

Aalborg Universitet

A Novel Single Pass Authenticated Encryption Stream Cipher for Software Defined
Radios

Khajuria, Samant

Publication date:
2012

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
Khajuria, S. (2012). A Novel Single Pass Authenticated Encryption Stream Cipher for Software Defined Radios.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 ? You may not further distribute the material or use it for any profit-making activity or commercial gain
 ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: December 26, 2020

https://vbn.aau.dk/en/publications/70bfe498-b71c-48af-90dc-cbb21e9f1108

A Novel Single Pass Authenticated Encryption
Stream Cipher for Software Defined Radios

A DISSERTATION
SUBBMITTED TO THE DEPARTMENT OF

ELECRONIC SYSTEMS
OF

AALBORG UNIVERSITY
IN PARTIAL FULFILMENT OF THE REQUIREMENTS

FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

Samant Khajuria
Center for Wireless Systems and Applications

Center for TeleInFrastruktur – Copenhagen
Dept. of Electronic Systems

AAU

ii

Supervisor:

Professor Ramjee Prasad, CTIF, Aalborg University, Denmark
Professor Birger Andersen, CWSA-CTIF, Copenhagen University College of Engineering,
Denmark

The examination committee:

Moderator:

Date of defense:

ISSN: ***_****
ISBN: **_****_***_*

Copyright © 2012 by Samant Khajuria

All rights reserved. No part of the material protected by this copyright notice may be reproduced or
utilized in any form or by any means, electronic or mechanical, including photocopying, recording
or by any information storage and retrieval system, without written permission from the author.

iii

Abstract

With the rapid growth of new wireless communication standards, a solution that is able to provide
a seamless shift between existing wireless protocols and high flexibility as well as capacity is
crucial. Software Defined Radio (SDR) technology offers this flexibility. It gives the possibility of
adapting the radio to users’ preferences and the operating environment and supporting multiple
standards without requiring separate hardware for each standard. In order to avail this enabling
technology that is applicable across a wide range of areas within the wireless infrastructure, these
radios have to propose cryptographic services such as confidentiality, integrity and authentication.
Therefore, integration of security services into SDR devices is essential.

Authenticated Encryption schemes donate the class of cryptographic algorithms that are designed
for protecting both message confidentiality and its authenticity. Traditionally, authenticated
encryption was achieved by using two independent algorithms for encryption and authentication.
For past few years, new modes of operation of block cipher have been developed that allow us to
use one algorithm for encryption as well as authentication. This makes authenticated encryption
very attractive for low-cost low-power hardware implementations, as it allows for the substantial
decrease in the circuit area and power consumed compared to the traditional schemes.

In this thesis, an authenticated encryption scheme is proposed with the focus of achieving high
throughput and low overhead for SDRs. The thesis is divided into two research topics. One topic is
the design of a 1-pass authenticated encryption scheme that can accomplish both message
secrecy and authenticity in a single cryptographic primitive. The other topic is the implementation
of this design on re-configurable hardware in SDRs by closely observing the trade-off between
area/throughput performance parameters.

For test and performance evaluation the design has been implemented in Xilinx Spartan – 3
sxc3s700an FPGA. The resulting implementation consumes moderate number of slices on FPGA
and achieves throughput in the range of 0.8 Gbps which can be suitably used for SDR applications.
Comparing with traditional two pass approaches, the presented design demonstrates high
throughput and small area to performance ratio.

iv

v

Dansk Resume

Med den hurtige vækst i nye trådløse kommunikationsstandarder, er en løsning, der er i stand til
at levere et problemfrit skifte mellem eksisterende trådløse protokoller og høj fleksibilitet samt
kapacitet afgørende. Software Defined Radio (SDR) teknologi tilbyder denne fleksibilitet. Det giver
mulighed for at tilpasse radioen til brugernes præferencer og driftsmiljøet og understøtte flere
standarder uden at kræve separat hardware for hver standard. For at kunne benytte denne
teknologi, der kan anvendes på tværs af en lang række områder indenfor trådløse infrastruktur, er
disse radioer nødt til at tilbyde kryptografiske tjenester såsom fortrolighed, integritet og
autentificering. Derfor er integration af sikkerhedstjenester i SDR-enheder af afgørende betydning.

Autentificeret krypteringsmetoder tilhører klassen af kryptografiske algoritmer, der er designet til
at beskytte både besked fortrolighed og dens ægthed (autensitet). Traditionelt blev autentificeret
kryptering opnået ved hjælp af to uafhængige algoritmer til kryptering og autentificering. De
sidste få år er nye former for blokalgoritmer blevet udviklet, som giver os mulighed for at bruge
samme algoritme til kryptering samt autentificering. Dette gør autentificeret kryptering meget
attraktivt for billige energibesparende hardware implementeringer, da det giver mulighed for
betydelig reduktion af kredsløbets omfang og strømforbruget sammenlignet med traditionelle
metoder.

I denne afhandling er foreslået en autentificeret krypteringsmetode med fokus på at opnå høj
kapacitet og lavt overhead for SDR. Afhandlingen er opdelt i to forskningsområder. Det ene er
udformningen af en 1-passage autentificeret krypteringsmetode, der kan benyttes til både
hemmeligholdelse og autenticitet vha. et enkelt kryptografisk primitiv. Det andet område er
implementering af dette design på rekonfigurérbar hardware i SDR ved nøje at observere trade-off
mellem kredsløbets omfang og kapacitets præstationsparametre.

For test og evaluering er designet blevet implementeret i Xilinx Spartan - 3 sxc3s700an FPGA. Den
resulterende implementering forbruger moderat antal slices på FPGA og opnår kapacitet i området
ca. 0,8 Gbps, som kan være passende for SDR applikationer. I sammenligning med traditionelle to
passage metoder demonstrerer det præsenterede design høj kapacitet og lille kredsløbsomfang.
som ydelsesforhold.

vi

vii

Acknowledgements

I would like to take the opportunity to thank the people who supported and accompanied me
during my PhD studies.

First and foremost I would like to thank my supervisors Prof. Ramjee Prasad and Prof. Birger
Andersen for all the support and feedback, without which I would not have been able to complete
my research work and write my thesis. I would also like to thank Prof. Rajarathnam Chandramouli
and Goce Jakimoski for giving me the opportunity to work under their guidance in which they gave
me their expertise and timely advices during my research at Stevens Institute of Technology.

I would like to thank Center for Wireless Systems and Applications (CWSA) for sponsoring first year
of my research. Next, I would like to thank my colleagues, the current once and the ones that
have already gone from CWSA. I have always appreciated their precious feedback and long
discussions with them about my research. I would also like to thank John Kryger Sørensen for his
support and guidance.

I would also like to thank Susanne Nørrevang and Inga Hauge for their help during my travels.

Last, I would like to thank my friends and family for all their unconditionally support during my
PhD

Thank you all

viii

ix

Table of Contents

List of Figures ………………………………………………………………………….xii

List of Tables …………………………………………………………………………...xiv

List of Acronyms ……………………………………………………………………....xv

1 Introduction ……………………………………………………………………………… 1

1.1 Software Defined Radio …………………………………………………………….1

1.1.1 Cognitive Radio …………………………………………………………3
1.1.2 Field Programmable Gate Arrays / System on Chip …………………….5

1.2 Need for Security …………………………………………………………………..5
1.2.1 FPGAs for Cryptographic Application ………………………………….6
1.2.2 Attacks on FPGA ………………………………………………………..8

1.3 Confidentiality and Authenticity ………………………………………………….10
1.4 Motivation …………………………………………………………………………11
1.5 Problem Definition ………………………………………………………………...12
1.6 Limitations ………………………………………………………………………... 13
1.7 Contribution ………………………………………………………………………..13
1.8 Organization ………………………………………………………………………. 14
References …………………………………………………………………………….. 17

Part I – Algorithm Analysis & Development

2 Cryptography ……………………………………………………………………………..21

2.1 Symmetric Encryption ……………………………………………………………. 22
2.2 Block Ciphers ……………………………………………………………………... 24

2.2.1 Advanced Encryption Standard ……………………………………….. 28
2.3 Stream Ciphers ……………………………………………………………………. 31

2.3.1 Synchronous Stream Cipher …………………………………………... 33
2.3.2 Self-Synchronizing Stream Cipher …………………………………….34

x

2.4 Authentication ……………………………………………………………………..34
2.4.1 Cryptographic Hash Functions ………………………………………...35
2.4.2 Message Authentication Codes (MAC) ………………………………..37
2.4.3 Dedicated Hash functions ……………………………………………...38
2.4.4 Secure Hash Algorithm ………………………………………………...40
2.4.5 Keyed-Hash Message Authentication Code (HMAC) …………………42
2.4.6 CBC-MAC ……………………………………………………………..44

2.5 Conclusions ………………………………………………………………………...46
References ………………………………………………………………………………………47

3 Authenticated Encryption ………………………………………………………................51

3.1 Generic Composition ………………………………………………………………52
3.1.1 Encrypt – and – MAC …………………………………………………..53
3.1.2 MAC – then – Encrypt ………………………………………………….54
3.1.3 Encrypt – then – MAC ………………………………………………….55

3.2 Two Pass Combined mode …………………………………………………………56
3.2.1 CCM Mode ……………………………………………………………..57
3.2.2 EAX Mode ……………………………………………………………...58

3.3 Single Pass Combined Mode ……………………………………………………….59
3.3.1 IAPM …………………………………………………………………...60
3.3.2 XCBC …………………………………………………………………..61
3.3.3 OCB …………………………………………………………………….62

3.4 AE Stream Ciphers ………………………………………………………………...63
3.4.1 Helix ……………………………………………………………………63
3.4.2 Sober-128 ……………………………………………………………… 64

3.5 ASC-1 : An Authenticated encryption Stream Cipher …………………………….. 65
3.5.1 LEX Stream Cipher …………………………………………………….65
3.5.2 ASC-1 Specification ……………………………………………………68

3.6 Security Considerations …………………………………………………………….71
3.6.1 Security Measurements …………………………………………………71

3.7 Preliminaries ………………………………………………………………………..74
3.7.1 Classical Attacks of Cheating ………………………………………….77

3.8 Security in ASC-1 …………………………………………………………………..78
3.8.1 The Information-Theoretic Case ………………………………………..79
3.8.2 Computational Security Analysis of ASC-1…………………………….85

3.9 Conclusions ……………………………………………..…………………………..87
References ……………………………………………………..………………………..88

xi

Part II – Implementation & Results

4 Field programmable Gate Arrays (FPGAs) ……………………………………………95

4.1 FPGA Architecture …………………………………………………………….…...96
4.1.1 FPGA Implementation Flow ………………………………….…….…..97
4.1.2 Xilinx Spartan 3AN ………………………………………….……….…98

4.2 Role of FPGAs in SDR ………………………………………………………..……100
4.2.1 Cross Layer Architecture of SDR …………………………………..…..101
4.2.2 GNU Radio and USRP ……………………………………...……..……103

4.3 Generic SDR Structure …………………………………………………...….….…..106
4.3.1 SOC in SDR …………………………………………………....…..……108
4.3.2 Secure Communication…………………………………………….….…109

4.4 Implementation of ASC-1 ………………………………………………………..….110
4.4.1 Initial phase Generation ……………………………………….……..…..111
4.4.2 Encryption Process …………………………………………………..…...111
4.4.3 Proposed ASC-1 Architecture………………………………………….....113

4.5 Conclusions ……………………………………………………………………..……118
References ……………………………………………………………………………..…119

5 Hardware Implementation & Results …………………………………………………..….121

5.1 Parameters of Hardware Implementation ………………………………………... 122
5.2 Block Cipher Modes of Operation………………………………………………... 122

5.2.1 Hardware Architecture for Feedback cipher modes ………………….. 122
5.2.2 Hardware Architecture in Non-feedback cipher mode ………………...124

5.3 Performance of ASC-1 Crypto core ………………………………………………. 127
5.4 Frame Delay ………………………………………………………………………. 133
5.5 Payload Length on Effective Throughput ………………………………………… 135
5.6 LTE and WiMAX …………………………………………………………………. 137

5.6.1 OFDM in LTE and WiMAX …………………………………………...138
5.6.2 Confidentiality and Integrity in LTE and WiMAX ……………………139

5.7 Conclusions ………………………………………………………………………..142
References ……………………………………………………………………………...143

6 Summary & Future Scope…..………………………...…………………………………..147

6.1 Contribution of This Thesis ………………….……………………………………147
6.2 Open Problems ………………………………….………………………………… 149

xii

References …………………………………………………………………………150

Appendix I - Test Vectors ………………………………………………………………….153

A.1 ASC-1 Preprocessing/ Initial Phase …………………………………………………….153
A.2 Key Expansion ……………………………………………….………………………….154
A.3 ASC-1 Encryption ……………………………………………………………………….155

Appendix II - Xilinx Sample Code and Waveforms ……………………………………..163

B.1 Advanced Encryption Standard (AES) – 128 …………………………….………………163
B.2 Key Expansion ………………………………………………………………………...….169
B.3 ASC-1 Encryption ………………………………………………………..……………….173

xiii

List of Figures

1.1 Generic SDR transceiver ………………………………………………………………………...2
1.2 Thesis Outline …………………………………………………………………………………..15

2.1 Electronic Codebook …………………………………………………………………………...25
2.2 Cipher Block Channing ………………………………………………………………………...26
2.3 Cipher Feedback ………………………………………………………………………………..27
2.4 Output Feedback ………………………………………………………………………………..28
2.5128 bits Advanced Encryption Standard .……………………………………………………….31
2.6 Stream Cipher …….…………………………………………………………………………….32
2.7 Synchronous Stream Cipher ……………………………………………………………………33
2.8 Self-Synchronizing Stream Cipher ……………………………………………………………..34
2.9 Classification of cryptographic hash functions ………………………………………………...36
2.10 HMAC Construction ………………………………………………………………………….43
2.11 CBC-based MAC algorithm ………………………………………………………….……….44

3.1 EAX mode ……………………………………………………………………………………...59
3.2 Integrity Aware Parallelizable Mode scheme …………………………………………………..61
3.3 Extended Cipher Mode Chaining Encryption mode scheme …………………………………. 62
3.4 Offset CodeBook mode scheme ………………………………………………………………..63
3.5 LEX Stream Cipher …………………………………………………………………………….66
3.6 Leak Positions in odd and even rounds ………………………………………………………...66
3.7 The Encryption and decryption algorithms of ASC-1………………………………………….69
3.8 The 4R-AES transformation …………………………………………………………………... 70
3.9 An authenticated encryption scheme construction based on a LAXU hash function family on a
CFB-like mode ……………………………………………………………………………………..76
3.10 A two round SPN structure with a leak ……………………………………………………….79
3.11 A composition of a transformation ……………………………………………………………82
3.12 The first s output of a non-linear function F ………………………………………………….83

4.1 Programmable-Logic-Arrays …………………………………………………………………...95

xiv

4.2 Field Programmable Gate Array ……………………………………………………………….96
4.3Xilinx implementation Flow …………………………………………………………………… 98
4.4 Xilinx Spartan 3AN …………………………………………………………………………… 99
4.5 Software Defined Radio ……………………………………………………………………....100
4.6 SDR Layers in OSI ……………………………………………………………………………102
4.7 Block diagram of GNU Radio Components …………………………………………………..104
4.8 Block Diagram of the USRP ………………………………………………………………….105
4.9 Practical SDR receiver ………………………………………………………………………..107
4.10 SCA Structure, showing the Red and Black FPGAs ………………………………………...109
4.11 Frame Structure …………………………………………………………………………….. 110
4.12 Initialization vector and Key Generation ……………………………………………………111
4.13 ASC-1 Flowchart ……………………………………………………………………………113
4.14 Block diagram of ASC-1……………………………………………………………………. 114
4.15 Fully parallel pipelined structure …………………………………………………………….116
4.16 AES-128 & ASC-1 encryption core block …………………………………………………..117

5.1 Iterative Architecture of Block cipher ………………………………………………………...123
5.2 Hardware Architecture ………………………………………………………………………..124
5.3 Hardware architecture for non-feedback cipher modes ……………………………………….125
5.4 Optimal Hardware Architecture for non-feedback cipher modes …………………………….126
5.5 S-Box organized as 8 banks of 256 x 8 dual port ROMs ……………………………………..128
5.6 Key Logic Unit ………………………………………………………………………………..129
5.7 Proposed AES-128 Hardware Architectures ………………………………………………….131
5.8 Proposed ASC-1 Iterative Hardware Architectures …………………………………………..133
5.9 Crypto Architecture .…………………………………………………………………………..134
5.10 Throughput vs. Payload length at a bit error rate of 10−4 in a channel ……………………..135
5.11 Throughput vs. Payload length at a bit error rate of 10−5 in a channel ……………………..136
5.12 Throughput vs. Payload length at a bit error rate of 10−4 in a channel
with no latency and with latency of 248ns ……………………………………………………….137
5.13 Confidentiality Algorithm 𝑓8 ………………………………………………………………..140
5.14 Integrity Algorithm 𝑓9 ...…………………………………...…………………………..…...141

xv

xvi

List of Tables

2.1 Hash Functions and MAC Algorithms...………………………………………………………..45
3.1 Security Results in different composite authenticated encryption schemes ……………………56
5.1 Performance of Basic Operations in AES block cipher ………………………………………128
5.2 Performance of AES-128 & AES-256 Key Expansion in Parallel
and Iterative Architecture …………………………………………………………………………130
5.3 Performance of AES-128 Encryption in Parallel and Iterative Architecture …………………130
5.4 Performance of ASC-1 Encryption core Iterative Architecture ………………………………132
5.5 Physical Layer Parameter for LTE and WiMAX ……………………………………………..139

xvii

List of Acronyms

A2D Analog-to-Digital
ASIC Application Specific Integrated Circuits
AES Advanced Encryption Standard
ASC-1 Authentication Stream Cipher One
AEAD Authenticated encryption with associated-data
AE Authenticated encryption
AH Authentication header
AU Almost Universal hash function
AXU Almost XOR Universal hash function

BER Bit Error Rate

CR Cognitive radio
CFB Cipher feedback mode
CA Certificate Authority
CBC Cipher Block Chaining
CFB Cipher Feedback
CRHF Collision Resistant Hash Functions
CPLD Complex Programmable Logic Device

DSP Digital Signal Processor
DSA Dynamic Spectrum Access
DES Data Encryption Standard
DoS Denial of Service
DPA Differential Power Analysis
DDC Digital Down-convertors
DoD Department of Defense
D2A Digital-to-Analog

ECB Electronic Code Book
ESP Encapsulating security payload
FAS Frame Alignment Signal
FPGA Field Programmable Gate Array

HDL Hardware Description Language

IF Intermediate Frequency

xviii

INT-PTXT Integrity of the plaintexts
INT-CTXT Integrity of the ciphertexts
IND-CPA Indistinguishability under a chosen plaintext attack
IND-CCA Indistinguishability under a chosen ciphertext attack
IACBC Integrity Aware CBC
IAPM Integrity Aware Parallelizable Mode

JTRS Joint Tactical Radio Software Program

LAXU Leak-safe XOR Universal hash function

MAC Message Authentication Codes
MDC Modification Detection Codes

NIST National Institute of Standards and Technology
NM-CPA Non-malleability under a chosen plaintext attack
NM-CCA Non-malleability under chosen ciphertext attack

OFB Output Feedback
OWHF One-Way Hash Functions
OCB Offset CodeBook mode

PKC Public-Key Cryptography
PROM Programmable Read-Only Memory
PLA Programmable logic array

QoS Quality of Service

RF Radio Frequency
RTL Register transfer level

SDR Software Defined Radio
SHS Secure Standard
SHA Secure Hash Algorithm
SCA Software Communication Architecture
SS Spectrum Sensing
SD Spectrum Decision
SM Spectrum Mobility
SSH Spectrum Sharing
SoC System-on-Chip
SPA Simple Power Analysis
SSL Secure Socket Layer

XCBC Extended Cipher Block Chaining Encryption

xix

xx

1

1
Introduction

Software-defined radio (SDR) has been recognized as one of the most important technologies for
wireless communications. It offers a flexible mechanism to change transmitter and receiver
characteristics such as modulation type, radiated power, and air interfaces by making software
changes. This gives rise to the possibility of adapting the radio to users’ preferences and the
operating environment and of supporting multiple standards without requiring separate hardware
for each standard. However lots of security concerns are raised in terms of reconfiguring the radio
through software (downloading new radio functionality), platform integrity, key management,
spectrum management, and integrity and confidentiality of data.

The concept of SDR appeared in 1970’s in USA and Europe and the term was coined by Joseph
Mitola III in 1991[JMI1]. The idea was to signal the shift from digital radio to multiband multimode
software-defined radios where 80% of the functionality is provided in software. Mitola presented
these radios as an intelligent agent able to track radio resources and related computer-to-
computer communications and able to detect user communications needs as a function of use
context, and to provide radio resources and the wireless services most appropriate to those
needs. In 1992 United States Department of Defense (DoD) began the development of SDR
technology through the SPEAKeasy research project, where the idea was to bring all the discrete
military radios under one umbrella using software radio technology [RJD]. In 1997, the United
State government launched the Joint Tactical Radio Software Program (JTRS) with the mission to
develop standardized software architecture in order to improve software component portability,
know as Software Communication Architecture (SCA) [JTR].
Initially SCA was mainly developed for military purposes. In 1999 SDR Forum adopted the SCA
standard and promoted SDR technologies with applications for commercial cellular, Personal
Communication Systems (PCS), and third generation (3G) and emerging fourth generation (4G)
cellular services.

1.1 Software Defined Radio

The typical hardware radio system consists of a variety of analogue elements like filters,
converters, modulators and demodulators. These hardware devices are expensive and offer low
compatibility with other components. This prompted the idea of SDR, where the user could use

2

SDR technology to realize many applications without a lot of efforts in integration of different
components by moving from analogue to digital technology. Different software modules can be
implemented to support different modulators and demodulators in the SDR platform. Also with
the exponential increase in digital technology in terms of performance and productivity will
continue to move closer to the antenna and replace much of the analogue front end.

Figure 1.1 shows a generic SDR transceiver, where the main components are the radio front-end
and baseband processor. The front-end part consists of analog hardware modules. As the receiver
side, the RF front-end part is responsible for RF amplification, down conversion from radio
frequency (RF) to intermediate frequency (IF) signal and finally convert the signal from Analog-to-
Digital (A2D). On the transmit path, the signal is converted from Digital-to-Analog (D2A) then
analog up conversion and RF power amplification. The baseband processing unit performs the
baseband operations, these operations are quite different based on the type of communication
technologies. However based on their role, it can be categorized into five function blocks: Channel
coding/decoding, block interleaving/ de-interleaving, modulation/ demodulation, channel
estimation, and pulse shaping [TUL].

Radio Frequency

ADC DDC

Baseband Processing

DAC DUC
Receiver

Tr
an

sm
itt

er

User

RF Front-End

Figure 1.1: Generic SDR transceiver

The main feature of SDR is its ability to dynamically adapt according to the radio environment
through the re-configurability of its components. More precisely, the re-configurability is the
ability of adjusting operational parameters for the transmission on-the-fly without any
modifications on the hardware components. This feature gives SDR systems the ability to support
a variety of mobile radio standards. Unlike implementing radio functional blocks on inflexible
Application Specific Integrated Circuits (ASIC) in the past, the technologies such as Field
programmable Gate Array (FPGA), Digital Signal Processor (DSP) and General-Purpose Processor
(GPP) are used to build software radio blocks. These components have reconfigurable capability
and deliver flexibility of programmable architectures with power efficiency and performance. In

3

[TUL] one identifies four different opportunities for reconfiguration in software-defined radio:

• Pre-deployment – Late changes are made in the design process based on the target
architecture just before the device is deployed.

• In-field upgrade – Device software / firmware is updated to support a new standard or
feature that was not included at deployment.

• Reconfiguration per call or session – Device is reconfigured at the start of the session i.e., a
voice or data transmission. This could be to select the most efficient or cheapest service
available at the point of time.

• Reconfiguration during a call or session – Device is reconfigured during voice or data
transmission e.g. to hand over from one service to another.

1.1.1 Cognitive Radio

The idea of cognitive radio (CR) was first described by Mitola [JMI2], as the natural evolution of
the SDR. The CR by Mitola was presented as an intelligent fully reconfigurable wireless transceiver
that is able to detect user communication needs and automatically adapts its communication
parameters most appropriate to those needs. Later the focus of the research was shifted towards
the intelligent and opportunistic use of the radio resources, a technique known as Dynamic
Spectrum Access (DSA).

Based on this, the concept of CR was more emphasized towards DSA, which led to a new CR
definition[SHY]: an intelligent wireless communication system, aware of its surrounding
environment that uses the methodology of understanding-by-building to learn from the
environment and to adapt its internal states to statistical variations in the incoming RF stimuli by
making corresponding changes in certain operating parameters (e.g., transmit-power, carrier-
frequency, and modulation strategy) in real-time, with two primary objectives in mind: highly
reliable communications whenever and wherever needed and efficient use of the radio spectrum.

One of the main capabilities of the CR is its ability to reconfigure, which is enabled by the SDR
platform, upon which the CR is built. The key enabling technologies of CR are the functions that
provide the capabilities to share the spectrum in an opportunistic manner. Most of the spectrum is
already assigned but not used all the time. Here the challenge is the optimal sharing of the

4

spectrum with other existing networks without interfering with their transmission. In order to do
so the CRs makes uses of temporarily unused spectrum known as Spectrum Holes or white spaces.
By definition in [SHY] a spectrum hole is a band of frequencies assigned to a primary user, but at a
particular time and specific geographic location, the band is not being used by that user. However
if CR is using a particular spectrum hole and another user also starts using this space then the CR
either move to another spectrum hole or continue using it by altering its transmission power level
or modulation scheme to minimize interference. Therefore CR is a perfect example for using the
available spectrum in an efficient and opportunistic manner and through it, it is possible to:

- Sense the available spectrum;
- Decide the best available channel;
- Coordinate with other users;
- Vacate the channel either due to primary user or when the channel conditions worsen.

Cognitive Radio Functions - The main goal of CR is to enable networks to use the available
spectrum band according to network users Quality of Service (QoS) requirements. However CR
networks impose unique challenges due to the presence of primary network. Thus new spectrum
management functions for CR networks are taken into consideration in order to avoid critical
design challenges like – Interface avoidance, QoS awareness and Seamless communication. These
functions are as follows:

- Spectrum sensing (SS): The purpose of SS is to allocate only the unused portions of the
spectrum. The radio monitors the available spectrum bands and look for spectrum holes.

- Spectrum decision (SD): Based on the available spectrum bands and associated potential
channel estimated channel capacity, the CR user can allocate the channel. The decision is
not only based on the availability of the channel but also QoS requirements such as data
rate, error rate, mode of transmission, bandwidth etc.

- Spectrum mobility (SM): SM is an important function which allows a network to use the
spectrum in a dynamic manner. If the specific portion of the spectrum in use is required by
the primary user, the communication must be continued in another vacant portion of the
spectrum.

- Spectrum Sharing (SSH): Due to the shared nature of the wireless channel there may be
multiple CR users trying to access the spectrum, access to the network should be
coordinated in order to prevent multiple users colliding in overlapping portions of the
spectrum.

5

1.1.2 Field Programmable Gate Arrays/ System on Chip

For past few years FPGAs have become an increasingly important resource for SDR. A successful
SDR design is build by designing powerful processing blocks and connecting these blocks to form a
flowgraph. These blocks are either implemented in software or in soft hardware with an FPGA.
However with the development in the field of programmable logic, FPGA has ushered in an era of
rapid prototyping for digital systems. The FPGAs are cost efficient and supplies abundant
resources too for the system designers. FPGAs are programmed using Hardware Description
Language (HDL) commonly known as VHDL. Same VHDL code could run on any FPGA that has
enough logic cells, this characteristic give further flexibility and dynamic upgradeability to SDR
device. FPGAs reprogrammable nature makes it ideal for SDRs, so any upgrades or changes in the
operational parameters can be easily uploaded to the device without any hardware
reconfigurations.

Partial Reconfiguration – A shared resources model is referred as more efficient architecture for
SDRs. As compared to dedicated resource model, shared resources are capable of supporting ex.,
multiple waveforms across a single set of processing resources; this allows for much more efficient
usage of the resources. The technology that facilitates this model is partial reconfiguration of the
FGPA. Partial reconfiguration allows the replacement of one or multiple functional blocks with a
different implementation while other portions are either being used by other applications or going
unused. Without partial reconfiguration, it would be necessary to reconfigure entire FPGA.
However, using partially reconfigurable platform FPGAs as an SDR system-on-chip (SoC) will
substantially decrease the component count of the SDR device and reduce power consumption
while still providing the necessary functionality [PKG].

1.2 Need for Security

Communication between two or more devices over insecure channel, flexibility of implementing
radio functions such as modulation/demodulation, signal generation etc, on software and
reconfiguration of radios to upgrade or adapt to user preferences, and regional regulations may
lead to serious radio security concerns. While reconfiguring the radios have many benefits, the
ability to reconfigure radio functionalities with software may lead to many security problems such
as unauthorized use of application and network services, unauthorized modification of software
and manipulation of radio sets. For example, malicious software can be uploaded into the device
that changes its radio frequency so that the device will no longer function within the regulated

6

constraints. This could lead to the Denial of Service (DoS) attacks. Additionally, transmission of
unencrypted data over insecure channel could compromise the confidentiality and integrity of the
data.
The concept of transmission security is broadly divided at three different levels of security [TAJ], as
follows:

• Detection – If an unauthorized user is able to distinguish between transmission signal and
noise, a signal is said to be detected.

• Interception – After transmission signal being detected if an unauthorized user is able to
identify the specific class of a signal and distinguish from signals belonging to other classes,
a signal is said to be intercepted.

• Exploitation – If an unauthorized user is able to recover any useful information such as the
message contents or the origin of the message, then a signal is said to be exploited.

Security has always being a hot topic in SDRs weather it is for military or commercial applications.
However the subject of security for SDR systems is quite broad and covers many issues. In the past
SDR security has followed few general directions ex., the first direction mentioned in
[SS1][SS2][HRM] covers the list of security requirements for the underlying hardware, integrity of
the platform, downloading upgrades, key management issues, and content protection and
possible threats on SDR. The second issue explores the essential issue of secure downloading of
new radios parameters. A framework for establishing secure download using a tamper-proof
hardware module is proposed [RFL][LMI][ABR]. The third direction focuses on spectrum
management and policy enforcement of SDR [PFL][KSA][ATO].

1.2.1 FPGAs for Cryptographic Application

FPGAs are generic semiconductor devices contain programmable logic components called “logic
blocks” that can be programmed and reprogrammed, as per user-defined logic functions. In recent
years, FPGAs are designed using the latest technologies to be as competitive as possible with ASICs
in terms of performance, power and space. FPGAs compete by being reconfigurable and combine
the advantages of software and hardware implementation. Additionally, FPGA reconfigurable
hardware gives advantage in cryptographic applications [ACR][TWC]. Following shows the benefits
of implementing Crypto solutions on FPGAs:

Algorithm Flexibility - The term flexibility in algorithms refers to the switching of cryptographic

7

algorithms during operation of the targeted application. Based on the degree / level of the
security various encryption algorithms could be programmed or reprogrammed on the fly.
Majority of security protocols such as IPSec are algorithm independent and allow for multiple
encryption algorithms. These algorithms are negotiated on a per-session basis and wide variety
may be required.

Algorithm Upload - It is to be recognized that the devices need to be upgraded at some point with
newer or securer cryptosystem. The reason could be compatibility concerns with new applications.
Algorithm upload is necessary because a current algorithm for ex., AES (Advanced Encryption
Standard) uses only 128-bit encryption keys and to increase the level of security it needs to be
replaced by AES 256-bit. This could be achieved under the assumption that there is some kind of
connection to a network, where FPGA-equipped encryption devices can upload the new
configuration code. As compared to FPGA-implemented this upgrade is practically infeasible to
ASIC-implemented algorithms.

 Architecture Modification - Most of the encryption algorithms used today are standardized. But in
certain cases hardware architecture can be much more efficient if it is designed for specific set of
performance parameters like implementation area, throughput and latency. Based on the type of
cryptosystem and resources, and area available these algorithms could be implemented on
sequential or parallel hardware architectures. For example as shown in chapter 5 section 5.3,
hardware implementation of AES in fully parallel hardware architecture can achieve maximum
throughput of 32 Gbits/s on Xilinx Vertix -5VLX50T and 51% of area is consumed. Whereas
sequential architecture uses 20% of area and can achieve maximum throughput of 0.876 Gbits/s.

Resource Efficiency - Today most of the security protocols used for communication between two
or more devices are hybrid protocols. This means, that a public-key algorithm is used for secure
key exchange and private key algorithm for encryption of data over channel. Once the keys are
exchanged and devices are authenticated, the public-key algorithm is not used for the session.
Since the algorithms are not used simultaneously, the same FPGA device can be utilized for both
through run-time reconfiguration. This is an important factor in many implementations where
resources are limited.

Throughput - Comparing FPGAs to general purpose CPU and ASICs, FPGA implementations have
the potential of running substantially faster than software implementations but slower than ASIC
implementation. General purpose CPUs are not optimized for fast execution especially in the case
of public-key algorithms. That happens mainly because they lack those instructions for modular
arithmetic operations on long operands. AES block cipher for example reaches the data rate of
112.3 Mbit/s and 718.4 Mbit/s on a DSP TI TMS320C6201 and Pentium III, respectively [ACR]. As
compared to FPGA implementation of AES on Virtex XCV-1000BG560-6 achieved 12 Gbit/s using
12,600 slices and ASIC, the Amphion CS5240TK can reach 25.6 Gbit/s at 200 Mhz [TWC].

8

1.2.2 Attacks on FPGA

For past few years, the industrial market is more inclined towards FPGAs due to their benefits of
re-programmability. With FPGAs being used in a variety of military and commercial applications
that require security features and as these designs have become more valuable, attackers look for
possible vulnerabilities and developers for defenses.
In case of an implementation of cryptographic algorithm, the main objective of an attacker is to
recover a secret key that could be a symmetric key or the private key of an asymmetric encryption
algorithm. Most of the cryptographic algorithms used in commercial applications are publicly
known and recovering the key facilitates the attacker to decrypt all the future and past
communication.
Rest of the section summarizes security issues produced by attacks against given FPGA
implementation.

Cloning – Due to the generic nature of FPGAs, the image generated for one FPGA device could also
be used in any other device for same family and size. In such case, attackers can clone image and
use them in cheaper devices that can compete with the originals. This security vulnerability is
usually common in volatile FPGA, where the configuration data is stored externally in a nonvolatile
memory and is transmitted to the FPGA at power-up. An adversary could easily eavesdrop on the
transmission and get the configuration file. There are many different concerns with regards to
cloning. For original system developers, the clone system can hurt the bottom line after significant
development investments and it could affect the reputation of the original product if the clone or
poor quality products are marketed as originals. Another threat is cloning /copying of a
cryptographic algorithm together with its key. In few cases it is possible to run the cloned
application in decryption mode to decrypt communication. An attacker can also lunch man-in-the-
middle attack and masquerade as the attacked communication party.

Black Box Attack – Black box attack is a classical method to reverse engineer a chip. The attacker
launches a variant of known-plaintext attack, where an attacker inputs all possible combinations,
while saving the corresponding outputs. This attack can be used to reveal secret information such
as secret keys and code books. However this attack is only successful if a small FPGA with specific
inputs and outputs are attacked and a lot of processing power is available. With today’s design
complexity and the size of state-of-the-art FPGAs this attack is not really a threat nowadays.

Readback Attack – It is a feature in FPGAs, where the snapshot of the FPGAs current state could be
retrieved while it is still in operation. It is used for read a configuration out of the FPGA for easy
debugging. The image (snapshot) is different from original bit stream by missing the herder, footer
and initialization commands etc. But an attacker can easily readback the design, add the missing

9

static header and footer and use it in other device. The feature can be prevented by adding few
security bit provided by the manufactures. Xilinx provides security bit for disabling readback, but it
can be easily found. When these security bit are used, multiple, majority-voted, disabling registers
are activated with the FPGA to prevent readback [SAD] [JMA]. Despite of countermeasures, an
adversary is still able to attack FPGAs with fault injection. This kind of attack was first introduced in
[DBR], where it was shown to break public-key algorithms by exploiting hardware faults. There has
been many publications presenting different techniques to insert faults e.g., electromagnetic
radiation [JJQ], infrared laser [CAJ], and flash light [SSR].

Reverse engineering the image/bitstream - Once the attacker is in possession of the image,
assuming the case where image is unencrypted. The attacker will be able to transform bitstream
into a functionality equivalent description of the original design. Image could be reversed fully or
partially. Partial image can be used for the extraction of data for the image such as secret keys or
Block Ram/LUT content without gaining the full functionality of the design. In full reverse image
one can gain the full functionality of the design and reproduce another bitstream completely
different from the original one such that it would be hard to prove in fingerprint.

Side Channel Attacks – An attack based on the information gained due to the unwanted leak in the
physical implementation of a cryptosystem instead of theoretical weakness in the algorithm are
known as side-channel attacks. Example of side channels include in particular- power
consumption, timing behavior and electromagnetic radiation. Today while implementing an
encryption system on FPGA, additional input / output are used which are not the plaintext or
ciphertext. The devices produce timing information, radiations, power consumption statistics and
lot more. Additionally these devices also have additional “unintentional” inputs such as voltage
that can be tampered with to cause predictable outcomes. Side channel attacks make use of all
this information with other know techniques to retrieve keys. In terms of power analysis side
channel side channel attacks are further classified as Simple Power Analysis (SPA) and Differential
Power Analysis (DPA), where the attacker studies the power consumption of an encryption device.
SPA is based on the visual representation of the power consumption of a device will encryption is
in process. The attacker simply observes system power consumption, as the amount of power
consumed varies depending on the instruction performed. DPA consists not only of visual but also
statistical analysis and error-correction statistical methods, to obtain information about keys.

10

1.3 Confidentiality and Authentication

Communication between two parties over an insecure channel often concerns with two main
security objectives: confidentiality and authenticity of the data. The objective of confidentiality is
to keep the contents of the information secure and no one but the sender and authorized
receivers are able to read the data. Authentication of message data verifies the origin and
improper or unauthorized modification of data.
In the past, confidentiality of the data was the main and probably the only issue that was
considered. This was mainly because no other security objectives such as authentication or
integrity prevented to have access to the information. Only message encryption can protect data
from eavesdroppers. However encryption of messages provides some sort of authentication but as
compared to present authentication techniques it is weak and cannot be relied upon. In addition
to confidentiality, authentication services have been implemented but as add on feature to
provide extra information security. Encryption algorithms are used to ensure confidentiality while
Message Authentication Codes (MAC) can be used to provide authentication. In past few years,
techniques have been invented which can combine encryption and authentication into a single
algorithm. By combining these two security features and performing single pass operation might
possibly provide following advantage for hardware implementation:

• The rapid growth of portable electronic devices with limited area has opened a vast scope
for compact circuit design opportunities. Implementation of single algorithm instead of
two separate algorithms with definitely has less area requirements. Reduction in area
requirements on chip is directly proportional to the reduction in cost.

• Small and compact designs tend to consume less power as compared to bulky designs. This
is an attractive feature for low-power devices like Cellular phone, PDAs and smartcards.

• Even though separate keys are used for encryption and authentication for better security

of the system. But both the keys are usually derived from the same master key. This will
have a slight advantage with regards to the key storage issues over separate algorithms.

• Most of the new designs target performance goals like throughput and throughput-area
trade-off. In many cases, combined schemes are based on block ciphers, and designers
have tried to be efficient with the number of block cipher calls required for getting both
confidentiality and authentication from the algorithm. Based on the mode of the
operations some of these combined schemes can run in parallel and achieve much higher
speed than older techniques.

11

From above, the cryptographic schemes that provide both confidentiality and authentication are
called authenticated encryption schemes. The scheme is designed in such a way that the sender
produces the ciphertext as well as an authentication tag which is verified by the receiver.

1.4 Motivation

The main focus of the thesis is to propose a single pass authenticated encryption scheme to
achieve faster encryption and message authentication for reconfigurable chips such as FPGAs in
Software Defined radios. The motivation to focus only on this issue comes from the fact that the
information security is one of the key relevant aspects of SDR, whether it is for data transmission
or downloading of radio parameters or upgrades. Additionally, proposing a crypto solution for
reconfigurable chips instead of ASICs gives us the possibility to improve and correct hardware
components. This will reduce the vulnerabilities in the device and improves radio interoperability
and upgradeability.
The future of communication systems is expected to be based on SDR principals. SDR provides an
efficient and comparatively inexpensive solution to the problem of building multi-mode, multi-
band, multi-functional wireless devices that can be enhanced using software upgrades. As such
SDR can be considered an enabling technology that is applicable across a wide range of areas
within the wireless infrastructure, both military and commercial. The main issue in these
communication systems is security, whereby an adversary can take control of a radio system to
their advantage. Additionally, if a third party modifies a stream at lower layers then higher layers
can be caused damage upon i.e. application level of a mobile phone. As a result, documents and
traditional applications of a device can be changed. Thus, various security functions such as
authenticity, integrity and confidentiality need to be supported in SDR transceivers.

The goal of this research is to find an encryption scheme that can accomplish both message
secrecy and authenticity in a single cryptographic primitive with the focus to achieve high
throughput and minimal overhead for these radios. As, it is expected that the speed of the
network will increase beyond Giga-bit so the need for fast cryptographic solution will be increased
in the nearest future to take advantage of the future fast speed network.

So the above gives the motivation for the design and careful implementation of an Authenticated
Encryption Stream Cipher for optimal results in terms of security and speed. Different hardware
architectures are also taken into consideration to explore trade-off between area utilization and
throughput in the implementation.

12

1.5 Problem Definition

The problem tackled in this thesis is on how to develop a cryptosystem that could cover security
features like confidentiality and authentication in single pass as opposed to traditional two pass
approach. Additionally, keeping the security of the design at par with traditional systems, another
problem was how to downsize the system and increase the efficiency so the design is ideal for
implementation of low-cost, low-power SDR device. With this in mind this research gives answers
to the following questions:

• What important parameters need to be kept under consideration while designing a single
pass authenticated encryption scheme?

o Parameters like – two separate keys for encryption and authentication, Initialization
vector, underlying block cipher. For hash functions, security parameters like – pre-
image resistance, second pre-image resistance and collision resistance.

• What is the right trade-off between the security and the performance of the cipher?

o Design of block ciphers are mostly built from a round function in an iterative way.
Using signal round function for encryption and its repeated use leaves patterns.
This could be used to break the cipher. To add additional security extra rounds can
be added but it also increases the complexity of the cipher. Thus, there should be
right trade-off between the number of rounds and performance of the cipher.

• What are the optimum choices of hardware architecture for cryptosystem?

o In this thesis we explore different hardware architectures for implementation.
Hardware architectures for cryptosystem are based on feedback and non-feedback
modes of operation. Such as basic iterative architecture, partial /full loop unrolling
architecture and pipelined architecture.

• What is the trade-off between minimum area, minimum power consumption, maximum
throughput, maximum throughput to area ratio, etc?

o Hardware architectures mentioned above have their own pros and cons, ex: in a
basic iterative architecture only single block cipher is implemented as a
combinational logic where as in partial loop N rounds are implemented as a
combinational logic.

13

In this thesis each one of these questions have been analyzed and solved.

1.6 Limitations

Many issues need to be covered in order to make SDR systems secure. The security of SDRs has
followed many general directions such as:

• Security Threats on the devices;
• Secure download of new radio parameters;
• Security concerned with spectrum management and policies;

In this thesis we have limited our research on the authenticity and privacy of the data
transmission. This could also be applied for the secure upgrade and download of new radio
parameters.

Another limitation is based on our proposed Authenticated Encryption (AE) cipher. ASC-1 operates
in a cipher feedback mode (CFB) in order to compute an authentication tag, which means the
encryption core of the scheme is limited to run in feedback modes hardware architectures, i.e.,
basic iterative or partial loop unrolling. This will certainly limit the throughput of the design as
compared to the designs in non-feedback mode hardware architectures. However in such kind of
encryption modes, the encryption and decryption operations are similar so there is no need for
inverse block ciphers. From implementation point of view this is considered as an advantage.

As mentioned this research is mainly focused on two fundamental information security goals:
confidentiality and message authentication. Issues like key exchange between communicating
parties are not considered. We assume that the recipient has knowledge of the secret key that is
used to derive the Initialization vector and keys for encryption and authentication. Additionally
we also assume that the secret / master key is securely placed in a crypto module inside the FPGA.

1.7 Contribution

The contributions given throughout this thesis are the following:

14

• An Authenticated encryption scheme ASC-1 (Authentication Stream Cipher One) that is
designed using a stream cipher approach instead of a block cipher mode approach;

• Proving the security of ASC-1, by showing that it is secure if one cannot distinguish the case
when the round keys are uniformly random from the case when the round keys are derived
by the key scheduling algorithm of ASC-1;

• Design and implementation of ASC-1 and Introducing a new crypto unit for reconfigurable
chips;

• Analysis of performance parameters such as Area utilization, throughput and latency by
releasing different hardware architectures.

The Publications performed during the Ph.D work:

• Samant Khajuria and Henrik Tange, Implementation of Diffie-Hellman Key Exchange on
Wireless Sensor Using Elliptic Curve Cryptography : Wireless Communication Society,
Vehicular Technology, Information Theory and Aerospace and Electronic Systems
Technology, Wireless VITAE 2011

• Goce Jakimoski and Samant Khajuria, ASC-1 : An Authenticated Encryption Stream Cipher :
Selected Areas of Cryptography (SAC), LNCS 7118, Springer, pp. 356-372, 2012.

• Samant Khajuria and Birger Andersen, Authenticated Encryption for Low-Power
Reconfigurable Wireless Devices: Accepted for Journal of Cyber Security and Mobility,
2012.

• Samant Khajuria, Comparative Analysis of the Hardware Implementation of ASC-1 : In
Pipeline.

1.8 Organization

Figure 1.2 shows the outline of this thesis, as shown below the thesis is divided into two parts.
Part I covers the cryptography part of the thesis and Part II is based on the design and
implementation for the cryptographic schemes.

Chapter 1 provides the overview on Software Defined Radios and the benefits of re-configurable
architecture, together with the need of security for these architectures and the motivation for the

15

work developed and described in the thesis.

Chapter 2 gives the general introduction of two prime security requirements – Confidentiality and
Authentication of data. We introduce the cryptographic concept such as symmetric-key encryption
and cryptographic primitives known as block and stream ciphers with some examples. Under
Authentication we also give some background information on cryptographic hash functions, where
both un-keyed and keyed hash functions are covered.

Chapter 1 : Introduction

Chapter 2 :
Cryptography

Chapter 3 :
Authenticated EncryptionPA

RT
 I

Chapter 4 : Field Programmable Gate Arrays (FPGAs)

Chapter 5 :
Hardware Implemetation

Results

PA
RT

 II

Chapter 6 : Conclusion

Figure 1.2: Thesis Outline

Chapter 3 is based on Authenticated Encryption (AE) schemes, where we initially discuss the
solution to the problem of privacy and authentication in a traditional manner known as “generic
composition”. Then we look into the advantages and disadvantages of 2-pass and 1-pass
combined approach with few well known AE schemes. Based on this finally we present “ASC-1 : An
Authentication Encryption Stream Cipher “ and proof of security of ASC-1 by discussing The

16

information-theoretic case and computational security analysis.

Chapter 4 presents the design and implementation of ASC-1 for FPGAs. At the start of the chapter
we discuss the architecture and Implementation flow of the FPGAs followed by the role of FPGA in
SDR with an example of Gnu radio framework and USRP hardware. This chapter also discusses the
generic SDR structure and System-on-chip (SOC). Finally we present an implementation of ASC-1
for Xilinx Spartan-3 xc3s700an FPGA. For better performance and efficient resource allocation the
design is divided into two parts – Initial phase generation and encryption process.

Chapter 5 summarizes the results for hardware implementation of ASC-1. Performance
parameters like area utilization, throughput and latency are also discussed and analyzed for
different hardware architectures for feedback and non-feedback cipher modes. The results also
show the optimal payload lengths of maximum throughput corresponding to the Bit Error Rate
(BER) for different data rates. In the end we discuss OFDM modulation in LTE and WiMAX.

Chapter 6 gives the final conclusion and outlook for the future work.

17

References

[JMI1] J.Mitola. Software Radios: Survey, Critical Evaluation and Future Directions, In Proceedings of the
National Telesystems Conference, NY: IEEE Press, May 1992.

[JMI2] J.Mitola and G.Q Maguire Jr. Cognitive radio: making software radios more personal. IEEE Personal
Communications, 13-18, Aug.1999.

[RJD] R. J. Lackey and D. W. Upmal. Speakeasy: The military software radio, IEEE Commun. Mag., vol. 33,
pp. 56–61, May 1995.

[JTR] Software Communications Architecture Specification, JTRS Std. 2.2.2, Rev. FINAL, May 2006.

[TUL] T. Ulversøy. Software defined radio: Challenges and opportunities, Communications Surveys Tutorials,
IEEE, vol. 12, no. 4, pp. 531 –550, 2010.

[SHY] S. Haykin. Cognitive radio: brain-empowered wireless communications. IEEE Journal on Selected
Areas in Communications, 23(2):201-220February 2005.

[PKG] P.K Gopalakrishnan. Hardware Platforms for Software Defined Radio, KPIT Cummins Infosystems Ltd,
V1.2 Sept-2011.

[TAJ] Taj A. Strunman. Enabling Choatic Waveform Diversity, Waveform Diversity and Design Conference,
IEEE Conference publications, pp. 160-167, 2009.

[HRM] R.Hill Myagmar and S. Campbell. Threat Analysis of GNU Software Radio, In Proceedings of the
WWC’05. Palo Alto, CA, 2005

[SS1] SDR system security, SDRF-02-A-0006, Tech. Rep., 2002.

[SS2] A structure for software defined radio security, SDRF-03-I-0010,Tech. Rep., 2003.

[SS3] SDR wireless security, SDRF-04-I-0023, Tech. Rep., 2004.

[RFL] R. Falk, J. F. Esfahani, and M. Dillinger. Reconfigurable radio terminals - threats and security objectives
SDRF-02-I-0056, Tech. Rep., 2002.

[LMI] L. Michael, M. Mihaljevic, S. Haruyama, and R. Kohno. A framework for secure download for
software-defined radio, IEEE Communications Magazine, vol. 40, no. 7, pp. 88–96, July 2002.

[ABR] A. Brawerman, D. Blough, and B. Bing. Securing the download of radio configuration files for software
defined radio devices. In Proceedings of the International Workshop on Mobility Management & Wireless
Access Protocols, pp. 98–105,Sept. 2004.

[PFL] P. Flanigan, V. Welch, and M. Pant. Dynamic policy enforcement for software defined radio. In
Proceedings of Software Defined Radio Technical Conference and Product Exposition, Nov. 2005.

18

[KSA] K. Sakaguchi, C. Fung Lam, T. Doan, M. Togooch, J. Takada, and K. Araki. ACU and RSM based radio
spectrum management for realization of flexible software defined radio world, IEICE Trans.
Communications E Series B, vol. 86, no. 12, pp. 3417–3424, Dec. 2003.

[ATO] A. Tonmukayakul and M. Weiss. Secondary use of radio spectrum: A feasibility analysis, In Proceeding
of the Telecommunications Policy Research Conference,Oct. 2004.

[ACR] Alexandru Coman and Radu Fratila. Cryptographic Applications using FPGA Technology, Journal of
Mobile, Embedded and Distributed Systems, vol. III, no.1, 2011

 [SAD] S. Drimer. Volatile FPGA design security – a survey, Computer Laboratory, University of Cambridge,
 IEEE Computer Society Annual Volume, 2008.

[TWC] T. Wollinger and C. Paar. How secure are FPGAs in cryptographic applications?, In Proceedings. of
the 13th International Conference on Field-Programmable Logic and its Applications(FPL), pages 91–100,
2003.

[JMA] J. M. Aplan, D. D. Eaton, and A. K. Chan. Security Antifuse that Prevents Readout of some but not
other Information from a Programmed Field Programmable Gate Array. United States Patent, No. 5898776,
April 27 1999.

[DBR] D. Boneh, R. A. DeMillo, and R. J. Lipton. On the Importance of Checking Cryptographic Protocols for
Faults. In Advances in Cryptology — EUROCRYPT ’97, pages 37–51. Springer-Verlag, 1997. LNCS 1233.

[JJQ] J.-J. Quisquater and D. Samyde. Electro Magnetic Analysis (EMA): Measures and Countermeasures for
Smart Cards. In International Conference on Research in Smart Cards, E-smart 2001, pages 200 – 210,
Cannes, France, September 2001

[CAJ]C. Ajluni. Two New Imaging Techniques to Improve IC Defect Indentification. Electronic Design,
43(14):37–38, July 1995.

[SSR]S. Skorobogatov and R.J. Anderson. Optical Fault Induction Attacks. In Workshop on Cryptographic
Hardware and Embedded Systems — CHES 2002, pages 2–12. Springer-Verlag, LNCS 2523. 2002

19

PART I – Algorithm Analysis &
Development

20

21

2
Cryptography

The name Cryptography comes from the Greek words “kryptos” which means “hidden secret” and
“graph” which means “writing” and is the art of hiding information. This definition may be
historically accurate where the focus was only on the problem of secret communication and until
20th century, cryptography was an art. By late 20 century, a rich theory emerged enabling the
rigorous study of cryptography as a science and today Cryptography is much more than secret
information and art. For example, in addition to confidentiality it deals with the problems of data
integrity, entity authentication, data origin authentication and much more.

As classical Cryptography is basically the process of encrypting and decrypting message,
encryption is the process of converting normal message or communication (plaintext) into
unintelligible text (ciphertext). Decryption is the reverse, moving from unintelligible ciphertext to
plaintext. A cipher is a pair of algorithms which perform this encryption and decryption. This
operation of a cipher is controlled both by the algorithms and the keys. In communication,
cryptography is necessary when communicating over any unsecure medium, which includes
particularly wireless communication. Within the context of any application-to-application
communication, there are some specific security requirements including [MOV]:

Confidentiality - Ensuring that no one except the intended receiver should be able to read the
message when transmitting a message over insure channel. An unauthorized eavesdropper should
not get any information about the contents of the message. Also stored data should be protected
against unauthorized access.

Authentication - The process of proving one’s identity. This function applies to both entities and
information itself. Two users trying to communicate should identify each other and/or information
delivered over a communication channel should be authenticated. For the above mentioned
reasons, this aspect of cryptography is usually subdivided into two major cases: entity
authentication and data origin authentication. Entity authentication assures the identity of the
entity involved and data origin authentication ensures the integrity of the data, if the is message is
modified and the source had changed.

Data integrity - Assuring the receiver that the received message (neither accidently nor on
purpose) has not been altered in any way from the original. To assure this, one must be able to

22

detect manipulation by unauthorized parties.

Non-Repudiation – A mechanism to prove that the sender really sent the message. This prevents
an entity from denying previous actions.

A fundamental goal of cryptography is to adequately address these four areas in both theory and
practice. For secure communication there are two types of cryptographic schemes typically used,
Symmetric Encryption (Secret-key cryptography) and Asymmetric Encryption (Public-key
cryptography). In this thesis we focus on symmetric encryption schemes and Hash functions which
are supposed to provide confidentiality and message authentication.

2.1 Symmetric Encryption

Two parties want to communicate over an insecure channel without allowing an eavesdropper to
obtain or modify any information about their conversation. Another problem is the key
management issue, where we assume that both the parties have somehow exchanged a secret
key over a secure channel. The main purpose of these encryption algorithms is to protect the
secrecy of the message transmitted over an insecure channel.

Generally an encryption scheme consists of two mathematical transformations: an encryption
function E and a decryption function 𝐷 = 𝐸−1. An encryption function takes the plaintext (𝑃) as
input and transforms into the corresponding ciphertext 𝐶 = 𝐸(𝑃), and a decryption function
inverts the encryption function 𝐷(𝐶) = 𝑃. In order for this encryption scheme to work, 𝐸 should
be designed in such a way that an eavesdropper cannot extract any information about the
plaintext after intercepting ciphertext and the decryption function should be kept secret. By
looking into the practical issues, keeping the whole algorithm secret is never a good idea because
it means that several algorithms are needed for different partners [CAB]. The idea to overcome
this problem is to construct a parameterized encryption algorithm. In this scheme both encryption
and decryption function uses an additional parameter also called as secret key (𝑘),𝐷𝑘′ (𝐸𝑘 (𝑃))
for 𝑘′ ≠ 𝑘 does not reveal any information about the plaintext 𝑃. This secret key is usually a bit
string and depending on encryption scheme the length of this key could vary from few bits to
couple of hundred bits. A single key is used from both encryption and decryption functions. The
sender uses the key 𝑘 to encrypt the plaintext p and sends the ciphertext 𝐶 = 𝐸𝑘(𝑃) to the
receiver. The receiver applies the same key 𝑘 to decrypt the message and recover the
plaintext 𝑃 = 𝐷𝑘(𝐶).

Definition 2.1 [STN]: A symmetric cryptosystem, also called a symmetric encryption scheme, is a

23

five-tuple (𝑃,𝐶,𝐾,𝐸,𝐷) where 𝑃 is the finite field set of plaintexts ,𝐶 is the finite set of ciphertexts
and 𝐾 is the key space. For each key 𝑘 ∈ 𝐾 there is an encryption function 𝐸𝑘 ∈ 𝐸 with respect
to 𝑘,

𝐸𝑘 : 𝑃 -> 𝐶
and a corresponding decryption function 𝐷𝑘 ∈ 𝐷,

𝐷𝑘 : 𝐶 -> 𝑃

Such that 𝐷𝑘 (𝐸𝑘 (𝑝)) = 𝑝 for all plaintexts 𝑝 ∈ 𝑃.

From the above, it is clear that the key must be known to both the sender and the receiver. The
biggest difficulty with this approach is the distribution of the key; exchange of secret key over a
secure channel beforehand. In 1970s, Diffie and Hellman proposed trapdoor one-way functions
where the secrecy of the encryption function was not necessary. These are functions which are
easy to evaluate, but cannot be efficiently inverted, unless some extra information (the trapdoor)
is given. This insight gave birth to Public-Key Cryptography (PKC). Two keys are used in public-key
cryptosystem; a public and a private key, where the public defines the encryption function and the
private key is the trapdoor information needed to invert the encryption function. When user 𝐴
wants to send a message to user 𝐵, user 𝐴 then encrypts the message using 𝐵’s public key. Public
is usually obtained by a direct exchange over insecure channel or from a trusted source, often
referred to as Certificate Authority (CA). Afterwards, user 𝐵 is able to decrypt the message using it
own private key. Public-key cryptography has huge advantage as both the parties do not have to
exchange any information over secure channel before they start exchanging messages. However,
symmetric cryptography still plays a vital role in practical systems because symmetric encryption is
an order of magnitude more efficient than public key encryption. In the remainder of this thesis
we only consider symmetric encryption schemes.

Symmetric encryption algorithm are traditionally divided into two categories: stream ciphers and
block ciphers; A stream cipher operate on a single bit, byte, and word at a time and implement
some form of feedback mechanism so that the key is constantly changing. As the name say in a
block cipher, the scheme encrypts one block of data at a time using the same key on each block. In
general, the same plaintext block will always encrypt to the same ciphertext when using the same
key in a block cipher whereas the same plaintext will encrypt to different ciphertext in a stream
cipher.

24

2.2 Block Cipher

Block ciphers can be either symmetric-key or asymmetric-key. In this thesis our main focus is
symmetric-key block ciphers. Symmetric-key block ciphers play an important role in many
cryptographic systems. Their flexibility allows construction of pseudorandom number generators,
stream ciphers, Messages Authentication codes and hash function.

As the name suggest block ciphers operate on fixed lengths of plaintext blocks, cipher function
maps 𝑛-bit plaintext to 𝑛-bit ciphertext blocks where 𝑛 is called the blocklength of the cipher. The
mapping is controlled by the second input – the secret key. It is generally assumed that the key is
chosen at random. For 𝑛-bit plaintext and ciphertext blocks and a fixed key, the encryption
function is a bijection, defining a permutation and substitution on 𝑛 -bit vectors. Each key
potentially defines a different bijection. As mentioned two important parameters of a block cipher
are the block size which are normally 64 or 128 bits and key size generally ranges from 56 to 256
bits.

Most Block ciphers follow the same general approach. It simply consists of sequence of operations
called round functions repeatedly applied 𝑟 times on the input. Round function takes the output of
the previous round and output the input of the next round. Addition to the intermediate output
from the previous round, round function also uses a subkey (round key) which is usually derived
from the secret key by a key schedule algorithm and are called key schedule. The receiver should
be able to uniquely decrypt the ciphertext, so for the fixed key the round function is by definition
bijective.
Majority of block ciphers are either realized as Feistel ciphers or Substitution-Permutation (SP)
networks. In Feistel cipher, the round function operates only on one half of the block while the
other half remains unchanged where as in SP networks, the round function combines layers of
invertible functions such as substitutions and permutations. The substitution functions, also called
as S-boxes (Substitution boxes) are usually implemented as look-up tables. The S-boxes are non-
linear and introduce local confusion. The permutation layer is an affine transformation that
operates on the complete block and introduces diffusion.

Definition 2.2 [MOV] - An 𝑛 -bit block cipher is a function 𝐸 ∶ 𝑉𝑛 × 𝐾 → 𝑉𝑛, such that for each
key 𝑘 ∈ 𝐾, 𝐸(𝑃,𝑘) is an invertible mapping (the encryption function for 𝑘) from 𝑉𝑛 to 𝑉𝑛 ,
written 𝐸𝑘(𝑃). The inverse mapping is the decryption function, denoted 𝐷𝑘(𝐶). 𝐶 = 𝐸𝑘(𝑃)
denotes that ciphertext 𝐶 results from encrypting plaintext 𝑃 under 𝑘.

Block ciphers generally process plaintext in relatively large block. For plaintext messages exceeding

25

one block in length, various modes of operations for block ciphers are used.

Electronic CodeBook (ECB) [MOV] [BCM] mode, as shown in figure 2.1, it is the simplest and most
obvious application: the secret key, together with the encryption (forward cipher) function is
applied directly and independently to each block of the plaintext resulting in the sequence of
ciphertext blocks. Similarly on the decryption side, decryption (inverse cipher) function is applied
to the ciphertext resulting in the sequence of plaintext blocks. The drawback of this method is that
two identical plaintext blocks (under the same key) will always generate the same ciphertext
block. Thus it does not hide patterns well and is prone to a variety of brute-force attacks.

Block Cipher

Plaintext

Ciphertext

Figure 2.1: Electronic Codebook

Cipher Block Chaining (CBC)[MOV,BCM] mode adds a feedback mechanism to the encryption
scheme. As shown in figure 2.2, an initialization vector is exclusively – ORed (XOR-ed) with the first
plaintext block. An encryption function is applied to the first input block resulting in the output
ciphertext block. The output block is XOR-ed with the second plaintext block to form next input
block. Each plaintext block is XOR-ed with the previous output block to produce a new input block.
Similarly in CBC decryption, the decryption function is applied to the first ciphertext block and the
resulting output is XOR-ed with the initialization vector to recover the first plaintext block. For
second block, ciphertext from previous block is applied instead of IV to recover plaintext blocks. In
CBC decryption all the ciphertext blocks are immediately available, so multiple decryption
operations can be performed in parallel. Identical plaintext result in identical ciphers under same
key and Initialization vector, by changing the IV to the counter mode will result in different
Ciphertext. Another drawback in CBC mode is error propagation; a single bit error in the 𝑛𝑡ℎ cipher
block 𝑐𝑛 will effect decryption of 𝑐𝑛 and adjacent block 𝑐𝑛+1. Block 𝑝𝑛+1′ recovered after

26

decryption of 𝑐𝑛+1 will have bit errors precisely where 𝑐𝑛 did. Thus an attacker can get an
opportunity to cause predictable bit changes in 𝑝𝑛+1 by altering corresponding bits to 𝑐𝑛.

Block Cipher Block Cipher Block Cipher

Inverse Block
Cipher

Inverse Block
Cipher

Inverse Block
Cipher

Initialization Vector (IV)

Initialization Vector (IV)

Plaintext 1 Plaintext 2 Plaintext n

Plaintext 1 Plaintext 2 Plaintext n

Ciphertext 1 Ciphertext 2 Ciphertext n

Ciphertext 1 Ciphertext 2 Ciphertext n

E
N

C
R

Y
P

T
D

E
C

R
Y

P
T

Figure 2.2: Cipher Block Chaining

Cipher Feedback (CFB) [MOV,BCM] mode is a block cipher implementation as a self synchronizing
stream cipher. In CFB mode, encryption function is applied to the Initialization vector to produce
the first output block as shown in figure 2.3. First ciphertext block is produced by XOR-ing plaintext
block with 𝑆 most significant bits of the output block; where 𝑆 is an integer parameter and
sometimes incorporated into the name of the mode, e.g., 1-bit CFB mode , 8-bit CFB mode, 64-bit
CFB mode etc. For second input block, bits of the first input block circularly shift S positions to the
left, and then the ciphertext block replaces the 𝑆 least significant bits of the result. Where as in
CFB decryption, similar encryption function is applied to the input block, the IV is the first input
block and plaintext in recovered by XOR-ing ciphertext with the 𝑆 most significant bits of the
output block. Operations in CFB decryption can be performed in parallel if the input blocks are first
constructed from the IV and the ciphertext. One flip of bit in a 𝑆-bit ciphertext block, will affect the

27

decryption of that block and the next ⌈𝑛/𝑆⌉ ciphertext blocks i.e., until entire block has shifted
entirely out of the shift register. The decrypted message 𝑝𝑛′ will differ from 𝑝𝑛 precisely in the bit
positions where 𝑐𝑛 was in error. Thus an attacker gets an opportunity to cause predictable bit
changes in 𝑝𝑛 by altering corresponding bits to 𝑐𝑛.

 Block Cipher Block Cipher Block Cipher

Plaintext 1 Plaintext 2 Plaintext n

Ciphertext 1 Ciphertext 2 Ciphertext n

Initialization Vector (IV)

 Block Cipher Block Cipher Block Cipher

Plaintext 1

Ciphertext 2Ciphertext 1

Plaintext 2 Plaintext n

Initialization Vector (IV)

Ciphertext n

D
E

C
R

Y
P

T
E

N
C

R
Y

P
T

Figure 2.3: Cipher Feedback

Output Feedback (OFB) [MOV,BCM] mode is a block cipher implementation, conceptually similar
to a synchronous stream cipher. In OFB mode, initialization vector is transformed by the
encryption function to generate first block output. As shown in figure 2.4, the output is then XOR-
ed with the plaintext block to produce the first ciphertext block. Encryption function is then
invoked to the first output block to produce the second output block; the block is then XOR-ed
with next plaintext block to produce ciphertext. Similarly at the decryption side, same encryption
function is used for producing output blocks. These output blocks are then XOR-ed with the
ciphertext blocks to produce plaintext blocks. In both the cases (encryption and decryption),
output of the encryption function depends on the results of the previous encryption functions;

28

therefore, multiple encryption functions cannot be performed in parallel. However if IV is known
then output blocks can be generated in advance. Bit errors in the ciphertext will affect the
decryption of only those specific bits where error occurred. However OFB mode recovers from the
error bit, but cannot self-synchronize after loss of ciphertext bits. In this case, explicit re-
synchronization is required.

 Block Cipher Block Cipher Block Cipher

Plaintext 1 Plaintext 2 Plaintext n

Ciphertext 1 Ciphertext 2 Ciphertext n

Initialization Vector (IV)

 Block Cipher Block Cipher Block Cipher

Plaintext 2 Plaintext n

Ciphertext 1 Ciphertext 2 Ciphertext n

Initialization Vector (IV)

Plaintext 1

D
E

C
R

Y
P

T
E

N
C

R
Y

P
T

Figure 2.4: Output Feedback

2.2.1 Advanced Encryption Standard

In September 1997, the National Institute of Standards and Technology (NIST) issued a public call
for proposals for a new block cipher to succeed the Data Encryption Standard (DES). Out of 15
submitted algorithms the Rijndael cipher by Daeman and Rijmen was chosen to become the new
Advanced Encryption Standard (AES)[DRA] in 2001. Some of the requirements in the context held
by NIST were that AES should have a block length of 128 bits and have a support for key lengths of

29

128, 192 and 256 bits. Security, efficient computation and straight forward implementation in
software and hardware were the main focus point in the choice of Advanced Encryption standard.
Implementation of AES included several steps shown below.

The Advanced Encryption standard is a block cipher with a fixed block length of 128 bits. It
supports three different key lengths 128 bits, 192 bits and 256 bits. For encryption, data is divided
into 128 bit blocks transforming it in 𝑛 rounds into a 128-bit output block. Another crucial
parameter is the key 𝑘 used in each round 𝑟 in 𝑛 round. These key are derived from the AES key in
so called key expansion. The number of 𝑛 rounds depends on the length of the key: 𝑛 = 10 for 128
bit keys, 𝑛 = 12 for 192 bit keys, and 𝑛 = 14 for 256 bit keys.

Key Expansion – The AES algorithm takes the Cipher key, 𝐾, and performs a key Expansion Routine
to generate a key schedule. The key Expansion generates a total of 𝐵(Block size) words: the
algorithm requires an initial set of 𝐵 words, and each of the 𝑅 (number of rounds) rounds requires
𝐵 words of key data. The resulting key schedule consists of a liner array of 4-byte words.

AES encryption Specification - As shown in figure 2.5 and described in algorithm 2.1, AES
encryption of a 128-bit input block uses four basic operations, SubBytes, ShiftRows, MixColumns
and AddRoundKey described in detail in the following.

AddRoundKey – The AddRoundKey operation inputs each byte of the state with the round key
derived from the cipher key using key schedule and returns the bitwise XOR of the AES state.

SubBytes – The SubBytes operation substitutes each byte of the state to another byte, it’s a non-
linear substitution step where each byte is replaced with another according to a lookup table. The
input to the SubBytes can be a 16 byte AES state type for encryption or 4 bytes from key
expansion.

ShiftRows – The ShiftRows operation is a transposition step where each row of the state is shifted
cyclically a certain number of steps.

�

𝑏00 𝑏01 𝑏02 𝑏03
𝑏10 𝑏11 𝑏12 𝑏13
𝑏20 𝑏21 𝑏22 𝑏23
𝑏30 𝑏31 𝑏32 𝑏33

� → �

𝑏00 𝑏01 𝑏02 𝑏03
𝑏11 𝑏12 𝑏13 𝑏10
𝑏22 𝑏23 𝑏20 𝑏21
𝑏33 𝑏30 𝑏31 𝑏32

�

30

MixColumns – Unlike ShiftRows operation, MixColumns operate on the columns of the state,
combining four bytes in each column. This operation considers the bytes of the AES state as
elements of 𝐹28 = 𝐹2[𝑋]/(𝑋8 + 𝑋4 + 𝑋3 + 𝑋 + 1). It multiplies the matrix 𝐵 with the fixed
circulant matrix.

 𝐵 → �

𝑋 + 1 𝑋 + 1 1 + 1 1 + 1
1 + 1 𝑋 + 1 𝑋 + 1 1 + 1
1 + 1 1 + 1 𝑋 + 1 𝑋 + 1
𝑋 + 1 1 + 1 1 + 1 𝑋 + 1

� ∙ 𝐵

Algorithm 2.1 AES-128 encryption

Input: 128- bit input block 𝐵, 128-bit round keys 𝐾0., … … … … .𝐾10.
Output: 128-bit block of encrypted output
 𝐴 ← AddRoundKey (𝐴, 𝐾0) -- [Initial state]
For 𝑖 from 1 to 9 do
 𝐴 ← SubBytes (𝐴)
 𝐴 ← ShiftRows (𝐴)
 𝐴 ← MixColumns (𝐴)
 𝐴 ← AddRoundKey (𝐴, 𝐾𝑖)
End for
 𝐴 ← SubBytes (𝐴)
 𝐴 ← ShiftRows (𝐴)
 𝐴 ← AddRoundKey (𝐴, 𝐾10)
Return 𝐴

31

AddRoundKey

SubBytes

ShiftRows

MixColumns

AddRoundKey

SubBytes

ShiftRows

AddRoundKey

INITIAL ROUND

CIPHER KEY

STATE

ROUND KEY 0-9

9 ROUNDS

FINAL ROUND

ROUND KEY 10

Figure 2.5: 128 bits Advanced Encryption Standard

2.3 Stream Ciphers

Stream ciphers are another major class of symmetric-key encryption schemes. Unlike block ciphers
where blocks of plaintext data is transformed into ciphertext blocks, stream ciphers encrypt one
bit (or a small chunk of bits) of a plaintext message one at a time using an encryption
transformation which varies with time. Stream ciphers are in general faster than block cipher and
less complex in hardware implementations [MOV]. When buffering is limited or if there is a need
for bit to be individually processed as they are received for example in telecommunications,
Stream ciphers are more appropriate. Another important advantage of stream cipher is that they
have a very limited or no error propagation.

Even though various design principles for stream ciphers have been proposed and broadly

32

analyzed [CAB], block ciphers have been systematically replacing stream ciphers for example,
Stream cipher A5/1 used in GSM standard has been replaced by Kasumi block cipher [EBD, AAD,
EAG] and in wireless standard 802.11, RC4 stream cipher was replaced by newer standards based
on AES block cipher. Another major disadvantage with the popularity of the stream cipher is most
of ciphers used in practice tend to be patented; block ciphers on the other hand have been
proposed, published and standardized. In most of the cases block ciphers are defined as
memoryless; as same function is used to encrypt all the blocks. In contrast, stream ciphers are said
to have some memory as the encryption function may vary as the plaintext is processed. The
encryption function may vary not only because of the key and plaintext but also on the current
state, these are known as state ciphers. By adding small amount of memory to the block cipher for
example, as in the CBC mode results in a stream cipher with large blocks [MOV].

Much of the popularity of stream ciphers can undoubtedly be attributed to the work of Shannon in
the analysis of the one-time pad, originally known as the Vernam cipher [VER]. Shannon proved
that one-time pad provides perfect secrecy if the key is of same length as the message and chosen
uniformly at random. The one-time pad uses a long string consists of bits that are chosen
completely at random called key-stream. This key-stream is then combined with the plaintext on a
bit by bit basis. The downside of this design is that the key and message length should be of same
size and can only be used once. Let 𝑚 (𝑚0𝑚1 … .𝑚𝑛−1) be the plaintext message and key-stream
(𝑘0𝑘1 … 𝑘𝑛−1) , which is the same length as the message 𝑚. Then the ciphertext 𝑐 = 𝑐0𝑐1 … 𝑐𝑛−1
is defined by 𝑐𝑖 = 𝑚𝑖 ⊕ 𝑘𝑖 for 0 ≤ 𝑖 ≤ 𝑛 − 1 where ⊕ denotes bitwise exclusive-or.

Pseudorandom byte
Generator

(keystream generator)

Pseudorandom byte
Generator

(keystream generator)

Key (K) Key (K)

Plaintext byte stream (M)

Keystream
output (k)

Keystream
output (k)

Plaintext byte stream (M)Ciphertext byte stream (C)

ENCRYPTION DECRYPTION

Figure 2.6: Stream Cipher

This is an obvious drawback in one-time pad as it increases the difficulty of key distribution and

33

key management. The idea behind the stream cipher design is to use a short secret key to
generate a long sequence of bits (key-stream), which appears to be random and this stream is
combined with the plaintext to produce the ciphertext as shown in figure 2.6.
Most stream ciphers can either be classified as synchronous or self-synchronizing stream ciphers.

2.3.1 Synchronous Stream Cipher

In Synchronous Stream ciphers the next state of the cryptosystem is defined independently of
plaintext or ciphertext data and the key-stream is generated independently of the plaintext or
ciphertext as shown in figure 2.7. All messages are encrypted independently of each other and the
corruption of a bit of the ciphertext during transmission will not affect the decryption of other
ciphertext bits. This means there is no error propagation for corrupted bits. However to allow
proper decryption, both the sides need to be properly synchronized otherwise deleting or
inserting a ciphertext bit will cause an error in the decryption of all consecutive ciphertext bits.
This could only be rectified by using additional techniques for re-synchronization ex., placing
special “marker positions” in the transmission; resulting that a bit of ciphertext missed during
transmission results in incorrect decryption until one of the markers positions is received.

State
σi

g h

f

Key (k)

Keystream generator

N
ex

t s
ta

te
 fu

nc
tio

n

Keystream
zi

Plaintext
mi

Ciphertext
ci

Figure 2.7: Synchronous Stream Cipher. Where 𝜎𝑖 is the state and 𝑘 is the key, next state is calculated using
the next state function 𝑓 i.e. 𝑓 (𝜎𝑖,𝑘). Key-stream 𝑧𝑖 is generated by using key-stream generator function 𝑔

i.e., 𝑔 (𝜎𝑖,𝑘) and h is the output function which combines plaintext 𝑚𝑖 and key stream 𝑧𝑖 to produce
ciphertext 𝑐𝑖.

34

2.3.2 Self-Synchronizing Stream Cipher

By definition, A self-synchronizing or asynchronous stream cipher is one in which the key-stream is
generated as a function of the key and a fixed number of previous ciphertext digits [MOV]. This
stream cipher solves the problem of synchronization and resumes correct decryption if the key-
stream generated by the decrypting unit falls out of synchronization after a ciphertext bit was
inserted or deleted. This is because the key-stream depends only on the fixed number of the
preceding ciphertext bits. Also the error propagation is limited. Such ciphers are capable of re-
establishing proper decryption automatically after loss of synchronization, with only a fixed
number of plaintext characters unrecoverable. This makes such ciphers suitable for applications
where synchronization is difficult to maintain.

State
σi

g hKey (k)

Keystream generator

Keystream
zi

Plaintext
mi

Ciphertext
ci

Figure 2.8: Self-Synchronizing Stream Cipher where 𝜎𝑖 is the state and 𝑘 is the key. Key-stream 𝑧𝑖 is
generated by using key-stream generator function 𝑔 i.e., 𝑔 (𝜎𝑖,𝑘) and h is the output function which

combines plaintext 𝑚𝑖 and key stream 𝑧𝑖 to produce ciphertext 𝑐𝑖.

2.4 Authentication

Generally the term authentication is widely used in very broad sense. By itself, authentication is
the process of determining whether someone or something is, in fact, who or what it is declared
to be. Authentication is specific to different security objectives like access control, entity
authentication, message authentication, data integrity, non-repudiation and key authentication. In
this thesis we will be focusing on the authenticity and integrity of the messages.

35

Message Authentication also called as data-origin authentication plays a very important role in
information security. It allows parties to send messages to each other over a channel in such a way
that if the message is modified, then the receiving party should be able to detect this. Message
authentication protects the integrity of messages and ensures that the each message arriving to
the receiving party is in the same condition that it was sent out with no inserted, missing or
modified bits. This property also validates in the case of communication between parties over a
noisy channel. Data-origin authentication and integrity goes hand-in-hand, if the data is altered
and source cannot be determined then the question of alteration cannot be settled.

2.4.1 Cryptographic Hash Functions

Hash functions were introduced in the domain of cryptography in the late seventies to protect the
authenticity of information. Even conventional hash functions used in non-crypto computer
application help mapping larger domains into smaller ranges. In this section we will only be
focusing on cryptographic hash functions and their use in authenticity and integrity of the
messages.

Hash functions take a message as input and produce an output referred to as a hash-code, hash-
result, hash-value or just hash. In other words, hash function is a function h which takes input 𝑝 of
arbitrary finite length and converts it into an output ℎ(𝑝) of fixed length 𝑛.The basic idea of
cryptographic hash functions is that a hash-value serves as a compact representative image
(sometimes called an imprint, digital fingerprint, or message digest) of an input string, and can be
used as if it was uniquely identifiable with that string.
Hash functions are used for data integrity in conjunction with digital signature schemes, where for
several reasons a message is typically hashed first, and then the hash-value, as a representative of
the message, is signed in place of the original message.

 Hash functions are generally classified into two classes unkeyed and keyed hash functions. In
unkeyed hash functions, the input parameter is only a message whereas in keyed hash functions
two distinct parameters are used, a message and a secret key. Hash functions are further sub-
classified as Message Authentication codes (MACs) and Modification Detection Codes (MDCs) or
manipulation detection codes, provides an image or hash of a message [MOV]. MDCs are a
subclass of unkeyed hash functions, and further divided into One-Way Hash Functions (OWHF) and
Collision Resistant Hash Functions(CRHF). The term collision resistant hash function is preferable
over strong one-way hash function, as it explains more clearly the actual property that is satisfied.
This term proposed by I.Damgård [DAM,DA1] , can be sometimes misleading because collisions do
exist but it is hard to find them. An alternate proposed by Y.Zheng [ZHE, Z01] is collision

36

intractable hash function. The term weak one-way hash function was proposed by R.Merkle [MER]
in order to stress the difference with a strong or collision resistant hash function.

Hash Functions

Unkeyed

keyed

Modification detection
(MDCs)

Message Authentication
(MACs)

OWHF CRHF

Figure 2.9: Classification of cryptographic hash functions

One-way hash function (OWHF)

The first informal definition was given by R.Merkle [MER,M01]and M.Rabin [RAB]

Definition 2.3 - A one-way hash function is a function ℎ satisfying the following conditions:

1. The argument 𝑋 can be of arbitrary length and the result ℎ(𝑋) has a fixed length of 𝑛 bits
(with 𝑛 ≥ 64).

2. Given ℎ and 𝑋, the computation of ℎ(𝑋) must be “easy”
3. The hash function must be one-way in the sense that given a 𝑌 in the image of ℎ, it is

“hard” to find a message 𝑋 such that ℎ (𝑋) = 𝑌, and given 𝑋 and ℎ(𝑋) it is “hard” to find
a message 𝑋′ ≠ 𝑋 such that ℎ(𝑋’) = ℎ(𝑋).

The first part of the last condition corresponds to the intuitive concept of one-wayness, namely
that it is “hard” to find a pre-image of a given value in the range. Pre-image – for all pre-specified
outputs, it is computationally infeasible to find any input which hashes to that output. In the case
of permutations or injective functions only this concept is relevant. The second part of this
condition, is about finding a 2nd –pre-image should be hard, is a stronger condition that is relevant
for most applications. 2nd – pre-image – it is computationally infeasible to find any second input
which has the same output as any specified input. The terms “easy” and “hard” are intentionally
left without formal definition; it is intended they should be interpreted relative to an understood
frame of reference.

37

Collision resistant hash functions (CRHF)

The first formal definition of a CRHF was given by I.Damgård [DAM, D01]. An informal definition
was given by R.Merkle [MER].

Definition 2.4 - A collision resistant hash function is a function ℎ satisfying the following
conditions:

1. The argument 𝑋 can be of arbitrary length and the result ℎ(𝑋) has a fixed length of 𝑛 bits
(with 𝑛 ≥ 128)

2. Given ℎ and 𝑋 , the computation of ℎ(𝑋) must be “easy”
3. The hash function must be one-way in the sense that given a 𝑌 in the image of ℎ, it is

“hard” to find a message 𝑋 such that ℎ(𝑋) = 𝑌 and given 𝑋 and ℎ(𝑋) it is “hard” to find a
message 𝑋’ ≠ 𝑋 such thatℎ(𝑋’) = ℎ(𝑋).

4. The hash function much be collision resistant: this means that it is “hard” to find two
distinct messages that hash to the same result.

As mentioned in [DAM] the first part of one-way property follows from the collision resistant
property. Collision resistance – it is computationally infeasible to find any two distinct inputs which
hash same output. Formal definition of Collision resistant hash function can be obtained though
insertion of a formal definition of terms “hard” and “easy” on combination with the introduction
of a security parameter.

2.4.2 Message Authentication Codes (MAC)

Message Authentication codes have been used for a long time for commercial purposes ex., in
banking. These codes are used to provide authenticity: did the message received actually
originated from the in alleged sender? Algorithms used for message authentication allow two
parties to send message to each other in such a way that if the message is modified in route to the
receiving party then the receiver should be able to detect this. MAC algorithms may be viewed as
hash functions which take two functionally distinct inputs, a message and a secret key, and
produce a fixed-size (say 𝑛 -bit) output, with the design intent that it must be infeasible in practice
to produce the same output without knowledge of the key. Unlike digital signatures, MACs are
computed and verified with a same key, so that they can only be verified by the intended

38

recipient.

Definition 2.5 - [MOV, PRE] A MAC is a function satisfying the following conditions:

1. The argument 𝑋 can be of arbitrary length and the result ℎ(𝐾,𝑋) has a fixed length of
𝑛 bits (with 𝑛 ≥ 32 … 64).

2. Given ℎ,𝑋 and, the computation of ℎ(𝐾,𝑋) must be “easy”.
3. Given ℎ and 𝑋, it is “hard” to determine ℎ(𝐾,𝑋) with a probability of success “significantly

higher” that 1/2n. Even when a large set of pairs �𝑋𝑖,ℎ(𝐾,𝑋𝑖)� are known, where the 𝑋𝑖
have been selected by the opponent, it is “hard” to determine the key 𝐾 or to compute
ℎ(𝐾,𝑋’) for any 𝑋’ ≠ 𝑋𝑖. This last attack is called an adaptive chosen text attack.

The last condition implies that the MAC should be both pre-image and collision resistant for
someone who does not know the secret key 𝐾. But it does not dictate whether MACs need be
one-way and collision resistant for parties knowing the key 𝐾.

2.4.3 Dedicated Hash functions

In this section we will discuss hash functions specially designed for hashing operations. First part
will give an overview of MDC proposals, while in second MAC proposals will be treated. The vast
majority of dedicated MDC published up to date is more or less designed using ideas inspired by
functions MD4 and MD5. Many functions like HAVAL [Z02], RIPEMD [P01] SHA-0[SHS] and SHA-
1[SHS] all exhibit similar resemblance.

R. Rivest of RSA Data Security Inc. has designed a series of hash functions that were named MD for
“message digest” followed by a number. MD1 is a proprietary algorithm. MD2 [KAL] was
introduced in 1990, to replace BMAC [LIN]. MD3 was never published, and it seems to have been
abandoned by its designer. MD4 was also announced in 1990 at Eurocrypt and was published in
[RIV]. The four other algorithms MD5, SHA, RIPEMD, and HAVAL are variants on MD4 that were
proposed in a later stage. However in 1991, weaknesses in MD4 were initially found and published
[DEN] by Den Boer and Bosselaers and in 1995 Hans Dobbertin found the first full round collision
attack [DOB].

39

MD5 Algorithm - After looking into the vulnerabilities in MD4 R. Rivest in 1991 proposed a
strengthened version of MD4, namely MD5 [RIV01]. MD5 calculates a 128-bit digest for an
arbitrary 𝑏-bit message and it consists of the following steps:

- Appending Padding bits: The 𝑏-bit message is padded so that a single 1-bit is added into
the end of message. Then, 0-bits are added until the length of the message is congruent to
448, modulo 512.

- Appending length: A 64-bit representation of 𝑏 is appended to the result of the padding.
Thus, the resulted message is a multiple of 512 bits. This message is denoted here as 𝑀.

- Buffer Initialization: Four 32-bit registers are used in derivation of the 128-bit message
digest. The registers are initialized to the following values: x“01234567” x”89abcdef” x”fe
dc ba 98” x”76 54 32 10”.

- Processing of the message: Message 𝑀 is divided into 512 bit blocks which are processed
separately. The algorithm consists of four rounds, each of which comprises 16 steps. Hence
64 steps are performed in the algorithm. First the initial values (𝐴,𝐵,𝐶,𝐷) mentioned
above are stored into temporary variables 𝐴𝐴,𝐵𝐵,𝐶𝐶,𝐷𝐷. Then, the following operations
are performed for 𝑖 = 0 to 63:

𝐴 = 𝐵 + ((𝐴 + 𝐹𝑢𝑛𝑐(𝐵,𝐶,𝐷) + 𝑋𝑗 [𝑘] + 𝑇[𝑖]) <<< 𝑠),
 𝐴 ← 𝐷,𝐵 ← 𝐴,𝐶 ← 𝐵,𝐷 ← 𝐶.

Where 𝑋𝑗 - donate the 𝑗𝑡ℎ block of 𝑀. 𝑋𝑗 [𝑘] – denote the 𝑘𝑡ℎ 32-bit word of 𝑋𝑗 , 𝑇[𝑖] –
table of 64 32-bit constants, <<< 𝑠 donate circular shift left by 𝑠 bits and additions are
addition of words i.e. additions modulo – 232.

Each round employs one nonlinear round function, which is given below.

 𝐹(𝑋,𝑌,𝑍) = (𝑋 ∧ 𝑌) ∨ (￢𝑋 ∧ 𝑍), 0 ≤ 𝑖 ≤ 15,
𝐹(𝑋,𝑌,𝑍) = (𝑋 ∧ 𝑌) ∨ (𝑋 ∧ ￢𝑍), 16 ≤ 𝑖 ≤ 31,
𝐹(𝑋,𝑌,𝑍) = 𝑋 ⊕ 𝑌 ⊕ 𝑍, 32 ≤ 𝑖 ≤ 47,
𝐹(𝑋,𝑌,𝑍) = 𝑌 ⊕ (𝑋 ∨￢𝑍), 48 ≤ 𝑖 ≤ 63,

Where 𝑋,𝑌,𝑍 are 32 bit words. ∨ is a bitwise or-operation, ￢ is a bitwise complement, ⊕

is a bitwise exclusive-or-operation (xor) and ∧ is a bitwise and operation. Finally, the values
of the temporary variables are added to the values obtained from the algorithm.

𝐴 = 𝐴 + 𝐴𝐴,𝐵 = 𝐵 + 𝐵𝐵,𝐶 = 𝐶 + 𝐶𝐶,𝐷 = 𝐷 + 𝐷𝐷.

However, Den Boer and Bosselaers in 1993 showed in their initial findings a “pseudo-collision”
[D01] of the MD5 compression function, that is, two different initialization vectors which produce

40

an identical digest. This made MD5 not suitable for applications like SSL certificate or digital
signatures. Finally in 1996, Dobbertin announced a collision [DOB1] of the compression function of
MD5. While this was not an attack on full MD5 hash function, but close enough for cryptographers
to recommend switching to the replacement SHA1.

 2.4.4 Secure Hash Algorithm

The first Secure Standard (SHS) was proposed in 1992 by U.S. National Institute of Standards and
Technology (NIST) that contained description of the secure hash Algorithm (SHA). SHA-1, FIPS 180-
3[SHS] was based on MD4, but with better strength. As compared to MD4, the hash value is 160
bits and five instead of four 32-bit chaining variables. The number of steps per round was
increased to 20 (16 in case of MD4) and the number of rounds to 4 same as in MD5. By increasing
the number of steps in the rounds implied that every word of the chaining variable is transformed
4 times per round. In the compression function, each 16-word message block was expanded to an
80 – word block by XOR-ing of 4 words from earlier positions in the expanded block. These 80
words are then input one-word-per-step to the 80 steps. In the core step, the only rote used is a
constant 5-bit rotate; the fifth working variable is added into each step result. The Secure Hash
Algorithm (SHA-1)[SHS], was one of the most popular hash functions. Unfortunately, the security
level of this standard is limited to a level comparable to an 80-bit block cipher as compared to
Advanced Encryption Standard (AES) block cipher which is specified in 128-, 192-, 256- bit keys.
This demanded for a new SHA algorithm offering security comparable to the AES key strengths.
Looking into the limitations of SHA-1, NIST announced the new Secure Hash Standard 2 (SHA-2),
this introduced the specifications of three new Secure Hash Algorithms, SHA-2 (256, 384 and 512).

SHA-2 – As mentioned above, Standard uses three hash functions SHA-2 (256), SHA-2 (384), SHA-
2(512), for computing condensed representation of electronic data. The produced messages digest
ranges in length from 256- to 512-bits, depending on the selected hash function. Each hash
function operation can be divided into two stages:

Preprocessing – Before the computation begins the message is padded into the multiples of 512 or
1024, depending on the algorithm. Then parsing the padded message into 𝑁 message
blocks𝐵0,𝐵1,……. ,𝐵𝑛−1 , where block size is 512 or 1024 bits.

Hash Computation – After preprocessing each message block 𝐵0,𝐵1,……. ,𝐵𝑛−1 is processed in
order. For each message block 𝐵𝑖, starting from message schedule 𝑊𝑡 , following steps (1 -4) are
repeated to compute hash values 𝐻0𝑖 to 𝐻7𝑖 for the ith block.

Step1: 𝑊𝑡 is computed by identical procedure for SHA-256, SHA-384 and SHA-512, only the logic

41

function 𝜎0 and 𝜎1 are different. Where 𝑊𝑡 ∈ {0,1}𝑛 , 𝑛 is 32 for SHA-256 and 64 for SHA-512.
𝑅𝑂𝑇𝑅𝑘(𝑥) − Right rotation of an 𝑛-bit string 𝑥 by 𝑘 bits and 𝑆𝐻𝑅𝑘(𝑥) − Right shift of an 𝑛-bit
string 𝑥 by 𝑘 bits.

For SHA-256:
Message schedule

𝑊𝑡 = 𝐵𝑡𝑖 0 ≤ 𝑡 ≤ 15
= 𝜎1256(𝑊𝑡−2) + 𝑊𝑡−7 + 𝜎0256(𝑊𝑡−15) + 𝑊𝑡−16 16 ≤ 𝑡 ≤ 63
Where
𝜎1256 = 𝑅𝑂𝑇𝑅17(𝑥)⨁ 𝑅𝑂𝑇𝑅19(𝑥)⨁ 𝑆𝐻𝑅10(𝑥)
𝜎0256 = 𝑅𝑂𝑇𝑅7(𝑥)⨁ 𝑅𝑂𝑇𝑅18(𝑥)⨁ 𝑆𝐻𝑅3(𝑥)

For SHA-384 & SHA-512:
Message schedule

𝑊𝑡 = 𝐵𝑡𝑖 0 ≤ 𝑡 ≤ 15
= 𝜎1512(𝑊𝑡−2) + 𝑊𝑡−7 + 𝜎0512(𝑊𝑡−15) + 𝑊𝑡−16 16 ≤ 𝑡 ≤ 79
Where
𝜎1512 = 𝑅𝑂𝑇𝑅19(𝑥)⨁ 𝑅𝑂𝑇𝑅61(𝑥)⨁ 𝑆𝐻𝑅6(𝑥)
𝜎0512 = 𝑅𝑂𝑇𝑅1(𝑥)⨁ 𝑅𝑂𝑇𝑅8(𝑥)⨁ 𝑆𝐻𝑅7(𝑥)

Step 2: The hash values 𝐻0𝑖 to 𝐻7𝑖 , are assigned to the variables 𝑎, 𝑏, 𝑐,𝑑, 𝑒, 𝑓,𝑔 and ℎ. The eight
initial hash values are 32 or 64-bit words.

- A sequence of 64 constant 32-bit words, 𝐾𝑡256 or 80 constant 64-bit words, 𝐾𝑡512 is used by
the hash processing unit.

- The processing unit uses four logical functions, 𝐶ℎ(𝑥,𝑦, 𝑧),𝑀𝑎𝑗(𝑥,𝑦, 𝑧),∑ (𝑥)0 ,∑ (𝑥)1 . The
logic functions 𝐶ℎ and 𝑀𝑎𝑗 is identical for SHA-256, SHA-384 and SHA-512.
𝐶ℎ(𝑥,𝑦, 𝑧) = (𝑥 ∧ 𝑦)⨁(￢𝑥 ∧ 𝑧)
𝑀𝑎𝑗(𝑥,𝑦, 𝑧) = (𝑥 ∧ 𝑦)⨁(𝑥 ∧ 𝑧)⨁(𝑦 ∧ 𝑧)

SHA-256:

∑ (𝑥) = 𝑅𝑂𝑇𝑅2(𝑥)⨁𝑅𝑂𝑇𝑅13(𝑥)⨁𝑅𝑂𝑇𝑅22(𝑥)0
∑ (𝑥) = 𝑅𝑂𝑇𝑅6(𝑥)⨁𝑅𝑂𝑇𝑅11(𝑥)⨁𝑅𝑂𝑇𝑅25(𝑥)1

42

SHA-384 & SHA-512:

 ∑ (𝑥) = 𝑅𝑂𝑇𝑅28(𝑥)⨁𝑅𝑂𝑇𝑅34(𝑥)⨁𝑅𝑂𝑇𝑅39(𝑥)0
∑ (𝑥) = 𝑅𝑂𝑇𝑅14(𝑥)⨁𝑅𝑂𝑇𝑅18(𝑥)⨁𝑅𝑂𝑇𝑅41(𝑥)1

Step 3: The processing unit performs this step, 64 or 80 times on a 512 or 1024 bit block.

𝑇1 = ℎ + ∑ (𝑒) + 𝑐ℎ(𝑒,𝑓,𝑔) + 𝐾𝑡 + 𝑊𝑡,1
𝑇2 = ∑ (𝑎) + 𝑀𝑎𝑗(𝑏, 𝑐,𝑑)0
ℎ = 𝑔,𝑔 = 𝑓,𝑓 = 𝑒, 𝑒 = 𝑑 + 𝑇1,𝑑 = 𝑐, 𝑐 = 𝑏, 𝑏 = 𝑎,𝑎 = 𝑇1 + 𝑇2

Step 4: The ith intermediate hash value 𝐻0𝑖 to 𝐻7𝑖 be computed by modulo-32 or modulo-64 bit
adders after the iterations.

𝐻0𝑖 = 𝑎 + 𝐻0𝑖−1 𝐻1𝑖 = 𝑏 + 𝐻1𝑖−1 𝐻2𝑖 = 𝑐 + 𝐻2𝑖−1 𝐻3𝑖 = 𝑑 + 𝐻3𝑖−1
𝐻4𝑖 = 𝑒 + 𝐻4𝑖−1 𝐻5𝑖 = 𝑓 + 𝐻5𝑖−1 𝐻6𝑖 = 𝑔 + 𝐻6𝑖−1 𝐻7𝑖 = ℎ + 𝐻7𝑖−1

- The message digest is computed by P 𝐻0𝑛 ∥ 𝐻1𝑛 ∥ 𝐻2𝑛 ∥ 𝐻3𝑛 ∥ 𝐻4𝑛 ∥ 𝐻5𝑛 ∥ 𝐻6𝑛 ∥ 𝐻7𝑛 after
processing all N blocks in the message.

 2.4.5 Keyed-Hash Message Authentication Code (HMAC)

The Keyed-Hash Message Authentication Code standard specifies a mechanism for message
authentication using cryptographic hash functions. Hash functions were not originally designed for
message authentication. Several constructions were proposed prior to HMAC, but they lacked a
convincing security analysis. The HMAC construction intended to fill the gap [BEL]. The
performance and the security of the system depend on the underlying hash function and this
replaced by other hash functions. HMACs can be proven secure if the underlying hash function has
some reasonable cryptographic strength.

As mentioned above HMAC can be used with any iterative hash function, in combination with a
shared secret key (𝐾). For simplicity of description we may assume that the underlying hash
function (𝐻) is SHA-1, where the input message is hashed by iterating a basic compression
function on blocks of data. With 𝐵 = 60 is denoted the byte-length of blocks and 𝐿 = 20 be the

43

byte-length of the SHA-1 output. 𝐷 donates the data to which the MAC function is to be applied.
The key 𝐾 should not be longer than the size of the hashing block, if shorter, zeros are appended
to bring its length to the hashing block. In addition two fixed constants are specified: ipad and
opad. In order to computer the HMAC over a data block (𝐷), the following function is applied:

𝐻𝑀𝐴𝐶(𝐾,𝐷) = 𝐻{(𝐾 𝑋𝑂𝑅 𝑜𝑝𝑎𝑑)‖𝐻(𝐾 𝑋𝑂𝑅 𝑖𝑝𝑎𝑑 ‖𝐷�) �}

HMAC function takes the key 𝐾 and Data block 𝐷 and produces 𝐻𝑀𝐴𝐶(𝐾,𝐷). Figure 2.10
describes the operation in simple steps.

Determine K

K xor ipad

K xor ipad text

H((k xor ipad) ║text)

K xor opad

K xor opad H((K xor ipad) ║ text)

H((K xor opad) ║ H((K xor ipad) ║ text)

MAC (D) = leftmost ’d’ bytes of

H((K xor opad) ║ H((K xor ipad) ║ text)

Step 1-3:

Step 4:

Step 5:

Step 6:

Step 7:

Step 8:

Step 9:

Step 10:

Figure 2.10: HMAC Construction

44

HMAC was chosen as the mandatory to implement authentication transform for the Internet
security protocols being designed by the IPSEC working group of the IETF [BEL1].

2.4.6 CBC-MAC

The CBC-MAC [FIP13, ISO97] is an authentication code (MAC) based on a block cipher. Security of
CBC-MAC was proved by Bellare, Kilian and Rogaway under the assumption that messages are of
one fixed length, 𝑚𝑛 bits, where 𝑛 is the block length of the underlying block cipher 𝐸[BEL2].
Which means when message lengths vary then CBC-MAC is not secure. Therefore, several variants
of CBC-MAC have been proposed for variable lengths. However , first let us look into the basic
construction of CBC-MAC with DES (Data Encryption Standard) as shown in figure 2.11, with an
underlying block cipher E and n = 64 and MAC key is a 56-bit DES key.

- Padding and blocking: First pad the data if needed and divide it into n-bit blocks donated as
𝑃1 … …𝑃𝑡

- CBC Processing: Let 𝐸𝐾 donate encryption function using E with the key K, compute the
hash 𝐻𝑡 as follows: 𝐻1 ← 𝐸𝑘(𝑥1); 𝐻𝑖 ← (𝐻𝑖−1 ⨁𝑥1), 2 ≤ 𝑖 ≤ 𝑡. Initialization vector IV = 0.

- Output: The Mac is the n-bit block 𝐻𝑡

E E E E

IV = 0

k

P1

k

H1

k k

P2 P3 Pt

H2 H3
Ht-1

Ht
Figure 2.11: CBC-based MAC algorithm

To increase strength of the MAC, First Encrypted MAC (EMAC) was proposed. It is obtained by
encrypting the CBC-MAC value by E again with a new key 𝐾2.

45

𝐸𝑀𝐴𝐶𝐾1,𝐾2(𝑀) = 𝐸𝐾2 �𝐶𝐵𝐶𝐾1(𝑀)�,

Where 𝑀 is the message, 𝐾1 is the key of the CBC MAC and 𝐶𝐵𝐶𝐾1(𝑀) is the CBC MAC value of 𝑀.
However EMAC was proved to be secure only if the message length is a positive multiple of 𝑛 [PET,
VAU]. Other variants of CBC-MAC were also proposed for example XCBC by black and Rogaway
which requires only one key scheduling of the underlying block cipher 𝐸 [BLK]. XCBC takes three
keys: one block cipher key and two 𝑛-bit keys. Again the drawback of XCBC is that it requires three
keys. Two-key CBC MAC (TMAC) was proposed by Kurosawa and Iwata: a block cipher key 𝐾1 and
an 𝑛-bit key 𝐾2. TMAC [KUR] is obtained from XCBC by replacing (𝐾2,𝐾3) with (𝐾2. 𝑢,𝐾2), where 𝑢
is a non-zero constant and “.” denotes multiplication in GF (2𝑛). Finally One-key CBC Mac (OMAC)
was proposed by Kurosawa and Iwata [IWA]. This scheme operated in exactly the same way as
XCBC except that it only uses a single key 𝐾. A key triple (𝐾1,𝐾2,𝐾3), as used is XCBC, is then
derived from (𝐾,𝐾′) by setting 𝐿 = 𝑒𝑘(0𝑛),𝐾1 = 𝐾,𝐾2 = 𝑢. 𝐿 and 𝐾3 = 𝑢2. 𝐿, where 0𝑛 is the 𝑛-
bit block of all zeros, and 𝑢 is a constant.

Table 2.1 summarizes the above mentioned common hash functions and MAC algorithms.

Name Year of the Standard Example
MD4

MD5

1990

1992

MD4 was used to compute NT LAN Man- ager password-
derived key digests on Microsoft Windows. MD5 was used in
many applications like GPG (GNU Privacy Guard), Kerberos,
TLS/SSL etc.

SHA-0
SHA-1

SHA-224
SHA-256
SHA-384
SHA-512

1993

1995
2004
2002
2002

SHA-1 was developed based on the security flaws of original
SHA i.e., SHA-0. SHA-1 was used with the Digital Signature
Algorithm (DSA) in electronic mail, bank transfers, software
distribution, data storage and many other security applications
and protocols, including IPsec, TLS/SSL. Soon after the
retirement of SHA-1 because of certain weaknesses, SHA-2
hash functions took over for these applications.

HMAC

1994

A message authentication code based on above mentioned
hash functions. HMAC was developed for the IPSec standard of
the internet Engineering Task force (IETF). Currently HMAC is
incorporated in SSL/TLS, SSH, Kerberos, IPSec etc.

CBC-MAC

1994

CBC-MAC authentication method is widely used in practice. The
construction is secure if the messages are of one fixed length.
However, variants of CBC MAC with variable lengths are
suggested in the past ex., XCBC, TMAC and OMAC. Most
common and widely used example is Counter Cipher Mode with
Block Chaining Authentication Code protocol (CCMP), an

46

encryption protocol used for WiFi devices. CCMP protocol is
based on AES using the counter mode with CBC-MAC (CCM)
mode of operation.

Table 2.1: Hash Functions and MAC Algorithms

2.5 Conclusions

Modern Cryptography is much more than secret information and art. In addition to confidentiality
it deals with the problem of data integrity, entity authentication, data origin authentication and
much more. In this chapter, we have covered two prime security requirements i.e., confidentiality
and authentication of data. It is assumed that the authentication of the source of data provides
messages integrity also as a part of the service. We further introduce the concept of symmetric-
key encryption and traditional classes of symmetric encryption algorithm – block ciphers and
stream ciphers.

Block ciphers are an important primitive in cryptography. A secret key is used to transform a
plaintext into a ciphertext in block cipher. The security of block cipher lies within the secrecy of the
key, without any knowledge of the secret key, it should be computationally infeasible to recover
the original plaintext. Block ciphers are well studied and standardized, and can be used for
building other cryptographic primitives, including hash functions, message authentication codes
and stream ciphers. Stream ciphers forms the second class of symmetric encryption algorithms.
Unlike block ciphers, stream ciphers take a continuous stream of plaintext bits as an input and
transform one bit (or a small chunk of bits) at a time. Stream ciphers are in general faster than
block cipher and smaller in terms of hardware implementation, even though stream ciphers are
broadly proposed and analyzed they have been systematically replaced by block ciphers ex., in
802.11, RC4 stream cipher was replaced by AES block cipher. Another major disadvantage is most
of the stream cipher designs are proprietary.

Confidentiality deals with the secrecy of the information whereas authentication is about whether
someone or something is, what it is declared to be. Protecting both the security requirements is
important but encryption on its own does not provide authenticity. This leads to our second part
of the chapter, where Authentication of data is discussed. Cryptographic hash functions are
important tools for providing authentication of data and entities. Due to the wide range of
applications, hash functions are considered as the “Swiss army knives” of cryptography. Defining
the security requirements of the hash functions is not straightforward because they strongly
depend on the application and sometimes are used in unexpected ways. For the purpose of data

47

integrity we have defined the concepts of preimage, second-preimage and collision resistance in
section 2.4. We have further explained the classification of cryptographic hash functions as keyed
an un-keyed hash functions. Several hash functions are analyzed in section 2.4 e.x., MAC, HMAC
and CBC-MAC.

References

[MOV] A.Menezes, P.V.Oorschot, and S .Vanstone. Handbook of Applied Cryptography. CRC Press LLc, 1997.

[CAB] C. Canniére, A. Biryukov, and B. Preneel. An introduction to block cipher cryptanalysis. Proceedings of
the IEEE, vol 94, no 2, pp. 346 -356, Feb. 2006.

[STN] D.Stinson. Cryptography – Theory and Practice, 3rd Chapman & hall / CRC, 2002.

[BCM] M.Dworkin. "Recommendation for Block Cipher Modes of operation". NIST Special Publication 800-
38A,2001

[DRA] Advanced Encryption Standard (AES), FIPS Publication 197, November 26, 2001.

[EBD] E.Biham, and O. Dunkelman. Cryptanalysis of the a5/1 GSM stream cipher. In Progress in Cryptology -
Indocrypt ‘00, B. Roy and E. Okamoto, Eds., vol. 1977 of Lecture Notes in Computer Science, Springer, pp.
43–51. 2000

[AAD] A.Biryukov, A.Shamir, and D.Wagner. Real time cryptanalysis of a5/1 on a pc. In Fast Software
Encryption - FSE 2001, M. Matsui, Ed., vol. 1978 of Lecture Notes in Computer Science, Springer, pp. 37 –
44. 2001

[EAG] ETSI/SAGE. Specification of the A5/3 Encryption Algorithms for GSM and EDGE, and GEA3 Encryption
Algorithm for GPRS, Document 1: A5/3 and GEA3 Specifications. ETSI/SAGE, May 2002.

[VER] G.Vernam. Cipher printing telegraph systems for secret wire and radio telegraphic communications, J.
Am. Institute of Electrical Engineers Vol. XLV, 109-115, 1926.

[DAM]I.B. Damgård. Collision free hash functions and public key signature schemes, Advances in
Cryptology, Proc. Euocrypt’87, LNCS 304, D. Chaum and W.L. Price, Eds., Springer-Verlag, pp. 203–216.
1988.

[DA1] I.B. Damgård. The application of claw free functions in cryptography. PhD Thesis, Aarhus University,
Mathematical Institute, 1988.

[ZHE]Y. Zheng, T. Matsumoto, and H. Imai. Connections between several versions of one-way hash

http://en.wikipedia.org/wiki/NIST�

48

functions. Proc. SCIS90, The 1990 Symposium on Cryptography and Information Security, Nihondaira, Japan,
Jan. 31–Feb.2, 1990.

[Z01] Y. Zheng, T. Matsumoto, and H. Imai. Structural properties of one-way hash functions. Advances in
Cryptology, Proc. Crypto’90, LNCS 537, S. Vanstone, Ed., Springer-Verlag, 1991, pp. 285–302.

[Z02]Y. Zheng, J. Pieprzyk, and J. Seberry, HAVAL — a one-way hashing algorithm with variable length
output, Advances in Cryptology, Proc. Auscrypt’92, LNCS, Springer-Verlag.1992

[MER]R. Merkle. One way hash functions and DES, Advances in Cryptology, Proc. Crypto’89, LNCS 435, G.
Brassard, Ed., Springer-Verlag, pp. 428–446, 1990.

[M01]R. Merkle, Secrecy, Authentication, and Public Key Systems, UMI Research Press, 1979.

[RAB]M.O. Rabin. Digitalized signatures in Foundations of Secure Computation. R. Lipton and R. DeMillo,
Eds., Academic Press, New York, pp. 155-166, 1978.

[PRE] B. PRENEEL. Analysis and Design of Cryptographic Hash Functions, Ph.D Thesis, Katholieke Universiteit
Leuven, January 1993.

[P01]B. Preneel, D. Chaum, W. Fumy, C.J.A. Jansen, P. Landrock, and G. Roelofsen. Race Integrity Primitives
Evaluation (RIPE): a status report. Advances in Cryptology, Proc. Eurocrypt’91, LNCS 547, D.W. Davies, Ed.,
Springer-Verlag, pp. 547–551,1991,.

[SHS] Secure Hash Standard, Federal Information Processing Standard (FIPS), Draft, National Institute of
Standards and Technology, US Department of Commerce, Washington D.C.,October, 2008

[KAL]B.S. Kaliski. The MD2 Message-Digest algorithm. Request for Comments (RFC) 1319, Internet Activities
Board, Internet Privacy Task Force, April 1992.

[LIN]J. Linn. Privacy enhancement for Internet electronic mail, Part I: Message encipherment and
authentication procedures. Request for Comments (RFC) 1040, Internet Activities Board, Internet Privacy
Task Force, January 1988.

[RIV]R.L. Rivest. The MD4 message digest algorithm. Advances in Cryptology, Proc. Crypto’90, LNCS 537, S.
Vanstone, Ed., Springer-Verlag, pp. 303– 311,1991.

[RIV01]R.L. Rivest. The MD5 message digest algorithm. RFC 1321, 1991.

[DEN]B. den Boer and A. Bosselaers. An attack on the last two rounds of MD4. Advances in Cryptology, Proc.
Crypto’91, LNCS 576, J. Feigenbaum, Ed., Springer- Verlag, pp. 194–203, 1992.

[D01]B. den. Boer and A. Bosselaers. Collisions for the compression function of MD5, Advances in

49

Cryptology, Eurocrypt’93 Proceedings, Springer-Verlag, 1994.

[DOB] H.Dobbertin. MD4 is not collision-free. Manuscript, September 1995.

[DOB1]H. Dobbertin. Cryptanalysis of MD5 compress, presented at the rump session of Eurocrypt’96, 1996.

[BEL]M. Bellare, R. Canetti, and H. Krawczyk. Keying Hash Functions for Message Authentication. In
Advances in Cryptology – CRYPTO ’96, edited by Neal Koblitz, volume 1109 of Lecture Notes in Computer
Science, pages 1–15. Springer-Verlag, Berlin Germany, 1996.

[BEL1] M. Bellare, R. Canetti, and H. Krawczyk. Message Authentication using Hash Functions—The HMAC
Construction. RSA Laboratories CryptoBytes, 2(1), Spring 1996.

[BEL2] M.Bellare, J.Kilian, and P. Rogaway. The security of the cipher block chaining message
authentication code. Advances in Cryptology – CRYPTO ’94, vol. 839 of Lecture Notes in Computer Science,
Springer-Verlag, pp. 341–358, 1994.

[FIP13] FIPS 113. Computer data authentication. Federal Information Processing Standards Publication 113,
U.S. Department of Commerce/National Bureau of Standards, National Technical Information Service,
Springfield, Virginia, 1994.

[ISO97]Iso/Iec 9797-1. Information technology – security techniques – data integrity mechanism using a
cryptographic check function employing a block cipher algorithm. International Organization for Standards,
Second edition, Geneva, Switzerland, 1999.

[PET] E. Petrank and C. Rackoff. CBC MAC for real-time data sources. J.Cryptology, vol. 13, no. 3, pp. 315–
338, Springer-Verlag, 2000.

[VAU]S. Vaudenay. Decorrelation over infinite domains: The encrypted CBC-MAC case. Communications in
Information and Systems (CIS), vol. 1, pp. 75–85, 2001. Earlier version in Selected Areas in Cryptography,
SAC 2000, LNCS 2012, pp. 57–71, Springer-Verlag, 2001.

[BLK] J.Black and P.Rogaway. CBC MACs for arbitrary-length messages: The three key construction.
Advances in Cryptology. CRYPTO 2000, LNCS 1880, pp.197-215, springer-Verlag,2000.

[KUR]K. Kurosawa and T. Iwata. TMAC: Two-Key CBC MAC. Cryptology ePrint Archive, Report 2002/092,RSA
Conference 2003, CT-RSA 2003.

[IWA]T. Iwata and K. Kurosawa. OMAC: One-key CBC MAC. In T. Johansson, editor, Fast Software Encryption
2003, volume 2887 of Lecture Notes in Computer Science, pages 129-153. Springer-Verlag, Berlin,
Germany, Feb. 24-26, 2003.

50

51

3
Authenticated Encryption

Symmetric key encryption plays vital role in the field of communication, it refers to the schemes
and algorithms used to communicate data secretly over an insecure channel between parties
sharing a secret key. Often when two parties communicate over a network, they have two main
security goals: confidentiality and authentication. In fact, there is compelling evidence that one
should never use encryption without also providing authentication [SBE, JBL]. Confidentiality
addresses the issue of keeping the information secret from unauthorized users. Often, this is
achieved by encrypting the data using a symmetric-key encryption scheme. Message
authentication addresses the issues of source corroboration and improper or unauthorized
modification of data. To protect the message authenticity, the sender usually appends an
authenticated tag that is generated by the signing (tagging) algorithm of some message
authentication scheme.

Although symmetric-key encryption and message authentication have been mainly studied in the
separate context, there are many applications where both are needed. The cryptographic schemes
that provide both confidentiality and authenticity are called authenticated encryption schemes.
The authenticated encryption scheme consists of three algorithms: a key generation algorithm, an
encryption algorithm and a decryption algorithm. The encryption algorithm takes a key, a plaintext
and an initialization vector and it returns a ciphertext. Given the ciphertext and the secret key, the
decryption algorithm returns plaintext when the ciphertext is authentic and invalid when the
ciphertext is not authentic. The scheme is secure if it is both un-forgeable and secure encryption
scheme [MBE]. When an attacker is not able to successfully produce a ciphertext 𝐶, a nonce 𝑁,
and a tag 𝜎 (three parameters which maintains the integrity of the message) even if the attacker
convinces the receiver to will believe that the sender was the originator then the scheme is Un-
forgeable. The term secure is related towards confidentiality of the scheme, where confidentiality
means, that an attacker cannot understand the contents of the message 𝑀, even after knowing
the ciphertext 𝐶 and the nonce 𝑁. One way to achieve this is to make the encryption scheme
indistinguishable from a random permutation; this is a standard definition that is used in many
security proofs such as the security proofs of the modes of operation for block ciphers.

52

3.1 Generic Composition

The generic approach provides authenticated-encryption with associated-data (AEAD) as well as
authenticated-encryption (AE). The first generic composition where an encryption scheme and
MAC were used jointly (but securely) under independent keys was proposed by Bellare and
Nampermpre in 2000 [MEB]. However, this was not very efficient generic composition, the time it
took to encrypt and authenticate made this block cipher based authenticated encryption twice as
slow as either encryption or authentication. In the same year, Katz and Yung presented the single-
pass RPC block cipher mode for authenticated encryption [JKA]. RPC could run almost twice as fast
as generic authentication scheme but it depends on the size of the authentication tag. In 2001,
two block modes of operation for authenticated encryption, IACBC for integrity aware cipher block
chaining and the parallelizable mode called IAPM for integrity aware parallelizable mode,
supported by a claim of provable security were proposed in [CSJ]. Other provably secure
authenticated encryption schemes that use a block cipher as a building block were XCBC, XECB and
OCB [VGL, VGL1, PRO]. These schemes were as fast as conventional encryption (without
authenticity) i.e. twice as fast as the generic approach with minimal expansion i.e., the size of a
ciphertext is same as the size of the plaintext and 𝜎 bits of authentication tag, were 𝜎 is
independent of plaintext size and a constant. The duplex construction [GBE] iteratively applies a
bijective transformation, and its main application is authenticated encryption. One can also
incorporate some message authentication mechanisms in a stream cipher. The drawback of this
approach is that one cannot reduce the security of the scheme to a well-known problem such as
the indistinguishability of block ciphers from random permutations. However, this approach
promises better efficiency. One such authenticated encryption scheme is Helix [NFE]. Another
example of a heuristically designed authenticated encryption scheme is SOBER-128 [PHA].

As mentioned above, the goal of Authenticated encryption is to provide privacy and integrity.
Two possible notations are used for the authenticity of AE, INT-PTXT (Integrity of the plaintexts) –
𝑀 = 𝐷𝐾(𝐶) was never encrypted by the sender, it is computationally infeasible to produce a
ciphertext decrypting to a message that is never encrypted by the sender and INT-CTXT (Integrity
of the ciphertexts) - 𝐶 was never transmitted by the sender, it is computationally infeasible to
produce a ciphertext not previously produced by a sender. Privacy goals for encryption schemes
consists of indistinguishability (advantage of a reasonable adversary determining what message
was sent, 𝑀 𝑜𝑟 𝑀ʹ) and non-malleability(advantage of a reasonable adversary being able to
change the message to be meaningful), each of which are considered under either chosen-
plaintext or chosen-ciphertext attack. This leads to two indistinguishability notations of security
IND-CPA (indistinguishability under a chosen plaintext attack), IND-CCA (indistinguishability under
a chosen ciphertext attack) and two non-malleability security notations, namely NM-CPA (non-
malleability under a chosen plaintext attacks), NM-CCA (non-malleability under chosen ciphertext
attack).
To analyze the security of the Authenticated Encryption Scheme three “generic composition”

53

methods are considered namely Encrypt-and-MAC, MAC-then-Encrypt, and Encrypt-then-MAC. In
each case two different keys (𝐾1,𝐾2) are used.

3.1.1 Encrypt-and-MAC (E&M)

The ciphertext (𝐶) is generated by encrypting the plaintext message (𝑀) and appending a MAC (𝜎)
of the plaintext. At decryption side, first ciphertext is decrypted and then authentication tag is
verified.

An authenticated encryption scheme (𝐴𝐸) = (𝐾,𝐸,𝐷) in E&M is defined by

Encryption Algorithm: 𝐸𝐾1 ∥𝐾2(𝑀)

Decryption Algorithm : 𝐷𝐾1∥𝐾2(𝐶′ ∥ 𝜎)

𝐶′ ← 𝐸𝑘1

′ (𝑀)
𝜎 ← 𝑇𝐾2(𝑀)
Return 𝐶′ ∥ 𝜎

𝑀 ← 𝐷𝑘1
′ (𝐶′)

If (𝜎 = 𝑇𝐾2(𝑀)) then return 𝑀
Else return ⊥

Secure shell (SSH) protocol uses the Encrypt-and-Mac composition [TYL]. SSH is a cryptographically
secure replacement for standard Telnet, rlogin, rsh and rch commands. Because of its security
properties SSH became incredibly popular as the secure mechanism for access to remote systems
interactively. Other programs like rlogin and telnet transmit usernames and passwords in
cleartext, sniffing a network were easy, whereas by beginning an encrypted session in SSH before
the username and password are transmitted, confidentiality was guaranteed. SSH consists of both
a client and a server that use public key cryptography to provide session encryption. The protocol
is responsible for encrypting and authenticating all messages between two parties involved an SSH
session. To establish a secure connection, client initiates communication by requesting an SSH
session. Once the server receives the request, both perform handshake and agree upon a set of
shared symmetric keys. The client and the server also agree upon which encryption and message
authentication schemes they wish to use. All the recommended encryption and message
authentication schemes are based on CBC mode encryption and HMAC [TYL].

Initial formal security analysis and attacks were proposed by Bellare et al. [MEB1] and Dai [WDA]
Theses attacks were primary focused on Binary Packet Protocol (BPP) of SSH and assumed that
keys had already been securely established. Bellare et al. focused on details such as the mode of
operation (SSH’s use of CBC mode) and use of initialization vectors (chained IVs to random IVs).
Plaintext-recovering attacks were exposed by Albrecht et al. [MRA] based on Bellare’s initial
security analysis, where they neglected to consider the underlying data structure used by the SSH

54

BPP in their security proofs. The model was later improved by Paterson and Watson [KGP], to
avoid the pitfalls exposed by Albrecht et al.

3.1.2 MAC-then-Encrypt (MtE)

The ciphertext (𝐶) is generated by appending a MAC (𝜎) to the plaintext and then encrypting
everything. At the receiving side, decryption is first performed to get the plaintext and the tag, and
then tag is verified.

An authenticated encryption scheme (𝐴𝐸) = (𝐾,𝐸,𝐷) in MtE is defined by

Secure Socket Layer (SSL) protocol uses Mac-then-Encrypt composition. SSL is a public key based
protocol that was developed by Netscape and is the standard Internet protocol for secure
communications [PKO]. The secure hypertext transfer protocol (HTTPS) is http using SSL is a
communication protocol designed to transfer encrypted information between computers over the
World Wide Web. SSL provide a connection between a client and server, over which any amount
of data can be sent securely. This layer provides confidentiality, authenticity and replay protection
over a connection-oriented reliable transport protocol such as TCP. The SSL protocol supports
variety of different cryptographic algorithms to support authenticity between the client and
server, confidentiality of the data and establishing session keys. In initial version of SSL (SSL 2.0),
most commonly used cipher suite was RSA key exchange (developed by Rivest, Shamir and
Adleman). Other algorithms like MD5[RON], SHA-1[SHS] were used for generating Mac and
SKIPJACK, Triple-DES for generating ciphertext.

SSL 2.0 suffered from much vulnerability both in cryptographic security and in functionality so the
protocol was upgraded to SSL 3.0 with significant enhancements. Security analysis and attacks on
SSL 3.0 was proposed by Wagner et al.[DWA] Later in 2001, H Krawczyk [HKR] showed that the
generic composition, Mac-then-encrypt method yields a totally insecure protocol when an
encryption function that provides perfect secrecy but combined with any MAC function. But

Encryption Algorithm: 𝐸𝐾1 ∥𝐾2(𝑀)

 𝜎 ← 𝑇𝐾2(𝑀)
 𝐶 ← 𝐸𝑘1

′ (𝑀 ∥ 𝜎)
Return 𝐶

Decryption Algorithm : 𝐷𝐾1∥𝐾2(𝐶)

 𝑀 ∥ 𝜎 ← 𝐷𝑘1

′ (𝐶)
If (𝜎 = 𝑇𝐾2(𝑀)) then return 𝑀

Else return ⊥

55

Krawczyk, also showed that MtE could provide secure protocol under two very common forms of
encryption: CBC Mode (with an underlying secure block cipher) and stream ciphers (that XOR the
data with random or pseudorandom pad).

3.1.3 Encrypt-then-Mac (EtM)

The ciphertext (𝐶) is generated by encrypting the plaintext (M) and then appending a MAC (𝜎) of
the encrypting plaintext. At the receiving side, authentication tag of the ciphertext is first verified
and then decryption is performed to get the plaintext.

An authenticated encryption scheme (𝐴𝐸) = (𝐾,𝐸,𝐷) in EtM is defined by

Out of all three above mentioned generic compositions, Encrypt-then-MAC is provably secure
[MBE, JBL]. It guaranties INT-CTXT and IND-CCA which gives secure Encryption and MAC functions
(IND-CPA and strongly unforgeable). Internet Protocol Security (IPSEC) uses Encrypt-then-MAC
composition[SKE,SKE1]. IPSec was originally developed at the Naval Research Laboratory as part of
a DARPA-sponsored research project. The protocol, as defined by IETF is “a framework of open
standards for ensuring private, secure communications over Internet Protocol networks, through
the use of cryptographic security services” IPSec secures communication by authenticating and
encrypting each IP packet. IPSec is not bound to any particular authentication method of secure
communications, which is why it is considered an “open standard” The IPsec protocols can be
deployed in two basic modes of operation: transport mode and tunnel mode. In transport mode
only the data (payload) is encrypted during communication, which gives the advantage of speed-
since the IP headers are not encrypted, so the packets are smaller. The disadvantage of transport
mode is that an adversary can sniff the network and gather information about end parties. In
tunnel mode whole packet, payload and the header is encrypted and treated as a payload for new
header called the outer header. The original or inner IP packet is said to be encapsulated within
the outer IP header. The advantage is that neither the payload nor any information about end
parties can be sniffed and the disadvantage is speed, since the size of the encrypted packet

Encryption Algorithm: 𝐸𝐾1 ∥𝐾2(𝑀)

𝐶′ ← 𝐸𝐾1(𝑀)
 𝜎 ← 𝑇𝐾2(𝐶′)
 Return 𝐶′ ∥ 𝜎

Decryption Algorithm : 𝐷𝐾1∥𝐾2(𝐶′ ∥ 𝜎)

 𝑀 ← 𝐷𝑘1

′ (𝐶′)
If (𝜎 = 𝑇𝐾2(𝐶′)) then return 𝑀

Else return ⊥

56

increases. IPSec provides authenticity, integrity and confidentiality for network layer data through
two separate security protocols – Authentication header (AH) and Encapsulating security payload
(ESP). AH provides the authenticity and integrity of the data. AH authenticates the packets by
signing them, signing packets also provides integrity, since the unique signature prevents the data
from being modified. ESP also provides authenticity and integrity, but also adds the advantage of
data confidentiality though encryption and usually makes use of block cipher algorithm operating
in CBC mode [SKE1, SKE2].

Table 3.1 summarizes the security results of above mentioned composite authenticated
encryption schemes.

Generic Composition Privacy Integrity

IND-CPA

INT-PTXT

INT-CTXT

Encrypt-and-MAC

NO

YES

NO

MAC-then-Encrypt

YES

YES

NO

Encrypt-then-MAC

YES

YES

YES

Table 3.1: Security Results in different composite authenticated encryption schemes.

3.2 Two pass combined mode

In this section we will discuss two pass combined mode with one pass for encryption and another
one for authentication. With the popularity of highly-efficient single pass Authenticated
Encryption (discussed in next section), several patents were filed by the authors to cover such
schemes. To avoid such patents, two-pass schemes were developed. The first such scheme was
CCM (CBC MAC with Counter Mode) [DWH] by Whiting at el. followed by EAX [MEB2], CWC
(Carter-Wegman with Counter mode encryption)[TKO].

57

3.2.1 CCM Mode

Counter with Cipher Block Channing – Message Authentication Code, abbreviated as CCM is an
authenticated-encryption mode of operation of block cipher. The underlying block cipher used in
CCM is AES -128. CCM is invoked by providing 4 inputs: the key 𝑘 used with AES, plaintext data 𝑀,
both authenticated and encrypted, associated data 𝐻, authenticated but not encrypted and the
nonce 𝑁. CCM processing consists of two pairs of related processes – generation-encryption and
decryption-verification. These processes combine encryption using counter mode and
authentication using CBC-MAC. Only the encryption function of the block cipher algorithm is used.
CCM encryption processes two types of input blocks - Payload block, data must be encrypted and
authenticated and associated data block, where data block must be authenticated but not
encrypted.

CCM specification – Steps performing CCM processing:

- Pre-processing of the Message: Initially the data is arranged in blocks suitable for CCM
processing. The first block uniquely determines the nonce 𝑁 and the length of the payload.
If associated data is present, the block after initial block will consist of associated data until
there is no more associated data left.

- Computing CBC-MAC: Blocks are encrypted using CBC mode and the output of final
encryption is the MAC which can be used for authentication.

- Encryption using counter mode: Data is encrypted using Counter (CTR) Mode of operation.
The initial input value to the mode is an Initialization Vector (IV) and subsequent values are
computed by incrementing the current counter value by one.

- Processing Counter Mode Encryption: Initial block generated by counter mode encryption is
processed differently than the following blocks.

- Computing Authentication Tag: Authentication tag 𝜎 is generated by XORing the initial
block with the computed CBC-MAC. The length of the tag can be set by the user.

- Computing the ciphertext: Finally the cipher is generated by XORing the output of counter
mode encryptions with the plaintext blocks. Final ciphertext output is concatenated with
the authentication tag i.e. �𝐶‖𝜎 .

58

Several problems were encountered in CCM in terms of efficiency, parameterization, complexity,
variable-tag-length etc. After examining shortcomings of CCM, Bellare et al. offered new 2-pass
authenticated encryption called EAX mode of operation [MEB2]. EAX mode addressed several
problems with CCM for example; CCM did not take advantage, if the associated data field was
fixed from message to message. In CCM, message lengths must be known in advance because it is
encoded into the first block before process begins.

3.2.2 EAX Mode

Like CCM, EAX is a combination of a type of CBC MAC and CTR mode encryption. However unlike
CCM, EAX mode of operation supports streaming data input and does not require data to be in
storage before applying EAX processing. EAX also does not impose any restrictions on the block
size of the underlying block cipher and uses only encryption function of the block cipher. EAX
processing consists of two invertible processes – Encryption plus authentication tag generation
and Decryption plus authentication tag verification. Three input parameters are used for EAX
mode of operation –Nonce, Header and Message. Security is related to indistinguishability from
random bits and the inability of an attacker to produce a new but a valid triple i.e., {nonce, header,
ciphertext}. EAX uses OMAC with an extra input called a “tweak” which allows them to essentially
get several different MACs by using distinct values for this tweak input. As shown in figure 3.1, to
invoke encryption and authentication tag generation in EAX, a nonce 𝑁, header 𝐻 will be
authenticated but not encrypted and the message M will be authenticated and encrypted. Then
OMAC is used under key 𝑘 (for the chosen block cipher) three times, each time with a different
tweak, 𝑂𝑀𝐴𝐶𝐾0, 𝑂𝑀𝐴𝐶𝐾

1 and 𝑂𝑀𝐴𝐶𝐾2. First counter value is obtained by computing nonce 𝑁 for
CTR mode encryption, 𝑐𝑡𝑟 ← 𝑂𝑀𝐴𝐶𝑘0(𝑁). Then authentication tag is obtained by computing
Header, 𝜎𝐻 ← 𝑂𝑀𝐴𝐶𝑘1(𝐻). Then Message 𝑀 is encrypted and authenticated,
𝐶 ← 𝑂𝑀𝐴𝐶𝑘2(𝐶𝑇𝑅𝑘𝑐𝑡𝑟(𝑀)). Finally the output is an authentication tag 𝜎 = (𝑐𝑡𝑟 ⊕ 𝐶 ⊕ 𝜎𝐻) and
(𝑁,𝐻,𝐶). The decryption and verification process is quite similar and straightforward.

59

N

OMAC K0

ctr1 Incr ctrn H

OMAC K1Ek Ek

M1 Mn

C1 Cn

Ciphertext (C)

OMAC K2

σ

......

Figure 3.1: EAX mode

Despite of all the problems addressed by EAX mode of operation ex., complex parameterization,
handling online data etc still proving security in EXA is difficult since the key 𝑘 is re-used in several
contexts which are not a safe practice.

3.3 Single Pass Combined Modes

The goal of single pass Authenticated Encryption is to achieve faster encryption and message
authentication by performing both the encryption and message authentication in a single pass as
opposed to the traditional encrypt-then-mac approach, which requires two passes. Several single-
pass minimal-expanding Authenticated encryption schemes have been proposed: IAPM[CJU] was
proposed by Julta in 2000,immediately after announcement of IACBC and IAPM , Gligor proposed
two classes of schemes : XCBC and XECB, XCBC was similar to CBC mode encryption just as IACBC
and XECB was similar to ECB mode just as IAPM method[VGL]. Rogaway et al. also announced their
scheme: OCB, which was similar to IAPM but with the additional optimizations [RRO]. These
combine minimal expansion with a close-to-optimal running time: for large messages, these
schemes are almost as fast as conventional encryption (without authenticity), i.e. twice as fast as

60

the generic approach. Unfortunately, several patents cover the usage of the fast single-pass
schemes.

3.3.1 IAPM

Two modes of encryption were introduced by Jutla of IBM in 2000, which were the first correct
single-pass Authenticated Encryption modes [CJU]. These two modes were called IACBC (Integrity
Aware CBC) and IAPM (Integrity Aware Parallelizable Mode). The first mode was lot more similar
to CBC mode of encryption. However more interest was shown in second mode, IAPM because of
it advantage over IACBC. As mentioned IACBC resembles CBC mode, where one cannot begin
computation for the 𝑛𝑡ℎ block-cipher until one have the results of previous 𝑛 − 1 block.

IAPM was the first provable secure mode for authenticated encryption. It requires two
independent keys 𝑘0,𝑘1 with the same length as an underlying block cipher, Message 𝑀 and
nonce 𝑁, as shown in figure 3.2. The mode is divided into two main steps: offset-generation and
encryption-tag generation. For offset-generation, a unique nonce 𝑁 is used to generate an
“offsets”, pair wise differentially uniform vectors (a sequence of uniformly distributed 𝑛-bit
random numbers, 𝑆1 ,𝑆2 … … . 𝑆𝑚). This generation requires a one block cipher invocation using a
key 𝑘0, an integer additions over the Galois field using 𝑛-bit prime 𝑝(𝐺𝐹𝑝) respectively only by the
xor operations with a penalty of approximately 𝑙𝑜𝑔𝑚 extra block cipher invocations [CJU]. The
nonce 𝑁 is communicated as part of a ciphertext. For encryption–tag generation, each block of
message 𝑀 (𝑀1 … … .𝑀𝑚−1) is computed as 𝐶𝑖 ← 𝐸𝑘1(𝑀 ⊕𝑆𝑖) ⊕𝑆𝑖 for 1 ≤ 𝑖 ≤ 𝑚 − 1. The
XOR-ing of 𝑆𝑖 before and after the block-cipher invocation is a technique called “key-whitening” to
increase the security of an iterated block cipher. To calculate authentication tag 𝜎, 𝜎 ⟵
𝐸𝑘1(𝑆𝑚 ⊕ {𝑀1 ⊕𝑀2 ⊕𝑀3 … .⊕𝑀𝑚−1}) ⊕ 𝑆0. Finally output (𝑁,𝐶1, …𝐶𝑚−1,𝜎) as the
authenticated ciphertext. During the decryption process same offset are generated by using 𝑘0
and encryption process is simply reversed. After decrypting, authenticated tag is generated to
ensure it matches with the received tag. If the match is positive then transmission is accepted, and
if not transmission is considered as an attempt of forgery.

61

E(k0) E(k0) E(k0)

N

S0

S0

S1

......

Sm-1

Sm

Offsets

N

C0

E(k1)

S1

S1

M1

C1

E(k1)

S2

S2

M2

C2

.......... E(k1)

Sm-1

Sm-1

Mm-1

Cm-1

E(k1)

Sm

S0

M1

σ

 Mm-1......

Figure 3.2: Integrity Aware Parallelizable Mode scheme.

3.3.2 XCBC

Soon after IACBC and IAPM, Gligor at el. presented two classes of schemes XCBC and XECB[VGL].
As mentioned above, XCBC (Extended Cipher Block Chaining Encryption) is similar to CBC mode
encryption. XCBC is proposed in three versions: stateless, stateful-sender and stateful both. In this
section we will be considering only stateful-sender version, because of having the same nonce
requirement in our proposed system. Initially a set of keys (𝑘1,𝑘2) is used to calculate 𝑅 and 𝑍0
i.e., 𝑅 ← 𝐸𝑘1(𝐶𝑡𝑟) and 𝑍0 ← 𝐸𝑘2(𝐸𝑘1(𝐶𝑡𝑟)), where 𝑍0 serves as an IV for CBC-like
encryption, 𝑅 is used to post-whitening each ciphertext block 𝐶𝑖 by 𝑖 ∗ 𝑅. To calculate
authentication tag 𝜎, 𝜎 ⟵ 𝐸𝑘1(𝑍0 ⊕ {𝑀1 ⊕𝑀2 ⊕𝑀3 … .⊕𝑀𝑚}) ⊕ (𝑚 + 1) ∗ 𝑅. However
XECB, similar to IAPM generates offset to each message block applied before and after a block
cipher invocation. Offset are generated in a very efficient manner, using arithmetic mod 2𝑛, which
is very fast on most processors. Both XCBC and XECB is patented and provable secure, AE at a cost
very close to that of encryption alone.

62

E(k1)

E(k2)

ctr

R

Z0

E(k1)

1 * R

E(k1)

2 * R

.......... E(k1)

m * R

E(k1)

m+1 * R

M1

C1

M2

C2

Mm

Cm σ

Z0 M1 Mm

Figure 3.3: Extended Cipher Mode Chaining Encryption mode scheme

3.3.3 OCB

Offset Codebook mode (OCB) was presented by Rogaway et al [RRO]. This work was based on
Julta’s IAPM mode with some new improvements. As shown in figure 3.4, in OCB same key is used
for “offset” calculations and encryption. An authentication tag is verified by using an optional tag
length 𝜏 (up to n bits), depending on an application needs. For every new message, non-repetitive
nonce is used. To invoke OCB mode key 𝑘 is used to calculate 𝐿 ← 𝐸𝑘(0𝑛) and for each new
nonce 𝑁, one block cipher invocation is used to create the intermediate value𝑅 ← 𝐸𝑘(𝑁 ⊕𝐿).
Using the Gray codes 𝛾, 𝐿 and 𝑅, the “offsets” 𝑧𝑖 are generated 𝑧𝑖 ← 𝛾𝑖. 𝐿 ⊕ 𝑅. For encryption
each block 𝑀𝑖 1 ≤ 𝑖 ≤ 𝑚 − 1 is computed as 𝐶𝑖 ← 𝐸𝑘(𝑀𝑖 ⊕𝑍𝑖) ⊕𝑍𝑖 for 1 ≤ 𝑖 ≤ 𝑚 − 1. To
calculate authentication tag 𝜎, ⟵ 𝐸𝑘(𝑍𝑚 ⊕ {𝑀1 ⊕𝑀2 ⊕𝑀3 … .⊕𝑀𝑚−1 ⊕ 𝐶𝑚 ⊕ 𝑌𝑚})
[𝑓𝑖𝑟𝑠𝑡 𝑇 𝑏𝑖𝑡𝑠].

63

E(k)

0n

L

N

L

E(k)

R

E(k)

Z1

Z1

M1

C1

E(k)

Z2

Z2

M2

C2

......... E(k)

Zm-1

Zm-1

Mm-1

Cm-1

E(k)

Z2

Z2

Mm

Cm

len(Mm)

L.x-1

Ym

E(k1)

 Mm-1......

Zm

first T bits

σ

M1 Cm Ym

T

Figure 3.4: Offset Codebook mode scheme

OCB is patented, fully parallelizable, provable secure and very efficient with small requirements
with AEAD feature. Performance tests indicate that OCB is about 6.4% slower that CBC mode
encryption, and this is without exploiting the parallelism that OCB offers up.

3.4 AE Stream Ciphers

Until now, we have looked into the schemes with mode of operation and every mode has used a
block cipher as its underlying primitive. In this section we will explore authenticated encryptions
mechanisms in a stream ciphers which provide authentication in addition to privacy. The drawback
of this approach is that one cannot reduce the security of the scheme to a well-known problem
such as the indistinguishability of block ciphers from random permutations. However, this
approach promises better efficiency. Two schemes are discussed in this section: Helix [NFE] and
SOBER-128[PHA]. Both were designed by experienced cryptographers and close attention was paid
towards security and efficiency to the ciphers.

3.4.1 Helix

Helix was proposed at FSE’03[NFE] by Ferguson et al. It is an asynchronous stream cipher based on
a fast keystream generator. The goal was to produce a fast and patent-free stream cipher with
integrity. Helix guarantees the integrity of the message for very little additional computation and
without requiring a second pass. Helix is based on an iterated block function applied to an internal
state of 160 bits. To invoke the function, input consists of a secret key 𝑘 upto 256 bits, a nonce of
128 bits and a Message 𝑀. Before encryption, the internal state of the 𝑖-th word of Message 𝑀 is

represented in five 32-bit words. (𝑍0
(𝑖), … …𝑍4

(𝑖)), which are initialized for 𝑖 = 0 using 𝑘 and 𝑁. It

64

uses a block function 𝐹 to update the internal state in function of the Message 𝑀, the key 𝑘 and
nonce 𝑁. More precisely, the 𝑖 -th state of Helix emits one 32-bit word of key-stream 𝑆𝑖, which
requires two 32-bit words from the 𝑘 and 𝑁, also requires the 𝑖 -th Message word 𝑀𝑖. Using a
message stream to generate key-stream is highly-unusual for a stream cipher, but this allows Helix
to generate key-stream and authentication tag. To produce ciphertext 𝐶𝑖 𝑖 -th key-stream 𝑆𝑖 is
XORed with Message 𝑀𝑖 . The 5-word state resulting from block 𝑖 is then fed into block 𝑖 + 1 and
this process is repeated until all words of the Message have been encrypted. Finally a last step can
generate a tag of 128 bits that constitute the MAC.

In 2004, Muller presented Differential attacks against Helix[MUL]. He showed that the key of Helix
can be recovered faster than by brute force if the attacker can force the IV’s to be used more than
once. The attack requires 288 basic operations and processes only 212 words of chosen plaintext in
order to recover the secret key for length upto 256 bits. Later Paul et al. reduced the number of
adaptively chosen plaintext words by a factor of at least 3 [SPA].

3.4.2 SOBER-128

SOBER-128 was developed from SOBER [PHA], it was proposed by Hawkes and Rose. It is a
software-oriented stream cipher based on a linear feedback shift-register (LFSR) over GF (232), a
non-linear filtering function (NLF) consists of additions modulo 232, XORing, circular shift and 8 X
32 bit substitution box (S-box). A nonlinear plaintext feedback function (PFF) is added when
authentication and encryption are required. To invoke the cipher for authenticated encryption,
initially it generates the key-stream and XORs with the Message 𝑀 then uses a separate API call
“maconly” to process the associated data. Like Helix, SOBER-128 also feedback plaintext into the
key-stream generator.

Watanbe and Furnya from Hitachi presented differential cryptanalysis attacks on SOBER-
128[DWA]. Their claim was that the MAC generation function in SOBER-128 is vulnerable against
differential cryptanalysis and the success probability of this attack is estimated at 2−6.

65

3.5 ASC-1: An Authenticated Encryption Stream Cipher

As mentioned in the previous sections, the goal of a single pass Authenticated Encryption is to
achieve faster encryption and message authentication by performing both the encryption and
message authentication in a single pass as opposed to the traditional encrypt-then-mac approach,
which require two passes. Several single-pass minimal expanding AE schemes have been proposed
ex., IACBC and IAPM are two block cipher modes of operation for authenticated encryption
supported by a claim of provable security [CSJ]. Other provably secure AE schemes that use a block
cipher as a building block were also presented in [VGL] [PRO].

In this thesis, we propose the single pass authenticated encryption scheme ASC-1[SKG]. The design
of the scheme has roots in message authentication and encryption scheme that use four rounds of
Advanced Encryption Standard (AES) as a building block such as the LEX [ABI] stream cipher, the
ALRED[JDE,JDE1] MAC scheme and the MAC schemes proposed in [GJA,KMI].However, unlike the
previous constructions, this scheme uses a single cryptographic primitive to achieve both message
secrecy and authenticity. To argue the security of the scheme, it shows that the scheme is secure if
one cannot tell apart the case when the scheme uses random round keys from the case when the
round keys are derived by a key scheduling algorithm.

For better understanding of ASC-1, we will first look into LEX stream cipher and attacks on LEX
stream cipher.

3.5.1 LEX Stream Cipher

Alex Biryukov presented a new methodology of stream cipher design, called leak extraction. The
idea is to extract parts of the internal state at certain rounds and give them as the output key
stream. The underlying block cipher for LEX is AES block cipher. LEX stream cipher was selected to
phase 3 of the eSTREAM competition, the ERYPT stream cipher project [ABI].
LEX is based on AES and it uses AES in a natural way. The key-stream bits are generated by
extracting 4 bytes from the intermediate state of AES in a 128-bit Output Feedback (OFB) mode.
As shown in the figure 3.5, in the initialization step, the publicly known 128-bit Initialization Vector
(IV) is encrypted by AES under a secret key k to get 𝑆 = 𝐴𝐸𝑆𝐾(𝐼𝑉). The 𝑆 and subkeys are the
output of the initialization process.

66

AES AES

128-bit key (k)

Initialization
Vector (128-bit)

128-bit key (k)

AES

128-bit key (k)

AES

128-bit key (k)

320-bit 320-bit 320-bit

Figure 3.5: LEX Stream Cipher

S is repeatedly encrypted in the OFB mode under K, where during the execution of each
encryption, four bytes are leaked from each round. Another IV is chosen after every 500
encryptions and after 232 IVs, the secret key is replaced.

b0,0 b0,1 b0,2 b0,3

b1,0 b1,1 b1,2 b1,3

b2,0 b2,1 b2,2 b2,3

b3,0 b3,1 b3,2 b3,3

b0,0 b0,1 b0,2 b0,3

b1,0 b1,1 b1,2 b1,3

b2,0 b2,1 b2,2 b2,3

b3,0 b3,1 b3,2 b3,3

b0,0 b0,1 b0,2 b0,3

b1,0 b1,1 b1,2 b1,3

b2,0 b2,1 b2,2 b2,3

b3,0 b3,1 b3,2 b3,3

Odd Rounds Even Rounds

Figure 3.6: Leak Positions in odd and even rounds

Now the most crucial part is the extraction of bytes from the exact location and frequency of the
outputs from the intermediate rounds. The designer of the system suggested to extract bytes
𝑏0,1, 𝑏2,1,𝑏0,3, 𝑏2,3 at every odd round and 𝑏0,0,𝑏2,0, 𝑏0,2,𝑏2,2 at every even round, as shown in
figure 3.6. LEX encryption round consists of:

67

𝑅𝑜𝑢𝑛𝑑 (𝑆𝑡𝑎𝑡𝑒, 𝑖)

{ 𝑆𝑢𝑏𝐵𝑦𝑡𝑒𝑠 (𝑆𝑡𝑎𝑡𝑒);�

 𝑆ℎ𝑖𝑓𝑡𝑅𝑜𝑤𝑠(𝑆𝑡𝑎𝑡𝑒);

 𝑀𝑖𝑥𝐶𝑜𝑙𝑢𝑚𝑛𝑠(𝑆𝑡𝑎𝑡𝑒);

 𝐴𝑑𝑑𝑅𝑜𝑢𝑛𝑑𝐾𝑒𝑦(𝑆𝑡𝑎𝑡𝑒,𝐸𝑥𝑝𝑎𝑛𝑑𝑒𝑑𝐾𝑒𝑦[𝑖 𝑚𝑜𝑑 𝑁𝑟]);

}

𝑁𝑟 is the number of rounds and is equal to 10 for 128-bit key AES. The full 𝑇 iterations of LEX
would then look like:

𝐿𝐸𝑋 (𝑆𝑡𝑎𝑡𝑒, 𝑆𝑒𝑐𝑟𝑒𝑡𝐾𝑒𝑦)

{

 𝐴𝐸𝑆𝐾𝑒𝑦𝐸𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛(𝑆𝑒𝑐𝑟𝑒𝑡𝐾𝑒𝑦,𝐸𝑥𝑝𝑎𝑛𝑑𝑒𝑑𝐾𝑒𝑦);

 𝑆𝑡𝑎𝑡𝑒 = 𝐴𝐸𝑆𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝐼𝑉,𝐸𝑥𝑝𝑎𝑛𝑑𝑒𝑑𝐾𝑒𝑦);

 𝐴𝑑𝑑𝑟𝑜𝑢𝑛𝑑𝐾𝑒𝑦 (𝑆𝑡𝑎𝑡𝑒,𝐸𝑥𝑝𝑎𝑛𝑑𝑒𝑑𝑘𝑒𝑦[0]);

 𝑓𝑜𝑟 (𝑖 = 1; 𝑖 < 𝑇; 𝑖 + +)

 {

 𝑅𝑜𝑢𝑛𝑑 (𝑆𝑡𝑎𝑡𝑒, 𝑖);

 𝑂𝑢𝑡𝑝𝑢𝑡 [𝑖] = 𝐿𝑒𝑎𝑘𝐸𝑥𝑡𝑟𝑎𝑐𝑡 (𝑆𝑡𝑎𝑡𝑒 , 𝑖 𝑚𝑜𝑑 2);

 }

}

The speed of the cipher is about 2.5 times faster than 128-bit AES. However a key recovery attack
was presented by Dunkelman et al, where the attack required about 236.3 bytes of key-stream
produced by the same key, and retrieves the secret key in times of 2112 simple operations
[OD’08]. The attack was divided into three main steps – identification of a special state, extracting
information on the special state and finally guess-and-determine attack on the remaining
unknown bytes, based on the known bytes an attacker can use this attack to retrieve the key.

68

Another attack called “Resynchronization Attack”was presented by Hongjun Wu and Bart Preneel,
where the resynchronization of LEX is vulnerable to the slide attacks [HWU]. The attack showed
that if the key is used with about 260.8 random IVs and 20,000 keystream bytes are generated
from each IV, then the key could easily be recovered.

In general, slide attacks are not dependent of the properties of the iterated round function and
the number of rounds as compared to the generic cryptanalytic attacks – differential and linear
analysis where for each extra round an exponential effort is required from an attacker. Typically a
slide attack exploits the self similarity of a block cipher and sees the cipher as a product of
identical transformations [SKM].

3.5.1 ASC-1 Specification

ASC-1 is an authenticated encryption scheme. Its key size can vary depending on the block cipher
that is used. Block cipher suggestion for ASC-1 is AES with 128-bit key. The encryption and
decryption algorithms for a message 𝑀 = 𝑚1‖𝑚2‖𝑚3 consisting of three 128-bit blocks depicted
in figure 3.7.

The scheme uses a 56-bit representation of a counter that provides a unique initialization vector
for each encrypted message. The encryption algorithm derives an initial state 𝑋0 and three keys
𝐾1,0,𝐾2,0and 𝐾3,0 by applying block cipher to 070‖00‖𝐶𝑛𝑡𝑟 070‖01‖𝐶𝑛𝑡𝑟 , 070‖10‖𝐶𝑛𝑡𝑟 and
𝑙(𝑀)‖00000011‖𝐶𝑛𝑡𝑟 respectively, where 𝑙(𝑀) is a 64-bit representation of the bit length of the
message M. The message is then processed in a CFB-like mode using the 4R-AES transformation.
The 4R-AES transformation takes as input a 128-bit input state and outputs a 128-bit “random”
leak 𝑟𝑖 and a 128-bit output state. The first leak 𝑟1 is used to encrypt the first message block 𝑚1.
The resulting ciphertext block 𝑐1 is XOR-ed with the output state to give the input state for the
second 4R-AES transformation. This process is repeated for all message blocks. The leak from the
last 4R-AES application is ignored, and its output h is encrypted by 𝐾3,0 to give the authentication
tag. The ciphertext consists of the counter value, the ciphertext blocks and the authentication tag.

69

4R-AES

4R-AES

4R-AES

4R-AES

Ke
y

sc
he

du
lin

g

K1,0 II K2,0
X0

r1

r2

r3

m1

m2

m3

c1

c2

c3

K3,0

τ

4R-AES

4R-AES

4R-AES

4R-AES

Ke
y

sc
he

du
lin

g

K1,0 II K2,0
X0

r1

r2

r3

m1

m3

c1

c2

K3,0

τ

m2

c3

𝑋0 = 𝐸𝐾(070‖00‖𝐶𝑛𝑡𝑟), 𝐾1,0 = 𝐸𝐾(070‖01‖𝐶𝑛𝑡𝑟), 𝐾2,0 = 𝐸𝐾(070‖10‖𝐶𝑛𝑡𝑟),
𝐾3,0 = 𝐸𝐾(𝑙(𝑀)‖06‖�11‖𝐶𝑛𝑡𝑟)

Figure 3.7: The encryption and decryption algorithms of ASC-1. The message consists of three blocks. The
ciphertext consists of the counter value, three ciphertext block and an authentication tag. The receiver

recovers the original message and verifies its validity by checking whether the re-computed authentication
tag is equal to the received one.

The decryption algorithm uses the same secret key and the received counter value to compute 𝑋0,
𝐾1,0,𝐾2,0 and 𝐾3,0. The leak 𝑟1 derived by applying 4R-AES to 𝑋0 is used to decrypt 𝑐1 into the
original message block 𝑚1. The output of the first 4R-AES is XOR-ed with the first ciphertext block
to give the next input state, and the process is repeated until all message blocks are recovered and
an authentication tag of the message is computed. If the computed tag is same as the one that
was received, then the decrypted message is accepted as valid.

Although, the scheme uses 64-bit and 56-bit representation for the message length and the
counter, but both the maximum message length and maximum number of messages to be
encrypted is 248. The message length might not be a multiple of the block length. In this case, the

70

last message block 𝑚𝑛 with length 𝑙𝑛 < 128 is padded with zeros to get a 128-bit block 𝑚΄𝑛. A
128-bit ciphertext block 𝑐΄𝑛 is derived as 𝑐΄𝑛 = 𝑚΄𝑛 ⊕ 𝑟𝑛, and it is XOR-ed with the n-th output
state to give the (n+1)-st input state. However, the sender will not transmit 𝑐΄𝑛 but 𝑐𝑛, which
consists of the first 𝑙𝑛 bits of 𝑐΄𝑛. This will enable the receiver to recover the message length.

The 4R-AES transformation is depicted in figure 3.8. Four AES rounds are applied to the initial state
𝑥 = (𝑥1 , … … . . , 𝑥16) to give a 128-bit leak 𝑟 = 𝑙1…4‖𝑙5…8‖𝑙9…12‖𝑙13…16

� and an output state

𝑦 = (𝑦1 , … … . . ,𝑦16). Here, we assume that the key addition is the first operation of the AES
rounds. Four bytes are leaked after the MixColumns transformation in each round. The leak
positions are same as in LEX. However, unlike LEX, key whitening is added before each extracted
byte. This gives additional security to the scheme.

x1 AddRoundKey – SubBytes – ShiftRow
s – M

ixColum
ns

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

x16

AddRoundKey – SubBytes – ShiftRow
s – M

ixColum
ns

AddRoundKey – SubBytes – ShiftRow
s – M

ixColum
ns

AddRoundKey – SubBytes – ShiftRow
s – M

ixColum
ns

AddRoundKey – SubBytes – ShiftRow
s – M

ixColum
ns

y1

y2

y3

y4

y5

y6

y7

y8

y9

y10

y11

y12

y13

y14

y15

y16

l1..4 l5..8 l9..12 l13..16

w2

w1

w3

w4

w5

w6

w7

w8

w11

w12

w9

w10

w13

w14

w15

w16

Figure 3.8: The 4R-AES transformation

The 4R-AES transformation uses five 128-bit keys: four round keys and one whitening key. These
keys are derived from the 256-bit key �𝐾1,0�𝐾2,0 as follows.

71

The AES-256 key scheduling algorithm is applied to �𝐾1,0�𝐾2,0 to derive 14 round keys
𝐾1,𝐾2, … … 𝐾14. The keys 𝐾2,𝐾3,𝐾4 and 𝐾5 are used as round keys in the first 4R-AES
transformation. The keys 𝐾7,𝐾8,𝐾9 and 𝐾10are used as round keys in the second 4R-AES
transformation. The key 𝐾1is used as whitening key in the second 4R-AES transformation and the
key 𝐾11is used as whitening key in the first 4R-AES transformation. The AES-256 key scheduling
algorithm is again applied to �𝐾13‖𝐾14 to derive 14 keys that are used by the third and the fourth
4R-AES transformation, and the process is repeated as long as we need new keys.

3.6 Security Considerations

In the previous section we have proposed a single pass authenticated encryption scheme ASC-1,
with the goal to enable two parties to securely communicate over an insecure channel. The
security of the ciphers is continuously evaluated by cryptanalysts all over the world in order to
examine the resistance of the designs towards different kind of attacks. Defining the security of
the system is quite difficult because an attacker may have different goals and abilities. Before
trying to prove the security of the system, we will first list approaches to solve most problems
comprising confidentiality and authenticity, and an overview of typical attack scenarios.

3.6.1 Security Measurements

In modern cryptography, many approaches can be identified to evaluate the security of the
cryptosystem in the literature. These approaches are based on different assumptions about the
capabilities of an attacker. However we will consider two different approaches in this section:
Information theoretic approach and Computational security

Information Theoretic Approach

The approach is based on information theory and it offers unconditional security. A cryptosystem
is unconditionally secure if it cannot be broken even with infinite computational resources.
Nevertheless, it should be stated that the unconditional security of the cryptosystem is only
probabilistic; a system could be secure in one scenario but easy to break in another. In 1950’s a
classic definition was proposed by Claude Shannon [SH’49] for “perfect secrecy” of an encryption
scheme.

72

Definition 3.1 (Perfect secrecy)
A cryptosystem has perfect secrecy if

Pr[𝑃 = 𝑝|𝐶 = 𝑐] = Pr [𝑃 = 𝑝]

for all 𝑝 ∈ 𝑃 and 𝑐 ∈ 𝐶.

In order words, the plaintext is independent of the ciphertext. Another interesting thing to note
here is the definitions of unconditional security and perfect secrecy is not equivalent, a
cryptosystem that is perfectly security is unconditionally secure against a ciphertext only attack
but not necessarily unconditionally secure against any other attacks. Perfect secrecy is a strong
condition , Shannon prove that the perfect secrecy could only be achieved if the length of the
secret key is same or exceeds the length of the plaintext. This is usually taken as evidence that
unconditional security can never be practical but achievable. Shannon proved this condition by
presenting one-time pad cipher.

Definition 3.2 (One-time pad)
Let 𝑛 > 1 be the length of the message, then 𝑃 = 𝐶 = 𝐾 = 𝑍2𝑛 . For 𝑥 = (𝑥1, … … . 𝑥𝑛) ∈ 𝑃,
 𝑦 = (𝑦1, … … .𝑦𝑛) ∈ 𝐶 and 𝑘 = (𝑘1, … … . 𝑘𝑛) ∈ 𝐾 the encryption 𝐸𝑘(𝑥) and decryption
𝐷𝑘(𝑦) is defined as bitwise exclusive-or.

𝐸𝑘(𝑥) = (𝑥1 ⊕ 𝑘1, … … 𝑥𝑛 ⊕ 𝑘𝑛)
and

𝐷𝑘(𝑦) = (𝑦1 ⊕ 𝑘1, … … 𝑦𝑛 ⊕ 𝑘𝑛)

It is essential for the security of one-time pad that the key 𝑘 is chosen uniformly at random and
no two messages are encrypted using the same key. In the section we saw that the requirements
for unconditional security are rather impractical. So, in practice it is safe to assume that an
attacker does not have infinite computational resources. This leads to our second approach of
computational security.

Computational Security

Computational security is the modern approach and it is based on computational complexity. It
discards the assumption that an attacker has unlimited computational resources and assumes that
the attacker’s computational power is limited in some reasonable way. In this approach the main
question is not if there is plaintext information present on the ciphertext, but rather if the
information can be efficiently extracted. The security in this approach is based on a gap between
efficient algorithms guaranteed for the legitimate user verses the computational infeasibility of

73

retrieving information for an attacker [SGM].
For the sake of an argument, if one has at possibility to verify that the solution is correct, an
exhaustive search method could be applied. In this method all the possible elements in the space
are tried until the correct one is found.

Definition 3.3 (Computational Security)
A cryptosystem provides 𝑛 bits of security if an attack requires a computational effort which is
equivalent to an exhaustive search over 2𝑛 values.

From the definition we can deduce that a cryptosystem is computationally secure if it provides 𝑛
bit security where 2𝑛 operations are computationally infeasible with the present resources
available or that will be in near future. The value of 𝑛 is generally related to the length of the key
used in the cryptosystem, this is because given the plaintext it is possible to exhaustively search all
the possible 2𝑛 keys until the correct one is found. Hence the length of the key gives away the
upper bound for the parameter 𝑛 and in the ideal case also the lower bound, where no other
attacks are faster than exhaustive key search.
Shannon identified two basic techniques for obscuring the redundancies in the plaintext messages
for any cryptographic algorithm – Confusion and Diffusion

Confusion – obscures the relationship between the plaintext and ciphertext. According to
Shannon “confusion is to make the relation between the simple statistics of ciphertext and the
simple description of key a very complex and involved one”[SH’49]. This frustrates attempts to
study the cipher text looking for redundancies and statistical patterns. The easiest to realize this is
by substitutions such as S-boxes.

Diffusion – dissipates the redundancy of the plaintext by spreading it out over the cipher text.
According to Shannon “The statistical structure of the plaintext which leads to its redundancy is
dissipated into long range statistics, i.e., into statistical structure involving long combinations of
letters in the cryptogram”[SH’49]. This means that a cryptanalyst looking for those redundancies
will have a harder time finding them. Diffusion can easily be caused through transposition.

For designing an encryption scheme, the main goal of a designer is to maximize the complexity of
the known attacks and minimize the complexity of the cryptosystem. In our proposed design, we
have looked into the vulnerabilities and attacks presented on similar cryptosystems like LEX
stream cipher and tried to overcome those attacks[OD’08][HB’06].
Looking from attackers prospective, the goal of an attacker is to find an attack with the complexity
lower than the bound estimated by the designer. But not every successful attack faster than
exhaustive search makes the cipher useless because it might still be computationally infeasible. On
the other hand, every attack discloses some unknown vulnerabilities of the system and carries the
risk of becoming a potential threat in the future.

74

Attack Scenarios

One can view block ciphers as a family of permutations, indexed by a key. The strongest property
from it is to be indistinguishable from completely random permutations, when the key is selected
uniformly at random. For the classification of following attack scenarios we assume that the
attacker have all the details of the cryptosystem except for the secret key. In addition to this we
also assume that the attacker can access the full communication between the sender and receiver.

Known plaintext attacks (KPA) – The attacker have no control over the plaintexts but have access
to plaintext and the corresponding ciphertext. A priori, they are assumed to be uniformly
distributed.
Ciphertext only attacks (COA) – The attacker possesses certain amount of ciphertext, without the
corresponding plaintext. For this attack to work, all the messages have to be encrypted with the
same key.
Chosen plaintext attacks (CPA) – The attacker chooses a set of plaintexts a priori and receives the
corresponding ciphertext.
Adaptive chosen plaintext attacks (ACPA) – The attacker make encryption queries, choosing
subsequent plaintext depending on the ciphertext he received from previous requests.
(Adaptive)Chosen ciphertext attacks (A/CCA) – The attacks are similar to chosen plaintext and
adaptive chosen plaintext attacks. The attacker chooses set of ciphertexts and obtains its
decryption.

A cryptosystem vulnerable to ciphertext only attacks are certainly considered very weak. But
attacks like known plaintext are still very realistic, however there are easy strategies to slow down
these attacks in real world applications. Generally, a symmetric cryptosystem that is secure against
adaptive chosen plaintext attack might be vulnerable to chosen ciphertext attacks but secure
against rest of the above mentioned attacks. In our proposed system, we argue that ASC-1 is
secure by reducing its (IND-CCA, INT-CTXT) security to the problem of distinguishing the case when
the round keys are uniformly random from the case when the round keys are generated by a key
scheduling algorithms.

3.7 Preliminaries

In this section we will draw a notion of an almost universal (AU) and almost XOR universal (AXU)
hash function from Carter and Wegman [LC’79][MV’81].

75

Definition 3.4. (AU & AXU) - A family of hash functions ℋ = {ℎ ∶ 𝐴 → {0,1}𝑏} is 𝜀-almost
universal2 ,written 𝜀-AU2 , if for all distinct 𝑥, 𝑥 ʹ ∈ 𝐴, 𝑃𝑟ℎ∈ℋ[ℎ(𝑥) = ℎ(𝑥 ʹ)] ≤ 𝜀. The family of
hash functions ℋ is 𝜀-almost XOR universal2 ,written 𝜀-AXU2 , if for all distinct 𝑥, 𝑥 ʹ ∈ 𝐴, and for
all 𝑐 ∈ {0,1}𝑏 , 𝑃𝑟ℎ∈ℋ[ℎ(𝑥) ⊕ℎ(𝑥 ʹ) = 𝑐] ≤ 𝜀.

The value of 𝜀 = 𝑚𝑎𝑥𝑥≠𝑥ʹ{𝑃𝑟ℎ[ℎ(𝑥) = ℎ(𝑥 ʹ)]} is called collision probability. The important
measures worth noticing are how small its collision probability is and how fast one can compute its
functions. Based on this we will introduce the concept of leak-safe almost XOR universal (LAXU)
hash function. Figure 3.9 shows how these functions can be used as a building block to construct
an unconditionally secure authenticated encryption scheme.

Definition 3.5. (LAXU) - A family of hash functions ℋ = {ℎ(𝑚) = (𝑙,ℎ)|𝑚 ∈ 𝑀, 𝑙 ∈ {0,1}𝑘,ℎ ∈
{0,1}𝑛} is leak safe 𝜀- almost XOR universal2, written 𝜀-LAXU2, if for all distinct messages 𝑚,𝑚ʹ ∈
M, for all leaks 𝑙 ∈ {0,1}𝑘 and any constant 𝑐 ∈ {0,1}𝑛,

𝑃𝑟ℎ∈ℋ �𝜋ℎ�ℎ(𝑚)�⊕ 𝜋ℎ �ℎ(𝑚ʹ)� = 𝑐� 𝜋𝑙�ℎ(𝑚)� = 𝑙] ≤ 𝜀.

Where 𝜋ℎ(𝑙,ℎ) = ℎ and 𝜋𝑙(𝑙,ℎ) = 𝑙 are projection functions.

 Let the message 𝑀 consists of 𝑑 𝑛-bit blocks. The ciphertext is computed as follows – a hash
function ℎ𝐾1 is randomly drawn from the family of hash functions ℋ. The function is applied to an
initial value IV to get a leak 𝑙1and hash value ℎ1. The leak 𝑙1 is XOR-ed with the message block 𝑚1
and produces the ciphertext 𝑐1 = 𝑚1 ⊕ 𝑙1 . To encrypt the second block of message a new hash
function ℎ𝐾2 is randomly pulled from ℋ and applied to 𝑖2 = 𝑘1 ⊕ℎ1 ⊕ 𝑐1 , where 𝑘1 is a
random key, to get the a leak 𝑙2 and hash value ℎ2. Similarly the leak 𝑙2 encrypts the message
block 𝑚2 into ciphertext 𝑐2. This process is repeated until all the 𝑑 𝑛-bit blocks of message 𝑀 are
encrypted. To calculate an authentication tag 𝜏 for the message 𝑀 , a random 𝑛-bit key 𝐾𝑇 is
XOR-ed with the hash value ℎ𝑑+1 i.e., = 𝐾𝑇 ⊕ ℎ𝑑+1 , where ℎ𝑑+1 is obtained by applying a
randomly drawn hash function to 𝑖𝑑+1 = 𝑘𝑑 ⊕ℎ𝑑 ⊕ 𝑐𝑑 . Finally the ciphertext
𝐶 = 𝐼𝑉‖𝑐1�‖𝑐2‖… . . ��‖𝑐𝑑‖𝜏�� is a concatenation of the initial value, the ciphertext blocks and the
authentication tag.

76

h
K1

(.) h1

k1

c1m1

IV h
K2

(.) h2

k2

c2m2

i2 i3

l1 l2

.....
h

Kd
(.) hd

kd

cdmd

h
Kd+1

(.) hd+1

KT

id+1

ld

id τ

Encryption. For message 𝑀 = 𝑚1 |𝑚2 | … … |𝑚𝑑

�, the encryption algorithm outputs a ciphertext
𝐶 = 𝐼𝑉|𝑐1 |𝑐2 |…�… |𝑐𝑑�|𝜏�

h
K1

(.) h1

k1

c1m1

IV h
K2

(.) h2

k2

c2m2

i2 i3

l1 l2

.....
h

Kd
(.) hd

kd

cdmd

h
Kd+1

(.) hd+1

KT

id+1

ld

id ?
τ = τr

Decryption. The algortihm will only output the message 𝑀 = 𝑚1 |𝑚2 | … … |𝑚𝑑
� if the computed

tag 𝜏 and received tag 𝜏𝑟 are equal, else rejects the message.

Figure 3.9: An authenticated encryption scheme construction based on a LAXU hash function family on a
CFB-like mode.

To decrypt and verify the authenticity of the ciphertext we assume that the recipient has
knowledge of the secret keys that were used by the sender to encrypt the message. Similar to the
encryption side, ℎ𝐾1 is applied to the IV to get the leak 𝑙1 and hash value ℎ1. The leak 𝑙1 is then
XOR-ed with the ciphertext block 𝑐1 and produces the message block 𝑚1 = 𝑐1 ⊕ 𝑙1. To decrypt
the next block of ciphertext hash function ℎ𝐾2 is applied to 𝑖2 = 𝑘1 ⊕ℎ1 ⊕ 𝑐1 , to get the leak
𝑙2 and hash value ℎ2. The leak 𝑙2 decrypts the ciphertext block 𝑐2 into plaintext message 𝑚2 =
 𝑐2 ⊕ 𝑙2 . This process is repeated until all the 𝑑 𝑛-bit ciphertext blocks are decrypted. To order
to verify the authenticity of the received ciphertext, the recipient re-computes the authentication
tag 𝜏 = 𝐾𝑇 ⊕ ℎ𝑑+1. If the recomputed tag 𝜏 is equal to the received tag 𝜏𝑟 , then the decryption
algorithm returns the plaintext 𝑀 = 𝑚1‖𝑚2

�‖… … . ‖𝑚𝑑
��. Otherwise the decryption algorithm

rejects the ciphertext considering it not authentic. Following theorem establishes the security of
the previous theorem.

Theorem 1. Suppose that ℋ = {ℎ(𝑚) = (𝑙,ℎ)|𝑚 ∈ {0,1}𝑛, 𝑙 ∈ {0,1}𝑛,ℎ ∈ {0,1}𝑛} is an 𝜀-LAXU2

family of hash functions such that (𝑖) 𝜋ℎ(ℎ(𝑚)) is a bijection, and (𝑖𝑖)
𝑃𝑟ℎ∈ℋ � 𝜋𝑙�ℎ(𝑚)� = 𝑙�𝑚� = 2−𝑛 for any message 𝑚 and leak 𝑙. Then, the authenticated
encryption scheme depicted in figure 3.9 achieves:

77

1. Perfect secrecy. The a posteriori probability that the message is M given a ciphertext C is
equal to the a priori probability that the message is M.

2. Unconditionally secure ciphertext integrity. The probability that a computationally
unbounded adversary will successfully forge a ciphertext is at most 𝑞𝑣 𝜀, where 𝑞𝑣 is the
number of the verification queries that the adversary makes.

 Proof. From 1, the scheme has perfect secrecy if the initial value 𝐼𝑉 is independent of the
message and all the leaks 𝑙𝑖 and the key 𝐾𝑇 have uniform probability distribution for any possible
message, as in the analysis given below:

Pr[𝑀 = 𝑚1 ‖… … … . ‖ 𝑚𝑑| 𝐶 = 𝐼𝑉 ‖𝑐1‖… … … . . ‖𝑐𝑑‖ 𝜏 =

=
Pr[𝑀 = 𝑚1 ‖… … . ‖ 𝑚𝑑] × Pr [𝐶 = 𝐼𝑉 ‖𝑐1‖… . . ‖𝑐𝑑‖ 𝜏|𝑀 = Pr[𝑀 = 𝑚1 ‖… … . ‖ 𝑚𝑑]
∑ Pr [𝑀ʹ =𝑀ʹ 𝑚1

ʹ ‖… … . ‖ 𝑚𝑑
ʹ] × Pr [𝐶 = 𝐼𝑉 ‖𝑐1‖… . . ‖𝑐𝑑‖ 𝜏|𝑀ʹ = 𝑚1

ʹ ‖… … . ‖ 𝑚𝑑
ʹ]

=
Pr[𝑀 = 𝑚1 ‖… … . ‖ 𝑚𝑑] × 2−(𝑑+1)𝑛 × Pr [𝐼𝑉]

∑ Pr [𝑀ʹ =𝑀ʹ 𝑚1
ʹ ‖… … . ‖ 𝑚𝑑

ʹ] × 2−(𝑑+1)𝑛 × Pr [𝐼𝑉]

= Pr[𝑀 = 𝑚1 ‖… … . ‖ 𝑚𝑑]
For any message 𝑀ʹ:

Pr�𝐶 = 𝐼𝑉 ‖𝑐1‖… . . ‖𝑐𝑑‖ 𝜏�𝑀ʹ = 𝑚1
ʹ ‖… … . ‖ 𝑚𝑑

ʹ � =
= Pr[𝑐1‖… … . ‖ 𝑐𝑑 ‖𝜏�| 𝐼𝑉,𝑀ʹ] × Pr[𝐼𝑉 |𝑀ʹ]

= Pr[1 = 𝑚1⨁ 𝑐1‖… … . ‖𝑚𝑑⨁ 𝑐𝑑,𝐾𝑇 = ℎ𝑑+1⨁ 𝜏�𝐼𝑉,𝑀ʹ] × Pr [𝐼𝑉]
= 2−(𝑑+1)𝑛 × Pr[𝐼𝑉].

3.7.1 Classical attacks of cheating

The idea of authenticating a message is to assure receiver that the message is sent by a specified
legitimate sender, even in the presence of an attacker who can intercept message and send a fake
message to the receiver. When considering the authenticity of the message two classical attacks of
cheating are – impersonation and substitution attack.

Impersonation attack – The adversary constructs and sends a ciphertext 𝐶 ʹ to the receiver before
he sees the encryption of the message 𝑀. From the definition above the fact that the key 𝐾𝑇 is
uniformly random, the probability of success of an impersonation attack is at most 2−𝑛. If the
adversary makes 𝑞𝐼 impersonation attempts, then the probability that at least one of these
attempts will be successful is 1 − (1 − 2−𝑛)𝑞𝐼 ≤ 𝑞𝐼 × 2−𝑛.

78

Substitution attack – In case of substitution attack, the adversary intercepts the ciphertext 𝐶 of a
given message 𝑀 and tried to replace it with a replace with a different ciphertext 𝐶 ʹ which he
hopes to be accepted by the receiver. Following shows that the probability of success for this
attack is at most 𝑞𝑠 × 𝜖 , where 𝑞𝑠 is the number of substitution attempts made by the
adversary.

Let us assume that 𝐶 = 𝐼𝑉‖𝑐1�‖𝑐2‖… . . ��‖𝑐𝑑‖𝜏�� is the encrypted text for message 𝑀 and let
𝐶 ʹ = 𝐼𝑉ʹ�𝑐 ʹ1��𝑐 ʹ2‖… . . ���𝑐 ʹ𝑑‖𝜏��ʹ be the forged message constructed by the attacker to substitute the
original ciphertext. In a case where both the ciphertexts 𝐶 and 𝐶 ʹ differ only in their authentication
tags i.e., 𝜏 ʹ ≠ 𝜏, 𝐼𝑉 ʹ = 𝐼𝑉 and 𝑐𝑗 = 𝑐 �́� , 1 ≤ 𝑗 ≤ 𝑑, then the probability of successful substitution is
zero. Now let us consider an interesting case where the forged ciphertext 𝐶 ʹ is different from the
original ciphertext 𝐶 in at least one block that is different from the tag block.

Let 0 ≤ 𝑗 ≤ 𝑑 be the index of the first block where 𝐶 and 𝐶 ʹ differ, and let ∆𝑖𝑗+1 = 𝑐 �́� ⨁𝑐𝑗 be the
difference at the input of ℎ𝐾𝑗+1, with 𝑐0 = 𝐼𝑉 and 𝑐ʹ0 = 𝐼𝑉ʹ. Based on leaf-safe almost XOR

universal (LAXU) hash function and invertibility properties of ℋ, Pr[∆ℎ𝑗+1 = 0� 𝑀,𝐶,𝐶 ʹ] =
0 𝑎𝑛𝑑 ∀∆∈{0,1}𝑛,∆≠0 Pr�∆ℎ𝑗+1 = ∆�𝑀,𝐶,𝐶 ʹ� ≤ 𝜖. The probability Pr[∆ℎ𝑗+2 = 0� 𝑀,𝐶,𝐶 ʹ] is equal
to the probability that Pr[∆𝑖𝑗+2 = 0� 𝑀,𝐶,𝐶 ʹ], and is a most 𝜖. When the input different ∆𝑖𝑗+2 is
nonzero, we get that ∀∆∈{0,1}𝑛,∆≠0 Pr�∆ℎ𝑗+2 = ∆�𝑀,𝐶,𝐶 ʹ� ≤ 𝜖 and if continue in the similar
fashion, we get that ∀∆∈{0,1}𝑛 Pr[∆ℎ𝑑+1 = ∆�𝑀,𝐶,𝐶 ʹ] ≤ 𝜖. The forged ciphertext will only be
accepted as valid if ℎʹ𝑑+1⨁ 𝐾𝑇 = 𝜏ʹ, i.e., only if ∆ℎ𝑑+1 = ∆𝜏, where ∆𝜏 = 𝜏 ⨁ 𝜏ʹ. From the
previous analysis, this will happen with the probability no larger than 𝜖.
The probability that an adversary will be able to succeed with at least one substitution query is at
most 𝑞𝑆𝜖 and the probability of success with verification queries i.e., 𝑞𝑉 = 𝑞𝐼 + 𝑞𝑆 is at most 𝑞𝑉𝜖
due to the fast that 𝜖 ≤ 2−𝑛.

3.8 Security of ASC-1

The security in encryption designs can be classified according to the assumed computational
resources of an adversary. Security that holds when one assumes a suitable restriction on an
attacker’s computing power is called computational security whereas the security that holds even
with the unbounded computational capabilities of an attacker is called information-theoretic
security. In this section, we will cover both the cases and show if the underlying block cipher in
ASC-1 is secure. Additionally, we will also show where one cannot tell apart the case when ASC-1
uses random round keys from the case when it used round keys derived by a key scheduling
algorithm, then ASC-1 is secure authenticated encryption scheme.

79

3.8.1 The information-theoretic case

In order to establish the unconditional security of ASC-1, let us consider the case where scheme
uses random keys. Figure 3.10, shows the two round Substitution-Permutation Network (SPN)
structure. The input 𝑥 = 𝑥1‖… … . ‖𝑥𝑛 is an 𝑛 × 𝑚-bit string. The key addition operator is the
bitwise XOR operator. The non-linear substitution layer consists of 𝑛 S-boxes and each S-box is a
non-linear permutation that transforms an 𝑚-bit string into an 𝑚-bit string. The liner mixing layer
is defined by a 𝑛 × 𝑛 matrix. As shown in figure 3.10, the mixing layer is not included in the
second round since it does not affect our analysis. The leak Ι consists of 𝑠 values 𝑣1, … . . 𝑣𝑠 .

Linear mixing layer

S

k1,1

x1

S

k1,2

x2

S

k1,n-1

xn-1

S

k1,n

xn

S

k2,1

u1

k3,1

v1

y1

S

k2,2

u2

k3,2

v2

y2

..... S

k2,s

us

k3,s

vs

ys

.......

S

k2,n-1

un-1

yn-1

S

k2,n

un

yn

𝒍 = 𝒗𝟏‖𝒗𝟐‖�… . ‖𝒗𝒔

Figure 3.10: A two round SPN structure with a leak

80

Each possible key 𝑘1,1, … … ,𝑘1,𝑛,𝑘2,1, … … ,𝑘2,𝑛,𝑘3,1, … … ,𝑘3,𝑠 defines a function that maps the
input 𝑥 into an output 𝑦 and a leak l. The collection of such functions ℋ2𝑅 forms a LAXU hash
function family.

Lemma 1. Suppose that the keys in the transformation depicted in figure 4 are chosen uniformly at
random. Then, we have that

𝑃𝑟[∆𝑦 = ∆y |𝑥 = x, 𝑥 ʹ = x’, Ι = 𝑙] = Pr [∆𝑦 = ∆y | ∆𝑥 = x ⨁ x’].

Proof. Let a function ℎ is randomly drawn from the pool of functions ℋ2𝑅 , where ℎ is the key
𝑘1,1, … … , 𝑘1,𝑛,𝑘2,1, … … , 𝑘2,𝑛,𝑘3,1, … … , 𝑘3,𝑠 and let Ι be the leak that is acquired by applying ℎ to
𝑛-bit input string 𝑥 and let 𝑥ʹ be an input bit string distinct from 𝑥. The probability 𝑃𝑟[∆𝑦 = ∆
y|𝑥 = x, 𝑥 ʹ = x’, Ι = 𝑙] is the probability that the output difference 𝑦 ⨁𝑦ʹ is ∆y given 𝑥 = x,
𝑥 ʹ = x’ and Ι = 𝑙. Due to the initial key addition, this probability is equal to the probability Pr
[∆𝑦 = ∆y | ∆𝑥 = x ⨁ x’, Ι = 𝑙] that the output difference is ∆y given the input difference
∆x = x ⨁ x’ and the leak 𝑙. To prove this lemma, we use the following observations:

1. Pr [∆𝑢|∆𝑥, 𝑙] =Pr [∆𝑢|∆𝑥], where ∆𝑢 = (∆𝑢1, … . .∆𝑢𝑛), ∆𝑢𝑖 = 𝑢𝑖 ⨁ 𝑢ʹ𝑖. This observation
shows that, given the input difference ∆𝑥 the output different ∆𝑢 is independent of the
leak 𝑙 and this is because of the second key addition which makes the leak uniformly
distributed for any possible value ∆𝑢.

2. Pr [∆𝑦|∆𝑢, 𝑙] = ∏ Pr [𝑠
𝑖=1 ∆𝑦𝑖|∆𝑢𝑖, 𝑣𝑖] × ∏ Pr [𝑛

𝑖=𝑠+1 ∆𝑦𝑖|∆𝑢𝑖] . Given the difference ∆𝑢,
the probability of having a difference ∆𝑦𝑖 = 𝑦𝑖⨁ 𝑦ʹ𝑖 at the output of 𝑖-th S-box of the
second round is independent of the probability of having a difference ∆𝑦𝑗 , 𝑗 ≠ 𝑖 at the
output of some other S-box in the second round.

3. Pr[∆𝑦𝑖|∆𝑢𝑖, 𝑣𝑖] = Pr[∆𝑦𝑖|∆𝑢𝑖] , 𝑖 = 1, , 𝑠. After the leak 𝑙 = 𝑣1, … . . 𝑣𝑠. The intermediate
values are bit wise XOR-ed with a third key, this makes the input to the S-boxes uniformly
distributed and independent of the 𝑣𝑖 values.

 Based on the observations, following shows the proof of the theorem.

81

Pr[∆𝑦|∆𝑢, 𝑙] = �Pr[∆𝑦|∆𝑢,∆𝑥, 𝑙] Pr[∆𝑢|∆𝑥, 𝑙]
∆𝑢

= �Pr[∆𝑦|∆𝑢, 𝑙] Pr[∆𝑢|∆𝑥]
∆𝑢

= �Pr[∆𝑢|∆𝑥] × �Pr[∆𝑦𝑖|∆𝑢𝑖, 𝑣𝑖]
𝑠

𝑖=1

 × � Pr[∆𝑦𝑖|∆𝑢𝑖]
𝑛

𝑖=𝑠+1∆𝑢

= �Pr[∆𝑢|∆𝑥] × �Pr[∆𝑦𝑖|∆𝑢𝑖]
𝑠

𝑖=1

 × � Pr[∆𝑦𝑖|∆𝑢𝑖]
𝑛

𝑖=𝑠+1∆𝑢

= �Pr[∆𝑢|∆𝑥] × �Pr[∆𝑦𝑖|∆𝑢𝑖]
𝑠

𝑖=1

∆𝑢

= �Pr[∆𝑢|∆𝑥] × Pr[∆𝑢|∆𝑥]
∆𝑢

= Pr [∆𝑦|∆𝑥]

Corollary 1. The family of functions ℋ2𝑅 defined by the 2-round transformation depicted in figure X
is 𝜀 −LAXU2 with 𝜀 =DP2R , where DP2R is the maximum differential probability of the 2-round SPN
structure when there is no leak.

Proof. Based on previous lemma, we get that 𝑃𝑟[∆𝑦 = ∆y |𝑥 = x, 𝑥 ʹ = x’, Ι = 𝑙] = Pr [∆𝑦 = ∆y
| ∆𝑥 = x ⨁ x’] ≤ DP2R

The results shown till now are based on two round SPN structure. To show that one can use four
AES rounds to construct a LAXU hash function, we will first consider the composition of
transformations shown in figure 3.11. In the next lemma we will show the independence of the
differential probability of 𝐹1 from the leak value 𝑙2 and vice versa. This could be achieved because
of the key addition operation between 𝐹1 and 𝐹2 .

82

F1

F2

x1

x2

k1

k

k2

y1

y2

l2

l1

Figure 3.11: A composition of a transformation 𝐹1, key addition and transformation 𝐹2.

Lemma 2. The following holds for the differential probabilities of the transformations 𝐹1 and 𝐹2
shown in figure 3.11:

Pr [∆𝑦1 = ∆ y1 | ∆𝑥1 = ∆x1, 𝛪1 = 𝑙1, 𝛪2 = 𝑙2] = Pr [∆𝑦1 = ∆ y1 | ∆𝑥1 = ∆x1, 𝛪1 = 𝑙1]

and

Pr [∆𝑦2 = ∆ y2 | ∆𝑦1 = ∆ y1,𝛪1 = 𝑙1, 𝛪2 = 𝑙2] = Pr [∆𝑦2 = ∆ y1| ∆𝑦1 = ∆ y1 ,𝛪2 = 𝑙2]

Proof.

Pr [∆𝑦1 = ∆ y1| ∆𝑥1 = ∆x1, 𝛪1 = 𝑙1, 𝛪2 = 𝑙2]
= ∑ Pr [∆𝑦1 = ∆y1 y1 ,𝑦1 = y1 | ∆𝑥1 = ∆x1, 𝛪1 = 𝑙1, 𝛪2 = 𝑙2]
= ∑ (Pr [∆𝑦1 = ∆y1 y1|,𝑦1 = y1 , | ∆𝑥1 = ∆x1, 𝛪1 = 𝑙1, 𝛪2 = 𝑙2] ×
× Pr [,𝑦1 = y1 , | ∆𝑥1 = ∆x1, 𝛪1 = 𝑙1, 𝛪2 = 𝑙2])
= ∑ (Pr [∆𝑦1 = ∆y1 y1 |,𝑦1 = y1 , | ∆𝑥1 = ∆x1, 𝛪1 = 𝑙1] ×
× Pr [,𝑦1 = y1, | ∆𝑥1 = ∆x1, 𝛪1 = 𝑙1])
 = Pr [∆𝑦1 = ∆ y1 | ∆𝑥1 = ∆x1, 𝛪1 = 𝑙1].

Here we used the fact that

83

Pr [∆𝑦1 = ∆ y1 |𝑦1 = y1 ,∆𝑥1 = ∆x1, 𝛪1 = 𝑙1, 𝛪2 = 𝑙2]

=
Pr[∆𝑦1 = ∆y1 ,𝑦1 = y1 ,∆𝑥1 = ∆x1, 𝛪1 = 𝑙1, 𝛪2 = 𝑙2]

Pr[𝑦1 = y1 ,∆𝑥1 = ∆x1, 𝛪1 = 𝑙1, 𝛪2 = 𝑙2]

=
Pr[𝛪2 = 𝑙2 |∆𝑦1 = ∆y1 , 𝑦1 = y1 ,∆𝑥1 = ∆x1, 𝛪1 = 𝑙1]

Pr[𝛪2 = 𝑙2 |𝑦1 = y1 ,∆𝑥1 = ∆x1, 𝛪1 = 𝑙1] ×

×
Pr[∆𝑦1 = ∆y1 ,𝑦1 = y1 ,∆𝑥1 = ∆x1, 𝛪1 = 𝑙1]

Pr[𝑦1 = y1 ,∆𝑥1 = ∆x1, 𝛪1 = 𝑙1]

=
Pr[𝛪2 = 𝑙2] × Pr [∆𝑦1 = ∆y1 , 𝑦1 = y1 ,∆𝑥1 = ∆x1, 𝛪1 = 𝑙1]

Pr[𝛪2 = 𝑙2] × Pr [𝑦1 = y1 ,∆𝑥1 = ∆x1, 𝛪1 = 𝑙1]

= Pr[∆𝑦1 = ∆y1 | 𝑦1 = y1 ,∆𝑥1 = ∆x1, 𝛪1 = 𝑙1]

The equalities Pr[𝛪2 = 𝑙2 |𝑦1 = y1 ,∆𝑥1 = ∆x1, 𝛪1 = 𝑙1] = Pr[𝛪2 = 𝑙2] and Pr[𝛪2 =
 𝑙2 |∆𝑦1 = ∆y1, 𝑦1 = y1 ,∆𝑥1 = ∆x1, 𝛪1 = 𝑙1] = Pr[𝛪2 = 𝑙2] shows that the leak 𝑙2 is
independent of ∆x1,y1,∆y1 and leak 𝑙1 , this is because the input x2 is uniformly distributed and
independent of these values. Similarly we can shown that

Pr [𝑦1 = y1 | ∆𝑥1 = ∆x1, 𝛪1 = 𝑙1, 𝛪2 = 𝑙2] = Pr [𝑦1 = y1 | ∆𝑥1 = ∆x1, 𝛪1 = 𝑙1]

This proves the first part of the proof. The second part of the lemma can be proved in a similar
fashion.
Let us now look into the situation shown in figure 3.12, where we say that the knowledge of the
leak values 𝛪ʹ = (𝑙1………….𝑙𝑠) does not change the output differential probabilities of the function 𝐹
. A keyed non-linear function 𝐹 is applied to an input 𝑥 = (𝑥1 … … … . 𝑥𝑛) to produce the output 𝑦 =
(𝑦1 … … … . 𝑦𝑛) of n output values. Without loss of generality, we assume that the first 𝑠 output
values are leaked after a uniformly random key is XOR-ed with them.

x1 xs xs+1 xn

.......

F
y1

k2,1

l1

...

ys

k2,s

ls

ys+1

............

yn

k l

Figure 3.12: The first s output of a non-linear function F are “leaked” after a uniformly random key is added

84

to them

Lemma 3. Let 𝒐 = (𝑙1, … … . , 𝑙𝑠,𝑦𝑠+1, … … . , 𝑦𝑛) denote the output of the transformation shown in
figure XX. The following holds for the output differential probability ∆𝒐.

Pr [∆𝒐 (≡ ∆𝑦) = ∆𝑜 | ∆𝑥 = ∆x, 𝛪 = 𝑙, 𝛪ʹ = 𝑙’]
= ∑ Pr [𝑦 ∆𝒐 = ∆𝑜,𝑦 = y|∆𝑥 = ∆x, 𝛪 = 𝑙, 𝛪ʹ = 𝑙’]
= ∑ Pr [𝑦 ∆𝒐 = ∆𝑜,𝑦 = y|∆𝑥 = ∆x, 𝛪 = 𝑙, 𝛪ʹ = 𝑙’] × Pr [𝑦 = y|∆𝑥 = ∆x, 𝛪 = 𝑙, 𝛪ʹ = 𝑙’]
= ∑ Pr [𝑦 ∆𝒐 = ∆𝑜,𝑦 = y|∆𝑥 = ∆x, 𝛪 = 𝑙] × Pr [𝑦 = y|∆𝑥 = ∆x, 𝛪 = 𝑙]
= Pr [∆𝒐 = ∆𝑜|∆𝑥 = ∆x, 𝛪 = 𝑙]

Theorem 2. Suppose that the initial state and all the keys in ASC-1 are uniformly random, then the
scheme provides:

- Perfect secrecy and
- Unconditional ciphertext integrity, where the probability of success of any adversary

making 𝑞𝑉 verifying queries is at most 𝑞𝑉 × 2−113.

Proof. In this theorem, we show that if the round keys are selected uniformly at random then the
family of functions defined by four rounds of AES with leak extraction is an 𝜀-LAXU2 hash function
family with 𝜀 = 2−113. The keys used in the first round of 4R-AES transformation play the same role
as key 𝑘𝑖 of the construction shown in figure 3.9. The transformation defined by four rounds of
AES is a bijection, and due to the uniform distribution of keys the leaks are uniformly random and
independent of the input. Hence we can say that sufficient conditions of Theorem 1 are satisfied
and the scheme provides perfect secrecy and unconditional ciphertext integrity.
As mentioned before, in our specification we assume that AddRound key i.e., key addition is the
first operation in the round instead of last one as in AES specification. Additionally, all the keys are
independent with uniform probability distribution. We use following notation:

- 𝑥𝑖 , 𝑖 = 0, … . . ,3 is the input to the 𝑖-th round and consists of 16 bytes x𝑖,0, … . . , x𝑖,15;

- 𝑦𝑖, 𝑖 = 0, … . . . ,3 is the output of the MixColumns transformation of the 𝑖-th round and
consists of 16 bytes y𝑖,0, … . . , y𝑖,15;

- 𝒛𝑖, 𝑖 = 0, … … ,3 is the state after the leak extraction layer of the 𝑖-th round and consists of
16 bytes z𝑖,0, … … . , z𝑖,15;

85

- 𝛪𝑖, 𝑖 = 0, … . . . ,3 is the leak extracted in the 𝑖-th round and consists of 4 bytes 𝑙𝑖,0

, … … . , 𝑙𝑖,15;

Let x´0 and x´´0 are two distinct input values, and let us consider the output difference ∆𝒛𝟑 given
the input difference ∆x 0 = x´0 ⨁ x´´0. By applying previous lemmas, we get:

Pr [∆𝒛𝟑 = ∆𝑧3| 𝑥´0 = x´0 , 𝑥´´0 = x´´0, 𝛪0 = 𝑙0, 𝛪1 = 𝑙1, 𝛪2 = 𝑙2, 𝛪3 = 𝑙3]
= 𝑃𝑟 [∆𝒛𝟑 = ∆𝑧3| ∆𝑥0 = x´0⨁ x´´0 , 𝛪0 = 𝑙0, 𝛪1 = 𝑙1, 𝛪2 = 𝑙2, 𝛪3 = 𝑙3]
= ∑ (Pr [∆𝑧1 ∆𝒛𝟏 = ∆𝑧1| ∆𝑥0 = x´0⨁ x´´0 , 𝛪0 = 𝑙0, 𝛪1 = 𝑙1, 𝛪2 = 𝑙2, 𝛪3 = 𝑙3] × (1)
× Pr [∆𝒛𝟑 = ∆𝑧3| ∆𝒛𝟏 = ∆𝑧1 ,∆𝑥0 = x´0⨁ x´´0 , 𝛪0 = 𝑙0, 𝛪1 = 𝑙1, 𝛪2 = 𝑙2, 𝛪3 = 𝑙3]
= ∑ (Pr [∆𝑧1 ∆𝒛𝟏 = ∆𝑧1| ∆𝑥0 = x´0⨁ x´´0 , 𝛪0 = 𝑙0, 𝛪1 = 𝑙1] × (2)
Pr [∆𝒛𝟑 = ∆𝑧3| ∆𝒛𝟏 = ∆𝑧1, 𝛪2 = 𝑙2, 𝛪3 = 𝑙3])
= ∑ (Pr [∆𝑧1 ∆𝒛𝟏 = ∆𝑧1| ∆𝑥0 = x´0⨁ x´´0 , 𝛪0 = 𝑙0] × (3)
× Pr [∆𝒛𝟑 = ∆𝑧3| ∆𝒛𝟏 = ∆𝑧1 , 𝛪2 = 𝑙2]
= ∑ (Pr [∆𝑧1 ∆𝒛𝟏 = ∆𝑧1| ∆𝑥0 = x´0⨁ x´´0] × (4)
Pr [∆𝒛𝟑 = ∆𝑧3| ∆𝒛𝟏 = ∆𝑧1])
= Pr [∆𝒛𝟑 = ∆𝑧3| ∆𝑥0 = x´0⨁ x´´0]
≤ DP4rAES,

Where DP4rAES is the differential probability of four rounds of AES with no leak extraction and the
rounds keys used in the transformation are random. The equation (2) follows from Lemma 2, the
equation (3) follows from Lemma 3, and the equation (4) follows from Lemma 1.

Based on the previous inequality in mind, we get that the family of function defined by four
rounds of AES with leak extraction is an 𝜀-LAXU2 hash function family with 𝜀 = DP4rAES ≤ 2−113
[LKJ].

3.8.2 Computational security analysis of ASC-1

Based on our previous proofs, we are able to show that ASC-1 is unconditionally secure
authenticated encryption scheme provided that all the keys and the initial state are random.
However, the key and the initial state of ASC-1 are derived using an underlying block cipher (AES)
and a key scheduling algorithm. The security of the scheme in this case is based on two
assumptions:

- The block cipher (e.g., AES) is indistinguishable from a random permutation, and

86

- One cannot tell apart the case when the initial state and the keys are random from the

case when the initial state 𝑋0 and the tag key 𝐾3,0 are random, and the round keys are
derived by applying a key scheduling algorithm to the random initial key 𝐾1,0�𝐾2,0.�

The first assumption is a standard assumption and it is used in many security proofs such as modes
of operations of the block cipher. On the other side, the second assumption is a novel one and
should be studied in detail. The second assumption claims that an attacker cannot win the game of
distinguishing if the initial state and the keys are random or not. The attacker is given two oracles,
an encryption oracle and a decryption oracle. A random coin 𝑏 is flipped. If the outcome is zero,
then a large table is generated with random strings, the number of strings in the table is equal to
the maximum number of messages that can be encrypted. Now when the attacker submits an
encryption query, the encryption oracle get the next random string from the table, extracts the
initial value and all the rounds keys from the random string and encrypts the message. Similarly,
when the attacker submits the decryption query, the decryption oracle gets the random string
corresponding to the counter value given in the ciphertext, and uses it to decrypt the ciphertext.
On the other hand, if the outcome of coin flipping is one, then the random string in the table
consists of four 128-bit random values: an initial start 𝑋0 and three keys 𝐾1,0 ,𝐾2,0 and 𝐾3,0. When
the attacker submits the encryption query, the encryption oracle uses the next available initial
state and keys to encrypt the message following the ASC-1 algorithm. When decryption query is
made then the decryption oracle uses the initial state and keys corresponding to the counter value
given in the ciphertext to decrypt the ciphertext. The goal of the adversary is to guess the outcome
of the coin flipping. The attacker wins if it can guess the value of b with probability significantly
greater than 1/2.

As mentioned in the previous section the design of ASC-1 was inspired by the LEX stream cipher,
we are going to address the known attacks on LEX:

- The attack presented by Orr Dunkelman et al. [OD’08] showed that there are special
difference patterns that can be observed in the output key stream and these patterns can
be used to retrieve the secret key. This attack works under the assumption that single key
is used to generate the key stream of at least 𝟐𝟑𝟔.𝟑 bytes (number of bytes used for
successful attack). However, unlike LEX, we do not use the same round keys repeatedly.
So, in order for a differential cryptanalysis to work, one has to be able to guess the round
key differences. Since these round keys are far apart in the key scheduling process, the
above mentioned attack cannot be applied to our scheme.

- The attack presented in [HWU] showed that the LEX stream cipher is vulnerable to slide
attack. This attack looked for the repetitions of the state, which can easily be detected

87

because same states will generate the same pseudo-random key. The round keys in LEX are
reused and the state of LEX is 128-bits, it is quite possible to find collisions. Whereas in our
scheme, the state is a 384-bit string and it will be very hard to find any collisions. After
analyzing, we can carefully deduce that ASC-1 is safe against slide attack.

3.9 Conclusions

In this chapter we have introduced the concept of Authenticated Encryption (AE) scheme – a
scheme designed for protecting both message´s privacy and its authenticity. In this scheme, the
encryption algorithm takes a key and a plaintext and returns a ciphertext. Given the ciphertext and
the secret key, the decryption algorithm returns plaintext when the ciphertext is authentic; and
invalid when the ciphertext is not authentic. Many solutions have existed for decades for the
privacy and authentication problems, and the traditional approach for solving this problem is by
combining them in a straightforward manner using so-called “generic composition”. However this
is not a very efficient way of achieving both the security goals, the time it takes to encrypt and
authenticate make twice as slow as either encryption or authentication. For past few years, there
have been number of constructions that can achieve both privacy and authenticity, often almost
twice as fast as any solution which uses generic composition.

To analyze the security of the AE schemes three generic composition methods are considered
namely Encrypt-and-MAC, MAC-then-Encrypt, and Encrypt-then-MAC. We gave a brief overview of
these is section 3.1.1, and show the security comparison in different composition.

With the popularity of highly-efficient one-pass AE schemes, several patents cover the usage of
fast single-pass schemes. To avoid this two pass combined mode were developed, where one pass
is used for encryption and another one for authentication. In section 3.2, we discussed two pass
combined mode followed with the analysis of such schemes ex., CCM (CBC MAC with Counter
Mode) and EAX mode.

Section 3.3 gives an overview of one-pass combined mode with few single-pass schemes proposed
in the past. As opposed to two pass the goal of single pass authenticated encryption is to achieve
faster encryption and message authentication in a single pass. When used for large messages
these schemes are as fast as conventional encryption and twice as fast as the generic approach,
such schemes were first proposed by jutla in 2000 and immediately after that Gligor, also
proposed two such schemes. AE stream ciphers are discussed in section 3.4. Instead of block
ciphers, stream ciphers are used to provide privacy and authentication. Disadvantage of such
approach is that one cannot reduce the security of the scheme to a well-known problem such as
the indistinguishability of block cipher from random permutation.

88

In section 3.5, we proposed a single pass AE scheme. The design of the scheme has its roots in
message authentication and encryption scheme that uses four rounds of AES as a building block.
The scheme is inspired from LEX stream cipher, the ALRED MAC scheme and the MAC schemes
proposed in [GJA,KMI]. Section 3.8 discusses the security of the scheme. Many approaches can be
identified to evaluate the security of the cryptosystem. In our case we have discussed Information
theoretic approach and Computational security of the scheme. We have argued the security of
ASC-1 by showing that it is secure if one cannot distinguish the case when the round keys are
uniformly random from the case when the round keys are derived by the key scheduling algorithm
of ASC-1. Since our proposed design is inspired by the LEX stream cipher, we have also addressed
known attacks on LEX and showed that our system is secure against those attacks.

References

[MBE] M. Bellare and C. Namprempre, Authenticated Encryption: Relations Among Notions and Analysis of
the Generic Composition Paradigm, In Advances in Cryptology - ASIACRYPT 2000, LNCS vol. 1976, pp. 531-
545, Springer-Verlag, 2000.

[JKA] J.Katz and M. Yung. Unforgrable encryption and adaptively secure modes of operation.Fast Software
Encryption’00, LNCS 2001, Vol. 1978/2001, pp.25-36, Springer, 2001

[CSJ]. C.S. Jutla, Encryption Modes with Almost Free Message Integrity. Advances in Cryptology -
EUROCRYPT 2001, LNCS vol. 2045, pp. 529{544, Springer, 2001.

[VGL]. V. Gligor and P. Donescu. Fast Encryption and Authentication: XCBC Encryption and XECB
Authentication Modes. Presented at the 2nd NIST Workshop on AES Modes of Operation, Santa Barbara, CA,
August 24, 2001.

[VGL1]. V. Gligor and P. Donescu. Fast Encryption and Authentication: XCBC Encryption and XECB
Authentication Modes, In the Proceedings of FSE 2002, LNCS vol. 2355, pp. 1-20, Springer-Verlag, 2002.

[PRO]. P. Rogaway, M. Bellare, J. Black, and T. Krovetz. OCB: A block-cipher mode of operation for efficient
authenticated encryption, In the Proceedings of 8th ACM Conf. Comp. and Comm. Security (CCS), 2001.

[GBE]. G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. Duplexing the Sponge: Authenticated
Encryption and Other Applications. In the Second SHA-3 Candidate Conference, 2010.

89

[NFE]. N. Ferguson, D. Whiting, B. Schneier, J. Kelsey, S. Lucks, and T. Kohno. Helix: Fast Encryption and
Authentication in a Single Cryptographic Primitive. In the Proceedings of FSE 2003, LNCS vol. 2887, pp. 330-
346, Springer, 2003.

[PHA]. P. Hawkes and G. Rose. Primitive Specification for SOBER-128, Available from
http://www.qualcomm.com.au/Sober128.html .

 [SBE] S.Bellovin. Problem areas for the IP security protocols. In Proceedings of the Sixth USENIX
SecuritySymposium ,pp. 1–16, 1996.

[JBL]J. Black. Authenticated encryption. In H. van Tilborg, editor, Encyclopedia of Cryptography and
Security, pages 11–21. Springer-Verlag, 2005.

[JBL1] J. Black, and H. Urtubia. Side-channel attacks on symmetric encryption schemes: The case for
authenticated encryption. In Proceedings of the Eleventh USENIX Security Symposium, D. Boneh, Ed., pp.
327–338, 2002.

[TYL] T. Ylonen and C. Lonvick. The secure shell (SSH) transport layer protocol. RFC 4253, Jan.2006.

[WDA] W. Dai. An Attack Against SSH2 Protocol. Email to the SECSH Working Group available from
ftp://ftp.ietf.org/ietf-mail-archive/secsh/2002-02.mail, 6th Feb. 2002.

[MEB1] M. Bellare, T. Kohno, and C. Namprempre. Breaking and Provably Repairing the SSH Authenticated
Encryption Scheme: A Case Study of the Encode-then-Encrypt-and-MAC Paradigm. ACM Transactions on
Information and Systems Security, 7(2):206–241, 2004.

[MRA] M.R.Albrecht, K.G.Paterson, and G.J.Watson. Plaintext Recovery Attacks Against SSH. In
Proceedings of the 30th IEEE Symposium on Security and Privacy. 2009.

[KGP]K.G. Paterson and G.J. Watson. Plaintext-Dependent Decryption: A Formal Security Treatment of SSH-
CTR.” In H. Gilbert (ed.), EUROCRYPT 2010, LNCS Vol. 6110, Springer, pp. 345-361,2010.

[PKO] P.Kocker, A.Freier, and P.Karlton. The SSL Protocol Version 3.0. Netscape Communications Corp.,
(Mar. 1996), home.netscape.com/eng/ssl3/index.html

[SHS]NIST. Secure hash standard, federal information processing standards publication 180-1, April 1995.
http://www.itl.nist.gov/fipspubs/fip180-1.htm.

[RON]R. Rivest. The MD5 message digest algorithm, RFC-1321,1992.

[DWA]D. Wagner and B. Schneier. Analysis of the SSL 3.0 protocol. In 2nd USENIX Workshop on Electronic
Commerce, 1996. Revised version of November 19, 1996 available
from http://www.cs.berkeley.edu/~daw/ssl3.0.ps.

[HKR]H. Krawczyk. The order of encryption and authentication for protecting communications (or:

http://www.itl.nist.gov/fipspubs/fip180-1.htm�
http://www.cs.berkeley.edu/~daw/ssl3.0.ps�

90

How secure is SSL?). In Advances in Cryptology CRYPTO 2001, volume 2139 of Lecture Notes in Computer
Science. Springer-Verlag Heidelberg, January 2001

[SKE] S. Kent and R.Atkinson. Security Architecture for the Internet Protocol, RFC 2401, November 1998.

[SKE1]S. Kent and R. Atkinson. IP Encapsulating Security Payload (ESP), RFC 2406, Nov. 1998.

[SKE2]S. Kent. IP Encapsulating Security Payload (ESP), RFC 4303 (obsoletes RFC 2406), Dec. 2005.

[DWH]D. Whiting, R. Housley, and N. Ferguson. Counter with CBC-MAC (CCM), RFC 3610, Internet Eng. Task
Force, Sept. 2003.

[MEB2] M. Bellare, P.Rogaway, and D. Wagner. EAX : a conventional authentication encryption mode. FSE
2004.

[TKO] T. Kohno, J. Viega, and D. Whiting. CWC: A high-performance conventional authenticated encryption
mode. In W. Meier and B. Roy, editors, Fast Software Encryption, FSE 2004,Springer-Verlag, 2004.

[CJU]C. Jutla. Encryption modes with almost free message integrity. In B. P¯tzmann, editor, Advances in
Cryptology EUROCRYPT 2001, volume 2045 of Lecture Notes in Computer Science, pages 529{544.
Springer-Verlag, Berlin, Germany, May 6-10, 2001.

[VGL]V. Gligor, P.Donescu. Extended Cipher Block Chaining Encryption, 2000. Available at
http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/xcbc/xcbc-spec.pdf .October, 2004.

[RRO]R. Rogaway. OCB Mode: Parallelizable Authenticated Encryption. ACM Transactions on Information
and System Security. Vol 6, pp 365-403, 2003.

[NFE]N.Ferguson, D.Whiting,and B.Schneier, J.Kelsey, S.Lucks, and T.Kohno. Helix: Fast encryption and
authentication in a single cryptographic primitive. In Fast Software Encryption, 10th International Workshop,
FSE’03 T. Johansson, Ed., Lecture Notes in Computer Science, Springer-Verlag, 2003.

[PHA]P.Hawkes, and G. Rose. Primitive specification for SOBER-128. Cryptology ePrint Archive Report
2003/48. April 2003.

[MUL] F. Muller. Differential Attacks against the Helix Stream Cipher. In Bimal K. Roy and Willi Meier,
editors, Fast Software Encryption, 11th International Workshop, FSE'04, volume 3017 of Lecture Notes in
Computer Science, pages 94-108. Springer-Verlag, 2004.

[SPA] S.Paul , and B.Preneel : Near Optimal Algorithms for Solving Differential Equations of Addition with
Batch Queries. In: Maitra, S., Madhavan, C.E.V., Venkatesan, R. (eds.) INDOCRYPT 2005. LNCS, vol. 3797, pp.
90–103. Springer, Heidelberg (2005).

[DWA]D.Watanabe and S. Furuya. A MAC Forgery Attack on SOBER-128. IN B.Roy and W. Meier, Editors,
Fast Software Encryption-2204, volume 3017 of Lecture notes in Computer Science pages 472-482,
springer, 2004.

91

[SKG]G.Jakimoski and S.Khajuria. ASC-1: An Authenticated Encryption Stream Cipher. Selected Areas in
Cryptography (SAC). 18th International Workshop, LNCS 7118, Springer, pp. 356-372, 2012.

 [ABI]A. Biryukov. The Design of a Stream Cipher LEX," In the Proceedings of SAC2006, LNCS vol.4536,
pp.67-75, Springer, 2007.

[JDE]J. Daemen and V. Rijmen. A New MAC Construction ALRED and a Specific Instance ALPHA-MAC," In the
Proceedings of FSE 2005, LNCS vol. 3557, Springer, pp. 1-17, 2005.

[JDE1] J. Daemen and V. Rijmen. The Pelican MAC Function," IACR ePrint Archive, 2005.

[GJA]G. Jakimoski and K.P. Subbalakshmi. On Effcient Message Authentication Via Block Cipher Design
Techniques," In Advances in Cryptology - ASIACRYPT 2007, LNCS vol. 4833, pp. 232-248, Springer-Verlag,
2007.

[HWU]H. Wu, and B. Preneel. Resynchronization Attacks on WG and LEX, Fast Software Encryption 2006,
LNCS 4047, pp. 422-432, Springer-Verlag,2006.

[KMI]K. Minematsu and Y. Tsunoo. Provably Secure MACs from Differentially- Uniform Permutations and
AES-Based Implementations," In the Proceedings of FSE 2006, LNCS 4047, Springer, pp. 226-241, 2006.

[SH’49] C.Shannon. Communication theory of secrecy systems. Bell System Technical Journal 28 , 656 – 715,
1949.

[SGM] S. Goldwasser and M. Bellare, Summer course cryptography and computer security at MIT, 1996–
1999, Lecture Notes on Cryptography, August 1999.

[OD’08]O. Dunkleman and N. Keller. A New Attack on the LEX Stream Cipher, Advances in Cryptology -
ASIACRYPT 2008, LNCS vol. 5350, pp. 539{556, Springer,2008.

 [LC’79]L. Carter and M. Wegman. Universal hash functions, Journal of Computer and System Sciences 18,
pp. 143–154, 1979.

[MW’81]M.Wegman and L. Carter, New hash functions and their use in authentication and set equality,
Journal of Computer and System Sciences, vol. 22, pp. 265–279, 1981.

[LKJ]L. Keliher and J. Sui. Exact Maximum Expected Differential and Linear Probability for 2-Round
Advanced Encryption Standard (AES), IACR ePrint Archive, 2005.

[SKM]S. Kavut and M.D. Yucel. Slide Attack on Spectr-H64. In Alfred Menezes and Palash Sarkar, editors,
INDOCRYPT, volume 2551 of LNCS, pages 34-47. Springer, 2002.

92

93

PART II – Implementation & Results

94

95

4
Field Programmable Gate Arrays (FPGAs)

With the development of advanced field-programmable devices the process of designing digital
hardware has changed significantly over the past few years. Unlike prior to the discovery of these
programmable logic, designers had to use specialized integrated circuits, each of which contained
just a few gates known as discrete logic. Even to design a reasonably complex device, designers
had to mount few tens of these chips on one board. This led to performance issues and more
complex board. The first type of user-programmable chip that could implement logic circuits was
the Programmable Read-Only Memory (PROM) [SBJ]. However PROMs were considered an
inefficient architecture because logic functions rarely need more than a few product terms and a
PROM contains a full decoder for its address inputs. So, PROMs were rarely used in practice for
that purpose. The first device developed in 1970s by Philips, specifically for implementing logic
circuit was the Programmable logic array (PLA). PLAs were one-time programmable chips
consisting of two levels of logic gates: a programmable “wired” AND-plane followed by a
programmable “wired” OR-plane. Figure 4.1 shows the structure of PLA, its inputs and
complements are AND-ed together and connected to OR-plane output.

A

B

B B A A AB

AB

0

AB + AB

Figure 4.1: Programmable-Logic-Arrays

As a contribution to PLA architecture, Complex Programmable Logic Device (CPLD) chips include

96

PLD-like (Programmable Logic Device, usually a PLA) blocks also known as macrocells, at the
borders of the chip, and a connection matrix located at the central part. CPLD is a more complex
PLD that consists of multiple PLDs on a single chip with programmable interconnects. CPLDs are
usually Flash-based, that is, the configuration of marcocells and the interconnection matrix is
defined by contents of the on-chip flash memory. It means that CPLD need not to be configured
after each power-up, unlike the SRAM-based FPGAs [BZE].

4.1 FPGA Architecture

Field programmable gate arrays (FPGAs) are classified into three categories: SRAM – based on
static memory, Antifuse – one-time programmable and EPROM / EEPROM / Flash based – Erasable
Programmable Read-only memory. Here we will be mainly focusing on SRAM-based FPGAs. SRAM-
based FPGA is a semiconductor device comprises of an array of programmable logic blocks,
surrounded by programmable I/O and connected by a programmable routing matrix. These are
programmed by loading appropriate value into SRAM on the chip.

Programmable
Interconnects

Programmable
Interconnects

Programmable
Interconnects

Programmable
Interconnects

Programmable
Interconnects

Programmable
Interconnects

Programmable
Interconnects

Programmable
Interconnects

Programmable
Interconnects

Logic
Block

Logic
Block

Logic
Block

Logic
BlockI/O Block

I/O Block

I/O Block I/O Block

...............

...............

Figure 4.2: Field Programmable Gate Array

97

As shown in figure 4.2, these programmable logic blocks can perform the function of basic logic
gates such as AND or XOR, or more complex combinational functions such as decoders or simple
mathematical functions. Logic functions are implemented in small lookup tables called LUT. A logic
block consists of a LUT and some flip-flops, connections between LUT and flip-flops are quite fast
as the wires within the logic block are quite short. There are also short distance fast connections
to and from neighboring logic blocks. These are normally used for regular structures such as
adders and counters. Whenever a function larger than LUT need to be implemented, neighboring
LUTs can be borrowed, but with the cost of significant overhead in terms of propagation delay
(lower speed performance).

A hardware description language (HDL) provided for the user defines the behavior of the FPGA.
Common HDLs are VHDL and Verilog. The unit of HLD text is processed by the design tools ex.,
Xilinx-ISE, a technology-mapped netlist is generated. The netlists are designed according to the
specification of the FPGA architecture and fitted to that specific FPGA using a process called place-
and-route. Before validating the map, place and route results, user also have the possibility to run
different verification methods and simulations of the design. Once the design and validation
process is complete, the binary file is generated to (re)configure the FPGA [XLX].

4.1.1 FPGA Implementation Flow

Before validating the design for implementation, an FGPA application developer first simulate the
design at multiple stages. All simulators come with IEEE precompiled libraries. For a new design a
new library is created and designated as the working library before Register transfer level (RTL)
and testbench code can be compiled into it. RTL describes how data is transformed as it is passed
from register to register and testbench help the developer to verify that the design is correct.
After simulating, the design is synthesized, where the VHDL code is compiled and mapped to a
netlist. The netlist is further transformed into gate level description where simulation is repeated
to check for warnings and error reports. Before downloading the design to the FPGA, the
implementation tool needs to know the exact FPGA part to target. As shown in the figure 4.3,
performance objectives are communicated to the implementation tools through timing
constraints, this tells the tool how fast the design must operate and which parts of the design
should have the first allocation of logic and routing resources. Next the mapper takes the
elements from the netlist and packs them into the logic components of the chosen FPGA, then the
packed components are placed onto the array of components sites across the FPGA fabric. Finally
a bit stream is generated and ready for downloading to the FPGA. In this thesis, Xilinx-Spartan 3AN
is used as a test bed for implementation of our authenticated encryption stream cipher.

98

Select FPGA Part

Read netlist

Specify timimg/placement Contraints

Map

Place & Route

Check warning and timing reports

Perform Timing Analysis

Generate Programming File

Figure 4.3: Xilinx implementation Flow

4.1.2 Xilinx Spartan 3AN FPGA

Spartan 3AN FPGA is a highly integrated device targeted for the cost-conscious and high volume
market. This platform combines the best attributes of SRAM-based technology with reliable non-
volatile flash technology in a single-chip solution. Spartan 3AN platform also provides advanced
security features that safeguard against reverse-engineering, cloning and unauthorized
overbuilding along with one of the industry’s largest user flash [XLXS].

99

Figure 4.4: Xilinx Spartan 3AN

The Spartan 3AN family is available in five non-volatile device options, with system gates ranging
from 50K to 1.4M gates, up to 576Kb block RAM, 16 Mb of total embedded flash, and I/O ranging
from 108 to 502[XLXS]. The Spartan family builds on the success of the earlier Spartan-IIE family by
increasing the amount of logic resources, the capacity of internal RAM, the total number of I/Os,
and the overall level of performance as well as by improving clock management functions. Lots of
enhancements are driven from the Virtex-II platform technology [XLX3]. Because of its low cost
Spartan 3- FPGAs are perfectly match for wide range of consumer electronics applications,
including broadband access, home networking and digital television equipment. The Spartan-3
family is a superior alternative to mask programmed ASICs; it also avoids the initial high cost and
the lengthy development cycles. FPGAs in general, permits design upgrades in the field with no
hardware replacement as compared to ASICs. Xilinx security division has designed a variety of
security solutions for FPGAs as mentioned above. Variety of security solution as designed and
implemented for high performance FPGA like Virtex-5 and above, which includes single chip

100

security solutions in collaboration with National Security Agency (NSA) [XLXN]. Also volume design
security solution for Spartan – 3A family which is called Device DNA [XLXD], but the security
threats addressed by Xilinx are limed and very specific to the applications [XLXA].

4.2 Role of FPGAs in SDR

The term “Software Defined Radio” was first proposed by Joseph Mitola [JMI]. Software Defined
Radio (SDR) is a promising and rapidly evolving technology, generating widespread interest in the
field of wireless communication. SDR technology offers flexible methods to implement radio
functionality, such as signal generation, coding, modulation/demodulation and link-layer protocols
in software. In other words, SDR is flexible and reconfigurable. The radio or behavior of a wireless
device is able to be changed, upgraded and enhanced simply by changing the software. This gives
the possibility of adapting the radios to the user preferences with different operating
environments and allows supporting multiple standards without requiring separate hardware for
each standard.

Figure 4.5: Software Defined Radio – a) Receiver, b) Transmitter

Figure 4.5, shows basic elements of Software radio system. The front end consists of analog RF
tuner, which converts the high frequency RF signals down to a frequency that an A2D (Analog-to-
Digital) converter can handle. The A2D output feeds the digital intermediate frequency (IF)

101

samples to the Digital Down-convertors (DDC), which consists normally of filtering and down-
sampling at the high speed. Processing of IF is suitable application for FPGAs since its
computational requirements are relatively simple and its speed requirement is high [ERJ, CUM].
Finally, baseband demodulation and decoding need a computation-intensive algorithm often
implemented in a DSP. FPGAs with DSP blocks allow implementing these tasks and join all digital
processing in a single chip. For past few years FPGAs have become an increasingly important
resource for software defined radio. Implementing software functions like DDC in FPGAs gives
significant advantages. These functions related to DDC have seen a shift from being delivered in
Application-Specific ICs to FPGAs, the reason being that FPGA realizes lower power consumption
and faster signal processing when compared to common micro processors.

Software Defined radio are capable of supporting military, public safety, satellite and general
communication applications. Unfortunately, these devices are exposed to security threats – two
approaches are considered for the secure communications systems for SDR [HKR]. Firstly,
replacing the currently available cryptosystem with a stronger and more efficient cryptosystem
and secondly, the development of security using SDR technologies. The main issue in these
communication systems is security, whereby an adversary can take control of a radio system to
their advantage. As a result, data and traditional application of a device can be changed. Thus,
various security functions such as authenticity, integrity, confidentiality, etc, need to be supported
in SDR receivers [CNA]. In this thesis, a security solution is proposed by designing and
implementing an Authenticated Encryption cryptographic solution at physical layer ex., FPGA
instead of higher layers, which will considerably maximize the speed and security of the receiver
and also make the system more suitable for low-cost portable devices.

4.2.1 Cross Layer Architecture of Software Defined Radio

In terms of the traditional OSI model of a communication system, the software defined radio
mainly concerns the two lowest layers of the OSI-model. Physical Layer is the most basic layer,
gives us the resources for the transmission of bits. Next layer is the Data link layer, provides data
transfer across the physical layer. Stream of data is packed into smaller units called frames, the
transmission of these frames are controlled by Media Access layer (Sub-layer of data link layer).
These two layers provide basic functions for data transfer.

102

Netwrok Layer

Transport Layer

Data Link Layer

Physical Layer

Aplication, Presentation, Session Layers

Fo
cu

s o
f S

DR

Figure 4.6: SDR Layers in OSI

As shown in figure 4.6, we can say that SDR is a software reconfigurable radio technology, but it is
not the applications that are implemented on the radio. Since multiple applications and functions
are the main features of future wireless systems, the OSI inspired definition is somewhat
debatable.

Levels of Software Defined Radio – Sometimes it is not practical to develop radios that have all the
features of fully software defined radio. Some radios support only few features while others are
fully software controlled. Looking into this Wireless Innovation forum has divided the radios into
five levels depending on what is configurable.

1. All the radios that cannot be changed by software fall into level 0 category also known as
Hardware Radios.

2. In level 1, limited functions can be changed by software ex., power levels, frequency etc;
these kinds of radios are called Software-Controlled Radios.

3. Level 2 kinds of radios are the one where reality falls. For most applications, state-of-the-
art SDR currently falls into level 2 kind of radios also known as “Software Defined Radios”.
Significant portion of the radio is software controlled, parameters like frequency,
modulation waveform generation / detection, security etc are controlled by the software.
The RF front end still remains hardware based and non-configurable.

103

4. The radio where the distinction between configurable and non-configurable elements

exists very close to the antenna and the “front end” is configurable falls under level 3.
These radios are also known as Ideal software radios.

5. Finally the Ultimate software radio is a step forward from the idea software radio. In
addition to the full programmability, it is also able to support a broad range of functions
and frequencies at the same time.

In this thesis, security solution is based on level 2 radios, where a SDR consists of hardware
frontend and software based base-band platform. The hardware front-end includes an antenna,
an amplifier/filter, a down/up converter and AD/DA converter and the base-band part is built up
by reconfigurable FPGA. For better understanding, let us look into a well known open source GNU
Radio Framework and Universal Software Radio Peripheral (USRP) device.

4.2.2 GNU Radio and USRP

GNU Radio is defined as an open source software toolkit which when combined with minimal
hardware allows constructing radios, and thus turns usual hardware into software problems
[GNUR]. GNU Radio provides a library of signal processing blocks and the glue to tie these blocks.
It also provides blocks for communication with USRP device and new blocks can be added as
needed. The main goal is to combine the signal and data processing blocks and this can be
achieved by creating a graph where the vertices are signal processing blocks and the edges
represent the data flow between them. Programming in GNU Radio is usually the combination of
C++ and python. Signal processing blocks are implemented in C++ while the graph and applications
are developed in Python as shown in figure 4.7. SWIG is used as an interface compiler which
allows easy integration of C++ into scripting language.

104

RF Front End

USB Interface

GNU Radio Signal Processing Blcoks (C++)

SWIG (Port C++ blcoks to python)

Python Flow Graph

Figure 4.7: Block diagram of GNU Radio Components

In most of the cases, a signal processing block processes on a continuous stream of data passing
from its input ports to its output ports. A special kind of signal blocks, called sources and sinks,
have only output ports or input ports. Sources are the blocks that read from ADCs, a file and sinks
write to DACs, a file or graphical display. Each of these blocks has input or output signature that
defines the minimum and maximum number of I/O streams it can have.

Universal Software Radio Peripheral (USRP)- In addition to GNU Radio software toolkit additional
hardware is needed to receive and send radio waves. The USRP is a basic SDR platform, which
allows the creation of a Software Defined Radio using any computer with an USB 2.0 port. USRP
was developed by Matt Ettus as a low-cost and flexible platform for Software Defined Radio[ETT].
It consists of a main board and up to four daughter boards as shown in figure 4.8. The main/
mother board holds upto four 12-bit, 64 M sample/sec ADCs, four 14-bit 128M sample/sec DACs,
Field Programmable Gate Array (FPGA) and a programmable USB 2.0 controller. The four daughter
boards serve as RF front ends, two for receiving and two for transmitting and can be used
simultaneously. In the USRP, high sampling rate processing takes place in the FPGA. It performs
high bandwidth math and reduce the data rate to something that can be easily transferred over a
USB 2.0 interface. The standard FPGA configuration includes digital down converters (DDC)
implemented with the cascaded integrator-comp (CIC) filters. CIC filters are very high-performance
filters using only adds and delays. The DDC converts the digitized frequency range, which the
receiver daughter boards passed to the ADC, down to the base frequency, also called base band.
Then the signals are decimated so that the data rate can be adapted by the USB interface. In case
of transmission, the only transmit signal processing blocks in the FPGA are the interpolators. Then

105

the signal passes through a digital up converter (DUC) which exists as a special chip on the main
board, not in the FPGA. DUCs convert the signal to a higher frequency range and finally sent to the
DAC.

FPGA

ADC

ADC ADC

ADC

DAC

DACDAC

DAC

Receive
DaughterBoard

Transmit
DaughterBoard

Receive
DaughterBoard

Transmit
DaughterBoard

USB
Controller

Figure 4.8: Block Diagram of the USRP [GNUR]

Recently several different models have been developed USRP 2, USRP N (Networked series) with
increased FPGA resources and USRP E (Embedded series), a standalone SDR device. All the devices
on the hardware feature a firmware which enables basic capabilities like Up/down sampling of RF
signal, filtering, management of data timestamp and UDP packets on the Giga-bit Ethernet
connection to the PC. However considerable amount of resources on the USRP FPGAs are left
unused and implementation of additional features may be the valuable improvement to SDRs.

USRP N series includes a Xilinx Spartan 3A-DSP 3400 FPGAs where custom application can be
implemented in the FPGA fabric. The FPGA also offers the potential to process up to 100 MHz of
RF bandwidth in both transmit and receive directions [ETT]. In N series FPGA firmware are
transferred manually over Gigabit Ethernet interface. The USRP E series is for deployable radio
application where radio runs as a standalone SDR device. E series employ a unicore TI OMAP
processor featuring an ARM Cortex A8 running at 720 Mhz and a TI C64 DSP processor [ETT].

106

4.3 Generic SDR Structure

In the past, computers from different manufactures were completely incompatible. Peripheral
equipment from one source did not work with disk and files from a second source or with other
system components from a third [WCS].In addition to high costs and restricted choices, today’s
communication systems suffer from similar incompatibility issues and these restrictions are driving
the integration of SDR technology into commercial, military, emergency response agencies – law
enforcement, fire and emergency medical services. Developing a truly international handset is
nearly impossible. Multi-mode handset provides some relief but it comes with increased cost,
higher power consumption and limited flexibility. Industry has seen parallel evolution of
incompatible radio standards all over world for the commercial market. For tactical side, older
warfare models simply does not work in today’s network-centric warfare model, where forces are
tightly integrated and closely coordinated , which requires the ability to quickly and freely
communicate across organizational boundaries. A similar situation exists for emergency response
agencies across the globe.

SDR technology provides us a foundation for seamless interoperation between communication
systems. A typical SDR radio architecture consists of radio hardware (RF front-end) and re-
configurable hardware and software.

RF front-end – The basis of selecting RF front-end architectures depend on the complexity, cost,
power distribution and number of external components. There are three popular RF front-end
architectures in use today – Heterodyne (or superheterodyne), Homodyne (direct conversion) and
Low-IF (digital - IF) architecture. In heterodyne receiver design, RF signal is converted into IF
(intermediate frequency). The incoming signal mixes with the local oscillator to easily step it down
to more manageable frequency. The design shifts two signals to the IF signal – the original RF
signal and another frequency called the image frequency. However it requires an image rejection
filter to remove the image frequency. The major disadvantage of this design is the number of
components required. Another design is called homodyne or direct conversion receiver, the RF
signal is directly converted to baseband by mixing it with local oscillator signal whose frequency is
same as the carrier frequency. However for frequency and phase modulated signals, quadrature
downconversion (In-phase ‘I’ and Quadrature ‘Q’) is necessary to avoid loss of information. Finally
a Low-IF architecture, most commonly used architecture in SDRs. The design is the hybrid of
heterodyne and homodyne architecture and comprises the advantages of both the architectures.
The RF signal is converted into a low-IF frequency which is then downconverted to baseband signal
in domain.

107

ADC

ADC

Symbol
Decoding

Deinterleaving
Decoding

Image
Reject

RF Local
oscillator

I

Q

0 deg

90 deg

IF Local
oscillator

Anti-alias

Downsample

channelization

RF Front End Re-configurable Hardware and
software

Figure 4.9: Practical SDR receiver

In the first SDR radio architecture proposed by Mitola, all the RF and baseband receive signal
processing is digital, enabled by an A/D convertor (ADC) at the antenna. However to fulfill this
requirement ADC in the SDR receiver must accomplish extraordinary specifications [AAA]. The
present speed of ADCs limits the performance of digital front-end; therefore most radios require
an RF to IF conversion. Figure 4.9, shows the practical SDR receiver. The ADCs are placed after IQ
demodulator. This configuration requires more components and two ADC channels at the low-
frequency IF. With the increase of speed in ADC, the convertors could be placed before IQ
demodulator closer to the antenna. This will remove much of extra analog components and
architecture begins to move towards an ideal architecture as the transition point to digital occurs
much closer to the antenna.

Re-configurable hardware and software – In typical SDR the baseband processing – the physical
layer is implemented in re-configurable hardware and software. The physical layer consists of RF
hardware which includes mixers, filters, modulators/demodulators and amplifiers, as well as field
programmable gate arrays (FPGAs).
After converting IF or baseband from analog to digital, the digitized waveforms enter in digital
signal processing (DSP) domain. The complex I and Q baseband representation are then digitally
filtered to pass the desired channel and last step involves symbol demodulation into bits, de-
interleaving and decoding. If Analog to digital converter is placed before the IQ demodulation,
then demodulator, local oscillator, filter and mixers are fully digital. The software that emulates
these devices runs on DSP or general-purpose processor (GPP) or on a FPGA design.

108

4.3.1 SoC in Software Defined Radio

For defining an effective and efficient SDR design a standard programmable hardware platform is
required. However there is limited technical information regarding hardware architectures for
realizing SDR system-on-Chips (SoC). It is likely that large scale design integration is necessary to
achieve lower form factors and reduced costs in order to target SDRs for wireless segment[PKG].
Recent developments in the reconfigurable platform such as Zynq from Xilinx present a new
approach to SDR development[XLX]. Zynq- 7000 EPP from Xilinx is able to integrate / cut parts of
standard tactical SDR into one single device, while providing the flexibility to support future
waveforms [ASC].

General SDR SoC hardware requirements are mentioned [PKG] but end application requires
certain SoC and system level architecture e.x., Software Communications Architecture (SCA)
frameworks have additional requirements on SoC, such as partitioning into red and black
side[SCAS]. The Red side, is the plaintext portion of the radio which contains a general purpose
processor and a FPGA. The red part manages the confidential data which is generated by the data
source. The black side of the radio consists of a black FPGA, a GPP and a modem FPGA for
waveform processing. The black part manages encrypted data sent to or received from the
unsecured physical communication channel. For data security assurance between encrypted and
unencrypted portions of the radio in SoC, the design isolates Red and black parts to prevent
information leaks of sensitive data out of the system in plaintext. This isolation is provided by the
cryptographic boundary which is named Crypto Sub System (CSS). Data streams between red and
black radio areas are encrypted and authenticated by the CSS [MLG].

109

Figure 4.10: SCA Structure, showing the Red and Black FPGAs

As shown in figure 4.10, the required amount of devices (FPGAs and GPPs), the amount of I/O
signaling and the high logic density of the devices makes this a non-optimal solution in terms of
size, weight, power and cost. However with today´s technology it is possible to have single-device
platform with high-performance processing system and large programmable logic unit ex., Xilinx
Zynq -7000 Extensible processing platform, the modern FPGA, black FPGA, red FPGA, red GPP and
black GPP can all be combined into one device[ASC].

4.3.2 Secure Communication

Similar to SCA, a secure crypto module i.e., ASC-1 is placed in SoC. ASC-1 is responsible for the
confidentiality and integrity of the data flow passing through it from both the sides. Messages
encapsulated in data frames, consists of preamble, Frame Alignment Signal (FAS), headers and
payload, as shown in figure 4.11 [SKK]. When the message passes through crypto core, only
payload have to be encrypted, headers must remain in plaintext.

110

Preamble FAS Payload

resControl resHeader CRC

16 Bytes Up to 1500 Bytes

L M

8 Bytes

Figure 4.11: Frame structure - Preamble is used at the start of each frame, as a sequence of 8-bit words to inform
the receiving station that a new packet is arriving. FAS is a distinctive sequence of bits used to accomplish frame

alignment, the signal consists of additional bits for status, control and error detection. 𝐿𝑀 , 64-bit representation for
the length of the message.

In order to encrypt the payload, frame preprocessing is necessary where, the message is unpacked
and the FAS and payload are extracted. The FAS and headers are then validated according to the
policies. Once headers are validated, payload is encrypted and authenticated. Finally, the frame is
packed and sent to the final destination.

To initiate the encryption core, we assume that the master key 𝐾𝑀, is exchanged by key exchange
algorithms e.x., Elliptic Curve Cryptography (ECC) and a 56- bit representation of Nonce / Counter
is exchanged during the process.

4.4 Implementation of ASC-1: An authenticated Encryption Stream Cipher

As mentioned in the previous chapters, the goal of Authenticated Encryption is to achieve faster
encryption and message authentication by performing both in the single pass as compared to the
traditional encrypt-then-mac approach, which requires 2-passes. ASC-1 gives us the possibility to
encrypt and authenticate in 1-pass. Its key size can vary depending on the underlying block cipher,
but our block cipher suggestion is Advanced Encryption Standard (AES) with 128-bit key. ASC-1 is
divided into two steps – Initial phase generation, Encryption in CFB-like mode and authentication
of the data. At the decryption side, same steps are repeated and the computed tag is matched
with the received tag for verification.

111

4.4.1 Initial phase generation

As shown in figure 4.12, Initial phase consists of an initialization vector 𝑋0 and three keys
𝐾1,0 ,𝐾2,0 ,𝐾3,0 . To calculate these values ASC-1 uses 56-bit of the counter and applies 128-bit
AES block cipher to 070‖00‖𝐶𝑛𝑡𝑟 , 070‖01‖𝐶𝑛𝑡𝑟, 070‖10‖𝐶𝑛𝑡𝑟, 𝑙(𝑀)‖00000011‖𝐶𝑛𝑡𝑟, using
Master key 𝐾𝑀. Where 𝑙(𝑀) , is the 64-bit representation of the bit length of the Message M. In
this scheme, we assume that the maximum number of messages and maximum length to be
encrypted is 248.

AES

(070 II 00 II Cntr)

KM

X0

AES

(070 II 01 II Cntr)

KM

K1,0

AES

(070 II 10 II Cntr)

KM

K2,0

AES

(070 II 00000011 II l(M))

KM

K3,0
Figure 4.12: Initialization vector and Key Generation

To obtain the initial values, standard AES-128 bit implementation is used in ECB (Electronic Code
book) mode. 128-bit input block is passed through four basic operations, SubBytes, ShiftRows,
MixColumns and AddRoundKey. (Details are mentioned in Chapter 2). Key 𝐾𝑀 is used to calculate
all the initial values.

4.4.2 Encryption Process

Before initializing encryption process, Key 𝐾1,0 and 𝐾2,0 are concatenated together and AES-256
key scheduling algorithm is applied to derive 14 round keys. Keys 𝐾2 ,𝐾3 ,𝐾4 and 𝐾5 are used as
round keys in the first round and Keys 𝐾7 ,𝐾8 ,𝐾9 and 𝐾10 are used in the second round. Keys 𝐾11
and 𝐾1 are used as a whitening keys in the first and second rounds of 4R-AES transformation
respectively. In AES key scheduling round keys can either be generated on-the-fly or it can be

112

stored in the internal memory. Whereas in ASC-1, because of using 𝐾1 and 𝐾11 for key whitening it
is only possible to store the keys in the memory during the key setup phase, and then read them
from this memory whenever they are required by the encryption/decryption unit. Dedicated
embedded memory block are ideal for storing keys. A special feature of Xilinx Spartan-3
FPGA[XLX3] is used in ASC-1, which offers multiple block RAMs, organized in columns. Each block
RAM contains 18 kb of fast static RAM[XLXS]. The Xilinx Spartan-3 xc3s700an has 20 block RAMs
and it can be used as single or dual port RAM.

ASC-1 Encryption Block consists of 4 Round AES. To initialize the encryption module, 128 bit
Initialization vector is provided as an input to the ASC-1 encryption algorithm. ASC-1 performs
number of transformations to the input data to give a 128-bit leak 𝑙1, 𝑙2 … . . 𝑙16 and output
state 𝑦1,𝑦2 … . .𝑦16. ASC-1 stream cipher performs 4 discrete transformations – AddRoundKey,
SubBytes, ShiftRows and MixColumns – in that specific order, as shown in figure 4.13. Four bytes
are leaked at the end of every round and positions of the leaks depend on the number of the
round (even or odd). Finally whitening key byte is added before each extracted byte.

113

i = 0

AddRoundKey

SubBytes

ShiftRows

MixColumns

i < 4

i mod 2

Leak Even
Round Bits

Leak Odd
Round Bits

i = i+1

Round k[i]

Output y

0 1

Key Whitening Key Whitening

l1, l2, l3, l4 II l5, l6, l7, l8 II l9, l10, l11, l12 II l13, l14, l15, l16

Figure 4.13: ASC-1 Flowchart

4.4.3 Proposed ASC-1 Architecture

The high-level architectural organization of the ASC-1 encryption core is presented in figure 4.14.
The system is divided into five logical blocks. The Initial input interface is responsible for feeding
data to the key logic and the processing core. Key logic handles all the key scheduling operations
and processing core block performs all the main encryption process. SBox block is a ROM that is
used for the SubBytes transformation by key logic and core block. Finally the Control unit is used
for the synchronization and communication with the external logic. Let us further look into the
functionality of each logic block in detail.

114

Initial input interface – For initial phase generation i.e., initialization vector 𝑋0 and three keys
𝐾1,0 ,𝐾2,0 ,𝐾3,0 , a new counter/nonce is loaded. The Initial input interface concatenates the
values of the counter with the pre-defined values stored in the local registers. The processing core
unit is then notified that an initial state is available for processing.

ASC-1 Package
and Sbox-Rom

Key Logic

BRAM
Storing Keys

AES-128 and ASC-
1 Processing

Core

System
Control

Unit

In
iti

al
 In

pu
t I

nt
er

fa
ce

Master Key (KM)
/ Data Stream

128 Bits

Counter / Nonce
56 Bits

LoadKey

LoadData

ReadyForkey ReadyForData

control

KeyReady

InputBlk
128 Bits

mode/done
/ready

mode

RoundKey
/Whitening Key

CipherStream

Authentication Tag

CTValid Clk Rst

Figure 4.14: Block diagram of ASC-1

Key Logic – As shown before, the scheme requires a new round key for every encryption round.
When a new key (128-bits for AES and 256-bits for ASC-1 encryption algorithm) is loaded, the
block starts generating round keys based on a single external key. Three different approaches can
be used to calculate the keys. In the online approach, a new round key is calculated at every
encryption round using the previous round key. Another approach is known as “offline” or
“stored-key”, all the round keys are calculated upon the reception of the initial cipher key before
the start of encryption core and stores them in a local memory. The memory is accessed at every

115

encryption round in order to provide the necessary round key. The third method for the
generation is to use an external source for example a key generator or an external processor. The
external source calculates the keys and seeds them sequentially to the AES processing core.

This implementation is based on the second approach for both the schemes i.e., AES-128 and ASC-
1. In this approach all the round keys are stored in the memory for a number of reasons. For initial
phase generation same key (𝐾𝑀) is used to encrypt initialization vector (IV), two initial keys
(𝐾1,0 ,𝐾2,0) for key scheduling for ASC-1 encryption and key (𝐾3,0) for authentication of data. The
round keys derived from the Master key is stored in the memory and during the encryption
process right round key is accessed from the memory to perform encryption operation. In case of
encryption of stream data using ASC-1, 256-bit key (�𝐾1,0�𝐾2,0) is loaded to the key logic for key
expansion. Fourteen round keys (𝐾1,𝐾2, … … … … .𝐾14,) are derived and stored in the memory. The
key logic block performs two main functions. The key expansion process and read/write round
keys to the memory block. The first one is performed whenever a new cipher key is inserted to the
block and second one is to fetch round keys from the local memory for encryption process. All the
operations in the key logic are controlled by the system control unit.

Figure 4.15 a, b demonstrates the generation of new round keys from the previous round. In order
to generate new round key, two operations are performed, RWord (Rot Word) and SWord (Sub
Word usually called as SubBytes). The first one cyclically shifts the bytes of last 32-bit word of the
previous round key by one position to the left and SWord operation simply takes the output of the
RWord and applies SubBytes transformation independently on each byte of a state using a
substitution table (S-BOX). As shown below, key expansion routine for 256-bit key is slightly
different than 128-bit. SubWord () operation is applied to 𝑅𝑘𝑒𝑦 𝑤𝑜𝑟𝑑4 prior to XOR.

116

RWord SWord

word 0

word 1

word 2

word 3

Rcon

Rkey word 0

Rkey word 1

Rkey word 2

Rkey word 3

word 0

word 1

word 2

word 3

word 4

word 5

word 6

word 7 RWord SWord

Rcon

SWord

Rkey word 7

Rkey word 6

Rkey word 5

Rkey word 4

Rkey word 3

Rkey word 2

Rkey word 1

Rkey word 0

Figure 4.15 a, b: Fully parallel pipelined structure - a) key expansion round for 128-bit AES, b) key expansion

round using 256-bit AES for ASC-1.

AES and ASC-1 Processing Core - Figure 4.16 shows the process core block performing AES-128 and
ASC-1 encryption process. AES encryption core is used only for the generation of Initialization
vectors and the keys used in ASC-1. This could be before initializing ASC-1 encryption core or
whenever new IV or keys are needed. In order to complete the encryption process in AES of the
data block, 10 encryption rounds are needed. Each round performs SubBytes, ShiftRows,
MixColumns and AddRoundkey transformations. The SubBytes transformation is applied on each
byte of input block, altering its value by a non-linear manner. The S-Box byte substitution can be
implemented either by using combinational logic or a ROM containing all 256 possible pre-
calculated outcomes. In this implementation S-Box is implemented as a ROM, because the cost of
implementing combinational logic for the S-Box in resource usage is significantly larger with no or
very little extra performance is gained. Xilinx Spartan -3AN / Virtex V FPGAs provide fast on-chip
memories, called BlockRAMs, which are ideal for implementation of ROM. After byte substitution
in SubBytes, ShiftRow transformation is applied to each row of the state and changes the position
of each byte in that row. Next MixColumns transformation is applied to the state in a column by
column fashion. This transformation is quite simple and can be implemented by a network of XOR
gates. Finally AddRoundkey transformation is applied, where 128-bit state is XORed with a 128-bit
round key.

117

AddRound

SubBytes

ShiftRows

MixColumns

KeyWhitening

Leak

Control Logic
SBox

Mode

Read for
Key/data

Key
Address

Input Block

Encrypted IV & Keys
Authentication Tag

Cipter Stream

CT Valid CT & Tag done

Keys

Plaintext
Stream

Input Ready

Initialization Vector

Keys

AES-128
ASC-1

Common

Figure 4.16: AES-128 & ASC-1 encryption core block

Once the Initialization Vector and keys are encrypted using AES-128, keys are fed into key logic

118

block for the calculation of round keys and IV is used to initialize ASC-1 scheme. From figure 4.16,
the underlying block used in ASC-1 is AES, so same transformations are applied to the block but in
different order. In ASC-1 unlike AES, Addroundkey transformation is the first block and after
MixColumns, KeyWhitenting is applied to the specific bytes before extracting from intermediate
rounds. Four Round AES ASC-1, operates in a Cipher Feedback (CFB) mode which means that the
processing of each plaintext block has to be completed before the processing of the next one
starts. Therefore, implementation presented here is sequential. However from figure 4.15, parts of
implementation are implemented in parallel pipeline mode.

Systems control unit is implemented as a finite state machine to supervise the core between AES
and ASC-1, generate address for accessing the round keys from the block and handle
communication between blocks. The unit generates the signal to notify the external source that a
new plaintext may be loaded as soon as core is ready. Finally Authentication tag is calculated once
𝑛 numbers of blocks are encrypted (maximum number of messages and maximum length to be
encrypted is 248).

4.5 Conclusions

Software Defined Radio is a promising and rapidly evolving technology, generating widespread
interest in the field of wireless communication. The main feature of SDR is its ability to dynamically
adapt according to the radio environment through the re-configurability of its components. This
feature gives SDR systems the ability to support a variety of mobile radio standards. Instead of
implementing radio functional blocks on inflexible ASICs in the past, the technologies like FPGAs,
DSPs and GPPs are used to build software radio blocks. These components have reconfigurable
capability and deliver flexibility of programmable architecture with power efficient and
performance.

We have discussed the architecture and design implementation flow of the FPGA in section 4.1.
The basic design flow of FPGA consists of writing a code in hardware description language and a
text bench, followed by simulating the model together with its text environment. The design is
synthesized to a particular FPGA (in our case – Xilinx Spartan 3AN), then placed and routed on the
chip. Finally the hardware was created and the bitstream (Image) is downloaded to the chip to
program it. We discussed the role of FPGAs in SDR in section 4.2 and for better understanding we
have also discussed a well known open source GNU radio framework and USRP device.

In Section 4.3 we presented a generic SDR structure – a typical SDR radio architecture with RF
front-end and re-configurable hardware and software. We have also discussed SDR system-on-

119

chips (SoC) with an example of recent development presented by Xilinx to integrate standard
tactical SDR into one single device. Based on our proposed AE scheme, section 4.4 presents the
design and implementation of ASC-1 on FPGA. The target device used for this implementation is
Xilinx Spartan- 3 sxc3s700an FPGA. The proposed architecture is divided into five functional blocks
including a key logic and AES & ASC-1 encryption core. Whole architecture is controlled by a
systems control unit implemented as a finite state machine to supervise the core between AES and
ASC-1, generate addresses for accessing the round keys from the block and handle communication
between blocks.

References

[SBJ]S. Brown and J. Rose. FPGA and CPLD Architectures: A Tutorial, IEEE Design & Test of Computers,
pp.42-57, 1996.

[BZE]B. Zeidman. Designing with FPGAs and CPLDs. CMP Books, Lawrence, KS, 2002.

[XLX] All Programmable Technologies and Devices. http:// www.Xilinx.com

[XLXS] Spartan-3 Generation Configuration User Guide, UG332 (v1.6) October 26,2009.

[XLX3] XILINX Spartan-3 FPGA Family, 2009.
http://www.xilinx.com/support/documentation/data_sheets/ds099.pdf

[XLXN] M.McLean & J. Moore. Xilinx FPGA-Based Single Chip Cryptographic Solution,2007.
 http://www.mil-embedded.com/pdfs/NSA.Mar07.pdf

[XLXD] Security Solution Using Spartan-3 Generation FPGAs , Wp266, v 1.1, 2008
http://www.xilinx.com/support/documentation/white_papers/wp266.pdf

[XLXA] Advanced Security Schemes for Spartan- 3A/3AN/3A DSP FPGAs, WP267 ,v1.0, 2007
www.xilinx.com/support/documentation/white_papers/wp267.pdf

[JMI]J. Mitola. Cognitive radio: Making software radios more personal, IEEE Pers. Commun., vol. 6, no. 4,
pp. 13–18, Aug. 1999.

[ERJ]E. Ramon and J. Carrabina. Using FPGAs for Software Defined Radio and Convolution Encoding. The
last VIiS output to the GUI, Systems: a PHY layer for an 802.15.4 transceiver, V Jornadas de and is used to
display the results. Computacion reconfigurable y Aplicaciones (JCRA), Granada, 14-16 September, 2005.

[CUM]M. Cummings and S. Haruyama. FPGA in the Software Radio, IEEE Comm. Magazine, pp.108-112,
Feb. 1999.

http://www.xilinx.com/�
http://www.xilinx.com/support/documentation/data_sheets/ds099.pdf�
http://www.xilinx.com/support/documentation/white_papers/wp267.pdf�

120

[HKR]H. Uchikawa, K. Umebayashi, and R. Kohno. Secure download system based on software defined radio
composed of FPGAs. In Proceedings of the 13th IEEE International Symposium on Personal, Indoor and
Mobile Radio Communications, 2002.

[CNA] C Li, N.K. JHA and A. Raghunathan. Secure reconfiguration of Software-Defined Radio; ACM
Transactions on Embedded Computing Systems, Vol. 11, No.1, March 2012

[GNUR]GNU Software Radio project. http://www.gnu.org/software/gnuradio/.

[ETT] Ettus Research LLC, The USRP, http://www.ettus.com/

[WCS] Wireless Communication Standards, Awareness Guide, U.S. Department OF Homeland Security.
http://www.dhs.gov

[AAA]A. A. Abidi. The Path to the Software-Defined Radio Receiver. IEEE J. Solid-State Circuits, vol. 42, no.
5, pp. 954-966, May 2007.

[PKG] P.K Gopalakrishnan. Hardware Platforms for Software Defined Radio, KPIT Cummins Infosystems Ltd,
V1.2 Sept-2011

[ASC]A Schreber. Hands on RF: Handle multiple waveforms in a software-defined radio platform. Xilinx.
Jan-2012

[SCAS] Software Communications Architecture Specification, JTRS std 2.2.2, Rev. FINAL, Mai 2006.
http ://sca.jpeojtrs.mil/

[MLG]M. Grand, L. Bossuet, G. Gogniat, B. Le Gal and D. Dallet. A Reconfigurable Crypto Sub System for the
Software Communication Architecture. In Proceedings of MILCOM 2009.

[SKK] S.K Khaleelahmed, M. Kantikiran, Dr. K. Ramakrishna and A. Anitha. Novel Implementation of SDR
Multi Channel TDM Non Coherent DBPSK On Reconfigurable FPGA. International Journal of Advanced
Engineering Sciences and Technologies. Vol 5, Issue 2, pp. 282-289. 2011.

http://www.gnu.org/software/gnuradio/�
http://www.ettus.com/�
http://www.dhs.gov/�

121

5
Hardware Implementation Results

The results for hardware implementation of “ASC-1: An Authenticated Encryption Stream Cipher”
are tabulated in this chapter. Area utilization, throughput and latency are provided for FPGA
implementation. ASC-1 is implemented in VHDL and the hardware used is Xilinx Spartan -3AN. The
software used for this design is Xilinx ISE -12.4. This is used for writing, debugging and optimizing,
and all the simulations are done in ISim simulator. The system is tested and verified against test
vectors (See Appendix I).

This chapter also covers different hardware architecture and explores area / delay tradeoffs in the
implementation. The results also show the optimal payload lengths for maximum throughput
corresponding to the Bit Error Rate (BER) on different data rates.

5.1 Parameters of Hardware Implementation

Hardware implementation of Encryption schemes depends on several performance parameters
like implementation area (number of slices used in FPGA), throughput and latency. However, for
authenticated encryption schemes, the throughput is not a static value, but is dependent on the
length of the message.

ASC-1 uses Cipher feedback mode of operation, which means same forward function, is used for
encryption as well as decryption of plaintext. The throughput of encryption/decryption is defined
as the number of bits encrypted (decrypted) in a unit time. The unit of throughput is Mbit/s or
Gbits/s. Latency is defined as a time necessary to encrypt/decrypt a single block of data (Plaintext
/ciphertext). The unit of latency is ns (nanosecond).

122

The general formula for throughput and Latency computation is as follows [GAJ] :

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑡𝑝𝑢𝑡 =
𝑠𝑖𝑧𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑙𝑜𝑐𝑘 (𝑖𝑛 𝑏𝑖𝑡𝑠) ∗ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑙𝑜𝑐𝑘𝑠 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 𝑠𝑖𝑚𝑢𝑙𝑡𝑎𝑛𝑒𝑜𝑢𝑠𝑙𝑦

𝐿𝑎𝑡𝑒𝑛𝑐𝑦

𝐿𝑎𝑡𝑒𝑛𝑐𝑦 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑜𝑐𝑘 𝑐𝑦𝑐𝑙𝑒𝑠 𝑡𝑜 𝑒𝑛𝑐𝑟𝑦𝑝𝑡 𝑎 𝑠𝑖𝑛𝑔𝑙𝑒 𝑏𝑙𝑜𝑐𝑘 𝑜𝑓 𝑑𝑎𝑡𝑎 ∗ 𝑐𝑙𝑜𝑐𝑘 𝑐𝑦𝑐𝑙𝑒 𝑝𝑒𝑟𝑖𝑜𝑑

5.2 Block cipher modes of operation

As presented in chapter 4, ASC-1 is divided into two steps – Initial phase key generation,
Encryption in CFB-like mode and authentication of data. The first part is calculated by using non-
feedback mode, such as Electronic Code Book mode (ECB) and Encryption is done in feedback
mode, such as Cipher feedback mode. In non-feedback modes of operation, encryption of each
block is performed independently from other blocks and all the blocks can be encrypted in
parallel. Whereas in feedback mode of operation, encryption of next block of data cannot be
started until encryption of previous block is completed, which means all block must be processed
sequentially. Normally this limitation in feedback modes does not concern decryption process and
several blocks of ciphertext can be processed in parallel. However ASC-1 can only be processed
sequentially at encryption and decryption because of the calculation of authentication tag, which
is based on all the previous blocks.

5.2.1 Hardware Architecture for Feedback cipher modes

Basic Iterative Architecture: Iterative architecture is the most basic hardware architecture, where
only single round of the block cipher is implemented as a combinational logic. As shown in the
figure 5.1, input data block is fed to the circuit and stored in the register. For every clock cycle,
intermediate round data after the completion of one round is fed back to the circuit.

123

register

Combinational
logic

Input

Round
key

One
round

mutiplexer

Output

Figure 5.1: Iterative Architecture of Block cipher

In Iterative architecture only one block of data is processed at a time. So the number of clock
cycles needed to encrypt one block is equal to number of rounds in a cryptosystem. The
throughput and latency in case of basic iterative architecture is [GAJ]

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑡𝑝𝑢𝑡𝑖𝑡𝑒 =
𝑠𝑖𝑧𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑙𝑜𝑐𝑘 (𝑖𝑛 𝑏𝑖𝑡𝑠)

𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑖𝑡𝑒

𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑖𝑡𝑒 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑜𝑢𝑛𝑑𝑠 ∗ 𝑐𝑙𝑜𝑐𝑘 𝑐𝑦𝑐𝑙𝑒 𝑝𝑒𝑟𝑖𝑜𝑑

Partial and full loop unrolling: Figure 5.2-a&b, shows architecture with partial loop and full loop
unrolling. The main difference between partial loop and basic iterative architecture is that the
combinational logic in partial loop implements N rounds instead of one round. Even though the
number of clock cycles to encrypt a single blocks of data decreases by a factor of N, the minimum
clock period increase by a factor slightly smaller than N. This leads to a small increase in
throughput and decrease in latency at the cost of large area penalty [JOZ]. The multiplexer and
feedback loop is omitted in full loop unrolling. This leads to small increase in throughput and

124

decrease in area as compared to partial loop unrolling. Both the loop unrolling architectures
provide increase in circuit speed for both feedback and non-feedback modes. But this increase is
minimal at the cost of circuit space used by the architecture.

register

Input

mutiplexer

Output

a)

Round 1

Round 2

Round N

register

Input

Output

Round 1

Round 2

Final Round

b)

Figure 5.2: Hardware Architecture - a) Partial loop unrolling, b) with full loop unrolling

5.2.2 Hardware Architecture in non-feedback cipher mode

Pipelining: The Pipelined architecture can increase the speed of encryption/decryption by
processing blocks of data simultaneously. In the cases where the available circuit area is not large
enough to fit all the rounds of block cipher, partial outer-round pipelining architecture could be a
solution, as shown in figure 5.3-a. It is realized by inserting rows of registers among combinational
logic on the boundaries between two subsequent cipher rounds. With this, N blocks of data can be
processed at the same time, with each of these block stored in a different register at the end of
clock cycle. The area of the circuit and throughput in case of partial outer-round pipelining is
proportional to N, but the latency remains same as in the basic iterative architecture[GAJ]. Similar
to full loop unrolling architecture, full outer-round pipelining architecture can be applied where

125

feedback loop is not required, shown in figure 5.3-b. This can only be realized if circuit area is not a
constraint.

register

Input

mutiplexer

Output

a)

Round 1

b)

register

Round 2

register

Round n

One Pipeline Stage
register

Round

register

Input

Output

Round 1

register

Round 2

register

Round n

c)

Figure 5.3: Hardware architecture for non-feedback cipher modes – a) partial outer round pipelining, b) full
outer round pipelining, c) one pipelining stage.

For optimal pipeline architectures, the registers can also be inserted inside of a cipher round
known as inner round pipelining, as in figure 5.4-a. By combining the outer and inner loop
pipeline architecture and inserting right amount of registers inside each cipher round will increase
the throughput with minimal increase in the circuit area. Adding more registers after optimal
amount of registers, may still increase the throughput, but the throughput to area radio will get
worse. The throughput for the partial and full inner- and outer- round pipelining is [GAJ]:

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑡𝑝𝑢𝑡𝑝𝑎𝑟_𝑝𝑖𝑝𝑒(𝑁,𝑛)

=
𝑠𝑖𝑧𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑙𝑜𝑐𝑘 (𝑖𝑛 𝑏𝑖𝑡𝑠) ∗ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑙𝑜𝑐𝑘𝑠 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 𝑠𝑖𝑚𝑢𝑙𝑡𝑎𝑛𝑒𝑜𝑢𝑠𝑙𝑦(𝑁)
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑜𝑐𝑘 𝑐𝑦𝑐𝑙𝑒𝑠 𝑡𝑜 𝑒𝑛𝑐𝑟𝑦𝑝𝑡 𝑎 𝑠𝑖𝑛𝑔𝑙𝑒 𝑏𝑙𝑜𝑐𝑘 𝑜𝑓 𝑑𝑎𝑡𝑎 ∗ 𝐶𝑙𝑘𝑖𝑛𝑛𝑒𝑟_𝑟𝑜𝑢𝑛𝑑(𝑛)

Where 𝑛 is the number of inner-round registers, 𝑁 is the number of outer-round registers, and
𝐶𝑙𝑘𝑖𝑛𝑛𝑒𝑟_𝑟𝑜𝑢𝑛𝑑(𝑛) is the clock period for inner-round pipelining.

126

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑡𝑝𝑢𝑡𝑓𝑢𝑙𝑙_𝑝𝑖𝑝𝑒(𝑁,𝑛𝑜𝑝𝑡) =
𝑠𝑖𝑧𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑙𝑜𝑐𝑘 (𝑖𝑛 𝑏𝑖𝑡𝑠)

𝐶𝑙𝑘𝑖𝑛𝑛𝑒𝑟_𝑟𝑜𝑢𝑛𝑑(𝑛𝑜𝑝𝑡)

Where 𝑛𝑜𝑝𝑡 us the maximum number of inner-round registers optimal for the throughput to area
ratio.

Input

mutiplexer

a)

One Round

register

register

register

Output

Input

mutiplexer

b)

One Round

register

register

register

Output

register

register

register

register

register

register

register

register

register

n pipeline stages

Inputc)

One Round
register

register

register

Output

register

register

register

register

register

register

d)

Figure 5.4: Optimal Hardware Architecture for non-feedback cipher modes – a) Inner-round pipelining, b)
Partial inner and outer – round pipelining, c) full inner and outer – round pipelining, d) one round n-stage

pipeline.

127

5.3 Performance of ASC-1 Crypto core

In Authenticated Encryption stream cipher (ASC-1) scheme, the underlying block cipher (AES) is
used only in the forward “encrpytion” direction for both ASC-1 encryption and decryption. This
characteristic make ASC-1 an attractive candidate for hardware where area is limited.

Before looking into the overall performance of the core, let us look at the implementation and
results of basic operations of AES in FPGAs.

SubBytes – The SubByte transformation is applied to each byte of the state matrix, where byte is
replaced with another byte from S-Box. The S-Box byte substitution function can be implemented
either by using combinational logic [ABR] or using a 256 X 8 bit look up table, using ROM (Read
Only Memory). Use of ROM is the most optimal implementation in terms of area/performance – in
an FPGA. To access ROM, inputs used as addresses and output is acquired at the data out bus. A
state matrix consists of 16 bytes and for each byte substitution 16 ROMs have to be used. FPGA
used in this implementation Xilinx Spartan-3AN provides fast on-chip memories, called BlockRAMs.
BlockRAMs can be configured as dual port ROMs, as shown in figure 5.5. This reduces the amount
of ROMs in half i.e., 8. This whole process requires only one clock cycle.

128

ROM 0

8

8

8

8

ROM 1

8

8

8

8

ROM 2

8

8

8

8

ROM 3

8

8

8

8

ROM 4

8

8

8

8

ROM 5

8

8

8

8

ROM 6

8

8

8

8

ROM 7

8

8

8

8

128-bit Input 128-bit Output

Figure 5.5: S-Box organized as 8 banks of 256 x 8 dual port ROMs.

The working of other basic operations like ShiftRows, MixColumns and Addroundkey performed in
AES is already mentioned in the previous chapters. Following Table 5.1 Shows the performance of
these transformations, the system is set to maximum clock frequency of 250 MHz and clock period
of 4 ns. All these transformations take only a fraction of space on FPGA as shown in Table 5.1.

Basic Operation Clock Cycle Number of Slices
ShiftRows 1 74 (1 %)
MixColumns 1 197(3 %)
AddRoundKey 1 147(2 %)

Table 5.1: Performance of Basic Operations in AES block cipher

129

Key Expansion - Key scheduling in ASC-1 encryption core caters round keys for initial phase
generation (AES-128, 10 round keys) and for encryption core (AES-256, 14 round keys). There are
different possible ways to generate round keys (mentioned in previous chapter). But for ASC-1 the
optimal approach is “offline” or “stored key approach”[MGR, ABR]. In this approach all the round
keys are calculated upon the reception of the initial cipher key and store them in an internal
memory. Keys are then read from the memory whenever they are required by the core, as shown
in figure 5.6. Even though this approach requires a key setup phase, for round keys processing and
storing in the local memory, the calculations can be performed in parallel with the encryption core
using previous key. This results in no performance penalty because of key scheduling.

Local /Internal
Memory

Key Logic

Key Ready

Cipher Key

Mode

Round Key

S-Box ROM

Figure 5.6: Key Logic Unit – 10 round keys are calculated for AES-128 bits for initial phase generation and 14
rounds keys for Encryption and decryption of data block. Mode controls the key size and makes sure right

round key is read from local memory.

Same as the size of an encryption block in AES, the size of each round key is 128 bits. For the sake
of performance (area/delay) comparison, 128-bit & 256-bit key expansion is implemented in
parallel and in basic iterative architecture. The performance and area consumption of both the
architectures are shown in Table 5.2 based on behavioral simulation. The system is set to
maximum clock frequency i.e., 250 Mhz and clock cycle of 4 ns. Performances of both the key
expansion are shown for parallel and Iterative architectures. Based on the observation from table,
number of clock cycles used to compute key expansion for AES-256 in parallel architecture is less
than the clock cycles used for AES-128. This is due to the fact that the AES-128 works on single

130

state matrix for the key expansion of the cipher key whereas AES-256 works on two matrices for
key expansion.

Performance AES-128 Key Expansion AES-256 Key Expansion
 Parallel Iterative Parallel Iterative
Number of Clock Cycles 15 22 12 23

Number of Slices 5000 3447 5916 5818

Table 5.2: Performance of AES-128 & AES-256 Key Expansion in Parallel and Iterative Architecture

Advanced Encryption Standard (AES): AES – 128 bits encryption cipher is used in initial phase for
the calculation of Initialization Vector (IV) and keys used for encryption and authentication of data.
Same Key (𝐾𝑀) is used to encrypt all the initial values in ECB non-feedback mode. With encryption
in non-feedback mode, processing of data blocks can be performed independently from other
blocks and all the blocks can be encrypted in parallel. The key expansion is performed only once
and stored in the internal logic. Table 5.3 shows the throughput, latency and area used for parallel
and iterative hardware architectures. The system is set to 250 Mhz and clock cycle of 4ns.

AES-128 Encryption
Performance

Iterative Parallel

Number of Slices 1736 15550

Number of Clock Cycles 62 30

Latency (ns) 248 120

Throughput (Gbps) 0.516 up to 32

Table 5.3: Performance of AES-128 Encryption in Parallel and Iterative Architecture

From table 5.3, a huge trade-off between area and performance of the system can be clearly seen.
Number of slices used in parallel architecture is almost 9 times than iterative architecture. But on
the other side, the throughput of the Iterative architecture is much lower than parallel
architecture.

131

Figure 5.7 shows proposed architectures. The iterative architecture consists of one AES functional
unit for 𝑛 − 1 rounds and final round functional unit for 𝑛𝑡ℎ round. Three registers are added in
the circuit, the input and intermediate register is used as buffers for inter-round transformations.

AddRkey

register

AES
(Round 1-9)

register

Mutiplexer

Final Round

Input

Rkey

Output

AddRkey

Input

register

AES
(Round 1)

register.
.
.
.

register

AES
(Round 9)

register

Final Round

Output

a) b)

register

register

Rkey_1

Rkey_9

Rkey_F

Figure 5.7: Proposed AES-128 Hardware Architectures – a) Iterative. b) Parallel Pipelined.

In figure 5.7-b, parallel pipelined AES architecture is proposed. It consists of 10 AES functional
blocks and registers are placed between each AES round computation.

132

ASC-1 Encryption Core: Encryption block in ASC-1 consists of 4-Round AES and operates in Cipher
feedback mode fashion to compute an authentication tag over the encrypted message. As
mentioned, in feedback modes it is not possible to encrypt next block of data until encryption of
previous block is completed. This left us with the choice of only encrypting the data block
sequentially. The performance of ASC-1 is shown in table 5.4.

ASC-1 Encryption Core
Performance

Iterative

Number of Slices 1796

Number of Clock cycles 41

Latency (ns) 164

Throughput (Gbps) ~0.780

Table 5.4: Performance of ASC-1 Encryption core Iterative Architecture

As compared to AES iterative architecture, data is processed only 4 times instead of 10 times and
Initial, and final rounds are not included. As shown in figure 5.8, the order of bits transformations
inside each round is also different as compared to AES; AddRound key transformation is
performed at the start of each round unlike AES.

133

register

AES
(Round 1-4)

register

Mutiplexer

Rkey

AddRoundKey

Leak

SubByte

ShiftRow

MixColumn

KeyWhitening

Input

Output

Figure 5.8: Proposed ASC-1 Iterative Hardware Architectures

5.4 Frame Delay

Data frame consists of preamble, Frame Alignment signal (FAS), headers and payload. As shown in
figure 5.9, when the frames passes through the core, only payload have to be encrypted and rest
remains in the plaintext. However to initiate the encryption of the payload requires Initial phase
generation i.e. calculating initialization vector and keys for the encryption based on Counter
(𝐶𝑛𝑡𝑟) and Master Key (𝐾𝑀). The process is repeated for every frame, where Counter values are
varied but Master Key remains same for the session. Two different approaches are proposed – Key
setup during transmission or parallel key setup with the encryption core.

134

ASC-1 Crypto Core

Bypass Uint

Encrypted Fram
e

U
nencrypted Fram

e

Payload

Frame Prefix

Figure 5.9: Crypto Architecture

In first approach, the key setup is triggered at the start of the transmission. The unencrypted
prefix of the frame i.e., preamble, FAS, header etc is validated and passed though the bypass unit
and waits for the encrypted and authenticated payload. Once the encryption is done, the whole
frame is packed and sent to the transmitter. During the transmission of the frame, key setup for
next frame is performed and stored in the logic. Based on previous sections two hardware
architectures are suggested - Basic iterative and parallel architecture. Depending on the area
constraints and acceptable delay for the specific applications, either of the architecture for initial
phase can be chosen. Iterative architecture has a latency of 248 ns, whereas parallel architecture
takes about half the time but three times in area. However in either of the architectures this
approach may cause some minor end-to-end delays.

To overcome these delays, keys can also be computed in parallel with the encryption core. In this
approach, initial phase is generated before the start of the transmission and keys are stored in the
internal logic. For subsequent frames new keys are generated in parallel with the encryption core
processing last block of the previous frame. This approach may not cause any delays but it comes
with the cost of high area consumption.

135

5.5 Payload Length on effective throughput

This section shows throughput optimization by varying the payload length. Throughput in this
analysis is defined as number of payload bits per second received correctly. Key assumption in the
analysis is - no losses due to collision i.e., packet losses are caused only by bit errors. Figure 5.10 &
5.11, based on calculation, shows the variation of throughput with payload length at a bit error
rate of 10−4 and 10−5 in a channel. From the figures, higher bit error rates are not shown. Due to
the higher packet error rate the effective throughput leads to zero. The payload size is varied from
as low as 20 bytes to 2500 bytes and extra 20 Bytes for frame prefix is added.

Figure 5.10: Throughput vs. Payload length at a bit error rate of 10−4 in a channel

4,72101 3,170803

0
2
4
6
8

10
12
14
16
18
20

Ef
fe

ct
iv

e
Th

ro
ug

hp
ut

 in
 M

bp
s

Payload Length in Bytes

4 Mbps

8 Mbps

12 Mbps

24 Mbps

136

Figure 5.11: Throughput vs. Payload length at a bit error rate of 10−5 in a channel.

The graphs identify maximum throughputs with optimal payload lengths for data rates with
specified bit error rate in the channel. As shown in figure 5.10, with a bit error rate of 10−4
corresponding to data rates at 4 , 8 and 12 Mbps, maximum channel efficiency is around the
payload length of 200 bytes corresponding to an effective throughput of 3.04, 6.09 and 9.14 Mbps
respectively. However reducing or increasing the payload length does not increase throughput, for
example, with data rate of 8 Mbps and payload length of 20 bytes will give the effective
throughput of 3.87 Mbps and with 2500 bytes the effective throughput is 1.05 Mbps. Similar
results can be concluded from figure 5.11, where the maximum channel efficiency for 8 Mbps data
rate is around 600 bytes corresponding to a throughput of 7.36 Mbps.

Based on the performance results of ASC-1, iterative architecture of initial key setup phase has a
latency of 248 ns and the core design gives us the throughput of approximately 800 Mbps. Keeping
these results in mind, in figure 5.12 we have shown the throughput vs. payload length for both the
cases, i.e., with no latency and latency of 248 ns per frame. This is achieved by adding extra bits
per frame representing bit length spaces i.e., 52 bits and 208 bits to the data rates at 200 and 800
Mbps respectively. Similar to our previous analysis the maximum channel efficiency is around the
payload length of 200 bytes with the effective throughput of 147.33 Mbps and 534.20 Mbps. It is
also interesting to notice that for higher data rate and smaller payloads the latency of 248 ns
significantly affects the throughput. However, a larger payload for higher data rate or smaller data
rate, the throughput is not much affected.

0

5

10

15

20

25

Ef
fe

ct
iv

e
Th

ro
ug

hp
ut

 in
 M

bp
s

Payload Length in Bytes

4 Mbps

8 Mbps

12 Mbps

24 Mbps

137

Figure 5.12: Throughput vs. Payload length at a bit error rate of 10−4 in a
channel with no latency and with latency of 248ns per frame.

5.6 LTE and WiMAX

Newest cellular standards like 3GPP LTE and WiMAX represent low latency, high data rate,
incorporating OFDMA/MIMO, adaptive modulation and coding techniques. Deploying dedicated
base terminals even for small areas is costly and time consuming process. One of the major
disadvantages of implementing new base stations configured to support LTE is that existing
hardware equipment will either have to be upgraded or replaced. This will boost the resources of
the network that will need ongoing management and maintenance. Recently SDR approach has
been adopted where it is possible to accommodate future developments and improvements in
network functionality without having to replace older equipment. This is realized by remotely
changing the radio standard that network components operate on by simply installing new
software. Both LTE and WiMAX use OFDM as a modulation technique in their physical layer
procedure. Before getting to LTE and WiMAX let us look briefly into OFDM.

0

100

200

300

400

500

600

700
Ef

fe
ct

iv
e

Th
ro

ug
hp

ut
 in

 M
bp

s

Payload Length In Bytes

200 Mbps

200 Mbps(Latency 248 ns)

800 Mbps

800 Mbps (Latency 248 ns)

138

Orthogonal Frequency Division Multiplexing (OFDM) is a multicarrier technique. As compared to
single carrier technique high-rate data stream is transmitted on a signal channel whereas in
OFDM, channel is divided into more than one channel using multiple orthogonal subcarriers for
improved spectral efficiency. Similar to other modulation systems OFDM modulation system is
made up of transmitter and receiver. This system is divided into four main stages [SSI]:

• Splitting data stream into many parallel data streams;
• Symbol generation;
• Converting data into time domain;
• Converting the parallel data streams back again in to serial domain digital signal;

5.6.1 OFDM in LTE and WiMAX

In both the technologies, the available bandwidth resource is divided in time and frequency to
form smaller blocks to support many users simultaneously. These blocks are used for modulation
using Orthogonal Frequency Division Multiple Access (OFDMA). The available spectrum in OFDMA
is divided into number of orthogonal subcarriers with the spacing of ∆𝑓 between them, where
∆𝑓 = 15 𝐾𝐻𝑧 for LTE and ∆𝑓 = 10.94 𝐾𝐻𝑧 for WiMAX and these subcarriers are grouped
together to form a Resource block[IXP][IDA]. Fixed numbers of subcarriers are used in both the
technologies i.e., 12 in LTE and 18 in WiMAX. Depending on the system configuration, the resource
block is then defined in time for number of OFDM symbols ie., 5-14 symbols. These blocks are then
grouped in a frame of 10 ms for LTE and 5 ms for WiMAX. Base station decides for the allocation of
resource blocks to a user for data transmission.

OFDMA have many advantages as compared to other techniques ex., best spectral efficiency, Inter
symbol interference (ISI) can be minimized adjusting cyclic prefix, flat fading due to smaller
spacing etc. These capabilities make OFDM ideal choice for broadband technologies. However,
one of the major disadvantages of OFDM is Peak to Average Power Ratio (PAPR), which results
into a need of high linear RF power amplifier. This is because when all the subcarriers are
modulated and added together, the amplitude may shoot very high as compared to the average
amplitude value. In order to overcome this issue, modulation technique called Single Carrier
OFDMA (SC-FDMA) is used. Similar to OFDM, SC-FDMA divides the spectrum bandwidth into
multiple subcarriers and maintains orthogonality between subcarriers in frequency selective
channel. However unlike OFDM, SC-FDMA signal modulated onto a given subcarrier is a linear
combination of all data symbols transmitted at the same time. This helps reducing the peak
amplitude at the output. LTE uses SC-FDMA in the uplink to save battery power on the user
equipment. Table 5.5 summarizes the main physical layer parameters for LTE and WiMAX.

139

Feature 3GPP LTE-Advanced IEEE 802.16m Mobile WiMAX
Multiple Access Scheme Downlink : OFDMA

Uplink : SC-FDMA
Downlink : OFDMA
Uplink : OFDMA

Physical Resource Block Size 12 sub-carriers x 14 OFDM/SCFDMA

Symbols = 168 Resource elements

18 sub-carriers x 6 OFDM

Symbols = 108 Resource elements

Usable Bandwidth at 10 Mhz 600 sub-carriers x 15 kHz
(Subcarrier spacing) = 9 MHz
Spectrum Occupancy = 90%

864 sub-carriers x 10.9375 kHz
(Subcarrier spacing) = 9.45 MHz
Spectrum Occupancy = 94.5%

Usable Resource Elements per
5 ms

42000 Resource Elements 44064 Resource Elements

Modulation and Coding
Scheme Levels

27 Levels 32 Levels

Theoretical peak bit rate in
ideal case (2 x 2 MIMO)

Uplink : ~ 85 Mbps
Downlink : ~ 25 Mbps

Uplink : ~ 40 Mbps
Downlink : ~ 8 Mbps

Table 5.5 : Physical Layer Parameter for LTE and WiMAX [SAH]

Modulation schemes like BPSk, QPSK, 16QAM or 64 QAM are used with various forward error
correcting codes with varying coding rate from 1/16 to 3/4.

5.6.2 Confidentiality and Integrity in LTE and WiMAX

A primary security concern of a device using a radio channel, which is an open channel, is to
protect the traffic confidentiality and integrity. In this section we will look into the security
standards for LTE and WiMAX.

LTE uses two standardized algorithms to provide confidentiality and integrity i.e., 𝑓8,𝑓9
respectively [3GPP]. The underlying block cipher for both the algorithms is KASUMI. The block
cipher is based on MISTY 1 [MIM]. However, in order to increase the level of security and to meet
demanding hardware implementation requirements ex., low power and low area consumption in
hardware, several improvements were made in order to evolve to KASUMI. The block cipher is an
eight round Feistel block cipher, inputs 64-bit data block and 128-bit key and produces 64-bit
output.

140

Confidentiality Algorithm 𝑓8 – The 𝑓8 cryptographic algorithm is a stream cipher that is used to
encrypt/decrypt the data between the length of 1 and 20,000 bits under a master key 𝐶𝐾. 𝑓8
stream cipher uses the underlying block cipher in a Output Feedback Mode (OFB) as a keystream
generator. Figure 5.13 shows the structure of confidentiality algorithm 𝑓8.

KASUMI

A

KASUMICK

KS[0]......KS[63]

KASUMICK

KS[64]......KS[127]

KASUMICK

KS[128]......KS[191]

KASUMICK

BLKCNT = 0 BLKCNT = 1 BLKCNT = 2 BLKCNT = BLOCKS -1

CK‘ = CK XOR KM

COUNT ll BEARER ll DIRECTION ll 0...0

Figure 5.13: Confidentiality Algorithm 𝑓8. BLKCNT is a 64-bit counter. COUNT, BEARER and DIRECTION are
padded to become a full length datablock. Master Key 𝐶𝐾 is XOR-ed with fixed mask 𝐾𝑀 and derived key

𝐶𝐾′is used to in initial KASUMI block cipher.

Integrity Algorithm 𝑓9 – For the authenticity of the data, the integrity algorithm computes 32-bit
Message Authentication Code (MAC) on the data block under the integrity key 𝐼𝐾. The integrity
algorithm uses a variant of CBC MAC and same block used in confidentiality algorithm. Figure 5.14
shows the structure of integrity algorithm 𝑓9.

141

KASUMIIK KASUMIIKKASUMIIK KASUMIIK

PS0 PS1 PS2 PSblocks-1

KASUMIIK XOR KM

MAC-I (left 32-bits)

COUNT ll FRESH ll MESSAGE ll DIRECTION ll 1 ll 0...0

Figure 5.14: Integrity Algorithm 𝑓9. The outputs of all the XOR-ed block computations are XOR-ed to the
input of the final block computation. The leftmost 32-bits of the final output is taken as the output value

MAC-I.

Unlike many other technologies, the security has been included in WiMAX system at the very start.
In IEEE 802.16-2004, 802.16e and 802.16m standards, MAC layer contains a security sub-layer
[LCU][KSC]. The key aspects of WiMAX security are traffic confidentiality, data authentication, key
management and data integrity. The current IEEE standard supports three modes of operation for
the encryption of data: CBC, Counter (CTR) and CTR with CBC message authentication code
(CCM).The underlying block cipher used in WiMAX is AES[PRA]. However CTR mode is preferred
over CBC as it is considered stronger and less complex to implement, it also offers encryption
block preprocessing and can be implemented in parallel, which increases the throughput of the
system. Combining CBC with CTR i.e., CCM adds the extra feature of verifying the authenticity of
encrypted messages. CCM is considered the most secure and preferred suite for these standards
because it provides integrity and confidentiality to the data.

After analyzing security design and various implementations, we can conclude that in both the
cases data encryption and authentication is applied using 2-pass approach, where one pass is used
for the confidentiality and other for the integrity of the data. Looking into the hardware
implementations of LTE confidentiality (𝑓8) and integrity (𝑓9) algorithms, both the functions uses
a number of cascaded KASUMI blocks in order to achieve data confidentiality and integrity. From

142

[AHV], maximum throughput of 𝑓8 and 𝑓9 on Xilinx vertex-E series, i.e., XCV300E-6BG432 is
240.96 Mbps with maximum clock frequency of 30.12 MHz. Whereas the proposed Authenticated
Encryption scheme in this thesis, i.e., ASC-1 can achieve a throughput of approximately 800 Mbps
by performing both encryption and message authentication in a single pass as opposed to above
mentioned approaches.

5.7 Conclusions

FPGAs have become a popular target for implementing cryptographic block cipher. As well-
designed FPGA solution is capable of designing some of the algorithmic flexibility equivalent to
software implementation with throughputs that are comparable to custom ASIC designs.

In this chapter we have summarized the results for hardware implementation of ASC-1. Hardware
implementation of such encryption schemes depends on several performance parameters like
implementation area, power consumption, maximum throughput and maximum throughput to
area ratio. However, in case of authenticated encryption schemes, the throughput is not a static
value, but is dependent on the length of the message. Section 5.1 gives the general formula for
throughput and latency. In section 5.2 we have discussed hardware architectures verses the block
cipher modes of operation such as feedback and non-feedback modes. The motivation for this
discussion is due to the fact that the first part of ASC-1 is calculated by using non-feedback mode
and encryption part is done in feedback mode. Section 5.2.1 explained the hardware architectures
for feedback modes such as basic iterative and partial/full loop unrolling architecture. In basic
iterative architecture only single block cipher is implemented as a combinational logic where as in
partial loop N rounds are implemented as a combinational logic. The later gives a small increase in
throughput at the cost of large area penalty. In section 5.2.2, we have defined pipeline hardware
architecture for non-feedback cipher modes, where the throughput of the architecture could be
increased by processing blocks of data simultaneously.

In section 5.3 we have presented the overall performance of the core by discussing the functional
block of the scheme. Parts of the scheme are implemented in iterative and parallel pipeline
hardware architecture for the sake of comparison between the performance parameters such as
area utilization and throughput. This section also shows a huge trade-off between area and
performance of the system in case of encryption of Initialization vector and keys in initial phase
generation. Number of slices used in parallel architecture is almost 9 times than iterative
architecture, but the throughput of the iterative architecture (~0.5 Gbps) is much lower than
parallel architecture (~32 Gbps). In our proposed sequential ASC-1 design, with maximum
operational frequency we have achieved a throughput of approximately 0.8 Gbps and this can be
suitably used for SDR applications.

143

Additionally, we have also explored any possible fame delay due to the initial key setup with every
frame in section 5.4. Based on the available resources two different approaches are proposed –
key setup during transmission and parallel key setup with the encryption core. Based on our
results we assume that our proposed scheme is suitable for SDR application with negligible or no
delays. In section 5.5, we showed the maximum throughput with optimal payload lengths for data
rates with specified BERs in the channel.

Finally in section 5.6 we looked into newer cellular standards, LTE and WiMAX and the use of
OFDM as a modulation technique in their physical layer procedure. We have also briefly discussed
advantages and disadvantages of OFDM and concluded that OFDM is an ideal choice for
broadband services. In the end, we have discussed security standards in LTE and WiMAX, where in
both the cases encryption and authentication of data is applied using two different algorithms.
Whereas our proposed scheme achieves both the security features in a one single algorithm.

References

[MGR]M. Grand, L. Bossuet, G. Gogniat, B. Le Gal and D. Dallet. A Reconfigurable Crypto Sub System for the
Software Communication Architecture, in Proceedings of MILCOM 2009

[ABR]A. Brokalakis, A.P. Kakarountas and C.E. Goutis. A High- Throughput Area Efficient FPGA
Implementation of AES-128 Encryption, In Proceedings Of IEEE 2005 International Workshop on Signal
Processing Systems (SiPS’05), Athens, Greece, pp. 116-121, Nov. 2–4, 2005.

[AAZ]A. Aziz and N. Ikram. An FPGA-based AES-CCM crypto core for IEEE 802.11i architecture. International
Journal of Networks Security, 5(2):224232, 2007.

[JOZ]J.Zambreno, D.Nguyen and A. N. Choudhary. Exploring Area/Delay Tradeoffs in an AES FPGA
Implementation, proceedings of Field Programmable Logic and Application (FPL) 2004, Lecture Notes in
Computer Science 3203, pp. 575–585, Springer-Verlag, 2004.

[GAJ] K. Gaj and P. Chodowiec. FPGA and ASIC Implementations of AES.Chapter 10 in C.K. Koc (Ed.),
Cryptographic Engineering, pp. 235-320, Springer, Dec. 2008.

[PCH]P. Chodowiec and K. Gaj. Very Compact FPGA Implementation of the AES Algorithm. In C. D. Walter,
C¸ etin Kaya Ko¸c, and C. Paar, editors, Cryptographic Hardware and Embedded Systems - CHES 2003, 5th
International Workshop, Cologne, Germany, September 8-10, 2003, Proceedings, volume 2779 of Lecture
Notes in Computer Science, pages 319–333. Springer, 2003.

[BZH]B.Zhou, Y.Peng, K. Gaj and Z. Zhou. Implementation and comparative analysis of AES as a stream

144

cipher. In Computer Science and Information Technology, 2009. ICCSIT 2009. 2nd IEEE International
Conference on, pp. 396-400, 2009.

[AHO]A. Hodjat, and I. Verbauwhede. A 21.54 Gbits/s Fully Pipelined AES Processor on FPGA, 12th Annual
IEEE Sypmosium on Field-Programmable Custom Computing Machines (FCCM'04), pp. 308-309, April 2004

[CNA]C.Nalini, Nagaraj,P.V. Anandmohan and D.V. Poornaiah. An FPGA Based Performance Analysis of
Pipelining and Unrolling of AES Algorithm. Advanced Computing and Communications (ADCOM), IEEE Press,
pp.477-482, 2006.

[CHI]C.P Fan and J.K Hwang. Implementations of high throughput sequential and fully pipelined AES
processors on FPGA.Intelligent Signal Processing and Communication Systems(ISPCS) IEEE Press, pp.353-
356,2007.

[LCU]L. Cuilan A simple encryption scheme based onWiMAX. Presented at the Int. Conf. E-Business and
Information System Security, Wuhan, China, 2009.

[3GPP] 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects;
3G Security; Specification of the 3GPP Confidentiality and Integrity Algorithms; Document 1: f8 and f9
Specification (Release 10), 3GPP TS 35.201 v10.0.0 , 2011

[KSC]K. Scarfone, C. Tibbs and M.Sexten. Guide to securing WiMAX Wireless Communication, NIST – Special
Publication 800-127.

[SSI]S.Stefania, I.Toufik, and M.Baker. LTE – The UMTS Long Term Evolution from Theory to Practice.
Hoboken: John Wiley & Sons, 2009.

[IXP]IEEE Xplore. IEEE Standard for Local and Metropolitan Area Networks Part 16: Air Interface for
Broadband Wireless Access Systems Amendment 3: Advanced Air Interface.Last modified May 6, 2011.

[IDA] I.Daemon. History of the Public Switched Telephone Network (PSTN). Last modified 2005.
http://www.inetdaemon.com/tutorials/telecom/pstn/history.shtml.

[SAH] S. Ahmadi . Mobile WiMAX A Systems Approach to Understanding IEEE 802.16m Radio Access
Technology. Burlington: Elsevier Press, 2011.

[MIM] M. Matsui. New block encryption algorithm MISTY. In Fast Software Encryption’97, volume 1267
LNCS, Springer-Verlag. pp. 54-68, 1997.

[AHV] A.Satoh and S. Morioka. Small and High-Speed Hardware Architectures for the 3GPP Standard Cipher
KASUMI. In Proceedings of the 5th International Conference Information Security, ISC 2002 . LNCS vol. 2433
Springer 2002.

http://www.inetdaemon.com/tutorials/telecom/pstn/history.shtml�

145

[PMO]P. Kitsos, M. D. Galanis and O. Koufopavlou. High-Speed HardwareImplementations of the KASUMI
Block Cipher. Proceedings of the 2004 IEEE International Symposium on Circuit and Systems ISCAS’04 ,
Vancouver, Canada,2004.

[PRA] P. Rengaraju, C.H. Lung and A. Srinivasan. Measuring and Analyzing WiMAX Security and QoS in
Testbed Experiments. Communications (ICC), 2011 IEEE International Conference. pp. 1-5. 2011.

146

147

6
Summary and Future Scope

In this chapter, we will summarize the contributions of this thesis and present open problems of
varying generality.

6.1 Contributions of This Thesis

Due to variety of wireless communication standards (LTE, WiFi, WiMax etc), we need highly
flexible and interoperable communication systems. SDRs are used to meet the flexibility
constraint. In order to avail this enabling technology that is applicable across a wide range of areas
within the wireless infrastructure, these radios have to propose cryptographic services such as
confidentiality, integrity and authentication. Therefore, integration of cryptographic services into
SDR devices is essential. Following are the highlights of our contribution:

• A design of an authenticated encryption scheme, “ASC-1: An Authenticated Encryption
Stream Cipher”. With it’s outside the box construction we aimed to explore new design
approaches without scarifying the security and the performance.

• Security analysis of ASC-1, by showing that it is secure if one cannot distinguish the case
when the round keys are uniformly random from the case when the round keys are
derived by the key scheduling algorithm of ASC-1.

• Careful design and optimal implementation of ASC-1 for reconfigurable chips by analyzing
optimum choice of hardware architecture for cryptosystems.

• Analysis of results based on performance parameters which are implementation area,
maximum throughput and maximum throughput to area ratio.

The objective of this thesis was to design an authenticated encryption scheme with the focus to
achieve high throughput and low overhead for SDRs. We worked into two very different research
topics. One topic was the design of an authenticated encryption scheme that can accomplish both
massage secrecy and authenticity in a single cryptographic primitive. The other topic was the
implementation of this design on re-configurable hardware in SDRs by closely observing the trade-
off between area/throughput performance parameters.

148

We accomplished our first part of objective by proposing an authenticated encryption stream
cipher (ASC-1) scheme that is designed using a stream cipher approach instead of a block cipher
mode approach [SKG]. The goal here was to achieve faster encryption and messages
authentication by performing both the encryption and message authentication in a single pass as
opposed to the traditional encrypt-then-mac approach, which requires two passes. The design of
the scheme uses four round AES block cipher as a building block. ASC-1 is inspired by the LEX
stream cipher and similar to LEX, ASC-1 uses leak extraction from different AES rounds to compute
the key material that is XOR-ed with the message and transform it into ciphertext. Block ciphers
are usually built from a round function in an iterative way. Using just a single round of block and
repeated use of the round function leaves patterns, which could be used to break the cipher [JBO].
Adding extra rounds certainly gives additional security to the cipher but it also increases the
complexity of the encryption. Thus, the designers have to find the right trade-off between the
security and performance of the cipher. In case of ASC-1, we show that the scheme is secure if one
cannot distinguish the case when the round keys are uniformly random from the case when the
round keys are derived by the key scheduling algorithm of ASC-1. It is not uncommon to make this
assumption that the round keys are random when analyzing the security of cryptographic
primitive. For instance, this assumption is always made when proving the resistance of a block
cipher to linear and differential cryptanalysis. ASC-1 is divided into two parts – Initial phase
generation and encryption in CFB-like mode together with the authentication of data. For initial
phase 56-bit representation of a counter is used that provides a unique initialization vector and
authentication key is generated using 64-bit representation of the bit-length of the message, if
one substitutes a ciphertext with a different-length ciphertext, then the probability of success of
this attack will be 2−𝑛. Even though ASC-1 is inspired from LEX stream cipher and the leak
positions are same as in LEX. However, unlike LEX, we add a whitening key byte before each
extracted byte; this gives additional security to the scheme. Round keys for ASC-1 encryption
scheme are derived from AES-256 key scheduling algorithm and keys used in each round are far
apart in the key scheduling algorithm. In order for an attack to work one has to be able to guess
the round key differences as well.

The second direction of the research in this thesis was inspired from the fact that the information
security is one of the key relevant aspects of SDR, whether it is for data transmission or
downloading of radio parameters or upgrades [RFL, LMI, ABR]. We have tried to accomplish this by
designing and implementing ASC-1 authenticated encryption scheme on FPGAs. The target device
used for this implementation is Xilinx Spartan -3 xc3s700an FPGA. The crypto module i.e., ASC-1 is
placed on the re-configurable chip is responsible for the confidentiality and integrity of the data
flow passing through it from both the sides.

149

The proposed ASC-1 architecture is divided into five functional blocks including a key logic and AES
& ASC-1 encryption core. The round keys in a key logic functional block are calculated using an
“offline” or “stored key” approach, where all the round keys are calculated upon the reception of
the initial cipher key before the start of encryption core and stores them in a local memory. This is
done because for initial phase generation, round keys are derived using the same master key to
encrypt initialization vector, two initial keys for key scheduling for ASC-1 encryption and key used
for the authentication tag. Also this approach works well for the encryption of data because of the
key whitening operation. The encryption core block is used for performing AES-128 and ASC-1
encryption process. AES encryption core is only used for the generation of initialization vector and
keys used in ASC-1.

In this thesis we have analyzed several performance parameters like Implementation area
(number of slices used in FPGA), throughput and latency based on different hardware
architectures for feedback and non-feedback cipher modes. The first part of ASC-1, i.e., the initial
phase is calculated by using non-feedback mode, such as Electronic code book mode (ECB). Where
the encryption of each block is performed independently for other blocks and all the blocks can be
encrypted in parallel. The second part i.e., encryption of data is done in cipher feedback mode
(CFB), where encryption of next block of data cannot be started until encryption of previous block
is completed, which means all blocks must be processed sequentially. For the sake of comparison
between the performance parameters such as area utilization and throughput, parts of the system
are implemented in both iterative and parallel architecture. Additionally, we have also looked into
any possible fame delay due to the initial key setup with every frame. Based on the available
resources two different approaches are proposed – key setup during transmission and parallel key
setup with the encryption core.

In conclusion, this thesis has proposed a new efficient single pass authenticated encryption stream
cipher (ASC-1) for SDRs, with a goal to provide secrecy and authenticity to data transmission for
reconfigurable chips.

6.2 Open Problems

The subject of security for SDR systems is quite broad and covers many issues. According to the
wireless innovation forum, definition of a secure SDR in a broad sense is a device that maintains
the integrity and privacy of the system and the information distributed across it. It includes

150

mechanisms to ensure accurate contact delivery to intended recipients, denial of interception by
intruders, rejection of attempts to gain unauthorized access, mechanisms for configuration
management of software download, and record-keeping with non-repudiation of actions taken by
all participants[WIF].

Based on this definition possible direction could be to combine the proposed cryptographic
scheme with other secure algorithms which provide countermeasures against unauthorized FPGA
bitstream/image modification, key management issues etc. Other requirements that need to be
explored for the security of the underlying hardware are integrity of the platform, downloading
upgrade and secure storage of the keys. Additional issues are the challenges in dynamic spectrum
access environment, security problems like spectrum misusage and selfish misbehaviors, licensed
user emulation attacks, common control channel jamming etc are still prominent security
threats[AEI].

In recent years, the study of block ciphers and hash functions has matured significantly. Certainly
combining these two together and to find a mode of operation which can achieve both privacy
and authentication using only a single pass is still quite new, many open problems still remain.

References

[SKG] G.Jakimoski and S.Khajuria. ASC-1: An Authenticated Encryption Stream Cipher. Selected Areas in
Cryptography (SAC). 18th International Workshop, LNCS 7118, Springer, pp. 356-372, 2012.

[JBO] J Borghoff. Cryptanalysis of Lightweight Ciphers. Ph.D Thesis. Technical University of Denmark (DTU).
Dept of Mathematics. 2010

[RFL] R. Falk, J. F. Esfahani, and M. Dillinger. Reconfigurable radio terminals - threats and security objectives
SDRF-02-I-0056, Tech. Rep., 2002.

[LMI] L. Michael, M. Mihaljevic, S. Haruyama, and R. Kohno. A framework for secure download for
software-defined radio, IEEE Communications Magazine, vol. 40, no. 7, pp. 88–96, July 2002.

[ABR] A. Brawerman, D. Blough, and B. Bing. Securing the download of radio configuration files for software
defined radio devices. In Proceedings of the International Workshop on Mobility Management & Wireless
Access Protocols, pp. 98–105,Sept. 2004.

[WIF] Wireless Innovation Forum. International Tactical Radio Security Services API Specification. Document
WINNF-09-S-0011. V 1.0.0. 2011

[AEI] A. Fragkiadakis, E. Tragos, I. Askoxylakis. A survey on security threats and detection techniques in
cognitive radio networks. In: IEEE communications surveys and tutorials, pp. 1–18. 2011.

151

152

153

I
Appendix – Test Vectors

The appendix contains the example vectors for ASC-1. The vectors presented here are only for the
encryption side. ASC-1 encryption phase is divided in to two parts – Initial phase generation and
encryption and authentication of data. All the vectors are presented in hexadecimal notation.

A.1 ASC-1 Preprocessing / Initial Phase

Master Key (𝐊) – C6 56 82 7F C9 A7 99 17 6f 29 4C EC 6C D5 59 8B

Counter (𝑪𝒏𝒕𝒓) – 11 22 33 44 55 66 77 (56 bit representation)

Initialization Vector - 𝑋0 = 𝐸𝐾(070‖00‖𝐶𝑛𝑡𝑟)
 = 1D 1C CF 6D 85 DF 31 57 51 62 11 0B D8 CF 9B C0

Initial Key - 𝐾1 = 𝐸𝐾(070‖01‖𝐶𝑛𝑡𝑟)
 = BA AE 5B A2 5E 66 60 5E B6 30 5D 0C D2 0C 47 8B

Initial Key - 𝐾2 = 𝐸𝐾(070‖10‖𝐶𝑛𝑡𝑟)
 = B3 BE A6 AE 65 C5 35 B2 70 CA 1D 98 32 56 FF 8D

Length of the message - 𝑙(𝑀)
 = 00 00 00 00 00 00 01 80 (64 bit representation)

Authentication key - 𝐾3 = 𝐸𝐾(𝑙(𝑀)‖06‖�11‖𝐶𝑛𝑡𝑟)
 = 7F 05 94 5E 3D 73 26 FF 98 05 FD 7E FD F3 AF 7F

154

A.2 Key Expansion

1. Key Expansion 256 bit - �𝑲𝟏‖ 𝑲𝟐

= BA AE 5B A2 5E 66 60 5E B6 30 5D 0C D2 0C 47 8B
 B3 BE A6 AE 65 C5 35 B2 70 CA 1D 98 32 56 FF 8D

Key Whitening Round key 2 - 𝐾1 = baae5ba2 5e66605e b6305d0c d20c478b

AES Round key 1 - 𝐾2 = b3bea6ae 65c535b2 70ca1d98 3256ff8d

AES Round key 1 - 𝐾3 = 0ab80681 54de66df e2ee3bd3 30e27c58

AES Round key 1 - 𝐾4 = b726b6c4 d2e38376 a2299eee 907f6163

AES Round key 1 - 𝐾5 = da57fde1 8e899b3e 6c67a0ed 5c85dcb5

Discarded key - 𝐾6 = fdb13011 2f52b367 8d7b2d89 1d044cea

AES Round key 2 - 𝐾7 = 2c7e7a45 a2f7e17b ce904196 92159d23

AES Round key 2 - 𝐾8 = b2e86e37 9dbadd50 10c1f0d9 0dc5bc33

AES Round key 2 - 𝐾9 = 821bb992 20ec58e9 ee7c197f 7c69845c

AES Round key 2 - 𝐾10 = a211317d 3fabec2d 2f6a1cf4 22afa0c7

Key Whitening Round key 1 - 𝐾11 = ebfb7f01 cb1727e8 256b3e97 5902bacb

Discarded key - 𝐾12 = 6966c562 56cd294f 79a735bb 5b08957c

Round keys for key expansion - 𝐾13 = fbd16f38 30c648d0 15ad7647 4cafcc8c

Round keys for key expansion - 𝐾14 = 401f8e06 16d2a749 6f7592f2 347d078e

Discarded key - 𝐾15 = 44147620 74d23ef0 617f48b7 2dd0843b

2. Key Expansion 256 bit - �𝑲𝟏𝟑‖ 𝑲𝟏𝟒

= fb d1 6f 38 30 c6 48 d0 15 ad 76 47 4c af cc 8c
 40 1f 8e 06 16 d2 a7 49 6f 75 92 f2 34 7d 07 8e

155

Discarded key in case of final Round - 𝐾1 = fbd16f38 30c648d0 15ad7647 4cafcc8c

AES Round key 3 - 𝐾2 = 401f8e06 16d2a749 6f7592f23 47d078e

AES Round key 3 - 𝐾3 = 05147620 35d23ef0 207f48b76 cd0843b

AES Round key 3 - 𝐾4 = 106fd1e4 06bd76ad 69c8e45f 5db5e3d1

AES Round key 3 - 𝐾5 = d205486c e7d7769c c7a83e2b ab78ba10

Discarded key - 𝐾6 = 72d3252e 746e5383 1da6b7dc 4013540d

AES Round key 4 - 𝐾7 = ab259f65 4cf2e9f9 8b5ad7d2 20226dc2

AES Round key 4 - 𝐾8 = c540190b b12e4a88 ac88fd54 ec9ba959

AES Round key 4 - 𝐾9 = b7f654ab fb04bd52 705e6a80 507c0742

AES Round key 4 - 𝐾10 = 9650dc27 277e96af 8bf66bfb 676dc2a2

Key Whitening Round key 3 - 𝐾11 = 9bd36e2e 60d7d37c 1089b9fc 40f5bebe

Discarded key - 𝐾12 = 9fb67289 b8c8e4263 33e8fdd 54534d7f

Discarded key in case of final Round 𝐾13 = 5630bc0e 36e76f722 66ed68e 669b6830

Discarded key in case of final Round 𝐾14 = aca2378d 146ad3ab 27545c76 73071109

Discarded key - 𝐾15 = d3b2bd81 e555d2f3 c33b047d a5a06c4d

A.3 ASC-1 Encryption

𝑴𝒆𝒔𝒔𝒂𝒈𝒆 𝑴 = 𝑚1,𝑚2,𝑚3

𝑚1 = 00112233 44556677 8899aabb ccddeeff

𝑚2 = 11112222 44447777 9999aaaa ccccffff

𝑚3 = 00002222 33336666 8888bbbb eeeeffff

156

Round 𝟏𝟏

Initialization vector (𝑋0) = 1D1CCF6D 85DF3157 5162110B D8CF9BC0

Round 1: AddRoundKey (𝑋0 ⨁𝐾2) = AEA269C3E01A04E521A80C93EA99644D

Round 1: SubBytes = E43AF92E E1A2F2D9 FDC2FEDC 87EE43E3
Round 1: ShiftRows = E4A2FEE3 E1C2432E FDEEF9D9 873AF2DC

Round 1: MixColumns = 33419FB6 E995D7E5 E8F38AA2 75223DF9

Round 1: KeyWhitening 𝐾11 (Odd Round) = D8 41 64 b6 e9 95 d7 e5 97 f3 39 a2 75 22 3d f9

Round 1 : LeakKey (𝑙1…4) = D8649739

Round 𝟏𝟐

Input Round 2 = D8 41 64 b6 e9 95 d7 e5 97 f3 39 a2 75 22 3d f9

Round 2 : AddRoundKey (Input Round 2 ⨁𝐾3)
 = D2 F9 62 37 BD 4B B1 3A 75 1D 02 71 45 C0 41 A1

Round 2 : SubBytes = B5 99 AA 9A 7A B3 C8 80 9D A4 77 A3 6E BA 83 32

Round 2 : ShiftRows = B5 B3 77 32 7A A4 83 9A 9D BA AA 80 6E 99 C8 A3

Round 2 : MixColumns = FA 63 BE 64 1A 2D 76 86 DE 97 F3 B7 07 A7 82 BE

Round 2 : KeyWhitenting 𝐾11 (Even Round)

= FA 63 BE 64 D1 2D 61 86 DE 97 F3 B7 20 A7 6A BE

Round 2 : LeakKey (𝑙5…8) = D161206A

Round 𝟏𝟑

Input Round 3 = FA 63 BE 64 D1 2D 61 86 DE 97 F3 B7 20 A7 6A BE

Round 3 : AddRoundKey (Input Round 3 ⨁𝐾4)

= 4D 45 08 A0 03 C3 E2 F0 7C BE 6D 59 B0 D8 0B D0

Round 3 : SubBytes = E3 6E 30 E0 7B 8B 98 8C 10 AE 3C CB E7 61 2B 70

Round 3 : ShiftRows = E3 8B 3C 70 7B AE 2B E0 10 61 30 8C E7 6E 98 CB

157

Round 3 : MixColumns = 17 DA 80 69 D4 A1 B8 D3 3F 0E 9E 62 34 43 E4 49

Round 3 : KeyWhitenting 𝐾11 (Odd Round)

 = 32 DA EB 69 D4 A1 B8 D3 01 0E 09 62 34 43 E4 49

Round 3 : LeakKey (𝑙9…12) = 32EB0109

Round 𝟏𝟒

Input Round 4 = 32 DA EB 69 D4 A1 B8 D3 01 0E 09 62 34 43 E4 49

Round 4 : AddRoundKey (Input Round 4 ⨁𝐾5) = e8 8d 16 88 5a 28 23 ed 6d 69 a9 8f 68 c6 38 fc

Round 4 : SubBytes = 9b 5d 47 c4 be 34 26 55 3c f9 d3 73 45 b4 07 b0

Round 4 : ShiftRows = 9b 34 d3 b0 be f9 07 c4 3c b4 47 55 45 5d 26 73

Round 4 : MixColumns = 12 2d d9 2a b4 9a 1e b4 ad d3 f9 1d 38 e6 c1 52

Round 4 : keyWhitenting 𝐾11 (Even Round) = 12 2d d9 2a ED 9a 1C b4 ad d3 f9 1d 82 e6 0A 52

Round 4 : LeakKey (𝑙13…16):: ED1C820A

Leak 𝒓𝟏 = 𝑙1…4‖𝑙5…8‖𝑙9…12‖𝑙13…16

� = D8649739 D161206A 32EB0109 ED1C820A

Message 𝒎𝟏 = 00112233 44556677 8899aabb ccddeeff

Ciphertext 𝒄𝟏 = D8 75 B5 0A 95 34 46 1D BA 72 AB B2 21 C1 6C F5

Round 𝟐𝟏

𝒎𝟐 = 11112222 44447777 9999aaaa ccccffff

Input round 1 :: (Round 𝟏𝟒 output ⨁𝑐1) = CA 58 6C 20 78 AE 5A A9 17 A1 52 AF A3 27 66 A7

Round 1: AddRoundKey (Input round 1 ⨁𝐾7) = E6 26 16 65 DA 59 BB D2 D9 31 13 39 31 32 FB 84

Round 1: SubBytes = 8e f7 47 4d 57 cb ea b5 35 c7 7d 12 c7 23 0f 5f

Round 1: ShiftRows = 8E CB 7D 5F 57 C7 0f 4d 35 23 47 b5 c7 f7 ea 12

Round 1: MixColumns = 63 db 5e 81 b3 9e 59 ab fd 0f 5c 4a 6f 05 c9 6b

Round 1: KeyWhitening 𝐾1 (Odd Round) = D9 db F0 81 b3 9e 59 ab A6 0f FE 4a 6f 05 c9 6b

158

Round 1 : LeakKey (𝑙1…4) = D9 F0 A6 FE

Round 𝟐𝟐

Input round 2 = D9 db F0 81 b3 9e 59 ab A6 0f FE 4a 6f 05 c9 6b

Round 2 :: AddRoundKey (Input round 2 ⨁𝐾8) = 6B 33 9E B6 2E 24 84 FB B6 CE 0E 93 62 C0 75 58

Round 2: SubBytes = 7f c3 0b 4e 31 36 5f 0f 4e 8b ab dc aa ba 9d 6a
Round 2: ShiftRows = 7f 36 ab 6a 31 8b 9d 4e 4e ba 0b 0f aa c3 5f dc

Round 2: MixColumns = 65 9f ba c8 37 ce 49 d9 4d 33 f3 7d 92 0a a8 da

Round 2: KeyWhitening 𝐾1 (Even Round) = 65 9f ba c8 69 ce 2F d9 4d 33 f3 7d F2 0a F6 da

Round 2 : LeakKey (𝑙5…8) = 69 2F F2 F6

Round 𝟐𝟑

Input round 3 = 65 9f ba c8 69 ce 2F d9 4d 33 f3 7d F2 0a F6 da

Round 3 :: AddRoundKey (Input round 3 ⨁𝐾9) = E7 84 03 5A 49 22 77 30 A3 4F EA 02 8E 63 72 86

Round 3: SubBytes = 94 5f 7b b3 3b 93 f5 04 0a 84 87 77 19 fb 40 44

Round 3: ShiftRows = 94 93 87 44 3b 84 40 be 0a fb 7b 04 19 5f f5 77

Round 3: MixColumns = 5e 7f de 3b 1f 56 e6 ee 7d 6e 0b 96 51 d4 2e 6f

Round 3: KeyWhitening 𝐾1 (odd Round) = E8 7f EE 3b 1f 56 e6 ee 20 6e 07 96 51 d4 2e 6f

Round 3 : LeakKey (𝑙9…12) = E8 EE 20 07

Round 𝟐𝟒

Input round 4 = E8 7f EE 3b 1f 56 e6 ee 20 6e 07 96 51 d4 2e 6f

Round 4 :: AddRoundKey (Input round 4 ⨁𝐾10) = 4A 6E DF 46 20 FD 0A C3 0F 04 1B 62 73 7B 8E A8

Round 4: SubBytes = d6 9f 93 5a b7 54 67 23 76 f2 af aa 8f 21 19 c2

Round 4: ShiftRows = d6 54 af c2 b7 f2 19 5a 76 21 9e 2e 8f 9f 67 aa
Round 4: MixColumns = 26 56 9a 05 3b 39 99 9d 3f a3 02 79 72 a9 3b 3d

159

Round 4: KeyWhitening 𝐾1 (Even Round) = 26 56 9a 05 E9 39 95 9d 3f a3 02 79 35 a9 B0 3d

Round 4 : LeakKey (𝑙13…16) = E9 95 35 B0
__
Leak 𝒓𝟐 = 𝑙1…4‖𝑙5…8‖𝑙9…12‖𝑙13…16

� = D9 F0 A6 FE 69 2F F2 F6 E8 EE 20 07 E9 95 35 B0

Message 𝒎𝟐 = 11 11 22 22 44 44 77 77 99 99 aa aa cc cc ff ff

Ciphertext 𝒄𝟐 = C8 E1 84 DC 2D 6B 85 81 71 77 8A AD 25 59 CA 4F

Round 𝟑𝟏

𝑚3 = 00002222 33336666 8888bbbb eeeeffff

Input round 1 :: (Round 𝟐𝟒 output ⨁𝑐2) = EE B7 1E D9 C4 52 10 1C 4E D4 88 D4 10 F0 7A 72

Round 1: AddRoundKey (Input round 1 ⨁𝐾2) = AE A8 90 DF D2 80 B7 55 21 A1 1A 26 24 8D 7D FC

Round 1: SubBytes = E4 C2 60 9E B5 CD A9 FC FD 32 A2 F7 36 5D FF B0

Round 1: ShiftRows = E4 CD A2 B0 B5 32 FF 9E FD 5D 60 FC 36 C2 A9 F7

Round 1: MixColumns = 8D 28 BD 23 46 55 DB 2E 9A 1B 7F C2 6F B3 BF C4

Round 1: KeyWhitening 𝐾11 (Odd Round) = 16 28 6E 23 46 55 DB 2E F4 1B 51 C2 6F B3 BF C4

Round 1 : LeakKey (𝑙1…4) = 16 6E F4 51

Round 𝟑𝟐

Input round 2 = 16 28 6E 23 46 55 DB 2E F4 1B 51 C2 6F B3 BF C4

Round 2 : AddRoundKey (Input round 2 ⨁𝐾3) = 13 3C 18 03 73 87 E5 DE D4 64 19 75 03 63 3B FF

Round 2 : SubBytes = 7D EB AD 7B 8F 17 D9 1D 48 43 D4 9D 7B FB E2 16

Round 2 : ShiftRows = 7D 17 D4 16 8F 43 E2 7B 48 FB AD 1D 7B EB D9 9D

Round 2 : MixColumns = 01 22 E3 68 59 4F 9E DD 36 54 D5 B4 94 5B 85 9E

Round 2 : KeyWhitening 𝐾11 (Even Round) = 01 22 E3 68 39 4F 49 DD 36 54 D5 B4 47 5B F9 9E

Round 2 : LeakKey (𝑙5…8) = 39 49 47 F9

160

Round 𝟑𝟑

Input round 3 = 01 22 E3 68 39 4F 49 DD 36 54 D5 B4 47 5B F9 9E

Round 3 : AddRoundKey (Input round 3 ⨁𝐾4) = 11 4D 32 8C 3F F2 3F 70 5F 9C 31 EB 1A EE 1A 4F

Round 3 : SubBytes = 82 E3 23 64 75 89 75 51 CF DE C7 E9 A2 28 A2 84

Round 3 : ShiftRows = 82 89 C7 84 75 D3 A2 64 CF 28 23 51 A2 E3 75 E9

Round 3 : MixColumns = DC 5D 09 C0 55 4B 58 2B 8F AB 52 E3 FD 09 8B A2

Round 3 : KeyWhitening 𝐾11 (odd Round) = CC 5D 80 C0 55 4B 58 2B 36 AB AE E3 FD 09 8B A2

Round 3 : LeakKey (𝑙9…12)= CC 80 36 AE

Round 𝟑𝟒

Input round 4 = CC 5D 80 C0 55 4B 58 2B 36 AB AE E3 FD 09 8B A2

Round 4 : AddRoundKey (Input round 4 ⨁𝐾5) = 1E 58 C8 AC B2 9C 2E B7 F1 03 90 C8 56 71 31 B2

Round 4 : SubBytes = 72 6A E8 91 37 DE 31 A9 A1 7B 60 E8 B1 A3 C7 37

Round 4 : ShiftRows = 72 DE 60 37 37 7B C7 91 A1 A3 E8 A9 B1 6A 31 E8

Round 4 : MixColumns = CA 42 35 46 B5 02 71 DC E6 76 29 FA 1E DE 9A 58

Round 4 : KeyWhitening 𝐾11 (Even Round) = CA 42 35 46 F5 02 84 DC E6 76 29 FA A0 DE 24 58

Round 4 : LeakKey (𝑙13…16) = F5 84 A0 24

Leak 𝒓𝟑 = 𝑙1…4‖𝑙5…8‖𝑙9…12‖𝑙13…16

� = 16 6E F4 51 39 49 47 F9 CC 80 36 AE F5 84 A0 24

Message 𝒎𝟑 = 00002222 33336666 8888bbbb eeeeffff

Ciphertext 𝒄𝟑 = 16 6E D6 73 0A 7A 21 9F 44 08 8D 15 1B 6A 5F DB

Round 𝟒𝟏 (Authentication Round)

Input round 1 :: (Round 𝟑𝟒 output ⨁𝑐3) = DC 2C E3 35 FF 78 A5 43 A2 7E A4 EF BB B4 7B 83

Round 1: AddRoundKey (Input round 1 ⨁𝐾7) = 77 09 7C 50 B3 8A 4C BA 29 24 73 3D 9B 96 16 41

161

Round 1: SubBytes = F5 01 10 53 6D 7E 29 F4 A5 A5 8F 27 14 90 47 83

Round 1: ShiftRows = F5 7E 8F 83 6D A5 47 53 A5 90 10 F4 12 01 29 27

Round 1: MixColumns = 7F 00 10 E8 3A A6 B3 F3 1E 5A 12 87 25 4A 2E 5A

Round 𝟒𝟐

Input Round 2 : 7F 00 10 E8 3A A6 B3 F3 1E 5A 12 87 25 4A 2E 5A

Round 2 : Addroundkey (Input round 2 ⨁𝐾8) = BA 40 09 E3 8B 88 F9 7B B2 D2 EF D3 C9 D1 87 03

Round 2 : SubBytes = F4 09 01 11 3D C4 99 21 37 B5 DF 66 DD 3E 17 7B

Round 2 : ShiftRows = F4 C4 DF 7B 3D B5 17 11 37 3E 01 21 DD 09 99 66

Round 2 : MixColumns = 00 66 18 EA B8 64 95 C7 0C 69 68 24 45 19 57 20

Round 𝟒𝟑

Input Round 3 = 00 66 18 EA B8 64 95 C7 0C 69 68 24 45 19 57 20

Round 3 : AddRoundKey (Input round 3 ⨁𝐾9) = B7 90 4C 41 43 60 28 95 7C 37 02 A4 15 65 50 62

Round 3 : SubBytes = A9 60 29 83 1A D0 34 2A 10 9A 77 49 59 4D 53 AA

Round 3 : ShiftRows = a9 d0 77 aa 1a 9a 53 83 10 4d 29 2a 59 60 34 49

Round 3 : MixColumns = FF 21 72 08 51 43 B8 FA F4 DB 71 00 6F 8C 8A 2D

Round 𝟒𝟒

Input Round 4 = FF 21 72 08 51 43 B8 FA F4 DB 71 00 6F 8C 8A 2D

Round 4 : AddRoundKey (Input round 4 ⨁𝐾10) = 69 71 AE 2F 76 3D 2E 55 7F 2D 1A FB 08 E1 48 8F

Round 4 : SubBytes = F9 A3 E4 15 38 27 31 FC D2 D8 A2 0F 30 F8 52 73

Round 4 : ShiftRows = F9 27 A2 73 38 D8 52 15 D2 F8 E4 FC 30 A3 31 0F

Round 4 : MixColumns = 51 39 14 73 44 70 7B E8 B4 F2 E6 92 A0 31 E0 DC

Authentication Tag 𝜏 (Output round 44 ⊕ Authentication Key 𝐾3)

162

= 2E 3C 80 2D 79 03 5D 17 2C F7 1B EC 5D C2 4F A3

Ciphertext 𝑪 = �𝑰𝑽/𝑪𝒏𝒕𝒓‖�𝑪𝟏‖�𝑪𝟐‖�𝑪𝟑‖ 𝜏

163

II
Appendix – Xilinx Sample Code

and Waveforms

The appendix contains parts of the VHDL code implemented in parallel and iterative hardware
architecture. Additionally simulation waveforms are all shown for ASE-128, Key expansion and
ASC-1 encryption core.

Language VHDL (VHSIC hardware description
language)

VHDL Source Analysis Standard VHDL-93
Product Category

• Family
• Device
• Package
• Speed

Spartan 3AN
XC3700AN

FGG484
-4

Synthesis Tool XST – VHDL/Verilog
Simulator ISim
Software Version Xilinx ISE – 12.4

B.1 Advanced Encryption Standard (AES) – 128

The block cipher is used in initial phase for the calculation of Initialization Vector (IV) and keys
used for encryption and authentication of data. For performance comparison AES-128 encryption
is implemented in parallel and in basic iterative architectures.
 Top Module for AES- Encryption basic iterative architecture is implemented using the case
statements. Each statement is executed when one specific case of an expression equal to a choice.
Following shows the sample code for the case statements used in AES encryption module.

164

case algState is

IDLE State:
when IDLE =>
 ctValidDly <= '0';
 if cnt < RND1KEYDELAY then
 cnt <= cnt + 1;
 else
 cnt <= 0;
 sInNxt <= sInNR(1);
 algState <= rnd1;
 end if;
Round 1:
when rnd1 =>
 W0nxt <= W(4);
 W1nxt <= W(5);
 W2nxt <= W(6);
 W3nxt <= W(7);

 if cnt < RNDDELAY then
 cnt <= cnt + 1;
 else
 cnt <= 0;
 algState <= rnd2;
 sInNxt <= sOutNxt;
 end if;

 Round 2:

 when rnd2 =>
 W0nxt <= W(8);
 W1nxt <= W(9);
 W2nxt <= W(10);
 W3nxt <= W(11);

 if cnt < RNDDELAY then
 cnt <= cnt + 1;
 else
 cnt <= 0;
 algState <= rnd3;
 sInNxt <= sOutNxt;
 end if;
.
.
.
.
 Round 9:
 when rnd9 =>
 W0nxt <= W(36);
 W1nxt <= W(37);
 W2nxt <= W(38);
 W3nxt <= W(39);

 if cnt < RNDDELAY then
 cnt <= cnt + 1;
 else
 cnt <= 0;
 sInNR(10) <= sOutNxt;
 end if;
Round 10 (Final Round):
finalRoundSelect : process (W, sInNR) is
begin
 WFinal0 <= W(40);
 WFinal1 <= W(41);
 WFinal2 <= W(42);
 WFinal3 <= W(43);
 sInFinal <= sInNR(10);
 end process;

 finalround_1 : finalround
 port map (
 clk => clk,
 rstn => rstn,

The case is IDLE when the top
module is waiting for the Key
Schedule to be completed. Once all
the round keys are calculated using
the key scheduling the state moves
to next case, i.e., rnd1

From round 1 to round 9, round
keys and output of previous state is
fed into the intermediate states.
Except the final round same
operation is performed in each
round, i.e., SubBytes, ShiftRows,
MixColumns and AddRoundKey.

165

 W0 => WFinal0,
 W1 => WFinal1,
 W2 => WFinal2,
 W3 => WFinal3,
 stateIn => sInFinal,
 stateOut => final);

166

Pl
ai

nT
ex

t I
np

ut

In
te

rm
ed

ia
te

 T
ra

ns
fo

rm
at

io
n

Da
ta

Fi
na

l C
ip

he
rT

ex
t

Te
st

 V
ec

to
rs

Si
m

ul
at

io
n

W
av

ef
or

m
s o

f A
ES

-1
28

 It
er

at
iv

e
Ha

rd
w

ar
e

Ar
ch

ite
ct

ur
e

167

Sample code for AES-128 parallel Architecture:

 addroundkey_1: addroundkey
 port map (
 clk => clk,
 rstn => rstn,
 W0 => W(0),
 W1 => W(1),
 W2 => W(2),
 W3 => W(3),
 stateIn => sIn,
 stateOut => sInNR(1));

Generating Rounds 1 to 9
genRounds: for Nr in 1 to 9 generate
round_NR: round
 port map (
 clk => clk,
 rstn => rstn,
 W0 => W(4+((Nr-1)*4)),
 W1 => W(5+((Nr-1)*4)),
 W2 => W(6+((Nr-1)*4)),
 W3 => W(7+((Nr-1)*4)),
 stateIn => sInNR(Nr),
 stateOut => sOutNR(Nr));

 sInNR(Nr+1) <= sOutNR(Nr);
 end generate genRounds;

Round 10 (Final Round) :
 finalRoundSelect: process (W, sInNR) is
 begin
 WFinal0 <= W(40);
 WFinal1 <= W(41);
 WFinal2 <= W(42);
 WFinal3 <= W(43);
 sInFinal <= sInNR(10);
 end process finalRoundSelect;

finalround_1: finalround
 port map (
 clk => clk,
 rstn => rstn,
 W0 => WFinal0,
 W1 => WFinal1,
 W2 => WFinal2,
 W3 => WFinal3,
 stateIn => sInFinal,
 stateOut => sOut);

At Round 0, key is Xor-ed with the
initial state i.e., Plaintext

All 9 rounds are generated using
parallel pipeline architecture

Finally, round 10 is transformed
separately

168

Pl
ai

nT
ex

t I
np

ut

Ci
ph

er
 K

ey

Fi
na

l C
ip

he
rT

ex
t

f3
44

81
ec

3c
c6

27
ba

cd
5d

c3
fb

08
f2

73
e6

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

03
36

76
3e

96
6d

92
59

5a
56

7c
c9

ce
53

7f
5e

Si
m

ul
at

io
n

W
av

ef
or

m
s o

f A
ES

-1
28

 P
ar

al
le

l H
ar

dw
ar

e
Ar

ch
ite

ct
ur

e

169

B.2 Key Expansion

Two sets of key scheduling is performed for ASC-1 encryption core, one for the initial phase
generation where 10 rounds keys are derived from the key scheduling algorithm for AES-128 and
14 round keys are derived for ASC-1 encryption/decryption. Similar to AES implementation, for
performance analysis both the key scheduling are implemented in Parallel and iterative
architectures. However, results are shown only for AES-128 key expansion.

Sample code for AES-128 key expansion iterative architecture.

 w(0) <= keyInReg(31 downto 0);
 w(1) <= keyInReg(63 downto 32);
 w(2) <= keyInReg(95 downto 64);
 w(3) <= keyInReg(127 downto 96);

 j <= 0;
 r <= 1;
 i <= 3;

 if cnt < RND1KEYLOAD + 3 then
 cnt <= cnt + 1;
 else
 cnt <= 0;
 keyState <= itr1;
 end if;

 when itr1 =>
 w(j + 4) <= Wout;
 w(j + 5) <= Wout xor w1;
 w(j + 6) <= Wout xor w1 xor w2;
 w(j + 7) <= Wout xor w1 xor w2 xor w3;

 i <= i + 4;
 j <= j + 4;
 r <= r + 1;

 if cnt < 9 then
 cnt <= cnt + 1;
 else
 cnt <= 0;
 keyState <= DONE;
 end if;

128 bit cipher keys is loaded into
the registers w(0) … w(4)

One single round of block is
implemented as a combinational
logic and is repeated 9 times.

170

Ci
ph

er
 K

ey

Ro
un

d
Ke

ys

Si
m

ul
at

io
n

W
av

ef
or

m
s o

f A
ES

-1
28

 k
ey

 E
xp

an
si

on
 It

er
at

iv
e

Ar
ch

ite
ct

ur
e

171

Sample code for AES-128 Parallel Architecture

 w(0) <= keyInReg(31 downto 0);
 w(1) <= keyInReg(63 downto 32);
 w(2) <= keyInReg(95 downto 64);
 w(3) <= keyInReg(127 downto 96);

Cycle 1

 vW(4) := (subWord(rotWord(w(3))) xor Rcon(1)) xor w(0);
 w(4) <= vW(4);
 w(5) <= vW(4) xor w(1);
 w(6) <= (vW(4) xor w(1)) xor w(2);
 w(7) <= ((vW(4) xor w(1)) xor w(2)) xor w(3);
Cycle 2

 vW(4+4) := (subWord(rotWord(w(3+4))) xor Rcon(2)) xor w(0+4);
 w(4+4) <= vW(4+4);
 w(5+4) <= vW(4+4) xor w(1+4);
 w(6+4) <= (vW(4+4) xor w(1+4)) xor w(2+4);
 w(7+4) <= ((vW(4+4) xor w(1+4)) xor w(2+4)) xor w(3+4);
Cycle 9

 vW(4+32) := (subWord(rotWord(w(3+32))) xor Rcon(9)) xor w(0+32);
 w(4+32) <= vW(4+32);
 w(5+32) <= vW(4+32) xor w(1+32);
 w(6+32) <= (vW(4+32) xor w(1+32)) xor w(2+32);
 w(7+32) <= ((vW(4+32) xor w(1+32)) xor w(2+32)) xor w(3+32);
Cycle 10

 vW(4+36) := (subWord(rotWord(w(3+36))) xor Rcon(10)) xor w(0+36);
 w(4+36) <= vW(4+36);
 w(5+36) <= vW(4+36) xor w(1+36);
 w(6+36) <= (vW(4+36) xor w(1+36)) xor w(2+36);
 w(7+36) <= ((vW(4+36) xor w(1+36)) xor w(2+36)) xor w(3+36);

172

Ci
ph

er
 K

ey

Ro
un

d
Ke

ys
Si

m
ul

at
io

n
W

av
ef

or
m

s o
f A

ES
-1

28
 K

ey
 E

xp
an

si
on

 P
ar

al
le

l A
rc

hi
te

ct
ur

e

173

B.3 ASC-1 Encryption

Encryption in ASC-1 consists of 4 rounds of AES and operates in a variant of Cipher Feedback Mode
(CFB). The encryption of next data block depends on the previous block in feedback mode, which
the all block must be processed sequentially. Following shows the sample code for ASC-1.

case algState is
 when IDLE =>
 ctValidDly <= '0';
 if cnt < RND1KEYDELAY then
 cnt <= cnt + 1;
 else
 cnt <= 0;
 sInNxt1 <= sIn;
 algState <= rnd1;
 end if;
Round 1

when rnd1 =>
 W0nxt <= W(4);
 W1nxt <= W(5);
 W2nxt <= W(6);
 W3nxt <= W(7);
 W_key <= W(40);

 if cnt < RNDDELAY then

 cnt <= cnt + 1;
 else
 cnt <= 0;

 Leak <= sOutNxt1 (0)(0) & sOutNxt1(2)(0) & sOutNxt1(0)(2) & sOutNxt1(2)(2);
 sInNxt <= sOutNxt1;
 algState <= rnd2;
 end if;

when rnd2 =>
 W0nxt <= W(8);
 W1nxt <= W(9);
 W2nxt <= W(10);
 W3nxt <= W(11);
 W_key <= W(41);

 if cnt < RNDDELAY then
 cnt <= cnt + 1;
 else
 cnt <= 0;
 Leak1 <= sOutNxt (0)(1) & sOutNxt(2)(1) & sOutNxt(0)(3) & sOutNxt(2)(3);
 sInNxt1 <= sOutNxt;
 algState <= rnd3;
 end if;

when rnd3 =>
 W0nxt <= W(12);
 W1nxt <= W(13);
 W2nxt <= W(14);
 W3nxt <= W(15);
 W_key <= W(42);

 if cnt < RNDDELAY then
 cnt <= cnt + 1;

The case is IDLE when the top
module is waiting for the Key
Schedule to be completed. Once all
the round keys are calculated using
the key scheduling the state moves
to next case, i.e., rnd1

From round 1 to round 4, round
keys and output of previous state is
fed into the intermediate states.
Leak of bytes depends on odd or
even rounds. AES round output
certain four bytes from the
intermediate variable.

174

 else
 cnt <= 0;
 Leak2 <= sOutNxt1 (0)(0) & sOutNxt1(2)(0) & sOutNxt1(0)(2) & sOutNxt1(2)(2);
 sInNxt <= sOutNxt1;
 algState <= rnd4;
 end if;

when rnd4 =>
 W0nxt <= W(16);
 W1nxt <= W(17);
 W2nxt <= W(18);
 W3nxt <= W(19);
 W_key <= W(43);

 if cnt < RNDDELAY then
 cnt <= cnt + 1;
 else
 cnt <= 0;
 ctValidDly <= '1';
 Leak3 <= sOutNxt (0)(1) & sOutNxt(2)(1) & sOutNxt(0)(3) & sOutNxt(2)(3);
 final <= sOutNxt;
end if;
when others => null;
 end case;

Finally, the output of the 4th round
is XOR-ed with Authentication key
to calculate the Tag (𝜏).

175

In
iti

al
iz

at
io

n
Ve

ct
or

Ci
ph

er
Te

xt

Le
ak

 B
yt

es

Te
st

 V
ec

to
rs Si

m
ul

at
io

n
W

av
ef

or
m

s o
f A

SC
-1

 E
nc

ry
pt

io
n

Ite
ra

tiv
e

Ar
ch

ite
ct

ur
e

176

	PreChapters
	B.1 Advanced Encryption Standard (AES) – 128 …………………………….………………163
	B.2 Key Expansion ………………………………………………………………………...….169
	B.3 ASC-1 Encryption ………………………………………………………..……………….173

	Chapters Ph.D Thesis-1
	1
	Introduction
	1.1 Software Defined Radio
	1.1.1 Cognitive Radio
	Cognitive Radio Functions - The main goal of CR is to enable networks to use the available spectrum band according to network users Quality of Service (QoS) requirements. However CR networks impose unique challenges due to the presence of primary netw...

	1.1.2 Field Programmable Gate Arrays/ System on Chip

	1.2 Need for Security
	1.2.1 FPGAs for Cryptographic Application
	1.2.2 Attacks on FPGA

	1.3 Confidentiality and Authentication
	1.4 Motivation
	1.5 Problem Definition
	1.6 Limitations
	1.7 Contribution
	1.8 Organization
	References
	PART I – Algorithm Analysis & Development
	2
	Cryptography
	2.1 Symmetric Encryption
	2.2 Block Cipher
	2.2.1 Advanced Encryption Standard

	2.3 Stream Ciphers
	2.3.1 Synchronous Stream Cipher
	2.3.2 Self-Synchronizing Stream Cipher

	2.4 Authentication
	2.4.1 Cryptographic Hash Functions
	One-way hash function (OWHF)
	Collision resistant hash functions (CRHF)

	2.4.2 Message Authentication Codes (MAC)
	2.4.3 Dedicated Hash functions
	MD5 Algorithm - After looking into the vulnerabilities in MD4 R. Rivest in 1991 proposed a strengthened version of MD4, namely MD5 [RIV01]. MD5 calculates a 128-bit digest for an arbitrary 𝑏-bit message and it consists of the following steps:

	2.4.4 Secure Hash Algorithm
	2.4.5 Keyed-Hash Message Authentication Code (HMAC)
	2.4.6 CBC-MAC

	Example
	Year of the Standard
	Name
	2.5 Conclusions
	References
	3
	Authenticated Encryption
	3.1 Generic Composition
	3.1.1 Encrypt-and-MAC (E&M)
	3.1.2 MAC-then-Encrypt (MtE)
	3.1.3 Encrypt-then-Mac (EtM)

	3.2 Two pass combined mode
	3.2.1 CCM Mode
	3.2.2 EAX Mode

	3.3 Single Pass Combined Modes
	3.3.1 IAPM
	3.3.2 XCBC
	3.3.3 OCB

	3.4 AE Stream Ciphers
	3.4.1 Helix
	3.4.2 SOBER-128

	3.5 ASC-1: An Authenticated Encryption Stream Cipher
	3.5.1 LEX Stream Cipher
	Alex Biryukov presented a new methodology of stream cipher design, called leak extraction. The idea is to extract parts of the internal state at certain rounds and give them as the output key stream. The underlying block cipher for LEX is AES block ci...

	3.5.1 ASC-1 Specification

	3.6 Security Considerations
	3.6.1 Security Measurements

	3.7 Preliminaries
	3.7.1 Classical attacks of cheating

	3.8 Security of ASC-1
	3.8.1 The information-theoretic case
	3.8.2 Computational security analysis of ASC-1

	- The attack presented by Orr Dunkelman et al. [OD’08] showed that there are special difference patterns that can be observed in the output key stream and these patterns can be used to retrieve the secret key. This attack works under the assumption th...
	3.9 Conclusions
	References
	4
	Field Programmable Gate Arrays (FPGAs)
	4.1 FPGA Architecture
	4.1.1 FPGA Implementation Flow
	4.1.2 Xilinx Spartan 3AN FPGA

	4.2 Role of FPGAs in SDR
	4.2.1 Cross Layer Architecture of Software Defined Radio
	4.2.2 GNU Radio and USRP

	4.3 Generic SDR Structure
	In the past, computers from different manufactures were completely incompatible. Peripheral equipment from one source did not work with disk and files from a second source or with other system components from a third [WCS].In addition to high costs an...
	SDR technology provides us a foundation for seamless interoperation between communication systems. A typical SDR radio architecture consists of radio hardware (RF front-end) and re-configurable hardware and software.
	RF front-end – The basis of selecting RF front-end architectures depend on the complexity, cost, power distribution and number of external components. There are three popular RF front-end architectures in use today – Heterodyne (or superheterodyne), H...
	4.3.1 SoC in Software Defined Radio
	4.3.2 Secure Communication

	4.4 Implementation of ASC-1: An authenticated Encryption Stream Cipher
	4.4.1 Initial phase generation
	4.4.2 Encryption Process
	4.4.3 Proposed ASC-1 Architecture
	AES and ASC-1 Processing Core - Figure 4.16 shows the process core block performing AES-128 and ASC-1 encryption process. AES encryption core is used only for the generation of Initialization vectors and the keys used in ASC-1. This could be before in...

	4.5 Conclusions
	References
	5
	Hardware Implementation Results
	5.1 Parameters of Hardware Implementation
	5.2 Block cipher modes of operation
	5.2.1 Hardware Architecture for Feedback cipher modes
	5.2.2 Hardware Architecture in non-feedback cipher mode

	5.3 Performance of ASC-1 Crypto core
	5.4 Frame Delay
	5.5 Payload Length on effective throughput
	5.6 LTE and WiMAX
	Orthogonal Frequency Division Multiplexing (OFDM) is a multicarrier technique. As compared to single carrier technique high-rate data stream is transmitted on a signal channel whereas in OFDM, channel is divided into more than one channel using multip...
	5.6.1 OFDM in LTE and WiMAX
	5.6.2 Confidentiality and Integrity in LTE and WiMAX
	5.7 Conclusions

	References
	[PRA] P. Rengaraju, C.H. Lung and A. Srinivasan. Measuring and Analyzing WiMAX Security and QoS in Testbed Experiments. Communications (ICC), 2011 IEEE International Conference. pp. 1-5. 2011.
	6
	Summary and Future Scope
	6.1 Contributions of This Thesis
	6.2 Open Problems
	References
	I
	Appendix – Test Vectors
	A.1 ASC-1 Preprocessing / Initial Phase
	A.2 Key Expansion
	A.3 ASC-1 Encryption
	II
	Appendix – Xilinx Sample Code
	and Waveforms
	B.1 Advanced Encryption Standard (AES) – 128
	B.2 Key Expansion
	B.3 ASC-1 Encryption

	Co-author statement_1
	Co-author statement_2
	Co-author statement_3.pdf

