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Summary

Many join processing techniques for data streams have been proposed, the techniques

are designed for a specific data model (e.g. relational), and cannot be easily gen-

eralized to other data models. In evolving data platforms (e.g. data streams, P2P,

very large databases, sensor databases ), the data can either be relational, spatial,

high-dimensional or XML. An important criteria to support interactivity, and ensure

a good user experience is the progressive production of results (if any) whenever data

arrives.

In this thesis, we focus on join processing over data streams with limited mem-

ory. We focus on solving three problems on progressive, progressive and approximate,

and progressive and approximate joins over a sliding window. In the first problem,

we focus on progressive join processing over various data models. The problem is

motivated by the observation that existing progressive join processing techniques are

mostly designed for relational data streams. Thus, new progressive join processing

techniques often have to be proposed for new data models. Thus, we study the prob-

lem of designing a generic framework for progressive join processing, called the Result

Rate based Progressive Join (RRPJ ) framework. The RRPJ framework offers several

advantages. Firstly, it allows the generalization of the framework to handle other data

models that are non-relational data (e.g. high-dimensional, spatial, XML). Secondly,

as it does not require a local uniformity assumption in each of the data partitions.

Thirdly, using extensive empirical evaluations, we show that RRPJ provides good

performance compared with other state-of-art progressive join algorithms for the var-

ious data models. The key idea in RRPJ is to compute statistics based on the output

of the join algorithms, and to use the statistics to determine the data that should

1
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be kept in the limited memory in order to maximize result production. In contrast,

existing works relies on statistics over the input data. Based on the RRPJ framework,

we examine various instantiations of the RRPJ framework for four data models: such

as relational, spatial, high-dimensional and XML data.

In the second problem, we focus on progressive, approximate join processing.

This is motivated by the observation that due to the infinite nature of data streams,

users do not need the complete results. An approximate result is often sufficient.

Users expect the approximate results to be either the largest possible or the most

representative (or both) given the resources available. In this problem, we studied

the tradeoffs between maximizing the result quantity and quality and propose four

new progressive approximate join algorithms: ARRPJ, ProbHash, RAJ and RAJHash

are proposed. The former two, like Prob, favor quantity, the latter two favor quality.

ProbHash improves on Prob on every aspect. RAJ and RAJHash produce results of

significantly better quality.

In the third problem, we focus on progressive, approximate join processing over

sliding window. While sliding window joins have been extensively studied, none of

these used a sampling-based approach. In this thesis, we proposed a sampling-based

approach for sliding window joins over data streams. In order to design progres-

sive, approximate sliding window join algorithms, we first studied various sliding-

window sampling techniques. We present both empirical and theoretical analysis for

each of the sliding-window sampling techniques. Next, we propose a generic pro-

gressive, approximate sliding window join framework, which uses the sampling tech-

niques. Through extensive performance evaluations, we show that sliding-window

aware sampling-based techniques are able to produce high-quality results.



Chapter 1

Introduction

1.1 Introduction

The emergence of ubiquitous network connectivity allows data to be delivered as data

streams from remote sites to be processed by applications. These new applications

(e.g. sensors databases, P2P, cloud computing, XML aggregators) need to be able

to process data from different data models. For example, the data that needs to

be processed can range from relational, spatial, high-dimensional and XML data. In

addition, the size of main memory is often limited relative to the data that needs to be

processed. Indeed, this presents challenging issues in the design of a query processing

algorithm framework that can be used for various data models, using limited memory.

In addition, the query processing algorithms must adapt to the unpredictable nature

of the query environment, and deliver results progressively.

In order to support a high-level of interactivity during query processing, the study

of progressive query processing techniques is important. Progressive query processing

techniques deliver initial results quickly, and are able to progressively produce results

whenever new data arrives. Amongst the various types of queries that can be formu-

lated, join queries is one of the most important class of queries. In this thesis, we

focus on join queries. For example, in data exploration and analysis of data streams,

the results needs to be presented incrementally to the users. An example of a system

supporting data exploration and analysis is the CONTROL system [HAC+99], which

3
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supports data analysis of massive data sets. In the CONTROL system, users are

presented with initial results quickly. From the results presented, users can itera-

tively pose new queries or refine existing queries. This allows users to make decisions

based on the initial results produced, rather than having to wait a long time for the

complete results to be available.

In this thesis, we focus on the design of progressive join algorithms for data stream

applications. Specifically, we study three problems. These includes progressive, pro-

gressive and approximate, and progressive and approximate joins over a sliding win-

dow. In order to solve the first problem, we propose a generic progressive join pro-

cessing framework, called Result Rate-Based Progressive Join framework (RRPJ),

that can deliver results incrementally using limited memory. To demonstrate the

generic nature of the proposed framework for other data models, we proposed four

instantiations of the framework for relational, spatial, high-dimensional and XML

join processing. The focus of the work was on maximizing the quantity of results

produced. In order to solve the second problem, we propose several progressive, ap-

proximate join algorithms. The focus was on maximizing either the quantity or the

quality of the results produced. In order to solve the third problem, we propose sev-

eral progressive, approximate sliding window join algorithms. We show how various

sliding-window sampling algorithms can be incorporated within a progressive, approx-

imate sliding join framework. We show that the results produced by sliding-window

version of sampling techniques produces good quality results.

1.2 Background

Many join processing algorithms [UFA98, UF99, DSTW02, DGR03, SW04, MLA04,

XYC05, TYP+05, Law05, LCKB06] have been proposed. Most of these algorithms

focused on the equi-join. In order to ensure that join processing is non-blocking

(or progressive), many of these equijoin algorithms leverages on the seminal work

on symmetric hash join’s (SHJ) [WA91]. SHJ assumes the use of in-memory hash

tables, and make use of an insert-probe paradigm, which allows results to be delivered

progressively to users. In an insert-probe paradigm, a newly-arrived tuple is first used
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to probe the hash partition for the corresponding data stream. If there are matching

tuples (based on the join predicate), the matching tuples are output as results. The

newly-arrived tuple is then inserted into its own hash partition. This allows results

to be output immediately whenever new tuples arrives.

In order to address the issue of limited memory, many subsequently proposed pro-

gressive relational join algorithms (e.g [UFA98, UF99, MLA04, TYP+05]) considered

an extension of the SHJ model, where both in-memory and disk-based hash parti-

tions are used. The extended version of the SHJ model consists of three phases: (1)

Active (2) Blocked (3) Cleanup. In the active phase, data is continuously arriving

from the data streams. Whenever a newly tuple arrives, it is first used to probe the

hash partitions for the corresponding data stream, before it is inserted into its own

hash partitions. Whenever memory is full, some of the in-memory tuples are flushed

to disk to make space for new-arriving tuples. Whenever all the data stream blocks,

the extended SHJ transitions into a blocked phase. During the blocked phase, data

from the disk partitions are retrieved to join with either in-memory or disk-resident

tuples from the corresponding data streams. This allows the delays from the blocked

data streams to be hidden from the end user. In the cleanup phase, all tuples that

have not been previously joined are then joined to ensure that the results produced

are completed.

In order to maximize result throughput, a key focus of existing progressive join

algorithms is to determine the set of tuples that are flushed to disk whenever memory

is full. Many flushing techniques have been proposed for progressive join algorithms.

These techniques can be classified as heuristic-based or statistics-based. In heuristic-

based techniques, a set of heuristics govern the selection of tuples or partitions to be

flushed to disk. These heuristics ranges from flushing the largest (e.g. XJoin [UF99])

to a concurrent flushing of partitions (e.g. Hash-Merge Join (HMJ) [MLA04]). In

statistics-based techniques, a statistical model is maintained on the input distribution.

Whenever a flushing decision needs to be made, the statistical model can be used to

determine the tuples or partitions that are least likely to contribute to a future result.

These tuples or partitions are then flushed to disk. Amongst the various statistical

based techniques, the Rate-based Progressive Join (RPJ) and Locality-Aware (LA)
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model (discussed in Section 2.1) are the the state-of-art in statistic-based progressive

join algorithms. RPJ rely on the availability of an analytical model deriving the

output probabilities from statistics on the input data. This is possible in the case of

relational equijoins but embeds some uniformity assumptions that might not hold for

skewed datasets. For example, if the data within each partition is non-uniform, the

RPJ local uniformity assumption is invalid.

Consider the two partitions, belonging to dataset R and S respectively, presented

in Figure 1.1. The grayed area represent the data and white an empty space. The

vertical axis for the rectangles represent the data values. Suppose in both Figure (a)

and (b), N tuples have arrived. In Figure 1.1(a), the N tuples is uniformly distributed

across the entire partitions of each dataset. Whereas in Figure 1.1(b), the N tuples

is distributed within a specific numeric range (i.e. areas marked grey). Assume the

same number of tuples have arrived for both cases, then P (1|R) and P (1|S) would

be the same. However, it is important to note that if partition 1 is selected to be the

partition to be kept in memory, the partitions in Figure 1.1(a) would produce results

as predicted by RPJ. Whereas the partitions in Figure 1.1(b) would fail to produce

any results. Though RPJ attempts to amortize the effect of historical arrivals of each

relation, it assumes that the data distribution remains stable throughout the lifetime

of the join, which makes is less useful when the data distribution are changing (which

is common in long-running data streams).

The LA model is designed for approximate sliding window join on relational data.

It relies on determining the inter-arrival distance between tuples of similar values in

order to compute the utility of the tuple. Consequently, the utility of the tuple is

used to guide the tuples to be flushed to disk. In the case of relational data, a sim-

ilar tuple could be one that has the same value with a previous tuple. However, for

non-relational data, such as spatial or high-dimensional data, the notion of similarity

becomes blurred. Another limitation of the LA model is that it is unable to deal

with changes in the underlying data distribution. This is because with a frequently

changing data distribution, which is common in long running data streams, the refer-

ence locality, which is a central concept in the LA model cannot be easily computed.

Hence, both RPJ and LA model cannot be easily extended to deal with non-relational
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data models.

Partition 1
from R

Partition 1
from S

Partition 1
from R

Partition 1
from S

(a) Uniform Data (b) Non-Uniform Data
within partition within partition

Figure 1.1: Data in a Partition

1.3 Motivation

As many of the existing progressive join techniques are designed for relational data

model, they are not easily generalizable for other data models. As a result, new

progressive join techniques, with different flushing policies need to be proposed for

each type of data that needs to be processed. In addition, when processing large

datasets or data streams, the amount of memory available for keeping the data is

often limited. Whenever memory is full, a flushing policy is used to determine the

data that are either flushed to disk partitions, or discarded. Data are flushed to disk

partitions if the user is interested in the complete production of results. On the other

hand, if the user is interested in approximate results, some of the in-memory data

can be discarded.

This research is driven by the need to design a generic, progressive join frame-

work that meets three objectives. Firstly, the framework must be easily generalized

to different data models (e.g. relational, spatial, high-dimensional XML). Secondly,

the progressive join framework must work with limited memory. Thirdly, it is impor-

tant to identify the metrics that are suitable for evaluating the performance of the

progressive joins. The thesis is divided into three parts.

The first part of the thesis is motivated by the need for a generic progressive join

framework for which can be used in different data models. To better understand the
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key building blocks for a generic progressive join framework, we conducted an initial

study (presented in Appendix A) for progressive spatial join processing. In the study,

we observe that the building of indexes over spatial data streams is expensive. A

nested-loop styled progressive join algorithms would have suffice. However, this in-

hibits the progressiveness of the join. Results can only be produced when the buckets

used to hold the data is full. In addition, the algorithms presented in Appendix A do

not consider the case of limited memory.

In order to address all these issues, we focus on SHJ-based algorithms as one of

the building blocks for designing a progressive join framework. This is because the

probe-insert paradigm used in SHJ-based algorithms provide the basis for producing

results (if any) whenever data is available. As SHJ-based algorithms rely on hash-

ing for probing and insertion, the challenge is to identify the appropriate hash-based

data structure for each of the data models. In order to deal with limited memory, the

flushing policy is one of the key ingredients for maximizing the result throughout or

the quality of the approximate result subset produced. Most importantly, the flush-

ing policy must be independent of the data model. While heuristics-based flushing

policies meet the criteria of data model independence, they perform poorly compared

to the statistics-based techniques. Most importantly, statistics-based techniques pro-

vide strong theoretical guarantees on the expected result output. However, existing

statistic-based techniques suffer from the data model dependence. While many good

statistic-based techniques have been proposed for the relational data model, none

of these can be easily extended for other data models. In order to have a generic

flushing policy, we observed that the goal of progressive join algorithms is on result

throughput maximization. Motivated by this, we conjectured that the statistics used

to determine the data that are flushed from memory should be result-driven.

The second part of the thesis is motivated by the observation that users might not

need the production of complete results. Also, in data stream applications, the notion

of complete results is impractical, since the data streams can be potentially infinite.

When approximate results are produced, it is important to distinguish between the

quantity and quality of the results. Noting that sampling-based techniques has been

previously disqualified by the authors of [DGR03] without further investigations, we
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Figure 1.2: Roadmap of thesis

show that this disqualification is mistaken. In the thesis, we show that a stratified

sampling approach is both effective and efficient for progressive, approximate join

processing.

Motivated by the success of sampling for progressive, approximate join processing,

the third part of the thesis focus on using sampling-based techniques for progressive,

sliding-window join processing. As sampling forms the basis for these class of algo-

rithms, we conducted a comprehensive study on various sliding-window based sam-

pling techniques. Using these sliding-window based sampling techniques, we propose

sampling-based progressive, sliding-window join algorithms and evaluated the quality

of the results produced.

1.4 Thesis Contributions and Roadmap

In this section,we discuss the contributions of the thesis, and present the roadmap on

the organization of the thesis. The roadmap for the thesis is presented in Figure 1.2.

The first contribution of the thesis is a novel result-rate based progressive join

framework, called RRPJ framework. The strength of the RPPJ framework it that
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it can be easily extended for various data models This is in contrast to non-generic

approaches which are mainly for a specific data model (e.g relational). In order

to demonstrate the generic nature of the proposed progressive join framework,we

systematically studied various instantiations of the generic progressive join framework

and evaluated their performance for the following data models: (a) Relational (b)

Spatial (c) High-Dimensional and (d) XML.

In the various instantiations of the framework,we show that RRPJ is effective and

efficient and is able to ensure a high result throughput using limited memory. We

proposed an early version of the generic progressive join framework for spatial data,

called JGradient. JGradient builds a statistical model based on the result output.

The results of this research have been published in [TBL06]. Using the insights

from [TBL06], we proposed a generic progressive framework, called Result-rate based

progressive join (RRPJ) for relational data streams. RRPJ improves on JGradient

in several aspects. Firstly, RRPJ take into consideration the size of each of the

hash partitions. Secondly, an amortized version of RRPJ was introduced to handle

changes in the result distribution from long-running data streams. The results of this

research have been published in [TBL07c]. In order to show that the RRPJ can be

instantiated for other data models, we studied the issues that arise from using the

framework for high-dimensional data streams. We show that the high-dimensional

instantiation, called RRPJ High Dimensional is able to maximize the results produced

using limited memory.The results of this research have been published in [TBL07b].

We also showed how the RRPJ framework can be used for progressive XML value join

processing. We proposed to decompose For-Where-Return (FWR) XQuery queries

into a query plan that composes of twig queries and hash joins. In addition, we

also proposed a result-oriented method for routing tuples in a multi-way join, called

Result-Oriented Routing (RoR). RoR is used for routing tuples for join processing

over multiple XML streams. The method is generic and can also be used for other

data models. The results of this research have been published in [TBL08b].

To demonstrate the real-world applications of the RRPJ framework, we devel-

oped a system demo for continuous and progressive processing of RSS feeds, called

Danäıdes. In Danäıdes, users pose queries in a SQL dialect. Danäıdes supports
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structured queries, spatial query and similarity queries. The Danäıdes service con-

tinuously processes the subscribed queries on the referenced RSS feeds and, in turn,

published the query results as RSS feeds. Whenever memory is full, Danäıdes uses

the RRPJ framework to determine the RSS feeds that are flushed to disk. The results

of Danäıdes is a RSS feed, which can be read by standard RSS readers. The results

of this research have been published in [TBL07a].

In data stream applications, users often do not require a complete answer to their

query but rather only a sample. They expect the sample to be either the largest

possible or the most representative (or both) given the resources available. In the

second contribution, we clearly differentiated the notions of quantity and quality of

results that are produced from progressive, approximate joins. Four new progressive

approximate join algorithms: ARRPJ, ProbHash, RAJ and RAJHash. The former

two, like Prob, favor quantity, the latter two favor quality. ProbHash improves on

Prob on every aspects. RAJ and RAJHash produce results of significantly better

quality. We conducted an extensive performance evaluation of the various progressive

approximate join algorithms, and show the tradeoffs between maximizing quantity

and quality. The results of this research have been published in [TBL08a].

In the third contribution,we propose a generic framework for designing sampling-

based progressive sliding window joins. In order to evaluate the effectiveness of vari-

ous sampling techniques we considered the use of four sliding-window based sampling

techniques. These includes: Expire [BDM02], and 2 new sliding window sampling

algorithms: FIFO and WinRes. As a baseline, we also included the conventional

reservoir sampling. In order to study the effectiveness of each of these sampling tech-

niques, we studied the performance of each of the techniques prior to incorporating

them within the sliding window join framework. We present both empirical and the-

oretical analysis for each of the proposed sampling techniques. Next, we incorporated

each of these sampling techniques in the sliding window join framework, and conduct

an extensive performance evaluation. We are currently preparing a technical report

based on the results of this research.
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1.5 Thesis Organization

The remainder of the thesis is organized as follows: In Chapter 2,we provide a compre-

hensive discussion of related work. In Chapter 3, We present a generic progressive join

framework. Next, we present various instantiations in which the framework can be ap-

plied. These include using the framework for relational (Chapter 4), high-dimensional

(Chapter 6), spatial (Chapter 5), and XML data (Chapter 7). In Chapter 8, we pro-

pose a sampling-based approach for progressive, approximate joins. In Chapter 9, we

propose a sampling-based approach for progressive sliding-window join. In Chapter

10, we conclude and present future work.

The appendices are organized as follows: In Appendix A, we present an initial

study on progressive spatial joins. This summarizes the work done prior to the design

of the generic join framework, and provides insights into the design of a progressive

join framework for other data models. In Appendix B, we provide the XML used in

the XML value join scenario for Chapter 7. As part of the thesis, we also proposed

a query processing engine, called Danaides for aggregating RSS feeds. We present

the system in Appendix C. We present the performance analysis of various sliding

window sampling techniques in Appendix D.



Chapter 2

Related Work

In this chapter, we present the related work for progressive joins. Section 2.1 to 2.4

discuss the related work for progressive query processing techniques for the various

data models - relational,, spatial, high-dimensional and XML. Next, we discuss the re-

lated work for data stream synopsis. Four types of data stream synopsis construction

techniques are presented. These include sampling, sketches, wavelets, and histogram.

We justify why sampling techniques is an attractive building block for progressive,

approximate joins. In Section 2.6, we present the related work for progressive, ap-

proximate joins.

2.1 Relational Joins

Many methods [UF99, MLA04, TYP+05, LCKB06] have been proposed to deal with

the progressive equi-join problem on relational data streams. A recent trend amongst

these methods is to make use of probabilistic models on the data distribution to

determine the best data to be kept in memory.

RPJ [TYP+05] is a multi-stage hash-based join algorithm that was proposed for

joining data that are transmitted from remote data sources over a unreliable network.

Similar to hash-based join algorithms like XJoin, RPJ stores the data into partitions.

Each partition consists of two portions, one residing in memory and the other on

disk. Whenever a new data arrives, RPJ computes the hash value based on the join

13
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attribute, and uses this to probe the corresponding partition to identify matching

tuples. The RPJ algorithm consists of several stages. The stages are as follows:

(1) Memory-to-Memory (2) Reactive. In the Memory-to-Memory stage (mm-stage),

arriving data are joined with the in-memory tuples from the other data set. Whenever

the memory overflows, selected tuples are flushed to the disk partitions. The Reactive

Stage is triggered whenever the data source blocks. It consists of two sub-tasks: (i)

Memory-Disk (Md-task) and (2) Disk-Disk (Dd-task). In the Md-task, data that are

in memory are joined with their corresponding partitions on disk. And in the Dd-task,

data that are on disk are joined with the corresponding partitions from the other data

sets on disk. One of the key idea in RPJ is to maximize the number of results tuples

by keeping tuples that have higher chances of producing results with the tuples from

the corresponding data set in memory. An Optimal Flush technique was proposed

to flush tuples that are not useful to disk. This is achieved by building a model on

the tuples’ arrival pattern and data distribution. Whenever memory becomes full,

the model can be used to determine probabilistically which tuples are least likely to

produce tuples with the other incoming data, and hence flushed from memory to disk.

RPJ computes parr
i (v), which denotes the probability that the next incoming tuple

would be from data source i, and has the value v. Using the arrival probabilities, the

RPJ strategy is illustrated by the following example. The tuples from two remote

data sources R and S, are continuously retrieved, and joined. The join condition is

R.a = S.a, the domain of the join attribute, a, is {2,4,6,8}. The arrival probabilities

for R are: parr
R (2) = 10%, parr

R (4) = 15%, parr
R (6) = 4% and parr

R (8) = 6%; whereas

the arrival probabilities for S are: parr
S (2) = 5%, parr

S (4) = 20%, parr
S (6) = 30% and

parr
S (6) = 10%. At the instance when memory overflows, each of the data sources

has 2 tuples for each value in memory. Suppose nflush=6 tuples need to be flushed

from memory. Since the arrival probability for parr
R (6) = 4% is the smallest, we will

need to flush 2 S-tuples with the value 6 from memory (i.e. these S-tuples would be

least likely to produce results since the corresponding R-tuples do not arrive as often

compared to other tuples). Since nflush=6, we would need to flush 4 more tuples from

memory. We consider the next smallest arrival probability. In this case, parr
S (2) = 5%

is the smallest. Thus, we flush 2 R-tuples with the value 2 from memory. Finally, we
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consider parr
R (8) = 6%, and flush 2 S-tuples with the value 8 from memory.

[LCKB06] observes that a data stream exhibits reference locality when tuples

with specific attribute values has a higher probability of re-appearing in a future time

interval. Leveraging this observation, a Locality-Aware (LA) model was proposed,

where the reference locality caused by both long-term popularity and short-term

correlations are captured. This is described by the following model: xn = xn−i (with

probability ai); xn = y (with probability b, where 1 ≤ i ≤ h and b +
h
∑

i=1
ai = 1. y

denotes a random variable that is independent and identically distributed (IID) with

respect to the probability distribution of the popularity, P. Using this model, the

probability that a tuple t will appear at the n-th position of the stream is given by

Prob(xn = t|xn−1, ..., xn−h) = bP (t) +
h
∑

j=1
ajδ(xn−j , t) (δ(xk, t) = 1 if xk = t, and it is

0 otherwise). Using the LA model, the marginal utility of a tuple is then derived, and

is then used as the basis for determining the tuples to be flushed to disk whenever

memory is full.

2.2 Spatial Joins

In this section, we discuss various types of spatial join processing techniques that

have been proposed. In addition, we have also conducted an extensive survey on

continuous query processing on spatial data, which is presented in [Ibr06].

Spatial index structures such as R-tree [Gut84], R+-tree [SRF87], R*-tree [BKSS90]

and PMR quad-tree [NS87] were commonly used together with spatial joins. In

[BKS93], Brinkhoff et al. proposed a spatial join algorithm which uses a depth-first

synchronized traversal of two R-trees. The implicit assumption is that the R-trees has

already been pre-constructed for the two spatial relations to be joined. A subsequent

improvement to the synchronized traversal was proposed by [HJR97], called Breadth

First R-tree Join (BFRJ). By traversing the R-tree level by level, BFRJ was able to

perform global optimization on which are the next level nodes to be accessed, and

hence minimize page faults. In [LR94], a seeded tree method for spatial joins was

proposed. It assumes that there is a pre-computed R-tree index for one of the spatial

relations. The initial levels of the R-tree index is then used to provide the initial
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levels (i.e. seeds) for the dynamically constructed R-tree of the corresponding spatial

relation. An integrated approach for handling multi-way spatial join was proposed in

[MP99]. Noting that the seeded tree approach performs poorly when the fanout of

the tree is large to fit into a small buffer, [MP99] also proposed the Slot Index Spatial

Join to tackle the problem.

The use of hashing was explored in [LR96, PD96]. In [LR96], the Spatial Hash

Join (SHJ) was proposed to compute the spatial join for spatial data sets which

has no indexes pre-constructed. Similar to its relational counter-part, the spatial

hash join consists of two phases: (1) Partitioning Phase and (2) Join Phase. In the

Partitioning Phase, a spatial partitioning function first divides the data into outer and

inner buckets. In order to address issues due to the coherent assignment problem,

a multiple assignment of data into several buckets was adopted. This allows two

bucket pairs to be matched exactly once, and reduces the need to scan other buckets.

In the join phase, the inner and outer buckets are then joined to produced results.

The Partition Based Spatial-Merge (PBSM) method proposed in [PD96] first divides

the space using a grid with fixed-sizes cells (i.e. tiles). These tiles is then mapped

to a set of partitions. The data objects in the partitions are then joined using a

computational geometry based plane-sweeping technique. Noting that in a plane-

sweeping approach, only the data objects that are along the sweeping line are needed

in memory, the Scalable Sweeping-Based Spatial Join (SSSJ) [APR+98] was proposed.

Spatial join algorithms based on other novel data structures have also been pro-

posed. The Filter Trees [SK96], a multi-granularity hierarchical structure, was used

as an alternative to R-trees and its variants. Noting that techniques such as PBSM

and SHJ requires replication of data, the Size Separation Spatial Join (S3J) [KS97]

was proposed by building incomplete Filter Trees on-the-fly and using them in join

processing.

Existing spatial join processing techniques focus on reducing the number of I/Os

for datasets that reside locally. None of these proposed techniques are optimized for

delivering the initial results quickly, and do not consider the case where spatial data

are continuously delivered from remote data sources.
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2.3 High-Dimensional Distance-Similarity Joins

Many efficient distance similarity joins [SSA97, KS00, BBBK00, BBKK01, KP07]

have been proposed for high- dimensional data. To facilitate efficient join process-

ing, similarity join algorithms often relies on spatial indices. R-trees (and variants)

[Gut84], X-tree [BKK96] or the ǫ-kdb tree [SSA97] are commonly used. The Multi-

dimensional Spatial Join (MSJ) [KS00, KS98] sorts the data based on their Hilbert

values, and uses a multi-way merge to obtain the result. The Epsilon Grid Order

(EGO) [BBKK01] orders the data objects based on the position of the grid-cells. An-

other related area is the K-nearest Neighbor (KNN) [BK03, BK04]. The focus is not

the efficiency of processing of local high-dimensional datasets. The Multi-page Index

(MUX) method [BK04], uses R-trees to reduce the CPU and I/O costs of performing

the KNN join. GORDER [XLOH04] uses Principal Component Analysis (PCA) to

identify key dimensions, and uses a grid for ordering the data.

The main limitation of conventional distance similarity join algorithms is that

they are designed mainly for datasets that reside locally. Hence, they are not able to

deliver results progressively.

2.4 XML Query Processing

XML (Extensible Markup Language) is now a standard for data dissemination and

interchange. In most application domains, XML data feeds or data streams is com-

monly being used. In this section, we discuss various types of spatial join processing

techniques that have been proposed. In addition, we have conducted an extensive sur-

vey on progressive and continuous query processing on XML data, which is presented

in [Par08].

To seize the opportunity created by the availability of such a wealth of network

accessible timely data, modern application need the capability to effectively and ef-

ficiently process queries to XML data streams. In XML, concrete XML query lan-

guages, such as XPath and XQuery, express both structural and predicate constraints

on the XML document/stream.
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One good representation of the structural constraints is twig queries. A twig query

is a tree-pattern query that specifies the structural relationships (parent/child or

ancestor/ descendant) between the nodes. Existing XML query processing techniques

has focused on the efficient processing of twig queries. Our focus in the thesis is the

progressive processing of XML joins, expressed using join predicates.

We classify existing XML query processing techniques by considering the following

factors: (1) Non-streaming vs Streaming and (2) Handle single vs multiple XML

documents/streams.

2.4.1 Non-streaming and Single XML document

Non-streaming techniques [BKS02, LCL04, CLT+06] processes disk-resident XML

data. These techniques focused on the efficient processing of twig queries. The

assumption made by these techniques is that a labeling scheme is available. The

labeling scheme encodes the structural relationships within the XML documents.

Common labeling schemes that have been used include Region [BKS02] and Dewey-

based [TVB+02, LLCC05] encoding. The non-streaming algorithms rely on these

encodings to efficiently answer the queries. In order to compute the results, the

algorithms need to wait for all the intermediate results to be produced before the

results of the twig queries can be computed. Due to the need for prior labeling of

the XML data and the need to wait for all the intermediate results to be produced

before results are available, these techniques are not suitable for processing XML data

streams.

Non-streaming techniques [FHK+03, PWLJ04, RSF06] for processing XQuery

have also been proposed. In [FHK+03], a transducer-based XML Query Processor

translates XQuery to an intermediate form, known as XML Stream Machine (XSM).

XSM is then translated into C code which is compiled and executed. [PWLJ04] trans-

forms XQuery into a Tree-Logical Class (TLC) algebra expression, which is then used

as the basis for evaluating the XQuery query.
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2.4.2 Streaming and Single XML document

Streaming techniques for processing XPath and XQuery queries include [LMP02,

FHK+03, PC03, OKB03, LA05, CDZ06]. In [FHK+03], the BEA/XQRL processor

was proposed to support pipelined execution by using an iterator model over the

data stream. [LA05] proposed transformation techniques to enable XQuery queries

to be evaluated in one-pass. In addition, [LA05] proposed code generation techniques

(from the XQuery queries) to handle user-defined aggregates and recursive functions.

[CDZ06] proposed the TwigM machine, an efficient non-blocking method for evaluat-

ing twig queries over XML data streams. TwigM assumes an input sequence of SAX

events (i.e. startElement, endElement), and uses a stack-based structure to com-

pactly encode the solutions to the twig join. The output consists of XML fragments.

None of these techniques considered XML query processing over multiple XML data

streams. In this thesis, we make use of multiple TwigM machine for twig matching.

2.4.3 Streaming and Multiple XML documents/streams

[HDG+07] proposed a Massively Multi-Query Join Processing (MMQJP) technique

for processing value joins over multiple XML data streams. Similar to our approach,

MMQJP consists of two phases: XPath Evaluation and Join Processing phase. In

the XPath evaluation phase, the XML data streams are matched and auxiliary infor-

mation stored as relations in a commercial database management systems (DBMS)

- Microsoft SQL Server. The auxiliary information are then used during the join

processing phase for computing results. Thus, MMQJP can only deliver results when

the entire XML documents have arrived. In addition, MMQJP have no control over

the flushing policy due to its dependence on the commercial DBMS. In contrast

to MMQJP, our proposed technique delivers results progressively as portions of the

streamed XML documents arrived.

In addition, a physical algebra for XQuery was proposed in [SFMS07]. The alge-

bra allows XML streaming operators to be intermixed with conventional XML and

relational operators in a query plan. This allows pipelined plans to be easily defined.

[SFMS07] do not consider memory management issues.
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2.5 Data Stream Synopsis

Data stream applications need to process large amount of data over an extended

period of time. As the computational resources and memory available for processing

the data is much smaller relative to the size of the data streams, one-pass algorithms

are often desired. Users often do not require complete answers to their queries, and are

satisfied with approximate answers. The approximate answers can either be a subset

of the complete answer, or an estimation of one or several measured quantities. It is

also important to provide guarantees of the quality of the approximate answers.

In order to support approximate query processing, synopsis are often used for

summarizing the entire data stream and used to provide approximate answers to the

queries. Various approximate query processing techniques which rely on synopsis

have been proposed for various types of queries: aggregation queries (e.g. quantile

[GK01], heavy hitters [MM02] and distinct counts [Gib01]) and join queries [DGR03,

DGR05, AKLW07].

[Agg07] provides a comprehensive survey on synopsis construction in data streams

and identified five desirable properties for building an effective synopsis. Firstly, the

synopsis must be generalizable for various applications. Secondly, the algorithms used

for synopsis construction and maintenance need to be one-pass algorithms. Due to

the large amount of data that needs to be processed, each tuple in the data stream can

be accessed once. Thirdly, the synopsis must be compact. The size of the synopsis

must be relatively smaller compared to the size of the data stream. Fourthly, the

synopsis must be robust and provide guarantees on the quality of the approximation.

Finally, the synopsis must be able to adapt to the varying data distribution of the

data streams.

In this section, we survey various synopsis construction techniques. These include

sampling (subsection 2.5.1), sketches (subsection 2.5.2), wavelets (subsection 2.5.3)

and histograms (subsection 2.5.4). In each of the subsections, we discuss the strengths

and limitations of each of the synopsis construction techniques.
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2.5.1 Sampling

Simple random sampling [Coc77] is a method for selecting n out of a population of N

data items, such that it is equi-probable to select any of the





N

n



 distinct samples.

Sampling algorithms [EN82, Knu81, Vit84] have been proposed where the value of N

is known. In data stream applications, as the data can be continuously arriving over

an extended period, the value of N cannot be pre-determined. In order to solve the

sampling problem of maintaining a sample from an unknown N over data streams,

several sampling techniques have been proposed. These includes reservoir sampling

[Vit85], concise sampling [GM98], chain sampling [BDM02] and min-wise sampling

[NGSA04].

Reservoir Sampling

Reservoir sampling maintains an unbiased sample of n tuples in a data stream. As-

sume that t tuples have arrived. When t ≤ n, then the tuple is added to the reservoir

(i.e. sample). When t > n, the reservoir sampling technique needs to determine the

tuple to be replaced. This is achieved by randomly generating a value, v, between 1 to

t. If v > n, then the t-th tuple is discarded. Else, the t-th tuple is used to replace the

v-th tuple in the reservoir. It is shown in [MB83, Agg07] that the reservoir sampling

technique maintains an unbiased simple random sample at any point in time.

Concise Sampling

Concise sampling [GM98] was proposed to increase the number of distinct values

that can be stored in a sample. Consequently, this helps to improve the quality of the

sample maintained. In a concise sample, a uniform random sample of value/count

pairs are maintained. For each distinct value v which appear m times ( m > 1) in

the data stream, it is represented as are maintained as a value/count pair {v,m}. If

m = 1, then only a singleton with value v is maintained. It is shown in [GM98] that

the quality of a concise sample is either equivalent or exponentially better than other

existing sampling techniques.
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Moving Window Sampling

[BDM02] further noted that in many applications, recent data are more interesting

than expired data. Data expires when they are no longer valid in a window (e.g time-

based or count-based windows). To address the problem of data expiration in moving

windows over streaming data, the chain sampling algorithm was proposed. Chain

sampling, an extension of reservoir sampling, maintains a sample size of n tuples by

having n independent samples of size 1. While it was shown in [BDM02] that it is

an effective technique for dealing with expiration, chain sampling suffers from several

problems. Firstly, [BDM02] did not show how duplication of tuples can be prevented

in the n independent sample of size 1. Secondly, chain sampling maintains a chain of

indexes of replacement tuples. Thus, the check to determine whether a newly arrived

tuple is the replacement tuple can be expensive. Thirdly, we need to determine the

inclusion probability into each of the n samples independently. If n is large, the cost

of computing the inclusion probability can be large.

Min-wise Sampling

Min-wise sampling [NGSA04] was proposed for sampling a sensor network uniformly

at random. In min-wise sampling, each tuple is assigned a random tag, with a value

between 0 and 1. The key idea in min-wise sampling is that since the tag value

is generated uniformly, each item is equi-probable of being assigned the tag with

the smallest value. Assume that t tuples have arrived and the sample size to be

maintained is n ( t > n ). The n tuples with the smallest tag values are selected to

be included in the sample.

Discussion

Sampling is an attractive method for constructing synopsis. Firstly, samples can be

easily constructed and maintained. Secondly, sampling provides an unbiased estimate

of the entire data stream. Existing sampling techniques are one-pass algorithms which

can be proved theoretically that they maintain simple random samples at any point

in time. Thirdly, as the samples contain the actual tuples from the data stream,
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they can be easily used to answer a broader set of queries. In contrast, other synopsis

construction techniques transform the tuples into a summarized form, which limits the

type of queries that they can be used in. Finally, sampling techniques are independent

of the data model. This allows samples of various data models (e.g. XML, spatial,

high-dimensional data, etc) to be constructed easily.

One of the limitations of sampling is that it cannot be used to provide approximate

answers for aggregation queries. For example, an aggregation query might require

the count of the number of distinct tuples in a data stream. However, since a sample

contains an approximation of the entire data stream at any point in time, it is difficult

to determine whether a newly arrived tuple is unique w.r.t to the sample.

2.5.2 Sketches

A sketch is a randomized projection of data into a new space. Using the projected

representation, the sketch provides a compact summary of the data stream, and can

be used to compute several useful properties of the data stream. As sketches can

be incrementally maintained, they are commonly used in data stream applications

to provide approximate answers. The applications of sketches include: counting the

number of distinct elements, estimation of Euclidean distance between the values

from two data streams, point, range and inner product queries.

FM Sketch

The notion of sketches was first introduced in [FM83, FM85] as probabilistic counting

algorithms for database applications. The probabilistic counting algorithms are used

to estimate the number of distinct elements in a large dataset. We refer to this family

of sketches as Flajolet-Martin sketches (FM Sketches). In FM sketches, a uniform

hash function, h(t) is first used to map a tuple t to a value in the range 0 to 2L-1

(inclusive). Given that y =
∑

k≥0
bit(y, k)2k ( y geq 0 ) , bit(y,k) denotes the k-th

bit y. p(y) is used to denote the position of the least significant 1-bit in the binary

representation of y, as follows:
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p(y) =











min
k≥0

(bit(y, k))

L

y > 0

y = 0
(2.1)

In [FM85], it is further observed that if h(x) is uniformly distributed, the pattern

0k1. . . appears with probability 1
2(k+1) .

Using these observations, a FM sketch, FM, is represented as a bit vector of length

L. FM is initialized to all Os. When a new tuple t arrives, we set the bit corresponding

to h(t) to be 1. The number of distinct values in the data stream, d, can be estimated

as c2R, where c is a constant value, and R denotes the position of the rightmost zero

in FM. In order to improve the accuracy of the FM sketches, multiple hash functions

can be used.

AMS Sketch

AMS sketches [AMS96, AGMS99] are synopsis which uses randomized technique to

estimate the size of the self-join, SJ(A), for a relation R with respect to a join attribute

A. AMS sketches offer strong probabilistic guarantees using only logarithmic space

|dom(A)|.

[AMS96] provide a generalization of counting, and introduced the notion of fre-

quency moment. Frequency moments provide useful statistics for estimating different

properties of the data. Given that S = (s1, s2, . . . , si) denotes a sequence of tuples,

where si ∈ Z. Let V be the set of values that are observed in S, and mv to denote the

number of occurrences of the value v in S (i.e. v ∈ V ). The frequency moment, Fk,

is defined as the sum of k -powers of mb, as follows: Fk =
V
∑

i=1
mk

i . Several interesting

can be derived for various k values. F0 is the number of distinct elements in S and

F1 is the size of S.

The key idea in AMS Sketches is to make use of an unbiased estimator, denoted

as Y, as an approximation to the value of SJ(A). In addition, as Var(Y ) is sufficiently

small, it ensures a good estimation for the value of SJ(A). In order to build the AMS

sketch, a family of 4-wise independent {-1, +1} random variables, denoted by ξi.

In order to compute Y, Y is defined as X2, where X =
∑

i∈dom(A)
f(i)ξi, where f(i)



2.5. DATA STREAM SYNOPSIS 25

is the frequency vector of R.A. In order to compute X, the value of X is initialized to

0. The value of ξi is added to X whenever the i-th value of A is observed in the data

stream.

Count-Min Sketch

Count-Min sketches [CM05] are synopsis that uses a combination of counting (i.e.)

and finding minimum (min) operations to provide high-quality estimation to a broad

set of queries. A Count-Min (CM) sketch with parameters (ǫ, δ) is represented as a

two-dimensional array of width w and depth d. Each element of the array maintains

a counter, which is initialized to zero. Using parameters (ǫ, δ), w =
⌈

e
ε

⌉

and d =
⌈

1
δ

⌉

. In addition, d hash functions, h1 . . .hd, are chosen from a pairwise-independent

family. When a new value v arrives, each of the counters corresponding to (j, hj(v))

is incremented by 1. Using a series of count and min operations, [CM05] showed

how the CM sketches can be used for providing estimation of point, range and inner

product queries.

Multi-dimensional Sketches

In [DGR04], sketches for spatial data are proposed. The AMS-based sketches are used

to provide high quality estimation to spatial join and range queries. The notion of

dyadic atomic sketches for a two-dimensional dataset is introduced. Given a spatial

object represented as a minimum bounding rectangle (MBR),the key idea in [DGR04]

is to maintain sketches for the whole rectangles, horizontal and vertical edges and the

corner points of the rectangles. Using these sketches, [DGR04] further showed how

they can be used for providing estimation to the spatial join between intervals and

rectangles. In addition, the technique was generalized for providing estimation for

the join of hyper-rectangles.

Discussion

Sketches offer several advantages. Firstly, sketches are able to provide a good esti-

mation of the results to various queries using limited space. Secondly, the size of the
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space is sublinear with respect to the data size. Thirdly, sketches are easy to maintain

and often require linear updating time.

In sketches, the original data is not stored. Instead, only the representation of

the data in the transformed sketch space is maintained. As the original data is

not available, one of the limitations of sketches is that they can only be used for

aggregation queries. While sketches can be used to estimate the join result size, they

cannot be used for approximating the results of join queries. In addition, each type

of sketch is usually designed for pre-specified aggregation computation. For example,

FM sketches are used for the distinct count problem, and AMS sketches are used for

self-join estimation. As noted by [CM05], during data stream processing, multiple

aggregates are often required. Hence, if each kind of sketch can be used for a specific

aggregation computation, multiple sketches will need to be constructed. The need to

maintain multiple sketches is expensive.

2.5.3 Wavelets

Wavelets [Gra95] are synopsis which provides multi-resolution representations of the

data. Wavelets have been used extensively as a data decomposition tool in various

applications. In [MVW98], wavelet histograms were used for selectivity estimations.

[CGRS01] uses wavelet for approximate query processing. In data mining applica-

tions, the use of wavelets have also been extensively studied [LLZO02]. Wavelets have

also been used for aggregate computations for static datasets [VW99]. In [pCF99],

wavelets are used to reduce the dimensionality of the time series datasets. The first

few wavelet coefficients are then indexed using an R-tree index. The index is used to

support range and nearest neighbour queries computation.

[GKMS03] proposed the use of L2-minimal wavelet synopses for aggregate compu-

tation over data streams for a single measure. [GKS04] extended the work to include

support for aggregation over multiple measures. In [PBF03], the AWSOM (Arbitrary

Window Stream mOdeling Method) method is proposed to automatically discover in-

teresting patterns and trends in sensors databases.AWSOM uses wavelets to represent

the sensors data, and make use of linear regression models to capture the correlations



2.5. DATA STREAM SYNOPSIS 27

between the wavelet coefficients. [GH05] showed the one-pass construction of wavelet

synopsis of data from data streams for non-euclidean measures

Amongst the various wavelet construction techniques that have been proposed, the

Haar wavelet [BGG97] is commonly used in data stream processing. This is because

Haar wavelet uses a simple wavelet basis, which allows it to be easily implemented.

Multiple resolution views of the data can be computed using a combination of aver-

aging and differencing computations. Haar wavelets provide a good approximation of

the data. The construction of Haar wavelet requires linear time w.r.t to the size of the

dataset. Most importantly, the preservation of Euclidean distance between the orig-

inal data and the transformed wavelet representation allows similarity computation

to be done in the transfromed space.

The Haar wavelet transform computes the average and differences using the values

of discrete function in order to obtain the summarized value in various resolution.

Given a discrete function f(x) = (16 18 24 22). Figure 2.1 shows the Haar transform

at various resolutions. In order obtain the value 17 in resolution 2, the average of 16

and 18 is computed. Similarly,, to obtain the value 23 in resolution 2, the average of

24 and 22 is computed. In addition, the coefficients are computed by computing the

differences between (16 18) and (24 22) respectively, and dividing it by 2 to obtain

(-1 1).

Resolution Averages Coefficients
4 (16 18 24 22)
2 (17 23) (-1 1)
1 (20) (-3)

Table 2.1: Example of Haar Transform

Haar transform can also be computed using matrix multiplication between the

transpose of the discrete function and the Haar transformation matrix H,





1 1

1 −1



 (2.2)

The Haar transformation is given in Equation 2.3.
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At resolution 2, the Haar transformation matrix is given as
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(2.4)

Using the discrete function f(x) = (16 18 24 22) given earlier, we can compute the

next resolution (i.e. Resolution 2) Haar transformation as follows:
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(2.5)

Using the H, the Haar transformation at resolution 1 is computed as follows:

1

2





1 1

1 −1



 ×





17

23



 =





20

−3



 (2.6)

This produces the value of the last average (i.e. 20) and the coefficient -3.

Discussion

One of the advantages of using wavelets is that the original data can be approximately

reconstructed using the wavelet synopsis. [MU05] noted that if the data contains

many similar values, the wavelet transformation usually results in wavelet coefficients

with very small values. When these small value coefficients are removed, it have

minimal impact on the errors between the reconstructed data and the original data.

One of the disadvantages of wavelet transformation (e.g. Haar wavelets) is that



2.5. DATA STREAM SYNOPSIS 29

they are efficient for dataset sizes that are multiple of 2. The transformation from

the original data to the wavelet synopsis results provides a ‘non-smooth’, ‘ladder-like’

approximation of the original data. [GH05] also noted that wavelet approximation for

the basis often uses half the difference between the left and right hand side of the basis

vectors. While this method has been shown to be optimal for the Euclidean-based

error measure, it is not optimal for Lm metric error measures.

2.5.4 Histograms

Histograms are synopsis which are constructed by partitioning the data distribution

into several buckets. Each of the buckets provides a count (i.e. frequency ) of the

number of tuples within the value range for the bucket. Histograms have been to

provide selectivity estimations to query optimizers, approximate query processing

and time series similarity computation. Various histogram construction techniques

have been proposed over the years. These include: EquiWidth [Koo80], EquiHeight

[PSC84], MaxDiff, Compressed, End-Biased and V-Optimal [IP95, PIHS96], MHist

[PI97] and approximate V-Optimal histograms [GSW04]. [Ioa03] provides a compre-

hensive discussion on the history of histogram.

Histograms that can be dynamically maintained in data stream applications have

also been proposed. [GKS01, GKS06] provide a detailed discussion of the use of

histograms for data streams applications. As noted by [GKS06], the accuracy of

histograms is dependent on an effective partitioning of the data into buckets, which

minimizes a given error measure. Amongst the many error measures, the V-Optimal

measure, which computes the sum of squares of the errors at every point i, is com-

monly used. The V-Optimal measure is as follows:
∑

i
(xi − x̂i)

2. [GK02] proposed

a fixed window histogram construction algorithm for data streams, which allow near

optimal histograms to be computed on-demand. The technique was used for approx-

imate range aggregation and time series similarity query processing.

Many variants of histogram construction have also been proposed. These variants

leverage on the advantages of other synopsis such as sampling, wavelets and sketch-

based methods. [CMN98] uses sampling prior to histogram construction. [MVW98]
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proposed the use of wavelet-based histograms. In [MVW98], Haar wavelets are used

to decompose the data. After decomposition, the B Haar coefficients with the largest

absolute (normalized) value are used. In addition, [MVW98] showed how the wavelet

histograms can be maintained over data streams. [TGIK02] proposed the use of

sketches for constructing V-optimal histograms over data streams. The key idea

in [TGIK02] is to consider the data distribution and histograms as point in high-

dimensional space. Given any histogram, the sketch is computed. The histogram

sketch is then compared against the sketch for the data distribution. An optimal

histogram can be obtained by finding the histogram which has a sketch that is very

similar to the sketch for the data distribution.

Discussion

One of the advantages of using histograms is that they are relatively easy to use

for answering a broad set of queries (e.g. range queries, size of join result). One

of the disadvantages of conventional histograms is that the data distribution for the

tuples within each bucket is not stored. In addition, the data distribution within a

bucket is often assumed to be uniform. Consequently, this impacts on the accuracy

of the estimation that is computing using the histogram. Another disadvantage of

histograms is that the accuracy of the histogram is often dependent on finding a good

partitioning of the data into buckets. In addition, optimal histogram construction

often requires the use of offline, dynamic programming techniques. This presents

challenges in using histograms in data stream applications. Several techniques have

been proposed [MVW98, GKS01, TGIK02, GKS06] to tackle these challenges.

2.5.5 Summary

In this subsection, we discuss the key ideas behind various type of synopsis that are

used in data stream processing. In addition, we also present the advantages and

disadvantages for each of the synopsis construction techniques.

In our thesis, we make use of sampling techniques for progressive, approximate

join processing. Amongst the different type of synopsis that are discussed, sampling
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provides a subset of the original dataset. This allows the approximate results of the

join queries to be produced incrementally as data arrives. In contrast, while sketches

have been used to provide estimation of aggregation queries, as well as estimating the

size of the join result (e.g. self-join), it is not able to produce an approximation of the

actual join results. This is due to the randomized projection of the original data to

the sketch space. While wavelets allow the re-construction of the data based on the

varying resolutions that are produced, it is expensive to re-construct the data in an

online manner. Indeed, this motivates the use of sampling techniques for progressive,

approximate join processing.

2.6 Progressive, Approximate Joins

In the data stream literature, various approximate query processing techniques have

been proposed for aggregation queries (e.g. quantile [GK01], heavy hitters [MM02]

and distinct counts [Gib01]) and join queries [DGR03, DGR05, AKLW07]. In this the-

sis, we focus on progressive, approximate join queries where the results are streamed

out to the user as soon as they are produced.

2.6.1 Progressive Joins

Progressive relational equi-join algorithms [TYP+05, TBL07c] studied the problem

of producing complete results over data streams. In order to work with limited

memory these algorithms need to flush tuples to disk whenever memory is full. These

disk-resident tuples are then joined at subsequent phases in order to produce the

complete join results. The goal of these algorithms is to maximize results production,

as well as ensure high result throughput during join processing. If we retain only

the in-memory processing phase, these algorithms are suitable for approximate join

processing. In this thesis, we modify one of the state-of-art progressive relational

equi-join algorithm, RRPJ [TBL07c], and show how it can be used for progressive

approximate join processing.
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2.6.2 Approximate Joins

In conventional databases, several techniques [OR86, Olk93, CMN99] have been pro-

posed for approximate join processing. These techniques construct a fixed size random

sample of the results for a relational query. The underlying assumption is that in-

dices are available for one or both of the datasets, or statistics on the data distribution

known apriori. [OR86, Olk93] assumes that indexes are available to facilitate efficient

random access to the data. Given two relations S1 and S2, it randomly chooses a

tuple tS1 from S1, and determines whether tS1 should be included into the sample

by computing its inclusion probability. If tS1 is included, a tuple tS2, with the same

join attribute, is then randomly chosen from S2 and joined with tS1. Noting this,

[CMN99] proposed a generalized technique for sampling the results of join queries

which do not require indices to be pre-constructed. In addition, Surajit et al. noted

that for skewed data distributions, the random sampling of results from join queries

could cause a worst-case scenario in which no join results are available. None of these

works deal with data streams. In this thesis, we show the impact of the worst-case

scenario for data stream processing.

Worst-case Scenario

In this section, we describe a static and dynamic case for the worst-case scenario noted

in [CMN99] for approximate joins. In the extreme scenario, the data distributions for

the relations to be joined are skewed.

It was noted that when the data distributions are skewed, the join of the samples

would not produce any results [CMN99]. Given two relations R1(A,B) and R2(B,C),

where A, B and C are attributes of the relations. Each relation consists of N tuples.

Figure 2.1 shows the data in each of the relations. Suppose we obtain two random

samples SR1 and SR2 from R1 and R2 respectively. The likelihood that the value b1

is selected and included in sample SR1 will be very low. Similarly, the likelihood that

the value b2 is selected included in sample SR2 is also very low. Thus, if we compute

the samples first, and then compute SR1 1 SR2, the results will be empty. We refer

to this as the static case. In the static case, we assume that all the data is available,
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and we first create the samples from each of the relations. The join is performed only

when the samples are created.

Figure 2.1: Extreme Case
A B B C
a1 b1 b2 c1

a2 b2 b1 c2

a3 b2 b1 c3

a4 b2 b1 c4

. . . . . . . . . . . .
aN b2 b1 cN

R1 R2

In contrast, we consider the dynamic case for data streams applications. In the

dynamic case, we progressively build the sample and perform the join at the same

time. Assume that we maintain two samples SR1 and SR2 , each of size n. In this

example, we set n = 2. Reservoir sampling [Vit85] is used to maintain the two

samples. When the tuple R1(a1,b1) arrives, we first probe SR2 to find any tuples that

can be joined. Since SR2 is empty, no results are produced. We then insert R1(a1,b1)

into SR1 . Next, when the tuple R2(b2, c1) arrives, we probe SR1 . Similarly, no results

are produced. R2(b2, c1) is inserted into SR2 . When the tuple R1(a2,b2) arrives, the

probe of SR2 will generate one result. It is then inserted into SR1 . Similarly, when

the tuple R2(b1,c2) arrives, it will join with the tuple in SR1 . As the two samples

are now full, when the next tuple arrives for R1, it will have a probability of 2/3 to

replace a randomly selected tuple in the reservoir. Since there are only two tuples

in the sample, the probability that the rare tuple R1(a1,b1) is replaced is 1/3. When

the size of the reservoir is large, the probability that the rare tuple will be replaced

in the dynamic case will be small. Thus, for the dynamic case, join results will still

be produced even for skewed distributions.

2.6.3 Progressive Approximate Joins

Several progressive approximate join algorithms [DGR03, DGR05, AKLW07] have

been proposed for data stream applications. In [DGR03] and its extended version
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[DGR05], the motivation was the maximization of the result subset produced. A

reference theoretical algorithm, called OPT-offline, was proposed. The algorithm

presents an optimal scenario in which the MAX-subset error measure is minimized.

They cannot be used for online applications. In order to deal with the online case, two

heuristics, PROB and LIFE, were proposed to maximize the expected output size.

The focus of the work was on maximizing the result output size of the approximate

join, and assumes the availability of a fast CPU for join processing. Given two

streams, S1 and S2, the priority of a tuple from S1 is computed based on the arrival

probability of tuples from S2. Priority queues are used for storing the in-memory

tuples. Whenever a tuple from S1 arrives, it will need to scan the entire priority queue

of S2 (and vice-versa). Our work differs in two aspects. Firstly, we show how auxiliary

data structures (i.e. hash-based priority queues) can be used to minimize the need

to scan all the tuples in memory. Secondly, we show that maximizing the output

size of the result does not necessarily ensure good result quality. We quantify the

notion of result quality, and propose a technique that is able to deliver good-quality

results progressively. Though [AKLW07] also studied the use of reservoir sampling

over memory-limited join, the focus of the work was on how to balance between the

memory allocated for join buffers and the reservoir. In addition, [AKLW07] do not

progressively output results.



Chapter 3

Generic Progressive Join

Framework

In this chapter, we present the issues that need to be considered for designing a

generic progressive join framework. These include the need for a data structure to

support efficient frequent probe-insert, and a data-model independent flushing policy

to determine the data to be flushed to disk whenever memory is full

3.1 Building Blocks for Generic Progressive Join

Framework

3.1.1 Data Structures

We focus on data structures used for hash-based joins. It is important to note

that even though progressive join algorithms based on sort-merge paradigm (e.g.

[DSTW02]) exist, these algorithms are not able to deliver initial results quickly, as

results can only be produced when the data structure (i.e. sweep area) used is suffi-

ciently full before sorting can be performed.

A data structure, D, used to store data and support the join algorithm must have

the following required properties: (1) Correctness and (2) Completeness. It must

ensure that the results produced are correct with respect to the join predicate used.
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In addition, it must ensure that the complete result set can be produced. In addition,

a desirable property is for the data structure is for it to be minimal. This means that

the data structure must ensure that the minimum number of partitions are scanned in

order to find the complete result set. For example, if we make use of a data structure,

D, for storing data from two data sources R and S. Given a tuple t from R, if all the

partitions from S need to be scanned in order to identify the result set, then D is not

minimal.

D divides the data space into equal-sized partitions, each denoted by Pi, where

i denotes the i-th partition. Whenever a new data object o arrives, a partitioning

function f determines the partition which o belongs to. Formally, f(o) → I, where I

denotes a set of partitions, N denotes the total number of partitions, and {1, ...., N}

∈ I. Ideally, |I| = 1 (i.e each object is assigned to a single partition).

For relational data, this can be easily achieved by choosing a good hash function, f,

which assigns each data object into a single partition. For spatial data, we make use of

the same spatial partitioning function used in Spatial Hash Joins [LR96]. Each spatial

object is replicated into the grid-cells in which it intersects. As observed in [LR96],

the replication is necessary to allow pairwise joins between partitions from each data

source. For high-dimensional data (i.e. n-dimension), each object is inserted into the

partition (i.e. grid-cell) in which is falls into.

Next, we introduce the notion of a correspondence function, κ. κ maps a parti-

tion P to the set of partitions from the other data stream that need to be scanned.

Formally, κ(P ) → J, where J denotes the set of partition(s) that need to be scanned

from the other data stream. This is illustrated in Figure 3.1, where a partition P

is mapped to a partition in the other data grid. It is important to note that it is

possible that a partition from one grid need not necessary map to the same partition

in the other data grid.

P

K(P)

Figure 3.1: Correspondence Function, κ
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Data Type Data Structure, DS Partitioning Function, f |I| κ

Relational Hash-based partitions Modulo 1 Identity

Spatial 2-dimensional Grid Insert each object ≥1 Identity
into the grid-cells in
which it intersects

High Dimensional n-dimensional Grid Insert each object 1 Non-identity
Data into the grid-cell it

falls into

Table 3.1: Various Data Structures

For both relational data and spatial data, κ is usually the identity correspondence

(i.e. I = J), which is necessary to ensure that only pairwise partitions (one from each

of the data streams) are scanned in order to identify the complete result set. This

helps to prevent redundant scanning of partitions which will not yield any results. If

the partitioning functions used for each of the data stream are not the same, then

κ is non-identity. For high-dimensional data, κ is non-identity. This is because, for

each grid-cell from one data stream, the grid-cell that are contains data that are

epsilon-distance needs to be scanned in order to find the complete result set. Table

3.1 summarizes the data structure, and the partitioning function used for each data

type.

3.1.2 Flushing Policy

Whenever memory becomes full, the flushing policy determines the tuples to be

flushed to disk. The goal of the generic progressive join framework is to design

flushing policies that are independent of the data model used. Consequently, this

allows the generic progressive join framework to be easily instantiated for other data

models easily. In contrast, flushing policies which are dependent on the input data

distribution and the type of join predicates cannot be easily generalized.
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3.2 Progressive Join Framework

We consider the problem of performing a join J between two datasets R and S, which

are transmitted from remote data sources through an unpredictable network. Let R

and S be denoted by R = {r1, r2, . . . , rn}, and S = {s1, s2, . . . , sm}, where ri and

sj denotes the i-th and j-th data objects. The join predicate is denoted by Jpred.

Formally, (ri, sj) is reported as the result if ri and sj satisfies Jpred. The goal of is to

deliver initial results quickly and ensure a high result-throughput.

The general form of a progressive join algorithm presented in Algorithm 1. In

Algorithm 1, we assume that there are two remote data sources, R and S. The in-

memory data structures used to store the data objects from R and S are denoted

by DR and DS respectively. endOfStream(. . . ) determines whether data from the

stream has completely arrived. This is usually indicated by an end-of-stream marker

sent by the remote data source. isBlocked(. . . ) determines whether data from the

stream is blocked (i.e. data did not arrive for a user-defined duration). ProcessUn-

JoinedData() determines the data that has not been previously joined and joins them

to produce results. select(R,S) gets the data from either of the data streams to be

processed.

In the In-Memory phase, whenever a new data object t arrives, it is used to probe

(line 9 or line 12) the corresponding data structure to identify all the data objects in

DSs that joins with it. Once the probe is completed, t is then inserted into the data

structure used to store the in-memory data (line 10 or line 13). During the insertion

of t, the algorithm needs to check whether the memory is full. If it is full, data needs

to be flushed to disk. This is determined by a flushing policy.

When both the data sources block (lines 2-5), the algorithm moves into the Block-

ing Phase. In order to produce results during this phase, the join algorithm joins the

in-memory data with the on-disk data. When all the in-memory data has been joined,

the algorithm would need to join disk-resident data from both the data sources. This

allows results to be produced even though both data streams are blocked.

In the Cleanup phase (line 17), data which have not been joined in the prior

phases are joined. These include joining in-memory data with disk-resident data and
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Algorithm 1 Generic Progressive Join
1: while ( !endOfStream(R) and !endOfStream(S) ) do
2: if ( isBlocked(R) and isBlocked(S) ) then
3: //Blocking Phase
4: ProcessUnJoinedData()
5: end if

6: //In-memory Phase
7: tuple t = select(R,S)

8: if ( t.src == R) then
9: DS.probe(t)

10: DR.insert(t)
11: else if (t.src == S) then
12: DR.probe(t)
13: DS.insert(t)
14: end if
15: end while

16: //Cleanup Phase
17: CleanUp()

18: return (Results tuples from the join)

disk-resident data with disk-resident data. These ensure that the complete result set

is produced. Due to the multiple invocation of the various phases, duplicate results

would be produced. These duplicates are removed using online duplicate elimination

methods which has been extensively described in [UF99] and [TYP+05].

3.2.1 Result-Rated Based Flushing

In this section, we present a flushing policy which maintains statistics over the result

distribution, instead of the data distribution. This is motivated by the fact that in

most progressive join scenarios, we are concerned with delivering initial results quickly

and maintaining a high overall throughput. Hence, the criteria used to determine

the tuples that are flushed to disk whenever memory becomes full should be ‘result-

motivated’. We refer to join algorithms that make use of the result-rate based flushing

policy as Result-Rate Based Progressive Join (RRPJ).

Whenever memory is full, we compute the Thi values (i.e value computed by
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formula given in Equation 3.3) for all the partitions. Partitions with the lowest Thi

values will then be flushed to disk, and the newly arrived tuple inserted. The main

difference between the RRPJ flushing and RPJ is that the Thi values are reflective

of the output (i.e. results) distribution over the data partitions. In contrast, the RPJ

values are based on input the data distribution.

To compute the Thi values (computed using Equation 3.3), we track the total

number of tuples, ni (for each partition), that contribute to a join result from the

probes against the partition. Intuitively, RRPJ tracks the join throughput of each

partition. Whenever memory becomes full, we flush nflush (user-defined parameter)

tuples from the partition that have the smallest Thi values, since these partitions

have produced the least result so far. If the number of tuples in the partition is less

than nflush, we move on to the partition with the next lowest Thi values.

Given two timestamps t1 and t2 (t2 > t1)and the number of join results produced

at t1 and t2 are n1 and n2 respectively. A straightforward definition of the throughput

of a partition i, denoted by Thi, is given in Equation 3.1.

Thi =
n2 − n1

t2 − t1
(version 1) (3.1)

From Equation 3.1, we can observe that since (t2−t1) is the same for all partitions,

it suffice to maintain counters on just the number of results produced (i.e. n1 and n2).

A partition with a high Thi value will be the partition which have higher potential

of producing the most results. Moreover, it is important to note that Equation 3.1

does not take into consideration the size of the partitions and its impact on the

number of results produced. Intuitively, a large partition will produce more results.

It is important to note that this might not always be true. For example, a partition

might contain few tuples, but produces a lot of results. This partition should be

favored over a relatively larger partition which is also producing the same number of

results. Besides considering the result distribution amongst the partitions, we must

also consider the following: (1) Total number of tuples that have arrived, (2) Number

of tuples in each partition, (3) Number of result tuples produced by each partition and

(4) Total results produced by the system. Therefore, we use an improved definition
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for Thi, given below.

Suppose there are P partitions maintained for the relation. Let Ni denote the

number of tuples in partition i (1 ≤ i ≤ P), and Ri denote the number of result tuples

produced by partition i. Then, the Thi value for a partition i can be computed. In

Equation 3.2, we consider the ratio of the results produced to the total number of

results produced so far (i.e. numerator), and also the ratio of the number of tuples

in a partition to to the total number of tuples that have arrived (i.e. denominator).

Thi = ( Ri
P
∑

j=1

Rj

)/( Ni
P
∑

j=1

Nj

) =
Ri×

P
∑

j=1

Nj

P
∑

j=1

Rj×Ni

(version 2) (3.2)

Since the total number of results produced and the total number of tuples is the

same for all partitions, Equation 3.2 can be simplified. This is given in Equation 3.3.

Thi = Ri
Ni

(version 2 - after simplification) (3.3)

Equation 3.3 computes the Thi value w.r.t to the size of the partition. For ex-

ample, let us consider two cases. In case (1), suppose Ni = 1 (i.e. one tuple in the

partition) and Ri = 100. In case (2), suppose Ni = 10 and R1 = 1000. Then, the

Thi values for case (1) and (2) are the same. This prevents large partitions from un-

fairly dominating the smaller partitions (due to the potential large number of results

produced by larger partitions) when a choice needs to be made on which partitions

should be flushed to disk.

3.2.2 Amortized RRPJ (ARRPJ)

In order to allow RRPJ to be less susceptible to varying data distributions, we intro-

duce Amortized RRPJ (ARRPJ). ARRPJ assumes that the arrival order of data is

not random w.r.t to the entire stream, but to a specific time interval. Thus, the set

of tuples that are received is not a random sample of the entire stream.

Suppose there are two partitions P1 and P2, each containing 10 tuples. If P1

produces 5 and 45 result tuples at timestamp 1 and 2 respectively, the Th1 value is
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5. If partition P2 produces 45 and 5 result tuples at timestamp 1 and 2 respectively,

the Th2 value for P2 will also be 5. From the above example, we can observe that

the two scenarios cannot be easily differentiated. However, we should favor partition

P1 since it is obviously producing more results than P2 currently. This is important

because we want to ensure that tuples that are kept in memory are able to produce

more results because of its current state, and not due to a past state.

To achieve this, let σ be a user-tunable factor that determines the impact of

historical result values. The amortized RRPJ value, denoted as At
i, for a partition i

at time t is presented in Equation 3.4. rj
i denotes the number of results produced by

partition i at time j. When σ = 1.0, then the amortized RRPJ is exactly the same

as the RRPJ. When σ = 0.0, then only the latest RRPJ values are considered. By

varying the values of σ between 0.0 to 1.0 (inclusive), we can then control the effect

of historical RRPJ on the overall flushing behavior of the system.

At
i =

σtr0
i
+σt−1r1

i
+σt−2r2

i
+......+σ1rt−1

i
+σ0rt

i

Ni
=

t
∑

j=0

σ(t−j)rj
i

Ni

(3.4)

3.3 Summary

In this chapter, we have presented the two key ingredients for the designing generic

progressive join algorithms. These include using a data structure that supports a

probe-insert paradigm, as well as a generic flushing policy, which builds a statistical

model on the output (i.e. result) distribution. Using these key ingredients, we propose

the generic Result-Rate Based Progressive Join (RPPJ) framework. In addition,

we also show an amortized version of RRPJ can be used to handle changing data

distributions for long running data streams.

We show the various instantiations for the RRPJ framework for different data

models in the next few chapters. These instantiations include relational (Chapter 4),

high-dimensional (Chapter 6), spatial (Chapter 5), and XML data (Chapter 7). In

each of these instantiations, we discuss the issues that needs to be considered for the

specific data model.



Chapter 4

Progressive Relational Join

In this chapter, we present the instantiation of the RRPJ framework for the processing

of progressive equijoin for relational data streams. The algorithm is of the X- and

symmetric hash join family. Its originality is twofold.

Firstly, the algorithm implements a replacement strategy for main memory parti-

tions that estimates the probability of partition to produce results directly from the

observation of output statistics. Previous proposals, such as the RPJ and LA algo-

rithms, have attempted to analytically construct such a model from the statistics on

the input streams. We showed that our algorithm is equivalent to RPJ in the cases

for which RPJs performance was evaluated by its inventors (we use the same data

sets). We showed that our algorithm significantly outperforms RPJ, when the uni-

formity hypothesis necessary to the estimation by the RPJ algorithm does not hold.

We therefore showed that our algorithm is globally better than RPJ empirically.

Secondly, we proposed an adaptive version of our algorithm that makes use of

amortization in order to incrementally weight out the influence of past statistics.

The same principle can be incorporated in previously proposed algorithms such as

RPJ and LA. This allows the algorithm to cater for changes over time in the input

data distributions. We showed that this technique leads to significant performance

increase in some cases. However, the results we obtained compel further studies in

order to understand the impact of the different parameters.

We consider the problem of performing a relational equijoin between two relational
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Dataset Parameter Default Values
Number of Tuples Per Page 85
Available Memory 1000 pages
Domain of Join attribute [1, 10000]
Tuple Inter-arrival 0.001s
Dataset Size (Relation R1 + Relation R2) 2 million tuples
Percentage of tuples flushed 10%

Table 4.1: Experiment Parameter

datasets, which are transmitted from remote data sources through an unpredictable

network. Let the two sets of relational data objects be denoted by R = {r1, r2, . . . , rn},

and S = {s1, s2, . . . , sm}, where ri and sj denotes the i-th and j-th data object from

the remote data source respectively. When performing a relational equijoin, with

join attribute A, a result is returned when ri.A is equal to sj.A. Formally, (ri, sj)

is reported as the result if ri.A is equal to sj .A. The goal is to deliver initial results

quickly and ensure a high result-throughput.

4.1 Performance Evaluation

In this section, we study the performance of the proposed RRPJ against RPJ. All

the experiments were conducted on a Pentium 4 2.4GHz CPU PC (1GB RAM). We

measure the progressiveness of the various flushing policies by measuring the response

time.

The experimental parameters are given in Table 4.1. Unless otherwise stated, the

datasets used in the experiments uses the default values given in the table.

4.1.1 Effect of Uniform Data within partitions

We generated the datasets HARMONY and REVERSE based on the dataset genera-

tion techniques described in [TYP+05]. We used the same arrival pattern HARMONY

and REVERSE. In this experiment, we evaluate the performance of the RRPJ against

RPJ. We measure the response time (x-axis) and the number of result tuples gen-

erated (y-axis). From Figure 4.1, we can observe that the performance of RRPJ is
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comparable to RPJ using the same datasets from [TYP+05], and hence is at least as

effective as RPJ for uniform data.
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Figure 4.1: Effect of Uniform-Data Within Partitions

In addition, we also studied the performance of the algorithms by varying the

number of tuples that are flushed whenever memory is full. Figure 4.2 shows the

results that are produced due to the in-memory tuples, and Figure 4.3 shows the

complete results that are produced. From Figure 4.2, we can observe that as the
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number of tuples that are flushed increases, the number of results produced reduces.

This is because when more tuples are flushed from memory, there is less tuples that

can be joined with newly arrived tuples from the corresponding data source. From

Figure 4.2, we can also observe that when a single tuple is flushed, it maximizes the

number of results produced during the in-memory join phase. However, it is impor-

tant to note that this results in the disk-resident partitions to be badly organized.

Consequently, this causes the cleanup phases which produces the complete result to

take a longer time to be processed (shown in Figure 4.3(a)). Similar results are ob-

served for the dataset Reverse. The graphs are presented in Figure 4.4 and Figure

4.5.

4.1.2 Effect of Non-uniform Data within partitions

In this experiment, we evaluate the performance of RRPJ against RPJ for non-

uniform datasets. We used the same arrival pattern HARMONY and REVERSE.

We restrict the domain for the join attribute for 50% of the tuples from one dataset

(R1) to be in the range [1,5000] and the domain of the join attribute for 50% of the

other dataset (R2) to be in the range [5001,10000]. We measure the response time

(x-axis) and the number of result tuples generated (y-axis).

From Figure 4.6(a) and Figure 4.6(b), we can observe that the RRPJ outperforms

RPJ by a large margin. This is because RPJ’s local uniformity assumption breaks

when the data within each partition is non-uniform. Comparatively, since RRPJ

tracks the number of results, it is able to identify the partitions that are not pro-

ducing any results, and hence avoid keeping tuples belonging to these non-productive

partitions in memory.

In addition, we also studied the performance of the algorithms by varying the

number of tuples that are flushed whenever memory is full. Figure 4.7 shows the

results that are produced due to the in-memory tuples, and Figure 4.8 shows the

complete results that are produced. Similar to the previous experiments, we can

observe in Figure 4.7, the number of results produced reduces when the number of

tuples that are flushed increases. In addition, we can observe in Figure 4.8(a) that if
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the number of tuples that are flushed each time is relatively small (e.g. one tuple),

then the time taken for the cleanup phase (in order to produce the complete result

set) is significantly large. This is because whenever few tuples are flushed to disk, it

is appended to a corresponding disk partition. This causes the tuples that are on the

disk partitions to be badly organized. As the cleanup phase uses a sort-merge join,

additional work needs to be done to sort the large number of tuples before results can

be produced. Another observation is that when the number of tuples flushed is 10%

or more, it does not have significant impact on the cleanup phase. This is similar to

the observation made in the earlier experiments on uniform data within partitions.

4.1.3 Varying Data Arrival Distribution

The datasets are generated as follows: We make use of a Zipfian distribution (with

tunable parameter θ) to determine the partition for assigning a newly-arrived tuple.

When θ = 0.0, the data distribution is uniform (i.e. a newly-arrived tuple have equal

probability of belonging to any of the partitions). When θ increases, the arrival dis-

tribution becomes more skewed (i.e. a newly-arrived tuple have higher probability to

belong to specific partitions). In order to simulate a varying data arrival distribution,

we re-order the partitions probabilities whenever every α tuples have arrived. The

partitions are randomly re-ordered. For example, when θ = 2.0, Table 4.2 shows the

arrival probabilities. During the initial stage, the probability that a newly arrived

tuple will belong to partition 1,2,3,4 and 5 are 0.68, 0.17, 0.08, 0.04 and 0.03 respec-

tively. During each reorder, these probabilities for a newly arrived tuple to belong to

a specific partition change.

In this experiment, we evaluate the performance of the Amortized RRPJ (AR-

RPJ) against RPJ and RRPJ, when the data arriving exhibits varying data arrival

distribution (i.e the probability that a newly arrived tuple belongs to a partition

changes). We vary the amortization factor, σ, for ARRPJ between 0.0 to 1.0. We

call the corresponding algorithm ARRPJ-σ. When σ = 0.0, only the latest RRPJ

values (i.e. number of results produced and size of data partition since the last flush)

are used. When σ = 1.0, ARRPJ is exactly RRPJ (it computes the average of the
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Arrival Probabilities, P Initial 1st Reorder 2nd Reorder
Partitions Assigned

0.68 1 2 3
0.17 2 3 4
0.08 3 4 5
0.04 4 5 1
0.03 5 1 2

Table 4.2: Arrival Probabilities, θ = 2.0

statistics over time).

In addition, α refers to the frequency of varying the data arrival distribution. For

example, when α = 32k, it means that the data arrival distribution is changed after

32k tuples have arrived.

The results are shown in Figure 4.11(a)-(f). In addition, we summarize the

throughput (i.e. number of result tuples produced over time) of each algorithm in

table 4.3. In table 4.3, we can observe that an amortization factor = 0.0 need not

necessarily be the best (highlighted in bold). There is a need to balance between

the impact of past and current results. From Figure 4.11(a)-(e), we can observe that

ARRPJ (with different amortization factor) performs much better than RRPJ. Also,

when the data distribution changes frequently (e.g. Figure 4.11(f), α = 0k), the

performance of RRPJ and ARRPJ are similar.

α RRPJ ARRPJ-0.0 ARRPJ-0.2 ARRPJ-0.5 ARRPJ-0.8 ARRPJ-1.0

0 4113 4128 4128 4125 4119 4113

4 6735 7719 7950 7665 7541 6735

8 9783 12266 12009 11503 10551 9783

16 11879 20133 20038 19428 17307 11879

20 10027 25140 25152 24554 20887 10027

32 12177 36388 36053 34685 27120 12177

Table 4.3: Throughput of various methods (Summary of Fig 4.11 )

When α = 0k, the data arrival distribution is re-ordered aggressively (changes

each time a tuple arrives). Thus, all the methods (including RPJ and XJoin) perform

similarly. This is because none of the methods can make use of the statistics gathered
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to do effective prediction of which tuples to keep in memory combined with a generally

smaller number of possible results. However, when α increases from 4k to 32k, we can

observe that ARRPJ (with different α) outperforms RRPJ. This is because ARRPJ

was able to better reduce the impact of the past results by amortizing the RRPJ

values. RRPJ does not perform as well, since RRPJ does not differentiate between

past and current results. From Figure 4.11, we can also observe that as the data

changes less frequently (i.e. when α varies from 0K to 32K), the total number of result

tuples significantly increases. This is because when the data distribution changes less

often, the statistics computed could be used for more effective prediction of which

tuples need to be kept in memory.

In addition, we also conducted additional experiments where we varied ρ (per-

centage of pages flushed each time memory is full, and θ (skewness of the data distri-

bution). Similar trends are observed. When θ is 0.0 (i.e. uniform data), all methods

(i.e. RPJ, RRPJ, ARRPJ) performs the same.

These experiments suggest however that several factors influence the correct eval-

uation of the output statistics when data distribution is changing over time. The

amortization formula must be tuned with respect to the size of the buffer, the per-

centage and size of the replaced partitions as well as the frequency of the replacement.

While the purpose of this paper is to introduce the idea of amortization and illustra-

tively quantify its potential, such fine tuning is left to future work.

4.2 Summary

In this chapter, we presented an instantiation of the RRPJ framework for relational

equijoin. Through extensive empirical studies, we show that the relational instantia-

tion of the RRPJ framework is indeed effective and efficient. In addition, the relational

instantiation do not rely on a local uniformity assumption within each hash parti-

tions. This allows the relational instantiation to be used for skewed datasets, where

the data within each partition is non-uniform.
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In the subsequent chapters, we will show other instantiations of the RRPJ frame-

work for other data models. This includes the progressive processing of spatial, high-

dimensional and XML data.
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Figure 4.2: Effect of Uniform-Data Within Partitions - Harmony (Varying Number
of tuples flushed)
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Figure 4.3: Effect of Uniform-Data Within Partitions - Harmony (Varying Number
of tuples flushed / Complete results produced)
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Figure 4.4: Effect of Uniform-Data Within Partitions - Reverse (Varying Number of
tuples flushed)
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Figure 4.5: Effect of Uniform-Data Within Partitions - Reverse (Varying Number of
tuples flushed / Complete results produced)
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Figure 4.7: Effect of non-uniform-Data Within Partitions - Harmony (Varying Num-
ber of tuples flushed)
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Figure 4.8: Effect of non-uniform-Data Within Partitions - Harmony (Varying Num-
ber of tuples flushed / Complete results produced)
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Figure 4.9: Effect of non-uniform-Data Within Partitions - Reverse (Varying Number
of tuples flushed)
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Figure 4.10: Effect of non-uniform-Data Within Partitions - Reverse (Varying Number
of tuples flushed / Complete results produced)
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Figure 4.11: Varying Data Distribution



Chapter 5

Progressive Spatial Join

In the chapter, we present the instantiation of the RRPJ framework for the progressive

spatial join using limited main memory.

The progressive spatial join problem is defined as follows: We consider spatial

objects which are streamed from remote data sources through an unpredictable net-

work. Let the two sets of spatial objects be denoted by R = {r1, r2, . . . , rn}, and

S = {s1, s2, . . . , sm}, where ri and sj denotes the i-th R and j-th data objects re-

spectively. In a spatial join, a result refers to a pair of objects, from each of the

spatial data streams, which satisfies a spatial predicate. In this thesis, we focus on

the most commonly used spatial predicate - intersection. Formally, (ri, sj) is reported

as the result if ri intersects sj. Without loss of generality, we assume that the data

objects are approximated by their respective minimum bounding rectangles (MBRs).

By progressive, we refer to the ability of the join algorithm to continuously deliver

results steadily as data arrives.

In addition, we assume that that the memory size is small relative to the total

number of objects that needs to be joined. Our goal is to maximize the join result

throughput of the spatial intersection join using the tuples that are kept in memory.
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5.1 Grid-Based Progressive Spatial Join

A key requirement for an efficient progressive spatial join is that each partition should

only be matched against the corresponding partition in the other data source. To

partition spatial data, we can make use of either the spatial partitioning technique

(similar to [LR96]) or a grid-based approach [PD96]. In [LR96], the Spatial Hash Join

assumes that the data sets are local and uses the seeded tree for partitioning the data

space. However, the seeded tree technique cannot be used as the basis for building a

non-blocking, progressive spatial join algorithm due to its blocking nature (i.e. the

seeded tree is built only when the entire dataset has arrived!).

We propose to make use of a grid-based approach, to support fast insertions and

probing. Whenever a new MBR from a spatial data stream arrives, it is used to

probe the grid of the other spatial data stream. The use of a grid-based approach

is attractive because it reduces the need to scan all the in-memory objects, but is

restricted to probing only the grid-cells in which it intersects. This greatly reduces

the search space. We make use of the same flushing strategy for relational joins.

The advantages of a grid-based approach are as follows. Firstly, it does not require

pre-processing of the entire dataset, and hence makes it favorable for supporting

online spatial join algorithms, which requires fast response. Secondly, yhe cells are a

simple and natural analogy to the partitions used in a relational hash join. Similar to

the pairwise comparisons of corresponding partitions (partitions with the same hash

value) in a relational hash join, it suffice to compare corresponding cells, one each

from the data source

In the grid-based approach, the data universe is first partitioned using an equi-

width grid consisting of cells, with width w. Each grid cell consists of a memory

(cellmem
ij ) and disk portion (celldisk

ij ), where i, j denotes the row and columns identifiers

respectively (illustrated in Figure 5.1). Each celldisk
ij contains the MBRs that has been

flushed from memory. Whenever a new MBR arrives, it is inserted into the in-memory

grid cells it intersects with.

The key idea is that whenever a new data object arrives, it is hashed into one

or several of the grid cells in which it intersects. The use of hashing in spatial joins
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was first explored in the Spatial Hash Join (SHJ) work [LR96, PD96]. SHJ assumed

that no indexes are pre-constructed. In order to deal with the coherent assignment

problem [LR96] (inherent in spatial joins), data needs to be replicated into several

grid cells. The advantage of the replication is that it allows pairwise grid cells to be

matched exactly once, and hence reduces the need to scan the entire grid, greatly

reducing the overall computation cost. However, duplicate results are produced due

to the replication and are removed in an online manner using the Reference Point

Method in Section 5.1.1.
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Figure 5.1: Memory and Disk Partitions

If the spatial distribution of the data objects is skewed, some of the partitions will

have more data objects than the others. To ensure that the data objects are balanced

uniformly amongst the partitions, the tiling method used in [PD96] can be used. In

the tiling method, P partitions is created using a grid with N cells, where N ≥ P .

Each grid cell is also referred to as a tile. A tile-to-partition mapping is used to map

the partitions to a tile. Several mapping functions are described, which includes: (1)

Round-robin or (2) Hashing. The tiling method is illustrated in Figure 5.2, where

N = 9 and P = 4. A round-robin tile-to-partition mapping assigns each tile to its

corresponding partitions.

5.1.1 Duplicate Removal

. We make use of the Reference Point method in [DS00] for duplicate removal in the

progressive grid-based spatial join. In a grid-based progressive spatial join, duplicate
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Figure 5.2: Tiling Method : Round-Robing Tile-Partitioning

results can be produced due to the following: (1) MBRs that are inserted into multiple

grid cells could produce duplicate results. (2) Multiple invocation of the join between

the in-memory cells with the disk-resident cells (during the md stages), and the

disk-resident cells with the disk-resident cells (during the dd stages) could produce

duplicate results. To ensure correctness of the spatial join algorithm, the duplicates

results needs to be removed.

To tackle the first issue, the Reference Point Method [DS00] is used to prevent

duplicate results from being generated from the insertion of an MBR to multiple grid

cells. In Figure 5.3, MBR r and MBR s intersects. Since an MBR is assigned to the

grid cells in which it intersects, MBR r would be inserted to the cells (0,0), (1,0),

(2,0), (0,1), (1,1), (2,1), (0,2), (1,2) and (2,2), and MBR s would be inserted to the

cells (1,1), (2,1), (3,1), (1,2),(2,2),(3,2), (1,3), (2,3) and (3,3). During the spatial

join, when the MBRs in pairwise grid cells are joined, results would be produced

four times since MBR r and s joins in cells (1,1), (2,1), (1,2) and (2,2). In order to

do duplicate elimination, the Reference Point method uses a point, p, to determine

which grid cell the result should be generated. Given that an MBR is defined by

the coordinates (x1, y1, x2, y2), the reference point, p, between two MBRs r and s is

defined as follows:

p = (max(r.x1, s.x1), min(r.y2, s.y2))

When computing the spatial join between pairs of corresponding grid cell, the

result is generated if the reference join of the two intersecting MBRs falls in the same

grid cell. For example, in Figure 5.3, the result is only generated once in the cell

(1,2), indicated by the reference point (i.e. black dot).
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To tackle the second issue, we make use of the timestamp technique described

in XJoin [UF99]. Each MBR is associated with two timestamps: Arrival timestamp

(ATS) and Departure Timestamp (DTS). ATS is set when the MBR arrives from its

data source, whereas DTS is set when the MBR is flushed to a disk partition. Once

assigned, the timestamp cannot be modified. If the MBR is in memory, its DTS is set

to be ∞. The interval between ATS and DTS denotes the time in which the MBR is

in memory. If the {ATS,DTS} timestamps of a pair of MBRs (one from each of the

data source) overlaps, it means the results have already been produced during the

time in which both MBRs were in memory. Hence, when the same pair is compared

during the md-stage, no results needs to be produced. In the md-stage, results are

produced for pairs of MBRs whose {ATS,DTS} timestamp do not overlap.

0

1

2

3

0 1 2 3

r

s

Figure 5.3: Reference Point Method

5.1.2 Flushing Strategy Variants

In this section, we discuss various different strategies that is used to identify the MBRs

that are flushed to disk whenever memory is full. We propose a naive extension to

RPJ for spatial data, which we call RPJ Spatial.

Naive extension to RPJ for spatial data (RPJ) A naive extension to the

RPJ [TYP+05] model is that instead of using 1D partitions (for relational data),

we use 2D partitions (i.e. grid). RPJ estimates the probability P(R1) and P(R2)

by maintaining a counter nrcnt
i for each relation Ri (initially set to the number of

arriving Ri tuples between the initial time interval [0,1]). In the RPJ Spatial model,

the arrival probability parr
i (v) of a tuple belonging to relation Ri and belongs to the

partition (j, k) is then computed in Equation 5.1 (Refer to [TYP+05] for the complete
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proof for the 1D partition model). In RPJ Spatial, we maintain counters ntotal
i [(j, k)]

for each Cell(j,k) (i.e. cell at row j, column i in a grid) for a r x c grid.

P arr
i [Cell(j, k)] =

ntotal
i [Cell(j, k)]

r
∑

j=1

c
∑

k=1
ntotal

i [Cell(j, k)]
·

nrcnt
i

nrcnt
1 + nrcnt

2

(5.1)

When memory is full, numFlush data objects residing in the cells with the small-

est P arr
i [Cell(j, k)] are flushed to disk.

RRPJ In RRPJ, we track the number of results and the size of each partition

and uses Equation 3.3 to compute the Thi values in order to determine the tuples to

be flushed to disk.

RRPJ-F In RRPJ-F, we track the number of results produced by each tuple

(using Equation 3.3), and use this to determine which tuples to be flushed to disk.

Since the results are tracked per tuple, the size of a partition is set to 1.

5.2 Performance Evaluation

In this section, we evaluate the performance of the various flushing strategy against

a naive extension to RPJ. The algorithms are implemented in C++. All the ex-

periments were conducted on a Pentium 4 2.4GHz CPU PC (1 GB RAM). The

memory/disk page size is fixed at 4096 bytes. We measure the progressiveness of the

various flushing strategies by considering the number of data that have arrived vs the

number of results produced. Without loss of generality, we use MBR representation

for data objects.

In all experiments, we assume that there are two finite spatial data streams, R

and S. The parameters and values for the experiments are presented in Table 5.1.

5.2.1 Dataset Generation

The spatial datasets used in the experiments are generated as follows. We divide the

space into a n x m grid, with equi-width grid cells. Each grid cell has width w. For

each data stream, we randomly pick a (i, j) cell (i-row, j-column in the grid, i ≤ n, j
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Parameter Values
Disk Page Size 4096 bytes
Grid Size 10 rows x

10 columns
Memory Size, M 1000 pages
Number of MBRs per disk page 102
Number of MBRs flushed to disk 10% of M
α, Degree of Uniformity [0.2-0.8]
within the grid cells
ρ, Degree of Replication [0.0-1.0]
β, Number of cells which 2 (default)
a MBR is replicated ,4,8
Dataset Size 2 million MBRs

Table 5.1: Experiment Parameters and Values

≤ m). Next, we generated a MBR by randomly picking 4 coordinates (x1, y1, x2, y2),

where (x1, y1) refers to the lower-left corner of the MBR, and (x2, y2) refers to the

upper-right corner of the MBR. We consider the data space to be [0, 1] x [0, 1], and

the width of each cell for a 10 x 10 grid is 0.1.

Given two spatial data streams, R and S. In order to generate data (in which we

vary the data uniformity for a cell), we first determine the set of αnm cells where the

MBR within each cell do not intersect. Whenever we generate a (i, j) cell, and the

(i, j) cell belongs to the set of the αnm cells, we divide the cells into 2 equal sub-cells.

A R MBR is generated for one of the sub-cell and a S MBR is generated for the other

sub-cell.

In order to generate data for varying ρ, we follow the same data generation pro-

cedure. Next, we randomly generate a number, dprob (0 ≤ dprob ≤ 1). If dprob ≥ ρ,

then we extend the MBR size to overlap with the number of cells specified by β.

5.2.2 RPJ vs RRPJ

In this experiment, we evaluate the performance of methods which uses statistical

models on the data distribution (RPJ) against our proposed model of using the result-

distribution (RRPJ).
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We vary the effect of data uniformity within the grid cells. The parameter, α,

determines the percentage of cells in the grid where the MBR belonging to two data

streams R and S do not overlap. When α = 0.0, the MBRs within each cell is

uniformly distributed (i.e. MBRs from R and S have equal chances of intersecting).

When α = 1.0, the MBRs from R and S do not overlap (i.e. no join results is

produced). We vary α from 0.0 to 0.8 (1.0 is omitted because no results is produced).

We measure the number of results produced (y-axis) vs the percentage of the data

that has arrived (x-axis).

From Figure 5.4(a), we can observe that when α = 0.0, the performance of all

the flushing strategies are similar. When α varies from 0.2 to 0.8 (Figure 5.4(b)-(c)),

we can observe that RRPJ outperforms all the other methods. The main reason

is because since RRPJ tracks the result-distribution, it is able to distinguish be-

tween productive cells, containing large number of MBRs, (which produce results )

compared to un-productive cells containing large number of MBRs (which do not

produce results). Comparatively, the spatial version of RPJ was not able to perform

as well due to the assumption of local uniformity within each partition/cell.

5.2.3 Effect of Spatial Extents

In this section, we study the effect of replication of the ids, ρ, on the performance

on RRPJ and RRPJ-f. We fix β= 2 (i.e. if a MBR is duplicated, it occupies 2 grid

cells). We vary the probability in which a MBR will be replicated. This is denoted

by ρ which varies from 0.0 to 1.0. When ρ = 0.0, then the MBR are not replicated,

and each MBR generated from the respective data streams fit into a grid-cell. When

ρ = 1.0, then every MBR that arrives needs to be duplicated into 2 grid cells. We

measure the number of results produced (y-axis) with respect to the percentage of

data that has arrived (x-axis).

From Figure 5.5, we can observe that RRPJ-f outperforms RRPJ by producing

more results. This is because RRPJ-f tracks the individual results produced by each

tuple, and hence it able to more accurately determine the tuples which will produce

more results. This incurs more space compared with RRPJ which tracks only the
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Figure 5.4: Varying Data Uniformity within Grid

total results produced by each partition.

5.3 Summary

In this chapter, we presented an instantiation of the RRPJ framework for the spatial

intersection join. This further emphasis the generic nature of the flushing policy that

is introduced in the RRPJ framework, which allows it to be instantiated for other

data models easily.
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Chapter 6

Progressive Distance Similarity

Join

Conventional distance similarity join algorithms batch process datasets that reside

on local storage. The algorithms are blocking. They are unsuitable for progressively

computing the similarity join of streams of high-dimensional data as they cannot

produce results progressively, i.e. as soon as data is available.

In this chapter, extending the RRPJ principle, we propose an effective and efficient

algorithm for the progressive computation of the similarity of high-dimensional data

that are streamed from remote data sources, using limited main memory. We consider

two d-dimensional bounded data streams R and S. We refer to data from R and S as

Ri and Sj respectively (0 ≤ i ≤ |R|, 0 ≤ j ≤ |S|), where |R| and |S| are the total

number of data objects in R and S respectively. Each data point consists of d values.

Given a data point Ri, the values are (ri1, ri2, . . . , rid), where rix denotes the x-th

value ( 1 ≤ x ≤ d). Similarly, for a data point Sj, the values are (sj1, sj2, . . . , sjd).

The results of a similarity join between R and S, SimJoin(R,S), consists of all

object pairs (Ri, Sj), where Dd(Ri, Sj) ≤ ǫ, Here, we consider without loss of gen-

erality Dd to be the Euclidean distance, where Dd(Ri, Sj) = (
d
∑

x=1
|(rix − sjx)

2|)
1
2 . ǫ is

a user-defined threshold, which determines the maximum dis-similarity between Ri

and Sj . Notice that the similarity join is symmetrical.
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6.1 Grid-Based Similarity Join

We use the probe-and-insert approach as described in [WA91] and [TBL07c].

6.1.1 Probing

Whenever a new tuple, td, arrives (from one of the data streams), it is used to probe

the in-memory tuples from the other data stream. In order to efficiently identify the

tuples to be probed, a d-dimensional grid is used to partition the data space. The

scanning for potential result tuples is restricted to the cell in which td falls into and

to its neighboring grid cells (those within ǫ distance of the border of the grid cell).

We first identify the grid cell in which td falls into and the cells that are within

ǫ-distance. Once the cells are identified, we check whether each tuple, t, in the grid

can be joined by checking the Euclidean distance between td and t.

We keep track of the number of results produced by each grid cell using a counter,

numResults. Once the probing of the grid cell c is completed, we update the statistics

for the grid cell.

6.1.2 Insertion and Flushing

We then identify the grid cell in which the new tuple should be inserted (Line 1).

If there is space, td is inserted into its own grid. If memory is full, we invoke

F lushDataToDisk() which flushes data to disk to make space for newly arrived

tuples. We then insert td into the grid cell g (Line 4).

For each ith cell of the grid ( with 1 ≤ i ≤ n, where n is the total number of

grid cells), we maintain a count. The cells to be flushed are determined based on

this value. The two flushing strategies that we propose differ in the way the value is

computed (described in Section 6.1.3) and the partitions to be flushed are selected.

Partitions are flushed until NumFlush (user-defined) tuples have been flushed.
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6.1.3 Flushing Strategies

Naive Extension to RPJ (neRPJ)

We propose an extension to RPJ, called Naive Extension to RPJ (neRPJ) for high-

dimensional data. The neRPJ algorithms maintains the neRPJ value, that is the

number of data in a cell divided by the total number of data. The opposite cell (that

is the matching cell in the other streams partition) to the grid cell with the smallest

neRPJ value is flushed.

In the relational case, the mapping of a cell in one stream to the opposite stream is

1-to-1. When we probe for result tuples, we probe only a single cell from the opposite

data stream. However, when dealing with high-dimensional data, besides probing the

corresponding cell from the opposite data stream, we need to probe the neighboring

cells (those within ǫ distance) as well. When neRPJ flushes an opposite cell, it might

have inadvertently flushed a cell that could produce results at a later time.

Result Rate-based Flushing (RRPJ)

The Thi value is an estimate of the productivity of the i-th cell (with 1 ≤ i ≤ n,

where n is the total number of cells used to store the data). In the equation below,

Ri is the total number of results produced by the i-th cell and Ni is the total number

of tuples in the i-th cell.

Thi = Ri
Ni

(6.1)

The RRPJ algorithm maintains the Thi value (Equation 3.3). In RRPJ, the grid

cells with the smallest values are flushed.

6.2 Performance Evaluation

In this section, we compare the performance of the algorithms (RRPJ, neRPJ and

Random). We measure the number of result tuples generated (y-axis) vs percentage

of data that have arrived (x-axis). In all experiments, we assume that there are two
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finite d-dimensional datasets. Each dataset is characterized by the data distribution

and the order of arrival of the data. In Section 6.2.1, we use a uniform and skewed

datasets. For the skewed dataset, we also consider various correlations between the

data distributions - Harmony and Reverse [TYP+05]. In addition, we compare the

performance of the algorithms in two extreme cases. In the first case (Section 6.2.2),

we use a ‘checkered’ dataset. In the second case (Section 6.2.3), we consider the case

where the data in some of the grid cells are non-uniformly distributed. In Section

6.2.4, we validate the effectiveness of the proposed algorithm for real-life data using

the COREL [htt99] dataset.

We implemented all the flushing strategies in C++, and conduct the experiments

on a Pentium 4 2.4 Ghz PC (1GB RAM). Unless otherwise stated, the parameters

presented in Table 6.1 are used for the experiments. Similar to [TBL07c], we refer to

the proposed result rate-based method for high-dimensional data as the Result-Rated

Based Progressive Join (RRPJ). In addition, we also included a Random method as

a baseline. Whenever memory is full, the Random method randomly selects a grid

cell to be flushed to disk.

Table 6.1: Experiment Parameters and Values
Parameter Values

Disk Page Size 4096 bytes

Number of cells Per Dimension 4

Memory Size, M 1000 pages

Number of points per disk page 85

Number of MBRs flushed to disk 10% of M

Dataset Size (for 2 streams) 500K data points

Similarity Join Distance Threshold, ǫ 0.1, 0.2, 0.3

6.2.1 Uniform and Skewed Dataset

The goal of these experiments is to compare the performance of the algorithms us-

ing uniform and skewed datasets. In addition, we also vary the order of arrival of

the data. In Figure 6.1, we can observe that the results are consistent with earlier
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observations for relational data [TBL07c]. When the data from the datasets are uni-

formly distributed, each tuple is equally probable to contribute to a result. Hence,

all flushing strategies are equally efficient and as good as random. This is illustrated

in Figure 6.1.

In the next experiment, we consider skewed dataset. We simulate clustered data

by dividing the space into a d-dimensional grid, and by varying the cardinality of the

grid cells based on a Zipfian distribution. We set the skewed factor for the Zipfian

distribution, σ to be 1.0. Thus, some grid cells have more data than others. In

addition, we also investigated the impact of the correlation between the two data

streams on the datasets (we use two schemes used in [TYP+05] called HARMONY

and REVERSE ). In the HARMONY scheme, corresponding clusters on each stream

have the same density of data. In the REVERSE dataset, corresponding clusters

have reverse densities (according to the grid numbering). In addition, we use a third

scheme in which data is reverse and arrive in a random order.

RRPJ outperforms the other methods in all cases. It is more the case with a

REVERSE randomized dataset (Figure 6.4a-c) than with a REVERSE Figure (6.3a-

c), than again with a HARMONY dataset (Figure 6.2a-c). In other words, RRPJ is

capable of adapting to the irregularities of the datasets distribution and arrival.

6.2.2 Checkered Data

We now consider the extreme case in which data is generated by alternating the cells

in which the data falls into on each stream. In one dataset, only the even cells contain

data. In the other dataset, only the odd cells contain data. Thus, the data in the

two data streams are somehow ‘disjoint’. We refer to the dataset as the checkered

dataset.

From Figure 6.5, we can see that RRPJ outperforms neRPJ. This is because

whenever memory is full, neRPJ first determines the cells with the lowest neRPJ

values and flushes the cells in the other data stream. However, this might not be the

optimal decision, since the cell that is flushed could be a cell that could contribute to

a large number of results. Recall that in a high-dimensional similarity join, we do not
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just scan the corresponding cell, but also its immediate neighborhood. Since RRPJ

determines the results for each cell, and flushes cells with the lowest Thi values (and

not the cell from the other data stream), it is able to differentiate between cells that

contribute to large number of results from cells that do not.

6.2.3 Non-Uniform Data within Cells

The worst-case scenario for RPJ is when the local uniformity assumption for cells

does not hold. We construct such a data set by having cells where the majority of

the data in one cell do not entirely ‘join’ with the data in the other cell. We refer

to this as non-uniformity within cells. We restrict the range of values for some of

the dimensions, which we refer to as non-uniform dimensions. For each non-uniform

dimension, we limit the random values generated to be in the range [0,0.5] for one

dataset, and [0.6,1.0] for the corresponding data set. Given a d-dimensional dataset,

we set d/2 of the dimensions to be non-uniform dimensions, and the remaining to be

uniform dimensions. The results are presented in Figure 6.6, where we observed that

RRPJ performs much better than neRPJ. This is because neRPJ relies on a local

uniformity assumption for the data within cells, which does not entirely hold in this

worst-case scenario. In contrast, RRPJ do not suffer from this problem because it

tracks the statistics on the result output of cells. In Figure 6.6(c), we make use of ǫ

= 0.3 in order to produce readable figure, but verified that the result for various ǫ

values are consistent.

6.2.4 Real-life Datasets

Finally, we validate the effectiveness of the proposed RRPJ algorithm for real-life

datasets. In this experiment, we use the Corel (Color Moment) dataset [htt99]. The

Corel dataset consists of 9 dimensional features for 68,040 images. We created two

data streams by randomizing the order of the data for both datasets. We then perform

a self-join on the data. From Figure 6.7, we can observe that RRPJ outperforms

neRPJ and Random in all cases for varying ǫ. This further reinforces the advantages

from using a result-rate based approach.
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6.3 Summary

In this chapter, we propose a novel progressive high-dimensional similarity join algo-

rithm. The algorithm uses a result-rate based flushing strategy. It is an extension

of our previous work on progressive relational equijoin [TBL07c] to the case of high-

dimensional data.

We have conducted an extensive performance analysis, comparing our proposed

algorithm with a naive extension of RPJ [TYP+05] (a state-of-the-art progressive

relational join), called neRPJ, to high-dimensional data . Using both synthetic and

real-life datasets, we have shown that our proposed method, RRPJ, outperforms

neRPJ by a large margin and is therefore both effective and efficient. In contrast to

conventional similarity join algorithms, RRPJ can deliver results progressively and

maintain a high result throughput.
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Figure 6.2: Varying Dimension: Skewed Dataset - Harmony
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Chapter 7

Progressive Join of Multiple XML

Streams

In this chapter, we present an instantiation of the RRPJ framework for progressive

XML processing. In addition, we also show how the result-oriented focus of the

RRPJ framework can be used effectively for determining an ideal probe sequence for

multi-way joins.

The ubiquity of network accessible XML data necessitates the design of XML

query processors which can process complex queries over multiple XML data streams.

For example, expressive RSS aggregators e.g. Yahoo Pipes [Yah07], Danaides [TBL07a])

require support for effective and efficient processing of complex queries. Thus, we need

to devise XML query processors for XML languages such as XPath or XQuery that

supports the processing of structural and predicate constraints as well as join queries

[HDG+07] over multiple XML data streams. In order to ensure a good user experi-

ence, the XML query processors must deliver initial results quickly, and maintain a

consistent high result throughput. Main memory is limited and when it is full, data

needs to be flushed to disk. As we need to produce results progressively with a high

throughput, we need to effectively manage the XML data that is kept in memory and

favor data that is most likely to contribute to the result. A key insight is to make use

of statistics from either the input (i.e. data) or output (i.e. result) distributions.

We propose a practical approach to the progressive processing of (FWR) XQuery

85
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queries on multiple XML streams, called Twig’n Join (or TnJ). The query is decom-

posed into a query plan combining several twig queries on the individual streams,

followed by a multi-way join and a final twig query. The processing is itself accord-

ingly decomposed into three pipelined stages progressively producing streams of XML

fragments. Twig’n Join combines the advantages of the recently proposed TwigM al-

gorithm and our previous work on relational result-rate based progressive joins. In

addition, we introduce a novel dynamic probing technique, called Result-Oriented

Probing (ROP), which determines an optimal probing sequence for the multi-way

join. This significantly reduces the amount of redundant probing for results. We com-

paratively evaluate the performance of Twig’n Join using both synthetic and real-life

data from standard XML query processing benchmarks. We show that Twig’n Join

is indeed effective and efficient for processing multiple XML streams.

The problem is defined as follows. Given two XML data streams, R and S, where

the XML data are delivered tag by tag from remote data sources. twig pattern

(extracted from the XQuery query) Tr and Ts are defined for R and S respectively.

XML result fragments Fr and Fs are produced for portions of the XML documents

that matches Tr and Ts respectively. The user define a set of join attributes A in

which the XML fragments can be joined. A result <Fr, Fs> is reported if Fr and Fs

fulfill the join attribute condition defined by A. Our goal is to be able to progressively

deliver the result.

Consider the following query example. A user is interested to know the latest

news based on his blog entries. This is achieved by comparing the tag of the blog

entries and the keyword for the news entries. Both the news and the blog entries are

made available as RSS feeds (i.e. XML streams). In order to combine the entries

from the blog and the news entries, we can make use of a join between the new and

blog XML streams. The join predicate A is q/tag =s//techNews/keyword. This can

be expressed as the following XQuery query.

(for $s in doc("news.xml")//item

for $q in doc("blogs.xml")//entry

where $q/tag=$s//techNews/keyword

and contains($s/title, "CNA")
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return

<resultTuple>

{($s/blurb), ($s/article), ($q/entryId) }

</resultTuple>)

7.1 Twig’n Join (TnJ)

A FWR XQuery query can be decomposed into three parts: (1) Structural filtering on

the input streams (2) Predicate Processing and (3) Structural filtering on the results.

We assume that a XQuery pre-processor will parse the (FWR) XQuery expression

and generate a query plan. During predicate processing, we can perform value-based

filtering as well as process the joins between the input streams. We focus on join

processing. Figure 7.1 shows a possible query plan for Scenario B (Appendix B). We

note that further optimization of the query plan is possible. However, we consider

query optimization as an orthogonal issue.

The query plan consists of several twig queries on the individual XML streams,

followed by predicate processing and a final twig query. XML data (news.xml and

blogs.xml) are continuously streamed from remote sites. The data is then matched

using the two twig matching operators (TMA and TMB). The output from TMA

and TMB (XML fragments) are then joined using a join operator (i.e. predicate

processing).

In this thesis, we use the state-of-art TwigM machine [CDZ06] to efficiently per-

form the twig matches on the streaming XML data, and a hash-based join for joining

the data. When intermediate XML fragments are continuously produced by the twig

matching operators, the memory might become full. Whenever memory is full, we

will need to flush some of these XML fragments to disk so that they can be joined

at a later stage, or whenever both data streams block. In this thesis, we focus on

maximizing the results from the XML fragments that are retained in memory. We

make use of a Result-Rate based approach [TBL06, TBL07c] to determine the results

to be flushed to disk whenever memory is full.
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7.1.1 Twig’n Join Algortihm

Algorithm 2 Twig’n Join Algortihm
1: for (i=0; i < n; i++) do
2: TwigMachine TMi = CreateTwigM Machine(Ti,Si)
3: HashPartition Hti = CreateHashPartitions()
4: end for

5: while ( XML fragments are available ) do
6: xmlfrag = Select(S)
7: MultiWayJoin(xmlfrag)
8: Htsrc.insert(xmlfrag)
9: end while

10: return (R, Results)

Algorithm 2 shows the details. In Line 1 to 3, we create a TwigM machine and a

hash partition for each of the XML data streams. . The TwigM machines exposes an

iterator-style (i.e. getNext() ) interface in order for the TnJ algorithm to continuously

get the next XML fragments that have been matched using Ti ( 0 ≤ i < n, where

n denotes the number of XML data streams). In Line 6, the Select() checks the

availability of XML fragments from the various TwigM machines. In Line 7, the

XML fragment is used in a multi-way join on the remaining n - 1 hash partitions.

Whenever memory is full, some of the XML fragments in the hash partitions will be
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flushed to disk. This is checked prior to the insertion of the XML fragment into the

corresponding hash partitions (Line 8). Algorithm 4 describes how the insertion and

flushing is done. Then, the XML fragment is inserted into its own partition. We

make use of the Berkeley-DB [OBS99] hash function for computing the hash value

for each XML fragment.

7.1.2 Twig Matching

In this section, we discuss the basic structure of TwigM machine [CDZ06].

Given the twig query Q, a TwigM machine, M, is created (Figure 7.3(b)). M

consists of machine nodes ni. For each node ni, there is an edge ei which connects

it to its parent node ( 1 ≤ i ≤ |Q|, where |Q| refers to the number of tags specified

in the query ). Depending on whether it is a parent-child or ancestor-descendant

relationship specified in the query, the edge is annotated with 1 (parent-child) or

≥1 (ancestor-descendant). For example, in Figure 7.3(b), we can see that the edges

are all annotated with ≥1. This corresponds to the query Q. In addition, a stack is

associated with each of the machine nodes. For a non-leaf machine node, an entry of

the stack is a triple <N, C, B>, where N refers to a XML tag that is inserted, C is a

candidate solution list, and B is a boolean array. For a leaf machine node, an entry

of the stack only consists of just < N>. For a node with b children, B consists of b

boolean variables. Initially, the b boolean variables are all initialized to be false. M

is then used to process the twig queries and deliver the results (in the form of XML

fragments) whenever a match occurs.

Whenever portions of an XML documents satisfy the structural constraint ex-

pressed by the twig query, the TwigM machine outputs the results as XML fragments.

The results are output whenever the structural constraints are met. Hence, the XML

fragments can be delivered progressively for join processing.

To illustrate how the TwigM machine works, consider the twig query, Q, (Figure

7.3(a)) and the following XML document D, which is streamed in document order

from a remote data source. In the XML document D, the unique identifiers for the

various tags (given in parenthesis) are Section (S1 and S2), Title (T1 and T2) and
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Figure (F1, F2).

S1

T1 S2

T2 F1

Figure 7.2: XML Document, D

section

title figure

>= 1

>= 1>= 1

n1 (Section)

n2 (Title) n3 (Figure)

Stack1

Stack2 Stack3

(a) twig Query, Q (b) TwigM Machine, M

Figure 7.3: twig Query and TwigM Machine Example

Whenever the start element for a tag is encountered, we will first push it into its

corresponding machine node stack. It is important to note that an entry is pushed

onto its corresponding tag if the level differences fulfill the edge condition (i.e. whether

the parent-child or ancestor-descendant condition is met). For leaf machine nodes,

whenever the end element of a tag is encountered, we will pop it from its stack,

and add it to the candidate list C for all entries in its parent machine node stack.

Afterwhich, we set the corresponding entry in the boolean array B of the parent

machine node to be True. For non-leaf machine nodes, we will only pop an entry

from the stack only when the entire boolean array B is True. For more details on the

TwigM algorithm, refer to [CDZ06].

Let us illustrate how TwigM works using the XML document D given earlier. For

document D, tag <S1> arrives. We push <S1, C={}, FF> into Stack1. Next, <T1>

arrives. We first check the level difference for T1 and the nodes in Stack1. If the
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level difference fulfills the ancestor-descendant edge condition imposed, we will push

<T1> onto Stack2. Figure 7.4(a) shows a snapshot of the three stacks.

Next, we encountered the end element for </T1>. Since node n2 is a leaf machine

node, we pop the stack entry for <T1> (and its associated content) from the stack,

and add it to the candidate list of all entries in Stack2 where the condition of for

query Q is fulfilled. We set the B array for each of the entry to be T, denoting the

left branch of the machine node n1 (Section) has been matched. Figure 7.4(b) shows

the content of the various stack at this point.

The start element for <S2> arrives. We add it to Stack1. We then encounter the

start element for <T2>. We check all entries in Stack1 to see whether any of the

entries and <T2> fulfills the edge condition. We add <T2> to Stack2 if the edge

condition is fulfilled. Figure 7.4(c) shows the content of the stack. Next, the end

element for </T2> arrives. We pop the entries from Stack2 and add it to the entries

in Stack1. Figure 7.4(d) shows the content of the stacks. The start element <F1>

arrives. After checking that it fulfills the edge condition, we add it to Stack3 (Figure

7.4(e)). Afterwhich, the end element </F1> arrives. We pop the entry from Stack3

and add it to the candidate list of its parent. We also set the boolean value to T for

the right branch (Figure 7.4(f)). Notice that the B boolean array of the entries in

Stack1 are all set to TT.

Finally, the end element </S1> arrives. Since the boolean array B for the en-

tries are TT, we therefore output the solution for the twig query as XML fragments

<S1,T1,F1>, <S1,T2,F1>, and <S2,T2,F1>.

7.1.3 Join Processing

Results from the twig matching on the multiple XML streams are fed to the hash-

based progressive join. We make use of the generic Result Rate-based flushing (RRPJ)

technique used in [TBL07c]. During join processing, RRPJ is used to determine

the XML fragments to be flushed to disk whenever memory is full. An important

characteristic of RRPJ is that by using statistics based on the result output statistics,

it can be generalized gracefully for many data models (as shown in [TBL06](spatial
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data) and [TBL07b](high-dimensional data ) ).

Probing

Algorithm 3 shows how a newly arrived XML fd is used to probe the corresponding

hash partition from the other data stream (Line 1). Based on the join predicates

defined, we check each of the XML fragments found in the partition (Line 3-6).

Results are output whenever the join predicates are satisfied. In addition, a counter,

numResults, keeps track of the results produced by each of the partitions. The

counter is updated when all the results have been produced (Line 7).

Algorithm 3 Probing
1: p = findPartition(fd)
2: numResults = 0
3: for ( XMLFragment f in p) do
4: if (f and fd satisfies the join predicate) then
5: R = R ∪ (fd,f)
6: numResults++
7: end if
8: end for

9: Update statistics for p

10: return ()

Insertion and Flushing

Algorithm 4 shows the insertion algorithm. The hash value for an XML fragment is

computed. The XML fragment is then inserted into its corresponding hash partition

(Line 1). Whenever memory is full, the F lushDataToDisk() routine flushes some of

the in-memory XML fragments to disk. The number of XML fragments to be flushed

is determined by a user-defined parameter, NumFlush.

In order to determine which partitions to be flushed, each of the ith hash partitions

( 1 ≤ i ≤ n, where n is the total number of partitions), maintains a counter measuring

its potential to produce results. This determines the partitions to be flushed.

We first present a naive extension of RPJ for determining the XML fragments to

be flushed to disk whenever memory is full. In the naive extension to RPJ for XML
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Algorithm 4 Insertion and Flushing
1: p = findPartition(fd)
2: if ( memoryIsFull()) then
3: FlushDataToDisk()
4: end if
5: Insert fd into p

6: return ()

(called Twig-RPJ), we keep track of the the RPJ value - number of XML fragments

in a partition divided by the total number of XML fragments that have arrived. The

partner partition (that is the matching partition in the other streams) to the partition

with the smallest values is flushed.

We also make use of the Result-rate based Join (RRPJ) flushing technique de-

scribed in [TBL07c]. When making use of the Result Rate-based Flushing (RRPJ),

we keep track of the Thi value. In RRPJ, the Thi value is an estimate of the produc-

tivity of the i-th partition (with 1 ≤ i ≤ n, where n is the total number of partitions

used to store the XML fragments).

Thi = Ri
Ni

(7.1)

where Ri and Ni denotes the total number of results produced, and the total

number of XML fragments for the i-th partition respectively. Twig’n Join flushes the

partitions with the smallest Thi values, until a user-defined number of tuples to be

flushed is reached.

Multi-way Join

In this section, we discuss how we can generalize Twig’n Join for processing XQuery

queries on multiple XML streams. Each XML fragment, produced by the TwigM

machine, consists of the XML data and a bitmap (i.e DoneBitmap) that is used to

determine whether the XML fragment has been used to probe the other partitions.

DoneBitmap consists of n bits. Figure 7.5 shows the structure of the XML fragment.

When the XML fragment first arrives, the bit corresponding to each own partition is
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set to 1. Whenever the XML fragment is used to probe the hash partitions for the

other XML streams, the bit corresponding to the hash partition is set to 1 when it

can be used to join with at least one other XML fragment in the partition. It is set

to 0 otherwise. When all the bits of the DoneBitmap are set, the XML fragment is

output as a result. In this thesis, we consider only the case where the join predicate

is the same for all the XML streams.

Existing multi-way join techniques for relational equi-join, such as MJoin [VNB03],

can be used as to handle the multi-way between the XML fragments that are pro-

duced. The performance of the multi-way join is dependent on the probing sequence.

For example, MJoin sorts the hash partitions based on their respective join selectivity.

The key intuition is that by probing partitions with a low join selectivity first, it filters

away tuple that will not generate any result early. This helps to reduce the number

of unnecessary probes to the remaining un-probed hash partitions. However, it is

difficult to determine the join selectivities if the inputs to the multi-way join consists

of intermediate results from a pipelined process. For example, the XML fragments

are produced by the TwigM machines. Even if the join selectivity of the join attribute

for the base XML streams can be accurately determined, it is not straightforward to

determine the join selectivity of the intermediate XML fragments produced. In addi-

tion, determining the join selectivity apriori might not be useful if the join selectivity

changes during the lifetime of the multi-way join.

In order to deal with the problem of determining an effective probing sequence

for the multi-way join, we propose a novel technique, called Result-Oriented Probing

(RoP). RoP dynamically determines the order of the hash partitions to be probed in

the multi-way join. RoP tracks the number of partial results that are produced by

each hash partition. Whenever a XML fragment f is used to probe a hash partition, a

partial result is generated if the bits of the DoneBitmap for f have not been completely

set to 1. In contrast, a complete result is generated if all the bits of the DoneBitmap

for f are set to 1.
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Algorithm 5 MultiWayJoin with RoP

ProbeSequence = SortHashPartitionsAsc()
for (i=0; i < n; i++) do

idx = ProbeSequencei

numResults = Htidx.probe(fd)
if ( numResults == 0 ) then

break;
end if

end for

7.2 Performance Evaluation

We implemented all the algorithms in C++, and conduct the experiments on a Pen-

tium 4 2.4 Ghz PC (1GB RAM). Similar to [CDZ06], we make use of the SAX Parser

- Expat [Cla03]. Unless otherwise stated, the parameters presented in Table 7.1 are

used for the experiments. We compare the performance of Twig-RPJ, Twig’n Join

(TnJ). In addition, we also included a Random method as a baseline. Whenever

memory is full, the Random method randomly selects a partition (containing XML

Fragments) to be flushed to disk.

Parameter Values

Disk Page Size 40960 bytes

Memory Size, M 10% of data size

Number of entries per page 31

Number of XML Fragments flushed to disk 10% of M

Number of hash partitions 1024

Table 7.1: Experiment Parameters and Values

7.2.1 X007

In this section, we evaluate the performance of Twig’n Join and Twig-RPJ using

synthetic datasets generated using X007 [BDL+01]. We set the X007 parameters as

given in Table 7.2. We varied the X007 parameter NumConnPerAtomic for values 3,

6 and 9. For each NumConnPerAtomic value, we generated two datasets to simulate
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X007 Parameters Values
NumAtomicPerComp 20
NumConnPerAtomic 3,6,9
DocumentSize(bytes) 500
ManualSize(bytes) 2000
NumCompPerModule 50
NumAssmPerAssm 3
NumAssmLevels 5
NumConnPerAssm 3
NumModules 1

Table 7.2: X007 Parameters

the two XML streams. In this experiment, we join the type IDs reference for the

Connections. The twig query given below is used for both datasets.

• //Connection[type][AtomicPart]

As the graph for values 3,6 and 9 exhibits similar trends, we present the results for

NumConnPerAtomic = 9 in Figure 7.7. From the figure, we can observe that all the

methods (TnJ, Twig-RRPJ and Random) perform similarly. This is the case because

the values of the join attribute for the XML fragments are uniformly distributed.

Thus, regardless of the XML fragments that are flushed to disk, there is no impact

on the overall throughput. Similarly, the same observations are made in [TBL07c] for

uniformly distributed relational data.

7.2.2 XMark

In this section, we evaluate the performance of Twig’n Join and Twig-RPJ using

synthetic datasets generated using XMark [SWK+02]. Table 7.3 shows the size of the

XMark datasets, and also the number of XML fragments extracted by the TwigM

machine on-the-fly. The fragments are then used in the join of XML fragments.

XMark generates a single XML document consisting of information on the anno-

tation, person, category, closed auction, open auction and the items. For the purpose

of the experiments, we extracted out the details of the items and closed auctions
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XMark Items ClosedAuctions Total Dataset
Factor, λ Fragments Fragments Fragments Size(MB)

0.2 4350 1950 6300 20
0.4 8700 3900 12600 38
0.6 13044 5845 18889 57
0.8 17400 7800 25200 76
1.0 21750 9750 31500 94
2.0 43500 19500 63000 187

Table 7.3: XMark Dataset Information

into 2 separate XML files. This is used to simulate two XML data streams. In this

experiment, we join the item IDs reference of the closed auctions with the items. The

join attribute is id (string). The following twig queries are defined on the Item and

Closed Auctions streams respectively.

• Items: //item[id][name]

• ClosedAuctions: //closed auction[itemref/id][price]

In these experiments, we varied the scaling factor of XMark, λ, between 0.2 and

2.0. We present the results for varying λ in Figure 7.6. In all cases, Twig’n Join

outperforms Twig-RPJ and the random flushing strategy by a large margin.

7.2.3 TPCH

In this section, we evaluate the performance of Twig’n Join and Twig-RPJ using

XML datasets which were converted from datasets generated by TPC-H [XML02].

We join the data between Orders and Customer. We specify CUST KEY as the join

attribute. The characteristics of the dataset is tabulated in Table 7.4. The following

twig queries are defined on the Orders and Customer XML data streams.

• Orders: //T[CUSTKEY][O ORDERSTATUS]

• Customer: //T[CUSTKEY][C NAME]
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Dataset Number of Elements DataSet Size
orders.xml 150001 5MB

customer.xml 13501 503KB

Table 7.4: TPC-H Benchmark (XML version)

From Figure 7.8, we can observe that Twig’n Join outperforms Twig-RPJ signifi-

cantly. This further shows that Twig’n Join is able to keep XML fragments that have

a higher probability to produce results in-memory. Thus, this enables it to be able

to produce more results compared with Twig-RPJ.

7.2.4 DBLP vs SIGMOD Record

In this section, we evaluate the performance of Twig’n Join and Twig-RPJ using

two real-life datasets. We used the DBLP dataset (scaled down to 29MB), and SIG-

MOD Record (467K) [XML02]. In the experiments, we join on the author attribute

(i.e. we want to find authors who have published in SIGMOD Record and have at

least one publication listed in DBLP). The following twig queries are defined on the

SigmodRecord and DBLP data streams.

• SigmodRecord: //issue[volume][//article[title][//author]]

• DBLP: //inproceedings[author][title]

From Figure 7.9, we can see that Twig’n Join outperforms the Twig-RPJ method

when approximately 24% of the XML fragments have arrived. We can also observe

that the number of result fragments produced increases quickly between 16% - 24%

of the XML fragments have arrived. This is because the TwigM machine has not

produced sufficient XML fragments which can be joined between the two XML data

streams. Beyond 24%, there are sufficient XML fragments available from the DBLP

XML data streams in-memory to be joined. Thus, the number of results produced

grows linearly beyond that.
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µ Number of fragments Size(MB)
0.2 11420 2.7
0.4 22612 5.3
0.6 34180 8.0
0.8 45377 11

Table 7.5: Sizes of BioExpts

7.2.5 Swiss-Prot

In this section, we evaluate the performance of Twig’n Join and Twig-RPJ using a

real-life dataset (Swiss-Prot, available at [XML02]) and a synthetic dataset (BioEx-

pts). Using the Swiss-Prot dataset, we generate the BioExpts dataset to simulate the

details of biological experiments conducted using the protein sequence found in Swiss-

Prot. The BioExpts XML file consists of the following information: (1) Experiment

ID (ID), (2) Researcher Userid (Researcher), (3) Accession Number (AC) and (4)

Observation. The researcher userid and observation consists of randomly generated

strings of length 10 and 100 respectively. Figure 7.10 shows a snippet of the XML

generated.

When generating the synthetic dataset, the parameter µ, controls the probability

in which an Accession Number from the Swiss-Prot dataset is used in an experiment.

When µ = 0.0, then none of the Accession Number are used in the experiments (i.e.

no results produced during the join of the Swiss-Prot and the BioExpts dataset).

When µ = 1.0, all Accession Numbers are used in the experiments. In other words,

µ controls the join selectivity. We vary µ from 0.2 to 0.8. In the experiments, we join

on the Accession (AC) Number attribute. The size of Swiss-Prot is 110MB, and the

sizes of the synthetic datasets for varying µ are presented in Table 7.5.

The following twig queries are defined on the SwissProt and synthetic dataset.

• SwissProt: //Entry[AC][Species]

• BioExpts: //Expt[/Info/ID][AC]
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From Figure 7.11, we can observe that Twig’n Join consistently outperforms Twig-

RPJ for varying µ. Another interesting observation is that when µ = 0.8, the baseline

Random method performs better than Twig-RPJ. This shows that the naive Twig-

RPJ is not as effective in determining the XML fragments to be flushed to disk

whenever memory is full.

7.2.6 Multi-way XML Join

In this section, we compare the performance of the multi-way join using various

probing techniques. These includes: (1) RoP (2) Sequential and Apriori. RoP uses

the dynamic probing sequence described in Section 7.1.3. In the Sequential probing

strategy, we probe the hash partitions in the order in which the XML streams arrive.

In the Apriori strategy, we assume that we know the join selectivity of each of the

XML streams. We then probe the hash partitions in order of increasing join selectivity.

Thus, hash partitions with lower join selectivity are probed first. We evaluate the

performance based on two metrics. Firstly, we count the total number of probes on

the hash partitions. Secondly, we measured the time taken to produce results.

The XML streams used in this experiment is generated as follows. We first ex-

tracted all the name of authors from SIGMOD Record. Using the names of authors,

we generated a reference XML stream in which consists of blog entries written by the

authors. Next, we generated the other XML streams to be used in the multi-way join

by controlling the selectivity, µ. µ determines the probability that a author from the

reference XML stream is included in the stream to be generated. We vary µ between

0.0 to 1.0. When µ = 0.0, none of the authors from the reference XML stream are in-

cluded. When µ = 1.0, all the authors from the reference XML streams are included.

Various m-way joins are evaluated (m varies between 3 to 5).

From Figure 7.12(a), we can observe that dynamic result-oriented probing (RoP)

outperforms the Sequential probing technique. In addition, RoP performs almost as

well the Apriori strategy. This shows that the dynamic RoP technique is effective even

without prior information on the join selectivities. From Figure 7.12(b)-(d), we can

observe that RoP outperforms the Sequential probing technique. This commensurates
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with the findings from Figure 7.12(a). As a result of the significant reduction on the

number of unnecessary probes, RoP takes less time to produce the same number of

results.

7.3 Summary

In this chapter, we propose a practical approach for progressive processing of (FWR)

XQuery queries on multiple XML streams, called Twig’n Join. We decompose a

(FWR) XQuery query into a query plan consisting of twig queries and join processing.

The twig queries are used for processing the structural constraints. The hash-based

join operator is used to process the join predicate constraints. The novelty of this

approach compared, to conventional XQuery processing, lies in the decomposition of

the XQuery queries into several independent components. This reduces the complex-

ity for the design of XQuery query processing algorithms. Though we show this for

XQuery queries involving joins, the technique can be applied to the the various type

of (FWR) XQuery queries as well.

Due to the large amount of streaming XML data, it is infeasible to keep all the

XML data in-memory during join processing. We make use of the RRPJ method

[TBL07c] to flush the XML data whenever memory is full. In addition, we introduce

a novel dynamic probing technique, called Result-Oriented Probing (RoP), which

determines an optimal probing sequence for the multi-way join. This significantly

reduces the amount of redundant probing for results. Experiment results show that

Twig’n Join is indeed effective and efficient for the processing of both synthetic and

real-life datasets.
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<S1,C={}, FF> <T1>
Stack1 Stack2 Stack3

(a) Start Element S1, T1 arrives

<S1,C={T1}, TF>
Stack1 Stack2 Stack3

(b) End Element T1 arrives

<S2, C={},FF>
<S1,C={T1}, TF> <T2>

Stack1 Stack2 Stack3
(c) Start Element S2, T2 arrives

<S2, C={T2},TF>
<S1,C={T1,T2}, TF>

Stack1 Stack2 Stack3
(d) End element T2 arrives

<S2, C={T2},TF>
<S1,C={T1,T2}, TF> <F1>

Stack1 Stack2 Stack3
(e) Start Element F1 arrives

<S2, C={T2,F1},TT>
<S1,C={T1,T2,F1}, TT>

Stack1 Stack2 Stack3
(f) End Element F1 arrives

Figure 7.4: Snapshot of the stack

x m l  d a t a D o n e B i t m a p

Figure 7.5: XML Fragment Structure
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Figure 7.6: Varying XMark Factor, λ
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Figure 7.8: TPCH (XML Format)
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Figure 7.9: DBLP vs SIGMOD Record

<BioExpts>

<Expt>

<Info>

<ID>1</ID>

<Researcher>gXKhK4hkXP</Researcher>

</Info>

<AC>P14914</AC>

<Observation>ABzAW71t ...</Observation>

</Expt>

<Expt>

<Info>

<ID>2</ID>

<Researcher>sHqj5LraCT</Researcher>

</Info>

<AC>Q26540</AC>

<Observation>CjyIl0yjp6Q ...</Observation>

</Expt>

...

</BioExpts>

Figure 7.10: Synthetic Dataset based on Swiss-Prot
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Figure 7.11: Swiss-Prot vs BioExpts : Varying µ
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Figure 7.12: Multi-Way Join (with different probing sequence)



Chapter 8

Progressive Approximate Joins

Users often do not require a complete answer to their query but rather only a sample.

They expect the sample to be either the largest possible or the most representative

(or both) given the resources available. We call the query processing techniques that

deliver such results ’approximate’. Processing of queries to streams of data is said

to be ’progressive’ when it can continuously produce results as data arrives. In this

thesis, we are interested in the progressive and approximate processing of queries to

data streams when processing is limited to main memory. In particular, we study

one of the main building blocks of such processing: the progressive approximate

join. We devise and present several novel progressive approximate join algorithms.

We empirically evaluate the performance of our algorithms and compare them with

algorithms based on existing techniques. In particular we study the trade-off between

maximization of throughput and maximization of representativeness of the sample.

8.1 Introduction

In many data stream applications [BW01, BBD+02, CcC+02], users are concerned

with rapid production of results that they are ready to give up completeness of the

result. In this case, users may prefer results that can be produced in main memory

only. In other words, users often do not require a complete answer to their query but

rather only a sample. They expect the sample to be either the largest possible (i.e.

108
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quantity), the most representative (i.e. quality) or both? They may need to seek a

compromise between quality and quantity, given the resources (main memory) avail-

able. We call the query processing techniques that deliver such results ’approximate’.

Join algorithms being the keystones of query processing, we are interested here

in progressive approximate join algorithms. The reference progressive approximate

join is Prob introduced in [DGR03] and its extended version [DGR05]. The authors

introduce the notion of maximum subset (MAX-Subset) which leads to similar strate-

gies as the ones used by progressive algorithms such as RPJ [TYP+05] and RRPJ

[TBL07c] to maximize the size of the set of results produced, quantity. We show

that the performance of Prob can be improved by stratifying the memory available.

We propose ProbHash, a direct extension of Prob, in which the memory is hash par-

titioned and an approximate version of our progressive algorithm RRPJ also using

hash partitioning. Interestingly, the authors of [DGR03] have disqualified reservoir

sampling based methods based on the extreme scenario given in [CMN99] without

further experiments. We show that this disqualification is mistaken. We propose a

reservoir sampling-based approximate progressive join, that we call Reservoir Approx-

imate Join (RAJ ), and its stratified version RAJHash. We show that these algorithms

favor the representativeness of the set of results produced and ensure better quality

than the other algorithms.

The rest of the chapter is organized as follows. We discuss the notions of quantity

and quality of results produced in Section 8.2. We present the proposed algorithms

in Section 8.3. In Section 8.4, we empirically evaluate the performance of our four

algorithms and compare them with Prob. In particular we highlight and discuss

the trade-off between quantity and quality. We conclude and discuss future work in

Section 8.5.
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8.2 Measuring Performance

8.2.1 What do We Measure?

There are two ways to measures the performance of an approximate algorithm. If we

are interested in quantity, the measure of performance for the algorithm is the amount

of results produced. If we are interested in quality, we need to measure the similarity

between the data distribution of the complete set of results and the data distribution

of the set of results produced. Because we are interested in progressive algorithms,

performance is not a unique number but a function of time. It is measured in term of

throughput, quantity over time, when size matters. It is measured in terms of quality

over time (quality throughput), when quality matters. If both quantity and quality

matter, we need both functions. Notice that the comparison of both functions by

looking at quantity as a function of quality (or vice versa) at given points in time

visualizes the compromise realized by a given algorithm.

We considered defining a combined measure of quantity and quality (similarly to

the F-measure, which combines recall and precision). Unfortunately, our measure of

quality using JS Divergence or any comparable statistical measures is unbounded,

and cannot be normalized.

8.2.2 How do We Measure Quality?

In order to measure quality, we need to compare two data distributions. We can

compute, combine and compare any statistics and obtain more or less significant

measurements at different level of granularity.

A reasonable metric is the Mean-Square Error (MSE) between the normalized his-

tograms of the complete results and result produced by the approximate join. Another

metric for comparing data distribution is the Jensen-Shannon divergence [Lin91]. The

Jensen-Shannon divergence (JSD) determines the similarity (or divergence) between

two probability distributions. In this chapter, we make use of the JSD measure.
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MSE

We first discuss the MSE measure. The MSE measure measures the error differences

between the actual and observed results produced. In the approximate join scenario,

the actual results refer to the results produced if the entire join is computed (or when

the memory is unlimited and all data fit into main memory). The observed results

refer to the results produced by the approximate join method. In order to ensure a

fair comparison between the actual and observed result distribution, we compare the

normalized frequency instead of the actual frequency for each join attribute value.

Let the total number of results produced by the complete and approximate join be

|R| and |R′| respectively. For each value vi ∈ V , where V denotes the domain of

the join attribute, and 1 ≤ i ≤ |V |. |vi| and |v
′

i| denotes the number of actual and

observed results with value vi. For each join attribute vi, the normalized value for

the complete and approximate joins is given by |vi|
|R|

and
|v

′

i
|

|R′|
respectively. The MSE

between the complete join J and approximate join J’ is given by

MSE(J, J ′) =
V

∑

i=1

(
|vi|

|R|
−

|v
′

i|

|R′|
)2 (8.1)

Jensen-Shannon Divergence

In probability and information theory, the Kullback Leibler (KL) and Jensen-Shannon

divergence are used to measure the similarity between two probability distributions,

P and Q. We use the Jensen-Shannon divergence to measure the similarity between

the actual (P) and observed result (Q) distribution. We measure the result quality

produced by the approximate join using the Jensen-Shannon divergence. The Jensen-

Shannon divergence measures the similarity between the actual result distribution

(produced by a join where all tuples fit in memory) and the approximate join result

distribution. Let p(vi) = |vi|
|R|

and q(vi) =
|v

′

i
|

|R′|
. Before defining the Jensen-Shannon

divergence, we first define the KL divergence, given as follows:

DKL(P ||Q) =
V

∑

i=1

p(vi) log(p(vi)/q(vi)) (8.2)
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The Jensen-Shannon divergence is given by

DJS(P ||Q) = 1
2
DKL(P ||M) + 1

2
DKL(Q||M) (8.3)

where M = 1
2
(P + Q)

The goal is to minimize either the MSE or the JS divergence. When the value for

either MSE or JS divergence is zero, the result distributions from the complete and

approximate joins are exactly the same.

Given two approximate join methods, J1 and J2, we say that J1 produces better

quality results than J2 if the QMeasure(J1) < QMeasure(J2). QMeasure(Z) refers

to either computing MSE(Z) or DJS(Z). Z refers to an arbitrary approximate join

method.

8.3 Solution

In this section, we describe five methods for performing approximate joins: (1) Ap-

proximate RRPJ (ARRPJ), (2) Prob, (3) ProbHash, (4) Reservoir Approximate Join

(RAJ) and (5) Stratified Reservoir Approximate Join (RAJHash).

We first present the key idea for an existing progressive approximate join algo-

rithm, Prob. Next, we propose the modification of an existing progressive join algo-

rithm for approximate join processing, called Approx-RRPJ. Lastly, we propose three

new algorithms (ProbHash, RAJ and RAJHash). ProbHash aims to maximize the

result quantity as well as improve the overall throughput. Both RAJ and RAJHash

are designed to optimize the result quality.

8.3.1 Approximate Join Framework

We first discuss a general framework for designing approximate join algorithms which

explore the tradeoffs between result quantity and quality.

Given two streams S1(A,B) and S2(B,C), where A, B and C are attributes of the

data streams. Let the i-th tuple from S1 and the j-th tuple from S2 be denoted by

tS1(ai,bi) and tS2(bj ,cj) respectively. An approximate join is used to join the tuples
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from the two streams. The size of the memory available for query processing is small

relative to the size of the data streams, which can be unbounded. When a new tuple

arrives and memory is full, we will need to selectively discard some tuple(s) from

memory. An important design criteria for an effective approximate join algorithm is

to determine how tuples are discarded.

We first consider approximate join algorithms which maximizes the quantity of

the results produced. We call such a algorithm DPX(k), which discards k tuples

whenever memory is full. The goal of the DPX(k) policy is to maximize the expected

size of the result subset. To achieve this, we can model the probability of the join

attribute value(s) for tuples arriving on both streams. Let the arrival probabilities be

PS1(B) and PS2(B) for streams S1 and S2 respectively. Whenever a tuple arrives, we

assign a priority to the tuple based on the arrival probabilities from the corresponding

stream. For example, when a tuple tS1(ai,bi) arrives, its priority value is given by

PS2(bi). Similarly, the priority of a tuple tS2(bj , cj) can be computed using PS2(bj).

A possible implementation for DPX(k) is to maintain two priority queue (in ascending

priority order) for the data streams. Whenever memory is full, DPX(k) discards the

first k tuples taken from both streams. The intuition is that by keeping in memory

tuples which have higher probability of joining with tuples from the other stream, the

expected number of results produced will be maximized [TYP+05].

Next, we consider approximate join algorithms which are sampling-based. The

goal is to optimize the quality of the results produced. We call such a algorithm DPY .

DPY continuously maintains a random uniform sample for each of the data streams.

When the memory is not full, tuples are inserted into the respective reservoirs. When

memory is full, DPY determines whether the newly arrived tuple should be discarded,

or be used to replace a tuple from the reservoir. Suppose the size of the memory is

M, which is divided equally between the two streams S1 and S2. Suppose nS1 and nS2

tuples have arrived for stream S1 and S2 respectively. We assume that the number

of tuples that have arrived for each stream is greater than the available allocated

memory (i.e. nS1 > (M/2), and nS2 > (M/2) ). A newly arrived tuple tS1(ai,bi) has

a (M/2)
nS1

chance of being used to replace a tuple in the reservoir. Similarly, for a tuple

from S2. Even though DPY might not maximize the number of results produced, the
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quality of the results produced could be much better than DPX(k). This is because

DPY ensures that the uniformity of the samples for each of the data streams. When

a new tuple arrives, it is used to probe the corresponding reservoir. Mindful readers

might note that DPY might not work well for skewed data streams if the memory

is allocated equally between the two reservoirs. In this thesis, we show how we can

tackle this problem by dynamically allocating memory for the reservoirs.

8.3.2 Approximate RRPJ (ARRPJ)

The Result-Rate Based Progressive Join (RRPJ) [TBL07c] was proposed as a pro-

gressive join algorithm. It builds statistics on the result distribution of the hash

partitions. The goal of RRPJ is to maximize the number of results produced by

using the result distribution statistics to determine the non-productive tuples to be

flushed to disk whenever memory is full. In RRPJ, when all the tuples have arrived,

a cleanup phase is invoked to compute the complete results for the join query.

In order to build a progressive approximate join, we modify RRPJ so that it

consists of the in-memory processing phase. We call this join algorithm, Approximate

RRPJ (ARRPJ). Whenever memory is full, ARRPJ flushes tuples from memory. The

tuples are discarded instead of being flushed to disk partitions.

8.3.3 Prob

The PROB [DGR03, DGR05] approximate join is an instantiation of DPX(1). The

goal of PROB is to maximize the quantity of results produced. It assigns a priority

to each tuple that arrives. Prob can make use of either a fixed or variable memory

allocation to store tuples from each of the data streams. For fixed allocation, two

priority queues are used, one for each of the data streams. For variable allocation, a

single priority queue is used for both streams. The priority for a tuple is determined

by the arrival probabilities of the partner stream. We describe how Prob works. Given

two streams S1 and S2, a memory size M. Two priority queues, PQ1 and PQ2, (one

for each stream) are created. Using a fixed memory allocation, the size of each priority

queue is M
2

. In order to deliver results progressively, a probe-and-insert paradigm is
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used. When a tuple tS1 arrives, it needs to probe all the tuples in the PQ2 in order

to determine join matches. Similarly, when a tuple tS2 arrives, it needs to probe all

the tuples in PQ1 for join matches. We consider the case: at time τ , |S1| and |S2|

tuples have arrived for S1 and S2 respectively. Using a variable memory allocation

scheme, the size of the single priority queue is M. Whenever tuples arrive from either

stream, it will have to scan all the tuples in the priority queue. The time complexity

for both the fixed and variable memory allocation is given by O(M(|S1| + |S2|) ).

8.3.4 ProbHash

In order to reduce the need to probe all in-memory tuples, we propose a progressive

join algorithm, ProbHash. ProbHash relies on hash partitions to organize the in-

memory tuples. In essence, ProbHash is a CPU-efficient extension of Prob [DGR03,

DGR05].

ProbHash organizes the in-memory tuples for each stream by storing the tuples

using p priority queues, instead of a single priority queue. The value of p is dependent

on the hash function used. The tuples in each priority queue are organized based on

a ascending priority order. We denote the set of priority queue for data stream Si

as PQSi
( 1 ≤ i ≤ 2). Figure 8.1 shows the two sets of priority queues. Whenever a

tuple tS1 arrives, its hash value is computed by the hash function (denoted by ⊕). It

is then used to probe one of the priority queues in PQS2. If join matches are found,

the result is delivered to the user. Afterwhich, tS1 is inserted to one of the priority

queues of PQS1. The set of priority queues, PQS1 and PQS2, are each allocated M
2

memory. Within each priority queue set, we make use of a variable memory allocation

scheme which allows the size of the priority queues to grow or shrink dynamically.

This mitigates the effect of skewed data distribution, and ensure that the memory

can be better utilized. Suppose the average length of each priority queue is L (L <<

M), the time complexity for ProbHash is given by O(L(|S1| + |S2|)).

When memory is full (|S1| + |S2| = M ), and a new tuple arrives, we will need to

select a tuple to be discarded from amongst the 2p priority queues. We first identify

the priority queue PQi ( 1 ≤ i ≤ 2p) which contains the tuple with the smallest
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Priority Queues
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(i) probe(ii) insert

Figure 8.1: Priority Queue for S1

priority value. The complexity for finding the queue which contains a tuple with the

smallest priority value is given by O(p). This is because we only need to scan the first

element of each of the 2p priority queues. In the case of a tie (i.e several queues with

tuples having the smallest priority value), we randomly pick a tuple from one of these

queues. Other methods can be used too (e.g. the tuple’s age and preferring tuples

that are older). We dequeue the tuple with lowest priority. We then compute the

hash value for the newly arrived tuple, which is used to determine the priority queue

it is inserted into. Due to the variable memory allocation, it is important to note

that the size of all the priority queues are not fixed. Hence, if the data distribution

is skewed, some priority queues will be longer.

8.3.5 Reservoir Approximate Join (RAJ)

Conventional reservoir sampling [Vit85] is used to produce a fixed size random sample

of data. Algorithm 6 describes the details. While data is arriving (line 2), we get the

next tuple from the data stream S (line 3). n denotes the total number of tuples that

have arrived so far. If the number of tuples in the reservoir is less than the reservoir

size |R|, we insert the tuple into the reservoir (line 5 to 6). Otherwise, the tuple is

inserted into the reservoir with probability |R|
n

(line 8 to 10).

Conventional reservoir sampling can also be used in a progressive approximate
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Algorithm 6 Conventional Reservoir Sampling
1: n = 0
2: while ( !endOfStream(S) ) do
3: Tuple t = getNextTuple(S)
4: n = n + 1

5: if ( n < |R| ) then
6: Insert t into R
7: else
8: Randomly generate a number ρ between 1 to n
9: if ( ρ < |R| ) then

10: Replace the ρ-th tuple in R with t
11: end if
12: end if
13: end while

join. We call this the Reservoir Approximate Join (RAJ ). This is illustrated in

Figure 8.2. Given two streams S1 and S2, and memory with size M. Two reservoirs,

ReservoirS1 and ReservoirS2 are created. Each reservoir is allocated M
2

memory.

For each reservoir, the conventional reservoir sampling technique is used to manage

the reservoir. When a tuple tS1 arrives, it is used to probe ReservoirS2. Results (if

any) are produced. Afterwhich, tS1 is inserted into ReservoirS1. The problem with

this approach is that the entire reservoir needs to be scanned in order to find tuples

which can be joined with the newly arrived tuple.

Reservoir Reservoir
S1 S2

(i) probe(ii) insert

t
S1

Figure 8.2: Reservoir Approximate Join
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8.3.6 Stratified Reservoirs Approximate Join (RAJHash)

In statistics, stratified sampling [Coc77] is another effective technique for sampling

from a population. In stratified sampling, the population is divided into disjoint k

sub-populations of sizes N1, N2,...,Nk respectively. Each sub-population is called a

stratum, and is mutually exclusive (i.e. every element in the population must be

assigned to only one stratum). Hashing is an effective way to assign each element to

exactly one stratum. In order to reduce the need to scan the entire reservoir during

probing, we adopt the idea of stratified sampling to organize the reservoir for each

stream into multiple sub-reservoirs. We refer to the method where we make use of

stratified reservoirs as RAJHash. In RAJHash, a partitioning scheme is used to orga-

nize the tuples in each of the reservoir. The partitioning scheme effectively organizes

the tuples into sub-population. In RAJHash, this corresponds to the sub-reservoirs

that are maintained. We call this algorithm the Stratified Reservoirs Approximate

Join RAJHash.

t
S1

Hash function

(i) probe(ii) insert

Reservoir S1 Reservoir
S2

Sub-reservoirs

Figure 8.3: Progressive Approximate Join using Stratified Reservoirs

In the stratified reservoir approach, we allocate M
2

memory to each reservoir. Each

reservoir consists of k sub-reservoirs. For each reservoir, a variable memory allocation

scheme is used to allocate memory for the sub-reservoirs. Given a tuple t, the hash

function, f(t) = t.value mod k, is used to assign the tuple to one of the sub-reservoirs.

t.value denotes the value of the join attribute. Algorithm 7 describes the insertion of

a newly-arrived tuple using the stratified reservoir. In Line 1, h denotes the hashed
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value of the tuple. If n is less than |R|, then we will just add the tuple to the h-th

sub-reservoir (Line 4). If n is greater or equal to |R|, then we will need to determine

whether to replace a tuple from the reservoir with the newly arrived tuple (Line 6-10).

To do this, a random number, ρ (between 1 to n) is generated. If ρ is greater than

|R|, we discard t. Otherwise, t is used to replace a tuple from the h-th sub-reservoir.

In this case, even though ρ is less than |R|, ρ can be greater than the size of the

h-th sub-reservoir. To find the tuple to be replaced, we compute i = ρ mod S (where

S is the size of the h-th sub-reservoir). We then replace the i-th tuple in the h-th

sub-reservoir.

As an implementation optimization, Algorithm 7 first chooses the sub-reservoir

using the hash function, and then replace a random tuple in the specific sub-reservoir.

It is important to note that in order to maintain a simple random sample for each

of the reservoirs, the decision on the tuple to be replaced should not be restricted to

just a single reservoir. Instead, a random tuple from any of the sub-reservoirs can be

replaced.

Algorithm 7 Stratified Reservoir - Inserting a tuple
1: h = f(t)
2: n = n + 1
3: if ( n < |R| ) then
4: Insert t into the h-th sub-reservoir
5: else
6: Randomly generate a number ρ

between 1 to n (inclusive)
7: if ( ρ < |R| ) then
8: S = Get the size of the h-th sub-reservoir
9: i = ρ mod S

10: Replace the i-th tuple with t
11: else
12: Discard t
13: end if
14: end if

RAJHash introduces some advantages over RAJ. Firstly, it is more CPU-efficient

as it reduces the number of in-memory tuples that are probed to identify join matches.

Secondly, even in the presence of a skewed distribution, it is able to gracefully allocate
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more memory for sub-reservoirs which need a large sample, and less memory for sub-

reservoirs which contain the skewed values. This is due to the variable memory

allocation for the sub-reservoirs. We empirically verify this in Section 8.4.3.

Example

In this example, we illustrate how Stratified Reservoir works. Given two streams

S1={10, 22, 34, 11, 30, 90, 2, 1, 13, 10} and S2={ 10, 48, 20, 35, 12, 58, 67, 71, 44, 83

}. In this example, the size of the memory M = 10 tuples. Two reservoirs ReservoirS1

and ReservoirS2 are created for S1 and S2 respectively. Each reservoir can hold 5

tuples. In addition, each reservoir is allocated 10 sub-reservoirs. The hash function

f(t) = t.value mod 10 is used to allocate a tuple to one of the 10 sub-reservoirs. We

denote a sub-reservoir for stream Si as reservoirj
i ( 0 ≤ j < 9) respectively.

For stream S1, the first tuple arrives. This is inserted into reservoir0
1. Next,

a tuple from S2 arrives. This is first used to probe ReservoirS1, which in turn re-

directs it to sub-reservoir reservoir0
1 which produces a result. After 5 tuples have

arrived from each of the data streams, we have the following reservoir0
1 = {10, 30},

reservoir1
1 = {11}, reservoir2

1 = {22}, reservoir4
1 = {34}, reservoir0

2 = {10, 20},

reservoir2
2 = {12}, reservoir5

2 = {35} and reservoir8
2 = {48},. When the sixth tuple

from S1 arrives, ReservoirS1 is full. We need to decide whether to discard a tuple

from ReservoirS1. First, we compute the hash value of the sixth tuple to be 0 (i.e.

90 mod 10). To determine whether to discard the tuple, we randomly generate a

number ρ between 1 to 6 (inclusive). If ρ ≤ 5, then we will replace a tuple in the

sub-reservoir reservoir0
1 with this newly arrived tuple. Suppose the value of ρ is 4. It

is important to note that there are only two tuples in reservoir0
1. To determine which

tuple to be replaced, we compute 4 mod 2 = 0. Thus, the first tuple (value=10) is

then replaced with the newly arrived tuple. Thus, sub-reservoir reservoir0
1 = {90,

30}. Similarly, when the sixth tuple (value = 58) from S2 arrives, we need to decide

whether to discard or replace a tuple from reservoir8
2. We generate a random number,

ρ between 1 to 6 (inclusive). Suppose rho = 6. Thus, we discard the newly arrive

tuple. Thus, sub-reservoir reservoir8
2 = {48}.



8.4. PERFORMANCE EVALUATION 121

8.3.7 Discussion

Approx-RRPJ, Prob and ProbHash attempt to maximize the quantity (i.e. number

of results produced) by sacrificing tuples that do not produce or produce few results.

Therefore, they tend to favour results in certain ranges. In contrast, RAJ and RA-

JHash strive to maintain a good representative sample. With limited memory, an

approximate join algorithm need to effectively make use of the available memory,

balancing between quantity and quality of the results produced.

8.4 Performance Evaluation

In this section, we perform an extensive performance study, using both synthetic and

real-life datasets. 5 algorithms are used in the performance study: (1) ARRPJ (2)

Prob (3) ProbHash (4) RAJ and (5) RAJHash. We implemented all the progressive

approximate algorithms in C++, and conduct the experiments on a Pentium 4 2.4

Ghz PC (1GB RAM).

We evaluate the approximation performance by: (1) Visualizing the quality of the

results using normalized result histograms, (2) Measuring the percentage of results

(Quantity) and ,(3) Measuring the JS Divergence (Quality). We have also conducted

experiments to measure the quality of the results using MSE. As the results using

MSE show similar trends to JS Divergence, the results are omitted. We also studied

the effects of varying memory sizes. In addition, we also studied the throughput and

quality throughput of the various progressive approximate join algorithms by taking

snapshots of the result distribution at different time epochs.

The experiment parameters are given in Table 8.1. When the memory allocated

to the approximate join is 100%, all tuples fit in memory. Hence, the complete set

of join results are produced. We refer to this method as EXACT, which we use as a

benchmark for comparison for result quality and computing the percentage of results

produced by each method.
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Table 8.1: Experiment Parameters
Parameter Values
Memory allocated to
approximate join, M Varies between 10% to 100%
Datasets Skewed
(DS, Dataset Size) (100,000 tuples)

Extreme
(100,000 tuples)
Real-life: Weather
(2,074,948 tuples)

8.4.1 Effect of Skewed Distribution

In this experiment, we investigate the performance of the various methods in the

presence of a skewed distribution. The skewed distribution is generated as follows:

The frequency of the join attribute values is determined by a Zipfian distribution.

The skewness of the Zipfian distribution is determined by a factor η. We set η to be

1.0. We vary the memory allocated to be 10% to 100% of the dataset size (100,000

tuples). The domain of the join attribute value is set to be 1-50.

Approximation Performance

We first study the performance of the algorithm w.r.t to approximation only. There-

fore, we consider bounded input streams, and look at the quantity and quality after

all the tuples have been processed.

The goal of the first experiment is to visualize the quality of the results produced

by the various progressive approximate join algorithms. We fixed the memory allo-

cated to the approximate join to be 10% of the dataset. To achieve this, we plot the

result histograms for each of the algorithms. In the y-axis, we show the normalized

frequency for each join attribute value. Given the number of results produced by an

approximate join method J is |J|. The number of results with join attribute value v

is given by |v|. The normalized frequency is defined as |v|
|J |

. In the x-axis, we plot the

value of the join attributes.

From Figure 8.4(a)-(c), we can observe that ARRPJ, Prob, and ProbHash favor
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the production of the most likely results. Hence, the results that are produced are

skewed towards the join attribute values that appear more frequently. From Figure

8.4(e) and (f), it is visually striking that the normalized histograms for RAJ and

RAJHash are almost identical to the distribution of the complete results (Figure

8.4(a)). For a quantitative comparison of the result quality, we also show the JS

Divergence for the various algorithms in Figure 8.4(g). Thus, we can conclude the

quality of results produced by RAJ and RAJHash is higher than that produced by

ARRPJ, Prob, and ProbHash.

In the second experiment, we vary the amount of memory allocated to the pro-

gressive approximate join. The x-axis shows the amount of memory allocated as a

percentage of the total dataset size. The y-axis shows the percentage of results pro-

duced and the JS Divergence respectively for Figure 8.4(h) and (i). From the figures,

we can observe that the quantity and quality improves as the amount of memory al-

located increases. In addition, it is consistently observed in all the algorithms. From

Figure 8.4(h), we can observe that the number of results produced by RRPJ, Prob

and ProbHash is significantly more than RAJ and RAJHash. However, from Figure

8.4(i), we can observe that the JS-divergence of RAJ and RAJHash is much lower.

As noted in Section 8.3.7, with limited memory, there is always a tradeoff between

quantity and quality.

Throughput and Quality Throughput

Next, we measure the quantity and quality of the results over time. We set the

amount of memory allocated to the progressive approximate join algorithms to be

10% of the dataset size. We measure the percentage of complete results produced

and the JS Divergence over time (x-axis).

From the results presented in Figure 8.5(a) and (b), we can observe that the

throughput of ARRPJ, ProbHash, and RAJHash is significantly better than RAJ

and Prob. However, they produce a lesser percentage of the complete results com-

pared to Prob. In Figure 8.5(c), we can observe that the JS Divergence of ARRPJ,

ProbHash, and Prob is significantly higher than RAJ and RAJHash. In addition,

as time progresses, the JS Divergence of ARRPJ, ProbHash, and Prob increases. In
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contrast, from Figure 8.5(d), we can observe that the JS Divergence of RAJ and

RAJHash decreases with time. This is because the former three methods aims to

maximize quantity. Over an extended period of time, this affects the quality of the

results. For the sampling-based algorithms, RAJ and RAJHash, as time progresses,

the quality improves. Hence, the decreasing JS Divergence.

ProbHash has significantly better throughput, compared to Prob, due to the par-

titioning of the data space into multiple priority queues. This reduces the number

of scans for join matches. In contrast, for Prob, a newly arrived tuple will have to

scan all the tuples in the corresponding priority queue, which is inefficient. A simi-

lar observation can be made between RAJHash and RAJ. Most importantly, this is

achieved without sacrificing the overall result quality over time.

We also studied the tradeoffs between quantity and quality. The results are pre-

sented in Figure 8.5(e). As observed in earlier graphs, when the percentage of results

increases, the JS Divergence for ARRPJ, ProbHash, and RAJHash increases. In

contrast, from Figure 8.5(f), we can observe that for RAJ and RAJHash the JS

Divergence decreases with increasing number of results produced.

8.4.2 Real Life Dataset

In this experiment, we investigate the performance of the various methods using a

real-world dataset, consisting of weather data [HWL96].

The dataset consists of monthly cloud measurements, collected by sensors globally.

Similar to [DGR03], we chose the data collected for September 1985 and September

1986 as the inputs to the approximate equijoin. The total size of both datasets is

approximately 2 million tuples. For each of the dataset, we extracted the values of

the latitude and longitude attributes. These attributes denotes the location of sensors

which capture the sensors reading. Next, we partition the data universe using a 18

x 36 square grid. Each grid cell is assigned a unique identifier. Each tuple in the

dataset, described by its latitude and longitude, is then assigned the value of the

unique identifier. We then perform an equijoin between the 1985 and 1986 datasets.
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We omit the results for Prob and RAJ, and show only their more efficient coun-

terparts, ProbHash and RAJHash respectively.

Approximation Performance

Similar to Section 8.4.1, we first study the performance of the algorithm w.r.t to

approximation only. Thus, we consider bounded input streams, and look at the

quantity and quality after all the tuples have been processed.

In the first experiment, we fixed the memory allocated to the approximate join to

be 10% of the dataset. We present the result histograms for the various approximate

join algorithms in Figure 8.6(a)-(d), where we can observe the quality of the result

distribution. We omit the result histograms for Prob and Reservoir as they exhibit

similar trends to ProbHash and SReservoir respectively. From Figure 8.6(a)-(d), we

can observe that the normalized result histograms for RAJHash is similar to Exact.

In contrast, we can observe that ARRPJ and ProbHash indeed maximize the result

quantity for the join attribute values which appear more frequently.

In the second experiment, we vary the amount of memory allocated for the pro-

gressive approximate join algorithms. The results are presented in Figure 8.6(e) and

(f). From the figures, we can also observe that the quantity and quality improves as

the amount of memory allocated increases. Also, we can observe in Figure Figure

8.6(e) that the number of results produced by RRPJ, Prob and ProbHash is signifi-

cantly more than RAJ and RAJHash. From Figure 8.6(f), we can observe that the

JS-divergence of RAJ and RAJHash is much lower.

Throughput and Quality Throughput

Next, we measure the quantity and quality of the results over time. We set the

amount of memory allocated to the progressive approximate join algorithms to be

10% of the dataset size. We measure the percentage of complete results produced

and the JS Divergence over time (x-axis).

From Figure 8.7(a) and (b), we can observe that the throughput of ARRPJ,

ProbHash and RAJHash is significantly better than RAJ and Prob. This is similar
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to the observation made for the skewed synthetic dataset. From Figure 8.7(c), we

can observe that the JS Divergence of ARRPJ, ProbHash, and Prob is significantly

higher than RAJ and RAJHash. As time progresses, the JS Divergence of ARRPJ,

ProbHash, and Prob increases. In contrast, from Figure 8.7(d), we can observe that

the JS Divergence of RAJ and RAJHash initially increases. This is due the arrival

of non-representative tuples in the beginning. Hence when these tuples are used in

the join, the results are not representative (hence the increasing JS divergence at

the initial stages). However, when time progresses, the JS Divergence decreases with

time. The tradeoffs between quantity and quality are presented in 8.7(e) and (f). We

can observe that the JS Divergence increases as the percentage of results produced by

ARRPJ, Prob and ProbHash increases. In contrast, the JS Divergence for RAJ and

RAJHash decreases over time. In Figure 8.7(f), the initial increase in JS Divergence

is due to the effects discussed earlier for Figure 8.7(d).

8.4.3 Effect of Extreme Dataset

In this experiment, we investigate the performance of the various methods in the

presence of the extreme scenario [DGR03, DGR05]. The extreme scenario is charac-

terized by having join attribute values that appear less frequently for each dataset.

Figure 2.1 shows the join attributes values used in the extreme scenario for two data

streams, R1 and R2. For the experiments, the value of b1 and b2 is set to 1 and 2

respectively.

From Figure 8.8(a), we can observe that except for RAJ, all methods are able to

generate 100% of the results. An interesting observation is that RAJHash is able to

generate 100% of the results, whereas RAJ does not. This is because RAJHash is

able to keep the rare values b1 (from R1) and b2 (from R2) in the sub-reservoir. When

the tuples with join attribute values b2 (from R1) and b1 (from R2) arrives, they are

assigned to the other sub-reservoir. In this way, RAJHash was able to maintain a

random uniform sample for each of the sub-reservoirs.

[CMN99, DGR03] noted that using the Reservoir method will not produce any

join results for the extreme scenario. The assumption made was that the Reservoir
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needs to be completely filled for either of the data streams, before join processing can

start. In contrast, when a probe-insert paradigm is used to continuously probe the

reservoir while it is being built, join results can still be produced since the rare tuples

have not been discarded from the reservoir yet. In the experiment, we show that even

in the extreme scenario, RAJ will still produce results (instead of an empty result

set) as it progressive probe the reservoirs for result.

In addition, we also present a softer variant of the extreme scenario. In this

variant, we relax the constraints on the appearance of specific join attribute values.

In this variant, the values of b1 (from R1) and b2 (from R2) have a 50% chance of re-

appearing in the dataset. From Figure 8.9(a), we can observe that Prob, ProbHash,

RAJ and RAJHash produce the same percentage of results. From Figure 8.9(b),

we can observe that the quality of the results produced by RAJ and RAJHash are

significantly better.

8.5 Summary

In this chapter, we have investigated the problem of progressive approximate join

processing using limited memory.

Though several approximate join processing techniques have been proposed, the

focus has always been maximization of the size of the set of results. In this work, we

have clearly differentiated the notions of quantity and quality. We have shown that

algorithms can favor one or the other. We have also empirically demonstrated that

there exists a trade-off between the two strategies as they compete for the usage of

memory.

We have shown that stratification of memory with hash partitioning can signifi-

cantly improve the efficiency of progressive approximate joins and therefore improve

throughput without sacrificing quantity and quality. We have also shown that reser-

voir sampling based progressive approximate joins are superior when quality matters.

We propose four new progressive approximate join algorithms: ARRPJ, Prob-

Hash, RAJ and RAJHash. The former two, like Prob, favor quantity, the latter two
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favor quality. ProbHash improves on Prob on every aspects. RAJ and RAJHash

produce results of significantly better quality. Interestingly, although they produces

less results, RAJ and RAJHash are the fastest to produce because of the simplicity

of the reservoir data structure and algorithm.
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Chapter 9

Progressive, Approximate Sliding

Window Join

9.1 Introduction

In many data stream applications, the sliding window model of data processing is

commonly used. Firstly, users are interested in processing the current data (i.e. data

that is in the current window), instead of old data (i.e. data that are out of the

window). Secondly, due to the unbounded nature of data streams, the data volume

is often much larger than the available resources (e.g. memory, and computational

resources). Thus, it is more practical to process and answer queries using windows of

data, instead of processing the entire data stream.

In sliding window model of data stream processing, two types of of sliding windows

are commonly used [BDM02]: sequence-based and timestamp-based windows. In a

sequence-based window, the |W | most recent tuples are kept in the window, where

|W | refers to the window size. A tuple expires from a sequence-based window when

it is no longer one of the |W | most recent tuples. In a timestamp-based window, a

tuple is assigned an arrival timestamp when it is first added to the window. A tuple

expires from a timestamp-based window when its timestamp is no longer within the

valid time interval of a window.

A synopsis is a key building block for progressive, approximate algorithms over

134
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data streams. The synopsis provides an approximate representation for all the tuples

of the data stream. Many different types of synopsis have been proposed. These

includes: wavelets, sketches, samples and histograms. Most synopsis are designed

for providing estimations to aggregation queries, and seldom extends to providing

approximate results for join queries. In addition, the authors of [DGR03] have even

disqualified sampling based methods based on the extreme scenario given in [CMN99]

without further experiments. We have shown in [TBL08a] that this disqualification

is mistaken, and that a stratified sampling approach can be used to effectively and

efficiently provide approximate results for join queries. In [TBL08a], a stratified sam-

ple is maintained for each of the data streams. Whenever a new tuple from one

stream arrives, it is first used to probe (for matching tuples that can be joined based

on the join predicate) the stratified sample for the other data stream. Afterwhich,

the tuple is then inserted into its own stratified sample. While [GLH06] provides a

systematic study on the maintenance of a random sample, the focus was on handling

arbitrary insertions/deletions, and dynamically resizing of the sample size. In ad-

dition, the techniques proposed do not show how they can be directly extended for

sliding window joins. Hence, we did not include it in our comparison.

In [TBL08a], the stratified sample is maintained over the entire data stream, and

do not consider a sliding window model. In order to provide quality results to various

types of queries in a sliding window model, it is important that the samples that are

maintained take into account the sliding window semantics. The samples must be

representative of the data in the sliding window, and not the entire data stream. In

sampling theory [Coc77], the sample is referred to as a simple, random sample (srs)

of the sliding window. Our work builds on the initial work by Brian et.al [BDM02],

which considered the problem of sampling from a moving window over a single data

stream. While Brian et.al [BDM02] presents a discussion on the various issues that

need to be considered for sampling over data streams, they do not provide empirical

evidence.

In this chapter, we propose a generic framework for designing sampling-based

progressive sliding window joins. In order to evaluate the effectiveness of various

sampling techniques we considered the use of four sliding-window based sampling
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techniques. These includes: Expire [BDM02], and 2 new sliding window sampling

algorithms: FIFO and WinRes. As a baseline, we also included the conventional

reservoir sampling. In order to study the effectiveness of each of these sampling tech-

niques, we study the performance of each of the techniques prior to incorporating

them within the sliding window join framework. We present both empirical and the-

oretical analysis for each of the proposed sampling techniques. Next, we incorporated

each of these sampling techniques in the sliding window join framework, and conduct

an extensive performance evaluation.

The chapter is organized as follows. In Section 9.2, we present the framework

for a sampling-based progressive sliding window join. In Section 9.3, we present four

sampling techniques. We conduct an extensive performance evaluation in Section 9.4.

9.2 Progressive Sliding Window Join

In this section, we propose a sampling-based sliding window join framework.

Given two streams R1(A,B) and R2(B,C), where A, B and C are attributes of the

data streams. Let the i-th tuple from R1 and the j-th tuple from R2 be denoted by

tR1(ai,bi) and tR2(bj ,cj) respectively. The size of a sequence-based sliding window W

is given by |W |. In the sampling-based approach, a sample is maintained for each

of the data streams. Whenever a tuple t from one data stream arrives, it is used to

probe the sample for the other data stream for results.

In Algorithm 8, two samples SR1 and SR2 are maintained for data streams R1 and

R2 respectively. The size of each of the sample is given by |SR1| and |SR2|. Various

sampling techniques (described in Section 9.3 ) can be used.

The probe step is given in Algorithn 9. During the probing for join matches,

Algorithn 9 checks for expired tuples in the sample (Line 8) using hasTupleExpired().

A tuple has expired when it is no longer in the sliding window. This is because

depending on the sampling technique used, the sample might contain expired tuples.

The check prevents erroneous results from being produced when a newly arrived tuple

is joined with an expired tuple.
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Algorithm 8 Sampling-Based Sliding Window Join Framework
1: while ( !endOfStreams(R1,R2) ) do
2: tuple t = select(R1,R2)

3: if ( t.src == R1) then
4: SR2.probe(t)
5: SR1.insert(t)
6: else if (t.src == R2) then
7: SR1.probe(t)
8: SR2.insert(t)
9: end if

10: end while

Algorithm 9 Sampling-Based Sliding Window Join - Probe
1: Let p denote the tuple that is used to probe the sample

2: Let pvalue and tvalue denote the attribute value
3: for tuples p and t respectively. The attribute used is
4: defined by the join predicate.

5: Let R denote the result set
6: R = {}
7: for ( each t in sample S ) do
8: if (!hasTupleExpired(t)) then
9: // Tuple has not expired

10: if ( pvalue == tvalue) then
11: Add (p,t) to R
12: end if
13: end if
14: end for
15: return R

9.3 Sliding Window Sampling

In this section, we consider various ways to perform sliding window sampling.

We consider the problem of maintaining a simple random sample S, on a window

W. W is a sequence-based sliding window over a data stream D. The size of S, W are

|S| and |W | respectively ( |S| <= |W | ). n denotes the number of tuples that have

arrived so far.
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9.3.1 Reservoir

Reservoir sampling maintains an unbiased sample of |S| tuples in a data stream.

Assume that n tuples have arrived. When n ≤ |S|, then the tuple is added to the

reservoir (i.e. sample). When n > |S|, the reservoir sampling technique selects a

tuple to be replaced. This is achieved by randomly generating a value,ρ, between 1 to

n. If ρ > |S|, then the newly-arrived tuple is discarded. Else, the tuple replaces the

ρ-th tuple in the sample. It is shown in [MB83, Agg07] that the reservoir sampling

technique maintains an unbiased simple random sample at any point in time.

Algorithm 10 Conventional Reservoir Sampling
n = 0
while ( !endOfStream() ) do

Tuple t = getNextTuple()
n = n + 1

if ( n < |S| ) then
Insert t into R

else
Randomly generate a number ρ between 1 to n
if ( ρ < |S| ) then

Replace the ρ-th tuple in S with t
end if

end if
end while

9.3.2 FIFO

First-in-First Out window sampling (Fifo) maintains a sample of |S| tuples. Fifo

maintains the sample as a queue of tuples. Assume that n tuples have arrived. When

n ≤ |S|, then the tuple is added to the sample. When n > |S|, Fifo determines

whether a replacement should be made. This is achieved by randomly generating

a value,ρ, between 1 to n. If ρ < |S|, then the earliest tuple that have arrived is

dequeued, and the new tuple enqueued.

Consider the following example. Given that D = {1, 5, 2, 3, 18, 9, 6, 10, ...}, |W |

= 3, and |S| = 2. Let tv denote the v -th tuple in D. After t1 and t2 have arrived, S
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= {1,5}. When t3 arrives, the sample is full. Hence, we need to determine whether

t3 is included in the sample. A random number, ρ is generated between 1 to 3. If ρ is

greater than 3, then the newly arrived tuple is discarded. In this case, suppose ρ =

2, we remove the earliest tuple (i.e. in FIFO manner) in the sample. This is replaced

with the newly arrived t3. Thus, S = {5,2} and W = {1,5,2}.

Algorithm 11 FIFO
1: n = 0
2: while ( !endOfStream() ) do
3: Tuple t = getNextTuple()
4: n = n + 1

5: if ( n < |S| ) then
6: Insert t into S
7: else
8: Randomly generate a number ρ between 1 to n
9: if ( ρ < |S| ) then

10: Remove the first tuple in the sample
11: Insert t as the last tuple in the sample
12: end if
13: end if
14: end while

Analysis

Let pos(t) denote the position of an arbitrary tuple t in the FIFO sample. pos(t) =

1 if t is the first tuple in the FIFO sample, and 1 < pos(t) ≤ |S| otherwise. Given

any arbitrary tuple t in the FIFO sample, let Premoved(t) denote the probability that

the tuple t is removed from the FIFO sample when ρ < |S| (i.e. a tuple needs to be

removed from the sample).

Premoved(t) =







1 pos(t) = 1

0 pos(t) > 1
(9.1)

We wish to compute Pk, the probability that any particular sample is chosen at

the k-th step. For k ≤ |S| (the sample is not completed filled), Pk = 1. For k > |S|,

we consider two cases. In the first case, an arbitrary tuple t is replaced by a newly
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arrived tuple. In the second case, an arbitrary tuple t is discarded. We prove both

cases by induction.

In the first case, the probability that a newly arrived tuple is added to the sample

is |S|/(k+1). For k = |S|, assume

Pk = 1/





k

|S|



 (9.2)

Thus, Pk+1 is derived as follows:

Pk+1

= Pk(
|S|
k+1

)(1)

= [1/





k

|S|



]( |S|
k+1

)(1)

= |S|!(k−|S|)!|S|
(k+1)!

(9.3)

In the second case, the probability that a tuple is discarded is given by (1 - |S|/(k

+ 1)). Thus, Pk+1 is derived as follows:

Pk+1

= Pk(1 − |S|/(k + 1))

= [1/





k

|S|



](1 − |S|/(k + 1))

= |S|!(k+1−|S|)!
(k+1)!

= [1/





k + 1

|S|



]

(9.4)

9.3.3 Expired Reservoir Sampling (Expire))

The Expired Reservoir sampling (Expire) technique is introduced in [BDM02] as a

sampling technique for moving windows of streaming data. The reservoir sampling

technique is used to maintain the sample for the first |W | tuples. When n > |W |,

then Expire will determine the tuple that has expired in the sample. This expired

tuple is then replaced with a newly arrived tuple.
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Consider the following example. Given that D = {1, 5, 2, 3, 18, 9, 6, 10, ...}, |W |

= 3, and |S| = 2. Let tv denote the v -th tuple in D. After t1 and t2 have arrived, S

= {1,5}. When t3 arrives, the sample is full. Hence, we need to determine whether

t3 is included in the sample. A random number, ρ is generated between 1 to 3. If ρ

is greater than 3, then the newly arrived tuple is discarded. In this case, suppose ρ

= 2, the second tuple in S (i.e. 5) is replaced with the newly arrived tuple. Thus, S

= {1,2}, and W = {1,5,2}. At this point, the size-3 window moves. W = {5,2,3}.

When t4 arrives, we check whether the sample contains any expired tuples. In the

sample, we observed that t1 has expired. We replace it with t4. S = {3,2}. W =

{2,3,18}. When t5 arrives, we observe that none of the tuples have expired. Thus,

t5 is discarded. W = {3,18,9}. When t6 arrives, t3 (i.e. value 2) expired. Thus, it

is replaced with t6. S = {3,9}. Afterwhich, W = {18,9,6}. When t7 arrives, t4 (i.e.

value 3) has expired. Thus, it is replaced. S = {6,9}.

As noted in [BDM02], one of the problems with the Expire technique is that the

sampling technique is periodic in nature. For example, if a i-th tuple is included in

the sample, then all subsequent j-th tuple will also be included in the sample, where

j = i + cn (c > 0 and n > 0).

Analysis

In reservoir sampling [Vit85], the probability of including a newly arrived tuple in

the sample is s
n
, where n is the number of tuples that have arrived. We further show

that the reservoir maintained by Expire, at any time t, is a simple random sample

without replacement.

At any time time, when the window slides, two cases can occur. In the first case,

a newly arrived tuple in the window replaces a tuple in the sample. In the second

case, the newly arrived tuple is discarded.

In the first case, we consider the scenario where a tuple in the reservoir is replaced

with a newly arrived tuple. The probability of adding the newly arrived tuple in the

window to the sample is s
w
. Since an expired tuple needs to be removed from W,

and a randomly chosen tuple needs to be replaced in S, the probability of choosing a
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Algorithm 12 Expired Reservoir Sampling

1: while ( !endOfStream() ) do
2: Tuple t = getNextTuple()
3: if ( n < |S| ) then
4: Insert t into the S
5: else
6: if ( n < |W | ) then
7: // Perform reservoir-style sampling
8: ρ = Randomly generate a number between between 1 and |W | (inclusive)
9: if ( ρ < |S| ) then

10: Replace the ρ-th tuple in S with t
11: end if
12: else
13: Check whether there are expired tuples in the reservoir
14: If there is a tuple that have expired, replace it with t
15: end if
16: end if
17: end while

sample of size s-1, from a window of size w-1 is given by 1/





w − 1

s − 1



. Thus, the

probability that a tuple in the reservoir is replaced by a newly arrived tuple from W,

is given by

s

w
(1/





w − 1

s − 1



) =
s

w
(
(s − 1)!(w − 1 − (s − 1))!

(w − 1)!
) (9.5)

Simplifying 9.5, we obtain

s

w
(
(s − 1)!(w − s)!

(w − 1)!
) =

s!(w − s)!

w!
= 1/





w

s



 (9.6)

In the second case, we consider the scenario where a newly arrived tuple from

W is discarded. The probability that a newly-arrived tuple is discarded is 1 − s
w
.

However, it is important to note that as W slides, the oldest tuple in W expires.

Thus, the probability of selecting a sample of size s from a window containing w-1
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tuples is 1/





w − 1

s



. Thus, the probability of selecting a sample in this scenario

is given by

(1 −
s

w
)(1/





w − 1

s



) = (
w − s

w
)(

s!(w − s − 1)!

(w − 1)!
) (9.7)

Simplifying 9.7, we obtain

s!(w − s)!

w!
= 1/





w

s



 (9.8)

In both cases, we have showed that the sample maintained by Expire is indeed a

simple random sample without replacement.

9.3.4 Comparison with an extreme case

Next, we consider an extreme case. In the extreme case, we always replace a randomly

chosen tuple from the reservoir when a new tuple arrived. In this scenario, the

probability of selecting a sample of size s-1 from a window containing w-1 tuples is

given by

1/





w − 1

s − 1



 =
(s − 1)!(w − 1 − (s − 1))!

(w − 1)!
=

(s − 1)!(w − s)!

(w − 1)!
(9.9)

From Equation 9.9, we can observe that the extreme case does not guarantee that

a simple random sample is obtained. The main difference between the extreme case

and the case discussed in the earlier section lies in the ratio s
w
, which determines the

probability of including the newly arrived tuple in the sample.

9.3.5 Windowed Reservoir (WinRes)

WinRes is a reservoir-based sampling [Vit85] technique which maintains a random

sample over a sliding window. Similar to reservoir sampling, Windowed Reservoir

(WinRes) maintains a sample of |S| tuples. The main difference between the Reservoir
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and WinRes is that WinRes checks for expiration of tuples. Assume that n tuples

have arrived. When n ≤ |S|, then the tuple is added to the reservoir (i.e. sample).

When n > |S|, WinRes first checks whether there are tuples in the sample that have

expired. If there are tuples that have expired in the sample, WinRes replaces one

of the expired tuples with the newly arrived tuple. If there are no expiring tuples,

WinRes needs to determine whether a replacement should be made. This is achieved

by randomly generating a value,ρ, between 1 to n. If ρ < n, then the ρ-th tuple in

the tuple is replaced with the newly arrived tuple.

Consider the following example. Given that D = {1, 5, 2, 3, 18, 9, 6, 10, ...}, |W |

= 5, and |S| = 2. Let tv denotes the v -th tuple in D. At time t = 2, S = {1,5}. At

time t = 3, since the reservoir is full, we determine whether the newly-arrived tuple,

t3 (i.e. value 2) , is included in the reservoir by generating a number, ρ between 1 to

3 (inclusive). If ρ ≤ 2, we will include t3 in the reservoir. Otherwise, we discard it.

Suppose at time t = 5, W ={1,5,2,3,18} and S = {1,18}. At time t=6, window

W slides, and W = {5,2,3,18,9}. In order to decide whether t6 (i.e. value 9) is

included in S, we first determine whether there are any expired tuples in S. Since

t1 has expired, we remove it from S. t6 is added to S. Thus, S = {9,18}. At time

t=7, W = {2,3,18,9,6} and S={9,18}. Both t5 and t6 in S are valid tuples w.r.t W.

Hence, we cannot discard any of the tuples. As there is no more available space, we

have to decide whether to discard the newly arrived tuple t7 (i.e. value 6). This is

determined by generating a random number, ρ, between 1 to 7 (inclusive). If ρ ≤ 6,

t6 replaces the 6th tuple. Otherwise, it is discarded. Suppose ρ = 7. We discard t7.

Thus, S={9,18}.

9.4 Performance Evaluation

In this section, we perform an extensive performance study, using synthetic datasets,

which allow us to control the changes in the data distribution. We implemented

the various sliding window sampling-bsaed join algorithms in C++: (1) Fifo, (2)

Reservoir (Res), (3) Expire and (4) Window Reservoir (WinRes).

In addition, we also conducted an extensive study of the performance for each
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Algorithm 13 Window Reservoir Sampling
1: n = 0
2: while ( !endOfStream() ) do
3: Tuple t = getNextTuple()
4: n = n + 1

5: if ( n < |S| ) then
6: Insert t into S
7: else
8: Check whether there are expired tuples in the sample
9: if ( there is an expiring tuple ) then

10: Replace it with t
11: else
12: Randomly generate a number ρ between 1 to |W |
13: if ( ρ < |S| ) then
14: Replace the ρ-th tuple in S with t
15: end if
16: end if
17: end if
18: end while

of the sampling methods. This is presented in Appendix D. In the performance

evaluation for the sliding window join, we omit the chain sampling method [BDM02],

because it cannot guarantee correctness of results as it maintain multiple samples of

size 1. As tuples can be duplicated in the multiple samples, it can potentially produce

duplicate results.

The synthetic dataset, D, consists of 500000 tuples. The data is distributed equally

between two data streams (i.e. Each data stream consist of 250000 tuples). In

addition, the distribution of the data changes every 50000 tuples (i.e. or 0.1|D|).

This is achieved by using a zipfian data distribution with factor, ζ . For each 0.1|D| of

data, we randomly generated a ζ factor between 0.0 and 2.0 (inclusive). In addition,

to ensure that the skewed values do not cluster within a fixed value range, we also

shifted the value ranges for each 0.1|D| of data generated.

The experiments are conducted on a Pentium 4 2.4 Ghz PC (1GB RAM). We eval-

uate the performance of the sliding window join using different sampling algorithms.

The MSE between the sample and the actual result distribution for each window is

measured. While we could have make use of the JSD measure used in Chapter 8,
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Parameter Values
Dataset Size, |D| 500,000
Frequency of Data
Distribution Change, f Every 0.1|D|
Window Size, |W | 0.02|D|, 0.04|D|,

0.06|D|, 0.08|D|, 0.1|D|
Sample Size, |S| 0.2|W |, 0.4|W |

0.6|W |, 0.8|W |, 1.0|W |

Table 9.1: Experiment Parameters

we choose to make use of MSE measure (which is easier to compute) in this chapter

due to the need to fully automate the computation of the quality of large number of

snapshots. This is achieved by taking a snapshots of the sample at regular intervals,

and then compare the sample distribution with the distribution of the results within

the given window. Unless otherwise stated, the experiment parameters given in Table

9.1 are used.

9.4.1 Progressive Sliding Window Join

In this section, we evaluate the performance of the progressive sliding window join

using four sampling techniques. These includes Reservoir (Res), FIFO, Expired Reser-

voir Sampling (Expire), and Windowed Reservoir (WinRes). Besides the results on

sliding window join, we have also isolated each of the sampling technique and con-

ducted an extensive study on the quality of the sample maintained. This is presented

in Appenfix D.

Varying Zipfian

In this experiment, we study the performance of the various window sampling algo-

rithms when the data distribution changes frequently. Two synthetic datasets, D1

and D2 are used. Each dataset consists of 250000 tuples. The distribution for each

of the dataset changes every 25000 tuples (i.e. Every 0.1|D1| or 0.1|D2| ). This is

achieved by using a zipfian data distribution with Zipfian factor, ζ . For each 0.1|D| of

data, we randomly generated a ζ factor between 0.0 and 2.0 (inclusive). In addition,
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to ensure that the skewed values do not cluster within a fixed value range, we also

shifted the value ranges for each 0.1|D| of data generated.

The results for the experiments are presented in Figure 9.1 to Figure 9.5. Each

figure corresponds to a different window size. The window size is expressed as factor

of the each of the dataset size. In each of the figures, we present the results for

the sliding window join using various sampling technique. We vary the sample size

(expressed as a factor of the window size).

In Figure 9.1(a)-(e), the window size is set to 0.02|D|. We can observe that the Fifo

and Res have high MSE values. This is because Res maintains a random sample for

the entire data stream, and does not consider the sliding window semantics. Similarly,

Fifo did not perform as well as it is relatively similar to Res. The only difference

between Fifo and Res is that the former does not randomly remove tuples from the

sample, but instead removes the earliest tuple from the sample. We note that even

though this has an effect of removing older tuple, it is not sufficient to ensure that

the sampled data is a good sample for join processing. From the figures, we can also

observe that as the sample size increases, the error (i.e. MSE) reduces. Even in the

case where the size of the sample is 1.0|W |, Fifo and Res still have higher MSE values

compared to Expire and WinRes.

In Figure 9.2(a)-(e), the window size is set to 0.04|D|. We can observe that both

Fifo and Res have high MSE values, which fluctuates. In contrast, Expire and WinRes

have very low MSE values. This shows that Expire and WinRes are more effective

in maintaining a good result sample, compared with the sliding-window unaware

techniques (e.g. Fifo and Res).

In Figure 9.3(a)-(e), the window size is set to 0.06|D|. Similarly, we can observe

that both Fifo and Res have high MSE values, compared to Expire and WinRes. In

Figure 9.4(a)-(e), the window size is set to 0.08|D|. Similarly, we can observe that

both Fifo and Res have high MSE values, compared to Expire and WinRes.

In Figure 9.5(a)-(e), the window size is set to 0.10|D|. In the experiments, we do

not set the window size to be larger than 0.10|D|. This is because we are interested

to study the impact of small window size on sliding window joins. From the figures,

we can observe that both Fifo and Res have high MSE values. In contrast, Expire
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and WinRes consistently maintain low MSE. This shows that the approximate results

produced by Expire and WinRes are significantly more accurate compared to Fifo

and Res.

In addition, we also show the zoom of the two window-aware techniques, Expire

and WinRes for varying window size. The graphs are presented in Figure 9.6 to

Figure 9.10.

In summary, we can observe from the results that the window-aware techniques,

Expire and WinRes consistently performs much better than the other two window-

unaware techniques, Res and Fifo.
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Figure 9.1: Sliding Window Join / Varying Zipfian , |W | = 0.02|D| - MSE vs Snap-
shots (Note: The maximum MSE is 0.03)
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Figure 9.2: Sliding Window Join / Varying Zipfian , |W | = 0.04|D| - MSE vs Snap-
shots (Note: The maximum MSE is 0.005)
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Figure 9.3: Sliding Window Join / Varying Zipfian , |W | = 0.06|D| - MSE vs Snap-
shots (Note: The maximum MSE is 0.003)
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Figure 9.4: Sliding Window Join / Varying Zipfian , |W | = 0.08|D| - MSE vs Snap-
shots (Note: The maximum MSE is 0.0027)
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Figure 9.5: Sliding Window Join / Varying Zipfian , |W | = 0.10|D| - MSE vs Snap-
shots (Note: The maximum MSE is 0.0026)
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Figure 9.6: (Zoom of Expiry and WinRes) Sliding Window Join / Varying Zipfian ,
|W | = 0.02|D| - MSE vs Snapshots
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Figure 9.7: (Zoom of Expiry and WinRes) Sliding Window Join / Varying Zipfian ,
|W | = 0.04|D| - MSE vs Snapshots
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Figure 9.8: (Zoom of Expiry and WinRes) Sliding Window Join / Varying Zipfian ,
|W | = 0.06|D| - MSE vs Snapshots
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Figure 9.9: (Zoom of Expiry and WinRes) Sliding Window Join / Varying Zipfian ,
|W | = 0.08|D| - MSE vs Snapshots
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Chapter 10

Conclusion

The universe of network-accessible information is expanding. It is now common prac-

tice for applications to process streams of data incoming from remote sources (repos-

itories continuously publishing or sensor networks producing continuous data). In

data stream applications, the amount of memory available is limited. Hence, it is

important that the memory is effectively used during result production. Amongst

the various query processing primitives in data stream applications, the join of data

between data streams is an important operation. The design of a progressive join al-

gorithm must meet several key requirements: the algorithm must be non-blocking (or

progressive), i.e. it must be able to produce results as soon as possible.The algorithm

must maximize either the result quantity or quality.

In this thesis, we developed various techniques to address each of the key require-

ments. we summarize the main contributions below:

1. Firstly, we studied the design of a progressive join algorithm framework for data

stream. We proposed a generic progressive join framework, called Result-Rate

based Progressive Join (RRPJ) framework. Using the RRPJ framework, we

proposed four instantiations of the framework for different data models models:

relational, spatial, high-dimensional and XML. Through extensive performance

evaluation, we show that in each of the instantiations, the RRPJ framework is

effective in maximizing the number of results produced, and outperforms other

state-of-art methods. Most importantly, we show that the RRPJ framework is
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generic and can be easily extended to various data models.

To further demonstrate the usefulness of the RRPJ framework, we also devel-

oped a system demo, called Danaides, for continuous and progressive processing

of RSS feeds. The work has been presented in [TBL07a]. Danaides uses the

RRPJ framework for keeping useful RSS feeds in memory. More details of

Danaides can be found in Appendix C.

2. Secondly, we studied the problem of progressive, approximate join. In data

stream applications, users often do not require a complete answer to their query

but rather only an approximation of the result. They expect the approximation

to be either the largest possible or the most representative (or both) given the

resources available. In the thesis, we clearly differentiated between the notions

of quantity and quality of results produced by progressive approximate join

algorithms.

We proposed four new progressive approximate join algorithms: ARRPJ, Prob-

Hash, RAJ and RAJHash are proposed. The former two, like Prob, favor

quantity, the latter two favor quality. ProbHash improves on Prob on every

aspects. RAJ and RAJHash produce results of significantly better quality.

3. Thirdly, we studied the problem of progressive, approximate sliding-window

join that leverages on sampling as the underlying primitive. We propose sev-

eral sliding-window sampling techniques which are effective in maintaining a

representative sample, and show how they can be used in a sliding window join

algorithm.

10.1 Open Issues

In this section, we discuss the list of issues that remain open for further research. We

are currently studying the following problems.

In the generic progressive join framework, one of the key factors that contribute to

the efficiency and effectiveness of the framework is an effective partitioning method.
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A good partitioning method provides a uniform distribution of the data into multiple

partitions. This reduces the number of tuples that need to be probed during join

processing. In the thesis, we have studied the use of hash partitions for relational and

XML data, two-dimension grid for spatial data, and multi-dimension grid for high-

dimensional data. However, for both existing and new data models, an open issue

lies in finding an effective partitioning scheme. In data stream processing, the data

distribution can vary over time. While an effective partitioning scheme can impose a

uniform distribution of data into multiple partition for the initial data, it may not be

effective for future data that is of a different data distribution. An open issue that

needs to be solved is the design of an adaptive partitioning function that can adapt

to evolving data.

The work on progressive, approximate joins showed that the use of sampling is an

attractive primitive. We are currently studying a unified framework for progressive,

approximate join algorithms. The framework focus on balancing between quality and

quantity, and allow it to be easily generalized for other data models (e.g spatial,

high-dimensional, XML). In this thesis, we have discussed two families of progressive

approximate join algorithms which either maximize the quantity or quality of the

results produced. Prob and ProbHash cannot be easily generalized to other data

models. This is due to the dependence on the arrival probabilities of the partner

data stream. While the arrival probabilities for relational data can be computed in

a straightforward manner, it is difficult to compute such probabilities for data from

other data models.

Another limitation of Prob and ProbHash is that they cannot be easily extended

for multi-way approximate join, unless the multi-way join query plan is decomposed

into a series of binary joins. This is because for a multi-way join, it is not clear

which is the partner stream. Decomposing the multi-way join query plan to a series

of binary joins would limit the adaptiveness of the join. One of the advantages of

using RAJ and RAJHash is that they can be easily generalized to other data models.

We are currently studying the design of multi-way approximate join algorithms based

on the RAJ and RAJHash models. This is because the decision to discard a tuple
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from the reservoir (or sub-reservoirs) does not depend on the data model. For multi-

way joins, multiple reservoirs can be defined for each of the data streams. We are

currently investigating the result quality of the answers that are produced using RAJ

and RAJHash for other data models.

In order to address the tradeoff between the two families of algorithms, we are

currently looking at tunable sampling. The motivation for tunable sampling is to

allow progressive approximate joins to balance between the quantity and quality of

results produced. Tunable sampling is defined as a sampling technique which allows

users to tune the type of sample produced by the sampling process. The sample

can either favor the frequencies for including popular data values in the sample (i.e.

quantity), or favor representativeness of the data (i.e. quality). As an initial step, we

define a criteria as the parameter to control the type of sample preferred by tunable

sampling. Let C denote the set of criterias that the user wishes to maximize, and

ci denotes the individual criteria to be tuned (ci ∈ C, 1 ≤ i ≤ |C|). Let W denote

the set of weights assigned to each criteria, and wi denotes the individual weight

assigned to criteria i.
|C|
∑

i=1
wi = 1. We consider C = {Quantity, Quality }. Next, we

introduce the notion of inclusion probability. P(t) is the probability that a tuple t

will be included in the sample. We refer to this as the inclusion probability. Given

a criteria ci, the inclusion probability is given by Pci
(t). We formally define tunable

sampling as follows: Given a set of criterias C, a set of criteria weights W, and the

inclusion probability for each of the criterias. The combined inclusion probability for

all the criteria is given by:

|C|
∑

i=1

wiPci
(t) (10.1)

For quantity maximization techniques (e.g. Prob, ProbHash), PQuantity = nv / N,

where nv denotes the number of tuples with value v, and N denotes the total number

of tuples that have arrived so far. For quality maximization techniques (e.g. RAJ,

RAJHash), PQuality = |R| / N, where |R| denotes the size of the reservoir, and N

denotes the total number of tuples that have arrived so far.
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[TBL08b] Wee Hyong Tok, Stéphane Bressan, and Mong-Li Lee. Twig’n join: Pro-

gressive query processing of multiple xml streams. In DASFAA, pages 546–

553, 2008.

[TGIK02] Nitin Thaper, Sudipto Guha, Piotr Indyk, and Nick Koudas. Dynamic

multidimensional histograms. In SIGMOD, pages 428–439, 2002.

[TVB+02] Igor Tatarinov, Stratis Viglas, Kevin S. Beyer, Jayavel Shanmugasun-

daram, Eugene J. Shekita, and Chun Zhang. Storing and querying ordered

xml using a relational database system. In SIGMOD, pages 204–215, 2002.

[TYP+05] Yufei Tao, Man Lung Yiu, Dimitris Papadias, Marios Hadjieleftheriou,

and Nikos Mamoulis. RPJ: Producing fast join results on streams through

rate-based optimization. In SIGMOD, pages 371–382, 2005.

[UF99] Tolga Urhan and Michael J. Franklin. XJoin: Getting fast answers from

slow and bursty networks. Technical Report CS-TR-3994, University of

Maryland, 1999.

[UFA98] Tolga Urhan, Michael J. Franklin, and Laurent Amsaleg. Cost based query

scrambling for initial delays. In Laura M. Haas and Ashutosh Tiwary,

editors, SIGMOD, pages 130–141. ACM Press, 1998.

[Vit84] Jeffrey Scott Vitter. Faster methods for random sampling. Commun. ACM,

27(7):703–718, 1984.

[Vit85] Jeffrey Scott Vitter. Random sampling with a reservoir. ACM Trans. Math.

Softw., 11(1):37–57, 1985.

[VNB03] Stratis Viglas, Jeffrey F. Naughton, and Josef Burger. Maximizing the

output rate of multi-way join queries over streaming information sources.

In VLDB, pages 285–296, 2003.

[VW99] Jeffrey Scott Vitter and Min Wang. Approximate computation of multi-

dimensional aggregates of sparse data using wavelets. In SIGMOD, pages

193–204, 1999.



BIBLIOGRAPHY 175

[WA91] Annita N. Wilschut and Peter M. G. Apers. Dataflow query execution in a

parallel main-memory environment. In PDIS, pages 68–77, 1991.

[XLOH04] Chenyi Xia, Hongjun Lu, Beng Chin Ooi, and Jin Hu. Gorder: An efficient

method for knn join processing. In VLDB, pages 756–767, 2004.

[XML02] XML Data Repository. http://www.cs.washington.edu/research/xmldatasets/,

2002.

[XYC05] Junyi Xie, Jun Yang, and Yuguo Chen. On joining and caching stochastic

streams. In SIGMOD, pages 359–370, 2005.

[Yah07] Yahoo Pipes. http://pipes.yahoo.com/pipes/, 2007.



Appendix A

Initial Study on Progressive

Spatial Join

Algorithms for the processing of spatial join, such as those proposed in [BKS93, LR94,

LR96, PD96, APR+98], assume that the data is organized and readily available on

local disks. These algorithms emphasize the efficient processing of the complete result

of the spatial join. We refer to these algorithms as blocking spatial join algorithms

for they require both data sets to be available and possibly indexed before results are

requested.

The modern information infrastructure is one of networked devices possibly mobile

and wireless. It enables the production and consumption of huge amounts of data.

The applications feeding on these data either need to process continuous streams of

spatial data or require the processing of quantities of spatial data so huge that they

render the existing blocking algorithms impractical for a user waiting for results.

They compel spatial join algorithms that can swiftly deliver initial results with the

minimum negative impact on the overall response time, i.e. non-blocking spatial join

algorithms.

The first family of parallel non-blocking spatial join algorithms is proposed and

studied in [LNE02]. While the focus of the work is on achieving speed-up by distribut-

ing the task of performing the spatial join amongst several processors, the authors

176
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considered non-blocking spatial join with a transient in-memory R-tree index struc-

ture.

A.1 R-tree Based Blocking and Non-Blocking Spa-

tial Joins

A.1.1 Static Spatial Join

Let us first recall the general strategy of an R-tree based blocking spatial join. For

the sake of using the performance of this algorithm as a base line in the subsequent

performance analysis, we can consider, without loss of generality for the non-blocking

algorithms that we propose, that the data sets are bounded. The blocking R-tree

based spatial join first builds two R-trees one for each incoming data set. We do

not use bulk loading which would further delay the production of results. When

all the data has arrived, a synchronized traversal of the R-tree is used to compute

overlapping data (since we are concerned only with the filtering phase, data consist

of an identifier to refer to the actual spatial object and the four coordinates of a

minimum bounding rectangle.) This strategy is the basis of algorithms such as those

in [BKS93, LR94, LR96, PD96, APR+98] even though details of the underlying data

structure and algorithms might differ. Since we consistently use R-trees, we believe

that the relative performance is generally similar to the one we would obtain with

more sophisticated index structures such as R+-trees, R*-trees, and their variants.

Figure Algorithm 14 outlines the algorithm for joining the two data sets R and S

by constructing the two R-trees PR and PS to guide join processing.

We can identify two distinct phases in this generic framework. In the Build phase

the index is build. In the Join phase the indices are use to guide the production of

results. If extending this algorithm, non-blocking algorithms need to interleave the

build and join phases in order to allow the early production of results.
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Algorithm 14 Static Spatial Join Algorithm
1: Build Phase
2: PR and PS are intermediate data structures
3: for Tuple t ∈ R do
4: Insert t into PR

5: end for
6: for Tuple t ∈ S do
7: Insert t into PS

8: end for
9: Join Phase

10: Join(PR,PS)

A.1.2 Fully Dynamic Spatial Join

The first non-blocking algorithm that comes to mind, considering the above discussed

blocking algorithm, consists in the interleaving of the two phases at finest granularity.

A system-based concurrent execution of the two phases that would rely on concur-

rency control of the R-tree accesses is not necessary since each insertion preemptively

locks the root of the tree to allow potential splits to retro-propagate up to the root

if necessary. It suffices to programmatically alternate the two phases. Namely each

incoming data from either set is inserted into its corresponding R-tree and used to

probe the other data sets already partially build R-tree. We call this algorithm the

fully dynamic spatial join.The fully dynamic spatial join algorithm is outlined on

Algorithm 15.

Algorithm 15 Fully Dynamic Spatial Join Algorithm
1: Given Spatial Relations R and S
2: while (Data Available) do
3: Read a tuple from either of the data R or S

4: Insert tuple into R-tree (for R or S)
5: Probe other R-tree using tuple

6: Return MBRs which overlap
7: end while

Clearly, this algorithm will produce the first results very early. Yet we can expect

its overall performance to be much worse than the one of the blocking spatial join

algorithm. This is noted in [LR94]: If we simply used R-tree and let them overflow to
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disk when they grow larger than main memory, performance would not be acceptable..

Indeed one of the dominant costs, namely the amount of retrieval of data pages from

disk, is commensurate to the amount of probing (ultimately the sum of the size of

both data sets.) Although this cost is reduced by the use of a buffer and by an

adequate replacement policy such as the least recently used or LRU policy, it can

only be done within the limit of the available space available for the buffer (a fortiori

so if data sets are unbound).

A.1.3 Block Fully Dynamic Spatial Join

In order to seek a compromise between the minimum number of input-output oper-

ations required by the blocking algorithm and the non-blocking behavior of the fully

dynamic algorithm, we propose to alternate the insert and join phases for blocks of

data. Namely whenever we have received a predefined number of data to form a block

from one of either set, the block of data is inserted into its corresponding R-tree and

the disjunctive list of data is used to probe the other data sets already partially build

R-tree. We call this algorithm the block fully dynamic spatial join algorithm.

The algorithm is outline on Algorithm 16.

Algorithm 16 Block Fully Dynamic Spatial Join Algorithm
1: Spatial Relations R and S, BlkThreshold T
2: while (Data Available) do
3: Receive a tuplei from either R or S
4: Insert tuplei into TupleCollectioni

5: if (size(TupleCollectioni) >= T) then
6: Insert all tuples in Ci into corresponding R-tree
7: Use all tuples in Ci to probe the corresponding R-tree
8: Return overlap MBRs (if found)
9: Empty TupleCollectioni

10: end if
11: end while

The size of the blocks determines the compromise between the early production

of results (small blocks) and the overall performance (large blocks). For reasons of

symmetry (assuming identical arrival frequency on both data sets) a size of half of

the buffer yields the optimum overall performance.
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A.1.4 R-tree Based Non-Blocking Spatial Joins

The R-tree based non-blocking spatial joins should yield interesting performance in

the production of early results while not compromising the performance of the overall

production of results as long as the input-output time saved by retrieving relevant

pages thanks to the R-tree and the cpu time saved by comparing spatially related

data overcomes the cost of the repeated join phase. The questions are whether this

cross-over occurs after a sufficient percentage of the data has been produced and how

much overhead is incurred at completion of the join (for finite data sets).

In other attempts, whose full details are not reported here, we have considered

variants of the non-blocking algorithms described above in which the partially build

R-trees are joined instead of being probed with a list of data as well as strategies for

inserting data as they arrive and for marking them to avoid duplicate results. The

empirical analysis showed poor performance compared to the algorithms discussed in

this thesis.

A.1.5 Symmetric Block Nested Loop Algorithm

The main purpose of the R-tree is to adaptively create a balanced partition of the data.

Other partitioning technique such as grids or quad-trees either degenerate if the data

is skewed in a way not captured by the partition or introduce may introduce similar

overhead to the one of the R-tree for a similar granularity of partitioning. Given

the expected prohibitive cost of managing a disk resident R-tree, we can consider an

even more radical solution, namely an algorithm that solely focuses on reducing the

input-output operations with respect to the buffer without attempting to partition the

data. In conventional relational database management systems, if no relevant index

data structure exists on either of the data sets to be joined, one of the most common

join algorithms is the Block Nested Loop Join [RG03]. In this section we propose a

symmetric block nested loop algorithm. As a matter of fact such an algorithm applies

equally to spatial and non-spatial data since no particular organization of the data is

needed which depends on its spatial nature. In the relational context with adequate

join conditions on pairs of attributes one can consider efficient dynamic partitioning
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functions such as hash functions (yielding algorithms such as the Xjoin [UF99], for

instance). Such partitioning functions so far have found no equivalent in the spatial

domain, and are not readily available for arbitrary join conditions in general in other

domains.

Algorithm

The fact that we are dealing with pages instead of data elements allows us a tighter

control of the buffer. In the symmetric block nested loop algorithm we partition the

buffer of size B into three groups. We allocate two buffers of n = (B − 1)/2 frames

(to hold one block of n pages) to read in data from each of the two data sets. Two

counters are kept to indicate when a full block of data is read from either data set.

When full, the block of data is joined in a nested loop with the already disk resident

data of the other data set. In addition, a single buffer frame is reserved to read from

the disk the data to be joined. The build phase is reduced to reading and storing the

data since no index is built. The pages in the each block are written to disk as new

data is read according to the LRU replacement policy. This occurs after the data in

the buffer have been joined thus not necessitating duplicate elimination in the results.

Algorithm 17 outlines this algorithm.

Algorithm 17 Symmetric Block Nested Loop Algorithm
1: Spatial Relations R and S, BlkThreshold T
2: while (Data Available) do
3: Read a tuple from either of the data sourcei

4: Insert tuple into buffer Bi

5: BlkCounteri++
6: if (BlkCounteri >= T) then
7: for (each stored page of the other data set) do
8: Join this page with the data in Bi

9: end forBlkCounteri = 0
10: end if
11: end while

An additional noticeable advantage of this algorithm is that data is written in

pages in its order of arrival as opposed to being reorganized as in the algorithms
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given in the previous section. Provided pages or data are time-stamped, this feature

simplifies the task of discarding outdated data if the application requires it.

If the data displays no particular pattern of arrival with respect to its spatial

distribution and in the impossibility to find a satisfactory and economic partitioning

mechanism, we expect the symmetric block nested loop algorithm to be competitive.

A.1.6 Using R-tree for Dynamic Spatial Join

We now consider an algorithm suitable for those applications in which data is expected

to arrive in spatial clusters. In such a case, except at the transition between two

arriving clusters, we can expect a sequence of incoming data from one data set, say

of the size of one page, to be spatially near.

Summary R-tree

Based on the above assumption the algorithm we propose uses an R-tree to index

pages instead of individual data (notice that the approach naturally extend to con-

sidering groups of several pages if the data sets are very large and the clustering

sufficient). For each page of data read from each data set, the minimum bounding

rectangle in closing the data in the page is stored in the R-tree for this data set. We

call such R-trees summary R-trees. Notice that this is different from bulk loading

the actual data in the page since we do not index the actual data but the page that

contains them. The size of the summary R-tree is much smaller than the one of an

R-tree indexing the actual data. Figures A.1 and A.2 illustrate the layout of the data

in the directory and leaf pages in a complete R-tree and in a corresponding summary

R-tree, respectively, for the R100C5 dataset (see section A.1.7), which contains 100K

of data and has five clusters. We see that the summary R-tree still contains the five

clusters although it is one level shorter.

Symmetric Indexed Block Nested Loop

This strategy suggests a new algorithm we call the symmetric indexed block nested

loop. The Symmetric block nested loop follows the block fully dynamic join algorithm
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Figure A.1: R-tree layout for R100C5

Figure A.2: Summary R-tree layout for R100C5

of section A.1.3. The fact that we are dealing with pages instead of data elements,

as in the case of the block nested loop algorithm, allows us a tighter control of the

buffer.

In the symmetric indexed block nested loop algorithm we partition the buffer of

size B used in the above algorithm into five groups. We allocate three frames to each

R-tree. We allocate two buffers of n = (B − 7)/2 frames to read in data from each

of the two data sets. Two counters are kept to indicate when a block of full pages of

data is read from either data set. The size of the block is n.

When a block of full pages of data is read, the minimum bounding rectangles of
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each page in the block is inserted into the corresponding R-tree. The disjunctive list

of minimum bounding boxes is used to probe the other already partially build R-tree.

The data in the pages retrieved are joined with the data in the pages in the block.

The pages in each block are written to disk as new data is read according to the

LRU replacement policy. This occurs after the data in the buffer have been joined

thus not necessitating duplicate elimination in the results. The algorithm is presented

in Algorithm 18.

Algorithm 18 Symmetric Indexed Block Nested Loop Algorithm
1: Spatial Relations R and S, BlkThreshold T
2: while (Data Available) do
3: Receive a tuplei from either of the data sourcei

4: Insert tuplei into bucket Bi

5: BlkCounteri++
6: if (BlkCounteri >= T) then
7: MBRList = List of Covering MBRs
8: FoundList = Use MBRList as query windows in the
9: summary R-tree of the other data source

10: Perform Block-Nested Loop Spatial Join Bi with
11: with pages in FoundList
12: BlkCounteri = 0
13: end if
14: end while

Reflecting the natural clustering of the data, the summary R-tree reduces the

number of pairs of pages to be selected for joining the data they contain. The question

is whether and at which level of clustering this savings overcome the cost of creating

and maintaining the summary R-tree.

This algorithm also maintains the advantage that data is written in pages in its

order of arrival as opposed to being reorganized as in the algorithms given in the

previous section. Provided pages or data are time-stamped, this feature simplifies

the task of discarding outdated data if the application requires it although entries in

the summary R-tree might need to be discarded or might become obsolete.
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A.1.7 Performance Analysis

Experimental Set-up

The algorithms are implemented in C. The experiments run on a Pentium 4 1.6GHz

PC with 512MB RAM under Windows XP Professional. The input-output operations

simulate a state of the art disk spinning at 7200rpms yielding an input-output cost

of 8ms. We use a 128 frames buffer for all the algorithms. One frame holds one page.

The size of a page is 4096 bytes.

We use both synthetic and real-life datasets. Without loss of generality, we do

consider data sets that contain an identifier to the actual spatial object as well as

its minimum bounding rectangle. One data record is of size 20 bytes. Unless stated

otherwise, inter-arrival rate is constant.

The synthetic data sets are generated using a generator similar to the one described

in [LR94]. The generation allows us to control the number of clusters of the original

data distribution as well as the selectivity of the join. Two datasets of size N are

generated as follows: We first randomly generate C clusters centers for the first data

set. For each cluster center, we generate cluster rectangles, CR. Both the length and

width of each cluster rectangle is set at 0.2 in our experiments. We assigned ⌊N/C⌋

data rectangles to each cluster. The remaining data rectangles are then randomly

assigned to any cluster. To control the selectivity S, the second data set clusters are

constructed such that S% of their area overlaps with a cluster from the other dataset.

Data from the same cluster are contiguous. For some experiments, when indicated,

the data is randomly reshuffled.

The realistic data sets are the Greek roads and rivers [rtr] and the German roads

and railroad lines [rtr]. A summary of characteristics of these data sets is presented

in Table A.1.

R-tree Based Blocking and Non-Blocking Spatial Joins

In this experiment, we analyze the performance of the three R-tree based algorithms.

We first use two synthetic data sets of 100K each, with 5 clusters each, and with

a join selectivity of 25%. We compare the performance of the static spatial join, the
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Datasets Number of # of
MBRs Clusters

Real-life
Greece

Rivers 24,650 -
Roads 23,268 -

Germany
Railroad Lines 36,334 -
Roads 30,674 -

Synthetic
R50KC5, S50KC5 50,000 5
R100KC5, S100KC5 100,000 5
R100KC10, S100KC10 100,000 10
R100KC20, S100KC20 100,000 20
R200KC5, S200KC5 200,000 5
R400KC5, S400KC5 400,000 5

Table A.1: Datasets Used

fully dynamic spatial join, and the block fully dynamic spatial join.

Figures A.3(a), A.3(b) and A.3(c) report the cumulated number of input-output

operations of each of the three algorithms, respectively, at varying percentage of

results produced. On the figure the input-output operations occurring during the

build phase (insertion of the data and creation of the R-tree) are in grey, while the

input-output operations occurring in the join phase are in black. Notice that the

figures have different scales on the y-axis.

Figure A.3(d) reports the cumulated response time of each of the three algorithms

at varying percentage of results produced.

The response time charts confirms that both the fully dynamic and the block fully

dynamic joins can produce results early. At what cost for their overall performance?

By design, the build phase of the static spatial join occurs before any results can

be produced. Both the fully dynamic spatial join and the block fully dynamic spatial

join successfully distribute the build phase and its input-output operations during

the incremental production of results. For the fully dynamic spatial join, the input-

output cost of joining each individual data is prohibitive. For the block dynamic join
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the input-output cost remains similar to the one of the static spatial join.

This respectable performance input-output of the block fully dynamic cannot be

maintained for the overall response time. Both dynamic algorithms incur a prohibitive

cpu cost. Indeed, while the static algorithm is joining the two R-trees in a single

depth-first traversal (see [BKS93], for instance), both dynamic algorithms probe the

R-trees for each individual or list of minimum bounding rectangles. Their overall

performance in response time is worse than the one of the static spatial join. The

fully dynamic algorithm can produce more than 20% of the results faster than the

static algorithm on this data set. The block fully dynamic algorithm can produce

more than 60% of the results faster than the static algorithm on this data set.

Symmetric Block-Nested Loop

In this experiment, we compare the performance of the symmetric block nested loop

(SBNL) algorithm with those of the static spatial join algorithm. We use two synthetic

data sets of 100K each, with 5 clusters each, and with a join selectivity of 25%.

Figure A.4(a) reports the cumulated number of pages actually compared during

the execution of each of the three algorithms, respectively, at varying percentage

of results produced. Figure A.4(b) reports the cumulated number of input-output

operations of each of the three algorithms, respectively, at varying percentage of

results produced. Figure A.4(c) reports the cumulated response time of each of the

three algorithms, respectively, at varying percentage of results produced.

We see that although many more pages are compared by the block nested loop

(each pair of pages, one from each data set, is ultimately compared by this algorithm),

this is translated in a reasonably low number of input-output operations thanks to the

absence of the index data structure to build and probe and thanks to the buffer. Not

only the block nested loop can create early results faster than the static algorithm, but

it creates all the results significantly faster than the static algorithm. We consistently

observed this pattern of performance for all the data sets we have tried (see subsection

A.1.7).
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Symmetric Indexed Block Nested Loop and Clustered Arrivals

In this experiment, we analyze the effect of clustered arrivals on the symmetric block

nested loop and the symmetric indexed block nested loop (SIBNL) algorithms. We use

two synthetic data sets of 100K each, with 5 clusters each, and with a join selectivity

of 25%. In a first series of measurements the data is clustered as generated, while in

a second series of measurements the data from both data sets is randomly reshuffled.

We compare the performance of the static spatial join, the symmetric block nested

loop, and the symmetric indexed block nested loop for both pairs of data sets.

For the clustered data set, the results are reported on figures A.5(a), A.5(b), and

A.5(c) as mentioned in the previous subsection.

We first observed that, as motivated by the design of the symmetric indexed

block nested loop, it can reduce the number of pages being compared. This means

that it does filter relevant pages of data. Yet because of the cost of maintaining

and probing the index data structure, although just a summary, this performance

does not translate into a commensurate gain in input-output cost and response time.

Nevertheless, with these data sets arriving in clusters, the symmetric indexed block

nested loop manages to yield a better response time than the symmetric block nested

loop.

For the randomly shuffled data set, Figure A.5(d) reports the cumulated num-

ber of pages actually compared during the execution of each of the three algorithms,

respectively, at varying percentage of results produced. Figure A.5(e) reports the

cumulated number of input-output operations of each of the three algorithms, respec-

tively, at varying percentage of results produced. Figure A.5(f) reports the cumulated

response time of each of the three algorithms, respectively, at varying percentage of

results produced.

The relative performance of the symmetric indexed block nested loop and the

symmetric block nested loop as shown on figures A.5(b), and A.5(c) is now reversed

on figures A.5(e), and A.5(f). This illustrates that the symmetric indexed block

nested loop can exploit situations in which data arrive in clusters yet it still performs

reasonably well when this is not the case.

The results are accentuated when the data distribution is more clustered and the
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arrival clustered for instance with 10 and 20 clusters (using R100KC10 1 S100KC10

and R100KC20 1 S100KC20).

Scalability and Real-Life Data Sets

In this series of experiments, we measure the performance in both input-output oper-

ations and response time for the symmetric block nested loop and the indexed block

nested loop algorithms on both very large and real-life data sets, respectively. For

reference, we also measure the performance of the static spatial join.

We use two groups of synthetic data sets of 200K and 400K. All data sets have 5

clusters and the selectivity is 25%.

For the two input data sets of size 200K, Figure A.6(a) reports the cumulated

number of input-output operations of each of the three algorithms, respectively, at

varying percentage of results produced. Figure A.6(b) reports the cumulated response

time of each of the three algorithms at varying percentage of results produced.

We use two very large synthetic data sets of 400K,

For the two input data sets of size 400K, Figure A.6(c) reports the cumulated

number of input-output operations of each of the three algorithms, respectively, at

varying percentage of results produced. Figure A.6(d) reports the cumulated response

time of each of the three algorithms at varying percentage of results produced.

We use the Greek road and rivers and the German roads and railroads data sets.

Figure A.7(a) reports the cumulated number of input-output operations of each of the

three algorithms, respectively, at varying percentage of results produced for the Greek

data. Figure A.7(b) reports the cumulated response time of each of the three algo-

rithms at varying percentage of results produced for the Greece data. Figure A.7(c)

reports the cumulated number of input-output operations of each of the three algo-

rithms, respectively, at varying percentage of results produced for the German data.

Figure A.7(d) reports the cumulated response time of each of the three algorithms at

varying percentage of results produced for the Germany data.

These charts call no further analysis since they are only presented to confirm the

analysis in the previous subsections with more challenging data sets.
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Inter-arrival Rate

In this experiment, we illustrate the effect of non-constant inter-arrival times on the

various algorithms. We use two synthetic data sets of 50K each, with 20 clusters

each, and with a join selectivity of 25%. The inter-arrival is modeled using a Poisson

law with a mean of 2 seconds. We compare the performance of the static spatial

join, block dynamic spatial join, the symmetric block nested loop, and the symmetric

indexed block nested loop.

Figure A.8 reports the cumulated response time of each of the four algorithms at

varying percentage of results produced for the Poisson law. We can observe that the

symmetric block nested loop and symmetric indexed block nested loop were able to

produce the initial 75% of the results quickly in spite of the inter-arrival rate.
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Appendix B

XML Data Examples

<symbols>

<symbolTuple>

<symbol>MSFT</symbol>

<description>Microsoft</description>

<market>NasdaqGS</market>

<industry>Software</industry>

</symbolTuple>

<symbolTuple>

<symbol>GOOG</symbol>

<description>Google</description>

<market>NasdaqGS</market>

<industry>Internet Info Providers</industry>

</symbolTuple>

...

</symbols>

(a) Symbol Information (symbol.xml)

<quotes>

<quoteTuple>

<symbol>MSFT</symbol>

<shareVolume>75169443</shareVolume>

<lastSale>26.72</lastSale>

<currency>USD</currency>

</quoteTuple>

<quoteTuple>

<symbol>GOOG</symbol>

<shareVolume>6379234</shareVolume>

<lastSale>443.03</lastSale>

<currency>USD</currency>

</quoteTuple>

...

</quotes>

(b) Stock Quotations (quotes.xml)

Figure B.1: XML Join Scenario A - Stock vs Symbol Information
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<items>

<item>

<title>CNA</title>

<section>

<techNews>

<blurb>Google to bolster privacy of

online searchers</blurb>

<keyword>Google</keyword>

<article>...</article>

</techNews>

<techNews>

<blurb>Japanese researchers unveil

medical mini robot</blurb>

<keyword>Robotics</keyword>

<article>...</article>

</techNews>

<businessNews>

...

</businessNews>

</section>

</item>

<item>

<title>BBC</title>

...

</item>

...

</items>

(a) News XML (news.xml)

<items>

<blog>

<name>John Doe</name>

<entries>

<entry>

<entryId>1</entryId>

<title>Jobs at Google</title>

<description>...</description>

<tag>Google</tag>

</entry>

...

</entries>

</blog>

</items>

(b) Blog XML (blogs.xml)

Figure B.2: XML Join Scenario B - News vs Blog Entries



Appendix C

Danaides System

C.1 Introduction

RSS (Really Simple Syndication) is an XML format used for the publication and

syndication of web content. Users subscribe to RSS feeds using RSS readers and

aggregators. Although readers and aggregators need to pull and filter data from the

RSS feeds at regular intervals, RSS technology implements web data streams.

Existing RSS reader and aggregator software and services provide at most basic

keyword-based filtering and simple feed merging. These software and services do not

yet support complex queries. Such a support however would enable the utilization

of RSS feeds to their full potential of continuous data streams and motivate, in a

virtuous circle, the production and consumption of data.

We have designed and implemented a prototype RSS aggregator service, called

Danäıdes, capable of processing complex queries on continuously updated RSS feeds

and of progressively producing results. Users subscribe their queries to the service

in a dialect of SQL that can express structured queries, spatial query and similarity

queries. The service continuously processes the subscribed queries on the referenced

RSS feeds and, in turn, published the query results as RSS feeds. The user can read

the result feed in a standard reader software or service or in a dedicated interface.

We demonstrate the prototype and its several user-interfaces with a geographical

application using geoRSS feeds. This work is a practical application of our research
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on progressive query processing algorithms [TB02, TBL06, TBL07c] for data streams.

C.2 Related Work

In [GKL06], the authors describe how commercial databases can be used as a declar-

ative RSS Hub offering structured query capabilities. Since RSS is an XML format

it is also natural (yet beyond the scope of the proof of concept that this paper is

contributing) to consider XQuery for the formulation of complex query on RSS feeds.

In [Iva03], the authors demonstrate the use of XQuery for the filtering and merging

of RSS feeds from several blogs.

Whether supporting SQL or XQuery the query processing engines of the new

aggregators that we propose must be capable of continuously processing data streams.

The above mentioned proposals for complex query in RSS aggregation do not take

into account the dynamic and continuous aspect of the RSS feeds. New algorithms are

being developed for the processing of queries on data streams. The various algorithms

proposed, from the XJoin [UF99] to the Rate-based Progressive Join (RPJ) [TYP+05],

Locality-Aware Approximate Sliding Window Join [LCKB06], Progressive Merge Join

[DSTW02] and our Result-Rate Based Progressive Join (RRPJ) [TBL07c], try and

propose non-blocking solutions that maximize throughput. While [UF99, TYP+05,

LCKB06] only consider relational data , our solution [TBL07c] and [DSTW02] can

be easily applied to data in other data models.

As far as we know, this is the first proposal for a continuous query processing

service for RSS feeds aggregation.

C.3 Scenario and Prototype

The availability of precise, instantaneous, seamless and effortless positioning with

the Global Positioning System (GPS), Galileo and GSM triangulation coupled with

or embedded in personal and professional portable devices, equipment and gadgets

allows the geo-tagging of content created anytime anywhere. From the casual souvenir

photographs of a tourist time-stamped, and geo-tagged with longitude, latitude and
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Find pairs of earthquake alerts with the same title within 5.6 degree of both latitude and
longitude.

SELECT *

FROM rss("http://earthquake.usgs.gov/eqcenter/recenteqsww/catalogs/

eqs1day-M2.5.xml") a, rss("http://earthquake.usgs.gov/eqcenter/

recenteqsww/catalogs/eqs7day-M5.xml") b

WHERE a.title = b.title and

dist(a.geoLat, a.geoLong, b.geoLat, b.geoLong) < 5.6

Figure C.1: Sample Query

altitude, published on Flickr 1 to the critical earthquake monitoring data from the

U.S. Geological Survey [htta], geo-tagged data is commonly published as RSS feed

(A specialization of RSS to publish geographical data is called GeoRSS [httb]).

In this demonstration we show the processing of several complex queries on multi-

ple GeoRSS feeds. We use data from the United States Geological Survey Earthquake

Hazards Program [htta]. We show, in particular, queries involving relational joins,

spatial joins and similarity join (see Figure C.1). Results are then delivered progres-

sively to the user as a GeoRSS feed. The result feed can be viewed using any RSS

reader or aggregator software or service. We use Internet Explorer 72 The result feed

can also be viewed on a 2D or 3D map. We use a visualization interface that we

have developed, which uses Virtual Earth3 [htt06]. Figure C.2 illustrates these user

interfaces.

The Danäıdes prototype consists of a scanner and a query processing engine.

The scanner periodically pulls data from RSS feeds. The query engine consists of

physical algebra operators (e.g. hash join, similarity join, selection, and projection).

It constructs a query plan, executes the plan and produces a RSS feed consisting of

the results.

1Flickr is a trademark of Yahoo! Inc.
2Internet Explorer is a trademark of Microsoft Corp.
3Virtual Earth is a trademark of Microsoft Corp.
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(a) RSS Result Output (Displayed in Internet Explorer 7)

(b) Virtual Earth Augmented with GeoRSS Result

Figure C.2: Various ways of visualizing results from Danäıdes

C.4 Summary

In this chapter, we demonstrate the use of our result rate-based progressive algorithm

in a system prototype for a RSS aggregator, called Danäıdes. Danaides handles the

publishing of continuous and progressive complex queries on RSS feeds.



Appendix D

Performance Evaluation of various

Sampling Techniques

We study the performance of the several sliding window sampling algorithms when

the data distribution changes frequently. We implemented the various window sam-

pling algorithms in C++: (1) Fifo, (2) Reservoir (Res), (3) Expire and (4) Window

Reservoir (WinRes) and (5) Chain Sampling (Chain) [BDM02].

The synthetic dataset, D, consists of 500000 tuples. The distribution of the data

changes every 50000 tuples (i.e. Every 0.1|D|). This is achieved by using a zipfian data

distribution with Zipfian factor, ζ . For each 0.1|D| of data, we randomly generated

a ζ factor between 0.0 and 2.0 (inclusive). In addition, to ensure that the skewed

values do not cluster within a fixed value range, we also shifted the value ranges for

each 0.1|D| of data generated.

The results for the experiments are presented in Figure D.1 to Figure D.5. Each

figure corresponds to a different window size. The window size is expressed as factor

of the dataset size. In each of the figures, we present the results for varying sampling

size, which is expressed as a factor of the window size.

From Figure D.1 to Figure D.5, we can observe that the MSE of the Res method

is significantly larger. This is because while Res is able to maintain a random sample

of the entire dataset, it does not ensure that the sample is representative of sliding

window of data. Similarly, the FIFO method also has high MSE due to its similarity
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to the Res method. The main difference is that instead of randomly replacing a

tuple in the reservoir, the FIFO method dequeues the first tuple in the FIFO queue

and enqueues a newly arrived tuple. In contrast, the other algorithms ( Expire and

WinRes) which considers windows of data have relatively small MSE values. The

sharp spikes in MSE values corresponds to the points in which the data distribution

changes.

In general, if the sample size is equivalent to the window size (Figure D.1(e),

D.2(e), D.3(e), D.4(e) and D.5(e)), both Expire and WinRes have zero MSE.

Ordered data

In this experiment, we study the performance of the various window sampling algo-

rithms when the data from Section D are ordered. The synthetic dataset, D, consists

of 500000 tuples. The tuples are sorted in ascending order, based on the data values.

The results for the experiments are presented in Figure D.6.

From Figure D.6(a) - (b), we can observe that the performance for all the sampling

algorithms shows large MSE values. This is because when the data is ordered and

the sample size is small, the sampling algorithms are not able to maintain a uniform

sample. However, when the sample size increases, we can observe that except for Res

(which does not take the sliding window into consideration), the other algorithms are

able to perform relatively well (i.e. low MSE values). Similar to the observations

from Section D, Fifo is sensitive to data distribution changes. This is reflected in the

spikes in MSE values in Figure D.6(b), (c), (d) and (e).
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Figure D.1: Varying Zipfian, |W | = 0.02|D| - MSE vs Snapshots
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Figure D.6: Ordered Dataset, |W | = 0.02|D| - MSE vs Snapshots


