tssb

6= 0 i.f.f. |k| 6=f|k| (3.13)

For the upper bound, application of equation 3.12 means equation 3.10 becomes

∆Rs/t =
|k|
|k|tssb

−
f|k|

f|k|tssb

≡ 0 (3.14)

This explains why, for the initialisation process implemented on the Clavis2, a jump in the number of

secret bits leads to a discontinuity in the secret key rate and, by extension, the number of transmitters
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per receiver. It also clarifies why the same behaviour is not present in the case of the upper bounds,

and explains why they converge on the data as the attenuation increases, because a higher loss will

cause tssb to go up, while tchar remains roughly constant. Therefore, eventually, the key generation

step will become the dominant factor in the number of devices that can be time-shared.

It is traditional for TDMA schemes to ensure transmissions from different users do not overlap

by introducing an idle period, known as a guard interval, between each time slot. In TDMA-QKD,

this may be unnecessary; guard intervals are certainly not required for the setup presented herein,

and so figure 3.21 does not take them into account. First, the length of each time slot is flexible, so

Alice cannot predict exactly when to open a channel and should only do so when notified that the

previous user has disconnected. It should be observed that, for the Clavis2, Bob does not have the

option to specify an IP address for Alice, so this cannot be handled by passing connection initiation

responsibilities to him. Second, if he is already occupied and a recusant Alice attempts to open

a classical channel through the QKDSequence software, she will find herself unable to connect,

without affecting the link already in use. The quantum channel is only triggered on successful

establishment of a classical communications line, and is the first to terminate, as post-processing

must follow quantum bit (qubit) exchange. Hence, in both cases, it seems unlikely that information

from different connections will overlap in the absence of an expressly programmed guard interval.

3.4 Outlook

In this chapter, we have presented the first experimental integration of QKD with an SDN, securing

the data plane and successfully time-sharing a single Bob between multiple emulated Alices. TDMA-

QKD enables each quantum device to support up to 201 links when deployed in architectures similar

to that of the Bristol Quantum Network, allowing asymmetric configurations of QKD devices on a

massive scale, and heavily reducing the cost of quantum security. There is potential for expansion

to 515 links by changing the way in which the ID Quantique Clavis2 initialises each connection,

with further improvements subject to increases in the key rate. Separation of the time scheduler

from the program that loads initial secret keys means the control plane remains hardware-agnostic.

Therefore, the work presented herein could be extended to other forms of quantum cryptography as

and when they reach a similar stage of maturity to QKD.

The possibility has been shown for commercial QKD devices to operate within normal parameters

alongside hardware that is central to an SDN, without a need to modify pre-existing infrastructure.

The Polatis optical switch is fully compatible with the Clavis2, and while EDFAs and programmable

optical processors cause issues, they are trivial to circumvent. This is a crucial milestone in the

effort to use QKD in real-world networks, removing hurdles that would otherwise have prevented

its widespread adoption.

Finally, data centres are a prime target for attackers looking to steal vast quantities of information.

They are a key market for SDNs, and transmit classical information in the O-band, freeing up
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FIGURE 3.21: Showing the maximum number of senders per receiver in a time-division
multiple access quantum key distribution network, assuming that all links have the
same attenuation. Here, data is encrypted using the Advanced Encryption Standard
in Galois/Counter Mode, with keys provided by the ID Quantique Clavis2. Both 10G
and 40G networks are considered, corresponding to data rates of 10 Gbit/s and 40
Gbit/s respectively. Connections are established through a variable optical attenuator,
and the equivalent fibre lengths are calculated assuming a transmission loss of 0.4
dB/km, the worst-case value given by [161]. Each pass through the optical switch
contributes 1 dB of loss, resulting in an extra 2 dB of attenuation across all cases.

wavelengths in the 1550 nm region. Thus, while the experiments presented herein were aimed

towards the Bristol Quantum Network, the results are applicable to other pieces of infrastructure,

and the communication models are transferable, illustrating the wider relevance of this work. QKD

is also particularly well-suited to network-critical communications, which need to be highly secure

and can tolerate lower key rates when compared to many other applications. The obvious next steps

for this line of research should, therefore, be to secure the control plane of the SDN using quantum

keys, focusing on the OpenFlow messages in particular.

We close by detailing construction of the first two nodes in the Bristol Quantum Network, between

which a QKD channel was established, using the key to encrypt data with an OTP. When isolated

from the nodes that have been built since, these can double as a distributed second-generation

testbed, something which is possible thanks to the reconfigurability of the SDN.
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3.4.1 Construction of the Second-Generation Testbed and Bristol Quantum

Network

Having shown that QKD could be integrated with an SDN when both Alice and Bob were in the

same physical location, the next logical step was to separate them. In doing so, the first two nodes

for the Bristol Quantum Network were constructed, capable of being detached from the remainder

of the network so as to function as a distributed version of the testbed.

We began by establishing a quantum link between the Centre for Nanoscience & Quantum

Information and the Merchant Venturers Building, the relative locations of which are shown in

figure 3.5. To simplify troubleshooting, a stripped-down node structure was employed, as depicted

in figure 3.22. Here, the optical switch was realised by a 192x192 Polatis used in BiO, replacing the

16x16 version around which the first generation testbed was based. Thus, the qubits transmitted

during this experiment were the first to be sent over the Bristol Quantum Network, with the initial

QKD-keyed OTP-encrypted message being sent by the author at 12:49:19 on Tuesday 26th January

2016 from the Centre for Nanoscience & Quantum Information to the Merchant Venturers Building,

using the ID Quantique Secure Chat software. As shown in figure 3.23, the average secret key rate

was 3.30±0.07 kbit/s, with a QBER of 0.713±0.003%, over a period of 3 hours 35 minutes, during

which 5.13 MB of key was generated.

Once it had been shown that the link was functioning correctly, the nodes were built up into their

current configuration. A 192x192 Polatis was introduced to the Centre for Nanoscience & Quantum

Information, upgrading the site to be fully reconfigurable. The internal crosstalk of the switch was

characterised between 1500 and 1630 nm, as defined by the wavelength range of the laser available.

Only a subset of every possible input/output combination was sampled, incorporating all obvious

extremes. This was because, even when we limit our analysis to one classical and one quantum fibre

with a fixed laser wavelength, there exist 1922 × 1912 = 1.34× 109 ways of configuring the Polatis.

Naturally, it is infeasible to test all of these.

The best scenarios were when the quantum and classical channels both exited the switch via

outputs adjacent to their inputs, or when the quantum channel had its input and output ports

reversed, such that it was counter-propagating with the classical channel. Then, the crosstalk was

negligible, as measured by an ID 210 single-photon detector, with a dark count of (97.0± 0.1)×103

counts/s. The worst case was when both links were co-propagating within the switch and their light

paths crossed internally, results for which are shown in figure 3.24.

The completed Centre for Nanoscience & Quantum Information node is shown in figure 3.25, with

an equivalent setup in the Merchant Venturers Building, and a bundle of 144 fibres connecting the

two. When interfacing with the rest of the network, additional challenges were introduced regarding

the classical QKD channel. Previously, this was realised by establishing an internet connection

between the QKD controllers, through a low-security local network that was physically separate

from the rest of the university’s communications infrastructure. Unfortunately, it was not possible to

set up a similar framework across the entire city, so an alternative solution was required. The most
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FIGURE 3.22: Illustrating the setup used for the first transmission over the Bristol Quantum
Network. An optical switch was subsequently added to the Centre for Nanoscience &
Quantum Information as both nodes became fully populated.
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FIGURE 3.23: Showing (a) the secret key rate and (b) the quantum bit error rate for an ID
Quantique Clavis2 installed on the first link of the Bristol Quantum Network, where
Alice and Bob were separated by a fibre-distance of ∼ 1.1 km. The coloured regions
represents the standard error on the mean.
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FIGURE 3.24: Showing the crosstalk from a single classical channel into a single quantum
channel when their light paths cross inside the Polatis switch. Here, the launch power
on the classical link was −7.09± 0.01 dBm; the lowest point at which the laser could
be operated.

obvious choice was to transmit the public announcements across the same fibres as the encrypted

data, which has been successfully implemented and, due to the scale of BiO, continues to be feasible

at wavelengths in the region of 1310 nm.
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FIGURE 3.25: The second-generation testbed, capable of emulating any configuration
of the Bristol Quantum Network and acting as a fully-fledged fifth node. Original
photograph: Richard Collins.
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QUANTUM-SECURED COMMUNICATIONS

Declaration of Work

I developed the theory, carried out the experiments that investigate classical
overheads, and performed the simulations, all unassisted.

Here, we will justify our choice to use the Advanced Encryption Standard running in Galois/-

Counter Mode (AES-GCM) for encrypting data in chapter 3, as it will form the foundation for the

rest of this thesis. Since its inception, quantum key distribution (QKD) has been seen as a method for

achieving mathematically unbreakable communications by using it in conjunction with the one-time

pad (OTP) [76, 183]. While the importance of a provably-secure method for sharing a single-use key

is undeniable for the most sensitive of communications [10, 184], the impact on everyday security

is less clear. Many recognise that, for the time being at least, it will be necessary to continue using

computationally-secure alternatives, because even cutting-edge QKD systems still have relatively

low secret key rates [87, 185, 186]. However, very little has been said on when these alternatives

can be superseded by the OTP, if at all.

In sections 4.1 and 4.2, we present two arguments as to why it is unlikely that single-qubit

discrete-variable quantum key distribution (DV-QKD) will ever be used with OTP encryption in

generic networks. Although there are steps that can be taken to improve these odds, they will be

challenging to accomplish before the deployment of quantum-safe cryptography becomes a critical

concern, and commercial entities will need to be persuaded that the financial impact is worth

bearing.
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Of course, there are other forms of QKD to which our arguments may not apply. Full analyses of

continuous-variable quantum key distribution (CV-QKD) [187], higher-dimensional QKD [188, 189]

and floodlight quantum key distribution (FL-QKD) [190, 191] are outside the scope of this thesis,

however some preliminary details will be given in section 4.4.1.

It should also be noted that responsibility for everyday information-theoretic security does

not fall solely on the shoulders of QKD. Advances must also be made with respect to the OTP,

and section 4.3 summarises the developments required for it to become a widespread method of

encryption, assuming there exists some efficient way of distributing key.

4.1 The Effect of the Classical Channel on Key Generation

We begin by considering an element of QKD that has not been focused on in the past. It is implicitly

assumed that networks in need of quantum security will have enough capacity to support the classical

QKD channel. However, experimentally, this is not necessarily true. We introduce the following

condition which, while seemingly arbitrary in the amount of data, is a logical starting point that

enables the development of a more refined model for fully evaluating the classical requirements

imposed by QKD.

Condition 4.1: Assume a communications link is constantly transmitting data and, in doing

so, is operating at half its classical capacity. Assume also that quantum signals can be injected

without generating any secondary artifacts that affect the above. We can encrypt all data using

a QKD-keyed OTP without artificially capping the classical data rates or increasing the network

capacity, so long as Rc/s ≤ 1, where Rc/s is the number of bits that must be sent across the

classical QKD channel for every bit of secret key that is generated.

The Gottesman-Lo-Lütkenhaus-Preskill (GLLP) security proof against general attacks on Bennett-

Brassard 1984 (BB84) [89] provides an equation for the secret key rate that can be re-written in

terms of physical parameters [192] such that

Rs/p ≥ ζ
�

− QµH2

�

Eµ
�

+Q1 [1−H2 (E1)]
�

(4.1)

Here, Rs/p is the number of secret bits transmitted per weak coherent pulse. If N is the number of

pulses transmitted by Alice then ζ is the fraction of these that contribute to the sifted key (∼ 0.5

for vanilla BB84, or less if decoy states are used). H2 (x) = −x log2 (x)− (1− x) log2 (1− x) is the

binary entropy function, while Eµ and E1 represent the total and single-photon quantum bit error

rates (QBERs) respectively. Provided Alice and Bob prepared and measured in the same basis, Qµ is

the probability of Bob experiencing a detection as a result of a weak coherent pulse, and

QΓ = YΓ × Prob (γ= Γ ) =
YΓ e
−µµΓ

Γ !
(4.2)
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Rc/p

Rc/s

Rs/p

Classical Bits

Weak Coherent
Pulses

Secret Bits

Usable Secret
Bits

etc.

|kinit|
N

FIGURE 4.1: A graphical representation of the relationships between Rc/p (the number
of classical bits per pulse), Rs/p (the number of secret bits per pulse) and Rc/s (the

number of classical bits per usable secret bit). Each secret bit will contribute 1− |kinit|
NRs/p

“usable” bits to a terminal application such as encryption, where N is the total number
of pulses. The remainder will go towards replenishing the initial secret key, which is
|kinit| bits in length.

YΓ is the probability of Bob experiencing a detection given Alice transmitted a Γ -photon state,

meaning Q1 corresponds to single-photon terms.

The number of classical bits that must be communicated for every pulse is given by

Rc/p =
|Ω|+ |Υ |+ 2|τ|+ |7|

N
(4.3)

|Ω| is the number of bits required both to announce the bases and identify any pulses that failed to

arrive, |Υ | is the number of bits that must be communicated during the error correction procedure,

|τ| is the length of the authentication tag, and |7| is the number of extraneous bits that would

not normally be considered in theoretical treatments of QKD, such as those required for channel

characterisation and packet switching, both of which will be addressed in more detail later.

Figure 4.1 illustrates the relationships between each of the R-values. After accounting for the

number of bits |kinit| that will be used as the initial secret key in the next round of the protocol, we

find that for every remaining bit of secret key, the number of bits we must send across the classical

QKD channel is

Rc/s =
Rc/p

Rs/p − |kinit|/N
≤

|Ω|+ |Υ |+ 2|τ|+ |7|
Nζ

�

− QµH2

�

Eµ
�

+Q1 [1−H2 (E1)]
�

− |kinit|
(4.4)
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From this, it is clear that condition 4.1 cannot be fulfilled by DV-QKD in its current form. Consider

the limiting (and highly unrealistic) situation where we replace Alice’s attenuated laser with a

deterministic single-photon source, meaning no decoy states are required and Q1 = Y1. Through

fluke or otherwise, Bob’s bases match Alice’s perfectly, meaning ζ = 1. Contact between the two

parties is a one-off event that will never be repeated, so |kinit| = 0. We use a lossless, error-free

channel which does not rely on any extraneous communication, and give Bob perfect single-photon

detectors, meaning |Ω| = 2N (this could be reduced with a non-standard approach to the basis

announcements if a biased QKD protocol is used), |Υ | = |7| = 0 and Y1 = 1. H2 (x)→ 0 as x → 0, so

Rc/s→ 2
�

1+
|τ|
N

�

(4.5)

Of course, while condition 4.1 stipulates that Rc/s ≤ 1, equation 4.5 only marginally violates this,

because we require N ¦ 105 for finite-key security [193] and |τ| does not typically exceed 128 bits.

However, it is difficult to ascertain whether or not the size of the violation matters, because our

model fails to quantitatively address the impact of such an outcome on the classical data rates or

network capacity. In addition, the assumptions made by condition 4.1 are not necessarily appropriate

for many real-world networks, as user demands can fluctuate over time.

To address the above, a more general approach is required. Consider an arbitrary symmetric

cipher that can be used to encrypt |m|max bits of data for every |kC| bits of key. Each run of a QKD

protocol uses Rc/s|k| classical bits to generate |k| bits of key, meaning |k||m|max
|kC|

bits of data can be

encrypted per run.

The network is defined to have a constant level of off-peak traffic from time t = 0 to t = t1, and

a constant level of on-peak traffic from t = t1 to t = t2. In practice, there will still be some variation

on the demand within these windows, however it should be small relative to the difference between

the two, as one would expect in a “9-to-5” office building, for example. There is no encryption-related

penalty for capping the data rates further than absolutely necessary, so these levels of on-peak and

off-peak traffic may be considered upper bounds.

During off-peak periods, the adjusted channel capacity per unit time (recall, the total channel

capacity minus the number of bits consumed by communication protocol headers for the data) can

be expressed as

ς= ς∨ + u∨ (4.6)

where ς∨ is the number of bits of off-peak data that are transmitted per unit time and u∨ is the

unused remainder.

To encrypt all the off-peak data using symmetric keys generated by QKD, we require

u∨ ≥
Rc/sς∨|kC|
|m|max

(4.7)
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FIGURE 4.2: A graphical representation of the relationships between the channel variables
used in this chapter, considering cases when the on-peak channel (a) does not, and
(b) does take advantage of any unused off-peak capacity. We consider a simplified
scenario where encryption is performed with the one-time pad, meaning 1 bit of
key is required for each bit of data, and so |kC|

|m|max
= 1. Although the off-peak and

on-peak channels are depicted as being next to one another, it is assumed they will be
separated in time and realised by the same physical fibre, with the off-peak channel
preceding the on-peak.

Here, |k|= ς∨|kC|
|m|max

is the number of secret bits that must be generated per unit time to encrypt at a

rate defined by ς∨. Rearranging and substituting equation 4.6 into equation 4.7 gives

ς∨ ≤
ς

1+
Rc/s|kC|
|m|max

(4.8)

Therefore, for encrypted data,

ςt1 = ς∨ t1

�

1+
Rc/s|kC|
|m|max

�

+ u′∨ t1 (4.9)

Here, u′∨ is the channel capacity that remains unused after the classical QKD link has been introduced,

as shown in figure 4.2a. Similarly, during on-peak periods,

ς= ς∧ + u∧ (4.10)

where ς∧ is the number of bits of on-peak data being transmitted per unit time and u∧ is the unused

remainder.

When encrypting the on-peak data using keys generated by QKD, we can take advantage of

u′∨ to share additional key before it is required, reducing the amount that needs to be transmitted
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during on-peak times (see figure 4.2b). It should be noted that the on-peak and off-peak channels

are additive because, for fixed periods of existence, they are independent from one another. As a

result, we mandate

u∧ (t2 − t1) + u′∨ t1 ≥
Rc/sς∧|kC|
|m|max

(t2 − t1) (4.11)

Rearranging and substituting equations 4.9 and 4.10 into equation 4.11 gives

ς− ς∧ ≥
Rc/sς∧|kC|
|m|max

−
�

ς− ς∨

�

1+
Rc/s|kC|
|m|max

��

︸ ︷︷ ︸

†

t1

t2 − t1
(4.12)

We assume † is non-zero, as otherwise equation 4.12 reduces to the trivial case (surplus key cannot

be generated during off-peak periods when u′∨ = 0). This means equation 4.8 restricts † to always

be positive, hence

t1

t2 − t1
≥
ς∧

�

1+
Rc/s|kC|
|m|max

�

− ς

ς− ς∨
�

1+
Rc/s|kC|
|m|max

�
(4.13)

We can put these equations in context by measuring Rc/s for a real system. The ID Quantique

Clavis2 is a natural choice, given the work done in chapter 3. In table 4.1, we give values both for a

near-lossless channel and at 9 dB attenuation (recall, the highest loss that we can tolerate before

key generation becomes intermittent). The former was implemented by placing Alice and Bob next

to each other and establishing a direct connection with the shortest fibre available that, to within

the precision of the powermeter, had 0 dB loss. At the time of taking measurements for the latter,

Alice and Bob were located in separate nodes for metropolitan network tests. The fibre between

them contributed 1.4 dB of loss, so the remaining 7.6 dB was introduced using a variable optical

attenuator. The number of classical bits broadcast by the QKDSequence control software can be

measured using Wireshark, and the Clavis2 keeps track of the number of secret bits generated in

each round. The average Rc/s was then calculated from these two values, for a 256-bit initial shared

secret. We do not consider any additional overheads that are introduced by the physical layer, as

these add linearly, so are incorporated into the channel capacity implicitly.

There are a number of reasons why the results in table 4.1 are so extreme. First, the potential

for the classical channel to be a limiting factor has, to the author’s knowledge, never previously

been scrutinised at this level, so commercial systems are unlikely to have been optimised and there

may be scope to reduce the communication resources consumed by the Clavis2. However, there are

also some fundamental restrictions. The Transmission Control Protocol (TCP) [194] forms the basis

of the Clavis2 public channel. It divides data into a series of packets, adding a minimum of 160 bits

to each in the form of a header that contains pieces of information like the destination port and a
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TABLE 4.1: Average number of classical bits transmitted by the ID Quantique Clavis2 per
secret bit

�

Rc/s
�

for both the minimum and maximum attenuations at which key is
reliably generated. These values are unlikely to have been optimised, so should not
be considered lower bounds.

Round Type Quantum Channel Loss (dB) Rc/s

Initialisation 0.00+0.01
−0 196.4± 0.4

Standard 0.00+0.01
−0 195.9± 1.1

Initialisation 9.00± 0.01 757.3± 9.6
Standard 9.00± 0.01 753.9± 9.9

checksum. In actuality, the Clavis2 adds a total of 256 bits on top of the payload due to the inclusion

of optional fields. This is then encapsulated in an Internet Protocol version 4 (IPv4) [195] packet

with a header that is 160 bits both at minimum and in the case of the Clavis2. It should be noted

that as the Internet Protocol version 6 (IPv6) [196] becomes more prevalent, the minimum header

size will increase to 320 bits. Finally, the IPv4 packet is encapsulated in an Ethernet II [182] frame

that contributes an extra 144 bits, and requires a 96-bit interframe spacing. This is summarised in

figure 4.3.

As one would expect, a higher loss in the quantum channel negatively impacts Rc/s. At 9 dB

attenuation, the number of raw bits that contribute to each secret bit is greater than at 0 dB, and so

more information must be exchanged per secret bit over the public channel. In addition, the Clavis2

relies on BB84 when the loss is ≤ 3 dB and Scarani-Acín-Ribordy-Gisin 2004 (SARG04) otherwise.

In the case of the latter, Alice announces two states from a choice of four instead of one basis from

a choice of two (see protocol 2.6), quadrupling the information she must transmit for each qubit

received by Bob.

Finally, it can be seen that, as an overall percentage, relatively little information needs to

be communicated during the initialisation period. This makes sense given it mainly consists of

calibrative tasks, involving direct measurements of features like the length of the transmission line.

TCP
Header

IPv4
Header

≥160 bits≥160 bits112 bits 32 bits≤11584 bits

Payload
(Data)

Ethernet II
Footer

Ethernet II
Header

 

≥96 bits

Interframe
Spacing

FIGURE 4.3: The encapsulation structure for an Ethernet II frame containing an Internet
Protocol version 4 (IPv4) packet, which in turn contains a Transmission Control
Protocol (TCP) packet. While in principle it is possible to transmit a 11,584-bit
payload, this can only happen if it is known that Bob will accept packets of such
size. Otherwise, the maximum payload is restricted to 4288 bits, calculated using the
limits given in [197].

Figure 4.4 takes the values of Rc/s from table 4.1, and plots the minimum time ratio from
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equation 4.13, assuming we want to encrypt with a QKD-keyed OTP, meaning |kC|
|m|max

= 1. We vary

both the on-peak and off-peak data rates, as well as fixing the off-peak traffic to give a clearer

picture of the limiting cases. While

t1

t2 − t1
→∞ as ς∨→

ς|m|max

|m|max + Rc/s|kC|
(4.14)

a network operating close to this limit can be simulated by setting

ς∨ =

�

ς|m|max

|m|max + Rc/s|kC|

�

e

(4.15)

where b·ce means that we round down to the nearest multiple of machine epsilon e; the difference

between 1 and the next-closest number that, on a computer, is distinguishably greater than 1. In

broader terms, we are using e (= 2−52 for the work presented herein) as a foundation for defining

the highest value of ς∨ that can be evaluated before our simulation breaks down.

We plot figure 4.5 in similar fashion, continuing to rely on QKD as a means of distributing the

symmetric key, but this time encrypting with AES-GCM, such that |kC|
|m|max

= 256
239−256 [18].

The results make clear that networks like the Washington-Moscow hotline [10], which need

high security and experience low volumes of traffic for long periods, will be able to use a QKD-keyed

OTP if the classical channel is the only limiting factor. However, day-to-day networks will have to

continue using computationally-secure encryption. Not only does AES-GCM require off-peak times

per second of on-peak time that are orders of magnitude lower than for the OTP, but the off-peak

data rates are limited to approaching 99.9999(6)% of the channel capacity at worst (calculated

from equation 4.14 for an initialisation round at 9 dB loss). In contrast, the OTP restricts this to

approaching 0.5078(7)% at best (a standard round at 0 dB loss), given the values of Rc/s measured

for the Clavis2. Finally, we can get much closer to this limiting value for AES-GCM before t1
t2−t1

rapidly approaches infinity, as evidenced by comparing subfigures 4.4e and 4.4f with subfigures 4.5e

and 4.5f.

We now provide a more comprehensive formulation of the terms that a network must fulfil

for the OTP to be used in conjunction with QKD. While we do not explicitly cover cases that can

be split into three or more distinct periods of traffic, these can always be approximated by an

on-peak/off-peak model, though with slightly pessimistic estimates as a result. Our model is general

enough to be representative of most everyday networks, and is summarised by condition 4.2, which

reduces to condition 4.1 if |m|max = |kC| (each bit of key encrypts one bit of data), t1 = 0 while

t2 − t1 = 1 (the amount of traffic remains constant at all times), and ς∧ =
ς
2 (the link operates at

half its classical capacity).
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FIGURE 4.4: Showing the amount of off-peak time required per second of on-peak time
in order to encrypt all data with a quantum key distribution (QKD)-keyed one-
time pad, and considering only limitations imposed by the classical QKD channel
for the ID Quantique Clavis2. We present results for (a) 0 dB loss in the quantum
transmission line, with varying on-peak and off-peak traffic (mathematically, the
percentage channel capacity consumed by classical data during on-peak and off-peak
times is ς∧/ς and ς∨/ς respectively); (b) 9 dB loss in the quantum transmission line,
with varying on-peak and off-peak traffic; (c) and (d) 0 dB and 9 dB losses in the
quantum transmission line respectively, with varying on-peak and no off-peak traffic
in both cases; (e) and (f) 0 dB and 9 dB losses in the quantum transmission line
respectively, with varying on-peak and

�

ς|m|max
|m|max+Rc/s|kC|

�

e
off-peak traffic in both cases,

where b·ce means that we round down to the nearest multiple of machine epsilon e.
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FIGURE 4.5: Showing the amount of off-peak time required per second of on-peak time
in order to encrypt all data with the Advanced Encryption Standard running in
Galois/Counter Mode, keyed using quantum key distribution (QKD) and considering
only limitations imposed by the classical QKD channel for the ID Quantique Clavis2.
We present results for (a) 0 dB loss in the quantum transmission line, with varying on-
peak and off-peak traffic (mathematically, the percentage channel capacity consumed
by classical data during on-peak and off-peak times is ς∧/ς and ς∨/ς respectively);
(b) 9 dB loss in the quantum transmission line, with varying on-peak and off-peak
traffic; (c) and (d) 0 dB and 9 dB losses in the quantum transmission line respectively,
with varying on-peak and no off-peak traffic in both cases; (e) and (f) 0 dB and 9
dB losses in the quantum transmission line respectively, with varying on-peak and
�

ς|m|max
|m|max+Rc/s|kC|

�

e
off-peak traffic in both cases, where b·ce means that we round down

to the nearest multiple of machine epsilon e.
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Condition 4.2: Assume a communications link of classical capacity ς experiences off-peak data

rates of ς∨ for time t1, on-peak data rates of ς∧ for time t2 − t1, and quantum signals can be

injected without generating any secondary artifacts that affect the above. We can encrypt all

data using an arbitrary cipher, without artificially capping the classical data rates or increasing

the channel capacity, so long as Rc/s ≤
|m|max[ςt2−ς∧(t2−t1)−ς∨ t1]
|kC|[ς∧(t2−t1)+ς∨ t1]

.

4.2 The Effect of the Quantum Channel on Key Generation

Until now, the work in this chapter has implicitly assumed that the bit generation rate for the

encryption keys is comparable with classical data rates, taking care to note that the former is distinct

from the secret key rate, which does not take into account the bits assigned to refreshing Alice and

Bob’s initial shared secret. However, as we have already indicated in chapter 3, this assumption is

inaccurate, and we must examine the implications of any mismatch.

Consider the situation where

Rp/t
�

Rs/p − |kinit|/N
�

< ς∨ (4.16)

The left hand side corresponds to the number of bits generated per unit time that can be used for

encryption, and Rp/t is the quantum clock rate. Here, the only choice is to use a computationally

secure cipher as a basis for our encryption scheme, unless a sufficient number of quantum devices

can be multiplexed together. Similarly, if

Rp/t
�

Rs/p − |kinit|/N
�

> ς∧ (4.17)

then, so far as the quantum channel is concerned, there will be no issues with using the OTP.

However, when

ς∨ < Rp/t
�

Rs/p − |kinit|/N
�

< ς∧ (4.18)

the situation becomes more interesting. We define

∆∨ = Rp/t
�

Rs/p − |kinit|/N
�

− ς∨
∆∧ = ς∧ − Rp/t

�

Rs/p − |kinit|/N
� (4.19)

To use the OTP, it is required that

∆∨ t1 ≥∆∧ (t2 − t1) (4.20)

Thus, by substituting equation 4.19 into 4.20 and rearranging, we find
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t1

t2 − t1
≥
ς∧ − Rp/t

�

Rs/p − |kinit|/N
�

Rp/t
�

Rs/p − |kinit|/N
�

− ς∨
(4.21)

This enables conditions 4.3 and 4.4 to be constructed which, regardless of the efficiency of the public

channel, must be fulfilled if we are to cease encrypting with modes of operation that rely on the

Advanced Encryption Standard (AES). There is, of course, always the option to curb classical data

rates. However, the end-user often prioritises minimal performance improvements over security, as

evidenced by the widespread adoption of technologies such as contactless card payments, which have

a number of trivially-exploitable vulnerabilities [198–201]. Therefore, it would be naïve to assume

that internet users will accept slower speeds in exchange for an increase only in the theoretical

security of their data.

Condition 4.3: Assume Rp/t
�

Rs/p − |kinit|/N
�

< ς∨. We can encrypt all off-peak data

using a QKD-keyed OTP without artificially capping the classical data rates, so

long as Dmux =
¡

ς∨
Rp/t(Rs/p−|kinit|/N)

¤

quantum devices can be multiplexed together and
∑

Dmux

R′s/t ≈ Rs/tDmux. Here, Rs/t is the number of secret bits generated per unit time when only a

single QKD device is operational, and R′s/t is the number of secret bits generated per unit time by

each of those deployed in a multiplexed configuration.

Condition 4.4: Assume ς∨ < Rp/t
�

Rs/p − |kinit|/N
�

< ς∧, or condition 4.3 has been fulfilled.

We can encrypt all on-peak data using a QKD-keyed OTP without artificially capping the classical

data rates, so long as Dmux =
¡

ς∧
Rp/t(Rs/p−|kinit|/N)

¤

quantum devices can be multiplexed together

and
∑

Dmux

R′s/t ≈ Rs/tDmux , or equation 4.21 can be satisfied.

The most important question that this raises is, at present, how close to one another are the speeds

of the classical and quantum channels? In figure 4.6 we compare Rs/t = Rp/t Rs/p with classical data

rates, noting that

Rp/t
�

Rs/p − |kinit|/N
�

≈ Rp/t Rs/p for N � |kinit| (4.22)

as is the case when taking into account the finite key limit. We split classical communications into (i)

a global average for end-user connection speeds, (ii) the data rates given by the Institute of Electrical

and Electronics Engineers (IEEE) Ethernet standards, and (iii) record data rates using experimental

technology. We see that, in the worst case, the classical rates are seven orders of magnitude greater

than Rs/t. While we would eventually expect to reach a saturation point for the amount of classical

information transmissible across a single fibre, commonly referred to as the Shannon limit [202],

the size of the gap indicates that this alone will not be enough to close it anytime soon.
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FIGURE 4.6: Comparing world-record quantum secret key rates with average end-user con-
nection speeds, classical data rates from the IEEE Ethernet standards [165, 203–205],
and world-record classical data rates using experimental technology. The protocols
used for A, B, C and D were B92 [206], BB84 [207], BB84 with decoy states [208] and
T12 [209] respectively. E was implemented on the Apollo South submarine cable with
no customer disruption [210], F used dispersion-uncompensated single-mode fibre
(SMF) [211], and G used a multicore SMF [212]. The end-user internet connection
speeds are a global average, weighted by the number of unique Internet Protocol
version 4 (IPv4) addresses in each country, and calculated from the data in [213].
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In the best-case scenario, where only end-users take advantage of the OTP, it is not unreasonable

to expect that QKD may reach the speeds required. However, a side effect of having many individual

QKD devices in operation at the same time is that they must be easily multiplexable and, if the

requirement of information-theoretic security extends to all parties, the situation becomes equivalent

to that of protecting backbone networks rather than end-users. For the time being, we will make

no further comment as to how feasible it is to implement such an architecture, though this will be

the focus of chapter 7. A more important point is that, in almost all cases, critical infrastructure

needs to be at least as secure as the end-user, but with much higher data rates (see, for example,

the data centre emulated in chapter 3). Hence, a significant step-change is still required just to

get to a point where we are limited by the work in section 4.1. That is not to say progress thus far

has been based entirely on incremental improvements to the basic technology. For example, the

development of dedicated post-processing modules was responsible for the 11.53 Mbit/s secret key

rate set by [209] (see point D in figure 4.6). Yet it seems unlikely that we will ever reach a level

where, experimentally,

Max
�

Rs/t
�

≥Max (ς∧) (4.23)

This can be broken down into two reasons. Any piece of hardware that enables faster single-fibre-

single-transmitter binary communication than contemporary classical methods will immediately

supersede them, so at best quantum secret key rates can expect to equal classical data rates. However,

the post-processing means Rp/t will always be greater than Rs/t, and we would expect the R-value

for standard communications over a quantum channel to fall between these, as privacy amplification

will not be required.

Of course, this is still not enough to rule out everyday OTP deployment on the basis of the

quantum channel, as we are yet to determine how easily equation 4.21 can be satisfied. In figure 4.7,

we plot t1
t2−t1

using the current record for the quantum secret key rate, and

0≤ ς∨ < Rp/t
�

Rs/p − |kinit|/N
�

(4.24)

With regards to the on-peak data rates, we consider both the 2018 global average for end-users,

weighted by the number of unique IPv4 addresses in each country, as well as the highest experimental

data rate thus far achieved (see point G in figure 4.6), where the distance for the latter was 0.4 km

less than that over which the record quantum secret key rate was realised. The global end-user

average was calculated to be 20.41 ± 0.58 Mbit/s, based on data from [214]. The methods of

collection are summarised in [215], from which it is clear that the dataset is suitably representative

of real-world speeds available to electronic devices owned by end-users. We diverged from the

long-term dataset on which figure 4.6 is based, as it was discontinued after the first quarter of 2017.

From figure 4.7, it can be seen that, with the exception of instances when off-peak end-user

data rates are kept at no more than around 50% of their on-peak rates (i.e. scenarios adequately

described by figure 4.7a, with ς∨ ® 0.5× 20.41 Mbit/s), using the OTP remains impractical even if
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FIGURE 4.7: Showing the amount of off-peak time required per second of on-peak time in
order to encrypt all data with a quantum-key-distribution-keyed one-time pad, and
considering only limitations imposed by the quantum channel. We use the world-
record quantum secret key rate, which was set in 2018 over a distance of 10 km (see
figure 4.6). The amount of on-peak data transmitted per unit time is defined by (a)
the 2018 global average for end-user data rates, weighted by the number of unique
Internet Protocol version 4 (IPv4) addresses in each country, and calculated from
the data in [214]; (b) the world-record classical data rate, achieved in 2018 over a
distance of 9.6 km (see again figure 4.6).

ignoring the impact of the results from section 4.1. As before, bespoke networks with long periods of

inactivity remain a possible application for QKD with OTP encryption. However, without the ability

to multiplex several-orders-of-magnitude-worth of QKD devices, we are left with no choice other

than to continue relying on computationally-secure ciphers such as AES for near-term protection of

core infrastructure.

4.3 State of the One-Time Pad

Here, we summarise the hurdles that remain even when discounting the arguments put forth in

sections 4.1 and 4.2. While not scientifically limiting, these are still important considerations if the

OTP is to be widely deployed without introducing vulnerabilities. Overcoming them will take time,

something that is lacking if QKD is to be used as a defence against quantum computers in the real

world.

Furthermore, these issues are only likely to start being addressed if it can be demonstrated

that a suitable method of key distribution exists, which does not introduce cumbersome overheads

when paired with the OTP. Given the work presented thus far, we contend that DV-QKD does not

fulfil such a criterion in its present form, despite the promise originally shown by basic theoretical
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treatments, adding even more weight to the argument that AES will continue to be used for the

majority of real-world encryption.

We first observe that although authenticated encryption modes exist for block ciphers, these

cannot be directly applied to the OTP because they fundamentally rely on the ability to reuse

a key in more than one application (see section 2.1.1). Any potential solution must go through

standardisation. Otherwise, there is a high risk of implementation errors as end-users, not all

of whom will have a strong security background, try to combine encryption and authentication

themselves, something which is fraught with insecurities [216].

In addition, the OTP itself is yet to be standardised, due to lack of widespread demand. If the

reader is wondering why this is necessary for an encryption scheme that seems so straightforward,

consider the following. When logging into a website, the password field is effectively unlimited

in length. Without knowing any information on a particular user’s password, a sensible place to

start might be by trying the most common passwords in use. However, if the user then inputs their

password to the website, and that is transmitted using a OTP without some kind of length padding,

the attacker suddenly knows how many characters have been sent, and can restrict their attack to

the most common passwords of that length. Once again, not having a standardised option means

that more knowledgeable programmers will implement custom solutions. However, historically, this

has resulted in errors of sometimes fatal consequence (see, for example, the impact on the Battle

off Samar when an enciphering clerk padded a request for information with “the world wonders",

leading to misinterpretation of the message [10]).

4.4 Outlook

The work of this chapter substantiates the claim that single-qubit DV-QKD is incompatible with the

OTP so long as both continue to exist in their current form. We have quantified the well-known fact

that, at present, secret key rates are too slow, and explored the impact QKD has on the classical part

of the network, finding that the demands are untenable. On the other hand, DV-QKD with AES-GCM

is expected to scale well when transitioned from research networks to the real world.

We have stated throughout that our conclusions have no bearing on the use of the OTP in

bespoke scenarios but, while we have identified examples of networks that receive infrequent use,

we are yet to broach the subject of whether any exist for which the capacity is not fixed. Satellite

networks are one example where this might be the case, as the quantum channel is introduced

during the assembly process, rather than as a retrofit at a later date. Thus, assuming it is physically

possible for each satellite to support the number of classical channels required, the network can be

designed with QKD and the OTP in mind.

When it comes to laying more fibre, the story is different. Expanding communications networks

is an expensive task, and those trying to address current internet bottlenecks prefer to invest money

in other methods [210]. For example, in the United Kingdom, fibre-to-the-premises installations
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were planned for only an extra 2 million buildings between 2017 and 2020, with 10 million receiving

upgrades to existing copper-wire infrastructure instead [217]. Aside from the obvious impact this

will have on deploying QKD nationwide (a solution for which can be found in section 6.5), this

is strong evidence that, if the percentage load on an everyday network is too high to support a

QKD-keyed OTP, then the number of additional fibres required would not be added quickly enough

to protect against quantum attacks.

While other forms of QKD are not the focus of this thesis, the question of how they behave when

subject to the analysis presented herein is an important one. We will close by performing a cursory

examination of the more-obvious variants, highlighting areas that could benefit from further work.

4.4.1 An Attempt to Circumvent the Restrictions on the Quantum and Classical

Channels

When considering alternatives to BB84-style protocols, a natural place to start is with CV-QKD. In its

original form, squeezed states were required [218]. While these can now be generated at telecom

wavelengths [219], they are heavily affected by losses [220], and are yet to be used as the basis for

a practical QKD system. Instead, the focus has largely been on implementations using Gaussian-

modulated coherent states, which are capable of reaching a secret key rate of 1 Mbit/s across 25

km of fibre, which equates to 5 dB of loss [221]. This is still below the record key rate for DV-QKD,

and the types of information that must be sent over the classical channel remain the same; sifting

does not take place per se, but Bob still needs to inform Alice how he measured [222]. Homodyne

measurements will always return noise if the quantum bit (qubit) is lost en route, significantly

increasing the number of error correction messages that must be transmitted in comparison to

DV-QKD, where single-photon detection is used [87]. It is possible to observe both quadratures

simultaneously by way of heterodyne measurements [223], removing the need for Bob to make and

announce a choice. In a perfect world, this would lead to double the amount of information being

retained, however Bob’s results will be much noisier, meaning the key rate increases by a factor that

is less than this [87]. In addition, post-selection is still required whenever the channel loss is > 3

dB [224], unless reverse reconciliation is used [222]. Thus, while other forms of CV-QKD seem to

offer little in regard to sidestepping the arguments with which we are concerned, it is less clear for

coherent-state heterodyne schemes, and a full analysis may reveal some benefit.

Another possibility is FL-QKD, for which a secret key rate of 1.3 Gbit/s was recently demonstrated

over a channel with 10 dB loss [225]. The only caveat is that this implementation did not include full

post-processing, which could lead to more modest key rates if additional bottlenecks are introduced

by the parts of the system which are missing (see, for example, reference [209] where custom

electronics had to be developed just to reach a 13.72 Mbit/s secret key rate). Unfortunately, while

there is no reason to believe that issues of this kind are anything more than engineering challenges,

the classical channel in FL-QKD is simply a higher-rate version of the one in BB84 [190], meaning

we are still limited by section 4.1.
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For protocols such as Ekert 1991 (E91) [226], that rely directly on quantum entanglement,

the situation does not seem to get any better. Each entangled pair communicates only a single

raw bit of information, though an extra basis compared to BB84 reduces the number of secret

bits it carries, and increases the amount of classical information required to make each basis

announcement. In addition, a Bell-type inequality is used instead of the QBER to identify whether

or not an eavesdropper is present. This involves announcing the results for all measurements where

the bases did not match, rather than a small subset of those that did, and so a full implementation of

E91 in its originally-published form is likely to need a greater classical channel capacity than BB84.

On the other hand, superdense coding uses only a single qubit to communicate two bits of infor-

mation, and can be generalised to higher-dimensional systems, transmitting r bits on a maximally

entangled state such as [227]

|ψ〉=
1
p

r

r
∑

φ=1

|φ〉 |φ〉 (4.25)

So long as we continue to encode in only two bases, the classical information that needs to be

transmitted remains unchanged. Unfortunately, with the values for Rc/s given in table 4.1, the

dimensionality required is likely to be on the order of hundreds. However, placing an exact number

on this is non-trivial, as the number of secret bits carried by each qudit will not increase linearly

with dimension.

Finally, the reusable OTP [228] may in principle help circumvent the arguments in both sec-

tions 4.1 and 4.2. There are practical issues to overcome, like how to ensure message completeness

in the presence of loss. In addition, the regularity with which key needs to be refreshed is yet to

be evaluated. Therefore, without further development, it is unclear as to whether or not the QKD

paired with the reusable OTP could form an effective information-theoretically secure cryptosystem.
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Declaration of Work

I identified the endpoint denial of service attack on QKD and developed the
BB84-AES protocol unassisted, along with all of its variants. I carried out all of
the analysis which followed including, but not limited to, the initial exploration
of its security and the comparison with other protocols.

This work has previously appeared in [8], as well as being presented at
both QCrypt and BQIT [7, 229]. Where appropriate, parts of the paper and
extended abstracts have been reused, as the original text was written by me.

In an ideal world, the best cryptographic protocols would be both mathematically and physically

unbreakable. Unfortunately, even if quantum key distribution (QKD) could be implemented such

that it were impossible to carry out side-channel attacks, there is still an offensive strategy that will

fatally compromise the system. By performing denial of service (DoS) on the quantum channel, Eve

can force Alice and Bob to forgo communication or revert to other forms of key distribution, the

security of which will depend on mathematical problems that are assumed to be computationally

intractable with both quantum and classical resources. However, in the majority of cases, these are

yet to be adequately probed.

Here, we use the results of chapter 3 to identify a new DoS attack that leverages provably fake

users and is undetectable over its duration. The work of chapter 4 then allows us to introduce

suitable DoS countermeasures, by relaxing the mathematical security of QKD such that it relies

on the security of the encryption cipher. By making a few additional tweaks, we show that our
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computationally secure QKD protocol can generate key from singly-detected two-photon terms, and

run at exactly 100% sifting efficiency.

While our protocol may not be mathematically unbreakable, we argue that it is nonetheless a

more secure approach for practical deployment if it enables the mitigation of DoS and side-channel

attacks. This is particularly prudent in the case of the former, as DoS of classical systems was the

third most prevalent network attack in 2017 [230–233] and has the second-highest financial cost

per occurrence [234].

5.1 A New Denial of Service Attack on Quantum Key Distribution

In chapter 3, we demonstrated that the time taken for a networked ID Quantique Clavis2 to generate

a secret key is, at best, on the order of minutes. This exposes the system to a DoS attack that is

easier to implement than attack 2.5 and has not previously been considered. To prevent man-in-

the-middle attacks, it is required that the classical QKD channel be authenticated, and to retain

information-theoretic security, this must be done using a Wegman-Carter message authentication

code (MAC) [19] keyed with a pre-shared secret. The MAC has to be transmitted at the end of the

QKD protocol, authenticating every message sent up to that point [121], as authenticating each

message individually would prohibit net positive key generation (see section 2.3.1). Consequently,

neither Alice or Bob will know whether the person they are communicating with is genuine until

they have finished generating a secret key, so an imposter could deny service to other users simply by

opening a connection and performing QKD. Figure 3.20 shows how long this could last for, assuming

only one round of key generation is carried out by the attacker, and for a 10 km metropolitan-

area network, the Clavis2 will communicate with an illegitimate party for roughly 10 minutes

before realising. We recall that for the same device, key generation starts to become intermittent at

attenuations above 9 dB, meaning that while the average time taken for a successful round of QKD

at 10 dB is close to 20 minutes, the DoS impact could be greater if other rounds fail, which happens

in over 30% of cases. Ultimately, it makes sense for an attacker to maximise the attenuation on their

link to keep the systems occupied for as long as possible. We summarise this as follows:

Attack 5.1: Endpoint Denial of Service. Eve establishes a high-loss connection with Alice

and performs low bit rate QKD up to the point where she fails the authentication. During this

period, Alice and Bob are unable to generate new shared keys, which may also lead to DoS of

their classical communications. The attack can be prolonged if agents of Eve are queued behind

her, turning it into a distributed denial of service (DDoS) attack.

After succumbing to attack 5.1, Alice and Bob may find that they have exhausted their supply of

pre-shared secret. This, a well-established vulnerability that also has the potential to be exploited

independently (see attack 2.6), has previously been counteracted by using a post-quantum digital

signature to authenticate the next round of QKD [235]. So long as Eve cannot break said algorithm
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in the short amount of time for which it is useful to her, full security is retained for all keys thereafter.

However, by taking this approach, a primitive has been introduced that was not already part of the

system, assuming non-cryptographic methods were used to share Alice and Bob’s initial secret. The

recovery mechanism can also be triggered relatively easily, allowing attack 2.6 to be used as a way

of forcing public-key algorithms to be used for every successful round of QKD. Therefore, from both

simplicity and security perspectives, a reactive strategy is less than ideal, and our protocol should

relying on this kind of approach.

5.2 BB84-AES: A Quantum Key Distribution Protocol for Rapid

Denial of Service Detection

We now move to fulfil the main objective of this chapter: preventing attack 5.1. A trivial solution,

which preserves the information-theoretic security of Bennett-Brassard 1984 (BB84), would be to

implement some form of access control that requests Eve verify her identity before she is allowed to

connect. However, if there are no further checks until the end of the protocol, this could easily be

circumvented by Eve switching out Bob for herself once key generation begins. Therefore, the most

sensible approach is to authenticate every message exchanged by Alice and Bob.

Ideally, this will mean modifying equation 2.5 such that the initial shared secret can be reused

without increasing the risk of an attacker being able to decrypt messages that rely on quantum keys.

Brassard proposed in [236] that kM could be defined as the output of a random function. In practice,

this can be the cipher used for the data encryption, independently keyed with kC. As specified in

chapter 4, our encryption scheme relies on the Advanced Encryption Standard (AES), so we rewrite

equation 2.5 as

τi = hkH
(mi)⊕AESkC

(si) (5.1)

where h is an ε-almost universal hash function keyed by kH, mi is an arbitrary message and si

is a public one-time number, or “nonce”. A number of efficient authentication schemes such as

poly1305-AES [21], UMAC [237] and VMAC [238] take this form, though their moduli for addition

vary.

The choice to include AES-256 in the QKD authentication process is not just for the sake of

simplicity, or so we can be confident that our cryptosystem will remain quantum-safe, though as

this is our reason for using QKD in the first place, it is obviously important. Suppose that, despite all

the analysis carried out thus far, AES has an undisclosed flaw, allowing attack 2.4 to be executed by

a select few. The result would be catastrophic. However, it would be no different compared to if the

AES-based data encryptor had been paired with canonical BB84 instead, because the encryption can

be broken directly in either case, meaning attack 2.4 offers no advantage. Of course, the chances

of this happening are thought to be very low, despite being difficult to quantify, and so even if a
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bespoke network were to use the one-time pad for data encryption, the comparative reduction in

mathematical security is outweighed by increased resilience against DoS attacks.

A further advantage of this approach is that, in a world where Eve cannot compromise AES, she

may implement an unsuccessful version of attack 2.4 on only some of the qubits. In standard BB84,

Alice and Bob will be aware of her presence, but have no way of knowing which qubits have been

targeted, so the entire protocol must be aborted. In our case, the individual authentication of every

basis allows Alice and Bob to identify which qubits had been attacked in this way, giving them the

option to keep those that were unaffected.

The above changes ensure that, if Eve tries to carry out attack 5.1, she will deny service for

fractions of seconds rather than tens of minutes before her presence becomes obvious. The next step

is to look at whether we can gain any further benefits by capitalising on our use of a computationally-

secure MAC.

Now that every basis announcement is accompanied by an authentication tag, an interesting

property emerges. There are only two possible tags for any given key/nonce pair, depending

on whether the qubit was prepared in the X basis or the Z basis, though the exact values are

unpredictable for anyone not in possession of the key. This means that if Alice decides to send

the tags on their own, without the plaintext basis announcement that they authenticate, Bob can

compare the tags he would expect for each option, to work out how he should have measured the

qubit.

Ideally, lack of knowledge about Alice and Bob’s shared secret will prevent Eve from also

identifying the correct bases using the authentication tags. That is, if they provide confidentiality,

which is not a traditional requirement of a MAC, then she will be restricted in the amount of

information she can gain from photon number splitting (PNS), as public basis announcements are a

pre-requisite for attack 2.1. This is discussed further in section 5.3 however, in short, transmitting

the basis information as proposed means two-photon pulses can contribute to the secure key rate. It

is still possible to implement an alternative method for PNS on higher-order multi-photon terms

(see attack 2.2), although all protocols are vulnerable to this unless, as in [79] and [239], additional

eavesdropper detection mechanisms are implemented in the form of decoy states.

Of course, if the tags provide a level of confidentiality sufficient to prevent attack 2.1, there is no

longer any reason for them to be transmitted after Bob has measured the qubits, as Eve is unable to

obtain the information required to perform a man-in-the-middle attack. If the tags are transmitted

in advance, Bob can work out how he needs to measure before each qubit arrives, thereby removing

the stipulation to sift his raw key, a result that is equivalent to increasing the sifting efficiency from

50% to 100%.

Protocol 5.1 pulls together the methods we have developed for performing quantum-safe

computationally-secure QKD. A streamlined version is presented in figure 5.1, the details of which

can be found in section 5.4.1.

While we have assumed the quantum key will be used in computationally-secure cryptosystems,
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it is still sensible to investigate the impact of a user who insists on encrypting their data with the

one-time pad in a bespoke setting, despite its low efficiency and lack of authenticated encryption

modes. In this scenario, we retain the advantages of our protocol but, as section 5.3 will further

dissect, also expect to acquire everlasting security (see definition 5.1).

Definition 5.1: Everlasting Security. Assume Eve is unable to break the key-exchange protocol

over the period for which it is active. A cryptosystem has everlasting security if plaintexts that

were encrypted with the corresponding key cannot be recovered by Eve, even when she develops

unlimited computational power after key exchange is complete.

This, along with perfect forward secrecy (see definition 5.2), cannot be achieved if the key is

encrypted directly with AES. For such a scheme, perfect forward secrecy is unattainable because

anyone who obtains the long-term shared secret can use it to extract past session keys from the

ciphertexts, rather than returning a set of bases that are no longer of any use to adversaries who are

not also in possession of the qubits.

Definition 5.2: Perfect Forward Secrecy. Assume Eve is unable to break the key-exchange

protocol over the period for which it is active. The protocol has perfect forward secrecy if, after

completion, Eve compromises the initial shared secret but cannot recover the key that was

distributed between Alice and Bob.

Therefore, one should take care not to be fooled into thinking direct encryption of the key is a valid

simplification of our protocol. Of course, a system based on this would not provide eavesdropper

detection either, and compromising previous initial shared secrets at a later date will expose all keys

distributed thereafter, even if the secret is updated after every key exchange with material from that

session.

5.3 Initial Security Analysis of BB84-AES

While we do not aim to provide a formal security proof for BB84-AES in this thesis, there is a large

body of literature that can be leveraged to perform an initial, high-level analysis. In the following

section, we will consider each of the main points from our protocol and highlight some additional

consequences that have been less prominent up till now.

5.3.1 Rapid Denial of Service Detection

To begin, we show that our choice of authentication tags and the way in which we handle them

does not impact their unforgeability. This can be encapsulated as follows:
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Protocol 5.1: BB84-AES (basic version)

SUMMARY: Alice expands a shared secret with Bob, using computationally-secure quantum key distribu-
tion and quantum-safe primitives.

1. One-Time Setup.

(a) Two (|kinit|/2)-bit secrets are shared between Alice and Bob using out-of-band communica-
tions, a trusted third party or a post-quantum public-key algorithm.

(b) A |v|-bit initialisation vector is transmitted from Alice to Bob in the clear, where |v| ≤ 64.

2. Nonce Generation. A single-use number si is constructed by appending a (128− |v|)-bit counter
to the initialisation vector. The counter starts at 0 and increments after each call made to the
generator. It must be maintained across all rounds of QKD that use the same initial shared secret,
and is not to be confused with the index i used in the mathematics of this thesis, where 1≤ i ≤ N .

3. Authentication Tags.

(a) The first shared secret is split into a 256-bit cipher key, kC, and a (|kinit|/2− 256)-bit hash
key, kH.

(b) Alice generates a cryptographically-secure random bit, which is used to select a basis
Bi ∈ {X , Z}, and computes the tag τA

i = hkH
(Bi)⊕AESkC

(si). h is a universal hash function,
the output of which can be called from memory after it has been evaluated once for each
basis, and AES is the Advanced Encryption Standard block cipher.

(c) Bob calculates τX
i = hkH

(X )⊕AESkC
(si) and τZ

i = hkH
(Z)⊕AESkC

(si).

4. Key Exchange.

(a) Alice prepares a qubit |ψ〉i by generating a cryptographically-secure random number,
bi ∈ {0, 1}, and encoding it in the basis Bi .

(b) Alice sends τA
i to Bob, closely followed by |ψ〉i .

(c) Bob compares τA
i with τX

i and τZ
i , to identify the basis in which he should measure. Upon

receipt of |ψ〉i , he will return bi with probability 100%− Eµ, where Eµ is the quantum bit
error rate.

(d) Bob announces whether or not the qubit arrived, by means of an authenticated response.
He should maintain a separate nonce generator to Alice, paired with the second shared
secret. As Bob’s response need only be “Yes” or “No”, he may choose to transmit it in the
same way as Alice sends her bases.

5. Loop. Steps 3b, 3c and 4 are repeated for the remaining N − i qubits sent from Alice to Bob. As
multiple tags can be constructed in parallel, this may begin prior to completion of the previous
iteration.

6. Post-Processing.

(a) Error correction and privacy amplification are carried out as in BB84. The messages sent
during this step can be authenticated in the same way as above.

(b) |kinit| bits are taken from the final key and stored for use as the initial shared secrets in the
next round of QKD, and a new initialisation vector is publicly agreed upon.
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Requirement 5.1: If Eve tries to impersonate either Alice or Bob, the other party will be

alerted to her presence by the authentication tag corresponding to the first qubit she sends after

establishing a connection.

The security of a MAC that accompanies a known message is well established when it takes the

form of equation 5.1. For a 128-bit tag, all forgeries will be rejected with probability close to 1, so

long as AES cannot be distinguished from a uniform random one-to-one function, an attacker sees

no more than
p

#KM = 264 messages and, as in conventional QKD, our hash function has small

differential probabilities (see section 2.1.2) [240]. Here, AESkC
(si) ∈KM and #KM represents the

cardinality of the set.

As a result, just under 264 quantum bits (qubits) can be individually accompanied by a MAC,

assuming Bob uses a separate initial secret key with an independent nonce for sending authenticated

replies to Alice. A number of tags must also be retained for messages relating to other parts of the

protocol, such as error correction. It has already been mentioned in section 4.1 that ¦ 105 raw bits

must be exchanged and processed for finite-key security, meaning we can complete up to ∼ 1014

rounds of QKD before the scheme needs to be rekeyed. Therefore, no obvious concerns present

themselves with regards to a simple reduction in the mathematical security of the authentication

tags relative to BB84, given we are confident in the security of AES and are unlikely to exceed the

maximum number of tags that can be generated under a single key.

Of course, the protocol presented herein takes a further step, choosing to transmit the tags on

their own rather than alongside a message. The attacker gains no advantage from such a feature,

as the plaintext can always be ignored in the case where the bases are publicly announced, so the

bound for rejecting forgeries will remain the same.

The impact of this is two-fold. First, attack 2.6 is no longer viable, as an eavesdropper needs to

establish more than eighteen billion billion connections before Alice and Bob will be prevented from

constructing any more MACs of the form given by equation 5.1. Second, even if Eve were able to

ensure key generation only failed at the very last moment, the number of times she would have to

repeat her attack in order to exhaust Alice and Bob’s shared secret is still on the order of a hundred

trillion, given the rekeying limit specified above, and assuming they only began with the minimum

number of bits required to construct a secure MAC. For networks of sufficient size, we would expect

them to find a link that she cannot influence long before reaching that limit.

5.3.2 100% Sifting Efficiency

Next, we consider a point of functionality, the proof of which is derived from the security of the

MAC. To avoid sifting our raw key, the following must be true:
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Requirement 5.2: Bob can obtain full information on the correct measurement bases from the

authentication tags that Alice transmits in advance.

Bob can only identify the correct basis so long as the MACs that represent each option are distin-

guishable from one another. Therefore, it is imperative that

hkH
(X ) 6= hkH

(Z) (5.2)

Consider a hash function family that is at least ε-almost universal, a condition fulfilled by those used

in both of the MACs that we recommend [237, 238]. Then, the probability of violating equation 5.2

is

Prob (Collision)≤ ε (5.3)

It is known that the MAC in which the hash family is used can be broken with success probability [241]

Prob (Successful attack)≤ ε +δ (5.4)

where δ is the chance of an attacker distinguishing AES from a truly random function, given that

block ciphers can be considered pseudorandom functions (PRFs). Therefore,

Prob (Bob cannot obtain basis)≤ Prob (Successful attack) (5.5)

and we can be confident that BB84-AES will satisfy requirement 5.2.

5.3.3 Authentication Tag Confidentiality

A radical difference between BB84-AES and all other forms of QKD is that we transmit the basis

information ahead of the qubits. Depending on how this is implemented, it may be possible for Eve

to carry out a successful intercept-resend attack, as described in section 2.3.2. Requirement 5.3

identifies the properties that the chosen MAC must have to ensure this strategy is no more possible

than in standard BB84.

Requirement 5.3: The authentication tags must provide confidentiality against an eavesdropper,

such that she cannot obtain any information on the correct measurement bases.

Consider an arbitrary message m j that can be encrypted with the Advanced Encryption Standard

running in Counter Mode (AES-CTR) as described in section 2.1.1, meaning

c j = m j ⊕AESkC

�

s j

�

(5.6)

where c j is the ciphertext and s j is a nonce. The security of Counter Mode with a PRF is discussed

in [242], and this forms the foundation for showing that AES-CTR provides confidentiality, by

-100-



5.3. INITIAL SECURITY ANALYSIS OF BB84-AES

reason of block ciphers being considered strong pseudorandom permutations (PRPs) that can be

treated as PRFs [243]. Up to 264 messages can be encrypted with AES-CTR [242], so long as the

counter contained within the nonce is of length 64 bits or more, with the remainder comprised of

random bits. This limit is the same as that imposed by section 5.3.1 to ensure unforgeability of the

authentication tags.

Because AES-CTR is plaintext agnostic, it is perfectly legitimate to choose

m j = hkH
(mi) (5.7)

where hkH
(·) is a keyed hash function, and mi is also an arbitrary message. Therefore, equation 5.6

can be rewritten as

c j = hkH
(mi)⊕AESkC

�

s j

�

(5.8)

We observe that when s j = si this is equivalent to equation 5.1, and so

T ⊂ C (5.9)

where T is the set of all possible authentication tags that take the form of equation 5.1 and C is the

set of all possible ciphertexts that take the form of equation 5.6.

Hence, our authentication tags provide confidentiality with regards to the output of the hash

function, assuming that AES is quantum-safe, and meaning that Eve will be unable to work out

which basis to measure in given only a properly implemented 128-bit tag. This is not particularly

surprising given the purpose of the exclusive-OR (XOR) in a Wegman-Carter-style MAC is to mask

the output of the hash function such that kH can be reused for multiple messages.

Our tag construction cannot be utilised as an authenticated encryption mode in general, because

the hash prevents recovery of mi upon decryption. So long as equation 5.2 holds, this is of no issue

to us, however it is worth noting that true authenticated encryption modes exist and, if we were

happy to move further away from vanilla BB84, these could be used instead of our authentication

tags. The consequences of making such a choice will be discussed more thoroughly in section 5.6.1.

5.3.4 Resistance to Photon Number Splitting Attacks on Two-Photon Pulses

Requirement 5.4: It follows from requirement 5.3 that an eavesdropper capable of mounting

a two-photon number splitting attack can, at best, obtain the same amount of information on

the final key as when Scarani-Acín-Ribordy-Gisin 2004 (SARG04) is used instead.

In SARG04 (protocol 2.6), Alice publicly declares two possibilities for the state she transmitted,

instead of announcing the basis she prepared in. If Eve wants to obtain full information on the key by

taking advantage of multi-photon terms, she must carry out attack 2.2, blocking all pulses containing

less than three photons and performing unambiguous state discrimination on the remainder [43,

244].
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The confidentiality provided by our authentication tags is, from an attacker’s perspective,

equivalent to Alice not announcing the bases at all. We could choose to announce two possible

states as in SARG04, and then the attacker would have the same amount of information on the

final key. Not making this announcement gives the attacker zero advantage, as they can always

discard the information if it is given to them. Therefore, BB84-AES is at least as resilient as SARG04

against PNS attacks on two-photon pulses. Unambiguous state discrimination does not require an

eavesdropper to have access to the public channel, meaning both protocols appear to be equally

vulnerable in this regard.

5.3.5 Perfect Forward Secrecy when Combining BB84-AES with Encryption Based

on the Advanced Encryption Standard Block Cipher.

Our next requirement comes directly from definition 5.2:

Requirement 5.5: An attacker who compromises the initial shared secret during the current

round of the protocol cannot use this to obtain keys that were distributed using the same initial

shared secret in previous rounds of the protocol.

An attacker who compromises the initial shared secret from a previous round gains the ability to

forge tags from that round (though to no effect as key exchange is already complete) and find out

the bases used. This also happens in the case of an attacker gaining unlimited computational power.

Therefore, if we can prove everlasting security of BB84-AES when encrypting data with the one-time

pad (OTP), it follows that requirement 5.5 will be satisfied.

5.3.6 Everlasting Security when Combining BB84-AES with the One-Time Pad

Encryption Scheme

Here, we question whether pairing BB84-AES with the OTP results in a cryptosystem with everlasting

security. Unlike in previous sections, there are now two requirements to be fulfilled.

Requirement 5.6: An attacker who gains unlimited computational power after the conclusion

of the protocol cannot gain any knowledge on the key from the information transmitted in the

authentication tags, assuming AES remained secure for the duration of the protocol.

In BB84-AES, the authentication tags are used to secretly communicate a subset I of the classical

information exchanged by Alice and Bob. In standard BB84, I is communicated publicly during

the protocol, after all qubits have been exchanged. This means that after the conclusion of BB84,

I is known to the attacker, and the fact this does not compromise the security is of fundamental

importance in QKD [86]. Therefore, if an attacker manages to extract I after the conclusion of

BB84-AES, the protocol remains secure, as they have no more information than in the standard

case.
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Requirement 5.7: An attacker who gains unlimited computational power after the conclu-

sion of the protocol cannot gain any knowledge on the key by exploiting the newly forgeable

authentication tags, assuming AES remained secure for the duration of the protocol.

In [245], it is shown that, for computationally-secure QKD, bounds on the attacker’s classical runtime,

quantum runtime and quantum memory need only be applied to ensure the classical channel cannot

be tampered with during the course of the protocol. Afterwards, standard QKD arguments hold,

whereby the authenticity of the classical channel is no longer of relevance, even in the case of

general attacks.

As we are considering an attacker who cannot inject, reorder or modify authentication tags

that were sent and received in the past, requirement 5.7 should be satisfied, so long as Eve was

sufficiently bounded during the execution of the protocol such that she was unable to break the

computationally-secure authentication scheme. For security against quantum computers, this means

we are assuming AES is a quantum PRF, although there is no guarantee this will follow from the

fact that block ciphers may be considered standard PRFs [246].

5.3.7 The Role of Randomness in BB84-AES

Finally, we will show that in the absence of an attacker, keys output by BB84 and BB84-AES are

equally random. Since the authentication tags are used only in the communication of information,

this boils down to asking whether Bob’s failure to inject additional random numbers has an adverse

effect on the entropy of the final key. The short answer is no, and it is important to realise that any

answer to the contrary would also apply in the case where Alice and Bob both randomly generate the

same set of bases with probability 1
2N . If Alice is using an ideal quantum random number generator

(QRNG) then the key she transmits will have maximum entropy. In conventional QKD, Bob’s random

bit deletion becomes a matter of practicality rather than doing anything to further mitigate Eve’s

ability to guess the final key, assuming he also uses an ideal QRNG. Therefore, removing this step

does nothing to reduce the randomness in the output of BB84-AES.

However, in standard BB84, the situation changes somewhat if an insecure or backdoored

random number generator (RNG) is used for basis selection at either end. While the outcome is

trivial when the same RNG is used for Alice’s bit selection (an eavesdropper will be able to obtain the

key without further interference), this is not enforced, so we stick to a more general implementation

where different RNGs are used for Alice’s bits, Alice’s bases and Bob’s bases. This configuration gives

rise to two possible attacks:
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Attack 5.2: Predictable Alice. If Eve can anticipate Alice’s random sequence, she will be able

to intercept the qubits, measure in the correct basis and resend. Assuming zero errors, her

measurements return the same raw key as Alice, which can be correctly sifted when the bases are

publicly compared.

Similarly,

Attack 5.3: Predictable Bob. If Eve can anticipate Bob’s random sequence, she will be able

to intercept the qubits, measure using his set of bases and resend. Assuming zero errors, her

measurements return the same raw key as Bob which can be correctly sifted when the bases are

publicly compared.

In BB84-AES, attack 5.3 reduces to attack 5.2 without sifting. As Bob is not generating any extra

randomness himself, the predictability of his measurement bases is determined by Alice’s RNG.

Therefore, Bob needs to trust Alice has made sensible implementation decisions, but given attack

5.2 exists in conventional QKD anyway, this is nothing new, and Eve’s ability to exploit a faulty RNG

remains unaffected.

5.4 Optimising BB84-AES for Resource-Limited Applications

5.4.1 Reduced Processing Variant

While it is perfectly feasible to implement protocol 5.1 as presented in this thesis, there are a number

of variations that can reduce demand on the computational and/or communications resources. The

first of these is summarised in protocol 5.2, where we allow Bob to check only whether the tag he

receives is a match for that corresponding to a measurement in the X basis. This requires marginally

less memory and processing time than individual basis authentication in otherwise-standard BB84.

The trade-off is that if Eve measures in the Z basis, she no longer needs to be able to forge the

corresponding authentication tag, ensuring only that the one she forwards, τE
i , is different to that

sent by Alice. However, Eve still has not broken the authentication scheme, meaning she cannot

obtain any basis information or force Bob to measure in the X basis, and so this kind of interference

will be exposed by the quantum bit error rate (QBER). Table 5.1 gives the outcomes for all of Eve’s

possible strategies. By averaging the error probabilities for different combinations of forwarding

choices, it is clear that τE
i ≡ τ

A
i remains optimal.

5.4.2 Reduced Bandwidth Variant

Next, we look at the effect of requiring the classical channel to communicate the bases using 128×
the number of bits transferred over the quantum channel. Given the Clavis2 emits laser pulses clocked

at 5 MHz [156], the classical data rate needs to be 640 Mbit/s. For comparison, the Bristol and UK
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Protocol 5.2: BB84-AES (reduced processing)

SUMMARY: Replaces steps 3c and 4c in protocol 5.1, halving the number of XOR operations and tag
comparisons that Bob has to carry out.

3. Authentication Tags.

(c) Bob calculates τX
i = hkH

(X )⊕AESkC
(si).

4. Key Exchange.

(c) Bob compares τA
i with τX

i . If it matches, he will choose to measure in the X basis. Otherwise,
he will choose to measure in the Z basis. Upon receipt of |ψ〉i , he will return bi with
probability 100%− Eµ, where Eµ is the quantum bit error rate.

Can be combined with: BB84-AES (reduced bandwidth)

TABLE 5.1: Showing the probability of a bit-flip error occurring between Alice and Bob,
depending both on the bases chosen by each of the three parties and whether or not
Eve blindly modifies the authentication tag.

Alice’s Basis Eve’s Basis Forwarding Choice Bob’s Basis Prob(error)

X X τE
i = τ

A
i X 0

X X τE
i 6= τ

A
i Z 0.5

X Z τE
i = τ

A
i X 0.5

X Z τE
i 6= τ

A
i Z 0.5

Z X τE
i = τ

A
i Z 0.5

Z X τE
i 6= τ

A
i Z 0.5

Z Z τE
i = τ

A
i Z 0

Z Z τE
i 6= τ

A
i Z 0

quantum networks on which the Clavis2 systems are being deployed, and which were the focus

of chapter 3, both have enhanced small form-factor pluggable (SFP+) and enhanced quad small

form-factor pluggable (QSFP+) channels with capacities of 10 Gbit/s and 40 Gbit/s respectively.

While the gap appears large between what we need and what we can provide, pre-commercial

quantum hardware has been shown to be capable of reaching super-GHz clock speeds [247]. Due

to the way in which the BB84 states were encoded in this example, the qubit preparation rate was

only 560 MHz, however to avoid a potential future where more efficient encoding techniques mean

our protocol necessitates two transceivers be multiplexed together, we can reduce our tag lengths

as described in protocol 5.3. This remains secure for up to 232 messages [240], allowing ∼ 104 full

rounds of QKD per initial key, and brings the classical communications requirements to within the

capabilities of 100 Gbit/s quad small form-factor pluggable (QSFP28) or 100 Gbit/s C form-factor

pluggable (CFP4) transceivers.
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FIGURE 5.1: Block diagram showing the transmission of a single bit of key from Alice to
Bob for BB84-AES with reduced processing.

Protocol 5.3: BB84-AES (reduced bandwidth)

SUMMARY: Replaces the 128-bit tags in protocol 5.1 with 64-bit tags of the same form. UMAC [237]
and VMAC [238] both provide such functionality, without dropping below the required security level.

Can be combined with: BB84-AES (reduced processing), BB84-AES (dense information transfer)

5.4.3 Dense Information Transfer Variant

The final optimisation reduces demand on the classical channel by grouping multiple bases into

a single authentication tag (protocol 5.4). The time taken to establish the presence of a fake user

should not change significantly, because the tags are still transmitted ahead of the first qubit in every

group. Of course, the processing at Bob’s end will be expected to take slightly longer than before, as

a MAC that represents ξ bases will have β = 2ξ possible values for each key/nonce pair. His method

for identifying the correct set of measurements differs from protocol 5.1 in that he must compute

all possible hashes and store them in a lookup table. He can then XOR the incoming tag with the

AES-generated key, and compare. Combining protocol 5.3 with protocol 5.4 will speed up the hash

function [238], thereby reducing the time taken to construct the table. The necessary calculations

can be performed during downtime, or in parallel with device and fibre characterisation, or in

parallel with a previous round of QKD provided each initial shared secret is used across multiple

rounds. An important subtlety, that is also true for protocols 5.1, 5.2 and 5.3, is the hashes only

need to be computed once so long as the initial secret remains unchanged, meaning the lookup

table only needs to be reconstructed when this is refreshed.

-106-



5.4. OPTIMISING BB84-AES FOR RESOURCE-LIMITED APPLICATIONS

Protocol 5.4: BB84-AES (dense information transfer)

SUMMARY: Replaces steps 3b, 3c, 4a, 4b, 4c and 5 in protocol 5.1, grouping multiple bases into a single
tag to reduce the necessary channel capacity by a factor of |τ|(ξ− 1). |τ| is the tag length in bits, and ξ
is the number of bases per tag. We redefine the range of i values such that 1≤ i ≤ N

ξ .

3. Authentication Tags.

(b) Alice generates ξ cryptographically-secure random bits, which are used to select bases
Bη through Bη+ξ−1, where Bη+Ξ ∈ {X , Z}, η = 1 + (i − 1)ξ and Ξ ∈ {0, . . . ,ξ − 1}. It is
required that 1 < ξ� N . She computes the tag τA

i = hkH

�

Bη|| . . . ||Bη+ξ−1

�

⊕AESkC
(si). h

is a universal hash function, AES is the Advanced Encryption Standard block cipher, and ||
is used to indicate a concatenation.

(c) Bob calculates hkH

�

Bη|| . . . ||Bη+ξ−1

�

for all 2ξ possible values of Bη|| . . . ||Bη+ξ−1, storing the
results in ascending order. He also evaluates AESkC

(si) separately.

4. Key Exchange.

(a) Alice prepares the qubits |ψ〉η to |ψ〉η+ξ−1. This is done by generating ξ cryptographically-
secure random numbers, bη through bη+ξ−1 where bη+Ξ ∈ {0, 1}, and encoding them in the
bases Bη through Bη+ξ−1 respectively.

(b) Alice sends τA
i to Bob, closely followed by all |ψ〉η+Ξ for the corresponding value of i.

(c) Bob computes τA
i ⊕AESkC

(si) and checks it against the lookup table he constructed in step
3c, to identify the bases in which he should measure. Upon receipt of |ψ〉η+Ξ, he will return
bη+Ξ with probability 100%− Eµ, where Eµ is the quantum bit error rate.

5. Loop. Steps 3b, 3c and 4 are repeated for the remaining N − iξ qubits sent from Alice to Bob. As
multiple tags can be constructed in parallel, this may begin prior to completion of the previous
iteration.

Can be combined with: BB84-AES (reduced bandwidth)

To prevent a simple timing attack, Alice can never send the qubits until the worst-case lookup

time has elapsed, so Bob must take care to select a search algorithm that is optimal in this regard.

One possible option would be a binary search [248], which makes no more than blog2 βc+1 = ξ+1

comparisons.

The exact value of ξ reflects a trade-off between computational and communications resources,

and it is clear from figure 5.2 that the greatest benefits can be achieved when 1< ξ� 32, because

of the exponential behaviour demonstrated by both the classical channel capacity and memory

requirements. As a concrete example, we will consider the Bristol Quantum Network (see chapter

3), which is hosted on pre-existing infrastructure, with each node’s server containing sixty four Intel

Xeon E5-2697A v4 processors. By implementing a binary search on a single central processing unit

(CPU), without hardware-specific optimisation, we can estimate the performance of our protocol

on a real system. If we assume a 64-bit tag and want to employ only a single SFP+ (QSFP+)

channel, then ξ = 8 (ξ = 2) maximises the QKD clock rate while trying to use the least possible

memory. In this case, it takes 6.940± 0.085 ns (2.085± 0.017 ns) to run the search, allowing for a

1.153± 0.014 GHz (0.959± 0.008 GHz) clock and consuming 2048 bytes (32 bytes) of memory,
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FIGURE 5.2: Illustrating how changing the number of bases represented by a single
authentication tag affects both classical communication and computational resource
requirements for BB84-AES with dense information transfer. To get a rough estimate
for how our protocol will perform on a particular physical system, one can multiply
the classical channel capacity by the QKD clock rate, and worst-case number of
comparisons by the time taken to perform a single binary search comparison. The size
of a 128-bit hash lookup table will always be double that of its 64-bit counterpart.

out of 87.7 GiB available (1 GiB = 230 bytes) and 131.7 GiB total random-access memory (RAM).

To run a hypothetical 1.72 GHz-clock BB84 device, based on the technology in [247], would require

ξ= 12 (ξ= 3). In this instance, the search takes 9.692± 0.039 ns (2.881± 0.036 ns), and 32,768

bytes (64 bytes) of memory is required. However, it is important to note that while these parameters

are sufficient to enable the use of presently-installed transceivers, the quantum clock is still capped

at 1.238± 0.005 GHz (1.041± 0.013 GHz) because of the maximum search time. Hence, some

parallelisation will also be required, in that each search must begin before the previous one is

guaranteed to have finished.

Technically, the higher the value of ξ, the easier it is for Eve to guess one of the 2ξ − 1 other

authentication tags that Bob will accept. A correct guess is still highly improbable, and so she will

almost certainly be detected, but even if successful, Eve controls only whether or not Bob measures

with the same bases as Alice. Hence, this is nothing more than a restricted version of the strategy

she can employ in protocol 5.2 and, in the unlikely case of an odds-defying set of forgeries, Alice
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and Bob will be made aware of Eve’s presence by the QBER.

5.5 Comparing BB84-AES with Other Photon-Number-Splitting-

Resistant and Highly-Efficient Quantum Key Distribution

Protocols

While BB84-AES is the only protocol that offers protection against attack 5.1, other solutions exist

that increase the sifting efficiency and resist PNS attacks. One may question why we should not use

these instead. If we are concerned about DoS, the reasons are obvious, however a more detailed

comparison is required for the other characteristics, as summarised in table 5.2.

We first consider biased basis QKD which, conditional on the number of photons transmitted,

can be used to asymptotically double the efficiency of BB84 (see protocol 2.8). In rare situations on

bespoke networks, there may be an argument in favour of retaining information-theoretic security,

however we are concerned with everyday communications, and so have already waived our interest

in this. Now, transmitting the tags in advance of the qubits is a slightly preferable solution, partly

because the efficiencies of real and simulated biased basis experiments are still noticeably lower

than 100% [83–85], however assuming no additional countermeasures are employed, the protocol

described in [82] is also vulnerable to a more simplistic PNS attack than that which is applicable to

vanilla BB84. This, attack 5.4, is possible due to the recommendation that key be generated from a

single basis, with the other used only for eavesdropper detection. The fact that a quantum memory

is no longer required makes it a much more realistic exploit for modern-day implementations than

attack 2.1, emphasising why it is imperative to use decoy states in any current system relying

on biased bases. In contrast, the aforementioned Clavis2 predominantly uses unbiased SARG04,

which has the same level of PNS-resistance as the protocol described herein, and falls back on

unbiased BB84 for short distances where SARG04 is not proven secure [244]. This may be considered

acceptable so long as quantum memories remain in the early stages of development.

Attack 5.4: Photon Number Splitting Against Biased Bases. Assume Eve does not possess

a quantum memory but is otherwise unchanged. She performs a quantum non-demolition

measurement on the number of photons in each pulse and blocks all single-photon terms. For

the remainder, she splits off at least one photon from every pulse, and allows at least one photon

to carry on towards Bob. Eve immediately measures her copy in the key generation basis. When

Alice and Bob publicly sift their qubits, she can identify those used for eavesdropper detection,

and discard any information she has on them. Every bit of her final key has now been correctly

measured, without revealing her presence.

SARG04 itself resists two-photon PNS by modifying the public announcements of BB84 (see pro-

tocol 2.6). However, as a consequence, the sifting efficiency is reduced to 25%, so there are clear
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advantages to using BB84-AES over both biased bases and this.

In contrast, decoy states do offer an improvement over the work of this chapter, in that they

can protect against higher-order PNS (attack 2.2). Yet their presence diminishes the overall sifting

efficiency, as only signal states contribute to the final key, fundamentally limiting the secret key rate

even when combined with either biased basis QKD or BB84-AES. There is currently no clear way

round this. If resilience against three-photon number splitting is required, decoy states are the only

available solution, and the reduction in efficiency must be accepted. However, it is worth noting that

state-of-the-art QKD performances are still a considerable way off any theoretical upper limits so, at

present, decoy states actually increase key rates, as they allow for higher mean photon numbers

than would otherwise be considered secure.

5.6 Outlook

In this chapter, we have shown that by reducing the mathematical security of BB84, it is possible

to almost instantly detect denial of service that leverages provably fake users, a novel attack to

which all standard quantum key distribution protocols are vulnerable. Our design is inherently

resilient against attempts to exhaust Alice and Bob’s supply of initial secret key, but does not lead to

large memory overheads because of this, nor does it operate reactively by falling back on public-

key cryptography. In changing how and when the bases are announced, we are able to achieve

exactly 100% efficiency and, instead of posing a risk to security, two-photon terms now contribute

positively to the final key rate. In both cases, this is independent of the distance or the number of

bits exchanged, and without further cost.

Such advantages are possible only so long as the output of the cipher used to construct our

authenticators is indistinguishable from the output of a random permutation. This criterion is the

same as that for ensuring the security of quantum-safe encryption schemes used in day-to-day

communications. We have already shown that it is impractical to supersede said cryptosystems

with a QKD-keyed OTP, due to the high volume of information transmitted over the classical

channel for every quantum bit, and because the secret key rates are orders of magnitude lower than

overall network data rates. Therefore, having to sacrifice information-theoretic security is not overly

concerning and, in any case, the chances of the indistinguishable-output assumption being violated

are far lower than the likelihood of an attacker exploiting one of the weaknesses that our protocol

defends against.

Of course, the size of our authentication tags means BB84-AES increases the number of classical

bits per quantum bit even further, and we must show that it does not render the Advanced Encryption

Standard running in Galois/Counter Mode (AES-GCM) unusable when subject to the analysis of

section 4.1. Figure 5.3 presents results for a simulated ID Quantique Clavis2 implementing BB84-AES

in its basic form (protocol 5.1). For a real Clavis2, we assume that each basis is represented by a

single bit in the classical channel, as the actual encoding is unclear. Thus, in the worst-case, we
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expect an extra 127 classical bits to be transmitted for every secret bit generated by BB84-AES, and

this is the scenario we simulate. The outcome is that BB84-AES with AES-GCM sits in between BB84

with the OTP and BB84 with AES-GCM (see figures 4.4 and 4.5 respectively). However, it is close

enough to the latter that we can be satisfied the additional classical overhead has not compromised

ease of deployment, with the off-peak data rates limited to 99.99998(5)% of the classical channel

capacity.

If one were to insist on unconditional security in a bespoke setting, individual basis authentication

could be performed using AES-derived tags in standard BB84, reauthenticating everything at the end

with a traditional Wegman-Carter MAC. However, attack vectors may still exist for exhausting the

initial shared secret and, given the issues we have raised over implementing biased bases without the

necessary hardware for decoy states, BB84-AES retains some attraction, particularly for minimalistic

implementations and retrofitting systems already in the field.

A final novelty of our protocol is that, by daisy-chaining multiple Alice/Bob pairs, it is possible

to supply an arbitrary amount of quantum-safe quantum randomness with everlasting security to

someone who cannot directly access a QRNG. Although the resource requirements scale badly (for

a chain of d nodes, excluding the root, a QRNG would need to generate 2d−1 bit strings, assuming

any intermediaries are trusted), it does offer users a unique way of combining randomness from

multiple sources, reducing the trust they place in any one provider. As Bob does not need to rely on

his own inbuilt RNG during the transmission process, attack 5.3 cannot be used by the manufacturer

to obtain the randomness gathered from external sources, regardless of whether it is transmitted as

the QKD key, or simply encrypted using this.

In developing the above, we have shown that the intersection between modern and quantum

cryptography should be explored in more detail, with greater collaboration between researchers

on both sides, as this area still seems largely untapped and ripe for real-world improvements in

algorithms and implementations. The remainder of this chapter will focus on tying up loose ends,

as we consider the impact of replacing our tags with true authenticated modes of encryption, and

present a number of possible extensions to the arguments and techniques we have applied herein.

5.6.1 On the Cryptographic Choices for Communicating the Bases

Until now, our authentication tags have been based solely around AES-256, because of its ubiquity

in modern communications, and position as the de facto quantum-safe alternative to the one-time

pad. However, should AES ever become compromised in some way, it would be trivial to substitute

in an alternative cipher such as Serpent-256, the post-quantum security of which is currently under

evaluation [249].

However, we can go a step further, as authenticated modes of encryption have the same properties

as our authentication tags. Throughout this work, we have used AES-GCM to protect our data, and

the question arises as to what happens when QKD incorporates such a scheme in its entirety, rather

than just capitalising on the block cipher.
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FIGURE 5.3: Showing the amount of off-peak time required per second of on-peak time
in order to encrypt all data with the Advanced Encryption Standard running in Ga-
lois/Counter Mode, keyed using BB84-AES and considering only limitations imposed
by the classical quantum-key-distribution channel, modelled for the ID Quantique
Clavis2 under the pessimistic assumption that the authentication tags contribute an
additional 127 classical bits per secret bit. We present results for (a) 0 dB loss in the
quantum transmission line with varying on-peak and off-peak traffic (mathematically,
the percentage channel capacity consumed by classical data during on-peak and off-
peak times is ς∧/ς and ς∨/ς respectively); (b) 9 dB loss in the quantum transmission
line with varying on-peak and off-peak traffic; (c) and (d) 0 dB and 9 dB losses in the
quantum transmission line respectively, with varying on-peak and no off-peak traffic
in both cases; (e) and (f) 0 dB and 9 dB losses in the quantum transmission line
respectively, with varying on-peak and

�

ς|m|max
|m|max+Rc/s|kC|

�

e
off-peak traffic in both cases,

where b·ce means that we round down to the nearest multiple of machine epsilon e.
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BB84-A/G, which supplants the computationally-secure MAC with AES-GCM, should behave

in much the same way as BB84-AES, with one important difference. As all of AES-GCM’s possible

failure criteria are now contained within those for BB84-A/G, the maximum failure probability of

the overall system can be defined entirely by the maximum failure probability of BB84-A/G.

This can be expressed mathematically as follows. The ε-security of a confidential cryptosystem

that is built from independent and composable subsystems is quantified using [250]

εtotal ≤ εdist + εenc (5.10)

Here, εdist is the deviation from perfection of a key distribution protocol and its output, while εenc is

the same metric, only applied to the authenticated data encryption.

The composability of BB84-AES is not guaranteed, emphasising the need for a full security proof.

Nonetheless, if it does possess this essential property, εtotal for BB84-AES with AES-GCM encryption

will be calculable from equation 5.10. In contrast, AES-GCM never fails on its own when used with

BB84-A/G, so we can apply the following:

εtotal =Max (εdist,εenc) = εdist (5.11)

This comes with one important caveat. As soon as we consider applications beyond AES-GCM or

AES-CTR, equation 5.11 no longer applies. Therefore, if BB84-A/G is to be used in an arbitrary

cryptosystem, its security should be evaluated under the expectation that the operation in which

the key will be used is completely independent.

5.6.2 Beyond Basis Announcements and BB84

Adapting our work for BBM92 [251] (which we call BBM92-AES) and the Six State Protocol [252]

(likewise, SSP-AES) is trivial. In the case of the former, the public channel is identical to that of

BB84. For the latter, we must compute an extra tag, which we define to be

τY
i = hkH

(Y )⊕AESkC
(si) (5.12)

Consequently, a reduced processing variant would need to test authentication tags corresponding

to two out of three bases (c.f. protocol 5.2). Like with the six-state version of SARG04 [253], we

expect Eve’s attacks on multi-photon terms to be further restricted, such that she can only perform

unambiguous state discrimination on weak coherent pulses that contain at least five photons. This is

because, given a Γ -photon pulse, the upper bound on the number of states that Eve can discriminate

between is Γ + 1 [254].

The ease with which the techniques of BB84-AES can be applied to other forms of quantum key

distribution is less well defined. An advantage can certainly be gained by incorporating decoy states

for the basic four-state protocol, but a more detailed analysis would be required with regards to

SSP-AES. For example, if we consider the commonly-chosen mean photon number µ = 0.1, then the
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probability of generating a pulse containing five or more photons is

Prob (γ≥ 5) = 1−
4
∑

Γ=0

Prob (γ= Γ )

= 1− e−µ
4
∑

Γ=0

µΓ

Γ !

= 7.67× 10−8

(5.13)

As a result, we roughly expect to see a five-photon term only once every 130 keys if the protocol

concludes immediately upon reaching the finite key limit (∼ 105 bits). However, if we now consider

µ= 0.5, which is the optimal mean photon number for decoy state QKD [79], then

Prob (γ≥ 5) = 1.74× 10−4 (5.14)

Here, several tens of attackable pulses will be transmitted per key. We would expect Alice and Bob

to notice the cataclysmic drop in rates if Eve were to block all but these. Yet there may still be attack

strategies that allow her to gain useful information by performing unambiguous state discrimination

on a fraction of the key, hence the need for a more thorough investigation into the potential role of

decoy states in SSP-AES.

Finally, instead of just considering the impact of applying our authentication tags to other QKD

protocols, we ask what happens if they are used elsewhere in BB84-AES. Can any advantage be

gained if Eve does not know which qubits arrived, because Bob notifies Alice in the same way as

she informs him of the correct bases? And what is the effect of using the authentication tags to

encrypt error correction parities in CASCADE? This last question is similar to a situation that has

previously been considered, in which the parities are encrypted using a OTP as a way of guaranteeing

information-theoretic security [88, 255]. Here, the obvious downside is that the number of parity

checks must be taken into account when calculating the secret key rate [256]. However, extending

our authentication tags to the error correction stage would use no additional key, so while the

security implications would need to be thoroughly examined, this may be of benefit.
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TO DEFEND AGAINST SHOR’S ALGORITHM

Declaration of Work

I developed the experimental concept for the work presented in this chapter.
I wrote all the software except for QKDSequence, which was provided by ID
Quantique. The McEliece implementation was based on that provided by the
Botan library, the AES-GCM implementation used OpenSSL and KeyCutter
was based on the IDQ3P protocol developed by ID Quantique. The section
“Consequences of Computationally Secure Encryption in Quantum-Safe Networks”
was conceived after a conversation between myself and Kenny Paterson on that
topic. I carried out all of the experiments without assistance.

Some of the results have previously been presented at QCrypt [257]. Where
appropriate, parts of the extended abstract may have been reused, as the original
text was written by me.

Quantum key distribution (QKD) and post-quantum cryptography have both been proposed as ways

of protecting critical communications against the threat posed by quantum computers, yet it is

becoming more and more evident that each of these provides unique benefits. In the case of the

former, we can guarantee quantum security, whereas with the latter, a necessity for mathematical

assumptions is offset by the flexibility provided as a result of easily-implementable trust mechanisms.

Therefore, it is likely that both will be taken advantage of in future networks, opening up the

opportunity to provide even better functionality by getting these solutions to work in tandem, rather

than operating separately.
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In this chapter, we investigate possible ways in which QKD and the McEliece post-quantum

cryptosystem [258] can be combined. We have chosen McEliece primarily because it has had time

to be scrutinised at a level that other post-quantum algorithms have not, which gives us a high

level of confidence in its classical security, and a high level of confidence relative to alternatives

in its post-quantum security. McEliece is also a contender in the National Institute of Standards

and Technology (NIST) post-quantum cryptography competition [259], the winners of which will

become defaults for commercial and everyday use. The analysis that follows could easily be rerun,

should McEliece not form part of the final recommendations.

We open by exploring some consequences of the work in chapter 5, identifying a crucial area in

which QKD can be of use: performing quantum-secure conversions on symmetric keys that have been

distributed using public-key solutions, such that the system’s immunity against quantum attacks goes

from being probable to guaranteed. After justifying our choice to use McEliece, and explaining its

operation (section 6.2), we build an experimental system for implementing the above (section 6.3).

The modules developed can also be adapted to create more complex prototypes, capable of

demonstrating significant advantages in a number of use cases. We show that the efficiency of

QKD can be harnessed to provide fast and automated private-key backups in an otherwise post-

quantum world (section 6.4). Finally, we leverage McEliece to reduce the trust in quantum nodes for

long-distance communications, and to enable compatibility with legacy connections (section 6.5).

6.1 Consequences of Computationally-Secure Encryption in

Quantum-Safe Networks

In the previous chapter, we relaxed the security of QKD to that of the Advanced Encryption Standard

(AES), arguing that if the latter turns out not to be quantum-safe, the encryption scheme to which

the quantum key is supplied will be compromised regardless. This justification is based on the results

of chapter 4, which strongly imply that the one-time pad (OTP) will continue to be less practical

than the Advanced Encryption Standard running in Galois/Counter Mode (AES-GCM), except in

niche applications.

The obvious riposte to the above is that if we no longer have information-theoretic security, why

use quantum physics as a foundation for key distribution in the first place? It should be made clear

that the objective of this thesis is security against quantum attacks, rather than a mathematically

unbreakable cryptosystem, as such a notion has little significance in the real world if it makes devices

difficult to deploy, and introduces avenues for trivial denial of service (DoS) attacks. However, this

does not affect the validity of the question posed.

In section 5.2, we explained the reasons why AES-GCM is not a legitimate simplification of

BB84-AES. What we failed to establish was whether it can be used as a method for key distribution

in situations where perfect forward secrecy is not a concern. The answer is no. AES-GCM can only

encrypt 239 − 256 bits of information [18], after which point it has to be rekeyed by an external
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mechanism, meaning it cannot be used as a standalone construct when sharing large numbers of

keys. For context, it will take 55.0 s for the slowest link on the Bristol Quantum Network to transmit

239 − 256 bits of data. One may then ask whether there are any other ways in which key agreement

can be carried out, still relying on AES, but with a high enough limit on the number of times it can

be called such that the system will never need to be rekeyed. The answer to this is yes.

Key derivation functions (KDFs) take a pre-shared secret and expand it into a longer key that

is cryptographically secure. In the case of Transport Layer Security (TLS), on which much of the

World Wide Web’s security relies, the initial secret can be “established externally or derived from

the resumption master secret value from a previous connection” [260]. Thus, from a superficial

perspective, KDFs fulfil the same function as QKD and have the same basic requirements, with the

difference being that they are built around quantum-safe primitives such as AES [261, 262] or a

hash function [263].

For the KDF in [261], (232 − 1)|p| bits of keying material can generated, where |p| is the length

of the output from a pseudorandom function (PRF). Therefore, if we define our PRF using AES, and

assume the encryption limit on AES-GCM [18] is always reached, we can secure up to ∼ 1.18 Zbits

of information with a single initial secret key (1 Zbit = 1021 bits). For comparison, global IP traffic,

which includes but is not limited to all internet traffic, is expected to reach 2.22 Zbits per month by

2021, which is equivalent to a monthly quota of 280 Gbits per capita [264]. On the Bristol Quantum

Network, it will take 934.8 years to send 1.18 Zbits of data over the fastest link.

Hence, in situations where perfect forward secrecy is not required, there are more effective

approaches to key growing than QKD, assuming an encryption scheme is used that has practical

computational security. This is captured by the top two diamond-tiers of the decision tree in

figure 6.1, although it should be observed that the diagram applies only to networks of limited

capacity. Naturally, if said capacity can be increased arbitrarily, there is nothing in chapter 4 that

physically prevents the use of QKD with the OTP in all situations. Yet even if perfect forward secrecy

is mandatory for a particular application, it can be implemented as part of public-key cryptosystems

by way of session keys, so one may question whether QKD is needed at all if encryption is not realised

using the OTP. The answer is relatively simple, as summarised by the bottom two diamond-tiers in

figure 6.1. If the initial secret is distributed out-of-band, for example by meeting in person, it will

almost certainly not be possible to update it with sufficient regularity to ensure reasonably strong

perfect forward secrecy, and QKD will be required. It should be assumed that if, for whatever reason,

computationally-secure key exchange has been ruled out when sharing the initial secret, then such

a mechanism will also be considered unsuitable for generating session keys. However, given the

internet comprises large numbers of widely-distributed entities, it is more likely that the above will

continue to be achieved by way of public-key cryptography. In this case, we must ask whether the

long-term security of the key needs to be guaranteed against quantum computers. If the answer is

yes, then the everlasting security provided by QKD is the only way to erase the information Eve has

on symmetric keys distributed using public-key cryptosystems.
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Elsewhere, the situation is more nuanced, and in particular we note that if the encryption key

requires an immediate security guarantee against quantum attacks, then there is no solution at

present for cases where it was shared using public-key cryptography. Even in post-quantum systems,

a reliance on mathematical assumptions means that there is always a chance, however small, for

someone to discover the initial shared secret prior to its use in QKD.

In the author’s opinion, it is near-certain that the classical internet of the future will still be based

on public-key cryptography. Applications will then be divisible into those that do need a long-term

security guarantee and those that do not. To cater for the former, it is of the utmost importance that

we demonstrate interoperability between quantum and post-quantum cryptosystems. Doing so is a

central goal of this chapter.

6.2 Post-Quantum Cryptography

In this work, we select only two post-quantum algorithms for integration with QKD: McEliece and

Niederreiter’s variant. Here, we justify this choice, while summarising the other options that were

available. We then go on to outline each of the cryptosystems used, and the ways in which they

were implemented.

6.2.1 The Post-Quantum Landscape

In recent years, quantum-resistant public-key cryptography has become an increasingly diverse

topic of research. Lattice-based constructs are a leading contender, having first been proposed in

1996 [265], less than 2 years after the publication of Shor’s algorithm. Popular variants include

NTRU [266] (the acronym’s root phrase is disputed [267]) and systems built around Learning With

Errors (LWE) [268]. However, these were not chosen for the experiments of this chapter because,

despite the small key sizes and high speeds that lattice-based cryptography provides, its security is

still under question. SOLILOQUY is a notable example for which an efficient quantum attack has

been found [269], and this is extendible to a number of other schemes [270]. Although NTRU and

LWE are still considered safe, these results demonstrate that our understanding of lattice-based

cryptography remains limited so far as quantum computers are concerned, and further analysis is

required.

A newer alternative is based on the presumed hardness of computing elliptic curve isogenies,

suggested in [271] before being expanded on by [272] and [273]. Unfortunately, the above schemes

were also found to be susceptible to quantum attack [274]. By using supersingular elliptic curves,

the work of [275] managed to counteract this. It is seen as a candidate for replacing Diffie–Hellman

key exchange [276], meaning perfect forward secrecy mechanisms could be implemented as part of

a full post-quantum cryptosystem in similar fashion to today. However, given only seven years have

passed since the introduction of Supersingular Isogeny Diffie-Hellman (SIDH), it is still far too early

to be sure of its security, and so we remove this from consideration also.
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It is technically possible to resist attacks on Rivest–Shamir–Adleman (RSA) by increasing the

size of its parameters such that, even in the presence of a fully-fledged quantum computer, an

infeasible number of qubit operations is required. On the basis of a preliminary analysis, this is

believed be achievable with a 1 TB public key and 231 primes, each of which is 4096 bits long [277].

Therefore, while such an approach is academically interesting, it is wholly impractical, made worse

by the authors’ suggestion of outsourcing key generation to NIST, which only serves to eliminate

the security of the scheme.

The security of hash functions is well understood, and while recent attempts have been made to

develop generic attack algorithms with a quantum speedup [278], there is still no efficient way of

breaking a cryptographic hash. Nonetheless, these will not be used as a basis for the work herein, as

our focus is on key distribution, and hash functions can only be used in the construction of signature

schemes [279–281]. We do note, though, that proposals such as these are viable candidates for

signing public keys on post-quantum Pretty Good Privacy (PGP)-style servers.

Thus, we are left with code-based cryptography, originally proposed in the same year as RSA

was first publicly described [258]. While attacks have been found against a number of variants,

the original McEliece cryptosystem remains secure. Hence, it is the only post-quantum option for

key distribution where we can say the security has been sufficiently explored. In some applications,

McEliece’s large public key sizes (> 1 MB) would constitute a disadvantage, however this is not

a concern for systems capable of running QKD, as the finite key limit means similar amounts of

data must be managed regardless. Therefore, given it also provides fast encryption and decryption

operations [29], this would seem the sensible choice for integration with QKD as part of a quantum-

safe ecosystem.

6.2.2 The McEliece Cryptosystem

Having settled on the type of post-quantum cryptography with which QKD is to be interfaced, we

now provide a more in-depth discussion of the protocols used. In the physical world, all digital

communications channels are subject to noise, inducing errors on the messages that pass through

them. In many cases, this would render such a link unusable, so it is imperative that the noise

is somehow compensated for. Error-correcting codes are a way of introducing redundancy into a

transmission, mapping each message to a unique vector known as a codeword. In general, greater

redundancy means more errors can be corrected because the separation between codewords becomes

larger. However, this is subject to selection of an appropriate code.

Binary Goppa codes [282, 283], which are linear with respect to definition 6.1, can correct

a relatively high number of errors. Codewords are produced by multiplying messages with the

generator for the code (see definition 6.2).
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Definition 6.1: Linear Code. Consider a vector subspace, known hereafter as a code. If any

linear combination of vectors sampled from a code produces another vector from the same code,

then said code is linear. We refer to each vector as a codeword.

Definition 6.2: Generator Matrix. The rows of a generator matrix form the basis of a linear

code, meaning that when it is multiplied by an arbitrary input vector, a codeword will be

generated.

In 1978, Robert McEliece put forward a method that used binary Goppa codes to implement public-

key cryptography [258]. As shown in protocol 6.1, the randomly-chosen generator (Alice’s secret

information that gives her an advantage over Eve) is scrambled by a binary matrix (definition 6.3)

and permuted (definition 6.4), before being made public. Bob can use this so-called public generator

to produce a codeword corresponding to his message, adding it to an error vector of length l

and weight υ (definition 6.5). Here, the length of the vector is equal to the length of the code

(definition 6.6).

Definition 6.3: Binary Matrix. The elements of a binary matrix take values sampled only

from {0, 1}.

Definition 6.4: Permutation Matrix. A permutation matrix is a square, binary matrix. Each

row contains only a single element with value 1, and the same is true for each column.

Definition 6.5: Vector Weight. The weight of a vector is the number of binary elements it

contains with a value of 1.

Definition 6.6: Code Length. The length of a code is the number of elements in each of its

codewords.

With her secret knowledge, Alice can use a fast decoding algorithm [284] to correct the errors,

thereby decrypting Bob’s message. However, Eve is restricted to solving the general decoding problem

for linear codes, which is known to be NP-complete [285]. Recall from section 2.2.2 that quantum

computers cannot efficiently solve this kind of problem with a black-box approach [46] therefore,
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under the assumption that P 6= NP and a specific-knowledge quantum algorithm for the general

decoding problem does not exist (i.e. NP 6⊆ BQP), McEliece would appear to be secure. It should

be noted that both of these statements are strongly believed to be true but are, as of yet, unproven.

Protocol 6.1: McEliece Public/Private Key Generation [258]

SUMMARY: Alice creates a public/private key pair for use in protocols 6.2 and 6.3.

1. Private Key.

(a) Alice generates a set of cryptographically-secure random bits, enabling an ra × l generator
matrix G to be chosen. The generator corresponds to a binary Goppa code of algebraic
dimension ra (see definition 6.7) and length l, with which υ errors can be corrected.

(b) Alice generates a second set of cryptographically-secure random numbers, enabling an l × l
permutation matrix P to be chosen.

(c) Alice generates a third set of cryptographically-secure random numbers, enabling an ra × ra
binary matrix A to be chosen, constrained such that AA−1 = 1. This is called the scrambler
matrix.

(d) The private key is defined to be (A,G,P).

2. Public Key.

(a) Alice computes the ra × l public generator matrix G′, where G′ = AGP.

(b) The public key is defined to be (υ,G′).

Definition 6.7: Algebraic Dimension. The number of elements in the basis of a vector space

is its algebraic dimension.

We integrate McEliece using the Botan library [286], with the parameters recommended in [249].

Botan was chosen primarily because, at the time, it was the only C++ library to include McEliece.

Since then, numerous others have also started to provide their own implementations, such as CEX

and QuantumGate, however Botan remains a strong contender after it was tested and endorsed by

the Bundesamt für Sicherheit in der Informationstechnik (BSI) in 2017. It is on their behalf that

Botan is now maintained, with a commitment to fix functional errors within four weeks of being

identified [287]. Another recent development is libpqcrypto, which offers C and Python interfaces

for McEliece, but even if it had been available when the work of this chapter first commenced,

libpqcrypto does not fulfil our language requirements (C++11, for ease of integration with a QKD

network toolkit developed by colleagues).

As with other public-key cryptosystems (see section 2.1.3), McEliece should not be used to

directly encrypt a message. Instead, a symmetric key should be distributed using a key encapsulation

mechanism (KEM), for use in a protocol such as AES-GCM. Botan’s original McEliece KEM is

summarised in [286], and is based on the construction in [288], which provides indistinguishability

under adaptive chosen ciphertext attack (IND-CCA2), the strongest security notion of its kind (see
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appendix C). We take a slightly different approach to symmetric-key generation, as summarised in

protocols 6.2 and 6.3. The original implementation implicitly used Key Derivation Function 1 (KDF1)

from [289], whereas we used Key Derivation Function 2 (KDF2) from [290] instead. Both take an

arbitrary hash function as input, which we define to be Secure Hash Algorithm 512 (SHA-512),

from the Secure Hash Algorithm 2 (SHA-2) family [291]. The difference between the two is that

KDF2 introduces a counter to increase the amount of key that can be derived with a single master

secret. As a result, if a user were to request only a single 256-bit key be returned, the counter would

not increment, and KDF2 would be equivalent to KDF1, aside from a slightly modified input.

Protocol 6.2: McEliece Key-Encapsulation-Mechanism Encryption – Based on [258, 286]

SUMMARY: Bob transmits a bit string to Alice by encrypting it with her public key. From this, a symmetric
key can be derived.

1. Symmetric-Key Generation.

(a) Bob generates ra cryptographically-secure random bits and stores them as a message vector
*m.

(b) Bob chooses an error vector *ε of length l and weight υ, where the elements that have a
value of 1 are decided on using a cryptographically-secure random bit generator.

(c) The symmetric key is defined to be KDF2 ( *m||*ε), with SHA-512 as the hash function. Here,
|| is used to indicate a concatenation.

2. Symmetric-Key Encryption. Bob transmits the ciphertext *c = *mG′+ *ε. In doing so, he has implicitly
generated the codeword corresponding to *mA, permuted it and introduced υ errors. This last
step is mathematically equivalent to introducing a permuted error vector, which would still be
correctable as its weight is unchanged, and then permuting the result.

Protocol 6.3: McEliece Key-Encapsulation-Mechanism Decryption – Based on [258, 286]

SUMMARY: Using her private key, Alice decrypts the bit string that was transmitted by Bob. From this, a
symmetric key can be derived, identical to that generated in protocol 6.2.

1. Symmetric-Key Decryption.

(a) Alice inverts P. As PP−1 = 1, this can be thought of as a “de-permutation” matrix.

(b) Alice receives *c and computes *c P−1 = *mAG+ *εP−1.

(c) Alice applies Patterson’s Algorithm [284], correcting the errors introduced to the codeword
*mAG by the error vector *εP−1, and returning the message vector *mA.

(d) Alice multiples the inverse of the scrambler matrix by the output of the previous step, such
that *mA→ *m.

2. Symmetric-Key Generation. The symmetric key is defined to be KDF2 ( *m||*ε), with SHA-512 as the
hash function.

The library had changed significantly by the time the code was written for this thesis, so the

examples provided by reference [286] were no longer applicable. At the time, there was an absence
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of documentation to supersede this, so much of the development involved working out how the

library should be implemented. Further details regarding the exact execution are given in section 6.3.

6.2.3 The Niederreiter Cryptosystem

In addition to vanilla McEliece, there is another code-based construct, which was first proposed by

Harald Niederreiter in 1986 [292], and is thought to be secure when used with binary Goppa codes.

In particular, it can be shown that the Niederreiter cryptosystem is equivalent to McEliece in this

regard. If Niederreiter can be broken, so can McEliece, and vice versa [293].

A high speed C implementation is provided by McBits [294], and is particularly noteworthy

because it is faster than RSA, ECC and NTRU [295]. Since this work was carried out, McBits has been

added to the liboqs library (part of the Open Quantum Safe project), emphasising its popularity.

While our network was built primarily on software written in C++, it would have been an

oversight not to examine the impact of substituting our primary McEliece instantiation for McBits.

Yet this was performed only in the context of the experiments presented herein, rather than being

fundamentally built into the network infrastructure, and so very little development was required.

As a result, we will refrain from providing a full explanation of Niederreiter, although in short, it

replaces the generator matrix for a Goppa code with the parity check matrix instead, generating a

syndrome that is computationally hard to decode without the private key.

6.3 Scenario I: Symmetric-Key Conversion for Long-Term Quantum

Security in a Post-Quantum Ecosystem

We now progress to building a system in which QKD can be used to convert a symmetric key

that is only thought to be quantum-safe, into one whereby immunity against quantum attacks is

guaranteed. Allowing the user to choose whether or not to perform the conversion is important. If

only short-term security is required, there will be a noticeable increase in performance as a result

of skipping the QKD step. Using protocol 6.1, a public/private key pair was generated, with the

intention that the public portion would be uploaded to a PGP-style key server for Bob to download.

Protocols 6.2 and 6.3 were then called to generate a symmetric key and save it to a store, allowing

said key to either be used directly in an encryption scheme/message authentication code (MAC) or

as the initial secret for QKD. The inclusion of a generic store also means the post-quantum module is

agnostic both with regards to manufacturer-specific aspects of the QKD hardware, and the protocol

used, meaning it can slot over any arbitrary implementation, including more complex alternatives

like measurement-device-independent (MDI)-QKD.

It should be noted that, although our focus is on augmenting quantum-safe public-key cryp-

tography, the above mechanism is the same as that which would be implemented if QKD was the

dominant method of key distribution, and Alice had never met Bob, or exhaustion attacks on the

initial secret key necessitated a fallback method of authentication. In such a scenario, use of a
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-----BEGIN MCELIECE PUBLIC KEY-----

MIMQMHswDAYKKwYBBAGBxSoBAwODEDBoADCDEDBiMAcCAhswAgF3BIMQMFQevEeB

y9XE6afIFWRm7WWwgQ0PuFBK3VHuClkO5DQJ6KB6F44y75LkYrSB9aCsUCF34TdG

7lxMezF/oHZxyJzgRTjmqD+cVq4STabYRRCvDQXMJ3hbQP19lycHTIQtDGBQeBYu

q5SkyL/vRrKThgn3PbtfRWb7bdyOQs25NHwoJ/MjUUp7K3zNlZe4TSN79C6h55ZE

aonslcENEYiMQkpxfCSByRRladz+pqS36NDzW2FEpDsgiGEkR7ckENkOZbYcV0cY

B1mQql5JREIRhGApUGdssU7SV4C6v58j5Lhy5JcovsmUAGg5t6uKFivxMC8OgGUd

n+iVAiVh5Yqarsq77A6Oj/1hrV1tKS5n+Oq1UTLWs/yA/mi8sxrpHQ0vsOEQAAAA

-----END MCELIECE PUBLIC KEY-----

.
.
.

FIGURE 6.2: An example of a Privacy-Enhanced-Mail-formatted McEliece public key.

post-quantum digital signature during QKD has previously been investigated [235] however, if one

were to repurpose the work of this section instead, it would become clear that a KEM has two distinct

advantages. First, the QKD controller can remain unchanged, as it operates independently of any

method utilised for sharing the initial secret. Second, the work of chapter 5, while already resilient to

Eve’s attempts at key exhaustion, mandates the use of MACs rather than digital signatures, meaning

our approach enables BB84-AES to continue functioning as designed if, for example, the shared

secret were to be accidentally leaked.

Symmetric-key conversion was carried out on the second-generation testbed summarised in

section 3.4.1, with one key difference. Instead of relying on the Intel Xeon E5-2697A v4 processors

contained within the PowerEdge servers, we carried out the computations required for both the

post-quantum algorithms and QKD on an Intel Core i5-5300U processor, which is representative of

those used by employees at the University of Bristol. While this has no impact on the above, as we

seek only to achieve functionality, the significance of our choice will become apparent as a number

of other hybrid scenarios are explored in the sections that follow.

The conversion process is summarised in figure 6.3, with the final key being used for encryption

of a message. All the software was written by the author, except for QKDSequence, which was

supplied with the ID Quantique Clavis2.

McAsymmetricKey, McEncryption and McDecryption all work on both Windows and Linux.

Randomness is provided by the Hash-Based Message Authentication Code Deterministic Random

Bit Generator (HMAC_DRBG) [296], a cryptographically-secure pseudo-random number generator,

defined by this experiment to use SHA-512 as the hash function, and seeded from an arbitrary

entropy source. This can be a quantum random number generator (QRNG) if one is available, with

HMAC_DRBG limiting the impact of any biases introduced by the physical implementation. For

compatibility reasons, the public and private key are both saved in Privacy Enhanced Mail (PEM)

format, which uses Base64 encoding with a human-readable header and footer for identification

purposes (see figure 6.2). The private and symmetric keys are protected with password-based

encryption prior to being stored on the hard-drive of the computer.

KeyCutter extracts secret key from the Clavis2, based on the IDQ3P key extraction protocol and
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is the same as the identically-named program that was used in chapter 3. As Linux is required for

QKDSequence, this is the only operating system on which KeyCutter has been demonstrated to

work.

Finally, AESEncryptor and AESDecryptor have been tested on both Windows and Linux, and

rely on the OpenSSL cryptographic library when implementing AES-GCM. OpenSSL was chosen

due to its widespread adoption, meaning it is an important library with which to demonstrate

interoperability. AESEncryptor and AESDecryptor can easily be switched out, without having to

modify any of the surrounding programs, should one wish to use Botan for every non-QKD-related

software module.

In this setup, it should be noted that the McEliece-KEM symmetric key acts as a master secret

only in the sense that QKD inherently provides key expansion. The key cannot be used securely

for more than one round of QKD, because it is applied to a one-time MAC. However, our choice

of KDF does allow multiple initial shared secrets to be generated from a single encapsulated key.

The duration of the quantum-secure conversion is simply the initialisation time of the Clavis2, as

presented in figure 3.20. Whether or not this is of concern depends on the needs of the user. If

additional quantum-secure keys will not be required in the near future, then this another use-case

for which improving the secret key rate is important, further motivating the work of chapter 7.

6.4 Scenario II: Quantum Key Distribution as an Entropy Source for

Efficient and Automated Private-Key Backups

While the work of section 6.3 is clearly important for protecting the transfer of highly sensitive

data such as medical records, which can be sold on the black market for 50× the price of stolen

credit card details [297], it is less relevant when the information has a limited lifetime. Thus,

having successfully integrated QKD with the McEliece cryptosystem, we now consider a world

where everyday cryptography is dominated by post-quantum solutions and long-term security is

not required. We ask whether QKD can still be beneficial when even its guaranteed security against

quantum computers is inconsequential.

Let us assume McEliece is used to encrypt critical messages between a group of entities, and

that if the receiver manages to lose their private key, through system failure or mistakes on the

user’s behalf, it will be damaging to one or more parties, due to loss of information or the time

taken to request the information be retransmitted. An obvious mitigation strategy is to create

off-site private-key backups, something which is also useful when considering applications such as

cryptocurrencies, because losing the private key to a certificate will result in financial loss.

Here, we propose and implement a scheme that uses QKD for creating off-site backups of

the information needed to recreate McEliece private keys (see figure 6.4). It takes the secret key

generated by the Clavis2 and uses this as the entropy source in McEliece, implemented with the

programs that were described in the previous section. Therefore, the Clavis2 is essentially acting as
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FIGURE 6.3: Workflow for generating symmetric keys using a McEliece key encapsulation
mechanism, and performing a quantum-secure conversion, the result of which is
supplied to an authenticated encryption scheme. The alternative flows (dashed
arrows) indicate the case where quantum-secure conversion is not required, and so
the symmetric key is used directly for encryption, rather than acting as the initial
shared secret for generating a quantum key.

a hardware random number generator with two identical outputs in separate locations, meaning

the backup procedure is entirely automated. At no point does the end-user need to personally make

a copy of anything, so long as they use QKD as their sole source of entropy. McAsymmetricKey relies

on HMAC_DRBG for deriving cryptographically-secure random bits, which is why the keys can be

deterministically reconstructed from the secondary copy of the seed.

Figure 6.5 illustrates the regions in which a QKD-based backup scheme can be more efficient than

using a McEliece KEM to share a 256-bit seed between the primary and backup locations. We see

that, for the 10 km link considered as part of the data centre model in chapter 3 (4 dB transmission

loss + 2 dB switch loss), our scheme is faster than a McEliece (Niederreiter)-driven backup when

≥ 460 (≥ 463) private keys need to be synced. For the range of attenuations considered, it is clear

that, overall, this threshold tends to increase with channel loss. Such behaviour is not unexpected,

as the secret key rate is diminished at longer distances, so the backup time of our system goes up.

However, the exact progression is non-linear, because the mean secret key size of the Clavis2 is

different for each attenuation.

One may question why, from 6.5 to 7.5 dB, the quickest solution alternates between quantum
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FIGURE 6.4: Illustrating the generation of public/private key pairs, when quantum key
distribution is used as an entropy source to enable fast, automated backups. The VOA
is a variable optical attenuator and d1,2 represent fibres of arbitrary length.
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FIGURE 6.5: Illustrating how, for a range of attenuations on the quantum channel, the
fastest approach to sequential entropy backups depends on the number of corre-
sponding private keys. McEliece and Niederreiter were experimentally implemented
in software, while the QKD links were established using the ID Quantique Clavis2. For
a set attenuation, there are small fluctuations in the number of secret bits generated
using QKD. Therefore, we average the final key size for each attenuation, taking care
to note that these values are strongly dependent on the loss.
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FIGURE 6.6: Showing how, experimentally, the time taken to sequentially perform entropy
backups depends on the number of corresponding private keys. We consider backup
mechanisms based on both quantum key distribution (QKD) and McEliece/Niederre-
iter, where QKD follows a step function due to the finite key limit governing minimum
block sizes.

and post-quantum. As illustrated in figure 6.6, the time taken for a QKD-based backup follows a

step function. This arises as a result of the finite key limit, which means that secret key has to be

generated in blocks, and so it takes as long to backup a single private key’s worth of entropy as it

does to backup several hundred. In this particular instance, the effective gradient of the step function

means there are multiple intersections on the graph, therefore the fastest solution alternates.

In figure 6.7, we simulate the effects of constraining the final secret key of the Clavis2 to 114, 944

bits (≡ 449× 256-bit keys), which is the minimum size observed at 9 dB of loss (recall, the highest

attenuation at which key can be reliably generated). This gives the lowest bounds on the number of

backups required for our scheme to be the quicker approach (see figure 6.8), because it minimises the

effective gradient of the step function. Now, for a 10 km link, the switch from McEliece (Niederreiter)

to QKD occurs when ≥ 213 (≥ 214) private keys need to be synced; not an unreasonable number

for a moderately-sized office building. These thresholds increase linearly with distance, as would be

expected in the current scenario, and are roughly the same for McEliece and Niederreiter across all

attenuations. The latter trend exists because, although Niederreiter is faster at encryption, the total

time elapsed is dominated by common features, such as writing to the backup key store.
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FIGURE 6.7: Simulating how the fastest approach to sequential entropy backups will
depend on the number of corresponding private keys when the size of the quantum
secret key is fixed at the lowest value observed across all attenuations. McEliece and
Niederreiter were implemented in software, while the quantum key distribution links
were established using the ID Quantique Clavis2.
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FIGURE 6.8: Simulating how the secret key size of the ID Quantique Clavis2 affects the
minimum number of backups above which quantum key distribution is a faster
solution than McEliece. We consider a range of secret key sizes, limited by the upper
and lower bounds on those that the Clavis2 has been observed to produce.
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For attenuations ≥ 8 dB, the McEliece/Niederreiter backup mechanism is always faster. At

lower losses, it would also be possible to speed this up if, at the cost of increasing the load on

the system, multiple private keys were to be backed up concurrently. However, there are also

commercial and pre-commercial QKD systems that are able to achieve higher key rates than the

Clavis2. Simulating our setup with numbers from [298] shows that, when connected to the Toshiba

system, our QKD-based mechanism will always be the faster option for distances up to at least 80

km (exact loss unknown). This is true regardless of whether the equivalent post-quantum scheme

backs up sequentially, assuming that the Toshiba block size can be set such that it generates 114, 944

bits of secret key for each round of QKD. More specifically, it will take 0.96 s to back up ≤ 449 keys

when users are 80 km away from the secondary location. In contrast, a Niederreiter-based backup

will take 1.12 s for a single key, the same as if all 449 keys were to be backed up concurrently.

Thus, we have demonstrated that in a world where post-quantum cryptography dominates, and

the security guarantees of QKD are not required, we can nonetheless gain an advantage thanks to

the speed with which we can generate quantum keys.

6.5 Scenario III: Lesser-Trusted Nodes for Long-Distance Quantum

Key Distribution & Scenario IV: Introducing Compatibility with

Legacy Networks

While we maintain that the majority of quantum-safe networks will not be information-theoretically

secure, the final part of this chapter will turn the situation on its head, considering bespoke

situations where QKD may be deployed as part of a mathematically-unbreakable cryptosystem,

without concern over any physical issues. Isolated quantum satellite networks are one example of

such an environment, as each link can be designed to have sufficient classical capacity to support

a quantum-keyed OTP, and the barrier to entry is high for anyone trying to mount endpoint DoS

(attack 5.1)

However, even if these kind of worries are ignored, challenges still remain that cannot be

overlooked. While trusted nodes are widely accepted as the answer to extending the range of QKD

without a quantum repeater, allowing an intermediary to access all of Alice and Bob’s information

constitutes a vulnerability. In scenario III, we look at how post-quantum cryptography can be used to

reduce this level of trust, constraining our remit such that, unlike in chapter 5, we are not allowed to

use techniques that would modify the security of the QKD protocol itself. The solution we implement

is also applicable to the work of section 6.3, if it is found that Alice and Bob are too far apart to

establish a direct link in order to perform a quantum-secure conversion.

Scenario IV deals with a bespoke quantum network that, under certain circumstances, also

wishes to communicate with an entirely classical outside world. The classical part may comprise

legacy devices, that cannot be retrofitted with QKD modules, or high-demand networks servicing

large numbers of strangers, for which post-quantum cryptography is the most workable solution.
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While scenarios III and IV are very different, the solutions we propose for each are strongly

related, and their effectiveness can be measured based on the same metric. In both cases, we use a

McEliece KEM to share a symmetric key between the endpoints, however the way this is used differs.

For scenario III (reducing trust), Alice and Bob are quantum-enabled by definition, and so they can

generate encryption keys by combining the McEliece-distributed secret with that established through

QKD (see protocol 6.4). A combination of public-key cryptography and QKD is already used by ID

Quantique to ensure the Cerberis3 does not drop below the minimum security standards required

today if it succumbs to a successful side-channel attack [299]. However, as they rely on RSA for this,

ours is the first entirely quantum-safe hybrid implementation and, while ID Quantique’s objective is

to increase device security, we focus on reducing Charlie’s knowledge. Here, Charlie is untrusted

under the assumption that he does not possess the resources to break McEliece. If this assumption

is violated, the scheme becomes a standard QKD trusted node architecture, where Eve (who does

not have access to the nodes) still cannot obtain any information without being able to mount a

physical attack on the QKD systems.

Protocol 6.4: Lesser-Trusted Nodes

SUMMARY: Alice and Bob derive a shared symmetric key from bit strings agreed upon using quantum key
distribution and post-quantum cryptography. All transmissions go via Charlie who, without post-quantum
augmentation, would be considered a trusted node.

1. Quantum Key Distribution.

(a) Alice and Charlie establish a secret key k1,3 using their preferred method of QKD.

(b) Charlie and Bob establish a secret key k2,3 using their preferred method of QKD.

2. Post-Quantum Symmetric-Key Distribution.

(a) Alice generates a public/private key pair using protocol 6.1 and announces the public part.

(b) Alice and Bob establish a secret key k1,2 using the key encapsulation mechanism defined by
protocols 6.2 and 6.3.

3. Quantum-Key Transport.

(a) Charlie computes the ciphertext c = Enc
�

k2,3, k′1,3, v
�

, where Enc (·) is the encryption
function, defined by AES-GCM. k2,3 is the plaintext, k′1,3 is a 256-bit key extracted from k1,3,
and v is a 96-bit initialisation vector.

(b) Alice computes k2,3 = Dec
�

c, k′1,3, v
�

, where Dec (·) is the decryption function, defined by
AES-GCM.

4. Symmetric-Key Generation.

(a) Alice and Bob’s symmetric key is defined to be k′1,2 = KDF2
�

k1,2||k2,3

�

, with SHA-512 as
the hash function.

We note that the number of intermediaries is not particularly important, as they can always

be reduced to a single entity, so long as they are linked to one another by a secure channel. When
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transporting the key Charlie shares with Bob, AES-GCM was chosen over a NIST-style key wrap

algorithm [300] as it provides the authenticated encryption properties required, but is more efficient

with regards to the number of times the block cipher is invoked, has had its security more thoroughly

explored and, if desired, can verify authenticity prior to decryption. We avoid using the OTP as a

method for key wrapping, due to the reasons outlined in section 4.3. We assume a PGP-style key

server is used for sharing the public keys. Making this quantum-safe is not the focus of our work, and

contemporary approaches to key signing will not need to be upgraded as urgently as the methods

currently used for key distribution. Therefore, we do not deal with post-quantum authentication

here, however one could utilise hash-based signatures, as discussed in section 6.2.1.

We have implemented protocol 6.4 using the software developed in the previous sections,

ensuring the information-theoretic security of QKD is retained against eavesdroppers who do not

have access to intermediary nodes. Yet, if a trusted node should become compromised, or if our

confidence in it turns out to be misplaced, the security of the system is reduced only to the security

of McEliece. Figure 6.9 shows the regularity with which the McEliece/Niederreiter-distributed keys

can be refreshed relative to the QKD key, and it is from this that we can establish the impact of

non-cryptographically exposing both a trusted node and the active post-quantum private key at

the same time. As one would expect, it is better to use Niederreiter than McEliece because the

encryption rate will be limited by the quantum key generation rate. The fewer encryption cycles we

get through before the KEM-distributed key is refreshed from scratch, the better the perfect forward

secrecy of the scheme. Therefore, generating fewer QKD keys per post-quantum key as a result of a

faster public-key algorithm is better in this regard.

In contrast, scenario IV (legacy connections), does not allow the end-points to access the QKD

key, meaning they must encrypt their data directly with the McEliece-KEM-distributed key. A second

layer of encryption is then introduced over the top when it reaches the quantum portion of the

network; in both cases, the encryption is realised with AES-GCM. This approach is preferable to

using McEliece as a mechanism for transporting QKD keys over non-quantum links, because it means

the legacy section does not need to be aware of the network configuration, including whether or

not the message will pass through any QKD nodes. Similarly, the quantum part does not need to

have any knowledge of the post-quantum algorithms that are in use, and can accept all classical

inputs without concern as to their origin. Of course, if a quantum-enabled user is the receiver of

the message, this does not prevent them from running the same post-quantum software as is in

operation outside the QKD network.

However, in this case, one may question why it is worth including a quantum layer of encryption

when there are already purely classical links which Eve can try to attack. The answer is that if

many legacy devices are communicating over the same quantum backbone, as in figure 6.10, and a

weakness were to be found in the post-quantum algorithm, our setup forces an intruder to repeat

their attack many times over to get same effect as if they targeted the network core.

Once again, figure 6.9 gives us a way of measuring the performance of our system but, unlike
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FIGURE 6.9: Rate at which the post-quantum key encapsulation mechanism (KEM)-
distributed keys can be refreshed from scratch, relative to each ID Quantique Clavis2

quantum-key-distribution (QKD) key. Connections are established through an optical
switch, introducing 2 dB loss.

in scenario III, Niederreiter gives a worse outcome than McEliece. The faster QKD is relative to

the post-quantum algorithm, the more legacy nodes can be supported by a single quantum node.

Therefore, while a more efficient post-quantum algorithm is better for the user, it is worse for the

network. Furthermore, if the rate of encryption is always defined by the quantum secret key rate,

then cases which are a combination of scenarios III and IV will be forced to make a trade-off between

perfect forward secrecy and the number of legacy nodes that can be supported.

Finally, we consider the effect of replacing the ID Quantique Clavis2 with the Toshiba system

that was used for the simulations in section 6.4. In [209], the developers performed a number of

upgrades to prevent the key rate from saturating at lower attenuations due to the post-processing

speeds required. Therefore, based on this version of the system, we find that (79.7± 4.3)×103 QKD

keys, each of length 256 bits, can be generated per 256-bit McEliece-KEM symmetric key at 2 dB

loss. Similarly, (52.1± 3.0)× 103 keys can be generated for every 256-bit Niederreiter-distributed

symmetric key. Here, the high errors on our results (≈ 5%) are due to the uncertainty on the key
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FIGURE 6.10: Illustrating the topology considered for interfacing optical quantum net-
works with legacy devices. Each classical node (red) can also represent any arbitrary
classical network with a single connection to a hybrid quantum/post-quantum node
(blue).

rates in [209].

Overall, this is good news concerning the number of connections between legacy devices that

future quantum backbones like the UK Quantum Network will be able to support. With regards to

lesser-trusted nodes, we have shown that if the purpose of our hybrid approach is simply to add

a layer of security against Charlie, then these can certainly be implemented. However, if perfect

forward security against Charlie is also required, then our data rates may need to be defined

according to the post-quantum algorithm, rather than by QKD.

6.6 Outlook

If we are to build a truly useable quantum-safe ecosystem, it is imperative to demonstrate that QKD

and post-quantum cryptography can work together. Only by leveraging the flexibility of public keys

and the security provided by the fundamental laws of physics can we be sure that any system we

construct will protect our networks, both mathematically and in practice, without a reduction in

functionality.

In this chapter, we have developed a prototype for converting keys that are constrained by

mathematical assumptions, into keys that are guaranteed quantum-secure. This is the first experi-

mental network implementation capable of performing key distribution using either a post-quantum

KEM, QKD, or a combination of the two. Furthermore, the software that has been developed can be

repurposed as part of a mechanism for implementing automated backups of the entropy used to
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generate private keys, removing the onus on users for whom losing the ability to decrypt certain

pieces of information would be incredibly damaging. If the number of backups exceeds a certain

threshold, our system is faster than an equivalent setup that relies on the best known instantiation

of code-based cryptography. If we were to replace the ID Quantique Clavis2 with QKD devices built

by Toshiba, it is anticipated that our quantum backup mechanism will be quicker for any number of

backups, up to a separation of at least 80 km between the primary and secondary storage locations.

Finally, we have shown that hybrid quantum/post-quantum cryptosystems can reduce the trust

in intermediary QKD nodes, in addition to enabling compatibility between quantum and legacy

networks. All of our setups have been built in a modular fashion, allowing alternative post-quantum

algorithms/quantum hardware to be substituted in if desired.

It is hoped that the work of this chapter will provide the foundation for quantum cryptography to

be incorporated with other solutions, protecting networks against attacks from quantum computers

in the real world.
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Declaration of Work

The experimental concept for on-chip wavelength-division multiplexed QKD
was developed by Philip Sibson, with whom I collaborated when performing
the initial characterisation work on devices that he designed. I assisted Philip
Sibson and Chris Erven in the compilation of the mask for the monolithic
receiver. I also designed and assembled the test transmitter and monolithic
receiver packages. I compiled the next-generation silicon masks, with support
from Philip Sibson, on whose initial design concepts they were based. The
InP, SiOxNy and Si devices were fabricated by Oclaro, LioniX, and IME respectively.

Some of the results have previously appeared in [301, 302], in addition
to being presented at QCrypt [303].

Throughout this thesis, we have maintained that the traditional motivators for high-speed quantum

key distribution (QKD) are perhaps not as important as they initially appear, because quantum

solutions are unlikely to be deployed in a fully information-theoretically secure cryptographic

environment. However, as we have shown, there are many other reasons why having access to a

faster QKD channel can be important.

For the time-division multiple access (TDMA) scheme of chapter 3, the number of transmitters

per receiver will increase with key rate, as will the number of legacy devices with which a quantum

node can interface in scenario IV of chapter 6. In the same chapter, scenario II illustrates that

QKD-based backup mechanisms with higher secret key rates have the potential to perform better
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than their post-quantum counterparts.

Beyond this, the arguments of chapter 4 do not apply when using QKD in conjunction with

information-theoretically secure message authentication codes (MACs), and it should be highlighted

that authentication is often more important than encryption, particularly when considering examples

such as news broadcasts and disaster warnings. However, even an authentication tag cannot be

constructed before the finite key limit is reached, so once again the secret key rate becomes important.

Here, a fast QKD system could reduce the damage caused by a successful denial of service (DoS)

attack of the form described in chapter 5, if use of the key in a Wegman-Carter MAC means the

user does not wish to relax their security to that provided by BB84-AES. It should be noted, though,

that if Bob were to maximise the number of Alices among whom he is divided in TDMA-QKD,

then endpoint DoS attacks will be unaffected by higher key rates, as Bob will not have time to

replenish the keys of legitimate users if Eve manages to perform QKD with him up to the point of

authentication.

Nonetheless, it is clear from the above that the question we must ask is not if, but how one

should go about implementing high-speed QKD. A number of different approaches have previously

been considered, including the introduction of dedicated electronics for post-processing [209], new

protocols [190], noise suppression techniques [304], and improvements to the hardware with which

the qubits can be generated and measured [305].

Complementary to most of the above is wavelength-division multiplexing (WDM)-QKD, which

takes multiple sender/receiver pairs, assigns a different wavelength to each, and combines the

quantum signals on a single fibre. This is a widely used technique in classical communications [306–

310], and has been explored in the context of QKD experiments on numerous occasions [116, 311–

314]. However, there is a fundamental issue of scalability when using WDM-QKD as a way of

achieving higher key rates, due simply to the physical dimensions of Alice and Bob.

In this chapter, we will seek to overcome realistic size constraints by utilising millimetre- and

centimetre-scale integrated photonic devices. On-chip QKD has a long history [315–323], with the

first full demonstrations of chip-to-chip QKD being performed only recently, using indium phosphide

(InP), silicon oxynitride (SiOxNy) and silicon-on-insulator (SoI) as fabrication platforms [247, 324].

Pairing these advances in miniaturised quantum-optical circuits with WDM technology makes sense

not just from the perspective of attaining higher key rates, but also in the context of this thesis.

By manufacturing banks of QKD systems on individual wafers, it may be possible to augment the

TDMA-QKD scheme presented herein, such that the software-defined network (SDN) controller

can choose whether to set up a few high-speed links, or many more slower connections instead.

In addition, multiplexing multiple quantum systems may be the only way to circumvent the limits

imposed by section 4.2, for networks to which the arguments of section 4.1 do not apply.

Here, we will open with an overview of the building blocks required for performing chip-based

QKD in a range of materials. In section 7.2, we will present contributions which formed part of the

first WDM-QKD demonstration using integrated devices. For this, two physically separate transmitter
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chips interfaced with a monolithic receiver, demonstrating the viability of the SDN scheme outlined

above. Following on, it was important to show that a single transmitter containing multiple Alices

was both realisable and would not negatively impact the overall scaling of the key rate. Section 7.3

details our initial steps towards this, in which the number of QKD channels is increased to four per

chip.

Finally, in section 7.4, we describe the next-generation chips that were designed and fabricated

to explore other applications of WDM in quantum networks, as well as taking the opportunity to

explore alternative protocols and transmission media.

7.1 Integrated Photonics

Before we detail the steps taken towards implementing WDM-QKD with integrated optics, we will

summarise the underlying technology. In section 7.1.1, we give a brief overview of the materials on

which our chips were fabricated, before covering the generation and detection of light in section 7.1.2.

We close by describing each of the components used to manipulate and encode weak coherent

pulses, which will exhibit equivalent behaviour if one were to switch out the attenuated laser for a

single photon source.

7.1.1 Platforms for Integrated Photonics

Indium Phosphide

InP is a compound III-V semiconductor, where “III-V” simply refers to the fact that indium is in the

boron group of the periodic table (formerly referred to as group IIIA and IIIB in the US and Europe

respectively), and phosphorus is a pnictogen (previously known as group VA or VB). For a long time,

InP has been seen as a major competitor in the development of classical transceivers for optical

networks [325–328], and its ability to integrate lasers and high-speed optical modulators mean it is

an ideal choice for the transmitter in QKD implementations that rely on weak coherent pulses. The

InP chips used in this thesis were fabricated by Oclaro, as part of a multi-project wafer using the

JePPIX generic integration platform [329].

Silicon Oxynitride

SiOxNy offers high-density component integration and low transmission losses at telecom wave-

lengths. Thus, it seems a particularly suitable choice with which to fabricate QKD receiver units.

The Bob chips in this thesis were provided by LioniX, and were manufactured using their TriPleX

technology, which is based on alternating layers of silicon nitride (Si3N4) and silicon dioxide

(SiO2) [330].
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FIGURE 7.1: Circuit symbol for a Fabry-Perot laser. The central element is a semiconductor
optical amplifier and the two outer elements are tunable distributed Bragg reflectors.

Silicon-on-Insulator

SoI is perhaps the most well-known of the integrated photonic platforms, having found widespread

adoption in both classical and quantum optics, thanks in part to its compatibility with complementary

metal–oxide–semiconductor (CMOS) manufacturing processes [331, 332]. Unfortunately, lasers

cannot be directly integrated, and the crystalline symmetry of silicon (Si) means it lacks a second-

order non-linearity, usually defined by the electric susceptibility χ(2). As a result, standard electro-

optic phase modulators (EOPMs) have no effect [332] and alternative methods for fast phase

modulation have had to be developed (see section 7.1.3). Despite these negatives, a number of QKD

chip designs were submitted to the Institute of Microelectronics, as the popularity of SoI, combined

with its CMOS compatibility, means costs could be much lower compared to other solutions if the

technology were to move into high-volume manufacturing.

7.1.2 Sources and Detectors

Lasers

The InP chips rely on a Fabry-Perot laser for the generation of light, which is represented by the

circuit symbol in figure 7.1. Two tunable distributed Bragg reflectors (TDBRs) are used to construct

a cavity, in the centre of which a semiconductor optical amplifier (SOA) is placed. The SOA is a p-n

junction that is forward biased, causing the depletion region to narrow. As a result, electron-hole

annihilation becomes possible, leading to spontaneous and stimulated photon emission. The TDBRs

are sections of waveguide with a periodic grating structure that reflects light. They are doped to

create a p-i-n junction, and modulating the carrier density changes the effective refractive index,

thereby tuning the wavelength of reflection [333]. This provides some control over the wavelength

at which stimulated emission (and therefore lasing) occurs.

Avalanche Photodiodes

Avalanche photodiodes (APDs) are room-temperature detectors which, depending on the operating

conditions, can be used to measure either quantum or classical light. They were superficially touched

upon in chapter 3 with regards to the ID Quantique Clavis2 and, as figure 7.2 shows, we continue

to use the same circuit symbol in an integrated setting.
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FIGURE 7.2: Circuit symbol for an avalanche photodiode.

FIGURE 7.3: Circuit symbol for a superconducting-nanowire single-photon detector.

A reverse-biased p-n junction is central to the operation of an APD. Incoming photons are

absorbed, generating free carriers, which in turn causes avalanche breakdown of the diode [334].

The current that flows as a result signifies a detection event, and ordinarily the efficiency of this

process is the main hindrance so far as QKD is concerned, because it has a direct impact on the key

rate.

However, when time-bin encoding is used, a low jitter is also required, as this will minimise

the number of signals that cross over into adjacent bins, which would lead to an increase in the

quantum bit error rate (QBER). Here, jitter refers to the natural deviation in the time taken for an

electrical signal to be measured following absorption of a single photon. Unfortunately, the jitter of

an APD is not low enough for our requirements, so in this chapter we use them only for classical

functions, such as clock synchronisation.

Superconducting Nanowire Single-Photon Detectors

Superconducting nanowire single-photon detectors (SNSPDs) have high detection efficiencies, low

dark counts and low jitter (for the PhotonSpot system used in Bristol, these values are > 85%,

< 100 Hz, and 70 ps respectively). There are still (presently tolerable) downsides, as SNSPDs are

yet to be reliably integrated with photonic circuits, and liquid-helium temperatures are essential.

The circuit component for an SNSPD is shown in figure 7.3.

With regards to the method of operation, a 100 nm wire is biased such that the current is just

below that for which superconductivity is destroyed. Whenever a photon is absorbed, it disrupts

the Cooper pairs in the material and turns the region on which it was incident into a resistive

hotspot. Current continues to flow around this, pushing the charge density above the critical point

and causing superconductivity to break down. As a consequence, a temporary resistance spike is

generated across the width of the wire, with a corresponding measurable voltage [335].
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FIGURE 7.4: Circuit symbol for a delay line.

FIGURE 7.5: Circuit symbol for a waveguide crosser.

7.1.3 Photonic Circuit Components

Waveguides

Optical waveguides are a way of confining and directing light through integrated circuits, working in

much the same way as the optical fibres that are utilised in communications networks. Waveguides

may be used to create delay lines (figure 7.4) and can even cross (figure 7.5), so long as both

arms gradually taper out to reduce diffraction at the point where they intersect. For the SoI chips

presented here, each waveguide has an initial width of 0.500 µm, linearly expanding to 1.463 µm

over a distance of 19.255 µm.

To ensure interoperability of the chips with other systems, light can be coupled out using one of

three methods. InP and SiOxNy devices both rely on side coupling which, as the name suggests,

runs the waveguide to the edge of the chip whereby a spot-size converter expands the beam waist,

allowing a lens on the end of a fibre to focus the light into its core. The spot-size converter is

essentially a tapered waveguide, sometimes constructed using a lower-index material, and is the

reason why damage to the chip facet often results in high coupling losses.

Alternatively, one may decide to use a grating coupler (see figures 7.6 and 7.7). This approach

is particularly advantageous in the case of Si fabrication runs, as multiple experiments are grouped

onto the same chip, and so access to the edge is often not possible. One-dimensional grating couplers

are constructed by introducing rectangular teeth to the upper edge of the waveguide, resulting in

off-chip interference. The periodic structure is slightly detuned such that the light exits at an angle

that is non-perpendicular to the face of the chip, thereby preventing back-reflection [336].

Two-dimensional grating couplers work in a similar fashion, except they are connected to a pair

of orthogonal waveguides. This means horizontally polarised light will be diverted down one arm,

and vertically polarised light down the other [337], making it an effective mechanism for converting

between path and polarisation encodings.
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FIGURE 7.6: Circuit symbol for a one-dimensional grating coupler.

FIGURE 7.7: Circuit symbol for a two-dimensional grating coupler.

FIGURE 7.8: Circuit symbol for a directional coupler.

Directional Coupler

Directional couplers (see figure 7.8) are the beam splitters of integrated optics. Whenever light is

confined to a medium through total internal reflection, evanescent fields are produced. These are

zero-energy wave components that are transmitted through the boundary, decaying exponentially

with distance [338, 339]. If two waveguides are placed in close vicinity to one another, their

evanescent fields will overlap, allowing light to be coupled between them. A full mathematical

treatment can be found in [340] but, in short, the interaction is governed by the following equations:

dW1 (z)
dz

= −iκW2 (z) e
−i(ρ2−ρ1)z

dW2 (z)
dz

= −iκW1 (z) e
i(ρ2−ρ1)z

(7.1)

Here, W1 (z) and W2 (z) are the optical field amplitudes in each waveguide as a function of z, a

Cartesian co-ordinate that runs parallel to the direction of propagation, spanning the length of

the interaction region. κ is a coupling constant that can be adjusted according to the waveguide

separation, and ρ2 −ρ1 is the difference between the propagation constants of each waveguide,

which should be 0 by design.

The resultant system of linear differential equations has the solution

W1 (z) =W1 (0) cos (κz)− iW2 (0) sin (κz)

W2 (z) =W2 (0) cos (κz)− iW1 (0) sin (κz)
(7.2)

and figure 7.9 plots these for a fixed, arbitrary κ. We can see that the optical field intensity on
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FIGURE 7.9: Illustrating the optical intensity on each output of a directional coupler, for
increasing length and an arbitrary coupling constant, κ.

FIGURE 7.10: Circuit symbol for a multi-mode interferometer.

each arm varies periodically according to the length of the interaction region, from which a 50/50

directional coupler can be designed.

Multi-Mode Interferometer

While directional couplers may seem simple to design, they are hard to fabricate with the exact

splitting ratio intended. Some platforms offer multi-mode interferometers (MMIs) as an alternative

(see figure 7.10), which are designed around the self-imaging principle [341]. Light enters a multi-

moded section of waveguide, diffracting due to the change in width. Parts of the wave are reflected

off the edges, causing it to interfere with itself. As illustrated in figure 7.11, maxima occur periodically

with distance from the input, meaning that once again we have a length dependence which can be

exploited to create on-chip beam splitters.

Thermo-Optic Phase Modulator

In our experiments, we will need to modulate the phase of the light for a number of different

purposes, including intensity reduction and biasing our measurement bases. This can be achieved
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z

Input

FIGURE 7.11: Illustrating periodic self-imaging of the input signal in a multi-mode inter-
ferometer. Based on figure 3 in [341].

θ

FIGURE 7.12: Circuit symbol for a thermo-optic phase modulator.

using thermo-optic phase modulators (TOPMs), the circuit symbol for which is shown in figure 7.12.

TOPMs are short strips of metal that heat up when an electrical signal is applied, taking advantage

of the fact that the effective refractive index, neff, of a waveguide is related to its temperature, T ,

by [342]

∆neff =
dneff

dT
∆T (7.3)

This in turn leads to a shift in the phase, θ , because

∆θ =
2π|z|H
λ
∆neff (7.4)

where |z|H is the length of the TOPM, and λ is the wavelength of the light in a vacuum.

Electro-Optic Phase Modulator

EOPMs (see figure 7.13) are superficially similar to TOPMs, however they are much faster, with those

used in this thesis reaching speeds of up to 10 GHz. Therefore, they are an important component for

high-speed QKD, fulfilling functions like phase encoding, that are specific to each individual qubit.

The EOPMs provided by Oclaro rely on the Quantum Confined Stark Effect, in which an electric

field is generated that changes the absorption properties of a material. Naturally, this means a

variable loss is introduced to the waveguide however, as stated in [343], it also causes a change in

the refractive index such that
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θ

FIGURE 7.13: Circuit symbol for an electro-optic phase modulator.

θ

FIGURE 7.14: Circuit symbol for a carrier-depletion modulator.

∆neff ≈
σ

π
lim

x→0+

�

∫ ω0−x

ω1

∆Θ (ω)
ω2 −ω2

0

dω+

∫ ω2

ω0+x

∆Θ (ω)
ω2 −ω2

0

dω

�

(7.5)

Here, σ is the speed of light, Θ is the absorption coefficient of the material and ω0 is the angular

frequency of the incident photons, where ω1 <ω0 <ω2. We have taken and expanded the Cauchy

principal value to handle the singularity at ω=ω0.

Reference [343] also demonstrates empirically that this refractive index change can be expressed

in the following form:

∆neff∝ |
*

E|2 (7.6)

where |
*

E| is the magnitude of the electric field. Thus, we can use EOPMs to modulate the refractive

index of the waveguide, and generate a phase shift similar to that in equation 7.4.

Carrier-Depletion Modulator

As noted in section 7.1.1, standard EOPMs cannot be implemented in Si. Therefore, to achieve

fast phase modulation, a different approach must be taken. Carrier-depletion modulators (CDMs)

are a popular choice [344], the circuit symbol for which is shown in figure 7.14. These rely on

p-doped and n-doped sections of waveguide, which are fabricated alongside each other to create a

p-n junction. Reverse biasing the waveguide pulls the electrons and holes away from each other,

thus creating a carrier-free depletion region, the size of which is voltage-dependent. The carrier

density affects the effective refractive index of the waveguide, therefore by changing the bias it is

possible to induce a phase shift, once again with some associated loss.

Mach-Zehnder Interferometer

By placing a directional coupler or an MMI on either side of a TOPM, EOPM or CDM (see figure 7.15),

it is possible to create a Mach-Zehnder interferometer (MZI). This is an important building block, as
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θ

FIGURE 7.15: Circuit diagram for a Mach-Zehnder interferometer constructed from direc-
tional couplers and a thermo-optic phase modulator.

FIGURE 7.16: Circuit symbol for a switch constructed from a Mach-Zehnder interferometer.

it can be used to compensate for imperfect directional coupler splitting ratios, is able to function as

a switch (see figure 7.16), and offers a way to modulate properties of the light.

To illustrate, we will consider the case where a single photon is incident on a directional-coupler

MZI. Given equation 7.2, we know that the unitary for a 50/50 directional coupler will be

ÛDC =
1
p

2

�

1 i

i 1

�

(7.7)

which is functionally equivalent to the Hadamard used to derive the beam splitter relations in

equation 2.52. In a dual rail encoding scheme, TOPMs, EOPMs and CDMs can be represented by

the phase-shift gate R̂θ (see equation A.1).

We now define arm 1 of the MZI as that containing the phase modulator, and input-output

relations can be derived from the unitaries representing each component such that
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2

�

|00〉

DC
−→

1
2

�

eiθ
�

â†
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(7.8)
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If, at the output of the MZI, we install detector 1 on arm 1 and detector 2 on arm 2, we find

Prob (Click in detector 1) =
1
4
〈10|

�

eiθ − 1
� �

e−iθ − 1
�

|10〉

=
1
4

�

1− eiθ − e−iθ + 1
�

=
1
4
[2− 2cos (θ )]

= sin2
�

θ

2

�

(7.9)

and

Prob (Click in detector 2) =
1
4
〈01|

�

ieiθ + i

� �

−ie−iθ − i

�

|01〉

=
1
4

�

1+ eiθ + e−iθ + 1
�

=
1
4
[2+ 2cos (θ )]

= cos2
�

θ

2

�

(7.10)

Therefore, the physical state described by equation 7.8 is equivalent to the path-encoded logical

state

|ψ〉= sin
�

θ

2

�

|0〉+ cos
�

θ

2

�

|1〉 (7.11)

recalling that |0〉 is used to signify logical 0, so as to avoid confusion with the vacuum state |0〉.
From this, we can see that it is possible to tune the phase such that the MZI acts like either a 50/50

beam splitter or a switch. If we were to replace our single photon with a bright light source, we

would find that the ratio between the power entering and exiting on arm 1 would be the same

as the probability that a single photon causes a click in detector 1. Thus, we can characterise the

electrical signals which must be applied to the phase modulator, simply by measuring the optical

output with a powermeter.

Asymmetric Mach-Zehnder Interferometer

It is possible to create an asymmetric Mach-Zehnder interferometer (AMZI) by using two waveguides

of disparate length to connect a pair of directional couplers (see figure 7.17). If the extension to the

long arm is enough to constitute a delay line, then an AMZI can be used for time-bin en/decoding,

as described in section 2.2.3.

Shorter differences in length mean that the two half-pulses generated by the first directional

coupler will overlap and interfere on the second. A relative phase shift is induced between the arms,

which causes specific wavelengths to be split out. As a result, we are able to use the AMZI as a

wavelength de-multiplexer.
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θ

FIGURE 7.17: Circuit diagram for a de-multiplexing asymmetric Mach-Zehnder interfer-
ometer. The version used for phase decoding and path-to-time-bin conversion is the
same, only with a delay line in place of the longer arm.

It is standard to characterise such a device by its free spectral range,∆λFSR. This is the difference

in wavelength between two adjacent maxima in the interference pattern on a single output port.

Thus, the free spectral range defines our channel spacing, because if we are to de-multiplex two

signals with minimal loss, the closest they can be to one another is ∆λFSR
2 .

In order to show how the channel spacing can be engineered, we consider two light pulses

travelling down paths that deviate in length by ∆|z|W, for which it is known that [345]

∆θ (λ) =
2πneff∆|z|W

λ
(7.12)

If vacuum-wavelengths λ1 and λ2 correspond to points of constructive interference at one of the

AMZI outputs, then that is the arm into which they will be routed. Maxima in the through port

(minima in the cross port) occur whenever

∆θ (λ) = (2i + 1)π for i ∈ Z (7.13)

Similarly, maxima in the cross port (minima in the through port) occur if

∆θ (λ) = 2iπ for i ∈ Z (7.14)

In both cases, the maxima are spaced at 2π intervals so, regardless of which port we wish to send

λ1 and λ2 down, it is required that

∆θ (λ1)−∆θ (λ2) = 2π (7.15)

Equation 7.12 can be substituted into this, such that

2πneff∆|z|W
λ1

−
2πneff∆|z|W

λ2
= 2π (7.16)

Finally, by defining λ0 =
λ1+λ2

2 , and rearranging
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Bob
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FIGURE 7.18: Illustrating how a wavelength-division multiplexer (mux) is used to combine
the outputs from two Alice chips down a single channel. A de-multiplexer (de-mux)
is used at the end to split the signals and divert them to different Bobs. Due to the
principle of optical reversibility, the mux and de-mux can be physically identical.

∆λFSR = λ2 −λ1 =
λ1λ2

neff∆|z|W

≈
λ2

0

neff∆|z|W
i.f.f. λ2 −λ1� λ1,λ2

(7.17)

Therefore, we can design an AMZI-based de-multiplexer with a channel spacing defined according

to the relative lengths of the waveguides that connect the directional couplers.

7.2 Device Characterisation for On-Chip Wavelength-Division

Multiplexed Quantum Key Distribution

In this section, we summarise the contributions that enabled the first demonstration of WDM-QKD

using integrated devices (see figure 7.18). The final stages of the overall experiment were carried

out by Philip Sibson, who used the operating parameters established herein to return a secret key

rate of ∼ 1.1 Mbit/s over 4 dB of loss; twice the speed that can be achieved with only a single

Alice/Bob pair [247]. In our setup, the multiplexer was realised using a bulk arrayed waveguide

grating (AWG), while the de-multiplexer was constructed from an on-chip AMZI, integrated with

Bob I and II, as depicted in figure 7.19. Recall, Alice I and II were physically separate devices, a

schematic for which is provided by figure 7.20. We note that EOPMs were fabricated on both arms

of her MZIs, because they introduce a phase-dependent loss. Therefore, we apply a θ
2 phase shift to

one arm, and −θ2 to the other, generating a relative phase of θ between the two, with the same loss

induced across both waveguides.
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FIGURE 7.20: A schematic of the single-channel Alice chip. Time-bin encoding is achieved
through pulse modulation within the > 1.5 ns coherence time of the continuous-wave
laser [247], as the propagation loss is too high for a delay line to be incorporated.
Phase randomisation is required to prevent unambiguous state discrimination from
being used to compromise the security of decoy state protocols [44].

7.2.1 Characterising the Wavelength-Division Multiplexers

Each (de-)multiplexer can only transmit a discrete spectrum of wavelengths, and so in order to

identify suitable operating parameters, these needed to be measured. Like in an MMI, light entering

a bulk AWG is diffracted into free space and split between multiple waveguides, though here they

are of different lengths. The photons are then coupled back out into free space, interfering on the

output fibres. Thus, the AWG is very similar to an AMZI, in that it is designed to have a free spectral

range, determined by relative path lengths. We can measure this using white light to address the

input, and an optical spectrum analyser which scans across all outputs. While we are technically

operating the AWG in a demultiplexing configuration, optical reversibility means the results we

obtain are equally valid when it is used as a multiplexer. The signals on each output of the AWG

are shown in figure 7.21, and from this we can see that a single ∼ 1 nm peak is present in every

channel.

When it comes to implementing full WDM-QKD, we will want to minimise any crosstalk between

the different Alice/Bob pairs, which is quantifiable as a power ratio between the peak transmission

of a particular output, and the point where it intercepts any adjacent outputs in figure 7.21. Photons

exiting through unused ports will only serve to increase the insertion loss of the AWG, however

if they were to be routed into the wrong Bob chip, they would become an active source of error.

Therefore, based on the data, it is clear that only every other channel should be occupied.
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FIGURE 7.21: Wavelength-division de-multiplexing white light using the bulk arrayed
waveguide grating (AWG). The peak input power was 0 dBm. Measurements were
taken on an optical spectrum analyser, and each coloured line corresponds to a
different output channel of the AWG. Due to the principle of optical reversibility, we
can switch the input and output ports to operate it as a multiplexer instead.

The integrated AMZI can be characterised in exactly the same way, although there are now

only two outputs. In figure 7.22, we measure on each arm and see that, in both cases, multiple

wavelengths can be supported. This is important as it provides flexibility with regards to wavelength

selection, and also allows for several AMZIs to be concatenated, increasing the number of channels

that can be demultiplexed. However, fabrication imperfections mean we cannot guarantee that

it will be optimally aligned with the AWG in all cases. Luckily, such an issue can be resolved by

modulating the voltage applied to the Peltier cooler that is responsible for thermally stabilising the

chip. Figure 7.23 demonstrates that the temperature shift allows for the wavelength peaks to be

fine-tuned over a range of roughly 2 nm, although any change is applied globally. Yet on this basis,

the integrated AMZI and bulk AWG seem fully compatible.

7.2.2 Characterising the Integrated Laser

Of course, integrated WDM-QKD will only be practical if we can precisely and accurately control the

wavelength of the laser, such that we are able to address any of the AWG channels without having

to modify the cavity design. Figure 7.24 shows that there exists a linear temperature dependence

due to the expansion of the material between 21 and 25 °C, which can be exploited to provide

coarse wavelength tuning. At 20 °C, we observe a departure from this trend, due to the temperature

dependence of the SOA. As can be seen in figure 7.24a, the cavity actually supports two wavelengths,

however between 21 and 25 °C, the SOA predominantly amplifies the upper of these. When we
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FIGURE 7.22: Wavelength-division de-multiplexing white light using the asymmetric Mach
Zehnder interferometer (AMZI) on the Bob chip. The peak input power was 0 dBm.
Measurements were taken using an optical spectrum analyser, and each coloured line
corresponds to a different output channel of the AMZI.

reach 20 °C, this behaviour changes, and the lower wavelength is amplified the most, leading to

a discontinuity in figure 7.24b. Such a point is not overly concerning as, when we transition to a

monolithic set of transmitters, it will not be possible to apply a different temperature to each, so

these results mainly emphasise the necessity of thermal stabilisation.

A much finer tuning can be achieved by modulating the voltage applied to the TDBRs, and

figure 7.25 illustrates the range over which this is possible, where the underlying data has a

minimum resolution of 0.01 nm. The presented results can also be used in conjunction with those

of section 7.2.1 to identify the optimal wavelength for each channel. We find 1544.77 nm and

1547.92 nm to be the most suitable values, corresponding to International Telecommunications

Union dense wavelength-division multiplexing (DWDM) channels 41 and 37. This means the TDBR

voltages should be set to 0.75 V and 1 V for the first transmitter, followed by 0.95 V and 0.8 V for

the second. 13.28 V should be applied to the Peltier cooler that controls the temperature of the

AMZI, resulting in a wavelength shift of −1.38 nm.

7.2.3 Modulating the Asymmetricity of a Mach-Zehnder Interferometer

While the work done so far is sufficient to enable an initial demonstration of on-chip WDM-QKD,

our approach to modulating the peak AMZI wavelengths will not help in the situation where four

or more channels are de-multiplexed on the same chip but fabrication imperfections mean each

AMZI is slightly different. In this case, we ask whether application of an electric field to individual

AMZIs could produce a phase offset, compensating for their lack of uniformity and allowing for the
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FIGURE 7.23: Temperature-tuning the asymmetric Mach-Zehnder interferometer (AMZI)
on the Bob chip, by modulating the voltage applied to the Peltier cooler. Measurements
were taken using an optical spectrum analyser on (a) the cross port and (b) the
through port of the AMZI, both with respect to the longer of the two arms.
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FIGURE 7.24: (a) Optical spectra for the integrated laser on the Alice chip over a range
of different temperatures. (b) Plotting the peak wavelength of the integrated laser
against the temperature at which the chip is stabilised. From this, we can see that
coarse wavelength-tuning is possible.

FIGURE 7.25: Fine-tuning the peak wavelength for the integrated laser on the Alice chip
by applying a range of different voltages to the tunable distributed Bragg reflectors
(TDBRs). Here, TDBR 1 is that closest to the laser output.
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FIGURE 7.26: Showing the physical setup of the Alice chip, with an external probe on a
temporary mount. In future evolutions of the hardware, an integrated version of the
probe can be added to the optical circuit, so as to mimic its functionality.

wavelength-tuning methods of section 7.2.1 to regain their usefulness.

To find out, an external probe was lowered onto a TOPM bond pad (see figure 7.26), generating a

voltage gradient across the phase shifter. We avoided accidentally destroying one of the two-channel

Bob chips by carrying this out on an old device, which only contained a standard MZI, however there

is no reason why the results obtained herein should not be directly applicable to its asymmetric

counterpart.

We found we were able to modulate the MZI as desired, and figure 7.27 shows how the absolute

phase induced by the MZI changes with voltage. While the data is a little noisy, this is likely down

to the rudimentary way in which the electric field was applied, so a fully integrated solution can be

expected to follow the quadratic trend more closely.

7.3 Monolithic Wavelength-Division Multiplexed Quantum Key

Distribution

In the previous section, we presented the initial steps towards on-chip WDM-QKD, which a colleague

subsequently realised. The overall secret key rate scaled linearly with the number of channels,

meaning we can move ahead with expanding the system from two wavelengths to four, monolithically

integrating all Alices using a set of colourless MMIs in place of the bulk AWG, and providing the

option to daisy-chain up to 12 additional Bobs, for a total of 16. We note that the MMIs were

chosen because of their design simplicity when compared to alternatives, however they only work

for implementations that rely on weak coherent pulses. Each MMI (of which there are three) should

introduce 3 dB of loss if there are no imperfections, meaning the rest of the chip must be calibrated
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FIGURE 7.27: Showing how the absolute phase shift across a Mach-Zehnder interferometer
varies according to the voltage applied by an external probe. The red line is a parabolic
fit to the experimental data.

accordingly. As the Oclaro fabrication process had changed since the original transmitters were

manufactured, a set of individual Alices was developed for testing purposes. Their schematics are

identical to that in figure 7.20, with the exception of newly-available TOPMs having been added to

handle functions such as attenuating the laser, where fast modulation is not required.

Thus far, a test transmitter has been electrically packaged and mounted on a copper block (see

figure 7.28), so its present state is awaiting optical characterisation. In order to control the on-chip

modulators, a printed circuit board (PCB) was manufactured in Rogers 6006ns, the same material

used for the transmitter PCBs in section 7.2. Its high relative permittivity means the transmission

lines leading to the EOPMs can be separated by as little as 100 µm for radio-frequency signals, and

so we choose this to be our minimum spacing. For the PCB shown in figure 7.26, the transmission

lines were further apart, hence we are able to achieve a reduction in physical size from 12.5 × 8.1

cm to 2.9 × 5.4 cm.

The copper block was designed in a modular style, such that either side of the PCB could be

replaced, allowing the testing of an independent quantum random number generator (QRNG) that

was fabricated on the same chip. The size of each copper module is now the main restriction when it

comes to further miniaturisation, as they are limited by the amount of material required to prevent

flexing, which was a major problem for the previous Alice chip. We also note that it would not have

been possible to test both Alice and the QRNG using a single PCB, as the narrowness of the bond

pad spacing would have prevented wirebonding. Even if this were not the case, such a fine pitch
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FIGURE 7.28: The test transmitter for monolithic wavelength-division multiplexed quan-
tum key distribution. The chip has been electrically packaged and mounted on a
modular copper block, allowing for PCB interchangeability, with a flex-resistant
design.

would have affected the characteristic impedance of the transmission lines, to the detriment of

the high-speed electrical signals. Identifying constraints such as these is informative for the full

transmitter, as there are many more connections, and so a multi-tiered PCB will need to be designed,

research into which is ongoing.

A schematic for the four-channel receiver is shown in figure 7.29. In contrast to the previous

QKD devices that Bristol has developed, a decision was made not to mount it on a chip rig, which

would usually comprise an optical table with manual alignment stages and a floating fibre. This

was because the heat from the number of TOPMs would cause the chip to expand and decouple

from the input and output fibres during characterisation. Instead, a 24-fibre Oz Optics V-Groove

array (VGA) was glued to each side, chosen because it was the largest VGA available that had a

127 µm pitch and did not exceed the width of the chip. We were able to address all of the inputs

and outputs corresponding to each of the Bobs, and some of the test structures that were fabricated

alongside them. Naturally, fewer fibres would be required in a commercial version of the device, as

WDM-QKD means the signal is confined to a single input. The remaining connections exist simply

for testing purposes.

Figure 7.30 shows the chip in the final stages of the gluing process (see appendix D for more

details). The vacuum chucks, which held the VGAs in place prior to the glue being applied, were

each mounted on a six-axis Thorlabs NanoMax alignment stage. The PCB was made from aluminium

clad in copper, so that a Peltier could be placed underneath to keep the chip cool. When attaching

the PCB to the receiver, Fischer Elektronik’s Thermally Conductive Adhesive WLK was used, as it
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FIGURE 7.30: The fully packaged receiver chip for monolithic wavelength-division multi-
plexed quantum key distribution. This photograph was taken after the initial 24-hour
dose of UV radiation, which allowed the vacuum chucks to be dropped away. The
curing process was completed by placing the chip in a biological steriliser and bathing
it in strong UV.

had the lowest viscosity of the epoxies available, falling somewhere between 0.25 and 0.30 Pa · s.
This was an important consideration, because the adhesive had to evenly cover the entire area of the

chip underside, relying solely on the weight of the receiver causing it to spread. The only downside

to the epoxy is that it has to be applied in a fume cupboard, due to the potential carcinogenicity of

its constituent parts, and this may make it unsuitable for a mass-production environment.

The four-channel receiver was the largest chip to have been optically packaged in Bristol. Initially,

the VGAs were attached with Norland Optical Adhesive 86 because, of the three glues known to

work well, it had the highest tensile strength at 7834 pound-force per square inch (psi), and the

size of the VGA means higher forces are expected to be exerted. However, over a period of several

weeks, the glue began to leak out, despite having been properly cured, until eventually the VGAs

were no longer attached. A second round of gluing was therefore required, and this time Norland

Optical Adhesive 63 was chosen, which had the greatest hardness of the three options, with a Shore

D value of 90. The chip has now been fully packaged for over five months, in a router-sized box that

is complete with driving electronics. No further structural failures have been observed.

Figure 7.31 presents a series of loss measurements made prior to gluing, over four sections of

waveguide that were free of optical components and whose length was known. The anomalous

result is due to a damaged facet on the chip however, from the remaining points, we estimate the

propagation loss to be 0.17 dB/mm, with a coupling loss of 2.83 dB for every chip-to-air interface.

As Norland Optical Adhesive is index matching, we expect the latter attenuation to have slightly
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FIGURE 7.31: Plotting the absolute loss for different lengths of component-free waveguide
on the four-channel Bob chip. The circled anomaly is likely as a result of damage to
the optical facet. The gradient of the fitted line (0.17 dB/mm) corresponds to the
propagation loss, and the extrapolated y-intercept (5.66 dB) is 2× the coupling loss.

decreased since the receiver was glued, however some of the loopbacks can no longer be addressed,

due to the size of the VGAs, so there is no way of confirming this.

Figure 7.32 shows that, as expected, the voltage-current relationship for the TOPMs is linear. By

monitoring the optical output power, we find that the phase shift this induces begins to saturate

above 17 V, however we can comfortably reach 5.34± 0.07 rad without exceeding the capabilities

of our driving electronics.

Finally, a test structure for an integrated AWG was included on the receiver, to establish whether

it could supersede the AMZIs in a future design. We found that it operated well in terms of the

wavelengths transmitted, with peaks at 200 GHz intervals over a 100 nm range. However, it is

31.01 dB lossier than an AMZI, so further developments are clearly required.

7.4 Next-Generation Silicon Photonic Chip Design

Chip fabrication runs happen every few months, however it can take over a year to get from an

initial design to a physical device. As a result, the masks for next-generation QKD systems must be

compiled prior to the completion of experiments involving earlier devices. Here, we present four

designs, each named after a famous transmitter or receiver of messages. All were fabricated in Si,

as part of an Institute of Microelectronics multi-project wafer, and the complete mask is presented
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FIGURE 7.32: Plotting (a) the current-voltage relationship for a thermo-optic phase mod-
ulator on the Bob chip, with a linear fit to the experimental data, and (b) the voltage-
dependent relative phase shift of the Mach-Zehnder interferometer in which it is
embedded, with a parabolic fit to the experimental data. In the case of the latter,
saturation begins to occur at higher voltages due to imperfectly fabricated directional
couplers.

in appendix E.

7.4.1 A Reference-Frame-Independent Quantum Key Distribution Transmitter

We first present Anubis, which is a reference-frame-independent (RFI)-QKD transmitter capable of

either polarisation or time-bin encoding. The intention is for it to communicate with a low-cost bulk

receiver, designed and built by Dr. David Lowndes. RFI-QKD [346] uses a reference-frame-invariant

basis to enable key generation between two parties who are moving in an otherwise detrimental

manner relative to one another. For example, in the case of a rotating satellite, the polarisations that

may be considered “horizontal” and “vertical” are constantly changing with respect to the ground.

However, the handedness of circularly polarised light will remain unaffected, so we can use this

as the key generation basis, and bound Eve’s knowledge by measuring correlations between the

slowly-changing, arbitrarily-named horizontal/vertical and diagonal/anti-diagonal polarisations.

The exact details of the protocol are unimportant at this stage, as all we need to know for the

purposes of chip design is that it will be necessary to prepare {|i〉 , |−i〉} in addition to the usual
�

|0〉 , |1〉
	

and {|+〉 , |−〉}.
The schematic for Anubis is shown in figure 7.33. A continuous-wave off-chip laser is coupled

in on the left-hand side of the diagram, with the first MZI attenuating it down to just above the

single-photon level. The light is then split into two parallel sets of dual rails, and a second MZI is

used for pulse carving, with further attenuation if required.

It has been established in previous work that the CDMs saturate before reaching a full π phase
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shift [324]. To get around this, the TOPMs can be used in the path encoding step to prepare the

state |i〉= |0〉+i|1〉p
2

, meaning that the CDMs only need to deliver π2 phase shifts in order to generate

any of the Bennett-Brassard 1984 (BB84) states. However, in RFI-QKD, |−i〉= |0〉−i|1〉p
2

must also be

transmitted, which the CDMs cannot reach on their own if we are modulating about |i〉. It is for this

reason that are now using two sets of dual rails for path encoding. By preparing |i〉 with the TOPMs

on one arm, and |+〉 with the TOPMs on the other, we can use the corresponding CDMs to realise
�

|0〉 , |1〉 , |+〉 , |−〉
	

and
�

|0〉 , |1〉 , |i〉 , |−i〉
	

.

Following this, either polarisation or time-bin conversion can be implemented in the standard

fashion, merging the two state preparation arms in the process. There is the option to dense

wavelength-division multiplex the quantum signal with a classical clock, combining them on an

MMI, just as we do with pure QKD channels on the monolithic WDM-QKD transmitter. While we

will argue in section 7.4.2 that this is unlikely to scale well when considering large numbers of clock

signals on arbitrary networks, on-chip classical-quantum DWDM is the first step towards the more

complex task of coarse wavelength-division multiplexing the 1310 nm structures we develop later

with the 1550 nm structures here.

The mask for Anubis is presented in figure 7.34, compiled using IPKISS from source code written

in Python. It was based around a component library developed internally by the Centre for Quantum

Photonics, and an additional 3366 lines of code were written by the author to produce Anubis,

Big Ear, Cher Ami and Dzakar. In order to minimise the attenuation of the delays, we increase the

width of the waveguide whenever a straight section is encountered. This reduces scattering from the

sides of the waveguide which, due to the surface roughness, is the dominant source of loss [347]. A

gradual taper is included to suppress diffraction as this would otherwise lead to excitation of higher

order modes, like in an MMI. Further design choices will be discussed in the sections that follow.

7.4.2 A Transmitter and Receiver for Chip-to-Chip Quantum Key Distribution at

1310 nm

Thus far, this thesis has aimed to identify and address some of the practical challenges that face

real-world applications of QKD. Of course, such an effort would not be complete without at least

touching on the issue of classical-quantum co-existence. A number of solutions have been previously

implemented, such as spatial-division multiplexing over multicore fibre [348] and WDM approaches

that are not too dissimilar to those used for combining quantum signals in this thesis. Of these options,

the latter is by far the most explored, though scalability issues do exist. If DWDM wavelengths are

required, Raman scattering becomes a source of noise, transferring optical power from the classical

signal to adjacent wavelengths through a process of absorption and re-emission [349, 350]. While

many experiments have been carried out in this regime [169–171, 351, 352], those that rely on the

careful placement of quantum signals at low-noise wavelengths will quickly begin to struggle as more

classical signals are added and the noise profile moves towards being homogeneous. Furthermore,

as illustrated by figure 7.35, additional sources of noise on the Bristol Quantum Network reduce
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FIGURE 7.34: The mask for Anubis, compiled from source code written in Python. Anno-
tations identifying each component are provided in figures 7.39 and 7.41.

-168-



7.4. NEXT-GENERATION SILICON PHOTONIC CHIP DESIGN

1500 1520 1540 1560 1580
0

0.2

0.4

0.6

0.8

Wavelength (nm)

Si
ng
le
Ph
ot
on

C
ou
nt
s

pe
r
Se
co
nd

(G
H
z)

Si
gn
al
W
av
el
en
gt
h

FIGURE 7.35: Raman noise for a single classical signal emulated by a 1550 nm continuous-
wave laser with a -4.8 dBm launch power. Measurements were carried out using
an ID Quantique ID210 single-photon detector on the Bristol Quantum Network,
between the Centre for Nanoscience & Quantum Information and the Merchant
Venturers Building (see section 3.1.3). Here, the detector efficiency, gate width and
gate frequency have all been taken into account. A bandpass filter with a 50 pm
full-width half-maximum was used to scan across the spectrum.

the size of the dips that are introduced by the Raman gain profile. When these measurements were

first carried out on an indirect, temporary link between the Centre for Nanoscience & Quantum

Information and the Merchant Venturers Building, the situation was even worse, as the number of

server-room connections meant no dips could be found. Therefore, strategies that exploit these do

not scale to arbitrary networks. However, we note that as the wavelength decreases in figure 7.35,

the noise from Raman scattering of the 1550 nm laser tends towards zero, raising the possibility of

running QKD at 1310 nm in longer-distance environments where, unlike the data centres emulated

in chapter 3, classical light occupies the C-band. This has previously been implemented in [353, 354],

although a full O-band on-chip QKD solution is yet to be demonstrated. Therefore, in this section,

we present a 1310 nm receiver (Big Ear) and a 1310 nm transmitter (Cher Ami), schematics for

which are provided in figures 7.36 and 7.38 respectively. The corresponding masks can be found in

figures 7.37 and 7.39.

The 1310 nm chip designs are very similar to those of the original InP and SiOxNy devices, with

the main differences being in the transmitter. As described in section 7.4.1, it is possible to fabricate

low-loss delay lines in SoI, meaning we can use a passive time-bin encoding scheme [62] rather

than having to pulse modulate within the coherence time of the laser.

All of the mask components have been physically scaled to ensure compatibility with 1310 nm
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FIGURE 7.36: A schematic for Big Ear, the 1310 nm quantum key distribution receiver
chip. This follows the same layout as the original 1550 nm SiOxNy receivers, and
can therefore be used to implement the BB84 with decoy states, Differential Phase
Shift [355] or Coherent One Way [239] protocols.

FIGURE 7.37: The mask for Big Ear, compiled from source code written in Python. Anno-
tations identifying each component are provided in figures 7.39 and 7.41.

light. A folded design was developed for the CDMs in both this and the previous section, reducing

the width of the chip so as to keep it within the design boundaries. When connecting the CDMs

to bond pads, vias were used to transition the track into a metal layer that was further away from

the waveguides. This prevented the electrical signals from accidentally modulating light travelling

down the delay line that is positioned underneath.

7.4.3 A Polarisation-Compensating Receiver for Time-Bin-Encoded Quantum Key

Distribution

The final chip design (Dzakar) can be operated in one of two ways. It may either de-multiplex QKD

signals from a classical clock and act as a receiver for both, or it may be used to compensate for
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FIGURE 7.38: A schematic for Cher Ami, the 1310 nm quantum key distribution transmitter
chip that can be used to implement the BB84 with decoy states, Differential Phase
Shift or Coherent One Way protocols. Time-bin encoded qubits are generated by
exploiting a low-loss delay line, using an off-chip laser as the optical source.

polarisation drift in the time-bin-encoded quantum signal. A schematic is shown in figure 7.40, and

the mask is in figure 7.41. Here, the classical-quantum de-multiplexer is an AMZI, as was used for

WDM-QKD earlier in this chapter. It directs the clock into an on-chip APD, and the qubits into a

standard time-bin receiver circuit.

The transverse electric (TE) and transverse magnetic (TM) modes of a waveguide couple to

off-chip transmission media with orthogonal polarisations. In addition, the transmission angle is

polarisation-dependent when 1D grating couplers are used, so only TE modes can be efficiently

transferred out of the waveguide [337]. As always, the reverse is also true, and polarisations

corresponding to TM modes will not couple onto the chip. Hence, we will experience a drop in key

rate if the polarisation of the quantum signal drifts unpredictably, as is the case for single-mode

fibre (SMF) deployed in the field.

For this reason, we have implemented a circuit designed to maximise throughput on Dzakar.

Recall that 2D grating couplers are a method for transferring orthogonal polarisations into the TE

modes of two separate waveguides. Therefore, by incorporating an MZI immediately after, we can

recombine the signal and counteract the drift that would have otherwise been highly detrimental to

QKD.

7.5 Outlook

In this chapter, we have characterised the devices that were later used in the first demonstration

of chip-based WDM-QKD. We found that 1544.77 nm and 1547.92 nm (ITU channels 41 and 37)
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Carrier-Depletion Modulator

FIGURE 7.39: The mask for Cher Ami, compiled from source code written in Python.
Additional annotations are provided in figure 7.41, identifying the components not
labelled here.
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FIGURE 7.41: The mask for Dzakar, compiled from source code written in Python. Ad-
ditional annotations are provided in figure 7.39, identifying the components not
labelled here.

were the optimal wavelengths for each signal and, based on this, a colleague was able to double the

secret key rate in a two-channel WDM experiment.

Moving forward, we must demonstrate that the same results can be obtained with a fully

monolithic transmitter, and show that the key rate continues to scale linearly when moving from

two channels to four. A receiver containing concatenated AMZIs that de-multiplex into four Bobs

has been electrically and optically packaged. This is the first QKD chip that no longer needs to be

mounted on a chip rig composed of alignment stages and an optical table. Along with the TOPM

driving electronics, it is now housed in a 3D-printed router-sized box (18.5 × 16.0 × 4.0 cm3). We

have conducted extensive electrical tests, and preliminary characterisation of the optics indicates

that they should be able to provide the functionality required,
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A single transmitter has been packaged to test the photonic components that have become

available from Oclaro since the previous fabrication run. A modular copper block was designed,

allowing access to other experiments on the same physical chip by substituting out the PCB. The

PCB itself has been miniaturised, with a footprint that is 15.5% the size of its predecessor. However,

it will be essential that we transition to a multi-tiered PCB for the quadruple-Alice version, as it is

not possible to achieve the electrical pad spacing that would otherwise be required.

Finally, four next-generation masks have been designed on Si. These advance the state-of-the-

art in multiple ways, using on-chip (de-)multiplexing to combine QKD with classical signals, and

exploring the use of 1310 nm light in chip-based quantum communications. The most impressive

design is that for an RFI-QKD transmitter chip, which is by far the most complex QKD circuit

implemented to date. As these have now returned from the foundry, they can begin to be packaged

in parallel with the monolithic WDM-QKD experimental work that is still ongoing.
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CONCLUSION

It is now 35 years since the first quantum key distribution (QKD) protocol was proposed by Bennett

and Brassard, and 23 years since the publication of Shor’s algorithm in its definitive form. Yet

quantum cryptography still has not been widely adopted. In part, this is because the road to maturity

is far from simple when considering highly-advanced technologies. However, equally significant is

the time taken for public concern to be raised over everyday practices that will eventually become a

source of catastrophe. Even now, many laymen are not fully aware of the degree to which their entire

lives depend on being able to implement strong cryptography, and this lack of public education

makes QKD a hard sell to the everyday consumer. Nonetheless, attitudes are starting to change,

as national and supranational governments have established a wide range of quantum technology

initiatives, and companies are beginning to ask what can be done to keep their data safe from

quantum attacks.

Thus, we find ourselves in a position where it must be demonstrated that QKD is a robust and

scalable technology, capable of being integrated with generic communications networks that were

not designed with quantum devices in mind. To do so is of the highest priority, as the National

Institute of Standards and Technology (NIST) post-quantum cryptography competition is now

well underway [356], meaning QKD risks becoming obsolete if it does not keep pace with, and

demonstrate complementarity to, what some would perceive to be a rival solution.

With this in mind, the work presented herein advances the state of the technology in several ways.

We have carried out the first demonstration of time-division multiple access QKD, and pioneered its

experimental integration in software-defined networks, reducing the need for radical changes to be

made to pre-established architectures when incorporating quantum devices, thereby increasing ease

of adoption. In addition, we have quantified the intuition that, for everyday quantum-safe networks,

contemporary ciphers will continue to dominate indefinitely, and so optimising QKD systems for use

with the one-time pad should not be a primary concern.
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Based on this, we have developed a novel QKD protocol that resists two-photon number splitting,

has 100% sifting efficiency and, most importantly, detects a newly-identified denial of service (DoS)

attack, to which all other protocols are vulnerable. While DoS was discussed in the context of an

eavesdropper who had access to an illegitimate QKD unit, the same result can be achieved even if

she does not possess any quantum hardware. For example, Eve may spoof Bob’s IP address and inject

additional messages on the classical channel, that do not interfere with the sifting or error correction,

but still cause the authentication step to fail. In principle, a single extra bit is all that would be

required to DoS the system. However, BB84-AES will not only detect this as soon as it occurs, but

will also be able to identify exactly which bits were sent by an eavesdropper. The trade-off is that

we relax the security of QKD to that of our encryption scheme, and while we shall not reiterate our

arguments in favour of such a decision, anyone still uncomfortable with the idea should consider

the following. There is little point in developing a mathematically-unbreakable cryptosystem that

cannot be used, and so it is far better to create a computationally-secure cryptosystem that can be.

We also implemented the first hybrid quantum/post-quantum prototype network, taking sym-

metric keys distributed under mathematical assumptions and converting them into keys that are

guaranteed to be quantum-safe. The software that was developed can also be used to introduce

compatibility between QKD links and legacy devices, as well as circumvent the distance limitation

on quantum signals, by implementing an architecture based on lesser-trusted nodes. Although these

are named in reference to the fact that trust is only reduced under the assumptions governing the

security of the post-quantum algorithm, there is another reason why, in such a model, third-party

trust can never be fully removed. If, as we assume, authentication of the post-quantum keys takes

place using a public-key infrastructure, there is always a chance that the certificate authority will go

rogue or become compromised. Nevertheless, our approach is still an improvement over using fully

trusted nodes, which have a larger physical attack surface because of the sheer number required.

Finally, we have detailed contributions that enabled the first chip-scale demonstration of wave-

length-division multiplexing QKD, increasing the secret key rate by a factor of two while maintaining

a small footprint. Steps have been taken towards implementing a four-channel version, with mono-

lithic transmitter and receiver chips that have the potential to be repurposed as reconfigurable banks

of QKD devices in software-defined networks.

In reflecting upon the above, it seems appropriate to close with two quotes from the well-known

cryptographer Bruce Schneier [357]:

“One-time pads might be theoretically secure, but in practical terms they are unusable for

anything other than specialized niche applications. Today, only crackpots try to build general-

use systems based on one-time pads and cryptographers laugh at them"

“I know that quantum key distribution is a potential replacement for public-key cryptography.

But come on - does anyone expect a system that requires specialized communications hardware

and cables to be useful for anything but niche applications?"

-178-



This thesis agrees with the first quote. Even with quantum key distribution, the one-time pad is not

a general-purpose algorithm. However, it disagrees with the second. Chip-scale QKD will ultimately

converge with standard transceiver technology to realise software-defined, reconfigurable devices,

capable of transmitting both classical and quantum data which, when combined with post-quantum

cryptography to overcome distance limitations, is a general-purpose solution to enable internet

communications that are safe against quantum cyber attacks. While QKD may not be used for

end-to-end security by members of the public, it is still important for protecting the core parts of the

networks on which they rely, as well as our critical infrastructure. Yet for this to become a reality,

the more controversial aspects of this thesis must be built upon to generate new, mainstream lines

of enquiry, and not simply be treated as esoteric offshoots of the noble but impossible quest towards

a cryptosystem that cannot be compromised.
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APPENDIX TO CHAPTER 2: QUANTUM LOGIC GATES

Here, we summarise a subset of the logic gates that can be implemented on a quantum computer,

so as to aid the reader’s understanding of table 2.3. In physical terms, a quantum logic gate is

simply an operator, utilised as part of an information processing circuit. All the single-qubit gates

are written in the Z basis, the two-qubit gates in
�

|00〉 , |01〉 , |10〉 , |11〉
	

, and the three-qubit gates

in
�

|000〉 , |001〉 , |010〉 , |100〉 , |011〉 , |101〉 , |110〉 , |111〉
	

.

We first introduce the phase-shift gate

R̂θ =

�

1 0

0 eiθ

�

(A.1)

The T gate is a specific instance of R̂θ , for the case where θ = π
4 [37]:

T̂ =

�

1 0

0 ei
π
4

�

(A.2)

The Clifford group is a non-universal gate set that can be generated by the Hadamard (Ĥ), phase

gate (Ŝ), and controlled-NOT (CNOT) [358]:

Ĥ =
1
p

2

�

1 1

1 −1

�

, Ŝ =

�

1 0

0 i

�

, CNOT=











1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0











(A.3)

Like with the T gate, Ŝ can be viewed as an instantiation of R̂θ , only this time for θ = π
2 . Universality is

achievable through the addition of a gate from outside the Clifford set to those in equation A.3 [359].
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Finally, the Toffoli gate, also known as the controlled-controlled-NOT [360], is defined as

CCNOT=































1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0































(A.4)

-214-



A
P

P
E

N
D

I
X|B〉

APPENDIX TO CHAPTER 2: THE EXPONENTS OF THE

COHERENT-STATE BEAM-SPLITTER OUTPUT COMMUTE

�

Ôx , Ôy
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â†
3 − â†
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3â†

4 −α1α
∗
2â†
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4â†
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4â4 +α
∗
2α1â3â†
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3

�

+α1α
∗
2

�
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â†
3, â4
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From equation 2.41,
�

â3, â†
3

�

=
�

â4, â†
4

�

= 1 and
�

â†
3, â3

�

=
�

â†
4, â4

�

= −1. We also observe that
�

â3, â†
4

�

=
�

â4, â3

�

=
�

â†
3, â4

�

=
�

â†
4, â†

3

�

= 0. Therefore,
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APPENDIX TO CHAPTER 6: SUMMARISING CIPHERTEXT

INDISTINGUISHABILITY

Here, we provide a high-level description of ciphertext indistinguishability, a more formal treatment

of which can be found in [361]. In ascending order of security, the three notions to be considered

are indistinguishability under chosen plaintext attack (IND-CPA), indistinguishability under non-

adaptive chosen ciphertext attack (IND-CCA1), and indistinguishability under adaptive chosen

ciphertext attack (IND-CCA2). As can be seen from the definitions below, IND-CCA2 implies IND-

CCA1, which implies IND-CPA. However, IND-CPA does not imply IND-CCA1 and neither IND-CPA

nor IND-CCA1 imply IND-CCA2. Breaks in the IND-CCA2 security of Rivest–Shamir–Adleman (RSA)

implementations have been found in the real world, with widespread applicability [362–364]. As

popular countermeasures seem to be ineffective, it has been recommended that key exchanges

based around RSA encryption should be deprecated [363]. This will mean reverting to elliptic-curve

alternatives so, interestingly, in order to remain secure against classical computers, we will become

more vulnerable to quantum attacks.

Definition C.1: IND-CPA. Eve can encrypt any plaintext she chooses and view the corresponding

ciphertext. For public-key cryptography, this is trivially achievable and can be repeated multiple

times. After a number of ciphertexts have been generated for the purposes of accumulating

information on the encryption scheme, a challenger randomly selects and encrypts one of two

non-identical plaintexts chosen by Eve. The encryption scheme has IND-CPA security if Eve’s

probability of guessing which plaintext was selected is at most 1
2 plus a negligible term.
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Definition C.2: IND-CCA1. Eve can encrypt any plaintext she chooses and view the corre-

sponding ciphertext. Prior to a challenge being issued, she may also use an oracle to decrypt any

ciphertext she chooses and view the corresponding plaintext. After a number of ciphertexts and

plaintexts have been generated for the purposes of accumulating information on the encryption

scheme, a challenger randomly selects and encrypts one of two non-identical plaintexts chosen

by Eve. The encryption scheme has IND-CCA1 security if Eve’s probability of guessing which

plaintext was selected is at most 1
2 plus a negligible term.

Definition C.3: IND-CCA2. Eve can encrypt any plaintext she chooses and view the correspond-

ing ciphertext. She may also use an oracle to decrypt any ciphertext she chooses and view the

corresponding plaintext. After a number of ciphertexts and plaintexts have been generated for

the purposes of accumulating information on the encryption scheme, a challenger randomly

selects and encrypts one of two non-identical plaintexts chosen by Eve. After the ciphertext has

been published, Eve can make additional calls to the decryption oracle, provided she does not

use it to decrypt the challenge. The encryption scheme has IND-CCA2 security if Eve’s probability

of guessing which plaintext was selected is at most 1
2 plus a negligible term.
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APPENDIX TO CHAPTER 7: A DESCRIPTION OF THE GLUING

PROCESS FOR THE FOUR-CHANNEL INTEGRATED RECEIVER

Using a syringe, glue was applied to the optical facet of the chip. As this was only 135± 15 µm

thick, a camera was mounted overhead such that it became clear when the tip of the needle was in

the right place, based on how in-focus it was.

Adhesive was dispensed by hand until roughly 80% of the chip edge was coated. To prevent any

tremors, both hands were required, so a helper moved the camera while the person performing

the gluing progressed along the chip. It was of the upmost importance that the needle itself did

not touch the facet, as this would have damaged the spot-size converter, preventing use of the

waveguide to which it was connected.

Once a single line of glue had been deposited, the V-Groove array (VGA) was slowly eased

backwards and forwards into it, ensuring there were no air gaps. Some of the adhesive naturally

overflowed onto the top of the chip, which is unavoidable and harmless in small quantities. However,

the interface between the VGA and the waveguides was obscured as a result, so the only way to tell

when contact had been made was to watch a fixed point on the chip. When the VGA nudged the

edge, this moved a few microns, at which point we stopped. Care should be taken not to cause a

larger collision as, again, this would lead to damage.

The next step was to illuminate the interface with a diffuse ultraviolet (UV) lamp, in order to

cure the glue. The intensity was slowly increased, rather than going straight to full brightness, as

this reduced the risk of misalignment. After 24 hours, the vacuum was turned off, releasing the

chuck from the VGA, which was now supported entirely by the adhesive, meaning the chuck could

be lowered out of the way. Gluing only commenced for the second VGA after this was complete.

Finally, silicone was used to bond the fibres to the edge of the printed circuit board (PCB), as a

way of providing strain relief. The entire package was placed in a biological steriliser, bathing it in
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strong UV for a further 24 hours, with a mirror underneath the PCB to ensure the glue was cured

from both sides.
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APPENDIX TO CHAPTER 7: CONSEQUENCES OF TESSELATING

MULTIPLE SILICON CHIPS ON A SINGLE WAFER

All four of the silicon (Si) chips were fabricated alongside other experiments on a single wafer,

and figure E.1 shows how they fit together inside the pink hatched design area. While some delay

lines do extend beyond this, they fit comfortably into a waveguide-free region behind a colleague’s

design.

If Big Ear, Cher Ami or Dzakar were to be manufactured individually, the delay lines for each could

encircle the rest of the design to reduce its overall footprint. However, this would decrease the length

of the multi-moded segments, thus increasing the loss, and affecting state preparation or detection.

Such an issue could be resolved if, as in the rest of chapter 7, we were to wavelength-division

multiplex several devices, enabling their delay lines to be interleaved similarly to here.

-221-



APPENDIX E. APPENDIX TO CHAPTER 7: CONSEQUENCES OF TESSELATING MULTIPLE SILICON CHIPS
ON A SINGLE WAFER

4.16 m
m

 (A
nubis length)

4.29 m
m

 (C
her A

m
i length) 

4.14 m
m

 (D
zakar length) 

2.06 m
m

(C
her A

m
i length excl. delay)

(D
zakar length excl. delay)

1.40 m
m

4.59 m
m

 (B
ig Ear length) 

(B
ig Ear length excl. delay)

0.65 m
m

1.40 mm
(Cher Ami & Dzakar widths)

1.34 mm
(Anubis width)

1.27 mm
(Big Ear width)

F
IG

U
R

E
E.1:

Show
ing

the
com

plete
m

ask
for

the
silicon

quantum
key

distribution
devices

A
nubis,Big

Ear,C
her

A
m

iand
D

zakar.
The

pink
hatched

rectangle
is

the
design

area,and
the

delay
lines

that
extend

beyond
this

sit
behind

a
colleague’s

design
on

the
sam

e
physicalchip.

-222-




	List of Tables
	List of Figures
	List of Acronyms and Abbreviations
	List of Symbols
	List of Publications
	Introduction
	Foreword
	Thesis Outline

	Background
	Modern Cryptography
	Symmetric-Key Encryption
	Symmetric-Key Authentication
	Public-Key Cryptography for Symmetric-Key Distribution

	Quantum Information
	Quantum Mechanics
	Quantum Computing
	Photonic Quantum Bits

	Quantum Cryptography
	Quantum Key Distribution Protocols
	Attacks on Quantum Key Distribution

	Summary

	Time-Shared Quantum Cryptography on Software-Defined Networks
	State-of-the-Art in Telecommunications Networks
	Quantum Key Distribution Networks
	Software-Defined Networks
	Next-Generation Quantum Networks

	A First-Generation Testbed for Quantum Key Distribution on Software-Defined Networks
	The Clavis2 Quantum Key Distribution System
	The Polatis Optical Switch
	SFP+ and QSFP+ Transceivers
	Equipment that is Detrimental to Quantum Key Distribution

	Time-Division Multiple Access Quantum Key Distribution
	A Time-Sharing Model for Cost-Effective Quantum Key Distribution
	Bristol is Open Emulator
	Results

	Outlook
	Construction of the Second-Generation Testbed and Bristol Quantum Network


	The Impracticality of the One-Time Pad for Everyday Quantum-Secured Communications
	The Effect of the Classical Channel on Key Generation
	The Effect of the Quantum Channel on Key Generation
	State of the One-Time Pad
	Outlook
	An Attempt to Circumvent the Restrictions on the Quantum and Classical Channels


	Quantum Key Distribution for Imperfect Encryption Schemes
	A New Denial of Service Attack on Quantum Key Distribution
	BB84-AES: A Quantum Key Distribution Protocol for Rapid Denial of Service Detection
	Initial Security Analysis of BB84-AES
	Rapid Denial of Service Detection
	100% Sifting Efficiency
	Authentication Tag Confidentiality
	Resistance to Photon Number Splitting Attacks on Two-Photon Pulses
	Perfect Forward Secrecy when Combining BB84-AES with Encryption Based on the Advanced Encryption Standard Block Cipher.
	Everlasting Security when Combining BB84-AES with the One-Time Pad Encryption Scheme
	The Role of Randomness in BB84-AES

	Optimising BB84-AES for Resource-Limited Applications
	Reduced Processing Variant
	Reduced Bandwidth Variant
	Dense Information Transfer Variant

	Comparing BB84-AES with Other Photon/Number/Splitting/Resistant and Highly-Efficient Quantum Key Distribution Protocols
	Outlook
	On the Cryptographic Choices for Communicating the Bases
	Beyond Basis Announcements and BB84


	Implementing Hybrid Quantum/Post-Quantum Security to Defend Against Shor's Algorithm
	Consequences of Computationally-Secure Encryption in Quantum-Safe Networks
	Post-Quantum Cryptography
	The Post-Quantum Landscape
	The McEliece Cryptosystem
	The Niederreiter Cryptosystem

	Scenario I: Symmetric-Key Conversion for Long-Term Quantum Security in a Post-Quantum Ecosystem
	Scenario II: Quantum Key Distribution as an Entropy Source for Efficient and Automated Private-Key Backups
	Scenario III: Lesser-Trusted Nodes for Long-Distance Quantum Key Distribution & Scenario IV: Introducing Compatibility with Legacy Networks
	Outlook

	Integrated Photonics for High-Speed, Reconfigurable Quantum Key Distribution
	Integrated Photonics
	Platforms for Integrated Photonics
	Sources and Detectors
	Photonic Circuit Components

	Device Characterisation for On-Chip Wavelength-Division Multiplexed Quantum Key Distribution
	Characterising the Wavelength-Division Multiplexers
	Characterising the Integrated Laser
	Modulating the Asymmetricity of a Mach-Zehnder Interferometer

	Monolithic Wavelength-Division Multiplexed Quantum Key Distribution
	Next-Generation Silicon Photonic Chip Design
	A Reference-Frame-Independent Quantum Key Distribution Transmitter
	A Transmitter and Receiver for Chip-to-Chip Quantum Key Distribution at 1310 nm
	A Polarisation-Compensating Receiver for Time-Bin-Encoded Quantum Key Distribution

	Outlook

	Conclusion
	Bibliography
	Appendix to Chapter 2: Quantum Logic Gates
	Appendix to Chapter 2: The Exponents of the Coherent-State Beam-Splitter Output Commute
	Appendix to Chapter 6: Summarising Ciphertext Indistinguishability
	Appendix to Chapter 7: A Description of the Gluing Process for the Four-Channel Integrated Receiver
	Appendix to Chapter 7: Consequences of Tesselating Multiple Silicon Chips on a Single Wafer

