
DOI 10.1007/s00450-009-0058-8

S P E C I A L I S S U E P A P E R

CSRD (2009) 24: 37–49

The relational XQuery puzzle:
a look-back on the pieces found so far

Jens Teubner

Received: 11 November 2008 / Accepted: 29 January 2009 / Published online: 17 March 2009
© Springer-Verlag 2009

Abstract Given the tremendous versatility of relational da-
tabase implementations toward a wide range of database
problems, it seems only natural to consider them as back-
ends for XML data processing. Yet, the assumptions behind
the language XQuery are considerably different to those in
traditional RDBMSs. The underlying data model is a tree,
data and results carry an intrinsic order, queries are de-
scribed using explicit iteration and, after all, problems are
everything else but regular.

Solving the relational XQuery puzzle, therefore, has chal-
lenged a number of research groups over the past years.
The purpose of this article is to summarize and assess some
of the results that have been obtained during this period
to solve the puzzle. Our main focus is on the Pathfin-
der XQuery compiler, a full reference implementation of
a purely relational XQuery processor. As we dissect its com-
ponents, we relate them to other work in the field and also
point to open problems and limitations in the context of re-
lational XQuery processing.

Keywords Relational XQuery · Relational tree encoding ·
XPath · Compilation · Loop lifting · Type matching

CR subject classification H.2.1 · H.2.2 · H.2.3 · H.2.4

Zusammenfassung In Anbetracht der enormen Vielsei-
tigkeit relationaler Datenbankimplementationen scheint es

J. Teubner (�)
Systems Group, ETH Zürich,
Haldeneggsteig 4,
8092 Zürich, Switzerland
e-mail: jens.teubner@inf.ethz.ch

selbstverständlich, diese Systeme auch als Back-Ends für
die Verarbeitung von XML einzusetzen. Jedoch unterschei-
den sich die Annahmen hinter der Anfragesprache XQuery
sehr deutlich von denen in strikt relationalen Systemen. Das
zugrundeliegende Datenmodell ist der Baum, Daten und
Ergebnisse sind inhärent geordnet, Anfragen werden formu-
liert mit Hilfe expliziter Iteration und die zu behandelnden
Probleme sind alles andere als regulär.

Der Lösung dieses relationalen XQuery-Puzzles haben
sich in den vergangenen Jahren zahlreiche Forschergrup-
pen angenommen. Ziel dieses Artikels ist es, einige der
Ergebnisse daraus zusammenzufassen und zu evaluieren.
Unser Schwerpunkt wird der XQuery-Compiler Pathfin-
der sein, eine vollständige Referenzimplementation eines
strikt relationalen XQuery-Prozessors. Während wir ein-
zelne Komponenten von Pathfinder zerlegen, stellen wir sie
in Bezug zu ähnlichen Arbeiten, zeigen dabei aber auch
offene Probleme und Einschränkungen im Bereich relatio-
naler XQuery-Verarbeitung auf.

1 Introduction

The W3 Consortium had not yet even set up its working
group to develop what later would become XQuery [6],
when some authors already suggested the use of relational
database technology to process XML in a scalable and effi-
cient manner [15]. The idea spurred the interest of research
teams around the globe to solve the “relational XQuery
puzzle”.

A number of important pieces of this puzzle have been
discovered since and, after almost a decade, it gets time to
review, see what pieces have been found, and which ones
are still missing. We do so by dissecting the internals of

1 3

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/159145823?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


38 Teubner

Pathfinder [49], a prototype of a purely relational XQuery
processor. As we sketch its components, we relate them to
ideas that complement, or could sometimes replace, the cur-
rent implementation in Pathfinder.

Our goal is to construct a complete, efficient, and correct
implementation of an XQuery engine. Since relational da-
tabase systems are, by far, the most scalable and efficient
data processors currently available, we want to implement
XQuery functionality on relational foundations wherever
possible. During our tour through Pathfinder, we will see
that this in fact can be done for far more language features
than one would intuitively think of. The remainder of this
work emphasizes those features that are particularly relevant
or challenging in relational XQuery processing.

(a) Relational encodings for trees seeded the interest in re-
lational XML processing. The way how XML data is
represented at the relational end obviously affects the
evaluation of XPath. These subjects are on our agenda
for Sects. 2 and 3 (respectively).

(b) To off-load the processing of an entire query to a rela-
tional back-end, data and query need to be mapped into
the relational world. In Sect. 4, we investigate ways to
express the semantics of XQuery in terms of relational
algebra.

(c) Substantial research efforts have been put into relational
query optimization. In Sect. 5, we draw on this work to
optimize XQuery on the relational level.

(d) Building an XQuery processor means to support all fea-
tures of the language. Support for XML Schema types is
one of them that often gets overlooked. We present an
efficient implementation for type matching (the runtime
aspect of XML Schema support) in Sect. 6.

(e) Some functionality in XQuery goes beyond what rela-
tional systems can handle. In Sect. 7, we show how a fair
degree of recursion can be implemented efficiently on
relational hosts.

We summarize our work in Sect. 8, where we also point
at pieces that we think are still missing in order to complete
the full puzzle.

2 XML to tables and back

Obviously, the performance of an RDBMS-based XQuery
processor crucially depends on the representation of its prin-
cipal data type, ordered unranked trees at the relational end.
The work of Florescu and Kossmann [15] (dubbed “edge
mapping”) was an early attempt to establish such a represen-
tation. But although this work became a seed for the whole
topic, it fell short in providing a convincing implementation
for two key requirements in XQuery processing:

(a) The relational equivalent of two XML tree nodes v1 and
v2 must easily be comparable to decide node identity
(v1 isv2) and document order (v1<<v2).1

(b) The encoding must support efficient XPath navigation
along all twelve axes.

Inspired by the idea of constructing a high-performance
XML storage solution based on relational technology, an
abundance of research papers got published, all in the search
for the optimal tree encoding. In retrospect, they all discov-
ered essentially the same two approaches to relational XML
storage: the ones that encode the tree structure using each
node’s rank in a pre- and postorder tree traversal and the
ones that picked up the idea of Dewey ordering (a popular
way of organizing books in a library) and associated a vector
of numbers with each node, printed typically using a dot-
separated notation. A thorough treatment of the former idea
has been published by Grust et al. [24], a popular implemen-
tation of the latter is Ordpath [41].

2.1 pre/post-based tree encodings

XPath accelerator, an encoding proposed in [21], stores the
positions of each node v’s occurrence in a pre- and pos-
torder tree walk, pre(v) and post(v) (respectively), as
attributes in a relational table accel. Additional columns
hold a foreign key reference to the pre value of v’s par-
ent, parent(v), and the semantical value of v (i.e., its XML
node type, tag name, text value, etc.). Column pre in this
encoding provides an immediate and simple implementation
for the document order and node identity tests mentioned
before.

A virtue of this approach to XML storage is that it al-
lows for a concise and machine-friendly characterization for
all twelve XPath axes. For the descendant axis, e.g., we
have

v′ ∈ v/descendant
⇔

pre(v) < pre(v′) ∧ post(v′) < post(v)
. (1)

XPath step navigation, hence, translates into a two-di-
mensional region query. Grust demonstrates how functional-
ity of a commodity database implementation (R- and B-trees
for that matter) is well suited to accelerate this type of
queries [21].

Pre- and postorder ranks are related to each other accord-
ing to the equation

pre(v)−post(v) = level(v)−size(v) (2)

for every node v in the tree (level(v) and size(v) denote
v’s distance from the tree root and its number of descen-
dants, respectively).

1 With an appropriate choice for oid values, requirement (a) could
easily be satisfied with the encoding in [15].

1 3



The relational XQuery puzzle: a look-back on the pieces found so far 39

Fig. 1 XML document tree, annotated with pre(·) and size(·) in-
formation (left/right), and resulting tree encoding

A consequence is that “new” encodings can be obtained
by using subsets of the four properties to store the struc-
tural part of the XML tree.2 One such encoding is illustrated
in Fig. 1, corresponding to the XML document

<a>
<b><c><d/>e</c></b>
<f>g<h><i/><j/></h></f>
</a>

. (3)

This is the encoding used within the Pathfinder system
(column post has been added for illustration purposes,
but is not explicitly maintained by Pathfinder). An inher-
ent problem of pre/post-based numberings is the need to
renumber parts of the document during updates or node con-
struction [12]. This particular variant, however, minimizes
the relabeling overhead since column size is invariant with
respect to subtree copying or moving. Column level need
only be shifted by a constant value in the face of either op-
eration. For technical details regarding Pathfinder’s XML
storage refer to [8].

The TinyTree storage model of Saxon [32] is another ex-
ample of a pre/post-based tree encoding.

2.2 Dewey-based encodings

Dewey-based encodings are the second major avenue the
researchers followed to represent XML document trees in
a tabular format. Each node is assigned a vector of integer
values (typically separated by dots in print). For each node
v, this vector consists of (a) the vector of the parent of v,
extended by (b) the position of v among its siblings (accord-
ing to document order). The resulting encoding is illustrated
in Fig. 2 for our earlier XML example.

Microsoft SQL Server uses Dewey-based Ordpath [41]
labels to encode the XML structure in its “primary XML in-
dex”. Other implementations that use variants of the Dewey
idea are IBM’s DB2 9 pureXML or XTC’s SPLIDs [29].

The strength of the Dewey approach is its update-
friendliness. This is particularly the case of the Ordpath

2 In fact, any pair of properties already suffices to encode the full tree
structure, except the pair of level(v) and size(v).

Fig. 2 Dewey labels for XML instance Eq. 3

implementation that allows for arbitrary tree modifications
without the need to re-label major parts of the document.
The “trick” here is to construct node labels only from odd
numbers during an initial document load and reserve even
numbers in-between as placeholders for future updates.
Such updates are then accommodated by “careting in”, with-
out affecting the remainder of the tree [41].

The price of the update-friendliness is the dependence on
variable-sized node labels (up to 20 bytes in SQL Server)
and an increased CPU overhead to compare two node la-
bels for their relationship in the XML document tree. Also
note that this type of XML storage requires explicit support
from the underlying RDBMS back-end, namely a “Dewey
id” data type.3

Interestingly, both classes of tree encodings have very
similar behavior during typical XPath step processing. Pre-
order ranks and Dewey ids both obey the same XML docu-
ment order. Scans along indices over either representation,
therefore, usually exhibit the same access patterns on sec-
ondary storage.

3 Stepping through XML forests

Any tree encoding would be meaningless if we used the re-
lational database as a mere storage container for XML trees.
In this section, we are going to explore efficient ways to per-
form XPath step evaluation over encoded tree data. In the
spirit of this work, we first consider RDBMS functionality
that is available in off-the-shelf systems. In Sects. 3.2 and
3.3, we then look at potential additions to the DBMS kernel
that could speed-up the processing of XPath.

3.1 XPath evaluation off-the-shelf

The XPath axis characterization over pre/post-based tree
data in Sect. 2.1 lends itself to the use of index structures
with efficient support for range queries. At closer look, the
region to scan typically is a one-dimensional interval only,

3 Interestingly, Ordpath has become a first-class (i.e., user-accessible)
data type in the 2008 release of SQL Server.

1 3



40 Teubner

as we can see if we characterize descendant based on v’s
pre and size values:

v′ ∈ v/descendant
⇔

pre(v) < pre(v′) ≤ pre(v)+size(v)
(4)

or using the Dewey label of v, v1.v2. · · · .vn:

v′ ∈ v/descendant
⇔

v1.v2. · · · .vn < dewey(v′) ≤ v1.v2. · · · .(vn +1)
. (5)

Needless to say that such interval queries are well-supported
by conventional B-tree indices.

Oftentimes, the descendant interval needs to be fil-
tered to answer the actual user query. Examples are node
tests that ask for a certain node type (e.g., descendant::
text()) or such that constrain element tag names (e.g.,
descendant::open_auction). The output of an
XQuery child step, in fact, is a filtered descendant
result, too:

v′ ∈ v/child
⇔

v′ ∈ v/descendant ∧ level(v′) = level(v)+1
.

(6)

These filter criteria all have two important properties in
common:

(a) they have a very low selectivity (there are elements of
only ∼70 different names in XMark [45] data, for in-
stance, at levels smaller than 12),

(b) they are equality predicates.

As such, the entire step can be answered using a single
scan along a concatenated 〈 f,pre〉 B-tree,4 where f is
the column that contains the respective filter criterion. Such
a scan will not encounter any false hits, but directly yield
the step result (in document order). To answer a step along
the child axis, e.g., it is sufficient to scan a 〈level,pre〉
B-tree over Pathfinder’s XML representation.

The performance advantage of this flexibility in XML in-
dexing is significant: in [27], we showed how a relational
XPath processor can out-perform a native XML processor
by orders of magnitude. Note that this advantage comes
at only little overhead. The low-selectivity prefixes lead to
B-tree partitioning [20], which makes the indices particu-
larly susceptible to prefix compression [5].

Readers interested in further techniques to accelerate
XPath performance on commodity RDBMS implementa-
tions are referred to [27] for an in-depth treatment.

4 In the interest of readability, we assume pre/size-encoded data.
Most of our observations hold for Dewey-encoded data, too.

3.2 Tree awareness with staircase join

The indexes sketched in the previous paragraphs strive to
tell the relational query engine as many details as possible
about data distributions in the encoded tree data and guide
the system in navigating the data by standard relational
means. Further performance improvements can be achieved
by extending the system with tailor-made tree navigation al-
gorithms, hence, “inoculating” it with tree awareness.

Such algorithms were first described by Al-Khalifa
et al. [4], who proposed structural joins as a means to eval-
uate XPath. Here we look at staircase join [23], which
encapsulates tree awareness inside a single join algorithm.
At the cost of only a local change to the RDBMS kernel,
staircase join provides all knowledge about the tree ori-
gin of the stored data that is required for high-performance
XPath processing. In addition, staircase join guarantees
a duplicate-free evaluation result in XML document order,
therefore lifts the requirement to explicitly sort any expres-
sion result only to comply with XPath.

Staircase join draws its advantage from three principal
techniques:

(a) Pruning redundant context nodes before processing re-
duces overhead as well as the number of duplicate result
nodes encountered.

(b) Partitioning the document relation and scanning par-
titions strictly sequentially guarantees a duplicate-free,
document-ordered result and yields cache-optimal ac-
cess patterns to secondary storage.

(c) Skipping avoids the scanning of significant amounts of
data by ignoring parts which can early be detected to
not contain any result candidates. The decision to skip is
based on tree knowledge inside the algorithm.

In [37], we used the open-source system PostgreSQL to
demonstrate how staircase join could be incorporated into
any relational back-end. The most significant effect is that
the time necessary to evaluate an XPath step now only de-
pends on the size of the step’s result. Contrast to the off-the-
shelf system, the modified system was unaffected by the size
of the queried document.

Pathfinder’s distribution version MonetDB/XQuery ships
with a MonetDB extension module that contains an imple-
mentation of staircase join. In addition, a loop-lifted variant
is capable of evaluating a step over multiple context sets in
parallel [7].

3.3 Holistic XPath evaluation

Our discussion so far only considered evaluation strategies
that break path expressions into individual steps for evalua-

1 3



The relational XQuery puzzle: a look-back on the pieces found so far 41

tion one after another. Bruno et al. [10] proposed to evalu-
ate XPath expressions in a more holistic fashion that looks
at an entire path at once. The two algorithms PathStack
and TwigStack assume a tree encoding that makes child
and descendant relationships between nodes easily de-
cidable. Any of the encodings we discussed earlier would
do.

To evaluate a straight k-step path, PathStack reads k in-
dividual tuple streams Ti , each providing a list of nodes in
document order. Stream Ti is typically pre-filtered to yield
only those nodes that satisfy, e.g., the name test for step
i in the user query. (Such a stream could be a concate-
nated B-tree as described in Sect. 3.1.) While reading the
k streams, TwigStack maintains a combination of k stacks
that hold (partial) query results in a very compact way. As
soon as a match is found, PathStack emits a k-tuple of nodes
(corresponding to a “binding” for each of the k steps in the
query).

TwigStack extends this idea to the evaluation of twig-
shaped paths. The figure on the right, e.g., illustrates the
twig that corresponds to the path

/descendant::a/child::b
[descendant::c/child::d]
/child::e

Given such a twig pattern, TwigStack runs a variant
of PathStack for every root-to-leaf path in the twig, then
merges their result tuples to compute the overall result.
Rather than running a set of PathStack operators indepen-
dently, TwigStack synchronizes the processing of all root-
to-leaf paths, thereby minimizing the production of partial
results that cannot qualify for the overall operator output
(this is very much like what the classical merge join algo-
rithm does).

Holistic (twig-oriented) path evaluation algorithms can
play their trump in the evaluation of longer, pattern-type
queries, where a single operator of moderate complexity
may excel over many simple single-step joins. The crux
is that the twig model is considerably off the syntax and
semantics of the XPath language. Michiels et al. [30, 39]
describe the approach taken in Galax [16] to detect opportu-
nities for twig processing.

It is worth noting that step-by-step evaluation is mostly
a mental model for the evaluation strategies we described
earlier. In a pipelined execution engine, the k joins that eval-
uate a k-step path all run in parallel, which effects in an
actual data access pattern that very much resembles what
happens in PathStack.

Twig join algorithms are in real-world use, e.g., in DB2’s
XML subsystem pureXML [31].

4 From XPath to XQuery

Equipped with efficient evaluation mechanisms for the
XQuery sub-language XPath, the next step to take is the
construction of a full XQuery processor based on purely
relational foundations. Unfortunately, these foundations as-
sume a data model that is significantly different from the
one we need to support XQuery. The data model of XQuery,
ordered sequences of items, faces unordered tables of tuples
on the relational end, explicit iteration faces set-oriented
processing.

Two approaches are conceivable to minimize this gap:

(a) force the physical processing order in the relational en-
gine to be aligned with the order semantics in XQuery
or

(b) lift order and iteration to the logical level by making
both concepts explicit using column values.

We first take a look into Microsoft SQL Server, which fol-
lows route (a) to implement the XQuery semantics.

4.1 XQuery compilation in SQL server

The relational treatment of arbitrary XQuery expressions
mostly hinges on an appropriate translation of the FLWOR
construct, the XQuery way to inspect and generate the par-
ticular order of an XQuery item sequence. To implement
the semantics of FLWOR expressions, SQL Server relies on
its existing APPLY operator, available, e.g., in terms of the
CROSS APPLY syntax at the surface level in Microsoft’s
SQL dialect Transact-SQL.

The semantics of APPLY is to read its left-hand input
relation R and run a parameterized execution of the right
hand-side expression S($x) for each tuple in R. All exe-
cution results are then collected to obtain the output of the
overall expression RAPPLY$x S [17]:

RAPPLY$x S =
⋃

r∈R

({r}× S [{r}/$x]) . (7)

Provided that the system preserves the physical order
of both arguments, APPLY is a direct implementation of
XQuery’s for-return iteration primitive. The following
compilation rule illustrates how SQL Server uses APPLY
to generate the algebraic equivalence of an XQuery for
clause [42] (read Z⇒ as “compiles to”):

e1 Z⇒ q1 e2 Z⇒ q2

for $x in e1 return e2 Z⇒ q1 APPLY$x q2
. (8)

Before actual execution, SQL Server will massage the re-
sulting APPLY expression using its existing rewrite mech-
anisms (which were originally targeted to optimize SQL
sub-queries and aggregates [17]).

1 3



42 Teubner

The use of APPLY to implement XQuery’s iteration
primitive nicely exploits existing machinery in the query
engine of SQL Server. The simplicity of this approach, how-
ever, is also its Achilles’ heel. The dependence on a given
execution order may prevent interesting opportunities for
order-related optimizations, which in Sect. 5.1.3 we will
find to be very attractive in the context of XQuery.

4.2 Loop lifting: order made explicit in logical plans

As discussed in [17], operator APPLY does not add ex-
pressive power to standard functionality available in any
RDBMS (textbook-style relational algebra plus grouping
operators as required for SQL). Therefore, it is possible to
compile XQuery FLWOR expressions into standard SQL
code. This route is taken by the Pathfinder XQuery com-
piler which translates arbitrary XQuery expressions into
a textbook-style relational algebra, enriched only with few
operators to exploit available functionality on particular
RDBMS back-ends [22, 25]. This algebra can then be ex-
ternalized for consumption by numerous back-ends, includ-
ing MonetDB [9], kdb+ [46], and SQL:1999-compatible
systems.

Table 1 illustrates the set of operators emitted by the
Pathfinder XQuery compiler. In this table, operators ε, τ ,
doca:b, a:b, and a:ax::nt(b) are syntactic short-hands
for micro-plans composed of remaining operators (e.g.,

Table 1 Relational algebra used by the Pathfinder XQuery compiler
(agg ∈ {count,sum,max, . . . })
π...,b:a,... column projection, renaming (a into b)

σa selection (select rows with a= true)

�a=b,× equi-join, Cartesian product

∪· , \ disjoint union (append), difference

δ duplicate row elimination

�a:〈b1,...,bn〉‖c row numbering (grouped by c)

�a:(b1,b2) arithmetic/comparison operator ∗
a:ax::nt(b) XPath step operator (a= b/ax::nt)

a:b XQuery atomization (a= fn:data (b))

doca:b XML document access (a= fn:doc (b))

ε, τ element/text node construction

agga‖b aggregation, grouped by b

Fig. 3 Execution trace for
loop-lifted execution of
Query Eq. 9. Using
textbook-style algebra operators,
the loop-lifted sequence
representation is maintained for
all subexpressions (illustrated for
subexpressions e1 through e3)

step navigation is a join with the pre/size document
table). Operator �a:〈b1,...,bn 〉‖c is the Pathfinder-internal rep-
resentation of the SQL:1999 construct ROW_NUMBER()
OVER (PARTITION BY c ORDER BY b1, . . .,bn)
AS a.

To maintain compliance with the XQuery semantics over
an unordered data model, Pathfinder makes sequence and
iteration order explicit in its data representation. The evalu-
ation result of any XQuery subexpression e is represented as
shown here:

In a single table, this loop-lifted sequence encoding holds
the value of e for all iterations e occurs in. A tuple 〈i, p, vi,p〉
in this encoding indicates that, in the i-th iteration, the value
of e has item vi,p at position p.

Pathfinder’s compilation procedure makes sure that
iter- and pos-columns are properly maintained during
query execution and that each subexpression result is ob-
tained in its loop-lifted representation. The relational eval-
uation trace shown in Fig. 3 illustrates this for the query

for $x in (3,4,5,6) return
if ($x mod 2 eq 0)︸ ︷︷ ︸

e1

then "even"︸ ︷︷ ︸
e2

else "odd"︸ ︷︷ ︸
e3

.

(9)

We refer to [22, 25] for a detailed description of Pathfinder’s
compilation procedure and the resulting query plans.

Observe that the resulting plans have a strictly set-
oriented semantics, a property inherited from the definition
of their individual operators. Thus, the system is free to eval-
uate queries like Eq. 9 in any order it sees fit – or even using
a parallel mode of execution.

1 3



The relational XQuery puzzle: a look-back on the pieces found so far 43

5 Relational XQuery optimization

We have just seen how arbitrary compositions of XQuery
expressions can be turned into purely relational evaluation
plans, using either syntactic sugar available in SQL Server
(the APPLY operator), or the loop lifting technique that
maps XQuery directly into relational algebra. Neither
technique, however, can hide the full compositionality of
XQuery and generated plans take a shape that is very differ-
ent to the π–σ–� pattern preferred by typical RDBMS op-
timizers, as shown in Fig. 4 for the plan obtained by a loop-
lifting compiler for Query Q8 from the XMark benchmark
set. This section illustrates how Pathfinder deals with plans
of such shape and how the application of techniques from
the relational domain can lead to new insights into XQuery
problems.

5.1 Rewriting and join graph isolation

The strength of relational database systems certainly is
their ability to process joins in a highly efficient man-
ner. The best order in which joins should be applied is
determined by sophisticated join optimization algorithms.
To perform their work, however, these algorithms need to
have a clear view on all involved join operators. Unfortu-
nately, in the case of relational XQuery evaluation plans,
this view is obstructed by the stacked plan shape shown

Fig. 4 Typical plan shape

in Fig. 4. Pathfinder’s optimizer, therefore, tries to isolate
join graphs, then hand them over to a traditional join enu-
meration algorithm [28].

5.1.1 Peephole-style optimization

Toward this end, Pathfinder employs its peephole-style plan
optimizer, which both, (a) is flexible to cover a wide range
of optimizations and plan analyses and (b) guarantees scala-
bility with plan sizes, since operators are looked at only one
at a time.5

Optimization is performed in two distinct phases:

1. An inference phase traverses the entire plan tree once.
For each operator �, the plan analyzer collects any rel-
evant information about the vicinity of � and stores this
information in an annotation to �.

2. This gives the subsequent rewrite phase enough informa-
tion to decide on plan rewrites by looking at the annota-
tions to � only.

Both phases are driven by extensible sets of rules. Fig-
ure 5, e.g., exemplifies some of the inference rules that infer
annotation key (�) for operators π, �, and � (key (�) lists
key columns in the output of �) and annotation const (�)

for π and σ (const (�) ⊇ {c=v} indicates that column c in
� is constant and has value v). Both annotations are inferred
bottom-up (but others may also be derived top-down). In
the following, we sometimes assume the presence of an an-
notation cols(�) that holds schema information about �’s
output.

5.1.2 Join graph isolation

The annotated information is the basis for subsequent
rewrite rules. Figure 6 illustrates some of the plan modifica-
tions that lead to an isolation of join graphs. Their joint goal
is to “pull” obstructing plan operators (such as blocking �

or δ operators) toward the plan root, leaving join graphs be-
hind near the plan leaves. Rules 1 and 3, for instance, push
down equi-joins and pull out row numbering operators, re-
spectively. Rule 2 avoids duplicate elimination if the input
contains a key column, while Rules 4 and 5 simplify or elim-
inate instances of row numbering. Refer to [28] for a more
extensive documentation of Pathfinder’s plan rewrite rule
set.

With join graphs isolated, a traditional join optimizer
(e.g., in an SQL:1999 back-end to Pathfinder) is now free to
move around joins and evaluate them in any order it sees fit.
Joins in relational XQuery evaluation plans may come from
different sources:

5 Loop-lifted compilation typically leads to plan sizes of a hundred
and more operators prior to optimization.

1 3



44 Teubner

Fig. 5 Peephole-style inference rules to obtain operator annotations key (·) (key columns) and const (·) (columns holding a constant value)

(a) XPath location steps translate into joins in the relational
plan,

(b) iteration in XQuery (the for clause) is compiled into
a join much like the dependent join in SQL Server
(see Sect. 4.1), and

(c) value-based joins in the input query end up as (scattered)
σ-× pairs in loop-lifted plans. XQuery lacks an explicit
join construct, but value-based joins are common and
can be expressed in different syntactical ways.

The effect of join ordering on sources (a) and (c) is particu-
larly interesting. Reordering joins that evaluate XPath loca-
tion steps effectively alters the direction of path navigation.
A traditional join optimizer, therefore, solves XPath opti-
mization problems that challenged researchers in the past,
such as rewriting into forward-only paths [40] or deciding
top-down vs. bottom-up path evaluation [38].

Detecting instances of source (c) is a known hard prob-
lem in XQuery processing. The feature richness of XQuery
allows value-based joins to be expressed in a large variety of
ways, making them hard to detect based on syntax analyses.
Pathfinder’s join detection is based on the rewrite princi-
ples we mentioned before. In [8], we found it to be the
only XQuery processor capable of detecting all join scenar-
ios in the XMark benchmark set [45]. Moreover, with join
graph isolation, Pathfinder can optimize queries across all
join sources (a)–(c).

5.1.3 Omnipresence and lack of order in XQuery

Another rewrite strategy implemented in the optimizer of
Pathfinder is the pushdown of projections. A peephole-
style data flow analysis discovers table columns produced

Fig. 6 Simplified rewrite rules to implement join graph isolation in
Pathfinder [28]. Rules move obstructing operators toward the plan root
to clear the view for join planning algorithms

but never consumed by any upstream plan operator. Such
columns will be discarded early in the plan DAG or, most
importantly, their generation be avoided if possible.

Remember that, in loop-lifted XQuery plans, table
columns may contain other information than only user data.
Columns iter and pos are Pathfinder’s device to encode
order in otherwise set-oriented evaluation plans. Though
technically this releases the back-end from any prescribed
tuple order, the maintenance of both columns may ulti-
mately still impose a specific row order. This constraint gets
lifted, once columns iter or pos can successfully be pro-
jected out from the plan. The system is then free to do its
task in any physical order.

It turns out that a column projection of this kind is ap-
plicable more often than one might think. Existential se-
mantics, aggregation, explicit requests for sorted output
(order by clause), or explicit user-requested order relax-
ation (fn:unordered(·), unordered{·}) are all sit-
uations where projection pushdown instantly leads to un-
ordered processing. On realistic workloads, this may lead to
orders of magnitude in performance improvement [26].

5.2 Dependable cardinality forecasts for XQuery

The inference of a good physical plan (e.g., the choice of the
proper join order for the join graphs in Sect. 5.1.2) is only
possible if the system can make accurate predictions on the
cost of potential plan alternatives. These predictions, in turn,
usually depend on cardinality estimates for (intermediate)
XQuery expression results.

It is fairly well understood how such estimates can be
computed for basic XPath expressions. Data guides [18],
e.g., succinctly summarize an XML document tree by re-
ducing multiple nodes with an identical root-to-leaf path
to a single instance in the guide. Annotated with sta-
tistical information, such a summary provides a high
estimation accuracy for common (and order-insensitive)
paths with only small space overhead. Follow-up work
has improved on the ideas of data guides by reducing
the memory footprint of collected statistics [1] or pro-
viding support for order-sensitive axes [35] or branching
paths [44].

The syntactic diversity of XQuery, combined with
a blurred distinction between schema and data, makes it
hard to lift such results to the level of all XQuery. This knot

1 3



The relational XQuery puzzle: a look-back on the pieces found so far 45

Fig. 7 System R-style cardinality estimation rules [48]

can be cut by using relational algebra as a framework that
links available XPath estimation work with traditional tech-
niques, such as data histograms or the seminal System R
estimator. The concise semantics of algebraic operators
thereby serves as a common ground for meaningful reason-
ing over cardinalities.

The query analyzer in [48] is an implementation of this
idea that was shown to provide high-quality estimates for
a wide range of XQuery workloads. In line with Pathfinder’s
peephole-style plan assessment, it consumes and produces
plan annotations to ultimately yield annotation |�|, the pro-
jected cardinality for operator�.

Figure 7 illustrates how basic estimation rules from
System R fit into this inference mechanism. The cardi-
nality of disjoint union ∪· or Cartesian product × oper-
ators can be determined by adding or multiplying both
input cardinalities (Rules Card-1 and Card-2). A his-
togram can be used to judge the selectivity of a selection
predicate if available (Rule Card-4). If not, Rule Card-3
applies the System R 10% heuristic to obtain the output
cardinality.

5.2.1 Data flow analysis and value domains

The stacked shape of loop-lifted XQuery evaluation plans is
reflected in the rule set of [48], too. An annotation dom (�)

speculates over the size of the runtime value domain of each
column c (i.e., the number of distinct values in c) and rea-
sons over known inclusion relationships between domains.
This implements data flow analysis just to the amount ne-
cessary for cardinality estimation.

Domain sizes and table cardinalities often interact. If op-
erator � is used, e.g., to attach a new key column to the
output of q, the new column is going to range exactly over
values 1, . . . , |q| (‖α‖ indicates the size of domain α):

dom
(
�a:〈b1,...,bn 〉(q)

) ⊇ dom (q)∪{
aα ∧‖α‖ =! |q|} .

Likewise, the number of groups in an aggregate function is
determined by the domain size of the grouping criterion c:

bβ ∈ dom (q)∣∣agga‖b(q)
∣∣ = ‖β‖ (Card-5) .

See [48] for details on peephole-style data flow tracking.

5.2.2 Interfacing with XPath estimation

Relational XQuery cardinality estimation does not imply
any particular technique to estimate XPath subexpressions.
Rather, a generic interface allows plugging in any of the
published techniques for XPath estimation.

To this end, Pathfinder tracks the application of opera-
tors (XPath step navigation) and constructs navigation traces
very much like the projection paths in the Galax XQuery
processor [36]. Each node-valued column c in the loop-
lifted plan is annotated with the navigation path that has
been followed to obtain the nodes in c:

b⇒p ∈ path (q)

path
(

a:ax::nt(b)(q)
) ⊇ a⇒p/ax::nt ∪ path (q)

.

A set of related rules ensures that the information is properly
propagated through the operator graph.

Tracked path information is then used to invoke the
XPath estimation subsystem. Assuming a mechanism to
predict the fanout of a location step ax::nt that originates
in a node set reachable via the path p,

Prax::nt (p) := fn:count(p/ax::nt)

fn:count(p)
,

the cardinality of the step operator can be estimated ac-
cording to

b⇒p ∈ path (q)∣∣
a:ax::nt(b)(q)

∣∣ = |q| ·Prax::nt (p)
(Card-6) .

Further examples are detailed in [48].
The attractiveness of using relational query plans to es-

timate XQuery cardinalities is its robustness with respect
to the syntactic diversity of XQuery and potential mis-
estimations for intermediate expressions. An extensive ex-
perimental assessment in [48] demonstrated that a relational
XQuery estimator can cope with a wide range of query
workloads.

6 Scalable XQuery type matching

Unlike most existing programming or query languages,
XQuery blurs the distinction between data and its type. Type
names can be used, e.g., as the node test in XPath loca-
tion steps. Likewise, the type of any XQuery item can be
inspected at runtime by means of the typeswitch or
instance of constructs. In this section, we look into re-
lational support for such functionality.

The approach taken in [47] is inspired by the XQuery
Data Model specification [14]. In XQuery, every item x is
defined to be a pair, consisting of a value v and its type an-
notation t (a reference to a named XML Schema type):

x = vof type t .

1 3



46 Teubner

Provided a suitable representation for named types, this
definition can directly be used to enrich a relational se-
quence encoding with dynamic type information: each in-
stance of an item column becomes a pair of value and
type. A modified loop-lifted sequence encoding, e.g. as-
sumes the availability of surrogates τt to represent the type
annotation t:

6.1 Sequence type matching

The common ground for all XQuery operations on runtime
type information is the type matching process defined in
the XQuery Formal Semantics [13]. In a nutshell, a single-
ton XQuery item x = vof type t ′ matches a named type t
if the type annotation of x, t ′, references a named type
definition that has been derived from t (by extension or re-
striction). A sequence x = (x1, . . . , xl) matches a sequence
type t� if all singletons in x match t and the length l of x is
compatible with the occurrence indicator�.

Implementing a singleton type match, therefore, implies
a lookup in the derives from hierarchy. One insight in [47]
is that derives from describes a proper tree structure. We al-
ready saw how trees can efficiently be handled by relational
means: preorder ranks in a pre/size-encoded type hierar-
chy or Dewey ids for type relationships would both make
for appropriate implementations of τt .6 Figure 8 illustrates a
pre/size encoding, termed type ranks in [47], for a sub-
set of the predefined XDM type hierarchy, enriched with
user-defined simple (Price and Currency) and complex
types (AuctionItem and CarAuctionItem).

Assuming a pre/size-encoded type hierarchy, predi-
cate matches can then by characterized as

x = vof type t ′
pre(t) ≤ pre(t ′) ≤ pre(t)+size(t)

x matches t
. (10)

Compare this to the pre/size-based characterization of
the XPath descendant axis in Sect. 3.1 and note that, due
to syntactical constraints in XQuery, type t (i.e., the two
interval ends) is always known at query compilation time.
Only t ′ is runtime-dependent in this judgment.

The use of type ranks avoids the runtime recursion
required by existing XQuery processors to resolve the
derives from property (e.g., [16, 32]).

6 Note that we are encoding trees of types here, not XML document
trees

Fig. 8 Sample type hierarchy, annotated with pre(·) (left) and
size(·) (right) numbers

6.2 Type aggregation

Lifted to sequence-valued operands, Judgment 10 reads

∀(xi = vi of type ti) :
pre(t) ≤ pre(ti) ≤ pre(t)+size(t)

length of x compatible with �

x matches t�
. (11)

Informally, we test the type annotation ti for each item xi in
x against the interval defined by the pre and size values
of t.

There is a different (and more database-friendly) way to
obtain the same result. Instead of separately testing each
pre(ti) against the given interval boundaries, we could as
well determine the minimum and maximum type ranks in x
first, then do the interval test only once (type aggregation):

min(xi =viof type ti )∈x (pre(ti))≥pre(t)
max(xi =viof type ti )∈x (pre(ti))≤pre(t)+size(t)

length of x compatible with �

x matches t�
. (12)

Needless to say that this rewrite enables the use of advanced
algorithms for aggregation on modern RDBMS back-ends.

As detailed in [47], all remaining type-related tasks can
be turned into similar aggregation problems, including the
check for the occurrence indicator � and support for XML
Schema substitution groups.

6.3 Loop-lifted type matching

The aggregation semantics is easily expressible in the con-
text of a loop-lifted XQuery compiler. Figure 9 shows the
(simplified) translation rule for the XQuery instance of
operator. Observe how this rule emits a four-column loop-
lifted output representation to ensure compositionality with

1 3



The relational XQuery puzzle: a look-back on the pieces found so far 47

Fig. 9 Translation of instance of for atomic types in a loop-lifting compiler (for details refer to [47])

arbitrary XQuery expressions. The output of an instance
of expression is a Boolean value. Column type, therefore,
is populated with the preorder rank of the xs:boolean
type, a constant determined at query compilation time.

In experiments on top of an SQL database back-end we
found that, besides providing a slim and efficient imple-
mentation for derives from, type ranks integrate particularly
well with existing strategies for relational query processing.
A relational database will immediately take advantage of,
e.g., a type column that happens to be physically sorted.
Further, for XPath node tests on type and tag name, the sys-
tem may now, depending on estimated costs, freely choose
among indexes on types, tag names, or even on a combina-
tion of both.

7 Hitting the limits

It is well-known that XQuery is a Turing-complete lan-
guage, which relational algebra is not [33]. No encoding or
compilation strategy can get around this limit in expressive
power (see, e.g., [19, 34] for detailed theoretical analyses of
the complexity of XPath/XQuery).

The source of Turing-completeness in XQuery is pri-
marily the allowance of arbitrary recursion in user-defined
functions.7 At the same time, recursion is a highly desirable
feature in a query language that operates over an inherently
recursive data structures such as XML trees. And while the
general problem is proven hard, limited types of recursion
may still be tractable on relational back-ends, yet be useful
in actual applications.

An extension recently built into Pathfinder [2] aims to ex-
plore one particular flavor of recursion, the support for tran-
sitive closure. Its evaluation has been studied extensively in
the context of deductive databases, and any decent SQL pro-
cessor readily ships with support for transitive closure.

To relieve the query compiler from detecting transi-
tive closure operations in function declarations in the input
query, Pathfinder requires users to make their intentions ex-

7 It is not surprising that several commercial XQuery implementa-
tions built around relational technology do not support user-defined
functions.

Fig. 10 Potential implementations for the with · · · construct. Algo-
rithm Naı̈ve is correct for all ebody, but less efficient than Delta

plicit using the

with $v seeded by eseed recurse ebody($v)

construct in a Pathfinder-specific extension to XQuery.
(Based on an initial binding of $v, expression ebody is recur-
sively evaluated until a fixed point is reached.)

While the semantics of the with · · · construct can di-
rectly be translated into a back-end implementation, the
resulting Algorithm Naı̈ve (Fig. 10a) may often not be the
most efficient strategy to compute the fixed point. Its coun-
terpart Delta is the folklore variant in deductive databases
and avoids the repeated re-computation of the results ob-
tained in early loop iterations.

In XQuery, unfortunately, Algorithm Delta turns out to
be not correct for all instances of ebody and, therefore, cannot
serve as a general-purpose implementation for with · · · .
But if those instances that satisfy a distributivity property
can be detected reliably, an optimizer can trade Naı̈ve for
Delta. Based on a relational representation for ebody, the dis-
tributivity property can be proven by well-defined algebraic
plan rewrites. In a nutshell, Pathfinder tries to push a union
operator ∪· through the plan that implements ebody. If this
can be done successfully, Algorithm Naı̈ve is replaced by
Delta [3].

The application of Delta can lead to significant per-
formance advantages for fixed-point computations (or may
enable their use on relational back-ends at all). Pathfind-
er’s current implementation still depends on user hints in
terms of the with · · · clause. This is certainly one situation
where XQuery compilers could benefit from existing work
on compilers for general-purpose programming languages.

1 3



48 Teubner

The work in [43] notes that a common query pattern
in XQuery is structural recursion along the XML docu-
ment tree. The authors propose an analysis based on static
type information to unfold finite instances of recursive in-
vocations. The technique could be a way to extend the
class of queries that can be handled in a purely relational
XQuery setup. It does not bridge the expressivity gap per se,
however.

8 Conclusions

This work gave a (biased) review of existing techniques
to turn relational database back-ends into processors for
XQuery. We have based our tour on the paths chosen in
Pathfinder, an open-source implementation of a purely rela-
tional XQuery compiler.

Our review demonstrates that the relational approach to
XQuery has come a long way since its first steps roughly
a decade ago. Pathfinder is able to support a large subset of
the XQuery specification at unprecedented speeds and with
scalability far into the gigabyte range. Similar approaches
have already found their way into commodity database soft-
ware, such as the XQuery implementation in Microsoft SQL
Server.

Yet, to solve the full puzzle, not all of the neces-
sary pieces have been found so far. We feel that the
most interesting question in relational XQuery process-
ing is the role of pattern-based query evaluation in the
XQuery picture (see Sect. 3.3). Some systems have come
up with very efficient algorithms to answer queries for-
mulated in a pattern style (and we have sketched one
prominent representative). Unfortunately, due to signifi-
cant semantical differences between XPath and pattern
notations, these algorithms still remain largely inaccessi-
ble for compliant XQuery evaluation. The work in [30,
39] does a significant step toward closing that gap. The
full piece, however, seems still missing to fit into the
puzzle.

Section 7 hints at another aspect of XQuery process-
ing that has not yet been fully explored. In many senses,
XQuery is at the verge to a general-purpose programming
language, as one can also tell from recent developments
in the W3C Working Group [11]. Pathfinder and other
XQuery processors already picked up a number of tech-
niques originally designed for programming language com-
pilers. But we feel that the general application of such
techniques to query processing problems is still not suffi-
ciently understood. Research on recent scripting additions
to XQuery may bring up interesting synergies contributed
from both research fields, databases and programming lan-
guages/compiler construction (and recursion is only one
aspect).

References

1. Aboulnaga A, Alameldeen AR, Naughton JF (2001) Estimating
the Selectivity of XML Path Expressions for Internet Scale Ap-
plications. In: Proc. of the 27th Int’l Conference on Very Large
Databases (VLDB), Rome, Italy, pp 591–600

2. Afanasiev L, Grust T, Marx M, Rittinger J, Teubner J (2008) An
Inflationary Fixed Point in XQuery. In: Proc. of the 24th Int’l
Conference on Data Engineering (ICDE), Cancún, Mexico

3. Afanasiev L, Grust T, Marx M, Rittinger J, Teubner J (2009) Re-
cursion in XQuery: Put Your Distributivity Safety Belt On. In:
Proc. 12th Int’l Conference on Extending Database Technology
(EDBT), Saint Petersburg, Russia

4. Al-Khalifa S, Jagadish H, Koudas N, Patel JM, Srivastava D,
Wu Y (2002) Structural Joins: A Primitive for Efficient XML
Query Pattern Matching. In: Proc. of the 23rd Int’l Conference on
Data Engineering (ICDE), San Jose, CA, USA, pp 141–152

5. Bayer R, Unterauer K (1977) Prefix B-Trees. ACM Transactions
on Database Systems (TODS) 2(1):11–26

6. Boag S, Chamberlin D, Fernández MF, Florescu D, Robie J,
Siméon J (2007) XQuery 1.0: An XML Query Language. World
Wide Web Consortium Recommendation,
http://www.w3.org/TR/xquery/. Accessed 24 Feb 2009

7. Boncz P, Grust T, van Keulen M, Manegold S, Rittinger J, Teub-
ner J (2005) Loop-Lifted Staircase Join: From XPath to XQuery.
Tech. Rep. INS-E0510, CWI, Amsterdam

8. Boncz P, Grust T, van Keulen M, Manegold S, Rittinger J,
Teubner J (2006) MonetDB/XQuery: A Fast XQuery Processor
Powered by a Relational Engine. In: Proc. of the 2006 ACM SIG-
MOD Int’l Conference on Management of Data, Chicago, IL,
USA

9. Boncz PA (2002) Monet: A Next-Generation DBMS Kernel for
Query-Intensive Applications. PhD thesis, Universiteit van Ams-
terdam

10. Bruno N, Koudas N, Srivastava D (2002) Holistic Twig Joins:
Optimal XML Pattern Matching. In: Proc. of the 2002 ACM SIG-
MOD Int’l Conference on Management of Data, Madison, WI,
USA, pp 310–321

11. Chamberlin D, Engovato D, Florescu D, Ghelli G, Melton J,
Siméon J (2008) XQuery Scripting Extension 1.0. W3C Work-
ing Draft, http://www.w3.org/TR/xquery-sx-10/. Accessed 24 Feb
2009

12. Cohen E, Kaplan H, Milo T (2002) Labeling Dynamic XML
Trees. In: Proc. of the 21st ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems (PODS), Madi-
son, WI, USA, pp 271–281

13. Draper D, Fankhauser P, Fernández M, Malhotra A, Rose K,
Rys M, Siméon J, Wadler P (2007) XQuery 1.0 and XPath 2.0
Formal Semantics. W3C Recommendation,
http://www.w3.org/TR/xquery-semantics/. Accessed 24 Feb 2009

14. Fernández MF, Malhotra A, Marsh J, Nagy M, Walsh N (2007)
XQuery 1.0 and XPath 2.0 Data Model (XDM). W3C Recom-
mendation, http://www.w3.org/TR/xpath-datamodel/. Accessed
24 Feb 2009

15. Florescu D, Kossmann D (1999) Storing and Querying XML
Data Using an RDBMS. IEEE Data Engineering Bulletin
22(3):27–34

16. Galax (2008) Galax: An Implementation of XQuery.
http://www.galaxquery.org/. Accessed 24 Feb 2009

17. Galindo-Legaria CA, Joshi MM (2001) Orthogonal Optimization
of Subqueries and Aggregation. In: Proc. of the 2001 ACM SIG-
MOD Int’l Conference on Management of Data, Santa Barbara,
CA, USA, pp 571–581

18. Goldman R, Widom J (1997) DataGuides: Enabling Query For-
mulation and Optimization. In: Proc. of the 23rd Int’l Conference
on Very Large Databases (VLDB), Athens, Greece, pp 436–445

1 3

http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xquery-sx-10/
http://www.w3.org/TR/xquery-semantics/
http://www.w3.org/TR/xpath-datamodel/
http://www.galaxquery.org/


The relational XQuery puzzle: a look-back on the pieces found so far 49

19. Gottlob G, Koch C, Pichler R (2003) The Complexity of XPath
Query Evaluation. In: Proc. of the 22nd Symposium on Principles
of Database Systems (PODS), San Diego, CA, USA, pp 179–190

20. Graefe G (2003) Sorting and Indexing with Partitioned B-Trees.
In: Proc. of the 1st Int’l Conference on Innovative Data Systems
Research, Asilomar, CA, USA

21. Grust T (2002) Accelerating XPath Location Steps. In: Proc. of
the 2002 ACM SIGMOD Int’l Conference on Management of
Data, Madison, WI, USA, pp 109–120

22. Grust T, Teubner J (2004) Relational Algebra: Mother Tongue –
XQuery: Fluent. In: Proc. of the 1st Twente Data Management
Workshop (TDM), Enschede, The Netherlands, pp 7–14

23. Grust T, van Keulen M, Teubner J (2003) Staircase Join: Teach
a Relational DBMS to Watch its (Axis) Steps. In: Proc. of the
29th Int’l Conference on Very Large Databases (VLDB), Berlin,
Germany, pp 524–535

24. Grust T, van Keulen M, Teubner J (2004a) Accelerating XPath
evaluation in any RDBMS. ACM Transactions on Database Sys-
tems (TODS) 29(1):91–131

25. Grust T, Sakr S, Teubner J (2004b) XQuery on SQL Hosts.
In: Proc. of the 30th Int’l Conference on Very Large Databases
(VLDB), Toronto, Canada, pp 252–263

26. Grust T, Rittinger J, Teubner J (2007a) eXrQuy: Order Indiffer-
ence in XQuery. In: Proc. of the 23rd Int’l Conference on Data
Engineering (ICDE), Istanbul, Turkey

27. Grust T, Rittinger J, Teubner J (2007b) Why Off-The-Shelf
RDBMSs are Better at XPath Than You Might Expect. In: Proc.
of the 2007 ACM SIGMOD Int’l Conference on Management of
Data, Beijing, China

28. Grust T, Mayr M, Rittinger J (2009) XQuery Join Graph Iso-
lation. In: Proc. of the 25th International Conference on Data
Engineering (ICDE), Shanghai, China

29. Härder T, Haustein M, Mathis C, Wagner M (2007) Node Label-
ing Schemes for Dynamic XML Documents Reconsidered. Data
and Knowledge Engineering 6(1):126–149

30. Hidders J, Michiels P, Siméon J, Vercammen R (2007) How to
Recognise Different Kinds of Tree Patterns From Quite a Long
Way Away. In: Proc. of the 2007 Workshop on Programming Lan-
guage Technologies for XML (PLAN-X), Nice, France

31. Josifovski V, Fontoura M, Barta A (2005) Querying XML
Streams. The VLDB Journal 14(2):197–210

32. Kay M (2008) The Saxon XSLT and XQuery Processor.
http://saxon.sf.net/. Accessed 24 Feb 2009

33. Kepser S (2004) A Simple Proof for the Turing-Completeness of
XSLT and XQuery. In: Proc. of the Extreme Markup Languages
2004, Montréal, Quebec, Canada

34. Koch C (2005) On the Complexity of Nonrecursive XQuery and
Functional Query Languages on Complex Values. In: Proc. of
the 24th Symposium on Principles of Database Systems (PODS),
Baltimore, MD, USA, pp 84–97

35. Li H, Lee ML, Hsu W, Cong G (2006) An Estimation System
for XPath Expressions. In: Proc. of the 22nd Int’l Conference on
Data Engineering (ICDE), Atlanta, GA, USA

36. Marian A, Siméon J (2003) Projecting XML Documents. In:
Proc. of the 29th Int’l Conference on Very Large Databases
(VLDB), Berlin, Germany, pp 213–224

37. Mayer S, Grust T, van Keulen M, Teubner J (2004) An Injec-
tion with Tree Awareness: Adding Staircase Join to PostgreSQL.
In: Proc. of the 30th Int’l Conference on Very Large Databases
(VLDB), Toronto, Canada, pp 1305–1308

38. McHugh J, Widom J (1999) Query Optimization for XML. In:
Proc. of the 25th Int’l Conference on Very Large Databases
(VLDB), Edinburgh, Scotland, UK, pp 315–326

39. Michiels P, Mihaila GA, Siméon J (2007) Put a Tree Pattern in
Your Algebra. In: Proc. of the 23rd Int’l Conference on Data
Engineering (ICDE), pp 246–255

40. Olteanu D, Meuss H, Furche T, Bry F (2002) XPath: Look-
ing Forward. In: XML-Based Data Management and Multimedia
Engineering, EDBT 2002 Workshops, Revised Papers, Prague,
Czech Republic, pp 109–127

41. O’Neil PE, O’Neil EJ, Pal S, Cseri I, Schaller G, Westbury N
(2004) ORDPATHs: Insert-Friendly XML Node Labels. In: Proc.
of the 2004 ACM SIGMOD Int’l Conference on Management of
Data, Paris, France, pp 903–908

42. Pal S, Cseri I, Seeliger O, Rys M, Schaller G, Yu W, Tomic D,
Baras A, Berg B, Churin D, Kogan E (2005) XQuery Implemen-
tation in a Relational Database System. In: Proc. of the 31st Int’l
Conference on Very Large Databases (VLDB), Trondheim, Nor-
way, pp 1175–1186

43. Park CW, Min JK, Chung CW (2002) Structural Function Inlin-
ing Technique for Structurally Recursive XML Queries. In: Proc.
of the 28th Int’l Conference on Very Large Databases (VLDB),
Hong Kong, China, pp 83–94

44. Polyzotis N, Garofalakis MN (2006) XSKETCH Synopses for
XML Data Graphs. ACM Transactions on Database Systems
(TODS) 31(3):1014–1063

45. Schmidt AR, Waas F, Kersten ML, Carey MJ, Manolescu I,
Busse R (2002) XMark: A Benchmark for XML Data Manage-
ment. In: Proc. of the 28th Int’l Conference on Very Large
Databases (VLDB), Hong Kong, China, pp 974–985

46. kx Systems (2008) The kdb+ Database. http://www.kx.com/.
Accessed 24 Feb 2009

47. Teubner J (2008) Scalable XQuery Type Matching. In: Proc. 11th
Int’l Conference on Extending Database Technology (EDBT),
Nantes, France

48. Teubner J, Grust T, Maneth S, Sakr S (2008) Dependable Cardi-
nality Forecasts for XQuery. In: Proc. of the 34th Int’l Confer-
ence on Very Large Databases (VLDB)

49. The Pathfinder XQuery Compiler (2001–2008)
http://www.pathfinder-xquery.org/. Accessed 24 Feb 2009

Jens Teubner is a postdoc re-
searcher at ETH Zurich, Switzer-
land. He co-founded the Pathfinder
project in 2001 at U Konstanz.
Later he moved to TU München,
where he graduated as a PhD in
October 2006. After a year with
IBM Research (2007–2008), he
is now a member of the Systems
Group at ETH, working on the use
of modern hardware technologies
for advanced data processing.

1 3

http://saxon.sf.net/
http://www.kx.com/
http://www.pathfinder-xquery.org/

	1 Introduction
	2 XML to tables and back
	2.1 pre/post-based tree encodings
	2.2 Dewey-based encodings

	3 Stepping through XML forests
	3.1 XPath evaluation off-the-shelf
	3.2 Tree awareness with staircase join
	3.3 Holistic XPath evaluation

	4 From XPath to XQuery
	4.1 XQuery compilation in SQL server
	4.2 Loop lifting: order made explicit in logical plans

	5 Relational XQuery optimization
	5.1 Rewriting and join graph isolation
	5.1.1 Peephole-style optimization
	5.1.2 Join graph isolation
	5.1.3 Omnipresence and lack of order in XQuery

	5.2 Dependable cardinality forecasts for XQuery
	5.2.1 Data flow analysis and value domains
	5.2.2 Interfacing with XPath estimation


	6 Scalable XQuery type matching
	6.1 Sequence type matching
	6.2 Type aggregation
	6.3 Loop-lifted type matching

	7 Hitting the limits
	8 Conclusions
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


