264 research outputs found

    Internet of Things Based Technology for Smart Home System: A Generic Framework

    Get PDF
    Internet of Things (IoT) is a technology which enables computing devices, physical and virtual objects/devices to be connected to the internet so that users can control and monitor devices. The IoT offers huge potential for development of various applications namely: e-governance, environmental monitoring, military applications, infrastructure management, industrial applications, energy management, healthcare monitoring, home automation and transport systems. In this paper, the brief overview of existing frameworks for development of IoT applications, techniques to develop smart home applications using existing IoT frameworks, and a new generic framework for the development of IoTbasedsmart home system is presented. The proposed generic framework comprises various modules such as Auto-Configuration and Management, Communication Protocol, Auto-Monitoring and Control, and Objects Access Control. The architecture of the new generic framework and the functionality of various modules in the framework are also presented. The proposed generic framework is helpful for making every house as smart house to increase the comfort of inhabitants. Each of the components of generic framework is robust in nature in providing services at any time. The components of smart home system are designed to take care of various issues such as scalability, interoperability, device adaptability, security and privacy. The proposed generic framework is designed to work on all vendor boards and variants of Linux and Windows operating system

    Integrated Home Server

    Get PDF
    Since the advent of the microprocessor in the 1970s, the market for consumer electronics has exploded with new devices changing the way we live and do business. Today, mobile phones, cameras, PCs, iPads, mp3 players, network media players, security systems, automation and IT systems, all have common functionality and there is an increasing need for unification of access to all these devices around a common server based architecture to unlock the benefits of smart integration and to simplify access for the end user. IHS project is designed to provide to its business and home owners a unified network for all IT and electronic systems within a home or an office. This system integrates security, surveillance, access and attendance, home automation, audio and video players, File Server, Email Server, SMS Server (Texting), HTTP Proxy Server, DHCP Server, a caching DNS Server, Web Server and an internet gateway with an automatic virus scanner. In fact, it is a comprehensive system that completely governs a place wherever it is installed and provides integrated remotely accessible infrastructure for a Home or Business. Access to all home and business systems is available from any computer on the LAN, the internet and mobile phone. IHS is built around the Gateman Lifestyle Server which uses the robust Enterprise Linux Kernel CEntOS 5 and is written in Java. It can be accessed from Windows, MAC, Linux machines and i-phones as well as from any device that has a Java script enabled web browser. The device driver architecture allows additional electronic hardware to be incorporated making it relevant and extendable well into the future

    Cost effective technology applied to domotics and smart home energy management systems

    Get PDF
    Premio extraordinario de Trabajo Fin de Máster curso 2019/2020. Máster en Energías Renovables DistribuidasIn this document is presented the state of art for domotics cost effective technologies available on market nowadays, and how to apply them in Smart Home Energy Management Systems (SHEMS) allowing peaks shaving, renewable management and home appliance controls, always in cost effective context in order to be massively applied. Additionally, beyond of SHEMS context, it will be also analysed how to apply this technology in order to increase homes energy efficiency and monitoring of home appliances. Energy management is one of the milestones for distributed renewable energy spread; since renewable energy sources are not time-schedulable, are required control systems capable of the management for exchanging energy between conventional sources (power grid), renewable sources and energy storage sources. With the proposed approach, there is a first block dedicated to show an overview of Smart Home Energy Management Systems (SMHEMS) classical architecture and functional modules of SHEMS; next step is to analyse principles which has allowed some devices to become a cost-effective technology. Once the technology has been analysed, it will be reviewed some specific resources (hardware and software) available on marked for allowing low cost SHEMS. Knowing the “tools” available; it will be shown how to adapt classical SHEMS to cost effective technology. Such way, this document will show some specific applications of SHEMS. Firstly, in a general point of view, comparing the proposed low-cost technology with one of the main existing commercial proposals; and secondly, developing the solution for a specific real case.En este documento se aborda el estado actual de la domótica de bajo coste disponible en el mercado actualmente y cómo aplicarlo en los sistemas inteligentes de gestión energética en la vivienda (SHEMS) permitiendo el recorte de las puntas de demanda, gestión de energías renovables y control de electrodomésticos, siempre en el contexto del bajo coste, con el objetivo de lograr la máxima difusión de los SHEMS. Adicionalmente, más allá del contexto de la tecnología SHEMS, se analizará cómo aplicar esta tecnología para aumentar la eficiencia energética de los hogares y para la supervisión de los electrodomésticos. La gestión energética es uno de los factores principales para lograr la difusión de las energías renovables distribuidas; debido a que las fuentes de energía renovable no pueden ser planificadas, se requieren sistemas de control capaces de gestionar el intercambio de energía entre las fuentes convencionales (red eléctrica de distribución), energías renovables y dispositivos de almacenamiento energético. Bajo esta perspectiva, este documento presenta un primer bloque en el que se exponen las bases de la arquitectura y módulos funcionales de los sistemas inteligentes de gestión energética en la vivienda (SHEMS); el siguiente paso será analizar los principios que han permitido a ciertos dispositivos convertirse en dispositivos de bajo coste. Una vez analizada la tecnología, nos centraremos en los recursos (hardware y software) existentes que permitirán la realización de un SHEMS a bajo coste. Conocidas las “herramientas” a nuestra disposición, se mostrará como adaptar un esquema SHEMS clásico a la tecnología de bajo coste. Primeramente, comparando de modo genérico la tecnología de bajo coste con una de las principales propuestas comerciales de SHEMS, para seguidamente desarrollar la solución de bajo coste a un caso específico real

    The security of communication protocols used for Internet of Things

    Get PDF
    The thesis introduces a range of communication protocols used to implementing smart homes currently available on the market. Two protocols are chosen and theoretically analysed in depth. The analysis both describes how the protocols works and describes the measures taken in order to protect it against attacks from third parties. The theoretical evaluation analyses how susceptible the protocols are against the replay and eavesdropping attacks. The theoretical evaluation is followed by a case study where one of the communication protocols are analysed practically. During the case study a smart home using the chosen protocol is set up. The network is then attacked with the attacks described in the theoretical evaluation. The theoretical and practical outcomes are compared to see if they match. During this study the theoretical and practical outcome did not match due to faulty use of the protocol. The faulty use of the protocol prevented the equipment from differentiating authentic and inauthentic parties which made the equipment susceptible. However, the case study only represents a sample of the technology being used and the faulty use is caused by one manufacturer. Thus the protocol can not be deemed unsafe solely based on the outcome of the case study

    Demand Response on domestic thermostatically controlled loads

    Get PDF

    Communication in microgrids and virtual power plants

    Get PDF
    One of the cornerstones of the steady operation of microgrids and virtual power plants as building blocks for smart grid is the communication system, which is the main objective for evaluation and research in this thesis. The given project investigates the most widespread communication protocols along with IEC 61850 standard for substations automation applied in smart grids. Based on the presented analysis for communication technologies and protocols the appropriate communication solution for the laboratory microgrid at UiT – The Arctic University of Norway (Campus Narvik) is suggested and implemente

    Wireless network architecture for future smart grid machine to machine communications

    Get PDF
    Transformation of the conventional power grid into an efficient power delivery network is an important advance that will benefit consumers, business and the environment by providing improved integration of renewable energy, including solar and wind. A reliable, low latency communication system is a fundamental requirement for smart power grids. To achieve bidirectional energy distribution capability and to support diverse Smart Grid (SG) applications, the modern SG requires the capacity to handle the traffic generated by machine to machine (M2M) communication infrastructure. Successful integration of numerous SG applications, renewable energy sources and Electric Vehicles (EVs) into a conventional power grid would not be possible without a communication network that has been designed to support the needs of the new and innovative renewable power generation, distribution and storage technologies. While the legacy communication infrastructure, utilized to support the existing power network, fails to support all of the SG functionalities, Software Defined Networking (SDN), based on wireless communication systems, has the potential to provide an effective solution. SDN offers a range of features that fulfill the unique requirements of the SG applications. Being a new networking paradigm, SDN remains to be implemented for SG M2M communication scenarios and there remain a number of challenges that need to be overcome. M2M communication protocols and standards provide a starting point for the broader development of SG communication networks that can be enhanced by abstracting high-level network functionalities. The aim of this research was to carry out an in-depth study on the future SG communication networks and to propose solutions to identified limitations of existing communication networks. Keeping this intention in mind, the study first focuses on the SG application modeling techniques based on the traffic requirements and power supply load profiles. To address the dynamicity of the traffic model and demand load curve, a series of analytical models and smart algorithms were developed. SG application models were developed and evaluated using a range of scenarios reflecting typical usage. Heterogenous network architectures and efficient traffic models were developed to identify an appropriate wireless communication technology and to maximize the network performance for major SG applications. However, a careful observation of the communication networks ability to manage and control the diverse M2M communications reveals that the inadequate dynamic communication network configuration capability would be a problem for future SG applications. M2M communication protocols and standards provide a starting point for the broader development of SG communication networks that can be enhanced by abstracting high-level network functionalities. To realize the full potential of the SGs and deployment scenarios it is essential to analyze the major applications and key requirements to develop those applications. Also, it might be necessary to select an appropriate communication technology for each of the power system domains. The study first focuses on the SG application modeling techniques based on the traffic requirement and load supply profiles of the power system. To address dynamicity of the traffic model and demand load curve, a series of analytical models and smart algorithms were developed. The developed SG application models were further evaluated using simulation scenarios and a test bed model. The challenge of selecting an appropriate wireless communication technology and maximizing network performance for major SG applications was handled by developing multiple heterogenous network architectures and efficient traffic models. A comprehensive literature review of the state of the art of SG applications and standards was carried out to develop robust network models utilizing diverse communication technologies. The literature survey immensely helped to develop two novel SG application models, Zigbee based Pilot protection scheme for a smart distribution grid and Vehicle to Grid (V2G) smart load management scheme. Application modelling included detail traffic modelling, developing smart algorithms, analytical models, user load profile analysis, simulation models and test bed setups. Furthermore, a novel WiMax Ranging scheme is presented to improve the random-access mechanism for various periodic M2M applications supported by extensive simulation based performance analysis. Future SGs will be overwhelmed by an excessive number of sensor devices that collect various data related to the power system. In a SG Neighborhood Area Network (NAN), wireless sensor networks (WSNs) will play a key role in the development of major SG applications. The application centric WSNs require complex configurations such as well-defined access techniques, transmission and security protocols. Challenges also include development of appropriate routing protocols to tackle resource limitations and delay caused by decentralized WSNs and ad hoc based packet forwarding techniques. A careful observation of manageability and controllability of the diverse M2M network reveals that the inadequate dynamic network configuration capability of the existing SG communication network would be a key bottleneck for future SG. Thus, a novel WSN based communication framework is presented exploiting the emerging SDN networking paradigm. SDN would be beneficial for SGs in many ways. By decoupling the control plane and data forwarding plane, SDN facilitates real-time control and integration of network services and applications that can reach down into the network through the controller hierarchy. A higher degree of control over the overall SG communication network would be achievable via the dynamic programmability provided by SDN. The SDN based WSN network must be robust enough to support the adaptive energy dispatching capacity of the modern power system. The proposed communication framework incorporates novel communication features to separate the control plane and data forwarding plane within the SG communication network. This includes detailed modeling of the control and data plane communication parameters to support both delay sensitive and delay tolerant SG applications. The unique SDN features offers a platform to accommodate maximum number of SG applications with highest controllability and manageability. The performance of the SDN based future SG network is evaluated using a simulation scenario that considers realistic user load profiles, wireless standards, the SG premises geographical area and the state of the art of the SG standards. Although the control plane enables a global view of the data plane and provides a centralized platform to control and deploy new services, physically a single controller in the controller would not be practical for SG networks. The challenges arise in terms of scalability, security and reliability, particularly in a SG environment. To increase the efficiency of the proposed SDN based WSNs for the SG NAN, the study proposed distributed controllers with a comprehensive analytical model that optimizes the number of distributed controllers to enhance performance of the proposed communication framework in the NAN domain. The proposed framework along with the analytical model derive several solutions, such as the minimum number of controllers to support the switches and M2M devices, accommodate SG applications and a differentiated flow processing technique to support all traffic types within the network. Lastly, the study focuses on developing SDN-based application specific traffic models for the smart distribution grid. The thesis focuses on three major issues while developing a future SG communication system. Firstly, its identifies major applications and their traffic requirements at different domains of the SG. Appropriate traffic models were developed by designing robust wireless communication network models. Also, application centric smart optimization techniques are adopted to achieve maximum performance and presented with simulation results, statistical analysis and a test bed result analysis. Secondly, to facilitate the centralized controllability and programmability for supporting diverse SG applications within the SG, a novel WSNs communication framework is presented exploiting the next generation SDN paradigm. Both delay sensitive and delay tolerant SG applications were considered based on the traffic requirement to develop the SDN based WSN communication framework in the SG NAN. Smart algorithms were developed at the SDN based WSN application layer to accommodate a large number of SG applications. The framework feasibility is demonstrated by the simulations carried out to verify the model and provide a statistical analysis. Thirdly, the thesis focuses on developing a novel analytical model that can be used to determine the optimal number of distributed controllers and switches in a SG NAN domain. The proposed application centric traffic modelling techniques, SDN based wireless communication framework and analytical models in this thesis can be adapted for research into other communication networks, particularly those that are begin developed for the Internet of Things and other forms of M2M communications. Also, due to the technology agonistic characteristics of the analytical and traffic models, they can be used in the development of various wireless networks, particularly those that focus on wireless sensor networks, more generally than the broader Internet of Things

    Smart Home System

    Get PDF
    This project involves the design and implementation of a Smart Home system using IoT solutions. Three types of sensors, namely an occupancy sensor, a light sensor and a temperature sensor, along with a security camera are used and incorporated with a microcontroller in a master/slave architecture via Zigbee, a short-range network communication. The data collected from these sensors is transmitted to a cloud-based platform through Wi-Fi for analyzing and downloading to personal smartphones via a designated user interface. The entire system can be controlled both by users’ smartphones and by personal computers
    corecore