
SAKARYA UNIVERSITY

INSTITUTE OF SCIENCE AND TECHNOLOGY

A REAL TIME DEMONSTRATIVE ANALYSIS OF
LIGHTWEIGHT PAYLOAD ENCRYPTION IN RESOURCE

CONSTRAINED DEVICES BASED ON MQTT

M.Sc. THESIS

 Nanabayin MENYAH

Department : COMPUTER ENGINEERING

Field of Science : ENGINEERING

Supervisor : Assoc. Prof. Ahmet ÖZMEN

November 2017

SAKARYA UNIVERSITY

INSTITUTE OF SCIENCE AND TECHNOLOGY

A REAL TIME DEMONSTRATIVE ANALYSIS OF
LIGHTWEIGHT PAYLOAD ENCRYPTION IN RESOURCE

CONSTRAINED DEVICES BASED ON MQTT

M.Sc. THESIS

Nanabayin MENYAH

Department : COMPUTER ENGINEERING

Field of Science : ENGINEERING

Supervisor : Assoc. Prof. Ahmet ÖZMEN

This thesis has been accepted unanimously by the examination committee on

10.11.2017.

Prof. Dr.

Cemil ÖZ

Prof. Dr.

Ahmet ALTUNCU

Doç. Dr.

Ahmet ÖZMEN

Head of Jury Jury Member Jury Member

DECLARATION

I declare that all the data in this thesis was obtained by myself in academic rules, all

visual and written information and results were presented in accordance with academic

and ethical rules, there is no distortion in the presented data, in case of utilizing other

people’s works they were referred properly to scientific norms, the data presented in

this thesis has not been used in any other thesis in this university or in any other

university.

Nanabayin MENYAH

10.11.2017

i

PREFACE

This is a Master of Science Thesis in 2017 for the Computer Engineering department

of Sakarya University (SAÜ), Turkey. I would like to express my sincere appreciation

to Almighty God for His protection and to my able supervisor Assoc. Prof. Ahmet

Özmen from SAÜ for providing the necessary guidance for the thesis work. I am also

thankful for all the lecturers who imparted knowledge unto me at the department of

Computer Engineer and helping me write this thesis. Special thanks belong to my

family for supporting and encouraging me through my studies in SAÜ. Last but not

least, I would also express sincere thanks to all of my colleagues in and out of Sakarya.

ii

TABLE OF CONTENTS

PREFACE.. i

TABLE OF CONTENTS.. ii

LIST OF SYMBOLS AND ABBREVIATIONS .. iv

LIST OF FIGURES .. vii

LIST OF TABLES ... ix

SUMMARY x

ÖZET.. xi

CHAPTER 1.

INTRODUCTION ... 1

1.1. Background ... 1

1.1.1. Internet of things definition and architecture 1

1.1.2. Internet of things protocols ... 7

1.1.3. Security in Internet of things devices .. 11

1.2. Research Statement and Question... 17

1.3. Related Research... 17

1.4. Purpose Of Research ... 19

1.5. Research Motivation ... 19

1.6. Research Limitations And Thesis Outline .. 20

CHAPTER 2.

MQTT PROTOCOL OVERVIEW ... 21

2.1. MQTT Main Features ... 22

2.1.1. Connection ... 22

2.1.2. Topics and messages .. 24

iii

2.1.3. Quality of service .. 25

2.1.4. Security .. 28

2.1.5. Space decoupling ... 29

2.1.6. Time decoupling .. 29

2.1.7. Synchronization decoupling .. 30

2.2. MQTT Control Packets ... 30

CHAPTER 3.

LIGHT WEIGHT PAYLOAD ANALYSIS .. 34

3.1. Experimental Set-Up... 35

3.2. Design And Implementation ... 37

3.3. Method Of Analysis .. 41

CHAPTER 4.

EXPERIMENT RESULTS AND DISCUSSION ... 44

4.1. Non-encrypted Payload Analysis Results ... 44

4.2. Encrypted Payload Analysis Results .. 46

4.3. Correlation Analysis Based On Throughput and End-to-end latency ... 50

CHAPTER 5.

CONCLUSION AND FUTURE STUDIES ... 52

REFERENCES ... 54

RESUME .. 60

iv

LIST OF SYMBOLS AND ABBREVIATIONS

µs : Microseconds

ABE : Attribute base encryption

AES : Advanced encryption standard

AP : Access point

Bit : Binary digit

BSD : Berkeley software distribution

CBC : Cipher block chaining

CCM : Counter with cipher block chaining-message authentication code

CoAP : Constrained application protocol

CONNACK : Connection acknowledgement

CORE : Constrained restful environment

CPU : Central processing unit

CSV : Comma separated values

D2D : Device to device

DES : Data Encryption Standard

DoS : Denial of service

DPWS : Device profile for web service

DTLS : Datagram transport layer security

DUP : Duplicate

E2E : End to end

H2M : Human to machine

HTTP : Hypertext transfer protocol

HTTPS : Hypertext transfer protocol secure

IBM : International business machine

IDE : Integrated development environment

IETF : Internet engineering task force

v

IoT : Internet of Things

IP : Internet protocol

IPv6 : Internet protocol version 6

JSON : JavaScript object notation

Kb : Kilobyte

LAN : Local area network

LLSec : Link layer security

LSB : Least significant byte

M2M : Machine to machine

MAC : Message authentication code / Media access control

MHz : Megahertz

MQTT : Message queue telemetry transport

MSB : Most significant byte

OASIS : Organization for the advancement of structured information

standards

OCB : Offset Codebook Mode

OS : Operating system

PINGREQ : Ping request

PINGRESP : Ping response

PUBACK : Publish acknowledgement

PUBCOMP : Publish complete

PUBREC : Publish received

PUBREL : Publish released

QoS : Quality of service

RAM : Random access memory

REST : Representational state transfer

RFID : Radio frequency identification

ROM : Read only memory

RSA : Rivest-Shamir-Adleman

SOA : Service oriented approach

SRAM : Static random-access memory

SSL : Secured socket layer

vi

SUBACK : Subscribe acknowledgement

TCP : Transmission control protocol

TLS : Transport layer security

UDP : User datagram protocol

UNSUBACK : Unsubscribe acknowledgement

UTF : Unicode transformation format

WSN : Wireless sensor networks

XML : Extensible markup language

vii

LIST OF FIGURES

Figure 1.1. Timeline estimates of IoT and world population [10]………………… 4

Figure 1.2. The IoT reference model according to [16]…………………………… 6

Figure 1.3. IoT Topology according to [9]………………………………………… 6

Figure 1.4. MQTT header metadata as seen from Wireshark application

 console: a) Encrypted Message, b) Non-encrypted message………...... 14

Figure 1.5. Comparison of CPU usage for plain TCP versus TLS (taken

 from http://www.hivemq.com/tls-benchmarks).................................... 15

Figure 2.1. MQTT Quality of Service packet transmission……………………… 27

Figure 3.1. Devices used in the experiment: a) Arduino Uno Rev 3,

 b) W5100 Ethernet Shield, c) TP-LINK router……………………... 36

Figure 3.2. Block diagram of experimental setup………………………………… 36

Figure 3.3. End-to-end client encryption mechanism based on MQTT………….. 37

Figure 3.4. Terminal active and running state of the Mosquitto broker…………... 38

Figure 3.5. Arduino code for MAC, internet protocol settings…………………… 39

Figure 3.6. Arduino code snippet to publish data to the server…………………... 39

Figure 3.7. Arduino code snippet used to publish encrypted payload……………. 40

Figure 3.8. Arduino code snippet for subscribe client and decryption…………….. 41

Figure 3.9. Tcpdump command to capture packet of an encypted payload

 of size 80 btyes and to stop the packet reading after 310 seconds……. 43

Figure 3.10. Tcptrace command to show traced packet analysis results of

 an encypted payload of size 80 bytes………………………………… 43

Figure 3.11. Wireshark interface that shows sample of TCP flags to depict

 message loss…………………………………………….................... 43

Figure 4.1. Non-encrypted payload average end-to-end latency analysis result…. 45

Figure 4.2. Non-encrypted payload loss percentage analysis result……………… 45

Figure 4.3. Non-encrypted payload throughput analysis result…………………... 46

file:///C:/Users/NANA-GALORE/Desktop/Cyber/FINAL%20THESIS%20WITH%20DR%20OZMEN/SAUFBE-YL-DR-ENG_THESIS_V2.doc%23_Toc494720846
file:///C:/Users/NANA-GALORE/Desktop/Cyber/FINAL%20THESIS%20WITH%20DR%20OZMEN/SAUFBE-YL-DR-ENG_THESIS_V2.doc%23_Toc494720847
file:///C:/Users/NANA-GALORE/Desktop/Cyber/FINAL%20THESIS%20WITH%20DR%20OZMEN/SAUFBE-YL-DR-ENG_THESIS_V2.doc%23_Toc494720848
file:///C:/Users/NANA-GALORE/Desktop/Cyber/FINAL%20THESIS%20WITH%20DR%20OZMEN/SAUFBE-YL-DR-ENG_THESIS_V2.doc%23_Toc494720849
file:///C:/Users/NANA-GALORE/Desktop/Cyber/FINAL%20THESIS%20WITH%20DR%20OZMEN/SAUFBE-YL-DR-ENG_THESIS_V2.doc%23_Toc494720849
file:///C:/Users/NANA-GALORE/Desktop/Cyber/FINAL%20THESIS%20WITH%20DR%20OZMEN/SAUFBE-YL-DR-ENG_THESIS_V2.doc%23_Toc494720851
file:///C:/Users/NANA-GALORE/Desktop/Cyber/FINAL%20THESIS%20WITH%20DR%20OZMEN/SAUFBE-YL-DR-ENG_THESIS_V2.doc%23_Toc494720852
file:///C:/Users/NANA-GALORE/Desktop/Cyber/FINAL%20THESIS%20WITH%20DR%20OZMEN/SAUFBE-YL-DR-ENG_THESIS_V2.doc%23_Toc494720852
file:///C:/Users/NANA-GALORE/Desktop/Cyber/FINAL%20THESIS%20WITH%20DR%20OZMEN/SAUFBE-YL-DR-ENG_THESIS_V2.doc%23_Toc494720853
file:///C:/Users/NANA-GALORE/Desktop/Cyber/FINAL%20THESIS%20WITH%20DR%20OZMEN/SAUFBE-YL-DR-ENG_THESIS_V2.doc%23_Toc494720854
file:///C:/Users/NANA-GALORE/Desktop/Cyber/FINAL%20THESIS%20WITH%20DR%20OZMEN/SAUFBE-YL-DR-ENG_THESIS_V2.doc%23_Toc494720855
file:///C:/Users/NANA-GALORE/Desktop/Cyber/FINAL%20THESIS%20WITH%20DR%20OZMEN/SAUFBE-YL-DR-ENG_THESIS_V2.doc%23_Toc494720856
file:///C:/Users/NANA-GALORE/Desktop/Cyber/FINAL%20THESIS%20WITH%20DR%20OZMEN/SAUFBE-YL-DR-ENG_THESIS_V2.doc%23_Toc494720857
file:///C:/Users/NANA-GALORE/Desktop/Cyber/FINAL%20THESIS%20WITH%20DR%20OZMEN/SAUFBE-YL-DR-ENG_THESIS_V2.doc%23_Toc494720858
file:///C:/Users/NANA-GALORE/Desktop/Cyber/FINAL%20THESIS%20WITH%20DR%20OZMEN/SAUFBE-YL-DR-ENG_THESIS_V2.doc%23_Toc494720859
file:///C:/Users/NANA-GALORE/Desktop/Cyber/FINAL%20THESIS%20WITH%20DR%20OZMEN/SAUFBE-YL-DR-ENG_THESIS_V2.doc%23_Toc494720860
file:///C:/Users/NANA-GALORE/Desktop/Cyber/FINAL%20THESIS%20WITH%20DR%20OZMEN/SAUFBE-YL-DR-ENG_THESIS_V2.doc%23_Toc494720860
file:///C:/Users/NANA-GALORE/Desktop/Cyber/FINAL%20THESIS%20WITH%20DR%20OZMEN/SAUFBE-YL-DR-ENG_THESIS_V2.doc%23_Toc494720861
file:///C:/Users/NANA-GALORE/Desktop/Cyber/FINAL%20THESIS%20WITH%20DR%20OZMEN/SAUFBE-YL-DR-ENG_THESIS_V2.doc%23_Toc494720861
file:///C:/Users/NANA-GALORE/Desktop/Cyber/FINAL%20THESIS%20WITH%20DR%20OZMEN/SAUFBE-YL-DR-ENG_THESIS_V2.doc%23_Toc494720862
file:///C:/Users/NANA-GALORE/Desktop/Cyber/FINAL%20THESIS%20WITH%20DR%20OZMEN/SAUFBE-YL-DR-ENG_THESIS_V2.doc%23_Toc494720862
file:///C:/Users/NANA-GALORE/Desktop/Cyber/FINAL%20THESIS%20WITH%20DR%20OZMEN/SAUFBE-YL-DR-ENG_THESIS_V2.doc%23_Toc494720863
file:///C:/Users/NANA-GALORE/Desktop/Cyber/FINAL%20THESIS%20WITH%20DR%20OZMEN/SAUFBE-YL-DR-ENG_THESIS_V2.doc%23_Toc494720864
file:///C:/Users/NANA-GALORE/Desktop/Cyber/FINAL%20THESIS%20WITH%20DR%20OZMEN/SAUFBE-YL-DR-ENG_THESIS_V2.doc%23_Toc494720865

viii

Figure 4.4. Encrypted payload average end-to-end latency analysis result……….. 47

Figure 4.5. AES-128 BITS encrypted payload loss percentage analysis result…… 48

Figure 4.6. Encrypted payload throughput analysis result………………………... 49

Figure 4.7. Average processing time for encryption and decryption analysis…… 50

file:///C:/Users/NANA-GALORE/Desktop/Cyber/FINAL%20THESIS%20WITH%20DR%20OZMEN/SAUFBE-YL-DR-ENG_THESIS_V2.doc%23_Toc494720866
file:///C:/Users/NANA-GALORE/Desktop/Cyber/FINAL%20THESIS%20WITH%20DR%20OZMEN/SAUFBE-YL-DR-ENG_THESIS_V2.doc%23_Toc494720867
file:///C:/Users/NANA-GALORE/Desktop/Cyber/FINAL%20THESIS%20WITH%20DR%20OZMEN/SAUFBE-YL-DR-ENG_THESIS_V2.doc%23_Toc494720868

ix

LIST OF TABLES

 Table 1.1. IETF Internet suite (taken from http://www.electronicdesign.com

 /iot/mqtt-and-coap-underlying-protocols-iot)….……………………… 7

Table 1.2. IoT device classification according to [20]…………………………….. 8

Table 1.3. Advantages and disadvantages of payload encryption………………… 13

Table 2.1. Fixed header format……………………………………………………. 31

Table 2.2. Enumeration of the control packet types of MQTT…………………… 31

Table 2.3. MQTT fixed header flags……………………………………………… 32

Table 2.4. QoS levels……………………………………………………………… 32

Table 4.1. Averages of the end-to-end latencies for each QoS…………………… 47

Table 4.2. Avearages of the throughput for each QoS level……………………… 49

Table 4.3. Correlation analysis of latency to throughput for MQTT QoS………… 51

file:///C:/Users/NANA-GALORE/Desktop/Cyber/FINAL%20THESIS%20WITH%20DR%20OZMEN/SAUFBE-YL-DR-ENG_THESIS_V2.doc%23_Toc494878094
file:///C:/Users/NANA-GALORE/Desktop/Cyber/FINAL%20THESIS%20WITH%20DR%20OZMEN/SAUFBE-YL-DR-ENG_THESIS_V2.doc%23_Toc494878095
file:///C:/Users/NANA-GALORE/Desktop/Cyber/FINAL%20THESIS%20WITH%20DR%20OZMEN/SAUFBE-YL-DR-ENG_THESIS_V2.doc%23_Toc494878096
file:///C:/Users/NANA-GALORE/Desktop/Cyber/FINAL%20THESIS%20WITH%20DR%20OZMEN/SAUFBE-YL-DR-ENG_THESIS_V2.doc%23_Toc494878097
file:///C:/Users/NANA-GALORE/Desktop/Cyber/FINAL%20THESIS%20WITH%20DR%20OZMEN/SAUFBE-YL-DR-ENG_THESIS_V2.doc%23_Toc494878098
file:///C:/Users/NANA-GALORE/Desktop/Cyber/FINAL%20THESIS%20WITH%20DR%20OZMEN/SAUFBE-YL-DR-ENG_THESIS_V2.doc%23_Toc494878099
file:///C:/Users/NANA-GALORE/Desktop/Cyber/FINAL%20THESIS%20WITH%20DR%20OZMEN/SAUFBE-YL-DR-ENG_THESIS_V2.doc%23_Toc494878100
file:///C:/Users/NANA-GALORE/Desktop/Cyber/FINAL%20THESIS%20WITH%20DR%20OZMEN/SAUFBE-YL-DR-ENG_THESIS_V2.doc%23_Toc494878101
file:///C:/Users/NANA-GALORE/Desktop/Cyber/FINAL%20THESIS%20WITH%20DR%20OZMEN/SAUFBE-YL-DR-ENG_THESIS_V2.doc%23_Toc494878102

x

SUMMARY

Keywords: IoT Security, Networking, MQTT, Publish, Subscribe, Quality of Service,

Arduino, Advanced Encryption Standard

Constrained devices are limited in resources namely, memory (ROM and RAM), CPU

and battery life (if available). They are often used as sensors that collects data, machine

to machine (M2M) or smart devices that control services and electrical appliances.

When such devices are connected to a network they form what is called “things” and

in a whole, they form part of the “Internet of Things” (IoT).

Message Queue Telemetry Transport (MQTT) is a common light weight, open, simple,

client-server publish/subscribe messaging transport protocol useful and efficient for

most resource constrained IoT devices that supports three Quality of Service (QoS)

levels for reliable communication. It is an essential protocol for communication in

constrained environments such as Device to Device (D2D) and Internet of Things

(IoT) contexts. MQTT protocol is devoid of concrete security mechanisms apart from

Transport Layer Security (TLS) based on Secure Socket Layer (SSL) certificates.

However, this is not the lightest of security protocols and increases network overheads

especially for constrained devices. About 70 % of most ordinary IoT devices also lack

data encryption especially at the client-end which could have been a perfect alternative

for TLS.

In this thesis, an experimental setup is designed to demonstrate the effect on network

performance of MQTT protocol on a constrained device for different Quality of

Service (QoS) and variable size of payloads. The novel part of this study covers client-

side encryption of payloads and its effect over network performance. In the

experiments, a lightweight encryption of 128-bits Advanced Encryption Standard

(AES) is applied on the data. The messages are transferred using the three different

QoS levels in MQTT over real wired low-end publish client and low-end subscriber

client via a broker server based on different payload sizes. The packets are captured to

analyze end-to-end latency, throughput and message loss along with the measurement

of encryption and decryption processing time.

According to the results of the experiment, it was concluded that, non-encrypted

(plaintext) payload have a lower network load effect and hence produces a relatively

better network performance using MQTT in terms of percentage loss and message

delivery than the encrypted payload.

xi

MQTT'YE DAYANAN KAYNAK KISITLI CİHAZLARDA HAFİF

YÜK ŞİFRELEMESİNİN GERÇEK ZAMANLI BİR

DEMONSTRASYON ANALİZİ

ÖZET

Anahtar Kelimeler: IoT Güvenliği, Ağ oluşturma, MQTT, Yayınlama (Publish),

Abone Olma (Subscribe), Hizmet Kalitesi, Arduino, İleri Şifreleme Standardı

Kısıtlı cihazların kaynakları, yani bellek (ROM ve RAM), CPU ve pil ömrü (varsa)

sınırlıdır. Genellikle, veri toplayan sensörler, makinadan makineye (M2M) veya

servisleri ve elektrikli ev aletlerini kontrol eden akıllı cihazlar için puanlar. Bu tür

aygıtlar bir ağa bağlandığında "nesnelerin Internet'i" nin (IoT) bir parçasını

oluştururlar.

Message Queue Telemetry Transport (yani MQTT), hafif, açık, basit, istemci-sunucu

yayın/abone mesajlaşma taşıma protokolüdür. Güvenilir iletişim için üç Hizmet

Kalitesi (QoS) seviyesini destekleyen çoğu kaynak kısıtlamalı IoT cihazı için

kullanışlıdır ve verimlidir. Cihazdan Cihaza (D2D) ve nesnelerin Internet'i (IoT)

bağlamları gibi kısıtlı ortamlarda iletişim için gerekli olan bir protokoldür. MQTT

protokolü, güvenli soket katmanı (SSL) sertifikalarına dayalı taşıma katmanı güvenliği

(TLS) dışında somut güvenlik mekanizmalarından yoksundur. Bununla birlikte, bu

güvenlik protokollerinin en hafif değildir ve özellikle kısıtlı cihazlar için ağ yüklerini

artırır. IoT cihazlarının yaklaşık %70'inde özellikle de istemci tarafında veri

şifrelemesi yoktur ve TLS için mükemmel bir alternatif olabilir.

Bu tezde, farklı Hizmet Kalitesi (QoS) ve veri yüklerin değişken boyutu için kısıtlı bir

cihaz üzerinde MQTT protokolünün ağ performansı üzerindeki etkisini göstermek için

bir deney düzeneği tasarlanmıştır. Bu çalışmanın yeni kısmı, yüklerin istemci tarafında

şifrelenmesini ve ağ performansı üzerindeki etkisini kapsıyor. Denemelerde, verilere

128-bits ileileri şifreleme standardı (AES) hafif bir şifreleme uygulanmıştır. Mesajlar,

farklı yük boyutlarına dayanan bir komisyoncu sunucusu aracılığıyla gerçek kablolu

alt uçtakı yayıncılık istemcisi ve düşük uçtakı abone istemcisi üzerinden MQTT'deki

üç farklı QoS seviyesini kullanarak aktarılır. Paketler, şifreleme ve şifre çözme işlem

süresinin ölçülmesiyle birlikte uçtan uca gecikme, verimlilik ve mesaj kaybı analiz

etmek için yakalanır.

Deney sonuçlarına göre, şifrelenmemiş (şifresiz metin) yükün daha düşük bir ağ yük

etkisine sahip olduğu ve bu nedenle, yüzde kaybı ve mesaj tesliminde, şifreli yüke göre

MQTT'yi kullanarak nispeten daha iyi bir ağ performansı ürettiği sonucuna varılmıştır.

CHAPTER 1. INTRODUCTION

In this chapter, a background relating to this thesis is presented on IoT definition and

architecture, the common protocols and standards that are used and how they relate.

The section continues with a description and an introduction to the system of IoT

device classifications. Furthermore, some background information about IoT privacy

and security is further presented. Also, the research questions, purpose of research,

research motivation, research limitations and thesis outline are presented in this

chapter.

In the next chapter, we will have a look at an overview of the MQTT protocol in

relation to this thesis.

1.1. Background

This section presents a theoretical foundation for this research and covers most of the

essential concepts that are required for the following chapters. It is divided into three

sections. The first section explains definition, concept and idea behind Internet of

Things and provides necessary overview of the architecture reference model of IoT.

Second part covers theoretical background concerning common protocols and

standards available. Lastly, we have a look at privacy and security in IoT relevant to

this thesis.

1.1.1. Internet of things definition and architecture

In 1999, the term IoT was first coined by Kevin Ashton during his RFID (radio

frequency identification) presentation [1]. It has become a very important research

field since that time. IoT in information system plays a major role of bridging the gap

2

between the things we see (i.e. physical world) and its various representations. A more

detailed definition of IoT is given as

“A world where physical objects are seamlessly integrated into the information

network, and where the physical objects can become active participants in business

processes. Services are available to interact with these ‘smart objects’ over the internet,

query their state and any information associated with them taking into account security

and privacy issues.” [2].

IoT has a fundamental aspect that focuses on collection and utilization of large

amounts of data that comes from the various types of sensors placed in various kinds

of physical objects. So, in decision making and remote monitoring, it is essential to

produce a form of processed, refined or meaningful data from the accumulated raw

data for the purpose of great productivity. Hence it is equally important to process

(thus to analyze and refine) the collected data as just receiving raw data from such

devices.

Constrained devices are limited in resources namely, memory (ROM and RAM), CPU

and battery life (if available) [3]. They are often used as sensors that collects data,

machine to machine (M2M) or smart devices that control services and electrical

appliances. When such devices are connected to a network they form what is called

“things” and in a whole, they form part of the “Internet of Things” (IoT).

IoT is a network of objects such as constrained devices, embedded computers,

controllable, intelligent and automated devices (smart devices) [4]., and sensors with

the capability to connect and exchange data with other devices and services. Each

domain has quite a number of different specifications, purpose, challenges and security

requirements. IoT solutions are networks of devices and sensors that gather and

exchange data transferred over networks and the cloud. It has a number of applications

namely home automation [5]., manufacturing, medical and health care systems [6].,

environmental monitoring, and transportation.

3

The internet enables devices to provide information and services as they interact with

the physical world to anyone, at any time, to anywhere. Hence, IoT users can be able

to have direct access to their device information that are stored on web servers so that

they can interact and control their devices through a web, mobile, and other application

interfaces.

The fast emergence and innovations of digital things and Information Communication

Technology are enabling rapid development and deployment of IoT around the globe.

Innovations include Information Communication Technology and IPv6 (Internet

protocol version 6). There are estimates that predicts that trillions of IoT devices will

be deployed in next five years [7]. IoT applications are growing in number and are

utilized to enhance solutions for multitude of diversified problems. Furthermore, a

study [8]. points to estimates that places the number of IoT devices to exceed 30 billion

with more than 200 billion intermittent connections that can bring forth a revenue of

over 700 billion Euros by 2020. In addition, a study by world bank according to [9].

makes a prediction that IoT opportunity can reach staggering 32 trillion dollars or

could be 46% of the size of the global economy today. They further predict that IoT

chip opportunities could enable the industry to surpass a 400-million-dollar mark by

2020.

According to the research by Professor Howard [10]., the number of IoT devices

surpassed the number of humans in the year 2014 (see Figure 1.1.). There are two

milestones namely the year the “Internet of Things” was coined as a term. The second

milestone is shown to be around 2014, and this is the point at which the number of

device to device communication became more than the number of people to people

communication. The author’s calculations for prediction was based on data

accumulated from ABI Research (2013), Business Insider (2013), Cisco (2013, 2015),

EMC (2014), Ericsson (2011), Forbes (2013), Gartner (2013), Hammersmith Group

(2010), Intel (2014), Internet Census (2012), Internet World Stats (multiple), Machina

Research (2013) and Navigant Research (2013) [10].

4

The connectivity of devices, systems and services which is IP-based now goes beyond

the normal human-to-machine (H2M) and machine-to-machine (M2M)

communication which is now termed as the Internet of Things (IoT). Sensors and

actuators, are strategically deployed in various areas namely residential (home

automation), military, e-textiles, healthcare, industrial systems and automobiles [11].

We are digitally surrounding smart systems namely smart watches, smart homes and

smart cars [12]. We are seemingly heading to an era where objects are smart like we

have ever thought or imagined and they will be interacting with each other. IoT is a

promising area, which means that things are connected to the network through the

internet and transmitting data including live events in matters of seconds.

Figure 1.1. Timeline estimates of IoT and world population [10].

IoT are promoted by manufacturers or businesses to better engage the clients or

consumers by providing better products or services that is geared towards improving

efficiency [12]. One potential area among others, where IoT can be widely applied is

health-care facilities. As pointed out by R.A Rahman et al. [12]., a number of

researchers have brought up means to attach or embed smart devices on the human

body. Examples include wearable devices that are basically used to monitor and

maintain human health and wellness, higher productivity, disease management,

increased fitness, etc., [12]. The expectation of this is that, IoT might help in predicting

5

and discovering the start of an ailment, disease or health issue in their early stage. Such

systems are essential to help hospitals to be more responsive to avoid unfortunate

scenarias in the form of casualties. Nevertheless, in spite of the technological advances

even in the hospitals of which we are witnessing, security has become a very essential,

crucial and criticial area and these are of concern and they have to be tackled [13].

The future of IoT has an idea to grant physical objects a common goal of autonomously

working together as a group in problem solving with little human interaction [14].

Also, it is envisioned that most objects will have the ability to learn as well from the

refined information collected over a certain period of time from various objects in a

network.

The Internet of Things (IoT) as a global industry movement brings people, processes,

data, and things together to form networked connections that are more relevant and

valuable. Opportunities for countries, industries and individuals will be on the rise in

the near future, as the growth and convergence of information, people, and things on

the Internet increases. This group known as the IoT World Forum Architecture

committee [15] sets out an IoT Reference Model with the purpose to provide a clear

definition and description to be made applicable to various elements of IoT and its

applications. They simplify by breaking down systems that are complex for better

understanding, clarify by providing more information to accurately know the levels of

IoT and establishes a common terminology. Furthermore, they also identify specific

types of optimized processing in different areas of the IoT system. They standardize

to provide a baseline to enable vendors to manufacture IoT products that can

interoperate easily and they organize to make IoT realistic, feasible and approachable

than just a mere concept [16]. According to studies and researches [15,16,17]., IoT has

a general architecture and set of interfaces. These includes physical objects (sensors

and actuators), network interface infrastructure (routers, switches and gateways),

cloud computing entities and interface for end users. A model explored by IoT World

Forum Architecture committee that consists of Cisco, General Electric, IBM, Intel and

Oracle [15,16] is shown in Figure 1.2. It is also referred to as the IoT reference model

and its levels.

6

Figure 1.2. The IoT reference model according to [16].

Another model [9] is shown in Figure 1.3. It is basically seen to be similar in design

and illustrates the same idea.

Figure 1.3. IoT Topology according to [9].

The gateway basically provides internet or links to an internet infrastructure and

consequently a cloud infrastructure that are mostly comprised of large pools of

virtualized servers or storages that are basically networked together to make it easily

accessible to end users, applications and services. According to these (Figure 1.2. and

1.3.), we can generally say that an IoT architecture is composed of physical,

7

communication infrastructure, cloud computing infrastructure and applications and

services. These form a model where communication infrastructures connect to

physical and cloud infrastructures that allows data to flow in both ways (i.e. from top-

to-bottom and vice versa).

1.1.2. Internet of things protocols

According to the definition of IoT, we can see that it is a connection of devices via the

internet that were not connected previously. Since the internet is used to qualify the

connected devices as IoT they must follow the Internet Engineering Task Force (IETF)

internet protocol suite (Table 1.1.). The internet is seen to have connections of more

powerful devices with high power usage, memory and processing power. Hence, the

protocol used is considered too high for most emerging IoT devices [18,19]. Other

requirements of IoT drove IETF to implement the suite for IoT. These include, losses

at end nodes, long life span, low power, and constrained resources. Hence the new

suite needs new, lighter-weight protocols that requires a much lower amount of

resources. MQTT is one of the most protocol that addresses these needs. It employs

message management, and lightweight message overhead and above all small message

sizes.

Table 1.1. IETF Internet suite (taken from http://www.electronicdesign.com/iot/mqtt-and-coap-underlying

protocols-iot).

Layer Full internet Description

Application HTTP Defines TCP/IP application protocol and the interface to transport layer

services.

Transport TCP/UDP Provides communication session management. Defines the level of service

and status of the connection.

Internet IP Performs IP routing with source and destination address information.

A classification scheme (see Table 1.2.) by Bormann et al. (2014) [20] was designed

to differentiate IoT devices base on resources that are available. This was done to avoid

confusion during discussions.

8

Table 1.2. IoT device classification according to [20].

Name Ram Rom/flash

Class 0, (C0) <<10Kb <<100Kb

Class 1, (C1) ~ 10 Kb ~ 100 Kb

Class 2, (C2) ~ 50 Kb ~ 250 Kb

According to this classification scheme, our constrained device falls in the

classification of Class-0 IoT Device. More details about our device will be in the

subsequent chapter. Class-0 devices are seen to be very much resource constrained,

hence it cannot support secure communication channels over the internet. On the other

hand, Class-1 devices have relatively enough resources to support constrained

communication protocols such as CoAP [12,21] and in some cases, it supports

transport layer security protocols such as DTLS (Datagram Transport Layer Security)

[22]. Class-2 devices have enough resources available to give support to heavier web

protocol stacks such as HTTP [13] over TLS [20]. However, there is a need to conserve

resources for especially highly constrained devices since that will help to determine

the kind of security scheme that can be supported.

HTTP, MQTT and CoAP are some of the most used protocols for communicating to

the web. Due to the standardization in data transfer, CoAP and HTTP mostly uses

standardized REST (Representational State Transfer) methods. These methods include

(GET, POST, PUT, DELETE) [21,23] and media types namely, JSON, ATOM, XML.

Hence to minimize resource overheads in most resource constrained devices (IoT),

MQTT, Devices Profile for Web (DPWS) [11,24] and CoAP are utilized.

IoT protocols focuses to tackle the issues of security with standardization initiatives to

enhance interoperability, efficiency, scalability, and secure communication stacks

[1,11,24]. Efforts are being made to standardize protocols that aims to unify IoT

devices and applications. Some may be proprietary and openly available as well [11].

9

K. Fysarakis et. al [11] detail out three main approaches to the protocols used in IoT.

They are Service Oriented Approach (SOA) architecture, Resource-Constrained

Approach, and the Message-oriented Approach.

Service-oriented approach architecture service is also known as Device Profile for Web

Services (DPWS). It was introduced in 2004 by Microsoft and now OASIS

(Organization for the Advancement of Structured Information Standards) open

standard. It is integrated with various windows OS versions. It further provides secure

web service messaging, discovery, description, synchronous and asynchronous

interactions on resource-constrained devices. It also enables embedded and sensor

devices with constrained resources to leverage the SOA concept and benefits across

heterogenous systems in smart environments. Industrial automation [25]., smart homes

[26]., smart cities [27]., and e-health [18] are other applicable areas of SOA.

Secondly, another protocol approach is the resource-constrained Approach [11]. This

protocol follows the representational state transfer (REST) architecture which is by far

popular across the globe currently. They rely on HTTP. REST architecture is

inappropriate for IoT due to high usage of resources, bandwidth, and power. Hence the

Internet Engineering Task Force (IETF) formed Constrained Restful Environment

(CORE) working group that designed the CoAP [12,21] which is now a standard of

IETF. CoAP uses simple proxies. It is termed often as the “HTTP for IoT” [11,22]. It

is based on the request/respond model using HTTP methods like PUT, GET, POST,

DELETE on servers’ resources.

Lastly, the other IoT protocol approach is known as the Message-oriented approach. It

uses the asynchronous data transfers between devices. For reliable messaging, QoS are

mostly the focus with a centralized controller for message delivery. MQTT is one of

such message oriented protocol. It was introduced in 1999 by IBM and standardized

by OASIS. It was designed as a publish/subscribe lightweight messaging transport

protocol that optimizes high latency or unreliable networks for small sensors and

mobile devices. MQTT is used in a variety of domains and researches have been

10

performed in the area of e-health, WSNs, smart grid [22]., and in the area of mobile

IoT [28].

CoAP messages are transported over UDP (User Datagram Protocol), MQTT relies on

Transmission Control Protocol (TCP), and DPWS can use both (TCP for most of the

device interactions, and UDP for device discovery and other auxiliary functions).

MQTT stands out when it comes to publish/subscribe interactions. CoAP can support

such functionality partially; it possesses synchronous interactions, instead of the event-

based ones [11].

DPWS on the other hand, is more flexible. It has a web service (WS)-Eventing

specification that enables a functionality that is a feature-rich publish/subscribe.

Moreover, QoS remains an important aspect in MQTT, with this protocol supporting

three different levels of message delivery (“Fire and forget”, “Delivered at least once”

and “Delivered exactly once”). CoAP on the other hand, only brings to board a choice

between “Confirmable” and “Non-confirmable” messages. The former has to be

acknowledge by the receiver with an ACK packet, normally in applications where it

becomes quite necessary to handle UDP’s unreliable transport. DPWS relies solely on

the delivery mechanism of TCP. Various extensions enhance the reliability and QoS

features of Web Services, but are yet to be integrated into DPWS. More detailed survey

on IoT protocols can be found in [21,29,30].

According to studies [31]., MQTT has got much usage and abilities as compared to

CoAP. According to another study [5]., MQTT protocol consumes less power than

CoAP, hence a much-preferred choice for class-0 IoT devices.

Thangavel et al. [31] illustrate a performance analysis between MQTT and CoAP via

a common middleware which shows that the performance of either protocol depends

on the network conditions. They also showed that at lower packet loss rate, MQTT

tends to have lower delay than CoAP.

11

According to research [11]., MQTT by far was rated with the best client-side response

time (the time taken for a user when trying to reach to a sensitive resource, like sensors

for temperature and humidity) as compared to DPWS and CoAP in a benchmark test.

Another lab-based comparison of CoAP and MQTT, in the context of communications

over cellular networks, can be found in reference [32].

1.1.3. Security in Internet of things devices

There have been great advances in the industry of IoT for different purposes and

applications. Each domain has quite a number of different specifications, purpose,

challenges and security requirements. For instance, a patient monitoring system is

more likely to require a higher data privacy than a smart parking solution [33]. The

exposure of more data to more applications makes security a major challenge for IoT

developers. About 70% of most ordinary IoT devices lack data encryption as pointed

out by J. King et al. [3]. TLS provides security for transferring data over the network.

The data is encrypted to prevent anyone from listening and understanding the content.

TLS is popularly used to enhance secured access to a wide range of webpages. It uses

server certificates that clients must validate and in some cases the server also must

validate client-targeted certificates. MQTT uses TCP and by default no encryption

mechanism is implemented during communication. Although implementing TLS

impacts the performance, communication and the load on the server, most MQTT

brokers support the use of TLS. However, an additional security at the application

level can be implemented [7].

In this thesis, security is defined as the protection of data from an unauthorized access

or interference by ensuring confidentiality, integrity, and authenticity of data.

Confidentiality of data is defined as the protection of data from being disclosed to

unauthorised persons, parties or systems. Integrity on the other hand is defined as the

prevention of modification of data by unauthorised persons. And authenticity refers to

the proper verification of a device or system by following a special identification

process [34]. This thesis focuses on the network analysis during the basic form of

confidentiality (data privacy) technique i.e., payload encryption.

12

The Hypertext Transfer Protocol (HTTP) is an application layer protocol for

distributed and hypermedia information systems. Since 1990, it has been used for most

of data communication when internet came to being [35,36]. This protocol is

considered insecure as it sends data in plaintext without applying security mechanisms

for data protection. With the rise in data that are sensitive and being transmitted over

the internet, there was a need for more security. This led to the development of HTTP

over Secure Socket Layer (SSL) and then it was succeeded by the Transport Layer

Security (TLS). This combination became known as HTTPS, a protocol for secure

communication designed to prevent most of the security vulnerabilities such as

eavesdropping, tampering, or message forgery [12,17,26]. HTTP and HTTPS uses the

transport layer protocol Transmission Control Protocol (TCP) that ensures reliability,

error protection and flow control during data transmission. Additional system

resources are used during the data checking to ensure reliable communication [37].

However, HTTP and HTTPS were not designed for IoT devices with resource

limitation. In an effort to standardise constrained device communication, IETF

developed an efficient web standard for constrained devices namely CoAP. Security

standards adapted existing TLS security protocol to create a secure IoT. This led to the

design of the DTLS protocol which provides a mechanism for securing data

communication in some IoT devices. It enhances data confidentiality, integrity, and

authenticity of data communication just like the protection provided by TLS on HTTP

[35]. However, DTLS is still a heavy weight protocol, hence devices must have

sufficient resources to run it while still being able to perform the devices intended

functionalities e.g. temperature and humidity sensors collecting data. Some researches

[12,38] have studied and shown mechanisms to improve upon DTLS and also to use

other means of security that may not demand higher resources.

On the other hand, studies [24,33] have been conducted with MQTT in terms of

providing other security mechanism other than TLS/SSL which is a disadvantage for

Class-0 IoT devices. MQTT was designed as an extremely lightweight

publish/subscribe messaging transport, for small sensors and mobile devices,

optimized for high-latency or unreliable networks.

13

In an MQTT environment, SSL and TLS protocols are the only security available.

Hence, it is the job of users to provide other means of security. Furthermore, the

TLS/SSL protocol is not sufficient for optimal security at MQTT. This security does

not cover the broker’s level. Thus, a user in the broker’s access is authorized to access

all information. After his connection to the broker, the user is in listening to a Topic

and receives all the information. The use of symmetric algorithms such as AES or DES

(Data Encryption Standard) [39]., and asymmetric algorithms such as RSA may solve

this issue by means of the encryption/decryption of messages. The best distribution of

secret keys to all users is thus essentially required.

The MQTT publish scenario can undergo data encryption and the subscription scenario

can undergo data decryption at the application level. This implementation is

particularly important for untrusted environments or any insecure network connections

among devices and MQTT broker. Some advantages and disadvantages of payload

encryption are provided in the Table 1.3.

Table 1.3. Advantages and disadvantages of payload encryption.

Advantages Disadvantages

Provides a complete end-to-end message security. Encryption and decryption may use much resources.

Adds a layer of security for applications that are

transmitting highly sensitive and confidential data.

Man-in-the-middle and replay attacks are not solely

prevented.

It thrives in situations where TLS cannot be

implemented.

There may be the need to implement secure keys

exchange for clients.

The message fields of MQTT-publish metadata are not altered after payload

encryption except the payload information which is binary-based. This is encrypted

and also there is no need for special encoding such as the base 64-encoding in most

HTTP request-based messaging [3] while it transmits the message (see Figure 1.4.).

This is important to save additional bandwidth since text encodings are typically

greater in size than raw byte representations. Likewise, the broker requirements are

also met as well even after encryption. The application that will interpret the message

needs to be decrypted and this will occur at the subscriber client. MQTT over TLS

hinders performance by increasing CPU usage (see Figure 1.5.). While this

14

performance cost is not significant for most brokers, it poses a challenge for devices

with limited resources.

Encryption can basically be termed as a process in which plaintext message is

transformed into a cipher text using an encryption algorithm and a secret key.

Decryption on the other hand is a process in which a cipher text is transformed into a

plaintext using a decryption algorithm and a secret key. Plaintext refers to the original

message and cipher text refers to the coded message. So, in symmetric cryptography,

the system of encryption and decryption algorithms use the same key. Asymmetric

cryptography refers to cryptographic system where encryption and decryption

algorithms use different keys.

a) b)

Figure 1.4. MQTT header metadata as seen from Wireshark application console: a) Encrypted Message, b) Non-

encrypted message.

Symmetric encryption is therefore referred to as a cryptographic approach that

employs the possibility of encryption and decryption of a message with the same key.

This works very well for a trusted network. Symmetric encryption is much easier in

implementation than asymmetric. The U.S. National Bureau of Standards created an

encryption standard that is complicated. It is called DES (Data Encryption Standard)

and it is used to encrypt data by offering unlimited ways to do that. This was later

replaced by Rijndael encryption [39]. Rijndael also known as AES alogorithm uses a

key for encryption that has a size of 128, 192 or 256 bits. It provides high protection

15

against brute force attacks and it is three times faster in software than the Data

Encryption Standard (DES).

Figure 1.5. Comparison of CPU usage for plain TCP versus TLS (taken from http://www.hivemq.com/tls-

benchmarks).

This method can be used for securely exchanging keys as well as transferring data with

a size of 128, 192, or 256 bits. More notably, AES-256 bits encryption algorithm is

certified in the USA for government documents that are marked as top secret [39]. In

our experiment, we employ the use of AES-128 bits Cipher Block Chaining (CBC)

with a 128 bits initialization vector (iv) and a 128 bits key since the payload sizes will

be in levels of 16 bytes (128 bits).

Symmetric encryption, can also be referred to as a conventional encryption or single-

key encryption. It was the only type of encryption before the invention of asymmetric

cryptography in 1970 [40]. Symmetric encryption can be classified into two

operational categories: block ciphers and stream ciphers. Block ciphers take a specific

block of plaintext as input and produce same length of block of encrypted data as their

output. While stream ciphers use stream of bits or bytes as input and produces

corresponding stream of encrypted bits or bytes as output [40]. Implementations can

be found from these two categories: AES and DES (Data Encryption Standard) [40].

On the other hand, asymmetric encryption, also known as public-key cryptography,

uses a key pair instead of single shared key in symmetric encryption. In theory, it is

different from symmetric cryptography since it is solely based on mathematical

functions, specifically one-way functions, rather than on various substitution and

16

permutation schemes. It uses one key for encryption and another related key for

decryption. These keys form a pair: public key and private key. The private key is kept

secret (private) and it is not distributed to others, unlike the public key. All plaintext

messages are encrypted with the public key and can be decrypted using only the

corresponding private key. Various implementations rely on asymmetric

cryptography. These includes RSA (Rivest-Shamir-Adleman) and Elliptic Curve [41].

The Transport Layer Security (TLS) works by using cryptography to ensure a secure

and a reliable connection for data communication channel. Basically, the public key

of the receiver is used to encrypt the data by the sender. Thus, data is then sent across

the internet to the rightful recipient. Decryption is only performed by only the

recipient’s private key and this key is held private and secured by the recipient. In

terms of operation, asymmetric cryptography methods clearly require more resources

than symmetric cryptography since security handshake and also key exchange must

take place. Class-0 devices is very limited in resources, hence asymmetric

cryptography and DTLS protocols are too ‘resource-heavy’ for them.

Asymmetric cryptography is too resource intensive to secure communication in Class-

0 devices. Hence symmetric encryption offers an alternative solution with minimal

resource demand. Symmetric cryptography uses a single encryption key which is

mostly shared between a number of devices. These devices which possess the key can

decrypt data sent from other devices with same key. To prevent the key from falling

into the wrong hands the key must always be kept safe. One of these symmetric

encryption is the AES and it functions at fast speeds and requires less resources than

DTLS hence very appropriate for Class-0 constrained devices [38]. AES inputs are 16-

byte (128-bit) blocks which are then encrypted using a key of 128-bit, 192-bit, and

256-bit in size [37,39]. The larger the key size the greater the security and resource

requirement. In the communication layers symmetric encryption can be applied at

different layers such as the data link layer and to specific data objects of message such

as sensor readings.

17

A study [24] presents a comprehensive evaluation of different security mechanisms

that are based on MQTT using different AES encryption mechanisms on different

payload sizes. Furthermore, another study [44] proposes an interesting approach for

high end devices that uses a hybrid encryption (AES and RSA), i.e., symmetric and

asymmetric encryption.

1.2. Research Statement And Question

Constrained IoT devices especially Class-0 IoT devices possess very limited amount

of resources hence are limited to some protocols and standards that they can support.

According to a study’s introduction by J. King et al. [3]., about 70% of ordinary IoT

devices lack data encryption. As there is a rise in information, M2M and D2D

communications, security vulnerabilities also tend to increase. MQTT is a lightweight

communication protocol that operates on different levels of QoS for reliable

communication. However, it lacks lightweight security mechanisms. Lightweight

mechanisms such as symmetric cryptography is being employed at the application

layer. Theoretically, this encryption adds additional resource load on the device but it

is worth the privacy service it provides. Solutions to secure data exist, however most

rely on TLS mechanism in which Class-0 IoT devices lack the necessary resource

support. We therefore ask further questions which eventually forms the basis of this

thesis research.

Q1: Can encrypted payload based on AES-128 bits affect network performance or

characteristic?

Q2: Will it have the similar effect as compared to an unencrypted payload/plaintext

for different MQTT QoS levels and different payload sizes?

1.3. Related Research

MQTT Publish/subscribe is steadily increasing and becoming a very essential

communication protocol for sensor devices and Internet of Things due to its

18

communication of messages with reliability and efficiency and further more consumes

less power for devices that are resource constrained. There have not been much efforts

in analyzing payloads (encrypted and non-encrypted) in MQTT and their effect on

network. Several works [7,24,33,42,44] have made use of MQTT in studies and

research especially in improving privacy (securing the payload). Application of MQTT

have been studied [7,11,23,24,29,32,33,42,44] and it has showed to be a major

protocol to be reckoned with for next generation or emerging IoT devices.

Furthermore, data object encryption at the client side has been a prominent study of

interest to quite a number of researches [7,24,33,42,44] and they applied the AES

mechanism in most cases.

A study also on the other hand [42]., performs encryption on the payload using AES

and ABE (Attribute base encryption) on the secret AES key to ensure that the

ciphertext is same as the original message. This is resource expensive and a detailed

analysis will definitely show that it is going to be a computational overhead for

resource constrained devices since they generate a few amounts of data for encryption

as well. In as much as encryption is required in such devices, they are expected to give

a well optimized operational result. Our work seeks to present the real-time effect of

one of the main encryption algorithm (AES) on some network parameters as compared

to when it is not encrypted (plaintext).

Quite a number of researches and studies have been presented on MQTT that have

applicable features for the IoT industry namely automotive, railway, health, smart

home and cities as discussed earlier in the previous chapter. Also, a comprehensive

research [24]., illustrates the use of MQTT in evaluating a series of security

mechanisms that can be used for this protocol. The study analyzes the network

characteristics of various security mechanisms including link layer security (LLSec)

using AES-CCM, application layer or payload encryption using AES-128 BITS, AES-

CBC and AES-OCB) on an actual wind park as an illustration of an industrial network.

They use an ultra-low IoT device (Zolertia Z1) which is a Class-0 IoT device. They

run network traces to compute the evaluation performance amongst these security

mechanisms. This is a very good research that provides a motivation for this thesis to

19

seek similar research into the effect of AES-128 BITS payload encryption on the

network in relatively the basic of network connections. They used MQTT and as such

have the pleasure of the QoS levels.

A study [43]., related to this thesis analyzed different payload sizes using high-end

devices and MQTT communication protocol based on different QoS levels to establish

a correlation analysis between parameters: message loss and end-to-end delay over

wireless and real-wired network via the internet. It deduced that they are correlated.

However, a comprehensive analysis is also needed in situations when the payload is

encrypted and the devices are low-level/resource constrained or falls in the range of a

Class-0 IoT device. This thesis seeks to show also the effects on network alongside

each QoS levels.

1.4. Purpose Of Research

The main objective of this thesis is to present a method of analysis of lightweight

encrypted and non-encrypted payload based on MQTT communication protocol and

its QoS levels. The analysis is focused on getting results that seeks to establish how

the network communication is affected when communication is performed using

encrypted payload at the client side and also how they relate with the non-encrypted

payloads. Also through the literature, results and discussions, the reader will come to

an understanding of some technologies, current issues and may find future research

areas related to this thesis.

1.5. Research Motivation

The IoT industry is expected to surge in coming years to bring lots of revenue. Also,

security is a main issue and the need to present or contribute to researches related to

IoT security is essential to a positive growth to IoT in the near future. Much work and

studies have been conducted into securing data transmissions from constrained

devices. However, there is a minimum resource requirement needed to support most

of these security mechanisms especially for Class-0 devices. Hence, they are limited

20

to just some lightweight yet powerful security mechanisms such as AES. We look at

its encryption effect on network performance by analyzing encrypted and non-

encrypted payload sizes based on MQTT and its QoS levels.

1.6. Research Limitations And Thesis Outline

The scope of this research will be focused around the effect of the end-to-end client

encryption of payload on network performance/characteristics as compared to non-

encrypted payload based on MQTT. We analyse in the range of a local network set-up

with no other secured communication channels implementations. This research does

not focus of the use and storage of data but the sending of encrypted message to the

broker server and the decryption of the message by the subscriber client’s end. We

focus on knowing what happens to some network parameters namely, latency, message

loss and throughput when data is encrypted and sent from the publisher client and

received for decryption at the subscriber client’s end.

The thesis is organized as follows. Chapter 2 presents an overview of the MQTT

protocol for this work. It covers the main features and relevant control packets of

MQTT. Chapter 3 covers the method of research, what and how it was performed. It

presents the experimental set-up, design and the analytical method applied. Chapter 4

presents the experimental results and discussion. It covers both encrypted and non-

encrypted payload analysis results, and a correlation analysis. Chapter 5 briefly covers

the conclusion and future research.

21

CHAPTER 2. MQTT PROTOCOL OVERVIEW

The objective of this overview is to have a fundamental background knowledge of the

MQTT protocol used for this research. The overview begins with an introduction to

the protocol and follows with the main features and it ends with some aspects of the

technicalities involve in the packets sent using this protocol.

The intended purpose and functionality of IoT device depends on the amount of

available resources. A Class-0 device resource must be below a certain resource

threshold as stated by Bormann et al. [20] with less than 100Kb ROM and/or less than

10Kb RAM. An example of a Class-0 device is the Arduino Uno [45]., an 8-bit

microcontroller with 16MHz CPU, 32Kb RAM, 2Kb ROM. MQTT as a lightweight

protocol and its ability to be implemented on such device makes it a suitable protocol

for research purposes.

MQTT (Message Queuing Telemetry Transport) is an application level protocol which

functions and relies on top of the TCP/IP stack. It is simple, lightweight and easy to

implement protocol which is based on a client-server publish-subscribe messaging

pattern. It is suitable for M2M (Machine to Machine) or IoT where a low resource

requirement is expected/or network bandwidth is at a very low.

Originally developed at IBM in 1999, MQTT was designed to be lightweight,

bandwidth efficient, simple to implement, agnostic about delivered data, aware of the

session and able to provide QoS (Quality of Service) for delivered data. MQTT was

used initially used at IBM for proprietary embedded systems. The turn-around came

in 2010 when IBM decided to release the protocol free for everyone to use [46]. The

protocol was placed under OASIS and in 2014 it was released as a standard under open

OASIS standard with a version 3.1.1 from the previous version of 3.1. As at the time

22

of writing this thesis, version 3.1.1 is the latest version of the protocol [47]. MQTT

system is based on publish-subscribe pattern that relies on a central node, called a

message broker (server). All communicating end points (clients) are connected to the

broker. Thus, a client’s messages are sent to and received from a broker. It is the task

of the broker to receive messages from clients and to send them to the recipients

rightfully in need of them. In MQTT, when a client sends a message, the message is

assigned to some topic. Each client gives an indication of interested topics to the

broker. It could be one or more topics. According to this, the broker can apportion the

right message according to the topics that is received and deliver it to the rightful

recipient. The term publish is used when a message that is assigned to a specific topic

is sent by the client to the broker. While the term subscribe is used to describe the

moment a client registers an interest in a topic and its subsequently the corresponding

messages to the broker [48].

2.1. MQTT Main Features

The protocol is may be considered simple however there are some features which

needs a proper understanding and if possible can lead unto further research studies.

The strength and some main features of MQTT related to this thesis are covered in

subsequent sub-topics.

2.1.1. Connection

During a client’s establishment of connection to the broker, a CONNECT packet to

the broker is sent. With the CONNECT packet, the client configures set of parameters

that are used for the connection with the broker. These parameters control e.g. what

happens if client disconnects from broker, or whether some messages should be stored

if it goes offline. Below are some of the parameters.

a. Client identifier

Client identifier uniquely identifies the client for the broker. The first UTF-encoded

string. The Client Identifier (Client ID) is between 1 and 23 UTF-8 encoded bytes in

length (characters long) [47]. It must be unique across all clients that are connecting

23

to a broker server and is the key in handling Message IDs messages with QoS levels 1

and 2. If the Client ID is more than 23 characters, the server responds to the

CONNECT message with a CONNACK return code 2: Identifier Rejected [47].

b. User name and password

User name and password are specifically used to control or check authentication and

authorization to broker. They are transmitted in plaintext. A connecting client can

specify a user name and a password, and setting the flag bits signifies that a User

Name, and optionally a password, are included in the payload of a CONNECT

message. If the flag for the User Name is set, that field is now mandatory, otherwise

its value becomes disregarded. If the flag for Password is set, that field is now

mandatory, otherwise its value becomes disregarded. It is invalid to provide a

password without provide its corresponding username [46].

c. Clean session

This is a flag client that indicates whether an establishment of a clean or a persistent

session with the broker is needed. Flag is set to true if a clean session is requested/

This means that, the broker will neither restore nor start storing any state for the client

and it will purge all information from previous persistent session. However, persistent

session (flag = false), previous session (if any) for the client will be restored. This

means that any topic subscriptions made by client in previous session are restored and

the messages which the client had subscribed with QoS 1 or 2 and also which were

received when the client was offline are transmitted to it. If persistent session is

requested, broker starts storing state for the current session [46].

d. Will message

This is termed as Last will. It is a part of a feature known as Last will and testament of

the MQTT protocol. It is used to notify other clients if a client disconnects from the

broker. In case of such event, the broker, on behalf of disconnected client, sends

predefined message to predefined topic. Both the message and the topic are defined by

the disconnected client during the connection establishment. [49]

e. Keep alive

 Keep alive is used as a maximum time interval which is allowed to elapse between

consecutive messages sent from client to broker. In the situation when a client does

not receive a PINGRESP (ping response) message from the broker within a Keep Alive

24

time frame after sending a PINGREQ (ping request), the TCP/IP socket connection

will be closed. The Keep Alive timer is a 16-bit value which represents the time period

in as number of seconds. The actual value is specific according to application, but

normally a typical value is a few minutes. However, the maximum value is about 18

hours. A value of zero (0) means the client is not disconnected [46,49].

f. Topic name

The topic name is present in the variable header of an MQTT PUBLISH message.

The topic name is the key that identifies the information channel to which payload data

is published. Subscribers use the key to identify the information channels on which

they want to receive published information. The topic name is a UTF-encoded string.

Topic name has an upper length limit of 32,767 characters [46].

2.1.2. Topics and messages

The clients in MQTT do not literally communicate directly with each other. All the

messages are filtered or pass through the broker server. Every MQTT message has a

topic and every client can subscribe to a variety of topics available. Topics are notably

organized in a hierarchical form (called topic levels) [50]. It follows after the form of

a file path like a computer’s file system; e.g. “home/sittingroom/light/status”. The

broker receives published messages from a client and is then it is its responsibility to

send or push them to any client that is rightfully subscribed to this topic.

A PUBLISH packet is sent to the broker when an MQTT client publishes application

data. This packet is made up of an actual application data and topic but also other

important information such as retained flag, duplicate flag, message type, and QoS

level. [46]

The broker checks the topic and delivers the message to clients that are subscribed to

that topic. Messages that dispatched from broker to a subscribed client are also sent as

PUBLISH packets. However, the packets are not exact copies of the received ones

from the published client, but they have same content in their payload portion (the

25

portion that holds the actual application data). For instance, the QoS level can change

during message delivery which affects one of the fields in the PUBLISH packet.

During topic subscription, the client sends a SUBSCRIBE packet to the broker. Such

packet basically contains a list of topics with QoS levels that client wants to subscribe

corresponding topic. As mentioned earlier, topics have hierarchical levels where each

level is separated from each other using a forward slash (/) as shown earlier.

Furthermore, wildcards can be used to subscribe to topics one at a time that may

represent multiple topics as well. Wildcards in MQTT are single and multilevel with

(#). Example of single level wildcard on a topic description is “stage1/+/stage3”. This

means that a subscription with the topic “stage1/A/stage3” or “stage1/B/stage3” is

accurate. On the other hand, a multilevel wildcard defined as “stage1/stage2/#” can

have an accurate subscription in the form stage1/stage2/C or stage1/stage2/C/D or

stage1/stage2/D/C. Thus, stage1 and stage2 should be left intact [50].

The application data embedded in payload portion of PUBLISH packet can be binary

representation, XML (Extensible Markup Language), JSON (JavaScript Object

Notation) or CSV (Comma-Separated Values). This makes MQTT a data agnostic

[46,47] protocol. Handling the payload is sole responsibility of clients. The broker just

delivers messages as it is between clients. This implies that the payload portion can be

encrypted so that the broker or any unwanted client cannot view its contents without

knowing any provided secret key.

2.1.3. Quality of service

MQTT is designed with three message delivery semantics to ensure communication

reliability and this is known as QoS levels. QoS is basically creates an agreement

between sender client and a receiver client in which they settle on the assurance of

message delivery from client to broker and broker to server. QoS level is independent

for each message during client publishing and independent for each topic during client

subscription processes. Hence, QoS level can therefore get changed (go up or down in

26

level). For instance, a client can publish with a higher QoS than another client that will

subscribe same topic with a lower QoS level.

QoS levels in MQTT are: 0 (at most once), 1 (at least once) and 2 (exactly once)

[46,47,50]. With QoS level 0; the simplest of the levels, the sender sends PUBLISH

packet without any form of waiting in terms of confirmation or acknowledgement from

the receiver. In this situation, PUBLISH packet is received at most once. It is

represented with a flow below as:

Client to Server: PUBLISH

Server Action: Publish message to subscribers

QoS level 0 does not check message arrival to its destination. This level is mostly used

for sensor data where message loss can be considered. QoS 1 (at least once) is where

messages are readily assured to arrive but duplicates can occur. Every PUBLISH

message is required to be acknowledged by the receiver with PUBACK packet. If the

acknowledgement is not received, PUBLISH packet is sent again which might cause

data duplication. The flow [8, 29] is shown below:

Client to Server: PUBLISH

Client Action: Store Message

Server Actions: Store Message,

 Publish message to subscribers,

 Delete Message

Server to Client: PUBACK

Client Action: Discard Message

In QoS 2 (exactly once), messages are assured to arrive exactly once. Four main

packets are utilized in QoS level 2. The first packet is the PUBLISH packet. To avoid

duplication the packet ID is stored by the receiver. It is then acknowledged with a

PUREC (publish received) packet. The sender client can discard the initial data after

PUREC. When PUBREC is received, sender stores reference to this packet and

27

responds with PUBREL packet (contains also original packet identifier). The packet

receiver can now discard every state of packet identifier after receiving PUBREL and

responds with PUBCOMP. PUBCOMP is the final packet which ends QoS level 2

packet delivery. If the packet that is assumed to be received is not received in a suitable

time window in any of the above delivery stages, previous packet is directly sent again

always. Now, in case the subscriber client subscribes with QoS level 1 or 2 and

persistent session is true, the broker will store the packets for the client until it confirms

them received. This is similar to the case when the client is offline. Generally, the

broker will store and queue packets until client reconnects with persistent session and

confirms packets received. If client reconnects with clean session all previously stored

packets are discarded. Packets that are subscribed with QoS level 0 are not stored at

all.

Client to Server: PUBLISH

Client Action: Store Message

Server Actions: Store Message OR Store Message ID,

 Publish message to subscribers

Server to Client: PUBREC

Client to Server: PUBREL

Server Actions: Publish message to subscribers,

Delete Message OR Delete Message ID

Server to Client: PUBCOMP

Client Action: Discard Message

Figure 2.1. illustrates the QoS levels and the packet flow using a diagram.

Figure 2.1. MQTT Quality of Service packet transmission.

28

2.1.4. Security

MQTT is based on an unencrypted TCP which is totally not secure. However, because

it sits on top of TCP, it can use TLS/SSL Internet security [51]. TLS is a very secure

method for encrypting the communication channel [51]., however it is also resource-

intensive for lightweight or constrained clients’ devices. This is due to the required

handshake and the increased network packet overhead. Hence for networks where

energy is so important and security is less, encrypting just the packet payload may be

the best solution.

Using client identifier, username and password MQTT can provide mainly

authentication and authorization. As such, protocol does not explicitly specify e.g. how

application data should be encrypted or its integrity checked when carried within

PUBLISH packets. Although MQTT protocol might not have diverse features

regarding security, there are various ways to incorporate them on application level:

applications can be specified to data format that can make it easy to implement an

encryption mechanism and data integrity check in various formats on PUBLISH

packet’s payload.

CONNECT packet sends Client identifier, username and password broker during an

established connection. The broker authenticates client and authorizes what topics it

can have access. The broker undergoes a configuration before this is done. Another

issue is that the CONNECT packet sends client identifier, username and password in

plaintext [24] and is therefore visible to any intermediate network equipment if

transferred on top of plaintext TCP connection.

When TLS is used as underlying protocol all MQTT packets can be encrypted and

their integrity checked. As a contrast to plaintext username and password, certificates

provide better method to authenticate clients. However, certificates must be generated

and private keys which poses a major challenge to Class-0 device. TCP port 8883 [47]

is used on broker side, if MQTT is used on top of TLS. It is standardized for secure

29

MQTT connections. While for plaintext, TCP port 1883 is used [33,47]. TLS provides

set of good features but it is complex and utilizes a high level of resources.

In some situations, TLS cannot be used. However, with MQTT it is possible to

implement security features also on application layer. Security features in the

application layer are implemented on the PUBLISH packet’s payload (the actual data)

[24]. Encrypted payload remains encrypted from the source to destination (end-to-end

(E2E) encryption) [24,30]. Only designated clients with the right key can recover the

actual contents. Privacy and confidentiality is witnessed as data transfer and also

authentication can be implemented since only clients with the right key has access to

the real data. However, a malicious or compromised broker has the capability to

manipulate the payload’s integrity. A way to prevent this is to use the Message

authentication code (MAC) by calculating it from the payload and added to it before

encryption. This will ensure that to be able to modify any part of the payload, any

compromised node would need the secret key before it can modify. This primitive

mechanism of encryption is very useful at situations where TLS cannot be used for

some reason.

2.1.5. Space decoupling

With this process the node will have the broker’s IP address and the broker can also

identify the node. Nodes have the capability to publish information and also subscribe

to other nodes’ published information. They do not have to have each other’s IP or any

knowledge of each other at all since everything goes through the central broker. This

tends to reduce network overhead that can accompany TCP sessions and ports. Hence

it ensures that the end nodes do operate independently of one another [52].

2.1.6. Time decoupling

A node can publish its information independent of the state of other nodes. As other

nodes remain active they can receive published data that they have subscribed unto

from the broker. Nodes can remain in sleepy states even when other nodes are

30

publishing messages directly relevant to them since everything passes through the

central broker [52].

2.1.7. Synchronization decoupling

In a scenario where a node is in an operation, it cannot be interrupted by a message it

needs to receive that it has obviously subscribed to. This message is queued by the

broker and makes the broker makes sure that the node finishes its initial operation.

This in turn saves operating current and reduces repeated operations by avoiding

interruptions of on-going operations or sleepy states [52].

2.2. MQTT Control Packets

MQTT standard defines fourteen different control packet types (see Table 2.2.) [46].

The enumeration is the packet protocol level used to identify those control packets.

a. CONNECT, CONNACK and DISCONNECT are for the establishment of

connections and termination of the connection with the broker.

b. PUBLISH, PUBACK, PUBREC, PUBREL and PUBCOMP are used during

the publishing of application data to broker.

c. SUBSCRIBE, SUBACK, UNSUBSCRIBE and UNSUBACK are used when

subscriptions are made or canceled.

d. PINGREQ and PINGRESP are used to verify that client and broker are alive

and reachable.

The message header or message format for each MQTT command message may

contain fixed header, variable header or payload. Variable header and payload depends

on the packet but the fixed header is always available. Fixed header is composed of a

set of fields that are fixed while the fields in the variable header and payload may vary

between packets. Below is the table (Table 2.1.) illustrating the fixed header format

which is related to our study.

31

Table 2.1. Fixed header format.

Bit 7 6 5 4 3 2 1 0

byte 1 Message Type Dup flag QoS level RETAIN

byte 2 REMAINING LENGTH

Text fields in MQTT packets have their encoding as UTF-8 (Universal Character Set

Transformation Format) strings and integer values are represented using 16 bits and

big-endian byte order. The fixed header has three fields namely message type, flags

and remaining length. [46,47].

Byte 1 Contains the message type and flags (DUP, QoS level, and RETAIN) fields.

Byte 2 (At least one byte) contains the remaining length field. All the data values are

in big-endian order i.e. higher order bytes precede lower order bytes. A 16-bit word is

represented on the wire as Most Significant Byte (MSB), followed by the Least

Significant Byte (LSB).

The Message Type Position: (byte 1, bits 7-4) is represented as a 4-bit unsigned value

which takes the enumeration values from either of the fourteen control packet types.

Enumeration 0 and 15 are reserved. Table 2.2. shows the enumeration for the protocol

control packet types and their description. [46,47]

Table 2.2. Enumeration of the control packet types of MQTT

Mnemonic Enumeration Description

Reserved 0 Reserved

CONNECT 1 Client request to connect to Server

CONNACK 2 Connect Acknowledgment

PUBLISH 3 Publish message

PUBACK 4 Publish Acknowledgment

PUBREC 5 Publish Received (assured delivery part 1)

PUBREL 6 Publish Release (assured delivery part 2)

PUBCOMP 7 Publish Complete (assured delivery part 3)

SUBSCRIBE 8 Client Subscribe request

SUBACK 9 Subscribe Acknowledgment

UNSUBSCRIBE 10 Client Unsubscribe request

UNSUBACK 11 Unsubscribe Acknowledgment

PINGREQ 12 PING Request

32

PINGRESP 13 PING Response

DISCONNECT 14 Client is Disconnecting

Reserved 15 Reserved

The Flags are comprised of the DUP, QoS and RETAIN as shown in the table below

Table 2.3. MQTT fixed header flags.

BIT POSITION NAME DESCRIPTION

3 DUP Duplicate delivery

2-1 QoS Quality of Service

0 RETAIN RETAIN flag

DUP Position (byte 1, bit 3) is set when there is an attempt to re-deliver a PUBLISH,

PUBREL, SUBSCRIBE or UNSUBSCRIBE message by the client or server. This

applies to messages whereby the QoS level value is greater than zero (0), and an

acknowledgment is required. The recipient should treat this flag as a hint as to whether

the message may have been previously received or has been duplicated. The variable

header includes a Message ID when the DUP bit is set. NB: It should not be relied on

to detect duplicates. [46,47]

QoS Position (byte 1, bits 2-1) indicates the level of assurance for delivery of a

PUBLISH message (see Table 2.4.).

Table 2.4. QoS levels.

QoS value bit 2 bit 1 Description

0 0 0 At most once Fire and Forget < =1

1 0 1 At least once Acknowledged delivery > = 1

2 1 0 Exactly once Assured delivery = 1

3 1 1 Reserved

RETAIN Position (byte 1, bit 0) is only used on PUBLISH messages sent by a client

to a server and when the Retain flag is set to 1, the server holds on to the message after

it has been delivered to the subscribers that are currently connected . Also, the last

33

retained message on that topic has to be sent to the subscriber that has the Retain flag

set in the situation when a new subscription is established on that same topic. Nothing

is sent when there is no retained message.

Remaining Length Position (byte 2) represents the number of bytes that is remained

within the current message. This includes data in the variable header and the payload.

The variable length encoding scheme uses a single byte for messages (127 bytes long).

Seven bits of each byte encode the Remaining Length data, and the eighth bit indicates

any following bytes in the representation. Each byte encodes 128 values and a

"continuation bit" [46,47].

The variable header and payload parts vary between packets. For the sake of our study

focus we will not cover this area but more of it can be studied from [46,47]. Relevant

packets concerning this thesis work are: CONNECT, CONNACK, PUBLISH,

PUBACK, PUBREC, PUBREL, PUBCOMP, SUBSCRIBE and SUBACK. These

form the minimal set of packets which are required when client needs to establish

and/or terminate connection with broker and also send an application data to the

broker.

34

CHAPTER 3. LIGHT WEIGHT PAYLOAD ANALYSIS

In this section, we present the method of payload analysis using a real-wired local

network based on packet loss, latency, throughput, different QoS levels and payload

sizes for encrypted and non-encrypted payload. The process of capturing packets was

performed in real time as two devices communicated.

Our main requirements for the proposed method is to capture network packets for both

encrypted and non-encrypted payload at different payloads and QoS levels as they are

communicated between a publisher client-to-server-to-subscriber client for analysis.

Our expectations were that, there is similar or close effect on network performance for

both encrypted and non-encrypted payloads and that they have similar or close

correlation coefficients on throughput, and end-to-end latency via MQTT at different

QoS levels.

Although the encryption process might add a bit of latency to the processing time, it is

worth the confidentiality service it provides for the payload. Also, it will add additional

layer of security for devices that can handle TLS/SSL because TLS/SSL is not

sufficient for optimal security with MQTT [41]. However, our main objective is to

observe the effect of encrypted payload based on MQTT at different QoS levels. The

output of this research will serve as a guide or stepping stone onto more studies about

MQTT and Class-0 IoT devices in the near future.

In this thesis we follow the approach of research methodolgy. We have put forward the

objective and motivation for the research and our design and implementation of the

research is in the subsequent sub sections.

35

3.1. Experimental Set-Up

For the experimental set-up, we used a 64-bit Linux Kali OS 2017.1 [53] as the server.

Kali is an open source and a Linux distribution that has most of the network and

security analysis tools already pre-installed. There are other linux distributions that are

equally as good as Kali namely Ubuntu, Fedora, and Cent OS. We chose kali because

it is renowed to posses good qualities for most security and network analysis support.

Moreover, a number of studies and researches [3,5,7,11,33,43,54,55] also depended on

linux distributions as the operating system for their server due to the robustness of this

operating system.

We also used an open source MQTT broker known as Mosquitto [56]. It is open-

sourced and supports the latest standard version of MQTT. It is simple, non-proprietary

and easy to use for simple publish/subscribe implementation with C and C++ libraries

[56]. Its primary goals are: to avoid polling of sensors, allowing data to be sent to

interested parties the moment it is ready and lightweight, so that it can be used on very

low bandwidth connections. MQTT is currently undergoing standardization at OASIS.

A broker stores the topic of message sent from the publisher client and releases the

messages to the subscriber that requests or subscribes to a specific topic. Upadhyay et

al. [5] describe it as a form of filter which only filters or sends the messages that are

requested by the subscriber and sends an alert to the publisher after a request so that

publisher can release its topic or data. There are other brokers namely, ActiveMQ,

Apollo, JoramMQ, RabbitMQ [57]., and VerneMQ (proprietary and open source) that

may be equally good as well. However, for experimental and research purposes,

Mosquitto is highly preferred and mostly used [5,7,24,42,50,54].

We employ the use of Arduino Uno Rev 3 (Figure 3.1. a) that uses the ATmega328

microcontroller (16 MHz CPU) with 32KB in system programmable flash and 2KB

internal SRAM. The Arduino Uno is Class-0 IoT device as discussed earlier. A device

like this can be tasked to control actuators, electrical appliances, internet services, or

collect data from temperature and humidity sensors. Also, an Ethernet Shield Wiznet

5100 (Figure 3.1. b) is used to establish communication over the router. It has a RJ45

36

connector and it can transfer data up to a speed of 100Mbps. The clients and server are

connected via a TP-Link 150Mbps Wireless AP/Client Router with wired-LAN

support (Figure 3.1. c).

a) b) c)

Figure 3.1. Devices used in the experiment: a) Arduino Uno Rev 3, b) W5100 Ethernet Shield, c) TP-LINK router

Reading of results data and the ability to know if the devices were communicating was

seen throught the end-user. The server had other sub-servers running on it as well

namely apache web server, mysql server and the MQTT broker server. Figure 3.2.

shows the block diagram of the experimental setup.

Figure 3.2. Block diagram of experimental setup.

37

3.2. Design And Implementation

The experimental design was based on a client end-to-end encryption/decryption. One

of the device is setup to be the client-publisher and the other is se to be a client-

subscriber. They are connected via the router that serves as a gateway for server - client

communication. An encrytpion mechanism is performed at the publish-client and a

decryption at the subscribe-client’s end. Data for payload is hard-coded in the device.

This mimics data readings from sensors. Figure 3.3. illustrates the flow of the client

end-to-end encryption/decryption process. The encrypted data is published to the

broker and the publish client is clearly independent of the state of the subscribe client.

Communication can only be established when a published topic can be subscribed by

the designated subsciber clients or clients that are subscribed to that particular topic.

The publish/subscibe process can be both ways for to-and-fro publish/subscribe

communication but it is made in one way in the case of this research.

Figure 3.3. End-to-end client encryption mechanism based on MQTT.

This setup and end-to-end encryption and decryption mechanism is still prone to some

attacks in a network environment that is most likely linked to the internet. Security

vulnerabilities may include compromised devices, easy accessibility of data at rest in

servers, timing attacks, denial of service (DoS) attacks, interception, replay attacks,

main-in-the-middle attacks, alteration of data and disclosure of data. However the

scope of this research does not cover solving vulnerabilities associated to such security

38

mechnism. MQTT protocol is devoid of concrete security mechanisms apart from

TLS/SSL certificates despite its load on network and impact on data transfer. For high

end clients, it is fairly easier to implement TLS based on SSL communication.

However, it is not the case for the resource constrained device due to its handshake

and increased packet overhead [23,52].

For the implementation of the system, we use an MQTT broker known as Mosquitto

and we also employ the use of free and open-source Eclipse Paho MQTT C/C++ client

for embedded platforms and an Arduino-ready AES library. The installation of the

broker was performed on the terminal of the the Kali Linux. Figure 3.4. illustrate the

availability and active and running state of the Mosquitto broker.

Figure 3.4. Terminal active and running state of the Mosquitto broker.

We further implemented the code required for the Arduino Uno and Ethernet shield to

communicate with the Mosquitto broker. Arduino provides an integrated development

environment (IDE) for writing the Arduino commands or coding. It also has a serial

monitor screen which receives the data logs directed to it for debugging purposes and

to know what is transpiring in the Arduino device during its operation or

communication in the case of this research. A serial cable connected to the computer

from the Arduino device is able to send the logs and it is made available to the serial

monitor. In the code, we set the broker server’s internet protocol, QoS levels, the loop

time for publish function, the message, topics, and also included the library for AES

to implement encryption and decryption of the message. We run them on our Arduino

39

device (class-0 IoT Device). The following are code snippets and their description of

what they do.

byte mac [] = { 0x00, 0x11, 0x22, 0x33, 0x44, 0x77 }; //MAC ADDRESS

IPAddress dnServer(192, 168, 1, 1); //DNS SERVER IP

IPAddress gateway(192, 168, 1, 1); //GATEWAY IP

IPAddress subnet(255, 255, 255, 0); //SUBNET IP

IPAddress ip(192, 168, 1, 105); //IP FOR THE CLIENT DEVICE

Figure 3.5. Arduino code for MAC, internet protocol settings.

Figure 3.5. illustrates the Arduino code for setting up the MAC addressand IP for the

Ethernet shield and Arduino Uno as a whole. These will help identify the device to

connect to the router and enable the visibility of the device on the network.

const char* topicPub = "ARDUINO-PUB1/0"; //DECLARATION OF A CONSTANT TOPIC VARIABLE

MQTT::Message message; //MQTT CLIENT CLASS INSTANCE

void loop() { //ARDUINO LOOP FUNCTION

 if (!client.isConnected())

 connect(); // A CONNECT FUNCTION TO CONNECT DEVICE TO MQTT SERVER

if (millis() - lastMillis > 2000) { //RUN EVERY 2 SECONDS, HENCE PUBLISH EVERY 2 SECONDS

lastMillis = millis(); //A ASSIGNMENT OF THE CURRENT MILLISECOND

char buf [33]; //DECLARATION OF A BUFFER CHARACTER VARIABLE

strcpy(buf, "QoS0ARDUINO1_MSGQoS0ARDUINO1_MSG"); //32 BYTES MESSAGE IS

COPIED INTO CHAR VARIABLE

message.qos = MQTT::QOS2; //QUALITY OF SERVICE SETTING IS SET TO QoS LEVEL2

 message.retained = false; //NO MESSAGE RETAINED

 message.dup = false; //NO DUPLICATE

 message.payload = (void*) buf; //ASSIGNING BUFFER CONTENT TO MQTT PAYLOAD

VARIABLE

 message.payloadlen = strlen(buf)+1; //ASSIGNING LENGTH OF PAYLOAD TO MQTT PAYLOAD

LENGTH //VARIABLE

 client.publish(topicPub, message); //PUBLISH CLIENT FUNCTION CALL

Figure 3.6. Arduino code snippet to publish data to the server.

After the TCP and MQTT connection has been succesful, the Arduino client is set to

publish to the MQTT broker server. The basic parameters like QoS, retained and

duplicate values are set. Also the topic and payload value are provided accordingly.

40

Figure 3.6. shows Arduino snippet used to publish 32 bytes of plaintext payload to the

broker.

On the otherhand, Figure 3.7. illustrates the Arduino snippet for the encryption

process. Clearly the code in Figure 2.6 was tweaked to include the AES 128 bits cipher

block chaining encryption. This encrypts multiple blocks of 16 bytes data or payload

of length 16. In other words, the data length must be in mod 16. Also this mechanism

makes use of the initialization vector (IV) which is used along with the secret key. It

increases the strength of encryption by preventing repetition in data encryption and

thereby hindering or making attacks such as dictionary attacks more difficult since

attacks tends to look at patterns from encrypted data. The length of the IV is generally

the same as the length of the secret key.

Figure 3.7. Arduino code snippet used to publish encrypted payload.

const uint8_t iv[] = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15}; //INITIATION VECTOR

uint8_t key[] = {'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p'}; // DECLARE AES 128-BIT

KEY

const char* topicPub = "ARDUINO-PUB1/0"; //DECLARATION OF A CONSTANT TOPIC VARIABLE

void loop() //ARDUINO LOOP FUNCTION {

 if (!client.isConnected())

 connect(); // A CONNECT FUNCTION TO CONNECT DEVICE TO MQTT SERVER IF IT FAILS

 if (millis() - lastMillis > 2000) { //RUN EVERY 2 SECONDS, HENCE PUBLISH EVERY 2 SECONDS

lastMillis = millis(); //AN ASSIGNMENT OF THE CURRENT MILLISECOND

char buf[33]; //DECLARATION OF A BUFFER CHARACTER VARIABLE

strcpy(buf, "QoS0ARDUINO1_MSGQoS0ARDUINO1_MSG"); //MESSAGE IS COPIED INTO

BUFFER //VARIABLE

const uint16_t data_len = strlen(buf); //DECLARATION OF SIZE OF MESSAGE FOR

ENCRYPION

aes128_cbc_enc(keyX, iv, buf, data_len); //AES 128-BITS CIPHER BLOCK CHAINING

IMPLEMENTED

 message.qos = MQTT::QOS2; //QUALITY OF SERVICE SETTING IS SET TO QoS LEVEL2

 message.retained = false; //NO MESSAGE RETAINED

 message.dup = false; //NO DUPLICATE

 message.payload = (void*) buf; //ASSIGNING BUFFER CONTENT TO MQTT PAYLOAD

 message.payloadlen = strlen(buf)+1; //ASSIGNING LENGTH OF PAYLOAD TO MQTT PAYLOAD

LENGTH VARIABLE

 client.publish(topicPub, message); //PUBLISH CLIENT FUNCTION CALL

41

Decryption is performed at the subscribing client-end after the encrypted payload is is

released successfully to it. The subscribe client has a function call to subscibe data

associated to the particular topic. Furthermore the subscribe function has a parameter

that has a message handler data type. This parameter takes a callback function that is

able to release the data captured from the topic that was subscribed. Figure 3.8.

illustrates the code snippet for subscription, callback function and the decryption.

client.subscribe(topicSub, MQTT::QOS0, messageArrived); //SUBSCRIBE CLIENT FUNCTION CALL

//WITH A CALL TO CALLBACK FUNCTION

//CALLBACK FUNCTION TO SHOW MESSAGE FROM SUBSCRIBED TOPIC

void messageArrived(MQTT::MessageData& md){

 MQTT::Message &message = md.message;

 unsigned long ms = micros ();

 aes128_cbc_dec (keyX, iv, (void*) message.payload, data_len); //AES-128BITS CBC DECRYPTION

 Serial.print ("Decryption took: ");

 Serial.println (micros() - mss);

 Serial.print ("Payload ");

 Serial.println((char*)message.payload);

}

Figure 3.8. Arduino code snippet for subscribe client and decryption.

3.3. Method Of Analysis

The experiment was treated in two folds; thus, the encrypted and the non-encrypted

payload approach. We used a minimum data of 16 bytes and a maximum of 96 bytes

with 16 bytes interval increment. The data was published in plaintext (non-encrypted

message) with a topic every two seconds to the broker server. A subscriber client is set

to listen to the broker for messages from the subscribed topic. Packets were captured

using tcpdump [58] for a period of 310 seconds for each QoS and for an increment of

16 bytes of data till 96 bytes of data is reached. Tcpdump is an ideal tool which is free,

runs on many Unix platforms, and has a Microsoft Windows version as well. The

features of its syntax and its file format have been employed by a large number of

programs and other capture software. Due to the fact that tcpdump is text based, it

makes it easy to run remotely using even a Telnet connection. A lack of analysis is its

42

biggest disadvantage, but it can easily capture network traffic and can be analyzed with

other software. Similarly, the procedure was performed by applying the AES-128 bits

CBC mechanism on the payload.

We computed the average end-to-end latency, percentage message loss and throughput

as well as the encryption and decryption processing time. The latency was measured

by using the difference in timestamp formed from the start of a published packet, the

various acknowledgment packets flow to the broker server and its reception and

acknowledgement packets flow form the broker by the subscriber client. With the aid

of Wireshark [59]., the latency was recorded and the average throughput were recorded

from the results generated by the statistics of tcptrace [58] on the captured packets.

Wireshark is one of the most popular open-source packet analyzer along-side Capsa.

Wireshark is cross-platform and it uses pcap (capture file format) to capture packets.

It runs on Microsoft Windows Linux, Mac OS X, BSD, and Solaris [60]. According

to N.A. Ben-Eid [60]., it is the most widely used, and it provides a larger number of

supported protocols (more than 500) and possesses a user-driven support base that is

unrivaled and it is more powerful. Tcptrace normally takes a tcpdump file that is

specified on the command line or terminal and generate a summarization of the

network communication and connections. Likewise, it can also take as input the

generated files by other popular packet-capture programs, namely, snoop, etherpeek,

and WinDump. Tcptrace can generate different types of output with information about

each network connection available. These include elapsed time, round trip times,

window advertisements, bytes and segments sent and received, throughput,

retransmissions, and more. It can also produce a number of graphs for further analysis.

Tcptrace chooses only valid samples found. A sample is recognized if an

acknowledged packet is received from the destination for a previously transmitted

packet from a source such that the acknowledgment value is 1 greater than the last

sequence number of the packet. Also, it is a necessity that the packet that is being

acknowledged is not retransmitted, and that no packets that came before it in the

sequence space were retransmitted after the packet was transmitted. Figure 3.9. and

Figure 3.10. shows the console execution of tcpdump and tcptrace respectively.

43

Figure 3.9. Tcpdump command to capture packet of an encypted payload of size 80 btyes and to stop the packet

reading after 310 seconds.

Figure 3.10. Tcptrace command to show traced packet analysis results of an encypted payload of size 80 bytes.

Furthermore, we employed the use of Wireshark application to count the number of

TCP analysis flags that includes, TCP retransmissions, spurious retransmissions,

duplication acknowledgements, and previous segments not captured, as message loss.

We computed the percentage of these loss packets to total TCP packets accordingly.

Figure 3.11. Shows the Wireshark sample of TCP flags noted as message loss.

Figure 3.11. Wireshark interface that shows sample of TCP flags to depict message loss.

44

CHAPTER 4. EXPERIMENT RESULTS AND DISCUSSION

In this chapter, we present our analysis results of the end-to-end latency, percentage

message loss, throughput and the encryption and decryption processing time. We also

present the correlation analysis between throughput and end-to-end latency for

encrypted and non-encrypted payload as well as the deductions from various graphs

according to QoS levels and payload size.

4.1. Non-encrypted Payload Analysis Results

We present the results from the use of plaintext as payload. The results are in graphs

for simplicity and understanding. Other results are presented from other statistical

computation and calculations. Figure 4.1. shows the average end-to-end latency

analysis result in relation to payload sizes and QoS levels when the payload was

plaintext. The QoS 2-line graph uses the secondary axis on the right for reading

purposes.

It can be noted clearly from Figure 4.1. that there is a high latency recorded when QoS

level 2 is implemented. This is as a result of the 4-way handshake it uses [43]. QoS

level 0 is observed to be numerically lower in latency since it uses the publish and

forget principle used (at most once) as compared to the assured delivery principle

(exactly once) of QoS level 2 [8,29,43,46]. Other studies [43,61]., came to similar

conclusion of this fact, and showed that QoS level 2 has a higher end-to-end delay

(latency) than QoS level 0.

45

Figure 4.1. Non-encrypted payload average end-to-end latency analysis result.

Furthermore, Figure 4.2. shows the comparison of message loss, payload size and QoS

for non-encrypted payload. When QoS level 2 was implemented, the percentage of the

average percentage loss of all the payloads (16-96 bytes) was reduced by

approximately 59.17% as compared to QoS level 0 when payload was not encrypted.

Despite the high latency with QoS level 2, it is efficient at message delivery by 2.45

times than QoS 0 according to results from the average percentage loss of all the

various payloads that was not encrypted.

Figure 4.2. Non-encrypted payload loss percentage analysis result.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.2

0.202

0.204

0.206

0.208

0.21

0.212

0 16 32 48 64 80 96 112

L
A

T
E

N
C

Y
 (

S
E

C
O

N
D

S
)

PAYLOAD SIZE (BYTES)

QoS 0 - QoS 0

QoS 1 - QoS 1

QoS 2 - QoS 2

0

2

4

6

8

10

12

14

0 16 32 48 64 80 96 112

%
 L

O
S

S

PAYLOAD SIZE (BYTES)

QoS 2 - QoS 2

QoS 0 - QoS 0

QoS 1 - QoS 1

46

From Figure 4.3., we can deduce that the throughput is directly proportional to the

payload size and QoS. They are marginally close according to QoS as the payload

increases. QoS level 2 is higher in throughput due to the higher number of packets

exchanged.

Figure 4.3. Non-encrypted payload throughput analysis result.

4.2. Encrypted Payload Analysis Results

We present the results from the use of AES 128 bits CBC encrypted plaintext as

payload. The results are in graphs for simplicity and understanding. Other results are

presented from other statistical computation and calculations. Figure 4.4. shows the

average end-to-end latency analysis result in relation to different payload sizes and

QoS levels for encrypted payload. The QoS level 2-line graph uses the secondary axis

on the right for reading purposes. QoS level 1 is relatively higher in latency than QoS

0 and lies below QoS 2. QoS 0 and QoS 1 of both graphs (Figure 4.1. and 4.4.) are

marginally below 0.21 seconds however, the graph of QoS level 2 lies between 0.23

and 0.28 seconds. Table 4.1. shows the averages of the end-to-end latencies for each

QoS.

0

10

20

30

40

50

60

70

0 16 32 48 64 80 96 112

A
V

E
R

A
G

E
 T

H
R

O
U

G
H

P
U

T

(B
Y

T
E

S
/S

E
C

)

PAYLOAD SIZE (BYTES)

QoS 1 - QoS 1

QoS 0 - QoS 0

QoS 2 - QoS 2

47

Table 4.1. Averages of the end-to-end latencies for each QoS.

 Encrypted payload

(Seconds)

Non-encrypted payload

(Seconds)

QoS 0 0.205927

0.205986

QoS 1 0.206358 0.206293

QoS 2 0.256868 0.258206

According to the results from Figure 4.5., the average percentage loss of all the

payloads showed that QoS level 2 reduced its percentage loss by 54.64 % compared

to QoS level 0 for encrypted payload. Similarly, 59.17% reduction was observed for

non-encrypted payload.

Figure 4.4. Encrypted payload average end-to-end latency analysis result.

Furthermore, QoS level 2 was efficient at message delivery than QoS level 0 by 2.20

times for encrypted payload as compared to the 2.45 times when payload was plaintext.

Also, at 16 bytes for QoS level 2, the percentage loss for encrypted payload was 1.6

times (about twice) more than that of non-encrypted payload. Likewise, at 80 bytes the

percentage loss for encrypted payload was approximately 1.53 times more than non-

encrypted payload.

0.23

0.235

0.24

0.245

0.25

0.255

0.26

0.265

0.27

0.275

0.28

0.285

0.2

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0 16 32 48 64 80 96 112

L
A

T
E

N
C

Y

(S
E

C
O

N
D

S
)

PAYLOAD SIZE (BYTES)

QoS 0 - QoS 0

QoS 1 - QoS 1

QoS 2 - QoS 2

48

The average of the percentage loss of non-encrypted payload at QoS level 2 was

4.158% as compared to 4.693% for the encrypted payload. These figures show that,

on the average, encrypted payload lost messages by 1.13 times more than non-

encrypted payloads at QoS level 2. From Wireshark statistics, the average packet size

of a packet loss for encrypted payload at 16 bytes for QoS level 2 was 1.5 bytes more

than non-encrypted payload and likewise it was 2 bytes more for 80 bytes payload.

Thus, for a 100 packets of message losses for encrypted payload of size 80 bytes, we

can have about 200 bytes of message losses more than non-encrypted payload loss as

network load.

Figure 4.5. AES-128 BITS encrypted payload loss percentage analysis result.

We further observed from Figure 4.6. that, the throughput was marginally similar to

that of the non-encrypted payload (see Figure 4.3.) and it increases with an increase in

payload and QoS level. Table 4.2. shows the averages of the throughput for each QoS

level.

0

2

4

6

8

10

12

14

0 16 32 48 64 80 96 112

%
 L

O
S

S

PAYLOAD SIZE (BYTES)

QoS 0 - QoS 0

QoS 1 - QoS 1

QoS 2 - QoS 2

49

Table 4.2. Averages of the throughput for each QoS level.

 Encrypted payload

(bytes/second)

Non-encrypted payload

(bytes/second)

QoS 0 37.916670

38.083330

QoS 1 39.083330

38.916670

QoS 2 41.250000 41.250000

Figure 4.6. Encrypted payload throughput analysis result.

Also in addition to our analysis, results for Figure 4.7. shows the processing time for

encryption and decryption is divergently increasing in microseconds. It shows that the

higher the payload, the higher the encryption and decryption time. However, by

calculating the point of interception of the line, the decryption time is clearly greater

than the encryption time after the interception point (1.58 Bytes, 299.28µs) and it

diverges after that point. This does not affect network load but rather the processing

time at the client end.

With proper optimization in code to decrease encryption/decryption time, there is a

greater chance to find a payload size that produces same time for encryption and

decryption that could be negligible or small enough for resource constrained devices.

This processing time will be nearly negligible and data privacy services can be

0

10

20

30

40

50

60

70

0 16 32 48 64 80 96 112

A
V

E
R

A
G

E
 T

H
R

O
U

G
P

U
T

(B
Y

T
E

S
/S

E
C

)

PAYLOAD SIZE (BYTES)

QoS 0 - QoS 0

QoS 1 - QoS 1

QoS 2 - QoS 2

50

improved especially in the area of client-side encryption techniques. This will be

useful for data, such as temperature and humidity readings that are small, or sensitive

enough and are needed to be kept private.

Figure 4.7. Average processing time for encryption and decryption analysis.

4.3. Correlation Analysis Based On Throughput and End-to-end latency

We also computed the correlation coefficients between the various end-to-end latency

and the average throughputs. A correlation analysis is a statistical technique that shows

the influence a set of variables have over another set of variables. It is one of the most

common and useful statistical technique used to show the strength of the relationship

between pairs of a set of variables. The coefficient of correlation (r) is in the form of a

single decimal number defined as -1 < r < 1. Hence, the more the coefficient is closer

to 1 it implies that it has a positive correlation and if it is closer to -1 then it implies a

negative correlation. Table 4.3. summarizes the correlation coefficients from the

results.

It showed that end-to-end latency is positively correlated to throughput for each QoS

level and for both non-encrypted and encrypted payload. Thus, end-to-end latency and

throughput are closely related. From the results, we can notice a pattern for the

y = 11.271x + 281.47

y = 13.388x + 278.13

0

200

400

600

800

1000

1200

1400

1600

1800

0 16 32 48 64 80 96 112

P
R

O
C

E
S

S
IN

G
 T

IM
E

 (
m

ic
ro

 s
ec

o
n
d

s)

PAYLOAD SIZE (BYTES)

ENC

DEC

Linear (ENC)

Linear (DEC)

51

encrypted payload’s correlation coefficient. It tends to steadily becomes stronger when

the QoS increases. It is strongest at QoS level 2. And this is totally not the case when

payload is plain-text. Its strongest correlation occurs when the QoS is at level 0 and it

steadily decreases as QoS levels increases. How this came about is not immediately

known. However, this may call for further research to ascertain this pattern.

Table 4.3. Correlation analysis of latency to throughput for MQTT QoS.

 Encrypted payload Non-encrypted payload

QoS 0 0.553594 0.689427

QoS 1 0.582387 0.610147

QoS 2 0.802049 0.558472

52

CHAPTER 5. CONCLUSION AND FUTURE STUDIES

This chapter is set aside to bring every aspect of this thesis into a conclusion. The

thesis was introduced in the first chapter where a general theoretical background into

the definition of internet of things and architecture, protocols available and IoT

security was established in the context of the thesis. Furthermore, we looked at the

research statement and questions that led to the basis of this thesis work. The purpose,

motivation and limitations of this thesis was also introduced in the beginning chapter.

The second chapter took a look into the MQTT protocol where a general overview,

main features and technicalities involved in MQTT packets was discussed. The next

chapter introduced the research method that was used by establishing the experimental

set-up, design and implementation and the method of analysis applied in the

experiment. Finally, prior to this chapter, the outcomes and results of the experiments

was established accordingly and discussed. Furthermore, in this chapter we take a look

at future research and studies.

In this thesis, a series of experiments were performed using a low-end/resource

constrained (Class 0-IoT) device with encrypted and non-encrypted payload

(plaintext) based on MQTT. The results showed that non-encrypted payload have a

lower network load effect and hence produces a relatively better network performance

using MQTT in terms of percentage loss and message delivery than the encrypted

payload. However, the effects on network performance may be negligible, and this

may depend on the amount of resources available.

Numerically, QoS level 2 was observed to be efficient in terms of better delivery as

expected and minimal message loss for non-encrypted payload. Furthermore,

encryption and decryption processing time are observed to be lower and nearly equal

at payloads less than 16 bytes (i.e., approximately 2 bytes). Hence a well optimized

53

code for encryption and an optimum size of payload can make encryption and

decryption processing time nearly negligible or small. We also calculated the

correlation coefficients of end-to-end latency and average throughput based on

different QoS levels. The results showed that the end-to-end latency is closely related

to the throughput for both encrypted and non-encrypted payloads.

So as part of the conclusion of this thesis, there is a need to establish the answers to

the initial questions from the first chapter of the thesis.

Q1: Can encrypted payload based on AES-128 bits affect network performance or

characteristic?

From the results in the previous chapter, it was clear that the encryption mechanism

applied on the payloads had an effect on network parameters numerically; especially

message loss.

Q2: Will it have the similar effect as compared to an unencrypted payload/plaintext

for different MQTT QoS levels and different payload sizes?

According to the presented results in the previous chapter, the difference in effects was

not close to being called same; especially for message loss. However, it could be

regarded as negligible for device that are much resource-enabled. It showed that

encrypted messages get a higher loss in transmission that plaintext. The throughput

and latency results were marginally close to each other numerically.

As part of the future studies, similar analysis by making room for the case of wireless

connections, publishing through an untrusted network via the internet and

implementing a security analysis will be studied. There could be researches into

similar or different cryptographic algorithms as well. Also, further studies will seek to

find the optimal QoS level and optimal payload size for Class-0 IoT device and

compute performance ratings of MQTT broker server and clients.

54

REFERENCES

[1] Weyrich, M., Ebert, C., Reference Architectures for the Internet of Things,

IEEE Software, vol. 33, no. 1, pp. 112-116, 2016.

[2] Haller, S., Karnouskos, S., Schroth, C., The Internet of Things in an Enterprise

Context, in: J. Domingue (ed.), D. Fensel (ed.), P. Traverso (ed.), Future

Internet – FIS 2008, Springer, pp. 14–28, 2009.

[3] King, J., Awad, A.I., A distributed security mechanism for Resource-

Constrained IoT Devices, Inform., vol. 40, no. 1, pp. 133–143, 2016.

[4] Höller, J., Tsiatsis, V., Mulligan, C., Karnouskos, S., Avesand, S., Boyle, D.,

From Machine-to-Machine to the Internet of Things: Introduction to a New

Age of Intelligence. Elsevier, 1st edn. (2014).

[5] Upadhyay, Y., Borole A., Dileepan, D., MQTT based secured home automation

system, 2016 Symp. Colossal Data Anal. Networking, CDAN 2016.

[6] Salunke, P., Nerkar, R., IoT Driven Healthcare System for Remote Monitoring

of Patients, no. June, pp. 3–6, 2017.

[7] Singh, M., Rajan, M.A., Shivraj, V.L., Balamuralidhar, P., Secure MQTT for

Internet of Things (IoT), Proc. - 2015 5th Int. Conf. Commun. Syst. Netw.

Technol. CSNT 2015, pp. 746–751, 2015.

[8] Aziz, B., A formal model and analysis of an IoT protocol, Ad Hoc Networks,

vol. 36, pp. 49–57, 2016.

[9] Biswas, D., Ramamurthy, R., Edward, S.P., Dixit, A., The Internet of Things:

Impact and Applications in the High-Tech Industry, Cognizant 20-20 Insights,

Cognizant, 2015.

[10] Howard, P.N., Sketching out the Internet of Things trendline, Brookings, 2015,

https://www.brookings.edu/blog/techtank/2015/06/09/sketching-out-the-

internet-of-things-trendline., Accessed date: 13.09.2017.

55

[11] Fysarakis, K., Askoxylakis, I., Soultatos, O., Papaefstathiou, I., Manifavas, C.,

Katos, V., Which IoT protocol? Comparing standardized approaches over a

common M2M application, 2016 IEEE Glob. Commun. Conf. GLOBECOM

2016 - Proc., 2016.

[12] Rahman, R.A., Shah B., Security analysis of IoT protocols: A focus in coap,

2016 3rd MEC Int. Conf. Big Data Smart City, ICBDSC 2016, pp. 172–178,

2016.

[13] Palattella, M.R., et al., Standardized protocol stack for the internet of

(important) things, IEEE Commun. Surv. Tutorials, vol. 15, no. 3, pp. 1389–

1406, 2013.

[14] Bassi, A., Horn, G., Internet of Things in 2020, The European Technology

Platform on Smart Systems Integration (eposs), 2008,

http://www.smartsystemsintegration.org/public/documents/publications/Intern

et-of-Things_in_2020_EC-eposs_Workshop_Report_2008_v3.pdf., Access

date:13.09.2017.

[15] Building the Internet of Things, Cisco, 2014,

http://cdn.iotwf.com/resources/72/IoT_Reference_Model_04_June_2014.pdf.

, Access date: 13.09.2017.

[16] Green, J., The Internet of Things Reference Model, Internet of Things World

Forum, pp. 1–12, 2014.

[17] Tuwanut, P., Kraijak, S., A survey on IoT architectures, protocols, applications,

security, privacy, real-world implementation and future trends, 11th Int. Conf.

Wirel. Commun. Netw. Mob. Comput. (wicom 2015), pp. 6, 2015.

[18] Li, S., Da Xu, L., Zhao, S., The internet of things: a survey, Inf. Syst. Front.,

vol. 17, no. 2, pp. 243–259, 2015.

[19] Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M., Internet of Things (IoT):

A vision, architectural elements, and future directions, Futur. Gener. Comput.

Syst., vol. 29, no. 7, pp. 1645–1660, 2013.

[20] Bormann, A.K.C., Ersue, M., Terminology for Constrained Node Networks,

Internet Eng. Task Force (IETF), Informational 2070-1721, pp. 1–17, 2014.

[21] Jain, R., Constrained Application Protocol for Internet of Things vol. 857, pp.

1–12, 2014, https://www.cse.wustl.edu/~jain/cse574-14/ftp/coap.pdf., Access

date: 13.09.2017

56

[22] Taneja, M., Lightweight security protocols for smart metering, 2013 IEEE

Innov. Smart Grid Technol. - Asia, ISGT Asia 2013, pp. 1–5, 2013.

[23] Babovic, Z., Protic, J., Milutinovic, V., Web Performance Evaluation for

Internet of Things Applications, IEEE Access, vol. PP, no. 99, 2016.

[24] Katsikeas, S., Fysarakis, K., Miaoudakis, A., Van Bemten, A., Askoxylakis, I.,

Lightweight & Secure Industrial IoT Communications via the MQ Telemetry

Transport Protocol, 22nd IEEE Symposium on Computers and

Communications (ISCC 2017), Crete, 2017.

[25] Cucinotta, T., Mancina, A., Anastasi, G.F., Lipari, G., Mangeruca, L.,

Checcozzo, R., Rusina, F., A Real-Time Service-Oriented Architecture for

Industrial Automation, IEEE Trans. Ind. Informatics, vol. 5, no. 3, pp. 267–

277, 2009.

[26] Lee, C., Zappaterra, L., Choi, K., Choi, H.A., Securing smart home:

Technologies, security challenges, and security requirements, 2014 IEEE Conf.

Commun. Netw. Secur. CNS 2014, pp. 67–72, 2014.

[27] Abomhara, M., Security and Privacy in the Internet of Things : Current Status

and Open Issues, Priv. Secur. Mob. Syst. (PRISMS), 2014 Int. Conf., pp. 1–8,

2014.

[28] Luzuriaga, J.E., Cano, J.C., Calafate, C., Manzoni, P., Perez, M., Boronat, P.,

Handling mobility in IoT applications using the MQTT protocol, 2015 Internet

Technol. Appl. ITA 2015 - Proc. 6th Int. Conf., pp. 245–250, 2015.

[29] Aziz, B., A formal model and analysis of the MQ telemetry transport protocol,

Proc. - 9th Int. Conf. Availability, Reliab. Secur. ARES 2014, pp. 59–68, 2014.

[30] Masek, P., et al., Implementation of True IoT Vision: Survey on Enabling

Protocols and Hands-On Experience, Int. J. Distrib. Sens. Networks, vol. 2016,

2016.

[31] Thangavel, D., Ma, X., Valera, A., Tan, H.X., Tan, C.K.Y., Performance

evaluation of MQTT and coap via a common middleware,” IEEE ISSNIP 2014

- 2014 IEEE 9th Int. Conf. Intell. Sensors, Sens. Networks Inf. Process. Conf.

Proc., no. April, pp. 21–24, 2014.

57

[32] Durkop, L., Czybik, B., Jasperneite, J., Performance evaluation of M2M

protocols over cellular networks in a lab environment, 2015 18th International

Conference on Intelligence in Next Generation Networks, Paris, 2015, pp. 70-

75.

[33] Mathur, A., Newe, T., Elgenaidi, W., Rao, M., Dooly, G., Toal D., A Secure

End-to-End IoT Solution, Sensors Actuators A Phys., no. 1, pp. 1–29, 2017.

[34] Vučinić, M., Tourancheau, B., Rousseau, F., Duda, A., Damon, L., Guizzetti,

R., OSCAR: Object security architecture for the Internet of Things, Proceeding

of IEEE International Symposium on a World of Wireless, Mobile and

Multimedia Networks 2014, Sydney, NSW, 2014, pp. 1-10.

[35] Behrens, R., Ahmed, A., Internet of Things: An end-to-end security layer, Proc.

2017 20th Conf. Innov. Clouds, Internet Networks, ICIN 2017, pp. 146–149,

2017.

[36] Islam, K., Shen,W., Wang, X., Security and privacy considerations for Wireless

Sensor Networks in smart home environments, Proc. 2012 IEEE 16th Int. Conf.

Comput. Support. Coop. Work Des., pp. 626–633, 2012.

[37] Rescorla, E., Dierksv, T., INC RTFM, The Transport Layer Security (TLS)

Protocol Version 1.3, Internet Engineering Task Force (IETF), Standards Track

RCF5246, March 2008, http://tools.ietf.org/html/draft-ietf-tls-tls13-05, Access

date: 13.09.2017.

[38] Ukil, A., Bandyopadhyay, S., Bhattacharyya, A., Pal, A., Bose, T., Lightweight

security scheme for IoT applications using coap, Int. J. Pervasive Comput.

Commun., vol. 10, no. 4, pp. 372–392, 2014.

[39] Federal Information, Announcing the ADVANCED ENCRYPTION

STANDARD (AES), November, 2001.

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf., Access date:

13.09.2017.

[40] Stallings, W., Cryptography and Network Security: Principles and Practice, 4th

ed. Upper Saddle River, NJ, USA: Prentice Hall Press, 2005.

58

[41] Goyal, T.K., Sahula, V., Lightweight security algorithm for low power IoT

devices, 2016 Int. Conf. Adv. Comput. Commun. Informatics, ICACCI 2016,

pp. 1725–1729, 2016.

[42] Thatmann, D., Zickau, S., Förster, A., Küpper, A., Applying Attribute-Based

Encryption on Publish Subscribe Messaging Patterns for the Internet of

Things, 2015 IEEE International Conference on Data Science and Data

Intensive Systems, Sydney, NSW, 2015, pp. 556-563.

[43] Lee, S., Kım, H., Hong, D.K., Ju, H., Correlation analysis of MQTT loss and

delay according to qos level, Int. Conf. Inf. Netw., pp. 714–717, 2013.

[44] Mektoubi, A., Hassani, H.L., Belhadaoui, H., Rifi, M., Zakari, A., New

approach for securing communication over MQTT protocol A comparaison

between RSA and Elliptic Curve, Proc. - 2016 3rd Int. Conf. Syst. Collab.

Sysco 2016, vol. 0, 2017.

[45] Arduino, https://www.arduino.cc., Access date: 20.08.2017.

[46] IBM AND EUROTECH, MQTT V3.1 Protocol Specification, pp. 1–42, 2010.

[47] Cohn, R.J., Coppen, R.J., Banks, A., Gupta, R., MQTT Version 3.1.1, OASIS

Stand., no. December, pp. 1–81, 2015.

[48] MQTT Essentials Part 2: Publish and Subscribe,

http://www.hivemq.com/blog/mqtt-essentials-part2-publish-subscribe.,

Access date: 13.09.2017.

[49] MQTT Essentials: Client, Broker and Connection Establishment,

http://www.hivemq.com/blog/mqtt-essentials-part-3-client-broker-

connection-establishment., Access date: 13.09.2017.

[50] MQTT topics and subscription, https://mosquitto.org/man/mqtt-7.html.,

Access date: 13.09.2017.

[51] Lesjak, C., et al., Securing smart maintenance services: Hardware-security and

TLS for MQTT, Proceeding - 2015 IEEE Int. Conf. Ind. Informatics, INDIN

2015, pp. 1243–1250, 2015.

[52] Stansberry, J., MQTT and coap: Underlying Protocols for the IoT,

http://www.electronicdesign.com/iot/mqtt-and-coap-underlying-protocols-iot,

Access date: 14.09.2017.

59

[53] Kali Linux, https://www.kali.org., Access date: 13.08.2017.

[54] Collina, M., Corazza, G.E., Vanelli-Coralli A., Introducing the QEST broker:

Scaling the IoT by bridging MQTT and REST, IEEE Int. Symp. Pers. Indoor

Mob. Radio Commun. PIMRC, pp. 36–41, 2012.

[55] Atmoko, R.A., Riantini, R., Hasin, M.K., IoT real time data acquisition using

MQTT protocol, International Conference on Physical Instrumentation And

advanced Materials, 2016.

[56] Mosquitto Open Source MQTT v3.1/v3.1.1 Broke, https://mosquitto.org.,

Access date: 01-07-2017.

[57] Scalagent, Benchmark of MQTT servers, vol. 3, no. January, pp. 1–15, 2015.

[58] Dart, E., Johnston, B., Lake, A., Pouyoul, E., Rotman, L., Tierney, B., Using

tcpdump, tcptrace, & xplot to Debug Network Problems, 2013.

[59] Wireshark, https://www.wireshark.org., Access date: 01.07.2017.

[60] Ben-Eid N.A., Ethical Network Monitoring Using Wireshark and Colasoft

Capsa as Sniffing Tools, Int. J. Adv. Res. Comput. Commun. Eng., vol. 4, no.

3, pp. 471–478, 2015.

[61] Govindan, K., Azad, A.P., End-to-end service assurance in IoT MQTT-SN,

2015 12th Annu. IEEE Consum. Commun. Netw. Conf. CCNC 2015, pp. 290–

296, 2015.

60

RESUME

Nanabayin was born on 5th April 1990 in Ghana. He completed his primary, middle

school, high school and undergraduate education in Accra. In 2008, he graduated from

the General Science class of St. Thomas Aquinas senior high school. From 2009 to

2013, he successfully undertook undergraduate level course in BSc. Computer Science

and Mathematics and graduated with first class honours. Afterwards, he started work

with Blupay Systems Ghana as a software developer. In 2014, he won a Turkish

Government scholarship and undertook a Turkish language preparation course at

Sakarya University (TÖMER) where he completed successfully in mid-2015.

Afterwards, he started MSc. Computer and Information Engineering in Sakarya

University, Turkey. During his time in 2016, he had the opportunity to do a network

security and IoT communication research internship at Tomas Bata University in Zlin,

Czech Republic for a period of three (3) months. He successfully completed his MSc

program in November 2017.

