271 research outputs found

    Adding Logical Operators to Tree Pattern Queries on Graph-Structured Data

    Full text link
    As data are increasingly modeled as graphs for expressing complex relationships, the tree pattern query on graph-structured data becomes an important type of queries in real-world applications. Most practical query languages, such as XQuery and SPARQL, support logical expressions using logical-AND/OR/NOT operators to define structural constraints of tree patterns. In this paper, (1) we propose generalized tree pattern queries (GTPQs) over graph-structured data, which fully support propositional logic of structural constraints. (2) We make a thorough study of fundamental problems including satisfiability, containment and minimization, and analyze the computational complexity and the decision procedures of these problems. (3) We propose a compact graph representation of intermediate results and a pruning approach to reduce the size of intermediate results and the number of join operations -- two factors that often impair the efficiency of traditional algorithms for evaluating tree pattern queries. (4) We present an efficient algorithm for evaluating GTPQs using 3-hop as the underlying reachability index. (5) Experiments on both real-life and synthetic data sets demonstrate the effectiveness and efficiency of our algorithm, from several times to orders of magnitude faster than state-of-the-art algorithms in terms of evaluation time, even for traditional tree pattern queries with only conjunctive operations.Comment: 16 page

    A Prime Number Approach to Matching an XML Twig Pattern including Parent-Child Edges

    Get PDF
    Twig pattern matching is a core operation in XML query processing because it is how all the occurrences of a twig pattern in an XML document are found. In the past decade, many algorithms have been proposed to perform twig pattern matching. They rely on labelling schemes to determine relationships between elements corresponding to query nodes in constant time. In this paper, a new algorithm TwigStackPrime is proposed, which is an improvement to TwigStack (Bruno et al., 2002). To reduce the memory consumption and computation overhead of twig pattern matching algorithms when Parent-Child (P-C) edges are involved, TwigStackPrime efficiently filters out a tremendous number of irrelevant elements by introducing a new labelling scheme, called Child Prime Label (CPL). Extensive performance studies on various real-world and artificial datasets were conducted to demonstrate the significant improvement of CPL over the previous indexing and querying techniques. The experimental results show that the new technique has a superior performance to the previous approaches

    Optimizing cursor movement in holistic twig joins

    Full text link
    Holistic twig join algorithms represent the state of the art for evaluating path expressions in XML queries. Using inverted in-dexes on XML elements, holistic twig joins move a set of index cursors in a coordinated way to quickly ¯nd structural matches. Because each cursor move can trigger I/O, the performance of a holistic twig join is largely determined by how many cursor moves it makes, yet, surprisingly, existing join algorithms have not been optimized along these lines. In this paper, we describe TwigOptimal, a new holistic twig join algorithm with optimal cur-sor movement. We sketch the proof of TwigOptimal's optimality, and describe how TwigOptimal can use information in the return clause of XQuery to boost its performance. Finally, experimen-tal results are presented, showing TwigOptimal's superiority over existing holistic twig join algorithms

    The relational XQuery puzzle: a look-back on the pieces found so far

    Get PDF
    Given the tremendous versatility of relational database implementations toward awide range of database problems, it seems only natural to consider them as back-ends for XML data processing. Yet, the assumptions behind the language XQuery are considerably different to those in traditional RDBMSs. The underlying data model is a tree, data and results carry an intrinsic order, queries are described using explicit iteration and, after all, problems are everything else but regular. Solving the relational XQuery puzzle, therefore, has challenged anumber of research groups over the past years. The purpose of this article is to summarize and assess some of the results that have been obtained during this period to solve the puzzle. Our main focus is on the Pathfinder XQuery compiler, afull reference implementation of apurely relational XQuery processor. As we dissect its components, we relate them to other work in the field and also point to open problems and limitations in the context of relational XQuery processin

    Four Lessons in Versatility or How Query Languages Adapt to the Web

    Get PDF
    Exposing not only human-centered information, but machine-processable data on the Web is one of the commonalities of recent Web trends. It has enabled a new kind of applications and businesses where the data is used in ways not foreseen by the data providers. Yet this exposition has fractured the Web into islands of data, each in different Web formats: Some providers choose XML, others RDF, again others JSON or OWL, for their data, even in similar domains. This fracturing stifles innovation as application builders have to cope not only with one Web stack (e.g., XML technology) but with several ones, each of considerable complexity. With Xcerpt we have developed a rule- and pattern based query language that aims to give shield application builders from much of this complexity: In a single query language XML and RDF data can be accessed, processed, combined, and re-published. Though the need for combined access to XML and RDF data has been recognized in previous work (including the W3C’s GRDDL), our approach differs in four main aspects: (1) We provide a single language (rather than two separate or embedded languages), thus minimizing the conceptual overhead of dealing with disparate data formats. (2) Both the declarative (logic-based) and the operational semantics are unified in that they apply for querying XML and RDF in the same way. (3) We show that the resulting query language can be implemented reusing traditional database technology, if desirable. Nevertheless, we also give a unified evaluation approach based on interval labelings of graphs that is at least as fast as existing approaches for tree-shaped XML data, yet provides linear time and space querying also for many RDF graphs. We believe that Web query languages are the right tool for declarative data access in Web applications and that Xcerpt is a significant step towards a more convenient, yet highly efficient data access in a “Web of Data”

    Progressive Query Processing

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Web Queries: From a Web of Data to a Semantic Web?

    Get PDF

    FACHBEITRAG Unleashing XQuery for Data-Independent Programming

    Get PDF
    an SQL equivalent for XML data, but its roots in functional programming make it also a perfect choice for processing almost any kind of structured and semi-structured data. Apart from standard XML processing, however, advanced language features make it hard to efficiently implement the complete language for large data volumes. This work proposes a novel compilation strategy that provides both flexibility and efficiency to unleash XQuery’s potential as data programming language. It combines the simplicity and versatility of a storage-independent data abstraction with the scalability advantages of set-oriented processing. Expensive iterative sections in a query are unrolled to a pipeline of relational-style operators, which is open for optimized join processing, index use, and parallelization. The remaining aspects of the language are processed in a standard fashion, yet can be compiled anytime to more efficient native operations of the actual runtime environment. This hybrid compilation mechanism yields an efficient and highly flexible query engine that is able to drive any computation from simple XML transformation to complex data analysis, even on non-XML data. Experiments with our prototype and stateof-the-art competitors in classic XML query processing and business analytics over relational data attest the generality and efficiency of the design

    Tree Signatures for XML Querying and Navigation

    Full text link

    Semantics and efficient evaluation of partial tree-pattern queries on XML

    Get PDF
    Current applications export and exchange XML data on the web. Usually, XML data are queried using keyword queries or using the standard structured query language XQuery the core of which consists of the navigational query language XPath. In this context, one major challenge is the querying of the data when the structure of the data sources is complex or not fully known to the user. Another challenge is the integration of multiple data sources that export data with structural differences and irregularities. In this dissertation, a query language for XML called Partial Tree-Pattern Query (PTPQ) language is considered. PTPQs generalize and strictly contain Tree-Pattern Queries (TPQs) and can express a broad structural fragment of XPath. Because of their expressive power and flexibility, they are useful for querying XML documents the structure of which is complex or not fully known to the user, and for integrating XML data sources with different structures. The dissertation focuses on three issues. The first one is the design of efficient non-main-memory evaluation methods for PTPQs. The second one is the assignment of semantics to PTPQs so that they return meaningful answers. The third one is the development of techniques for answering TPQs using materialized views. Non-main-memory XML query evaluation can be done in two modes (which also define two evaluation models). In the first mode, data is preprocessed and indexes, called inverted lists, are built for it. In the second mode, data are unindexed and arrives continuously in the form of a stream. Existing algorithms cannot be used directly or indirectly to efficiently compute PTPQs in either mode. Initially, the problem of efficiently evaluating partial path queries in the inverted lists model has been addressed. Partial path queries form a subclass of PTPQs which is not contained in the class of TPQs. Three novel algorithms for evaluating partial path queries including a holistic one have been designed. The analytical and experimental results show that the holistic algorithm outperforms the other two. These results have been extended into holistic and non-holistic approaches for PTPQs in the inverted lists model. The experiments show again the superiority of the holistic approach. The dissertation has also addressed the problem of evaluating PTPQs in the streaming model, and two original efficient streaming algorithms for PTPQs have been designed. Compared to the only known streaming algorithm that supports an extension of TPQs, the experimental results show that the proposed algorithms perform better by orders of magnitude while consuming a much smaller fraction of memory space. An original approach for assigning semantics to PTPQs has also been devised. The novel semantics seamlessly applies to keyword queries and to queries with structural restrictions. In contrast to previous approaches that operate locally on data, the proposed approach operates globally on structural summaries of data to extract tree patterns. Compared to previous approaches, an experimental evaluation shows that our approach has a perfect recall both for XML documents with complete and with incomplete data. It also shows better precision compared to approaches with similar recall. Finally, the dissertation has addressed the problem of answering XML queries using exclusively materialized views. An original approach for materializing views in the context of the inverted lists model has been suggested. Necessary and sufficient conditions have been provided for tree-pattern query answerability in terms of view-to-query homomorphisms. A time and space efficient algorithm was designed for deciding query answerability and a technique for computing queries over view materializations using stack- based holistic algorithms was developed. Further, optimizations were developed which (a) minimize the storage space and avoid redundancy by materializing views as bitmaps, and (b) optimize the evaluation of the queries over the views by applying bitwise operations on view materializations. The experimental results show that the proposed approach obtains largely higher hit rates than previous approaches, speeds up significantly the evaluation of queries without using views, and scales very smoothly in terms of storage space and computational overhead
    corecore