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but what does Web querying do?
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1 500200100 300 400

Share value: 27.40$

Automatically sell at < 28.00$ Action!
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if you believe that I have some 
bank stocks for you ... 
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query: value of specific element

Share value: 27.40$

or
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query: value of specific element

Share value: 27.40$

rule: automatically sell at < 28.00$

Action!

or
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Web Search Web Queries

Scale “Web”, TB/PBs a few “documents”, GBs

Parallelizability very high (NC)
for basic selection lang. high, 

otherwise very low

Data
independent documents, 

heterogenous
trees (XML) or graphs (RDF), 

homogenous

Used by
(almost) everyone, many casual 

users
few experts

Expertise Level/Knowledge 
required

low very high

Expressiveness very low very high

Result presentation Ranking, clustering... programmed

Matching often fuzzy or vague only precise answers

Return value
Documents (or summaries 

thereof)
parts of trees or graphs

Actionability very low very high



In a nutshell...
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Web Queries

Search + Query = Easy + Automation 
Goals:

make web querying accessible to casual users 

e.g., to enable data aggregation/mashups by users

allow precise queries over vastly heterogeneous data

precise queries and rules critical to the (Social) Semantic Web

unless they are accessible no widespread adoption

Classification of approaches to combining Web search & query

enhance search: 	 add data extraction / object search

enhance querying: 	add keyword search / information retrieval 

keyword-based QLs for structured data: grounds-up redesign
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Search + Query 

Approach 1: Enhance Search 
“Peek” into web documents

Extract data items / Web objects from web documents 

to provide more fine-grained answers

Examples

Google (Squared)

Google Rich Snippets

Yahoo! Search Monkey
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Search + Query 

Approach 2: Enhance Querying 
Enhance existing (XML) web query languages

by adding information retrieval functionality 

ranking, scoring, fuzzy matching

Examples

XQuery and XPath Full Text 1.0, W3C Cand. Recommendation
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doc('bib.xml')/bib/book[title ftcontains 'programming']

for      $b score $s in doc('bib.xml')/bib/book
where    $b ftcontains 'web' ftand 'query'
order by $s descending
return   <title> {$b//title} </title>

1

2



Search + Query 

Approach 3: Keyword Queries
Keyword query for structured Web (XML and RDF) data 

apply web search paradigm to querying tree and graph data

operates in the same setting as e.g. XQuery and SPARQL

few or single document, no Web scale

but: easier handling of very heterogeneous data 

querying of semi-structured data through easy-to-use interface

Ultimate goal: 

Easy usage combined with enough power 
    → to automate data processing tasks
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Focus of this tutorial

K. Weiand, T. Furche, and F. Bry. 
Quo vadis, web queries?  

In Web4Web, 2008.



Web Queries

Overview
1. Summary of web query research in the 00s

1.1. XML	 	 	 	 	 	 	 	

1.2. RDF

2. Keyword query languages

2.1. Motivation

2.2. Classification

2.3. Issues

3. KWQL

4. Discussion and Outlook
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Summary of XML & RDF 
Query Language Research
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Web Queries
Part 1



Tree Data & Tree Queries 
Data–XPath–XQuery
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ordered tree (sometimes graph), mostly uniform edges

XML

tion VI-C). However, since keyword-based query languages
can also be considered as more easily accessible interfaces
to full, traditional query languages, some are implemented
by translation into XQuery or SPARQL (Section VI-D). Fi-
nally, some approaches consider keyword queries not as an
alternative interface but as an enhancement or extension of
an existing query language such as XQuery (Section VI-E).

We conclude this survey with a (1) summary of how
keyword-based query languages for XML and RDF aim to
bring the ease of use of Web search together with the
automation and deduction capabilities of traditional Web
queries, (2) a discussion where the existing approaches
succeed in this aim and what, in our opinion, are the most
glaring open issues, and (3) where, beyond keyword-based
query languages, we see the need, the challenges, and the
opportunities for combining the ease of use of Web search
with the virtues of Web queries.

II. DATA ON THE SEMANTIC WEB: XML AND RDF

A. Extensible Markup Language (XML)

XML [34] is, by now, the foremost data representation
format for the Web and for semi-structured data in general.
It has been adopted in a stupendous number of applica-
tion domains, ranging from document markup (XHTML,
Docbook [188]) over video annotation (MPEG 7 [141]) and
music libraries (iTunes2) to preference files (Apple’s prop-
erty lists [11]), build scripts (Apache Ant3), and XSLT [122]
stylesheets. XML is also frequently adopted for serialization
of (semantically) richer data representation formats such as
RDF or TopicMaps.

XML is a generic markup language for describing the
structure of data. Unlike in HTML (HyperText Markup
Language), the predominant markup language on the web,
neither the tag set nor the semantics of XML are fixed. XML
can thus be used to derive markup languages by specifying
tags and structural relationships.

The following presentation of the information in XML
documents is oriented along the XML Infoset [68] which
describes the information content of an XML document.
The XQuery data model [85] is, for the most parts, closely
aligned with this view of XML documents.

Following the XPath and XQuery data model, we provide
a tree shaped view of XML data. This deviates from the
Infoset where valid ID/IDREF links are resolved and thus
the data model is graph, rather than tree shaped. This view
is adopted in some XML query languages such as Xcerpt
[47] and Lorel [3], but most query languages follow XPath
and XQuery and consider XML tree shaped.

1) XML in 500 Words: The core provision of XML is a syn-
tax for representing hierarchical data. Data items are called
elements in XML and enclosed in start and end tags, both
carrying the same tag names or labels. <author>...</author>
is an example of such an element. In the place of ‘. . . ’,

2http://www.apple.com/itunes/
3http://ant.apache.org/

we can write other elements or character data as children
of that element. The following listing shows a small XML
fragment that illustrates elements and element nesting:

<bib xmlns:dc="http://purl.org/dc/elements/1.1/">
2 <article journal="Computer Journal" id="12">

<dc:title>...Semantic Web...</dc:title>
4 <year>2005</year>

<authors>
6 <author>

<first>John</first> <last>Doe</last> </author>
8 <author>

<first>Mary</first> <last>Smith</last> </author>
10 </authors>

</article>
12 <article journal="Web Journal">

<dc:title>...Web...</dc:title>
14 <year>2003</year>

<authors>
16 <author>

<first>Peter</first> <last>Jones</last> </author>
18 <author>

<first>Sue</first> <last>Robinson</last> </author>
20 </authors>

</article>
22 </bib>

In addition, we can observe attributes (name, value pairs
associated with start tags) that are essentially like elements
but may only contain character data, no other nested
attributes or elements. Also, by definition, element order is
significant, attribute order is not. For instance

<author><last>Doe</last><first>John</first></author>

represents different information than the author element
in lines 6–9, but

<article id="12" journal="Computer
Journal">...</article>

represents the same element information item as lines 2–15.
Figure 1 gives a graphical representation of the XML doc-

ument that is referenced in preceding illustrations. When
represented as a graph, an XML document without links is
a labeled tree where each node in the tree corresponds to
an element and its type. Edges connect nodes and their
children, that is, elements and the elements nested in
them, elements and their content and elements and their
attributes. Since the visual distinction between the parent-
child relationship can be made without edge labels and
since attributes are not addressed or receive no special
treatment in the research presented in this text, edges will
not be labeled in the following figures.

Elements, attributes, and character data are XML’s most
common information types. In addition, XML documents
may also contain comments, processing instructions (name-
value pair with specific semantics that can be placed any-
where an element can be placed), document level informa-
tion (such as the XML or the document type declarations),
entities, and notations, which are essentially just other kinds
of information containers.
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Fig. 1. Visual representation of sample XML document

On top of these information types, two additional fa-
cilities relevant to the information content of XML docu-
ments are introduced by subsequent specifications: Names-
paces [33] and Base URIs [140]. Namespaces allow the
partitioning of element labels used in a document into
different namespaces, identified by a URI. Thus, an ele-
ment is no longer labeled with a single label but with
a triple consisting of the local name, the namespace pre-
fix, and the namespace URI. E.g., for the dc:title el-
ement in line 3, the local name is title, the names-
pace prefix is dc, and the namespace URI (called “name”
in [68]) is http://purl.org/dc/elements/1.1/. The latter
can be derived by looking for a namespace declaration
for the prefix dc. Such a declaration is shown in line 1:
xmlns:dc="http://. . . It associates the prefix dc with the
given URI in the scope of the current element, i.e., for
that element and all elements contained within unless there
is another nested declaration for dc, in which case that
declaration takes precedence. Thus, we can associate with
each element a set of in-scope namespaces, i.e., of pairs
namespace prefix and URI, that are valid in the scope of
that element. Base URIs [140] are used to resolve relative
URIs in an XML document. They are associated with ele-
ments using xml:base="http://. . . and, as namespaces, are
inherited to contained elements unless a nested xml:base
declaration takes precedence.

The above features of XML are covered by most query
languages. Additionally some languages (most notably
XQuery) also provide access to type information associated
via DTD or XML Schema [82]. These features are mentioned
below where appropriate but not discussed in detail here.

B. Resource Description Framework (RDF)

As the second preeminent data format on the Semantic
Web, the Resource Description Format (RDF) [109], [125],
[139] is emerging. RDF is, though much less common than
XML, a widespread choice for interchanging (meta-) data
together with descriptions of the schema and, in contrast
to XML, a basic description of its semantics of that data.

Not to distract from the salient points of the discussion,
we omit typed literals (and named graphs) from the follow-
ing discussion.

1) RDF in 500 Words: RDF graphs contain simple state-
ments about resources (which, in other contexts, are be
called “entities”, “objects”, etc., i.e., elements of the domain
that may partake in relations). Statements are triples con-
sisting of subject, predicate, and object, all of which are
resources. If we want to refer to a specific resource, we use
(supposedly globally unique) URIs, if we want to refer to a
resource for which we know that it exists and maybe some
of its properties, we use blank nodes which play the role of
existential quantifiers in logic. However, blank nodes may
not occur in predicate position. Finally, for convenience, we
can directly use literal values as objects.

RDF may be serialized in many formats (for a recent
survey see [30]), such as RDF/XML [18], an XML dialect
for representing RDF, or Turtle [13] which is also used in
SPARQL. The following Turtle data represents roughly the
same data as the XML document discussed in the previous
section:

@prefix dc: <http://purl.org/dc/elements/1.1/> .
2 @prefix dct: <http://purl.org/dc/terms/> .
@prefix vcard: <http://www.w3.org/2001/vcard−rdf/3.0#> .

4 @prefix bib: <http://www.edutella.org/bibtex#> .
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?

what’s new about trees? didn’t we 
try that before?
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axis for navigation/selection in tree, context, horizontal axes for order

XPath

self
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XPath: Navigation in Trees

Intro in 5 Points

22

Data: rooted, ordered, unranked, finite trees (no ID/IDREF resolution)

Paths are sequences of steps (axis & test on properties of node)

adorned with existential predicates (in []) to obtain tree queries

some more advanced features: value joins, aggregation, …

Answers are sets of nodes from the input document

/child::html/descendant::h1[not(preceding::h1	  =	  
“Introduction”)]/child::p[attribute::class=”abstract”] 

no variables, no construction, no grouping/ordering
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�axis�Nodes (n) = {(n
� : Raxis(n,n

�)}

�λ�Nodes (n) = {(n
� : Labλ(n

�)}

�node()�Nodes (n) = Nodes(T )

�axis::nt[qual]�Nodes (n)= {n
� : n

� ∈ �axis�Nodes ∧n
� ∈ �nt�Nodes∧

�qual�Bool (n
�)}

�step/path�Nodes (n) = {n
�� : n

� ∈ �step�Nodes (n)∧
n
�� ∈ �path�Nodes (n

�)}

�path1 ∪path2 �Nodes (n) = �path1 �Nodes (n)∪�path2 �Nodes (n)

�path�Bool (n) = �path�Nodes (n)��
�path1 ∧path2 �Bool (n) = �path1 �Bool (n)∧�path2 �Bool (n)

�path1 ∨path2 �Bool (n) = �path1 �Bool (n)∨�path2 �Bool (n)

�¬path�Bool (n) = ¬�path�Bool (n)

�lab()=λ�Bool (n) = Labλ(n)

�path1 = path2 �Bool (n) = ∃n
�,n

�� : n
� ∈ �path1 �Nodes (n)∧

n
�� ∈ �path2 �Nodes (n)∧� (n

�,n
��)

TABLE I
SEMANTICS FOR NAVIGATIONAL XPATH (FOLLOWING [21])

prisingly, most popular implementations of XPath embed-
ded within XSLT processors exhibit exponential behavior,
even for fairly small data and large queries. However, the
combined complexity of XPath query evaluation has been
shown to be P-complete [97], [98]. Various sub-languages
of XPath (e.g., forward XPath [155], Core or Navigational
XPath [97], [19]) and extensions (e.g., CXPath [142]) have
been investigated, mostly with regard to expressiveness
and complexity for query evaluation. Also, satisfiability of
positive XPath expressions is known to be in NP and, even
for expressions without boolean operators, NP-hard [110].
Containment of XPath queries (with or without additional
constraints, e.g., by means of a document schema) has
been investigated as well, cf., e.g., [77], [148], [179], [195].
For a recent summary of fundamental results on XPath
complexity, containment, etc. see [21]. Several methods
providing efficient implementations of XPath relying on
standard relational database systems have been published,
cf., e.g., [101], [104], [156].

Recently, the W3C has, as part of its activity on specifying
the XML query language XQuery, developing a revision of
XPath: XPath 2.0 [26]. See [121] for an introduction. The
most striking additions in XPath 2.0 are: (1) a facility for
defining variables (using for expressions), (2) sequences
instead of sets as answers, (3) the move from the value
typed XPath 1.0 to extensive support for XML schema types
in a strongly typed language, (4) a considerably expanded
library of functions and operators [138], and (5) a complete
formal semantics [79].

B. XQuery

Though not nearly as common as XPath, XQuery has
nevertheless achieved the status of predominant XML query
language, at least as far as database products and research

are concerned (in total, XSLT [61] is probably still more
widely supported and used). XQuery is essentially an ex-
tension of XPath (though some of its axis are only optional
in XQuery), but most of XPath becomes syntactic sugar
in XQuery. This is particularly true for XPath qualifiers
which can be reduced to where or if clauses in XQuery.
Indeed, the XQuery standard is accompanied [79] by a
normalization of XQuery to a core dialect of the language.

h) XQuery Principles: At its core, XQuery is an exten-
sion of XPath 2.0 adding features needed to capture all the
use cases in [49], i.e., to become a “full query language” and
not only a language for (mostly tree-shaped) node selection.
The most notable of these features are:

1) Sequences. Where in XPath 1.0 the results of path
expressions are node sets, XQuery and XPath 2.0 use
sequences. Sequences can be constructed or result
from the evaluation of an XQuery expression. In con-
trast to XPath 1.0, sequences cannot only be composed
of nodes but also from atomic values, e.g., (1, 2, 3)
is a proper XQuery sequence.

2) Strong typing. Like XPath 2.0, XQuery is a strongly
typed language. In particular, most of the (simple and
complex) data types of XML Schema are supported.
The details of the type system are described in [79].
Furthermore, many XQuery implementations provide
(although it is an optional feature) static type checking.

3) Construction, Grouping, and Ordering. Where XPath is
limited to selecting parts of the input data, XQuery
provides ample support for constructing new data.
Constructors for all node types as well as the simple
data types from XML Schema are provided. New ele-
ments can be created either by so-called direct element
constructors (that look just like XML elements) or by
what is referred to as computed element constructors,
e.g. allowing the name of a newly constructed element
to be the result of a part of the query. For examples on
these constructors, see the implementations for Query
1 and 3 below.

4) Variables. Like XPath 2.0, XQuery has variables defined
in so-called FLWOR expressions. A FLWOR expression
usually consists in one or more for, an optional
where clause, an optional order by, and a return
clause. The for clause iterates over the items in the
sequence returned by the path expression in its in part:
for $book in //book iterates over all books selected
by the path expression //book. The where clause spec-
ifies conditions on the selected data items, the order
by clause allows the items to be processed in a certain
order, and the return clause specifies the result of the
entire FLWOR expression (often using constructors as
shown above). Additionally, FLWOR expressions may
contain, after the for clauses, let clauses that also
bind variables but without iterating over the individual
data items in the sequence bound to the variable.
FLWOR expressions resemble very much XSLT’s ex-
plicit iteration, selection, and assignment constructs



XPath: Navigation in Trees

A Success Story 
Commercial success: One of the most successful QLs

widely implemented and used, several W3C standards

Research success: 

designed with little concern for formal “beauty” 

but with few restrictions: turns out it hit a formal sweet spot

Expressiveness: monadic datalog (datalog with only unary 
intensional predicates, i.e., answer predicates)

also: two-variable first-order logic (FO2)

Polynomial complexity, linear for navigational XPath
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XPath: Navigation in Trees

A Success Story (cont.)
Completeness: falls short of being first-order complete

for first-order completeness a “conditional axis” (UNTIL operator) needed

e.g., all a nodes reachable by a path of only b nodes

but: partially justified by results on elimination of reverse axes

reverse axis: parent, ancestor, preceeding, … 

eliminating these axes possible in navigational XPath 

though in few cases at exponential cost or resulting in 
introduction of expensive node-identity joins

we can safely ignore them in most cases

in conditional XPath this elimination is not possible

25
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M. Marx. Conditional XPath, the 
First Order Complete XPath 

Dialect. PODS 2004.

D. Olteanu, H. Meuss, T. Furche, and F. Bry. 
XPath: Looking Forward. 

XMLDM @ EDBT, LNCS 2490, 2002.
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XPath: Navigation in Trees

A Success Story (cont.)
Evaluation:

naïve decomposition: 

sequence of joins, descendant with closure over child relation

better: structural joins for descendant (single lookup using tree labeling)

e.g., pre/post encoding

fits nicely with relational storage

twig joins: stack-based, holistic, not easily adapted to relational DBS

26

Orders, ctd.

! Previous slide: <pre and <post can be defined from Child+

and Following .

! The converse is also possible:

Child+(x , y) :⇔ x <pre y ∧ y <post x

Following(x , y) :⇔ x <pre y ∧ x <post y

! From these axes, all others can be defined in first-order logic.

! pre- and post-orders are sufficient to represent the full tree
structure.

Labeling Schemes

A node-labeled tree can be completely represented by one triple
(i , j , a) consisting of

! a <pre-index i ,

! a <post -index j , and

! a label a

for each node of the tree.

a:1:7

b:2:3

a:3:1 c:4:2

a:5:6

b:6:4 d:7:5

R pre post lab
1 7 a
2 3 b
3 1 a
4 2 c
5 6 a
6 4 b
7 5 d

Structural Joins

! Computing descendants by a single theta-join on the
representation relation.

a:1:7

b:2:3

a:3:1 c:4:2

a:5:6

b:6:4 d:7:5

R pre post lab
1 7 a
2 3 b
3 1 a
4 2 c
5 6 a
6 4 b
7 5 d

Example

CREATE VIEW descendant AS
SELECT r1.pre, r2.pre FROM R r1, R r2 WHERE r1.pre < r2.pre
AND r2.post < r1.post;

! Such joins are called structural joins [Al-Khalifa et al., 2002].

Structural Joins

! Computing descendants by a single theta-join on the
representation relation.

! Size is not greater than O(||A|| · log |A|) if A is the domain of
tree A.

! Better than alternatives: descendant relation is very large and
computing transitive closures in the query is inefficient.

! Relational storage schemes for XML
[Fiebig and Moerkotte, 2000, Grust et al., 2004b,
Grust et al., 2004a].

! Labeling and indexing schemes for XML, e.g.
[Wang et al., 2003, Rao and Moon, 2004, O’Neil et al., 2004,
Weigel et al., 2005].

! Original idea is old/folklore. But some schemes use nice ideas
(e.g. Prüfer sequences).
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M. Benedikt and C. Koch.
XPath Leashed. In ACM 
Computing Surveys, 2007
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?

that’s it? everyone happy?
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let	  $auction	  :=	  doc(’auction.xml’)	  
for	  $o	  in	  $auction/open_auctions/open_auction	  
return	  
<corrupt	  id=’{	  $o/@id	  }’>	  
{	  if	  (sum($o/(initial	  |	  bidder/increase))	  =	  $o/current)	  
then	  text	  {	  ’no’	  }	  
else	  $auction//people/person[@id	  =	  $o//@person]/name	  }	  
</corrupt>	  



XQuery: Graph Queries & Construction

From XPath to Hell
Adds an enormous set of features to XPath

price: highly complex language, Turing-complete, very hard to implement

here: just some highlights

Variables: XPath plus variables → no longer FO2

“an article that has the conference’s chair as author” 

not any more polynomial, but NP-/PSPACE-complete

Construction: harmless if only at end of query

but: composition (i.e., querying of data constructed in the same query)

“find all papers written by the author with the most papers”

NEXPTIME-complete or in EXPSPACE (can not be captured by datalog)

30



XQuery: Graph Queries & Construction

From XPath to Hell
Recursion: programmable

with composition  → Turing complete 

i.e., like Prolog or datalog with value invention

Sequences: rather than sets

without composition little effect

with composition: drastically harder optimization as iteration semantics of 
a query must be precisely observed 

31



32

pos item
1 x1
2 x2
...

...
n xn

values of type [α] (Haskell), Array (Ruby) or
IEnumerable<T> (Linq). To properly reflect this
on the inherently unordered relational database
back-end, we embed order in the data and use
binary tables with columns pos|item (shown on the
left) to represent such sequences. Note that the

values in column pos need not be dense and not even be of
type integer; any ordered domain will do. In specific cases
the required order may already reflected by the items xi

themselves (think of a sequence of encoded nodes resulting
from XPath location step evaluation)—column item may
then assume the role of pos.

Our view of the XQuery dynamic semantics is principally
determined by for as the core language construct: any
subexpression is considered to be iteratively evaluated in the
scope si of its innermost enclosing for loop. The top level of
an expression e is assumed to be wrapped inside the scope
s0 of a pseudo single-iteration loop for _ in (0) return e
where _ does not occur free in e (i.e., the choice of 0 is
arbitrary). The fundamental idea behind loop lifting is to
produce algebraic code that consumes and emits a “fully un-
rolled” tabular representation of e’s value. Here, unrolling
refers to the principle that

a single ternary table with schema iter|pos|item holds the
encoding of all values that e assumes during its iterative
evaluation.

Generally, such a table has key �iter, pos� since e may yield
a sequence of items in each distinct iteration—only if e’s
sequence type is a subtype of item? [7], iter by itself will be
key. A row �i, p, v� in the table may invariably be read as “in
iteration i, expression e yields item value v at the sequence
position corresponding to p’s rank in column pos.”

In Query Q3 (Figure 3(a)) we have made the iteration
scopes explicit. The evaluation of the top-level expressions
in the pseudo scope s0 is iterated once. In the accompany-
ing Figure 5, the bottommost iter|pos|item table shows the
output of the algebraic code produced for the top-level ex-
pression 2001 to 2008: all 8 items have been produced in the
first and only iteration in scope s0 (iter = 1 in all rows), in
the order indicated by column pos. From this, the algebraic
program derives that 8 iterations will be performed in the
inner scope s1: variable y is bound to one integer in the
sequence 2001, . . . , 2008 in each iteration while the constant
2007 invariably evaluates to 2007.

Note how the bottom join ✶iter=iter1 in Figure 5 assembles
the values of y and 2007 in corresponding iterations such
that the single invocation of � can compute the outcome
of the comparison y lt 2007 for all 8 iterations. In effect,
the operator’s internal row-by-row processing drives the it-
erative evaluation and no explicit iteration primitive or sim-
ilar non-relational device is required. The back-end may
autonomously decide about out-of-order row processing or
the adequacy of parallel execution—its �iter, pos� key allows
each item to be correctly positioned in the evaluation result.
This is, in a sense, the algebraic embodiment of the iteration
independence we underlined in Section 1.

There is, literally, no relational encoding of the empty se-
quence (): if subexpression e evaluates to () in iteration i,
no row with iter = i will occur in the iter|pos|item table as-
sociated with e. The presence of () may be reconstructed,
however: if required, the compiler emits code that produces

πiter:outer,
pos:pos1,
item

�pos1:�sort,pos�
✶

iter=inner
.
∪

@item:’REC’

@pos:1

πiter

σitem

@item:’WD/CR/PR’

@pos:1

πiter

σitem1

¬ item1:�item�

πiter,pos,item:item2

�item2:�item1,item�
✶

iter1=iter

πiter1:iter,
item1:item

@pos:1

πiter:inner,
item

@item:2007

@pos:1

πiter:inner

πouter:iter,
inner,
sort:pos

#inner

2001 to 2008
iter pos item
1 1 2001
1 2 2002...

...
...

1 8 2008

2007
iter pos item
1 1 2007
2 1 2007...

...
...

8 1 2007

y
iter pos item
1 1 2001
2 1 2002...

...
...

8 1 2008

y lt 2007
iter pos item
1 1 true
2 1 true...

...
...

8 1 false

···else ’REC’
iter pos item
7 1 ’REC’
8 1 ’REC’

···then ’WD/···’
iter pos item
1 1 ’WD/CR/PR’
2 1 ’WD/CR/PR’...

...
...

6 1 ’WD/CR/PR’

Q3
iter pos item
1 1 ’WD/CR/PR’
1 2 ’WD/CR/PR’...

...
...

1 8 ’REC’

Figure 5: Loop-lifted algebraic code to evaluate Q3

(also shows results of selected subexpressions).

unary loop tables that keep record of all iterations performed
in a given scope (see Figure 3(b) for the loop tables associ-
ated with Q3). By subtracting from table loop(s1), the plan
can compute that the then branch of Q3 evaluates to ()
in iterations 7 and 8 while the else branch yields () in
iterations 1 through 6. (We come back to loop tables in
Section 3.)

Plan shape. Figure 5 and a peek at Figure 9 show a distinc-
tively narrow but tall plan shape resulting from the compo-
sitional stacking of constructs that is typical for expression-
oriented languages like XQuery and its companions. Loop-
lifted code exhibits plenty of sub-plan sharing opportunities
(all subexpression in a scope share one loop table, for exam-
ple) which naturally leads to plan DAGs rather than trees.
Despite their unusual shape we have found the plans to be
amenable to far-reaching analysis and simplification [15].
Nevertheless, dependent on the complexity of the input pro-
gram, back-ends originally built for languages with only re-
stricted compositionality (think SQL) may have to issue a
series of collaborating queries to realize the semantics of the
overall loop-lifted plan [12].

While this already gives a fairly complete account of loop
lifting, the gory details of the translation scheme, its impli-
cations, performance, and optimization have been described
elsewhere [4, 11, 15, 16].

3. MORE COLUMNS. . .

As a purely relational compilation technique, loop lifting
inherits the versatility of the relational model. (To make
this point, we built Rover [14], an XQuery debugger that

for y in 2001 to 2008
return
if ( y lt 2007)
then ’WD/CR/PR’ else ’REC’

s1

s0

(a) Query Q3.

loop(s0)
iter
1

loop(s1)
iter
1...
8

(b) Associated loop tables.

Figure 3: and its W3C Recommendation
track maturity level (Query Q3). Annotations s0,1

denote iteration scopes.

(Linq) Enumerable.Range(2001,8).Select(
y => y < 2007 ? ’WD/CR/PR’ : ’REC’ )

(Links) for (y <- [2001,2002,. . .,2008])
[if (y < 2007) then "WD/CR/PR" else "REC"]

(Ruby) (2001..2008).collect {
|y| y < 2007 ? ’WD/CR/PR’ : ’REC’ }

(Haskell) [ if y < 2007 then "WD/CR/PR" else "REC" |
y <- [2001..2008] ]

(Python) [ ’WD/CR/PR’ if y < 2007 else ’REC’
for y in range(2001,2008) ]

Figure 4: A sample of iterative constructs found in
’s companion languages (paraphrases of Q3).

Figure 3(a) shows Query Q3, one instance of an XQuery for

iteration (ignore the s0,1 annotations for now). Despite the

syntactic diversity, this XQuery construct shares a com-

mon semantic ground—monad comprehensions [26]—with

SQL as well as the iteration primitives in, e.g., Microsoft ’s

Linq [19], Wadler’s three-tier language Links [6], the purely

functional language Haskell [21], and the dynamic lan-

guages Ruby [23] and Python [22] (see Figure 4).
1

All

of these language constructs describe the iterative evalua-

tion of expressions under bindings of an unmodifiable loop
or iteration variable. Even for the non-pure languages Linq,

Ruby (as of Version 1.9), and Python, an assignment to a

variable named y in the loop body will shadow the iteration

variable and thus not influence the behavior of the loop.

Here, we are especially interested in loops in which the

iterated expression does not perform side-effecting compu-

tation such that the individual iterations may be evaluated

independently. For XQuery, SQL, Links, and Haskell this

is a given. For Linq, Ruby, and Python this requires pro-

gramming discipline. As the individual iterations cannot in-

terfere, the language processor may evaluate the iterations

in arbitrary order—or even in parallel.

These common semantic roots create a playground in which

database queries and the mentioned companion languages

may closely interact. We currently study

(1) the construction of systems in which two (or more) com-

panion languages share a single database-supported run-

time—this can lead to a truly integrated SQL/XML pro-

cessor, for example, in which the typical mix of SQL and

XQuery query fragments is uniformly compiled to yield

a homogeneous executable form, and

(2) an even deeper integration of database query functional-

ity into programming languages (as exemplified by Ac-

tiveRecord or Ambition in the Ruby ecosystem [1, 2],

Linq, and Links), in which selected iterative host pro-

1
Until June 2001, the W3C XQuery Formal Semantics

Draft [9] explicitly discussed monads and associated laws.

Operator Semantics

πa:b project onto column b (and rename into a)
σa select rows with column a = true
× Cartesian product
✶a=b, �a=b equi-join, equi-semijoin.
∪, ∪, \ (disjoint) union, difference
δ eliminate duplicate rows
@a:c attach column a containing constant value c
#a attach arbitrary key (row id) in column a
�a:�b1,..,bn� attach row rank in a (in bi order)
�#a:�b1,..,bn�/c attach 1, 2, . . in a (in bi order per c-group)
�a:�b1,..,bn� attach result of n-ary op. ∗ ∈ {+, <,¬, . .} in a
agga:b/c attach aggregate of b in a (per c-group)

Table 1: Excerpt of Pathfinder’s target table algebra
(with agg ∈ {count,min, . . . }).

gramming language fragments may be translated into

set-oriented algebraic programs. This lays the ground-

work for database-supported language runtimes that do

not stumble if programs consume huge input data in-

stances [13].

Algebraic code. With Pathfinder we designed and im-

plemented a compiler that translates such loop-centric pro-

grams in a fully compositional manner [16]. The compiler

emits plans over a table algebra whose operators (Table 1)

have been selected to reflect the capabilities and execution

model of modern SQL-based RDBMS. The few non-textbook

operators include the family of #, �, and �# which perform

variants of row numbering and correspond to SQL:1999’s

ROW_NUMBER clause. As a consequence of the algebra’s purist

RISC-like style (e.g., selection σa does not evaluate predi-

cates on its own but relies on the presence of a Boolean col-

umn a), the resulting plans tend to be somewhat verbose—

typical Pathfinder plans feature 100s, not 10s, of operators—

but can be implemented on a wide variety of back-end sys-

tems. Currently this includes code generators that target

the SQL processors of IBM DB2 and Microsoft SQL Server

as well as the algebraic MIL language of MonetDB [4] and

the APL-like language Q of kdb+.

Loop lifting. In what follows we shed light on a compi-

lation technique, coined loop lifting in [16], that has been

designed to let a relational database back-end directly par-

ticipate in the evaluation of programs (or queries) written in

an iterative style. The loop-lifting compiler emits algebraic

code for execution on the back-end which then realizes the

semantics of the input program. Loop lifting fully realizes

the welcome independence of the iterated evaluations and

enables the relational query engine to take advantage of its

set-oriented processing paradigm (Section 2).

Loop lifting is simple yet versatile. We sketch extensions

as well as special cases that address features and peculiar-

ities of XQuery (Section 3) and also cover the windowed

iteration construct forseq proposed for XQuery 1.1 [18].

Strictly speaking, forseq violates iteration independence,

though—this violation comes with inherent cost (Section 4).

2. LOOP LIFTING

With XML trees out of the picture, ordered sequences

(x1,x2,. . .,xn) of items xi are the principal data structure

in XQuery—the companion languages equivalently feature
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pos item
1 x1
2 x2
...

...
n xn

values of type [α] (Haskell), Array (Ruby) or
IEnumerable<T> (Linq). To properly reflect this
on the inherently unordered relational database
back-end, we embed order in the data and use
binary tables with columns pos|item (shown on the
left) to represent such sequences. Note that the

values in column pos need not be dense and not even be of
type integer; any ordered domain will do. In specific cases
the required order may already reflected by the items xi

themselves (think of a sequence of encoded nodes resulting
from XPath location step evaluation)—column item may
then assume the role of pos.

Our view of the XQuery dynamic semantics is principally
determined by for as the core language construct: any
subexpression is considered to be iteratively evaluated in the
scope si of its innermost enclosing for loop. The top level of
an expression e is assumed to be wrapped inside the scope
s0 of a pseudo single-iteration loop for _ in (0) return e
where _ does not occur free in e (i.e., the choice of 0 is
arbitrary). The fundamental idea behind loop lifting is to
produce algebraic code that consumes and emits a “fully un-
rolled” tabular representation of e’s value. Here, unrolling
refers to the principle that

a single ternary table with schema iter|pos|item holds the
encoding of all values that e assumes during its iterative
evaluation.

Generally, such a table has key �iter, pos� since e may yield
a sequence of items in each distinct iteration—only if e’s
sequence type is a subtype of item? [7], iter by itself will be
key. A row �i, p, v� in the table may invariably be read as “in
iteration i, expression e yields item value v at the sequence
position corresponding to p’s rank in column pos.”

In Query Q3 (Figure 3(a)) we have made the iteration
scopes explicit. The evaluation of the top-level expressions
in the pseudo scope s0 is iterated once. In the accompany-
ing Figure 5, the bottommost iter|pos|item table shows the
output of the algebraic code produced for the top-level ex-
pression 2001 to 2008: all 8 items have been produced in the
first and only iteration in scope s0 (iter = 1 in all rows), in
the order indicated by column pos. From this, the algebraic
program derives that 8 iterations will be performed in the
inner scope s1: variable y is bound to one integer in the
sequence 2001, . . . , 2008 in each iteration while the constant
2007 invariably evaluates to 2007.

Note how the bottom join ✶iter=iter1 in Figure 5 assembles
the values of y and 2007 in corresponding iterations such
that the single invocation of � can compute the outcome
of the comparison y lt 2007 for all 8 iterations. In effect,
the operator’s internal row-by-row processing drives the it-
erative evaluation and no explicit iteration primitive or sim-
ilar non-relational device is required. The back-end may
autonomously decide about out-of-order row processing or
the adequacy of parallel execution—its �iter, pos� key allows
each item to be correctly positioned in the evaluation result.
This is, in a sense, the algebraic embodiment of the iteration
independence we underlined in Section 1.

There is, literally, no relational encoding of the empty se-
quence (): if subexpression e evaluates to () in iteration i,
no row with iter = i will occur in the iter|pos|item table as-
sociated with e. The presence of () may be reconstructed,
however: if required, the compiler emits code that produces

πiter:outer,
pos:pos1,
item

�pos1:�sort,pos�
✶

iter=inner
.
∪

@item:’REC’

@pos:1

πiter

σitem

@item:’WD/CR/PR’

@pos:1

πiter

σitem1

¬ item1:�item�

πiter,pos,item:item2

�item2:�item1,item�
✶

iter1=iter

πiter1:iter,
item1:item

@pos:1

πiter:inner,
item

@item:2007

@pos:1

πiter:inner

πouter:iter,
inner,
sort:pos

#inner

2001 to 2008
iter pos item
1 1 2001
1 2 2002...

...
...

1 8 2008

2007
iter pos item
1 1 2007
2 1 2007...

...
...

8 1 2007

y
iter pos item
1 1 2001
2 1 2002...

...
...

8 1 2008

y lt 2007
iter pos item
1 1 true
2 1 true...

...
...

8 1 false

···else ’REC’
iter pos item
7 1 ’REC’
8 1 ’REC’

···then ’WD/···’
iter pos item
1 1 ’WD/CR/PR’
2 1 ’WD/CR/PR’...

...
...

6 1 ’WD/CR/PR’

Q3
iter pos item
1 1 ’WD/CR/PR’
1 2 ’WD/CR/PR’...

...
...

1 8 ’REC’

Figure 5: Loop-lifted algebraic code to evaluate Q3

(also shows results of selected subexpressions).

unary loop tables that keep record of all iterations performed
in a given scope (see Figure 3(b) for the loop tables associ-
ated with Q3). By subtracting from table loop(s1), the plan
can compute that the then branch of Q3 evaluates to ()
in iterations 7 and 8 while the else branch yields () in
iterations 1 through 6. (We come back to loop tables in
Section 3.)

Plan shape. Figure 5 and a peek at Figure 9 show a distinc-
tively narrow but tall plan shape resulting from the compo-
sitional stacking of constructs that is typical for expression-
oriented languages like XQuery and its companions. Loop-
lifted code exhibits plenty of sub-plan sharing opportunities
(all subexpression in a scope share one loop table, for exam-
ple) which naturally leads to plan DAGs rather than trees.
Despite their unusual shape we have found the plans to be
amenable to far-reaching analysis and simplification [15].
Nevertheless, dependent on the complexity of the input pro-
gram, back-ends originally built for languages with only re-
stricted compositionality (think SQL) may have to issue a
series of collaborating queries to realize the semantics of the
overall loop-lifted plan [12].

While this already gives a fairly complete account of loop
lifting, the gory details of the translation scheme, its impli-
cations, performance, and optimization have been described
elsewhere [4, 11, 15, 16].

3. MORE COLUMNS. . .

As a purely relational compilation technique, loop lifting
inherits the versatility of the relational model. (To make
this point, we built Rover [14], an XQuery debugger that

for y in 2001 to 2008
return
if ( y lt 2007)
then ’WD/CR/PR’ else ’REC’

s1

s0

(a) Query Q3.

loop(s0)
iter
1

loop(s1)
iter
1...
8

(b) Associated loop tables.

Figure 3: and its W3C Recommendation
track maturity level (Query Q3). Annotations s0,1

denote iteration scopes.

(Linq) Enumerable.Range(2001,8).Select(
y => y < 2007 ? ’WD/CR/PR’ : ’REC’ )

(Links) for (y <- [2001,2002,. . .,2008])
[if (y < 2007) then "WD/CR/PR" else "REC"]

(Ruby) (2001..2008).collect {
|y| y < 2007 ? ’WD/CR/PR’ : ’REC’ }

(Haskell) [ if y < 2007 then "WD/CR/PR" else "REC" |
y <- [2001..2008] ]

(Python) [ ’WD/CR/PR’ if y < 2007 else ’REC’
for y in range(2001,2008) ]

Figure 4: A sample of iterative constructs found in
’s companion languages (paraphrases of Q3).

Figure 3(a) shows Query Q3, one instance of an XQuery for

iteration (ignore the s0,1 annotations for now). Despite the

syntactic diversity, this XQuery construct shares a com-

mon semantic ground—monad comprehensions [26]—with

SQL as well as the iteration primitives in, e.g., Microsoft ’s

Linq [19], Wadler’s three-tier language Links [6], the purely

functional language Haskell [21], and the dynamic lan-

guages Ruby [23] and Python [22] (see Figure 4).
1

All

of these language constructs describe the iterative evalua-

tion of expressions under bindings of an unmodifiable loop
or iteration variable. Even for the non-pure languages Linq,

Ruby (as of Version 1.9), and Python, an assignment to a

variable named y in the loop body will shadow the iteration

variable and thus not influence the behavior of the loop.

Here, we are especially interested in loops in which the

iterated expression does not perform side-effecting compu-

tation such that the individual iterations may be evaluated

independently. For XQuery, SQL, Links, and Haskell this

is a given. For Linq, Ruby, and Python this requires pro-

gramming discipline. As the individual iterations cannot in-

terfere, the language processor may evaluate the iterations

in arbitrary order—or even in parallel.

These common semantic roots create a playground in which

database queries and the mentioned companion languages

may closely interact. We currently study

(1) the construction of systems in which two (or more) com-

panion languages share a single database-supported run-

time—this can lead to a truly integrated SQL/XML pro-

cessor, for example, in which the typical mix of SQL and

XQuery query fragments is uniformly compiled to yield

a homogeneous executable form, and

(2) an even deeper integration of database query functional-

ity into programming languages (as exemplified by Ac-

tiveRecord or Ambition in the Ruby ecosystem [1, 2],

Linq, and Links), in which selected iterative host pro-

1
Until June 2001, the W3C XQuery Formal Semantics

Draft [9] explicitly discussed monads and associated laws.

Operator Semantics

πa:b project onto column b (and rename into a)
σa select rows with column a = true
× Cartesian product
✶a=b, �a=b equi-join, equi-semijoin.
∪, ∪, \ (disjoint) union, difference
δ eliminate duplicate rows
@a:c attach column a containing constant value c
#a attach arbitrary key (row id) in column a
�a:�b1,..,bn� attach row rank in a (in bi order)
�#a:�b1,..,bn�/c attach 1, 2, . . in a (in bi order per c-group)
�a:�b1,..,bn� attach result of n-ary op. ∗ ∈ {+, <,¬, . .} in a
agga:b/c attach aggregate of b in a (per c-group)

Table 1: Excerpt of Pathfinder’s target table algebra
(with agg ∈ {count,min, . . . }).

gramming language fragments may be translated into

set-oriented algebraic programs. This lays the ground-

work for database-supported language runtimes that do

not stumble if programs consume huge input data in-

stances [13].

Algebraic code. With Pathfinder we designed and im-

plemented a compiler that translates such loop-centric pro-

grams in a fully compositional manner [16]. The compiler

emits plans over a table algebra whose operators (Table 1)

have been selected to reflect the capabilities and execution

model of modern SQL-based RDBMS. The few non-textbook

operators include the family of #, �, and �# which perform

variants of row numbering and correspond to SQL:1999’s

ROW_NUMBER clause. As a consequence of the algebra’s purist

RISC-like style (e.g., selection σa does not evaluate predi-

cates on its own but relies on the presence of a Boolean col-

umn a), the resulting plans tend to be somewhat verbose—

typical Pathfinder plans feature 100s, not 10s, of operators—

but can be implemented on a wide variety of back-end sys-

tems. Currently this includes code generators that target

the SQL processors of IBM DB2 and Microsoft SQL Server

as well as the algebraic MIL language of MonetDB [4] and

the APL-like language Q of kdb+.

Loop lifting. In what follows we shed light on a compi-

lation technique, coined loop lifting in [16], that has been

designed to let a relational database back-end directly par-

ticipate in the evaluation of programs (or queries) written in

an iterative style. The loop-lifting compiler emits algebraic

code for execution on the back-end which then realizes the

semantics of the input program. Loop lifting fully realizes

the welcome independence of the iterated evaluations and

enables the relational query engine to take advantage of its

set-oriented processing paradigm (Section 2).

Loop lifting is simple yet versatile. We sketch extensions

as well as special cases that address features and peculiar-

ities of XQuery (Section 3) and also cover the windowed

iteration construct forseq proposed for XQuery 1.1 [18].

Strictly speaking, forseq violates iteration independence,

though—this violation comes with inherent cost (Section 4).

2. LOOP LIFTING

With XML trees out of the picture, ordered sequences

(x1,x2,. . .,xn) of items xi are the principal data structure

in XQuery—the companion languages equivalently feature
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MonetDB/XQuery: A Fast XQuery 
Processor Powered by a 

Relational Engine, SIGMOD 2006.

http://www-db.in.tum.de/~grust/files/fast-xquery-processor.pdf
http://www-db.in.tum.de/~grust/files/fast-xquery-processor.pdf
http://www-db.in.tum.de/~grust/files/fast-xquery-processor.pdf
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http://www-db.in.tum.de/~grust/files/fast-xquery-processor.pdf
http://www-db.in.tum.de/~grust/files/fast-xquery-processor.pdf
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what’s new about that? isn’t that just 
a fancy repr. of a ternary relation?



RDF: Semantics for the Web?

 What’s new about RDF?
data model of RDF very similar to relational

but: “unique” identifiers in form of URIs that can be shared on the Web

uniqueness only thanks to careful assignment practice (unlike GUIDs)

human-readable (unlike GUIDs)

but: existential information in form of blank nodes

like named null values in SQL, also known as Codd tables

but: implied information due to RDF/S semantics (and, thus, entailment)

e.g., class hierarchy and typing, domain and range of properties, axiomatic triples

notion of redundancy-free or lean graph/answer

38



us to talk about the same resource in different data sets.
However, RDF also allows blank nodes which play the role
of local-only identifiers. Blank nodes are like existential data
and pose particular challenges for RDF query evaluation
(see Section IV-E).

Again, we start off the discussion of RDF query languages
with a closer look at two of the more prominent exemplars:
SPARQL and RQL. These introductions are focused on their
essentials. For a more in-depth comparison of (more than
a dozen) RDF query languages see [92].

A. SPARQL 1000 Words

Fundamentally, SPARQL is a fairly simple query language
in the spirit of basic subsets of SQL or OQL. However, the
specifics of RDF have lead to a number of unusual features
that, arguably, make SPARQL more suited to RDF querying
than previous approaches such as RDQL [149]. However,
the price is a more involved semantics complemented by a
tendency in [165] to redefine or ignore established notions
from relational and XML query languages rather than build
upon them.

Nevertheless, SPARQL is expected to become the “lin-
gua franca” of RDF querying and thus well worth further
investigation. In the following sections, we first briefly
introduce into SPARQL and its semantics (based on [161]
and [162] but extended to full SPARQL queries rather than
only patterns).

l) Example.: The following SPARQL query selects from
the graph in Section II-B all articles in the journal with
name “Computer Journal” and returns a new graph where
the bib:isPartOf relation of the original graph is inverted to
bib:hasPart.5

CONSTRUCT { ?j bib:hasPart ?a }
2 WHERE { ?a rdf:type bib:Article AND ?a bib:isPartOf ?j

AND ?j bib:name ‘Computer Journal’ }

The query illustrates SPARQLs fundamental query con-
struct: a pattern (s, p,o) for RDF triples (whose components
are usually thought of as subject, predicate, object). Any
RDF triple is also a triple pattern, but triple patterns allow
variables for each component. Furthermore, SPARQL also
allows literals in subject position, anticipating the same
change also in RDF itself. We use the variant syntax for
SPARQL discussed in [161] to ease the definition of syntax
and semantics of the language. For instance, standard
SPARQL, uses . instead of AND for triple conjunction. We
consider two forms of SPARQL queries, viz. SELECT queries
that return list of variable bindings and CONSTRUCT queries
that return new RDF graphs. Triple patterns contained in a
CONSTRUCT clause (or “template”) are instantiated with the
variable bindings provided by the evaluation of the triple
pattern in the WHERE clause. We omit named graphs and
assume that all queries are on the single input graph. An

5Here, and in the following we use namespace prefixes to abbreviate
IRIs. The usual IRIs are assumed for rdf, rdfs, dc (dublin core), foaf (friend-
of-a-friend), vcard vocabularies. bib is a prefix bound to an arbitrary IRI.

extension of the discussion to named graphs is easy (and
partially demonstrated in [162]) but only distracts from the
salient points of the discussion.

The full grammar of SPARQL queries as considered here
(extending [161] by CONSTRUCT queries) is as follows:

〈query〉 ::= ‘CONSTRUCT’ 〈template〉 ‘WHERE’ 〈pattern〉
| ‘SELECT’ 〈variable〉+ ‘WHERE’ 〈pattern〉

〈template〉 ::= 〈triple〉 | 〈template〉 ‘AND’ 〈template〉 | ‘{’
template ‘}’

〈triple〉 ::= 〈resource〉‘,’ 〈predicate〉‘,’ 〈resource〉
〈resource〉 ::= 〈iri〉 | 〈variable〉 | 〈literal〉 | 〈blank〉
〈predicate〉 ::= 〈iri〉 | 〈variable〉
〈variable〉 ::= ‘?’ 〈identifier〉
〈pattern〉 ::= 〈triple〉 | ‘{’ 〈pattern〉 ‘}’

| 〈pattern〉 ‘FILTER’ ‘(’ 〈condition〉 ‘)’ |
| 〈pattern〉 ‘AND’ 〈pattern〉 | 〈pattern〉 ‘UNION’

〈pattern〉
| 〈pattern〉 ‘MINUS’ 〈pattern〉 | 〈pattern〉 ‘OPT’

〈pattern〉
〈condition〉 ::= 〈variable〉 ‘=’ 〈variable〉 | 〈variable〉 ‘=’

(〈literal〉|〈iri〉)
| ‘BOUND(’ 〈variable〉 ‘)’ | ‘isBLANK(’

〈variable〉 ‘)’
| ‘isLITERAL(’ 〈variable〉 ‘)’ | ‘isIRI(’

〈variable〉 ‘)’
| 〈negation〉 | 〈conjunction〉 | 〈disjunction〉

〈negation〉 ::= ‘¬’〈condition〉
〈conjunction〉 ::= 〈condition〉 ‘∧’ 〈condition〉
〈disjunction〉 ::= 〈condition〉 ‘∨’ 〈condition〉

We pose some additional syntactic restrictions: SPARQL
queries are range-restricted, i.e., all variables in the “head”
(CONSTRUCT or SELECT clause) also occurs in the “body”
(WHERE clause) of the query. We assume error-free SPARQL
expressions (in contrast to [161] and [162]), i.e., for each
FILTER expression all variables occurring in the (right-hand)
condition must also occur in the (left-hand) pattern. The
first limitation is as in standard SPARQL, the second is
allowed in standard SPARQL but can easily recognized a-
priori and rewritten to the canonical false FILTER expression
(as FILTER expressions with unbound variables raise errors
which, in turn, are treated as a false filter, see “effective
boolean value” in [165].

Finally, we allow only valid RDF constructions in
CONSTRUCT clauses, i.e., no literal may occur as a subject, all
variables occurring in subject position are never bound to
literals, and all variables occurring in predicate position are
only ever bound to IRIs (but not to literals or blank nodes).
The first condition can be enforced statically, the others by
adding appropriate isIRI or negated isLITERAL filters to the
query body.

Following [162], we define the semantics of SPARQL
queries based on substitutions. A substitution θ =
〈v1,n1, . . . , vk : nk〉 with vi ∈ Vars(Q)∧ni ∈ nodes(D)} for a
query Q over a data graph D maps some variables from Q to
nodes in D . For a substitution θ we denote with dom(θ) the
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SEMANTICS FOR SPARQL

2) using a type constraint7
:

SELECT C1, C2 FROM Class{C1}, Class{C2},
{;C1}bib:author{;C2}

3) without class variables or type constraints:

1 SELECT C1, C2 FROM
subClassOf(domain(bib:author)){C1},

subClassOf(range(bib:author)){C2}

While the first two queries return exactly the same

result—namely the domain and range of the bib:author-

property and all possible combinations of their subclasses—

the third query does not include the domain and range

of bib:author itself but only the combinations of their sub-

classes. There is another subtle difference: the first two

queries should only return class combinations for which

actual statements exist, the third should also return class

combination where no actual statement for that combina-

tion exists.

The query topclass(bib:Article) returns the top of the sub-

sumption hierarchy that Article is part of. Similar constructs

for querying the leaves of the subsumption hierarchy or the

nearest common ancestor of the two classes are available.

Moreover, RQL has “property variables” that are prefixed by

@ and which can be used to query RDF properties (just as

7
In the following we omit the namespace part.

classes can be queried using class variables). The following

query, with property variables prefixed by @ returns the

properties, together with their actual ranges, that can be

assigned to resources classified as bib:Article:

SELECT @P, $V FROM {;bib:Article}@P{$V}

n) Data queries.: With RQL, data can be retrieved

by its types or by navigating to the appropriate position

in the RDF graph. Restrictions can be expressed using

filters. Classes, as well as properties, can be queried for

their (direct and indirect, i.e., inferred) extent. The query

bib:Article returns the resources classified as bib:Article or

as one of its sub-classes. This query can also be expressed as

follows: SELECT X FROM bib:Article{X}. Prefixing the variable

X with ˆ in the previous queries, yields queries returning

only resources directly classified as bib:Article, i.e., for which

a statement (X , rdf:type,bib:Article) exists. The extent of a

property can be similarly retrieved. The query ^bib:author
returns the pairs of resources X ,Y that are in the bib:author

relation, i.e., for which a statement (X ,bib:author,Y ) exists.

RQL offers extended dot notation as used in OQL [48], for

navigation in data and schema graphs. The data selected

by an RDF query can be restricted with a WHERE clause:

SELECT X, Y FROM {X;bib:Article}bib:isPartOf.bib:name{Y},
2 {X}dc:title{T}
WHERE T = "...Semantic Web..."



RDF: Semantics for the Web?

Simple RDF QL?
SPARQL: Simple Protocol and RDF Query Language 

really simple?

same expressiveness as full relational algebra, PSPACE-complete

but: no composition, no order → simpler than full SQL or XQuery

really an RDF query language?

blank node construction only limited (no quantifier alternation)

talks vaguely about extension to entailment regimes

but no support in SPARQL as defined

no support for lean answers (justified partially by high computational cost)
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RDF: Semantics for the Web?

SPARQL: Simple RDF QL?
Complexity: 

SPARQL with only AND, FILTER, and UNION: NP-complete

i.e., no computationally interesting subset of full relational SPJU queries

full SPARQL: PSPACE-complete

again no computationally interesting subset of full first-order queries

why? due to negation “hidden” in OPTIONAL

reduction from 3SAT using isBound to encode negation

lacks completeness w.r.t. RDF transformations: 

relational algebra: can express all PSPACE-transformations on relations

SPARQL: fails at the same for RDF
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limitations of blank node construction
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Select all persons and return one blank node 
connected to all these persons using “member”

Not expressible in SPARQL
Why not? no quantifier alternation
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RDF: Semantics for the Web?

SPARQL: Future
doesn’t hit a sweet spot (like XPath)

at least from a formal, database perspective

contributions from database community very rare

yet a significant improvement over most previous RDF QLs

already forms basis for future QL research on RDF

rule extensions for RDF

“From SPARQL to Rules” (Polleres, WWW 2007), 
Networked Graphs (Schenk et al, WWW 2008)

no or limited blank node support

but: with rules, restricted quantification as in SPARQL (∃∀) as expressive as 
unrestricted quantifier alternation
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SPARQL: Summary
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foundation for research but little 
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lackluster support for RDF specifics
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Classification & main issues
46

Keyword Queries
Part 2
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Queries as Keywords

Main Characteristics 
Queries are (mostly) unstructured bags of words

Used in general purpose web search engines 
but also elsewhere (Amazon, Facebook,...)

Implicit conjunctive semantics (with limitations)

Often combined with IR techniques 
ranking, fuzzy matching

Research focuses on
application to semi-structured data

general structured data (Web objects & tables, relations)
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Queries as Keywords

Why Keyword Qs for Structured Data
Success in other areas

Users are already familiarized with the paradigm

Allow casual users to query structured data without 
having deep knowledge of
the query language

the structure & schema of the data

Enable querying of heterogeneous data

49



Queries as Keywords

Classification of Keyword QLs 
Data type
XML 

RDF

Implementation
stand-alone systems

translation to conventional query language

keyword-enhanced query languages
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Queries as Keywords

Classification of Keyword QLs 
Complexity of atomic queries
keyword-only

label-keyword

keyword-enhanced

Querying of elements
Values

Node labels

Edge labels

51



Queries as Keywords

XML Keyword QLs

52

Stand-alone Enhancement

Keyword-only 9 0

Label-keyword 2 0

Keyword-enhanced -- 3
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Queries as Keywords

XML Keyword QLs More Popular
Time
first XML keyword query languages are as old as RDF

Familiarity with XML

Complexity of RDF
Graph-shaped

Labeled Edges

Blank nodes
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Queries as Keywords

Focus Issues
1. Grouping keyword matches

2. Determining answer representations

3. Expressive power

4. Ranking

5. Limitations
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Turning keyword matches into 
answers

56

Computing 
Query Answers

2.1



Query K yields match lists L1 ... L|K|

Answer sets S1 … Sm are constructed from L
may contain either 

only one match per match list (m = |K|) or 

several (m ≥ |K|)

Data-centric vs. document-centric XML

57

Computing Query Answers

Problem Setting
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K ={Smith, web}, 
L1 ={11},  L2 ={3,23}, 
S1 ={11,3},S2={11,23}

(1)
bib
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author
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Mary Smith

Computer Journal

(14)
title
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journal
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(17)

author
(20)

author
Web Journal

(18)
first

(19)
last

(21)
first

(22)
last

Peter Jones Sue Robinson

Computing Query Answers

Problem Setting



Computing Query Answers

Problem Setting
Entire XML document 
usually too big to serve as a good query answer

Matched nodes alone 
usually not informative

Meaningful results
a smaller unit has to be found
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Computing Query Answers

Approaches
1. Determine entities based on the schema

only keyword matches within one entity or 

apply LCA at entity-level

done manually or using schema partitioning with 
cardinality as criterion

Lowest Entity Node, Minimal Information Unit, XSeek...

2. Determine entities by connecting keyword matches
Answer entity: 

contains (at least) one match for each keyword
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Computing Query Answers

Connecting Keyword Matches
Classic concept: Lowest Common Ancestor (LCA)
Use LCA to find the maximally specific concept that is 
common to the keyword matches

LCA: Lowest node that is ancestor to all elements in 
an answer set
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Computing Query Answers

Lowest Common Ancestor (LCA)

62

LCA(S1={3,11}) = 2
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Computing Query Answers

Lowest Common Ancestor (LCA)

63

LCA(S2={11,23}) = 1 — False positive
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Approaches to improve LCA for 
computing answer entities

64

Improving LCA

2.1.1



Computing Query Answers

Lowest Common Ancestor (LCA)
Many approaches to improve over LCA
SLCA, MLCA, Interconnection Semantics, VLCA, Amoeba 
Join...

Filter LCAs to avoid false positives

Result is subset of LCA result
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Improving LCA 

Overview of Approaches
1. Interconnection relationship

2. XKSearch: Smallest LCA

3. Meaningful LCA (MLCA) 

4. Amoeba Join

5. (Valuable LCA (VLCA), Compact LCA, CVLCA)

6. (Relaxed Tightest Fragment (RTF))

7. XRank: Exclusive LCA
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Improving LCA 

Interconnection Relationship
Idea: Two different nodes with the same label 
correspond to different entities of the same type. 

Two nodes are interconnected if, 
on the shortest path between them, 

every node label occurs only once

Interconnection in answer sets:
star-related: a node in Si interconnected with all nodes in Si

all-pairs related: all nodes in Si pair-wise interconnected
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Interconnection Relationship
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Improving LCA 

Interconnection Relationship
For |K| = 2, star-related ≡ all-pairs related

Consider S1={3, 8, 11}
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Improving LCA 

Interconnection Relationship
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Interconnection Relationship
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Interconnection Relationship
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Improving LCA 

Interconnection Relationship
S1={3, 8, 11} is 
star-related but 

not all-pairs related

False negative when using all-pairs relatedness

Consider S1={3,7,9}
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Interconnection Relationship
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Interconnection Relationship
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Interconnection Relationship
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Improving LCA 

Interconnection Relationship
S1={3,7,9} is a false negative in both measures

False positives for both when node labels are 
different but refer to similar concepts
e.g. “article” vs. “book” vs. “text”

False negatives when node labels are identical but 
refer to different concepts
e.g. the name of a person vs. the name of a journal
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Improving LCA 

XKSearch: Smallest LCA (SLCA)
Idea: Enhance LCA with a minimality constraint

SLCA nodes are LCAs which 
do not have LCA nodes among their descendants

Similar to XRank/ELCA but stricter
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XKSearch: Smallest LCA (SLCA)
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Improving LCA 

XKSearch: Smallest LCA (SLCA)
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XKSearch: Smallest LCA (SLCA)
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But of course...
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Improving LCA 

SLCA: False Negatives
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Improving LCA 

Meaningful LCA (MLCA)

84

MLCA: LCA where 
for each pair of nodes, 

no descendant LCA of nodes with the same label exists

Similar to SLCA but less strict since only applies when 
node label constraint is fulfilled

Problems similar to SLCA and Interconnection 
Semantics
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Meaningful LCA (MLCA)
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Meaningful LCA (MLCA)
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Improving LCA 

Amoeba Join
Si is a valid answer set if LCA(Si) ∈ Si

only allows matches where 

one matched node is 

an ancestor of (or identical to) all matched nodes

K={Smith, web}, L1={11}, L2={3,23}, S1={11,3}, S2=
{11,23}

87
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Improving LCA 

Amoeba Join
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Amoeba Join
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Amoeba Join
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Amoeba Join
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K={web, Smith, article} — False positive
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Improving LCA 

Compact LCA (CLCA)

92

CLCA: LCA node of an answer set Si 
where LCA(Si) dominates all nodes in Si 

Node vi dominates node vj if there is no vj ∈ Si where LCA
(Si) is descendant of vi 

Simpler: CLCA is an LCA 
where no node in the associated answer set can be 

part of a more specific answer set

Similar to SLCA



Improving LCA 

Compact Valuable LCA (VLCA)

93

CVLCA: CLCA node which is also a VLCA node

Recall problems of SLCA and Interconnection 
Semantics



Improving LCA 

Relaxed Tightest Fragment (RTF)

94

Subtrees are complete with respect to matches 
while being as small as possible

Similar to XRank: 
maximum match without contained descendant LCAs

K={Smith, web}, L1={11}, L2={3,23}, S1={11,3,23}, S2=
{11,3}, S3={11,23} and LCA(11,3)=2, LCA(11,14)=1, 
LCA(11,3,23)=1
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Relaxed Tightest Fragment (RTF)
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Relaxed Tightest Fragment (RTF)
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(1)
bib

(2)
article

(13)
article

(3)
title

(4)
year

(5)
authors

(12)
journal

...Semantic Web... 2005
(6)

author
(9)

author

(7)
first

(8)
last

John Doe

(10)
first

(11)
last

Mary Smith

Computer Journal

(14)
title

(15)
year

(16)
authors

(23)
journal

...XML... 2003
(17)

author
(20)

author
Web Journal

(18)
first

(19)
last

(21)
first

(22)
last

Peter Jones Sue Robinson



Improving LCA 

Relaxed Tightest Fragment (RTF)

97

S2={11,3}, c1: ✔, c2: ✔, c3: ✔
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Improving LCA 

XRank: Exclusive LCA
Idea: Prefer more specific LCAs 
unless reason not to (more matches)

Result node is LCA node which 
does not contain further LCAs or 

which is still LCA if LCA subtrees are ignored

As before, K={Smith, web}, L1={11}, L2={3,23}, S1=
{11,3}, S2={11,23} and LCA(11,3)=2, LCA(11,23)=1
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XRank: Exclusive LCA

99

(1)
bib

(2)
article

(13)
article

(3)
title

(4)
year

(5)
authors

(12)
journal

...Semantic Web... 2005
(6)

author
(9)

author

(7)
first

(8)
last

John Doe

(10)
first

(11)
last

Mary Smith

Computer Journal

(14)
title

(15)
year

(16)
authors

(23)
journal

...XML... 2003
(17)

author
(20)

author
Web Journal

(18)
first

(19)
last

(21)
first

(22)
last

Peter Jones Sue Robinson

Only (2) is a valid result node



Improving LCA 

XRank: Exclusive LCA
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But...
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Improving LCA 

XRank: Exclusive LCA
Objection: 
XRank targeted at document-centric XML

Does this solve the problem?

Consider K={XML,RDF}
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XRank: Exclusive LCA
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Improving LCA 

Summary
No heuristic with perfect precision and recall

Data-driven solutions, not universally applicable

Monotonicity and consistency are desirable but often 
violated

In some cases, no heuristic produces suitable results

103
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Summary
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Queries as Keywords

RDF
Summarize RDF graph (Q2RDF, Q2Semantic)

Generate queries or query results by connecting 
matches
Dijkstra’s Algorithm (Q2RDF)

Kruskal’s Minimum Spanning Tree Algorithm (SPARK)

Templates based on types (SemSearch)

Cost-based heuristics (Q2Semantic)
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From an answer node
 to an answer representation

107

Determining 
Return Values

2.2



Determining Return Values

Approach 1: LCA 

108

LCA (or similar) node, e.g. ELCA, MLCA
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Determining Return Values

Approach 2: Matched Nodes
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Matched nodes (Interconnection Semantics)
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Determining Return Values

Approach 3: LCA & Path
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Determining Return Values

Approach 4: Entire Subtree

111

LCA or entity subtree e.g. SLCA, XRank, VLCA
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Determining Return Values

Comparison & Summary

112

Neither approach is always satisfying
subtree may be too big

path or node may not provide enough information

More controlled return value is desirable
use query elements to determine a suitable return value 
automatically



Determining Return Values

Exemplar: XSeek
Processing steps:

1. Match query on node labels and content

2. Group matches using SLCA

3. Extract return nodes from query: If a term in K matches a 
node label and no descendant content is matched, 
consider the term a return node (explicit)

4. When there are no return nodes, return SLCA entity 
subtree (implicit)
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Determining Return Values

Exemplar: XSeek
Terms in the query that are not return nodes are 
search predicates i.e. keywords to find

Entities and their attributes inferred from the schema 
using cardinality information

Final return value: 
explicit or implicit return nodes and entities’ attributes
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Determining Return Values

Exemplar: XSeek
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(1)
bib

(2)
article

(13)
article

(3)
title

(4)
year

(5)
authors

(12)
journal

...Semantic Web... 2005
(6)

author
(9)

author

(7)
first

(8)
last

John Doe

(10)
first

(11)
last

Mary Smith

Computer Journal

(14)
title

(15)
year

(16)
authors

(23)
journal

...XML... 2003
(17)

author
(20)

author
Web Journal

(18)
first

(19)
last

(21)
first

(22)
last

Peter Jones Sue Robinson

Entity node (1:n) Attribute node (1:1) Connection node



Determining Return Values

Exemplar: XSeek
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K={Smith, web}

(2)
article

(3)
title

(4)
year

(12)
journal

...Semantic Web... 2005

(9)
author

(10)
first

(11)
last

Mary SmithComputer Journal



Determining Return Values

Exemplar: XSeek
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K={Smith, title}

(3)
title

...Semantic Web...

(11)
last

Smith



Determining Return Values

Exemplar: XSeek
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K={Smith, title}

(3)
title

...Semantic Web...

(11)
last

Smith

Z. Liu, J. Walker and Y.Chen. XSeek: 
a semantic XML search engine 

using keywords. VLDB 2007



Queries as Keywords

Expressiveness
Queries: unordered lists with implicit conjunction 
+ Conjunction, disjunction (Multiway, Abbaci et al.)

+ Inclusion, sibling, negation, precedence (Abbaci et al.)

User-selected return value (XSeek, MIU)

Numeric comparison operators (MIU)

Optional terms (Interconnection)

label:keyword terms (Interconnection, XSearch)

Keyword-enhanced languages
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Queries as Keywords

Expressiveness
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Queries as Keywords

Expressiveness
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web

semantic

AND

NOT

3

23

23

2

1

13 2

3

1

4 23...

Transform query into binary tree

Construct set of matching nodes 
and their ancestors for each term

Bottom-up processing:
Apply operator to sets of nodes 
(i.e. intersection for conjunction)

The nodes remaining at the root are 
valid answers (LCA-like)
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Expressiveness
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web

semantic

AND

NOT

3

23

23

2

1

13 2

3

1

4 23...

Transform query into binary tree

Construct set of matching nodes 
and their ancestors for each term

Bottom-up processing:
Apply operator to sets of nodes 
(i.e. intersection for conjunction)

The nodes remaining at the root are 
valid answers (LCA-like)

F. Abbaci et al. Index and Search 
XML Documents by Combining 

Content. International Conference on 
Internet Computing 2006

http://www.informatik.uni-trier.de/~ley/db/conf/ic/icomp2006.html#AbbaciVF06
http://www.informatik.uni-trier.de/~ley/db/conf/ic/icomp2006.html#AbbaciVF06
http://www.informatik.uni-trier.de/~ley/db/conf/ic/icomp2006.html#AbbaciVF06
http://www.informatik.uni-trier.de/~ley/db/conf/ic/icomp2006.html#AbbaciVF06


Queries as Keywords

Ranking
Size of answer subtree

Distance between matched nodes and answer tree 
root node

tf-idf/vector space model

XRank: PageRank-like ranking
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Queries as Keywords

XRank — Ranking factors  
Result specificity: vertical distance

Keyword proximity: horizontal distance

Hyperlink awareness: PageRank value, adapted for 
XML
distinction between XML edges and IDREF links

Bidirectional propagation between XML edges

distinction between following forward and backward links
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Lin Guo et al. XRANK: Ranked 
keyword search over XML 
documents. SIGMOD 2003



Queries as Keywords

Limitations

123

Mostly limited to tree data

Determining semantic entities in structured data
Assumption: No element outside of LCA subtree is relevant

No universal solution, data-driven

Relatively low expressiveness



Queries as Keywords

Limitations

124

Query answers
Little control over selection

Result may be too verbose or not informative enough

No construction or aggregation

Exception: Keyword-enhanced languages

No querying of data in mixed formats (RDF & XML)



Keyword-based query language 
for Semantic Wikis

125

KWQL
Part 3



Semantic Wikis: 

The (Semantic) Web in the Small
As on the Semantic Web we have
pages and links between them and annotations

content created by many different people

But we also have
central control, organization and administration 

a small (or at least manageable) number of pages

Strong social factors and collaboration

126

→Wikis as a testbed for the “real” web



KWQL: Keyword-Based QL for Wikis

Characteristics
KWQL can access all elements the user interacts with
Combined querying of text, annotation and metadata

Querying of informal to formal annotations

Combination of selection criteria from several data sources 
in one query

Aggregation and construction
Data construction

Embedded queries

Continuous queries
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F. Bry and K. Weiand. Flavors of 
KWQL, a Keyword Query 

Language for a Semantic Wiki.
SOFSEM, 2010.



KWQL: Keyword-Based QL for Wikis

Characteristics
Varying complexity of queries
Simple label-keyword queries

Conjunction/disjunction/optional

Structural queries

Link traversal
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KWQL: Keyword-Based QL for Wikis

Examples

129

Java

author:"Mary"

1

2

3

4

5

ci(text:Java OR (tag(name:XML) AND author:Mary))

ci(tag(name:Java) link(target:ci(title:Lucene) 
   tag(name:uses)))

ci(title:Contents text:($A "-" ALL($T,","))) 
   @ ci(title:$T author:$A)



KWQL: Keyword-Based QL for Wikis

visKWQL
KWQL’s visual counterpart

Query by example paradigm 

Round-tripping between KWQL and visKWQL
Visualization of textual queries

visKWQL as a tool to learn KWQL
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KWQL: Keyword-Based QL for Wikis

KWQL and visKWQL
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KWQL: Keyword-Based QL for Wikis

KWQL and visKWQL
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KWQL: Keyword-Based QL for Wikis

KWQL and visKWQL
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KWQL: Keyword-Based QL for Wikis

KWQL and visKWQL
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Conclusion
Part 4



Web Queries

Conclusion
Is it even possible to find a universal grouping 
mechanism?

How easy to use can a query language be while still 
being powerful enough?

How complicated can a query language be without 
becoming too hard to use for casual users?
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Web Queries

Conclusion

Slides and links at

http://pms.ifi.lmu.de/wise
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http://pms.ifi.lmu.de/wise
http://pms.ifi.lmu.de/wise

