529 research outputs found

    Stream ciphers for secure display

    Get PDF
    In any situation where private, proprietary or highly confidential material is being dealt with, the need to consider aspects of data security has grown ever more important. It is usual to secure such data from its source, over networks and on to the intended recipient. However, data security considerations typically stop at the recipient's processor, leaving connections to a display transmitting raw data which is increasingly in a digital format and of value to an adversary. With a progression to wireless display technologies the prominence of this vulnerability is set to rise, making the implementation of 'secure display' increasingly desirable. Secure display takes aspects of data security right to the display panel itself, potentially minimising the cost, component count and thickness of the final product. Recent developments in display technologies should help make this integration possible. However, the processing of large quantities of time-sensitive data presents a significant challenge in such resource constrained environments. Efficient high- throughput decryption is a crucial aspect of the implementation of secure display and one for which the widely used and well understood block cipher may not be best suited. Stream ciphers present a promising alternative and a number of strong candidate algorithms potentially offer the hardware speed and efficiency required. In the past, similar stream ciphers have suffered from algorithmic vulnerabilities. Although these new-generation designs have done much to respond to this concern, the relatively short 80-bit key lengths of some proposed hardware candidates, when combined with ever-advancing computational power, leads to the thesis identifying exhaustive search of key space as a potential attack vector. To determine the value of protection afforded by such short key lengths a unique hardware key search engine for stream ciphers is developed that makes use of an appropriate data element to improve search efficiency. The simulations from this system indicate that the proposed key lengths may be insufficient for applications where data is of long-term or high value. It is suggested that for the concept of secure display to be accepted, a longer key length should be used

    LS-AODV: A ROUTING PROTOCOL BASED ON LIGHTWEIGHT CRYPTOGRAPHIC TECHNIQUES FOR A FANET OF NANO DRONES

    Get PDF
    With the battlespace rapidly shifting to the cyber domain, it is vital to have secure, robust routing protocols for unmanned systems. Furthermore, the development of nano drones is gaining traction, providing new covert capabilities for operators at sea or on land. Deploying a flying ad hoc network (FANET) of nano drones on the battlefield comes with specific performance and security issues. This thesis provides a novel approach to address the performance and security concerns faced by FANET routing protocols, and, in our case, is specifically tailored to improve the Ad Hoc On-Demand Distance Vector (AODV) routing protocol. The proposed routing protocol, Lightweight Secure Ad Hoc On-Demand Distance Vector (LS-AODV), uses a lightweight stream cipher, Trivium, to encrypt routing control packets, providing confidentiality. The scheme also uses Chaskey-12-based message authentication codes (MACs) to guarantee the authenticity and integrity of control packets. We use a network simulator, NS-3, to compare LS-AODV against two benchmark routing protocols, AODV and the Optimized Link State Routing (OLSR) protocol, in order to gauge network performance and security benefits. The simulation results indicate that when the FANET is not under attack from black-hole nodes, LS-AODV generally outperforms OLSR but performs slightly worse than AODV. On the other hand, LS-AODV emerges as the protocol of choice when a FANET is subject to a black-hole attack.ONROutstanding ThesisLieutenant, United States NavyApproved for public release. Distribution is unlimited

    Security and Privacy Issues in Wireless Mesh Networks: A Survey

    Full text link
    This book chapter identifies various security threats in wireless mesh network (WMN). Keeping in mind the critical requirement of security and user privacy in WMNs, this chapter provides a comprehensive overview of various possible attacks on different layers of the communication protocol stack for WMNs and their corresponding defense mechanisms. First, it identifies the security vulnerabilities in the physical, link, network, transport, application layers. Furthermore, various possible attacks on the key management protocols, user authentication and access control protocols, and user privacy preservation protocols are presented. After enumerating various possible attacks, the chapter provides a detailed discussion on various existing security mechanisms and protocols to defend against and wherever possible prevent the possible attacks. Comparative analyses are also presented on the security schemes with regards to the cryptographic schemes used, key management strategies deployed, use of any trusted third party, computation and communication overhead involved etc. The chapter then presents a brief discussion on various trust management approaches for WMNs since trust and reputation-based schemes are increasingly becoming popular for enforcing security in wireless networks. A number of open problems in security and privacy issues for WMNs are subsequently discussed before the chapter is finally concluded.Comment: 62 pages, 12 figures, 6 tables. This chapter is an extension of the author's previous submission in arXiv submission: arXiv:1102.1226. There are some text overlaps with the previous submissio

    A real time demonstrative analysis of lightweight payload encryption in resource constrained devices based on mqtt

    Get PDF
    06.03.2018 tarihli ve 30352 sayılı Resmi Gazetede yayımlanan “Yükseköğretim Kanunu İle Bazı Kanun Ve Kanun Hükmünde Kararnamelerde Değişiklik Yapılması Hakkında Kanun” ile 18.06.2018 tarihli “Lisansüstü Tezlerin Elektronik Ortamda Toplanması, Düzenlenmesi ve Erişime Açılmasına İlişkin Yönerge” gereğince tam metin erişime açılmıştır.Kısıtlı cihazların kaynakları, yani bellek (ROM ve RAM), CPU ve pil ömrü (varsa) sınırlıdır. Genellikle, veri toplayan sensörler, makinadan makineye (M2M) veya servisleri ve elektrikli ev aletlerini kontrol eden akıllı cihazlar için puanlar. Bu tür aygıtlar bir ağa bağlandığında "nesnelerin Internet'i" nin (IoT) bir parçasını oluştururlar. Message Queue Telemetry Transport (yani MQTT), hafif, açık, basit, istemci-sunucu yayın/abone mesajlaşma taşıma protokolüdür. Güvenilir iletişim için üç Hizmet Kalitesi (QoS) seviyesini destekleyen çoğu kaynak kısıtlamalı IoT cihazı için kullanışlıdır ve verimlidir. Cihazdan Cihaza (D2D) ve nesnelerin Internet'i (IoT) bağlamları gibi kısıtlı ortamlarda iletişim için gerekli olan bir protokoldür. MQTT protokolü, güvenli soket katmanı (SSL) sertifikalarına dayalı taşıma katmanı güvenliği (TLS) dışında somut güvenlik mekanizmalarından yoksundur. Bununla birlikte, bu güvenlik protokollerinin en hafif değildir ve özellikle kısıtlı cihazlar için ağ yüklerini artırır. IoT cihazlarının yaklaşık %70'inde özellikle de istemci tarafında veri şifrelemesi yoktur ve TLS için mükemmel bir alternatif olabilir. Bu tezde, farklı Hizmet Kalitesi (QoS) ve veri yüklerin değişken boyutu için kısıtlı bir cihaz üzerinde MQTT protokolünün ağ performansı üzerindeki etkisini göstermek için bir deney düzeneği tasarlanmıştır. Bu çalışmanın yeni kısmı, yüklerin istemci tarafında şifrelenmesini ve ağ performansı üzerindeki etkisini kapsıyor. Denemelerde, verilere 128-bits ileileri şifreleme standardı (AES) hafif bir şifreleme uygulanmıştır. Mesajlar, farklı yük boyutlarına dayanan bir komisyoncu sunucusu aracılığıyla gerçek kablolu alt uçtakı yayıncılık istemcisi ve düşük uçtakı abone istemcisi üzerinden MQTT'deki üç farklı QoS seviyesini kullanarak aktarılır. Paketler, şifreleme ve şifre çözme işlem süresinin ölçülmesiyle birlikte uçtan uca gecikme, verimlilik ve mesaj kaybı analiz etmek için yakalanır. Deney sonuçlarına göre, şifrelenmemiş (şifresiz metin) yükün daha düşük bir ağ yük etkisine sahip olduğu ve bu nedenle, yüzde kaybı ve mesaj tesliminde, şifreli yüke göre MQTT'yi kullanarak nispeten daha iyi bir ağ performansı ürettiği sonucuna varılmıştır.Constrained devices are limited in resources namely, memory (ROM and RAM), CPU and battery life (if available). They are often used as sensors that collects data, machine to machine (M2M) or smart devices that control services and electrical appliances. When such devices are connected to a network they form what is called "things" and in a whole, they form part of the "Internet of Things" (IoT). Message Queue Telemetry Transport (MQTT) is a common light weight, open, simple, client-server publish/subscribe messaging transport protocol useful and efficient for most resource constrained IoT devices that supports three Quality of Service (QoS) levels for reliable communication. It is an essential protocol for communication in constrained environments such as Device to Device (D2D) and Internet of Things (IoT) contexts. MQTT protocol is devoid of concrete security mechanisms apart from Transport Layer Security (TLS) based on Secure Socket Layer (SSL) certificates. However, this is not the lightest of security protocols and increases network overheads especially for constrained devices. About 70 % of most ordinary IoT devices also lack data encryption especially at the client-end which could have been a perfect alternative for TLS. In this thesis, an experimental setup is designed to demonstrate the effect on network performance of MQTT protocol on a constrained device for different Quality of Service (QoS) and variable size of payloads. The novel part of this study covers client-side encryption of payloads and its effect over network performance. In the experiments, a lightweight encryption of 128-bits Advanced Encryption Standard (AES) is applied on the data. The messages are transferred using the three different QoS levels in MQTT over real wired low-end publish client and low-end subscriber client via a broker server based on different payload sizes. The packets are captured to analyze end-to-end latency, throughput and message loss along with the measurement of encryption and decryption processing time. According to the results of the experiment, it was concluded that, non-encrypted (plaintext) payload have a lower network load effect and hence produces a relatively better network performance using MQTT in terms of percentage loss and message delivery than the encrypted payload

    Parallel Redundancy System for Critical Conditions Monitoring and Alerting

    Get PDF
    Monitoring critical conditions is of outmost importance in any system for achieving long life and stability. In this process, various parameters can be classified as critical and their values must be kept within a bounded interval by means of monitoring and acting upon a change in the value. A practical example of critical conditions monitoring is temperature monitoring in data centers (server rooms) where the temperature value must be kept below a certain threshold in order to achieve long life and stability of equipment. This paper presents a system designed for monitoring temperatures and alerting of their critical values is proposed - PRSMA. With a parallel redundancy feature that guarantees high reliability of the proposed solution, this approach achieves timely alerting upon critical condition, real-time supervision of temperature values and forecasting of critical conditions. The redundancy aspect is realized by using a mobile operator link alongside with the Internet-based landline connection to a cloud-based service – the Internet of Things concept. The proposed architecture is tested in laboratory conditions and the advantages of this approach are shown through measurement and testing

    End-to-end security for mobile devices

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Computer Engineering, Izmir, 2004Includes bibliographical references (leaves: 120)Text in English; Abstract: Turkish and Englishix, 133 leavesEnd-to-end security has been an emerging need for mobile devices with the widespread use of personal digital assistants and mobile phones. Transport Layer Security Protocol (TLS) is an end-to-end security protocol that is commonly used in Internet, together with its predecessor, SSL protocol. By using TLS protocol in mobile world, the advantage of the proven security model of this protocol can be taken.J2ME (Java 2 Micro Edition) has been the de facto application platform used in mobile devices. This thesis aims to provide an end-to-end security protocol implementation based on TLS 1.0 specification and that can run on J2ME MIDP (Mobile Information Device Profile) environment. Because of the resource intensive public-key operations used in TLS, this protocol needs high resources and has low performance. Another motivation for the thesis is to adapt the protocol for mobile environment and to show that it is possible to use the protocol implementation in both client and server modes. An alternative serialization mechanism is used instead of the standard Java object serialization that is lacking in MIDP. In this architecture, XML is used to transmit object data.The mobile end-to-end security protocol has the main design issues of maintainability and extensibility. Cryptographic operations are performed with a free library, Bouncy Castle Cryptography Package. The object-oriented architecture of the protocol implementation makes the replacement of this library with another cryptography package easier.Mobile end-to-end security protocol is tested with a mobile hospital reservation system application. Test cases are prepared to measure the performance of the protocol implementation with different cipher suites and platforms. Measured values of all handshake operation and defined time spans are given in tables and compared with graphs

    Survey on Lightweight Primitives and Protocols for RFID in Wireless Sensor Networks

    Get PDF
    The use of radio frequency identification (RFID) technologies is becoming widespread in all kind of wireless network-based applications. As expected, applications based on sensor networks, ad-hoc or mobile ad hoc networks (MANETs) can be highly benefited from the adoption of RFID solutions. There is a strong need to employ lightweight cryptographic primitives for many security applications because of the tight cost and constrained resource requirement of sensor based networks. This paper mainly focuses on the security analysis of lightweight protocols and algorithms proposed for the security of RFID systems. A large number of research solutions have been proposed to implement lightweight cryptographic primitives and protocols in sensor and RFID integration based resource constraint networks. In this work, an overview of the currently discussed lightweight primitives and their attributes has been done. These primitives and protocols have been compared based on gate equivalents (GEs), power, technology, strengths, weaknesses and attacks. Further, an integration of primitives and protocols is compared with the possibilities of their applications in practical scenarios
    corecore