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ABSTRACT 
 

End-to-end security has been an emerging need for mobile devices with the 

widespread use of personal digital assistants and mobile phones. Transport Layer 

Security Protocol (TLS) is an end-to-end security protocol that is commonly used in 

Internet, together with its predecessor, SSL protocol. By using TLS protocol in mobile 

world, the advantage of the proven security model of this protocol can be taken.  

J2ME™ (Java 2 Micro Edition) has been the de facto application platform used in 

mobile devices. This thesis aims to provide an end-to-end security protocol 

implementation based on TLS 1.0 specification and that can run on J2ME™ MIDP 

(Mobile Information Device Profile) environment. Because of the resource intensive 

public-key operations used in TLS, this protocol needs high resources and has low 

performance. Another motivation for the thesis is to adapt the protocol for mobile 

environment and to show that it is possible to use the protocol implementation in both 

client and server modes. An alternative serialization mechanism is used instead of the 

standard Java object serialization that is lacking in MIDP. In this architecture, XML is 

used to transmit object data.  

The mobile end-to-end security protocol has the main design issues of 

maintainability and extensibility. Cryptographic operations are performed with a free 

library, Bouncy Castle Cryptography Package. The object-oriented architecture of the 

protocol implementation makes the replacement of this library with another cryptography 

package easier. 

Mobile end-to-end security protocol is tested with a mobile hospital reservation 

system application. Test cases are prepared to measure the performance of the protocol 

implementation with different cipher suites and platforms. Measured values of all 

handshake operation and defined time spans are given in tables and compared with 

graphs. 
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ÖZ 
 

Kişisel sayısal asistanlar ve mobil telefonların yaygın olarak kullanılmasıyla 

birlikte uçtan uca güvenlik, mobil cihazlar için acil bir ihtiyaç haline gelmiştir. Taşıma 

Katmanı Protokolü (TLS), atası olan SSL protokolü ile birlikte, Internet’te yaygın olarak 

kullanılan bir uçtan uca güvenlik protokolüdür. TLS protokolü mobil dünyada 

kullanılarak, bu protokolün kanıtlanmış güvenlik modeli avantajından yararlanılabilir. 

J2ME™ (Java 2 Micro Edition) mobil cihazlar için defakto uygulama platformu 

olmuştur. Bu tez, TLS 1.0 spesifikasyonuna dayalı ve J2ME MIDP (Mobil Bilgi Cihaz 

Profili) ortamında çalışabilecek, uçtan uca güvenlik protokolü gerçekleştirimi sağlamayı 

hedefler. TLS içinde kullanılan kaynak yoğun açık anahtar işlemleri nedeniyle, bu 

protokol yüksek kaynaklara ihtiyaç duyar ve düşük bir performansa sahiptir. Tez için 

diğer bir motivasyon da, protokol gerçekleştiriminin istemci ve sunucu modda 

kullanımının mümkün olduğunu göstermektir. MIDP ortamında eksik olan standart Java 

nesne dizi yayınlaması yerine, alternatif bir dizi yayınlama mekanizması kullanılmıştır. 

Mobil uçtan uca güvenlik protokolünün sürdürülebilirlik ve genişletilebilirlik  gibi 

ana tasarım hususları bulunmaktadır. Kriptografi işlemleri ücretsiz bir dışsal kütüphane 

olan Bouncy Castle Kriptografi Paketi tarafından gerçekleştirilmektedir. Protokol 

gerçekleştiriminin nesneye yönelik mimarisi, bu kütüphanenin başka kriptografi 

paketleriyle değiştirilmesini kolaylaştırır. 

Mobil uçtan uca güvenlik protokolü, mobil hastane rezervasyon sistemi 

uygulaması ile test edilmiştir. Test vakaları, protokol gerçekleştirimin farklı şifre 

takımları ve platformları ile performansını ölçmek için hazırlanmıştır. El sıkışma 

operasyonu ve belirlenen zaman aralıklarının ölçülen değerleri tablolarla verilmiş ve 

grafiklerle karşılaştırılmıştır. 
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CHAPTER 1 
 

INTRODUCTION 

Computers are regarded as one of the biggest revolutions in the previous 

century. These high technology devices made people’s lives easier and helped the 

development of science, technology and industry. Since their first widespread use in 

1950s, computers had a long evolution. For many years, computers were big and fixed 

at a place. Microcomputers after 1980s decreased the sizes, but did not change the fixed 

style use of computers. Another big revolution in computer history has been the use of 

computers in small, resource-constraint, mobile devices. 

Two common examples of mobile devices are mobile phones and personal 

digital assistants (PDA). PDAs are small, hand-held computers that can be used online 

(connected to a network) or offline (standalone). Two major PDA manufacturers are 

PALM and Pocket PC. The devices of these manufacturers have their own hardware, 

operation system and application programs. Mobile phone technology is newer than 

PDA technology. The first mobile phones were dedicated to talk and message and had a 

few applications of a standard computer. The newer models used in nowadays have 

their own operating systems and various installed applications. The smart phones have a 

great range of applications from word processing to multimedia. 

The first kind of applications used in both PDAs and mobile phones were for 

personal use and had rarely needed to network connections. In time, trend in mobile 

applications have been the enterprise-style applications that needed high-capacity, 

network-connected devices. Financial applications like banking and stock trading are 

common examples of these kinds of applications. More and more network connected 

applications caused one concept to be popular in mobile community: security. 

Mobile security deals mainly with two issues: 

• Security of the physical device and its contents 

• Security of the data in network communication 

Security of the physical device and its contents is provided with many 

techniques like locking device, encrypting device content, etc. The more critical 

problem is providing security in data communication. This master thesis aims providing 
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a security solution for mobile data communication at application level. The target 

platform for the solution is J2ME™ MIDP platform, which has been the de facto 

application environment since a few years. 

This introduction chapter covers the motivation behind a mobile data 

communication security solution, the tasks and the description of the project and the 

scope and structure of this master thesis report. 

1.1. Motivation 

The communication of data in mobile devices is provided by the mobile 

networks. Mobile networks are open to many kinds of attacks. The open data 

communication in these networks may cause attacks against the secrecy, integrity and 

authenticity of data. Many vendors have proposed solutions against these security 

vulnerabilities. Most of these solutions are vendor-specific proprietary products or 

libraries. 

Many mobile networks have proxy-based architecture. In this architecture, 

security between the mobile device and the proxy server is provided with a solution and 

the security between the proxy server and the destination server is provided with 

another solution. WTLS, announced as the security solution of WAP protocol is such a 

protocol. There are two problems with proxy-based solutions. First, it decreases 

performance. As the data is decoded and reencoded at proxy server, it may cause 

latency. Another big problem is security attacks against the proxy server. These attacks 

may threat the data security between the period it is decoded and encoded.  

The alternative of proxy based security solutions is end-to-end security. End-to-

end security refers to the securely encoding of data at the source host and decoding at 

the destination host. The data will not travel unencoded at any part of the 

communication. TLS (Transport Layer Security Protocol) and its predecessor SSL 

(Secure Sockets Layer) protocols are end-to-end security solutions that are commonly 

used in wired world. There are a number of reasons to use these protocols in the mobile 

world: 

• TLS and SSL protocols have been used for many years, so the security of them 

are tested by the community and accepted as secure enough to be used by 

financial data communication. 

• TLS and SSL protocols are common in wired world and may be accepted as the 
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security protocol of Internet. Using these in mobile applications will make the 

integration between mobile applications and Internet easier.  

• TLS and SSL have open specifications and may implementations. It may be 

relatively easy to implement these for specific needs. 

J2ME™ is the small, resource constraint device platform of Java™ technologies. 

MIDP (Mobile Information Device Profile) is a profile developed mainly for mobile 

phones and PDAs under J2ME™. MIDP implementers have considered the reasons to 

use TLS in data communication and have provided an API to use TLS in MIDP 

applications. MIDP end-to-end security API called KSSL is a lightweight API, but has a 

number of drawbacks: 

• KSSL is only a client-side implementation of TLS (and SSL) 

• KSSL supports only a few cipher suites  

• KSSL has no support for new algorithms like Elliptic Curve Cryptography 

• KSSL is considered to have a poor performance related to other SSL 

implementation 

The need for an end-to-end security API for MIDP and the drawbacks of KSSL 

library have motivated for a new end-to-end security library that would be fully 

compliant with MIDP 1.0 and 2.0. The security solution was proposed to resemble TLS 

and make some changes where necessary. However, the base of the implemented 

protocol would be TLS 1.0 specification [2]. The protocol was renamed as mobile end-

to-end security protocol to differentiate it from the original TLS protocol. 

The other source of motivation for the thesis has been the secure object 

transmission between the mobile device and the destination server. The lack of object 

serialization and RMI in MIDP API prevents objects to be transmitted between the 

peers. A general solution for object transmission was proposed to be found. The 

integration of this solution with the end-to-end security solution would result to a secure 

object transmission mechanism. 

1.2. Software Development 

The end-to-end security solution for mobile devices is implemented in order to 

show that it is possible and efficient. The steps of the software development phase, 

which may be considered as a project, are as follows: 

• Literature survey about security, mobile devices and J2ME™ technologies 
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• Analysis of the TLS protocol (by reading TLS 1.0 specification [2] and other 

TLS related documents) 

• Design of the new protocol to be developed (defining additions and subtractions 

from the original TLS protocol) 

• Design of the object transmission library 

• Implementation of the object transmission library 

• Design of the protocol implementation (object-oriented design) 

• Implementation of the mobile end-to-end security protocol 

• Implementation of a sample application using the implemented protocol for data 

communication 

• Test of the mobile end-to-end security protocol 

• Documentation 

The project was proposed to be designed in Rational Rose™ design tool in an 

object-oriented architecture. The implementation language was chosen as Java™ that 

would be limited to MIDP 1.0 API. The final product was planned to be compliant to 

both J2ME™ and J2SE™ platforms.  

After the literature survey and analysis of TLS protocol phases, the major 

attributes of the proposed protocol implementation was defined as follows:  

• The implementation will cover both the client and server versions of the TLS 

protocol. 

• The implementation will support RSA, DHE and ECC cipher suites. 

• The implementation will support UDP network communication as an alternative 

to standard TCP communication. 

• The implementation will not implement optional TLS specifications like client 

authentication, session resumption and compression. 

• The implementation will be designed as a library and will be able to be used by 

higher-level applications. The underlying communication method, cipher suites 

used and the protocol details will be transparent to these applications.  

• The implementation will run on J2SE™ and J2ME™ MIDP platforms (including 

all mobile phones and PDAs supporting these platforms) 

• The implementation will be used with the developing object transmission library 

As a parallel activity, the object transmission library was designed and 
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implemented. The object transmission library was designed to use XML in transmitting 

bean-style data objects. It included both the serialization of objects into XML and 

deserialization of XML into objects.  

The mobile protocol library was designed and implemented in an object-oriented 

architecture. The pattern used in design and development resembles the famous MVC 

(Model-View-Controller) pattern, except it does not have a view part. After the 

completion of the protocol implementation, a sample application was needed to test the 

protocol implementation. The hospital reservation system, developed by B.Kayayurt, K. 

Şimşek, E.Sülün [42] was used for this target. A new plug-in was designed, 

implemented and integrated into the old system to support mobile clients as well as 

existing web clients. The developed protocol was used in data transmission between the 

mobile device of the client J2ME™ application and the server of the running J2EE™ 

application. 

After all, the mobile protocol was tested in both emulator and real device 

environments. Different test cases were prepared, and the results were measured and 

evaluated. 

1.3. Scope And Structure 

In chapter 1, a brief introduction is made about the motivation behind the master 

thesis, the project steps performed and the structure of the thesis report. 

In chapter 2, the details of the TLS protocol are explained and cryptographic 

used in TLS are introduced. Chapter 2 also gives an introduction to J2ME™ platform, 

security in MIDP and cryptography toolkits available in J2ME™ MIDP. The last part of 

this chapter gives brief information about XML and using XML in J2ME™ and 

discusses the issue of object to XML serialization. 

In chapter 3, the architecture of the target platform is mentioned. This chapter 

explains J2ME™ device architecture, mobile device operating systems supporting 

J2ME™, mobile device JVM layer and the mobile configurations and profiles. Mobile 

application architecture and mobile network architecture issues are also discussed and 

explained in this chapter. 

In chapter 4, the architectures of the developed mobile security protocol and 

object transmission library are explored. Design issues behind the architectures are 

explained and object models designed are given in figures. The chapter gives core 
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information about the developed protocol. 

In chapter 5, the implementation of the protocol is explained and some code 

examples are given. This chapter also mentions about the mobile hospital reservation 

system, developed to test the security protocol implementation in a real life application. 

Chapter 6 covers the test results obtained with the protocol implementation. Test 

platform configuration, test cases prepared, test results measured are explained where 

the results are given in tables and graphics. The chapter also includes the evaluation of 

the test results. 

In chapter 7, the conclusion of the master thesis is given, where the results of the 

thesis are evaluated and expect ratio of the results are discussed. The thesis is completed 

by discussing the further work to be done at the proceeding projects. 
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CHAPTER 2 
 

TLS AND MOBILE SECURITY 

TLS (Transport Layer Security Protocol) is one of the most common protocols 

used to provide secure communication in Internet. J2ME™ is the de facto standard used 

in mobile phones nowadays. This chapter explains the details of TLS protocol, the 

cryptographic concepts used in TLS and its internal working principles. The chapter 

also introduces J2ME™ platform, security in mobile devices and XML serialization 

concepts. 

2.1. TLS Protocol 

Transport Layer Security (TLS) Protocol is a client-server security protocol 

specified by IETF1. The primary goal of the TLS Protocol is to provide privacy and data 

integrity between two communicating applications. 

TLS Protocol is the minor update of the Secure Sockets Layer (SSL) 3.0 

protocol defined by Netscape Incorparation [1]. Current specification of the protocol 

was published as RFC22462 document on January, 1999. The version of the TLS 

Protocol that is discussed in this thesis is TLS 1.0, defined in [2]. 

Some of the goals that the TLS protocol tries to satisfy are the following: 

 Privacy, the data sent over the channel should be kept secret for an 

eavesdropper. 

 Authentication, the applications should know that they are talking to the 

intended recipient and not an imposer. 

 Transparency, it could be used like a normal TCP connection after the setup is 

done. 

 Integrity, the integrity of the channel should be maintained. It should be 

infeasible to alter or counterfeit messages on the channel. 

TLS Protocol is composed of two layers: the TLS Record Protocol and the TLS 

Handshake Protocol. The record protocol provides a private and reliable connection.  
                                                 
1 Internet Engineering Task Force, a large open community of network designers, operators, vendors and 
researchers concerned with the evolution of the Internet architecture and the smooth operation of the 
Internet. 
2 Requests For Comments, set of technical and organizational notes about the Internet (originally the 
ARPANET), beginning in 1969.  
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Thus, the record protocol provides the confidentiality and integrity security services. 

The handshake protocol provides peer identification and key exchange. Thus, the 

handshake protocol provides the authentication security service. 

Originally, TLS Protocol operates on transport layer and can be used with any 

reliable transport protocol. It is typically used with TCP on Internet [3]. However, TLS 

derivative protocols like WTLS (Wireless Tranport Layer Security) Protocol can 

operate on unreliable tranport protocols like UDP3 [4]. 

TLS is application protocol independent. Higher level protocols can layer on top 

of TLS Protocol independently, e.g. HTTP. However, TLS specification [2] does not 

define how these protocols use TLS to provide connection security. 

2.1.1. Cryptographical Concepts Used In TLS 

Cryptography can be defined as study of techniques and applications that depend 

on the existence of difficult problems [5]. The oldest methods used in cryptography 

included encryption and decryption. Encryption is the transformation of data into a form 

that is impossible to read without a secret knowledge. Decryption is the reverse of 

encryption and is the transformation of encrypted data back to meaningful form. Except 

for encryption and decryption, modern cryptography has another aspect: authentication. 

Today, digital signatures are commonly used for authentication purposes. 

One of the greatest strengths of TLS is that it is not dependent on a specific 

algorithm or standard. TLS Protocol implementations may use many types of 

cryptographic algorithms and standards. By the help of cipher suites defined, users of 

TLS protocol may use either DES4 or IDEA standards as private key algorithm and 

either SHA (Secure Hash Algorithm) or MD55 standards as hash algorithm. The 

extensibility is not limited to existing standards; new coming standards may also be 

added to the protocol implementations as new cipher suites. 

In TLS, the Record Protocol uses private-key cryptography, message 

authentication code (MAC) and hash functions and the Handshake Protocol uses public 

key cryptography and digital certificates.  

                                                 
3 User Datagram Protocol, a transaction-oriented communication protocol that does not guarantee 
connection reliability. 
4 Data Encryption Standard, a private-key cryptography standard specified as Federal Information 
Processing Standard (FIPS) 46-3, defined in [6]   
5 Message Digest Algorithm, a hash algorithm developed by R.L. Rivest and published as RFC1321 [7] 
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2.1.1.1. Private Key Cryptography 

Private key cryptography, also referred as symmetric cryptography, is the more 

traditional form of cryptography, in which a single key can be used to encrypt and 

decrypt a message. The main problem with private key cryptosystems is getting the 

sender and receiver to agree on the private key without anyone else finding out. This 

requires a method by which the two parties can communicate without fear of 

eavesdropping. However, the advantage of private key cryptography is that it is 

generally faster than public key cryptography.  

The most common techniques in private key cryptography are block ciphers and 

stream ciphers. A block cipher is a type of symmetric-key encryption algorithm that 

transforms a fixed-length block of plaintext (unencrypted text) data into a block of 

cipher text (encrypted text) data of the same length. A stream cipher is a type of 

symmetric encryption algorithm. While block ciphers operate on large blocks of data, 

stream ciphers typically operate on smaller units of plaintext, usually bits. A stream 

cipher generates what is called a keystream (a sequence of bits used as a key). 

Encryption is accomplished by combining the keystream with the plaintext, usually with 

the bit-wise XOR operation. 

Most common used private key cipher algorithms are DES, 3DES, AES, RC2 

and RC4. 

DES, an acronym for the Data Encryption Standard, is the name of the Federal 

Information Processing Standard (FIPS) 46-3 [6], which describes the data encryption 

algorithm (DEA).  The DEA is a symmetric cryptosystem having a 64-bit block size and 

uses a 56-bit key during execution (8 parity bits are stripped off from the full 64-bit 

key). 

The ANSI X9.52 standard [8] defines triple-DES encryption with keys k1; k2; 

k3 as 

C = Ek3 (Dk2 (Ek1 (M))); 

where Ek and Dk denote DES encryption and DES decryption, respectively, with the 

key k.  

The AES is the Advanced Encryption Standard. The AES was issued as a FIPS 

standard and will replace DES.  

RC2 is a variable key-size block cipher designed by Ronald Rivest for RSA 

Data Security Incorporation. It has a block size of 64 bits and is about two to three times 
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faster than DES in software. RC4 is a stream cipher designed by Rivest for RSA Data 

Security Incorporation. It is a variable key-size stream cipher with byte-oriented 

operations. 

2.1.1.2. Public Key Cryptography 

In a public key cryptosystem each participant have a key pair that consists of a 

public key and a private key. The public key of a participant is via some mechanism 

available to anyone. It can for example be published in something corresponding to a 

phone book. Messages encrypted with a specific public key can only be decrypted with 

the corresponding private key. Private key is always linked mathematically to the public 

key. 

Traditionally the two participants in a communication are called Bob and Alice. 

Alice's secret and public key is denoted SA and PA, Bob's corresponding keys are called 

SB and SA. 

In a cryptosystem like RSA, there are for the public key and the secret key two 

functions called SA() and PA() which are easily computable given their corresponding 

keys SA and SB. For a message m in a given domain the following property hold: 

m = PA(SA(m)) 

If Bob wants to send a message to Alice he encrypts his message with Alice's 

public key. Only Alice can decrypt that message since she is the only one that has 

access to her private key, and her private key is the only key that can be used to decrypt 

the message. 

The functions S and P must be easily computable given the secret and public 

key. They must also have the property that it is infeasible to calculate the secret key 

given m and the values S(m) and/or P(m) to form a good public key cryptosystem. 

Most common used public key cryptosystems are RSA, ECC and DSA. 

2.1.1.2.1.   RSA 

The RSA cryptosystem is a public-key cryptosystem that offers both encryption 

and digital signatures (authentication). Ronald Rivest, Adi Shamir, and Leonard 

Adleman developed the RSA system in 1977, in their book [10]. 

In the RSA cryptosystem the participants creates their public and private keys 

with the following procedure [11]: 
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1. Select randomly two large prime numbers p and q. 

2. Compute n by the equation n = pq. 

3. Select a small odd integer e that is relatively prime to (p - 1)(q - 1). 

4. Compute d as the multiplicative inverse of e, modulo (p - 1)(q - 1): 

5. Publish the pair P = (e; n) as the RSA public key. 

6. Keep the private pair S = (d; n) as the RSA secret key. 

The transformation of a message M associated with the public key pair P = (e;n) 

is 

P(M) = Me(mod n). 

The transformation of a cipher text C associated with a private key pair S = (d;n) 

is 

S(C) = Cd(mod n). 

To see how encryption and digital signatures work with RSA, we will again use 

Alice and Bob. Suppose Alice wants to send a message m to Bob. Alice creates the 

cipher text c by exponentiating: 

c = me mod n, 

where e and n are Bob's public key. She sends c to Bob. To decrypt, Bob also 

exponentiates: 

m = cd mod n. 

The relationship between e and d ensures that Bob correctly recovers m. Since 

only Bob knows d, only Bob can decrypt this message. 

Suppose Alice wants to send a message m to Bob in such a way that Bob is 

assured the message is both authentic, has not been tampered with, and from Alice. 

Alice creates a digital signature s by exponentiating: 

s = md mod n, 

where d and n are Alice's private key. She sends m and s to Bob. To verify the 

signature, Bob exponentiates and checks that the message m is recovered:  

m = se mod n, 

where e and n are Alice's public key. 

2.1.1.2.2. ECC 

Elliptic curve cryptosystems were first proposed independently by Victor Miller 

[12] and Neal Koblitz [13] in the mid-1980s. At a high level, they are analogs of 
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existing public-key cryptosystems in which modular arithmetic is replaced by 

operations defined over elliptic curves.  

Elliptic curve arithmetic is based on an operation called scalar point 

multiplication, which computes Q = kP (a point P multiplied k times resulting in another 

point Q on the curve). The security of ECC relies on the hardness of solving the Elliptic 

Curve Discrete Logarithm Problem (ECDLP), which states that given P and Q = kP, it 

is hard to find k.  

An important elliptic curve parameter is the base point, G, which is fixed for 

each curve. In the Elliptic Curve Cryptosystem, the large random integer k is kept 

private and forms the secret key, while the result Q of multiplying the private key k with 

the curve's base point G serves as the corresponding public key. 

Elliptic Curve Diffie Hellman (ECDH) [14] and Elliptic Curve Digital Signature 

Algorithm (ECDSA) [15] are the Elliptic Curve counterparts of the Diffie-Hellman key 

exchange and Digital Signature Algorithm, respectively. According to [14], in ECDH 

key agreement, two communicating parties A and B agree to use the same curve 

parameters. They generate their private keys, kA and kB and corresponding public keys 

QA = kA:G and QB = kB:G. The parties exchange their public keys. Finally each 

multiplies its private key and the other's public key to arrive at a common shared secret 

kA:QB = kB:QA = kA:KB:G. The flow of ECDSA parallels DSA. 

As the methods for computing general elliptic curve discrete logarithms are 

much less efficient than those for factoring or computing conventional discrete 

logarithms, elliptic curve cryptosystems are especially useful in applications for which 

memory, bandwidth, or computational power is limited. This results smaller key sizes of 

same security level. This is shown in Table 2.1 based on [17]. ECC is an attractive 

alternative public key cryptosystem for resource-constraint wireless devices. 

Table 2.1 Comparable Key Sizes (in bits) [17] 

Symmetric ECC DH/DSA/RSA 
80 163 1024 
128 283 3072 
192 409 7680 
256 571 15360 

IETF published an Internet-Draft named “ECC Cipher Suites for TLS” [16] 

which describes new key exchange algorithms based on Elliptic Curve Cryptography 

(ECC) for the TLS protocol. In particular, it specifies the use of Elliptic Curve Diffie-
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Hellman (ECDH) key agreement in a TLS handshake and the use of Elliptic Curve 

Digital Signature Algorithm (ECDSA) as a new authentication mechanism.  

2.1.1.3. Hash Function 

A hash function H is a transformation that takes an input m and returns a fixed-

size string, which is called the hash value h (that is, h = H(m)). The main role of a 

cryptographic hash function is in the provision of message integrity checks and digital 

signatures. 

The basic requirements for a cryptographic hash function are as follows. 

 The input can be of any length. 

 The output has a fixed length. 

 H(x) is relatively easy to compute for any given x. 

 H(x) is one-way. 

 H(x) is collision-free. 

The hash value represents concisely the longer message or document from 

which it was computed; this value is called the message digest. One can think of a 

message digest as a digital fingerprint of the larger document. Examples of well-known 

hash functions are MD5 and SHA. 

MD5 was developed by Rivest in 1991. It takes a message of arbitrary length 

and produces a 128-bit message digest. Description and source code of the algorithm 

can be found in [7]. 

The Secure Hash Algorithm (SHA), the algorithm specified in the Secure Hash 

Standard (SHS, FIPS 180), was developed by NIST [18]. The algorithm takes a 

message of less than 264 bits in length and produces a 160-bit message digest. The 

algorithm is slightly slower than MD5, but the larger message digest makes it more 

secure against brute-force collision and inversion attacks. 

2.1.1.4. Message Authentication Code 

A message authentication code (MAC) is an authentication tag (also called a 

check sum) derived by applying an authentication scheme, together with a secret key, to 

a message. Unlike digital signatures, MACs are computed and verified with the same 

key, so that only the intended recipient can verify them. 

There are four types of MACs: 



 
 14

 
        

 
 

 Unconditionally secure, in which the cipher text of the message authenticates 

itself, as nobody else has access to the one-time pad. 

 Hash function-based MACs (often called HMACs), in which a key or keys are 

used in conjunction with a hash function stream cipher-based. 

 Stream cipher based, in which secure stream cipher is used to split a message 

into two sub-streams and each sub-stream is fed into a LFSR. 

 Block cipher-based, in which message blocks are encrypted using block cipher 

and final block in the cipher text is used as the checksum.  

TLS uses HMAC in the handshake with two different algorithms: MD5 and 

SHA-1, denoting these as HMAC_MD5(secret, data) and HMAC_SHA(secret, data) 

[2]. 

2.1.1.5. Digital Signature 

A digital signature is a cryptographic means through which many of these may 

be verified. The digital signature of a document is a piece of information based on both 

the document and the signer's private key. It is typically created through the use of a 

hash function and a private signing function (encrypting with the signer's private key), 

but there are other methods. 

When public-key cryptography is used to calculate a digital signature, the sender 

encrypts the digital fingerprint of the document with his or her own private key. 

Anyone with access to the public key of the signer may verify the signature. 

DSA (Digital Signature Algorithm) is the most common digital signature used. 

DSA was published by NIST6 in the Digital Signature Standard (DSS), which is a part 

of the U.S. government's Capstone project. DSA is based on the discrete logarithm 

problem. While the RSA system can be used for both encryption and digital signatures, 

the DSA can only be used to provide digital signatures. For a detailed description of 

DSA, see [19].  

In DSA, signature generation is faster than signature verification, whereas with 

the RSA algorithm, signature verification is very much faster than signature generation 

(if the public and private exponents, respectively, are chosen for this property, which is 

the usual case). DSA is, at present, considered to be secure with 1024-bit keys. 

                                                 
6 The National Institute of Standards and Technology, a US government agency responsible for defining 
standards. 



 
 15

 
        

 
 

2.1.1.6. Key Agreement Protocol 

A key agreement protocol, also called a key exchange protocol, is a series of 

steps used when two or more parties need to agree upon a key to use for a secret-key 

cryptosystem. These protocols allow people to share keys freely and securely over any 

insecure medium, without the need for a previously-established shared secret. 

In many cases, public-key cryptography is used in a key agreement protocol.  

One example of such a protocol is called the Diffie-Hellman key agreement.  

The Diffie-Hellman key agreement protocol (also called exponential key 

agreement) was developed by Diffie and Hellman in 1976 and published in the paper 

“New Directions in Cryptography'' [9]. The protocol allows two users to exchange a 

secret key over an insecure medium without any prior secrets. 

The protocol has two system parameters p and g. They are both public and may 

be used by all the users in a system. Parameter p is a prime number and parameter g 

(usually called a generator) is an integer less than p, with the following property: for 

every number n between 1 and p_1 inclusive, there is a power k of g such that 

n = g^k mod p. 

The protocol depends on the discrete logarithm problem for its security. It 

assumes that it is computationally infeasible to calculate the shared secret key  

k = g^ab mod p 

given the two public values g^a mod p and g^b mod p when the prime p is sufficiently 

large. 

2.1.1.7. Digital Certificates 

A public-key certificate is a digitally signed statement from one entity, saying 

that the public key (and some other information) of another entity has some specific 

value. Basically, public key cryptography requires access to users' public keys. In a 

large-scale networked environment it is impossible to guarantee that prior relationships 

between communicating entities have been established or that a trusted repository exists 

with all used public keys. Certificates were invented as a solution to this public key 

distribution problem. 

The data in a certificate is encoded using two related standards called 

ASN.1/DER. Abstract Syntax All Notation 1 describes data. The Definite Encoding 
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Rules describe a single way to store and transfer that data. 

The most commonly used digital certificates are X.509 certificates. The X.509 

standard defines what information can go into a certificate, and describes how to write it 

down (the data format). X.509 certificates have 3 versions. 

2.1.2. TLS Protocol Details 

TLS is a protocol that consists of several layers of protocols. At the bottom of 

these layers, there is the TLS Record Protocol. The Record Protocol is responsible for 

taking messages to be transmitted, fragmenting into blocks, optionally compressing, 

applying MAC to protect data integrity, encrypting the block and transmitting the result 

to higher level clients. Received data is then decrypted; applied MAC is verified to 

protect data integrity; optionally decompressed; reassembled and then delivered to 

higher level clients by the Record Protocol. TLS Record Protocol blocks are transported 

over a reliable transport protocol like TCP. 

There are four clients of record protocol: TLS Handshake Protocol, TLS Alert 

Protocol, TLS Change Cipher Spec Protocol and application data. TLS 1.0 

Specification, defined in [2], allows new record protocol clients to be supported by the 

record protocol. 

TLS Handshake Protocol is used to allow peers to authenticate each other and to 

exchange cryptographic parameters that are used in TLS Protocol. TLS Handshake is 

performed in the beginning of a session before the application data is transmitted or 

received. The Change Cipher Spec Protocol is used to start to use new keys and 

encryption methods that the Handshake Protocol has established. TLS Alert Protocol is 

used to send warning and fatal level errors that could occur in TLS session. After the 

handshake is performed, application data is taken by Record Layer and sent securely to 

the other peer. HTTP is a typical application data that is used on web. Figure 2.1 shows 

the layered structure of TLS Protocol. 
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Figure 2.1 The Layered Structure Of TLS Protocol 

2.1.2.1. TLS Record Protocol 

The TLS Record Protocol is the lowest layer in the TLS protocol. It takes a 

sequence of data from a higher-level protocol, fragments it to fragments of maximum 

2^14 bytes. Then it calculates a MAC, performs padding and then encrypts it with a 

block cipher or stream cipher. The padding may optionally be of a random length, to 

make certain traffic analysis attacks more difficult to perform. 

The record layer data called TLSPlaintext in [2] is composed of a record header 

and encoded data. Record header includes one byte indicating content type, a two bytes 

version number, and a two bytes length field. Content types specified in the protocol are 

application data, change cipher spec, alert and handshake. Figure 2.2 shows the 

structure of a TLS record. 

 
 

 

 
 

 

Figure 2.2 Structure Of A TLS Record 
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identifying label and produces an output of arbitrary length. 

The PRF is defined as the result of mixing the two pseudorandom streams by 

exclusive-or'ing them together. 

       PRF(secret, label, seed) = P_MD5(S1, label + seed) XOR 

    P_SHA-1(S2, label + seed); 

We define a data expansion function, P_hash(secret, data) which uses a single 

hash function to expand a secret and seed into an arbitrary quantity of output: 

      P_hash(secret, seed) = HMAC_hash(secret, A(1) + seed) + 

                                                     HMAC_hash(secret, A(2) + seed) + 

                                                        HMAC_hash(secret, A(3) + seed) + ... 

where + indicates concatenation. A() is defined as: 

      A(0) = seed 

      A(i) = HMAC_hash(secret, A(i-1)) 

P_hash can be iterated as many times as is necessary to produce the required 

quantity of data. S1 is the first half of the secret and S2 is the second half. 

TLS 1.0 Specification [2] calculates cryptographic keys according to the 

following formula: 

     key_block = PRF(SecurityParameters.master_secret, 

                                  "key expansion", 

                                  SecurityParameters.server_random + 

                                  SecurityParameters.client_random); 

Then, the key_block is partitioned as follows: 

             client_write_MAC_secret[SecurityParameters.hash_size] 

     server_write_MAC_secret[SecurityParameters.hash_size] 

             client_write_key[SecurityParameters.key_material_length] 

                 server_write_key[SecurityParameters.key_material_length] 

                 client_write_IV[SecurityParameters.IV_size] 

                 server_write_IV[SecurityParameters.IV_size] 

The client_write_IV and server_write_IV are only generated for non-export 

block ciphers. For exportable block ciphers, the initialization vectors are generated later. 

2.1.2.1.2. Encoding And Decoding 

TLS Record Layer encodes data fragmented into TLS record blocks before 
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transmitting and decodes the encoded data after receiving. The basic operations applied 

in encoding are compression, applying the MAC and encryption; the decoding 

operations are the reverse of encoding operations. 

Compression is an optional operation defined in TLS 1.0 specification [2]. All 

records are compressed using the compression algorithm defined in the current session 

state. If compression is used, received record blocks are decompressed using the same 

algorithm. 

After compression (if applied), a MAC (see Section 2.1.1.4, “Message 

Authentication Code”) is applied to the  record data to protect the integrity. The MAC 

of the record also includes a sequence number so that missing, extra or repeated 

messages are detectable. According to [2], the MAC is generated as: 

       HMAC_hash(MAC_write_secret, seq_num + TLSCompressed.type + 

                              TLSCompressed.version + TLSCompressed.length + 

                              TLSCompressed.fragment)); 

where "+" denotes concatenation. Seq_num is the 64-bit sequence number incremented 

for each record sent. TLSCompressed is the compressed form of TLS data (if applied). 

Hash is the hashing algorithm specified by SecurityParameters.mac_algorithm. The 

MAC computed is appended to the end of the record data. When the record is received, 

the same MAC calculation is performed and compared with the appended MAC to 

verify integrity. 

Encryption is performed after compression and MAC calculation. Encryption is 

done with symmetric algorithms, either block or stream cipher (see Section 2.1.1.1, 

“Private Key Cryptography”). The stream cipher encrypts the entire block, including the 

MAC. In block ciphers, padding is added to force the length of the plaintext to be an 

integral multiple of the block cipher's block length. Decryption is the reverse of 

encryption and uses the same secret key. 

Figure 2.3 illustrates the operations performed during record encoding and 

decoding. 
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      Figure 2.3 Encoding And Decoding Of Data In Record Layer 
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The goal of the handshake protocol is to set up a session and agree upon cryptographic 

parameters. It is also used to exchange certificates, which authenticate the peers for each 

other. Public key encryption techniques are used to establish a shared secret between the 

peers that is used for cryptographic keys and MAC secrets (see Section 2.1.2.1.1, “Key 

Generation And Pseudo-Random Function”). When the handshake is finished and the 

normal communication can start, the state of the handshake is said to be in its finished 

state. 

TLS Handshake Protocol is composed of handshake messages. TLS 1.0 

specification [2] defines two kinds of handshakes: full handshake and abbreviated 

handshake. 

2.1.2.2.1. Full Handshake 

TLS Handshake Protocol performs handshake with a series of steps. The 

handshake steps begin when a secure connection request is received and ends when the 

secure connection between two peers is established. In full handshake, all steps in the 

Handshake Protocol are performed. 

Full handshake starts when a client sends a client hello message to the server. 

The server responds to this message with a server hello message or a fatal error. With 

client hello message, the client sends the list of cipher suites it supports, compression 

method to be used and a random value. The server chooses the cipher suite to be used 

(by selecting one from client’s cipher suites) in connection and sends this to the client 

with server hello message, which also includes the compression algorithm and a random 

value. 

After the hello messages, the server sends its public key certificate, if server 

authentication is necessary. A server key exchange message may also be sent if the 

server certificate is not sent or does not contain enough information. For example, when 

ephemeral key exchange algorithms7 are used, public keys generated in server are sent 

with server key exchange message. After these two messages, the server sends server 

hello done message, indicating that the hello message phase of handshake is complete. 

If the server has requested a certificate, the client sends a client certificate 

message. Client certificate message is an optional step that is rarely performed in TLS 

implementations. After that, the client sends a client key exchange message. The content 
                                                 
7 Ephemeral key exchange algorithms, algorithms which generate key pair at runtime, specific to a 
session, DHE(Ephemeral Diffie-Hellman) e.g. 
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of that message depends on the public key algorithm selected for key exchange. If RSA 

is being used as key exchange algorithm (for RSA, see Section 2.1.1.2.1, “RSA”), a 48-

byte random number (the pre- master secret) is generated; encrypted with server’s 

public key and sent to the client with client key exchange message. The server then uses 

its RSA private key to decrypt the pre-master secret. If ECDH is being used as key 

exchange algorithm (for ECDH, see Section 2.1.1.2.2, “ECC”), the server certificate 

message contains the server's Elliptic Curve Diffie-Hellman (ECDH) public key signed 

by a certificate authority using the Elliptic Curve Digital Signature Algorithm 

(ECDSA). 

After validating the ECDSA signature, the client conveys its ECDH public-key 

to the server in the client key exchange message. Next, each entity uses its own ECDH 

private-key and the other's public-key to perform an ECDH operation and arrive at a 

shared pre-master secret, as described in section 2.1.1.2.2, “ECC”. Either with RSA, 

DH, or ECDH; the both ends agree on a pre-master secret, the agreed upon pre-master 

secret is converted to a master secret by using the pseudo-random function, described in 

Section 2.1.2.1.1, “Key Generation And Pseudo-Random Function”. TLS 1.0 

specification [2] defines the formula to arrive at master secret as follows: 

master_secret = PRF(pre_master_secret,  

                                              "master secret", 

                                     ClientHello.random + ServerHello.random) 

The master secret is used to derive the cipher keys, initialization vectors and 

MAC (Message Authentication Code) keys by the Record Layer, as described in 

2.1.3.1.1. 

If the client has sent a certificate with signing ability, a digitally-signed 

certificate verify message is sent to explicitly verify the certificate. 

After key exchange and authentication phases are completed, client sends a 

change cipher spec message. Then, it calculates the TLS Record Layer keys (see 

2.1.3.1.1) and activates them for only its write-side (for connection states in TLS, see 

Section 2.1.2.1.3, “Connection States”). After that, it sends a client finished message. 

The client finished message is the first message sent with the new negotiated algorithms 

and generated key values. During this time, the client still uses old session parameters 

for its read-side. 

After receiving change cipher spec message, server calculates the TLS Record 
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Layer keys (see 2.1.3.1.1) and activates them for its read side. Then it verifies client’s 

finished message. If it is correct, it sends a change cipher spec message itself, activates 

the new security parameters for its write side and sends a finished message. After all, it 

can start sending application data with the new security parameters. 

When the client receives the server’s change cipher spec message, it activates 

the new security parameters for its read side, verifies the server’s finished message and 

starts to send application data with the new security parameters. Both the server finished 

and client finished messages contain the hash of handshake messages. The receiver of 

the handshake message calculates the same hash to see if a man-in-the-middle attack 

occurred during handshake. Figure 2.4 shows all the steps in a full handshake. 

2.1.2.2.2. Abbreviated Handshake 

An abbreviated handshake can be used if a secure connection was previously 

established. The peers cache a previous session and use the same security parameters of 

this session when this session is requested to be resumed.  

The client hello message includes a session id. If the server supports abbreviated 

handshake, it looks for this session id in its list of cached sessions. If it finds, it starts an 

abbreviated handshake and the handshake will immediately follow with change cipher 

spec messages after client and server hello messages (see Section 2.1.2.2.1, “Full 

Handshake”). 
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Figure 2.4 Full Handshake Steps In TLS Protocol 
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2.1.2.3. TLS Cipher Suites 

TLS is an extensible protocol. It achieves this by using cipher suites that is 

composed of a unique id, key exchange and authentication method, symmetric 

encryption method and MAC algorithm. Cipher suites are named using the scheme 

TLS_asym_WITH_sym_mac, e.g. TLS_RSA_WITH_3DES_EDE_CBC_SHA. If a 

new symmetric encryption algorithm method is developed and expected to be used in 

TLS; a new cipher suite is defined using this symmetric encryption algorithm as the 

encryption method. The same scheme can be applied to key exchange and 

authentication method and MAC algorithm as well. 

A list of cipher suites defined is given in TLS 1.0 Specification [2]. Additional 

cipher suites can be registered by publishing an RFC which specifies the cipher suites, 

including the necessary TLS protocol information, including message encoding, pre-

master secret derivation, symmetric encryption and MAC calculation. “ECC Cipher 

Suites for TLS” Internet Draft, defined in [16], was published to define new cipher 

suites for ECC (see section 2.1.1.2, “ECC”). 

2.1.3. TLS In Wireless Devices 

The use of TLS protocol in wireless devices has been a concern for many years. 

TLS was not found suitable for resource-constraint wireless devices for a variety of 

reasons: 

 High CPU-intensive public key operations performed during TLS handshake 

 The verbosity of X.509 encoding 

 The chattiness (multiple round trips) of the handshake protocol 

 The large size of existing TLS implementations 

 Generally, not matching TLS need for reliable transport 

However, these reasons did not prevent researchers try to adopt TLS protocol 

(and SSL protocol) to wireless environments. The main reason behind these efforts has 

been the proven security and the common usage of the protocol in the wired-world. The 

use of standard Internet protocols would extend the Internet to future mobile devices. 

Researches showed that the use of TLS in wireless devices was possible as some 

constraints eased others. According to Gupta brothers [20], slow network speed in 

wireless networks lets the CPUs not to be very fast to perform bulk encryption and 

authentication. Also as TLS clients only perform public key operations for signature 
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verification and encryption and the relative speed of public key operations over private 

key operations make wireless devices suitable as TLS clients. 

WTLS (Wireless Transport Layer Security), specified in [4], is one of the first 

efforts to adopt TLS protocol for wireless environments. WTLS was developed as the 

security layer of the WAP8 Protocol. It was based on TLS 1.0 specifications [2] but a 

number of changes have been made to the protocol by the WAP Forum. 

The WTLS incorporated new features such as datagram support, optimized 

packet size and handshake, and dynamic key refreshing. It has been optimized for low-

bandwidth bearer networks with relatively long latency. Fast algorithms were chosen 

into the algorithm suite. 

In time, some problems occurred with WTLS protocol. Many of the changes that 

were made by WAP Forum have led to security problems including the chosen plaintext 

data recovery attack, the datagram truncation attack, the message forgery attack and the 

key-search shortcut for some exportable keys. [21] tells some security problems with 

WTLS. 

WTLS did not provide an end-to-end security. It was based on a proxy/gateway 

architecture where encrypted data sent from a WAP phone using WTLS was decrypted 

and re-encrypted using SSL [1] before sent to the real destination. This proxy 

architecture led to performance and “man-in-the-middle” attack drawbacks. 

WTLS was developed for WAP protocol suite. But the use of WAP in wireless 

world was limited. These problems with WTLS caused it to lose its popularity in the 

wireless industry. Instead, end-to-end security solutions were developed based on SSL 

and TLS. KSSL developed by Sun Microsystems for J2ME devices is an example 

implementation to provide end-to-end security (see section 2.2.4, “KSSL”). 

2.2. J2ME 

2.2.1.   J2ME Overview 

The biggest benefit of using Java™ technologies is producing platform 

independent code. But even with this advantage, wireless devices offer a vast range of 

capabilities in terms of memory, processing power, battery life, display size, and 

                                                 
8 Wireless Application Protocol, a protocol developed by WAP Forum industry association to provide 
specifications for the applications that operate over wireless communication networks. 
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network bandwidth. “One size does not fit all” approach resulted Java™ technologies to 

be separated into three main platforms. 

J2ME (Java™ 2 Micro Edition) is the Java™ platform for small wireless devices. 

J2ME is divided into several different configurations and profiles. Configurations 

contain Java™ language core libraries for a range of devices. Currently there are two 

configurations: Connected Device Configuration (CDC) is designed for relatively big 

and powerful devices such as high-end PDAs, set-top boxes, and network appliances; 

Connected Limited Device Configuration (CLDC) is designed for small, resource-

constrained devices such as cell phones and low-end PDAs. CDC has far more 

advanced security, mathematical, and I/O functions than does CLDC.  

On top of each configuration, there are profiles. Profiles define more advanced, 

device-specific API libraries, including GUI, networking, and persistent-storage APIs. 

Each profile has its own runtime environment and is suited for a range of similar 

devices. Java™ applications written for a specific profile can be ported across all the 

hardware/OS platforms supported by that profile. The Mobile Information Device 

Profile (MIDP) and the and PDA Profile are two of the more significant profiles for the 

CLDC. The Foundation Profile and the Personal Profile are two important profiles for 

the CDC. Figure 2.5 [23] shows the place of J2ME technologies on Java™ platforms. 

 

Figure 2.5 Java™ And J2ME™ Technologies [23] 
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2.2.2.   CLDC / MIDP 

Connected Limited Device Configuration(CLDC) defines a standard, minimum-

footprint Java™ platform for small, resource-constrained, connected devices. CLDC 1.0 

specification [22] characterizes these devices as follows:  

 160 kB to 512 kB of total memory budget available for the Java™ platform 

 a 16-bit or 32-bit processor 

 low power consumption, often operating with battery power 

 connectivity to some kind of network, often with a wireless, intermittent 

 connection and with limited (often 9600 bps or less) bandwidth 

CLDC 1.0 specification was published by Java™ Community Process (JCP) with 

the code JSR-30. Cell phones, two-way pagers, personal digital assistants (PDAs), 

organizers, home appliances, and point of sale terminals are some of the devices 

supported by this specification.  

A J2ME profile defines a more comprehensive and focused Java™ platform for a 

particular vertical market, device category or industry [22]. Mobile Information Device 

Profile (MIDP) is the first profile developed under CLDC configuration. MIDP Version 

1.0 provides APIs for application lifecycle, HTTP network connectivity, user interface, 

and persistent storage. MIDP 2.0 includes many enhancements and additions like secure 

networking, multimedia, the game API, RGB images, permissions and code signing.  

2.2.3.   Security In MIDP 

As the comprehensive security solutions provided in Java™ 2 Standard Edition 

(J2SE) exceeds CLDC / MIDP devices’ capabilities, a simpler but effective security 

model was needed. CLDC 1.0 specification [22] defines two levels of security: 

 Low-level virtual machine security 

 Application-level security 

Low-level virtual machine security ensures applications cannot harm device by 

ensuring that the Java™ byte codes and other items stored in Java™ class files cannot 

contain references to invalid memory locations or memory areas that are outside the 

Java™ object memory (the Java™ heap). 

Application-level security controls access to external resources, e.g. files by 

using a simple sandbox model. CLDC sandbox model ensures that class files have been 
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properly verified and guaranteed to be valid Java™ applications. Applications can only 

access to APIs defined by CLDC, profiles and licensee open classes. Programmers 

cannot override, modify or add system classes (classes under java. or javax. packages 

and sub-packages) or modify/bypass VM's standard class loading mechanism. Access to 

device’s native functions is prohibited; JNI (Java™ Native Interface) is not allowed. 

MIDP 1.0 specification [24] does not define any low-level or application-level 

security features except CLDC. MIDP 2.0 specification [25] extends sandbox model: 

trusted MIDlets can access restricted APIs and provides mechanisms for secure network 

communication. These mechanisms are midlet signing, midlet access control and 

permissions. 

MIDP 1.0 specification did not have an obligatory end-to-end security 

mechanism although some implementations, including Sun’s, supported SSL client 

protocol in the form of HTTPS. MIDP 2.0 specification [25] required an obligatory 

HTTPS support, which is basically HTTP over one of the protocols below: 

 TLS 1.0 (see Section 2.1, “TLS Protocol”) 

 SSLv3  

 Wireless Transport Layer Security (WTLS) (see Section 2.1.3, “TLS In Wireless 

Devices) 

In MIDP 1.0, obtaining an HTTPS connection is just like obtaining an HTTP, 

except for the URL: 

HttpConnection hc = null; 

hc = (HttpConnection)Connector.open("https://www.xyz.org/"); 

MIDP 2.0 specifies new classes for use of HTTPS connections. The connection 

above could be established with the following code: 

String url = "https://www.xyz.org/"; 

HttpsConnection hc = null; 

hc = (HttpsConnection)Connector.open(url); 

MIDP 2.0 does support server authentication with HTTPS, but still lacks 

mechanisms for client authentication. 

2.2.4.   KSSL 

KiloByte SSL (KSSL), is a small footprint, SSL client for the Mobile 

Information Device Profile (MIDP).  
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The list of features offered by KSSL, defined in [20], are as follows:  

 Keys: Symmetric keys of different lengths and RSA Public/Private keys with 

modulus lengths up to and including 1024-bits. 

 Ciphers: RSA (for key exchange)(see Section 2.1.1.2.1, “RSA”) and RC4 (for 

bulk encryption) (see Section 2.1.1.1, “Private Key Cryptography”).  

 _ Message Digests: MD5 and SHA (see Section 2.1.1.3, “Hash Function”). 

  Signatures: RSA with both MD5 and SHA (see Section 2.1.1.5, “Digital 

Signature”). 

 Certificates: Only X.509 certificates containing RSA keys and signed using 

RSA with MD5 or SHA are supported (see Section 2.1.1.7, “Digital 

Certificates”).  

 KeyStore: Only supports certificate storage (currently, private keys or symmetric 

keys cannot be stored). 

 SSL: KSSL is a client-side only implementation of SSLv3.0 Other versions, 

SSLv2.0 or SSLv3.1 (aka TLS1.0) are not currently supported. 

The KSSL client offers two cipher suites, RSA_RC4_128_MD5 and 

RSA_RC4_40_ MD5 since they are fast and common. Client-side authentication is not 

implemented as it requires (highly CPU intensive) private-key RSA operations on the 

client. The KSSL client also supports session reuse. 

According to an experiment published in [20], a full handshake (see Section 

2.1.2.2.1, “Full Handshake”) took 10-13 seconds with KSSL running on MIDP for Palm 

platform on a 20MHz Palm device over a CDPD9 network. Caching the server 

certificate (indexed by an MD5 hash) eliminated the overhead of certificate parsing and 

verification and reduced the full handshake latency to 7-8 seconds. An abbreviated 

handshake (see Section 2.1.2.2.2, “Abbreviated Handshake”) took only 2 seconds. 

Table 2.2 shows the performance of KSSL primitives on a 20 Mhz Palm Vx and 33 

Mhz Visor, based on [20]. 

 
 
 
 
 
 

                                                 
9 Cellular Digital Packet Data, a specification for supporting wireless access to the Internet and other 
public packet-switched networks. 
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Table 2.2 Performance Of KSSL Primitives On PDAs [20] 

 Palm Vx (20Mhz) Visor (33Mhz) 
RSA (1024-bit) 
Verify 
Sign 

 
1433 ms 
80.91 sec 

 
806 ms 
45.11 sec 

RSA (768-bit) 
Verify  
Sign 

 
886 ms 
36.22 sec 

 
496 ms 
20.19 sec 

MD5 
1024 bytes 
4096 bytes 

 
292 Kbits/s 
364 Kbits/s 

 
512 Kbits/s 
655 Kbits/s 

SHA-1 
1024 bytes 
4096 bytes 

 
124 Kbits/s 
140 Kbits/s 

 
227 Kbits/s 
256 Kbits/s 

RC4 
1024 bytes 
4096 bytes 

 
117 Kbits/s 
190 Kbits/s 

 
215 Kbits/s 
351 Kbits/s 

2.2.5.   Lightweight Mobile Cryptography Toolkits 

2.2.5.1. Bouncy Castle Lightweight API 

Bouncy Castle (BC) started out as a community effort to implement a free, 

clean-room, open source JCE provider. BC developers developed their own lightweight 

API (BC lightweight crypto API) to be wrapped in BC JCE provider classes. The BC 

lightweight API can also be used standalone, with minimum dependence on other J2SE 

classes. The Bouncy Castle J2ME download package contains the implementation of 

the BC lightweight API as well as two core Java™ classes not supported in 

J2ME/CLDC: 

java.math.BigInteger and java.security.SecureRandom.  

Advantages of Bouncy Castle API are as follows:  

 Open source development model 

 Support for a range of well-known algorithms 

 Free distribution 

Disadvantages of Bouncy Castle API are as follows:  

 Lack of optimizations for some algorithms (e.g. public key alg.) 

 Lack of API documentation 

Bouncy Castle Lightweight API supports the following algorithms: 

 Diffie-Hellman Key Agreement (see Section 2.1.1.4,“Key Agreement Protocol”) 
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 Elliptic Curve Diffie-Hellman(ECDH) Key Agreement 

 SHA-1 and MD5 Digests (see Section 2.1.1.3, “Hash Functions”)  

 AES (see Section 2.1.1.1, “Private Key Cryptography”)  

 DES, 3DES (see Section 2.1.1.1, “Private Key Cryptography”)  

 IDEA  

 RC2, RC4, RC5, RC6 

 RSA (see Section 2.1.1.2.1, “RSA”) 

 DSA, ECDSA Digital Signatures (see Section 2.1.1.5, “Digital Signature”) 

 El Gamal 

 HMac (see Section 2.1.1.4, “Message Authentication Code”) 

 Key Generators for the above algorithms 

2.2.5.2. Phaos Technology Micro Foundation Toolkit 

Phaos Technology is a Java™ and XML security solution provider. It offers 

toolkits for secure XML Java™ APIs, J2ME lightweight crypto APIs, and one of the 

first implementations of the SSL protocol on J2ME/CLDC. 

Advantages of Phaos Library are as follows:  

 The Phaos MF runs on both CLDC and CDC. 

 Comes with excellent documentation and code examples.  

 Phaos MF supports a set of frequently used cryptographic algorithms (including 

AES, DES (Data Encryption Standard), RC2, and RC4, DSA (Digital Signature 

Algorithm) and RSA) 

Disadvantage of Phaos Library are as follows:  

 Not free (But, available for free evaluaion) 

2.2.5.3. NTRU Neo for Java™ Toolkit 

NTRU PKI algorithms include an encryption algorithm NTRUEncrypt and a 

signature algorithm NTRUSign, invented and developed by four math professors at 

Brown University.  

Advantages of NTRU Neo for Java™ toolkit are as follows:  

 NTRU algorithms have better performance compared to other PKI algorithms 

 The Neo for Java™ package runs on CLDC, CDC, and J2SE platforms. 
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Disadvantages of NTRU Neo for Java™ toolkit are as follows:  

 Security weaknesses were identified in NTRUEncrypt as late as May 2001. 

 Not free (has an evaluation version) 

2.2.5.4. B3 Security 

B3 Security is a San Jose, Calif. startup that specializes in developing new 

lightweight security infrastructures that minimize the current overhead associated with 

PKI. It has the products B3 Tamper Detection and Digital Signature (B3Sig) SDK and 

B3 End-to-End (B3E2E) Security SDK available for J2ME. 

The B3E2E SDK (still in beta) provides features equivalent to SSL in the PKI 

world, but with a shorter handshake, faster session key establishment, and less 

management overhead, especially for pushed messages. 

B3 scheme has the following advantages: 

 Speed: Cryptographic hash and HMAC algorithms can run 1,000 times faster 

than public key algorithms. 

 Strong two-factor authentication: Only the person who has access to the specific 

device and knows her application password can generate the correct shared and 

non-shared secrets to sign messages.  

 Tamper detection: B3Sig SDK has a conservative design: It assumes that no 

algorithm is permanently secure, including its own.  

2.3. XML And Java 

2.3.1. XML Overview 

The extensible markup language (XML) is a set of syntax rules and guidelines 

for defining text-based markup languages. XML is a simplification of the complex 

SGML standard. SGML, the Standard Generalized Markup Language, is an 

international (ISO) standard for marking up text and graphics. The best-known 

application of SGML is HTML. 

XML languages have a number of uses including:  

 Exchanging information  

 Defining document types  

 Specifying messages 
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XML data is structured as a tree of entities. An entity can be a string of character 

data or an element, which can contain other entities. Elements can optionally have a set 

of attributes. Attributes are key/value pairs, which set some properties of an element. 

The following example shows some XML data: 

<book> 

<chapter id="my chapter"> 

<title>The title</title> 

Some text. 

</chapter> 

</book> 

At the root of the tree, there is the element “book”. This element contains one 

child element: “chapter”. The chapter element has one attribute that maps the key “id” 

to “my chapter”. The chapter element has two child entities: the element “title” and the 

character data “Some text”. Finally, the title element has one child, the string “The 

title”. 

There are two approaches to parse an XML document: 

 SAX Approach: The parser starts at the beginning of the document and passes each 

piece of the document to the application in the sequence it finds it. Nothing is saved 

in memory. 

 DOM Approach: The parser creates a tree of objects that represents the content and 

organization of data in the document. In this case, the tree exists in memory. The 

application can then navigate through the tree to access the data it needs, and if 

appropriate, manipulate it. 

2.3.2. Using XML In J2ME 

The use of XML is a requirement in J2ME platforms for a variety of reasons:  

 XML is a good messaging format with its standard, self-describing structure. 

 J2ME applications can communicate with back-end servers and each other using 

XML data formats over the HTTP protocol. 

 XML is the communication data format of choice for the new generation of 

open, interoperable Web services. 

Use of XML in Java™ 2 Standard Edition (J2SE) and Java™ 2 Enterprise Edition 

(J2EE) is possible through a set of standard APIs. Unfortunately, these APIs are not 
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compliant to J2ME platforms because of the limits of J2ME platform described in 

section 2.2.2.1, “J2ME Overview”. The new JSR 172 J2ME Web Services Specification 

[26], which will include XML parsing support for both CDC and CLDC applications, 

has not been adopted by vendors yet. The lack of a standard API to use XML in J2ME 

brought some vendor-specific XML libraries supporting both SAX and DOM 

approaches for J2ME MIDP platforms. Table 2.3 shows some XML processing libraries 

for J2ME MIDP environment. 

Table 2.3 XML Libraries Used In J2ME MIDP Environment 

Name URL Size Type 
KXML   http://kxml.enhydra.org/ 34KB Pull 
MinML http://www.wilson.co.uk/xml/ 13KB Push 
NanoXML http://nanoxml.sourceforge.net/ 10KB Model 
TinyXML http://www.gibaradunn.srac.org/tiny/ 13KB Model 
Wbxml http://www.trantor.de/webxml/ 19KB Push 

 
The kXML package (developed by Enhydra) offers both Simple API for XML 

(SAX) and limited Document Object Model (DOM) capabilities. Package kXML also 

contains a special utility, called kSOAP, for parsing SOAP messages for Web services. 

2.3.3. Object To XML Serialization 

Object serialization means converting of objects into another format that can be 

transported over a communication medium. J2SE provides a service to serialize Java 

objects, implementing the interface java.io.Serializable, into a stream of bytes and 

deserialize the stream of bytes into the same objects. J2SE object serialization is a 

robust mechanism to store or transport object data; but it is useless in some cases. 

 J2SE object serialization is based on a Java service called reflection, which is 

aimed at receiving class metadata. The slowness of reflection may cause 

problem for performance needing applications. 

 J2SE object serialization needs the same class type on both ends where the 

serialization and deserialization occurs. This is not ideal for a loosely coupled 

architecture. 

 J2SE object serialization is not available on J2ME CLDC platforms where there 

is no reflection. (see Section 2.2.2, “CLDC / MIDP”). 

XML Serialization is an alternative method to J2SE object serialization. XML 

serialization is the name given to the rendering of programmatic data as XML for 
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transmission between computers or storage on some external system [27]. An object can 

be marshaled (or serialized) as a XML stream, and at the other end, an XML stream can 

be un-marshaled (or deserialized) back to an object. This allows programmers to work 

naturally in the native code of the programming language, while at the same time 

preserving the logical structure and the meaning of the original data.  

While offering a loosely coupled architecture, XML Serialization has an 

important disadvantage: size. As XML is a text format, the size of an object serialized 

into XML may be more than the size of the same object serialized with standard object 

serialization. This brings a great disadvantage in limited bandwidth wireless networks. 

One solution to this problem is good XML document design. 

There are a variety of libraries that may perform XML Serialization, but all of 

them work on J2SE platform. An XML Serializer running on CLDC / MIDP platform 

was developed and described in Chapter 4. 



 
 37

 
        

 
 

CHAPTER 3 
 

APPLICATION PLATFORM ARCHITECTURE 

Mobile Java applications run on mobile devices, mostly mobile phones and PDA 

devices. Whatever the device is, the application platform has a unique architecture. This 

chapter explains the architecture where mobile Java applications run. This architecture 

consists of the device’s architecture (hardware, OS, JVM, etc.), network connection 

architecture that connects the mobile device to the outside world and the application 

architecture. The mobile security protocol developed will run on the architecture 

mentioned in this chapter. 

3.1.   Mobile Device Architecture 

3.1.1.   J2ME™ Mobile Devices 

J2ME™ is the Java platform for small, resource constraint devices (see Chapter 

2, Section 2.2.1, “J2ME Overview”). With J2ME™, Sun Inc. provides a complete end-

to-end solution for creating dynamically extensible, networked products and 

applications for the consumer and embedded market. J2ME™ is currently targeted at two 

categories of products [28]: 

 Shared, fixed, connected information devices 

 Personal, mobile, connected information devices 

Shared, fixed, connected information devices have high capacity memories, fast 

processors and high-bandwidth network connections. With these properties, they have 

similar properties to desktop computers; so they are out of the scope of this thesis. 

CLDC (Connected, Limited Device Configuration) is the J2ME™ configuration 

that covers personal, mobile, connected information devices (see Chapter 2, Section 

2.2.2, “CLDC / MIDP”). Cell phones, pagers and personal digital assistants (PDAs) are 

examples of devices in this category. These devices have simpler user interfaces, low 

memories and low-bandwidth network connections. MIDP is a profile under CLDC 

configuration (see Chapter 2, Section 2.2.1, “J2ME Overview”). CLDC / MIDP devices 

are the target devices where the proposed end-to-end security solution will run on.  

Today, many cell phones and PDAs support MIDP technology. Usually, cell 
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phones have built-in support for either MIDP 1.0 or 2.0; and PDAs (mostly PALM™ 

based PDAs) support MIDP after installing the KVM (Kilobyte Virtual Machine) 

specific for these devices. Table 3.1 shows some of the devices that have MIDP support, 

based on [29]. 

Table 3.1 Some Of The Mobile Devices Having Built-in MIDP Support [29] 

Manufacturer Model Java Support 
Nokia 6600 MIDP 2.0 
Sony Ericsson P800 MIDP 1.0 + Personal Java 
Nokia 7650 MIDP 1.0 
Motorola i85s MIDP 1.0 
Nokia 9210 Communicator MIDP 1.0 + Personal Java 
Siemens SL45i/6688i MIDP 1.0 
LG Electronics C-nain 2000 MIDP 1.0 
Samsung SCH-X230 MIDP 1.0 
Casio C452CA MIDP 1.0 
Sharp J-SH07 MIDP 1.0 

Also any PDA having Palm OS® 3.5 or over as the operating system may have 

MIDP support after the installation of a KVM like “MIDP for PALM” from Sun 

Microsystems or other KVMs from other vendors. 

As shown in table 3.1, a variety of devices from different vendors have J2ME™ 

MIDP support. In order to support this kind of flexibility and customization need, 

J2ME™ architecture is designed to be modular and scalable. Figure 3.1 shows the 

general architecture of a J2ME™ MIDP device with its layered approach, based on [28]. 

             
Figure 3.1 J2ME™ Device Architecture [28] 

 
In this architecture, the host operating system communicates with the device 

hardware and provides services for the Java Virtual Machine layer. JVM layer is the 
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implementation of a Java virtual machine that is customized for a particular device’s 

host operating system and supports a particular J2ME™ configuration. The configuration 

layer defines the minimum set of Java virtual machine features and Java class libraries 

available on a particular category of devices. The profile layer defines the minimum set 

of Application Programming Interfaces (APIs) available on a particular family of 

devices. The layer where Java applications are written is the Profile Layer.  

3.1.2.   Mobile Device Operating Systems 

Mobile device operating systems control the mobile device hardware and 

provide services for the Java Virtual Machine Layer. Although MIDP applications run 

on top of a JVM and is independent of the operating system, the implementation of the 

JVM is customized for the operating system. So the operating systems capabilities 

define the MIDP application capabilities. 

The most common operating systems in MIDP supporting devices are PALM 

OS® and Symbian OS. 

3.1.2.1.   PALM OS® 

Palm OS® is the operating system developed specifically for personal digital 

assistants (PDAs) by Palm Inc. The latest release is Palm OS® 5. Palm OS® is the 

operating system of most Palm Inc. or other vendors’ PDAs as well as a number of 

smart phones. 

The key features of Palm OS® are:  

 Supports ARM®-compliant processors from industry leaders Intel, Motorola, 

and Texas Instruments.  

 System-wide strong encryption (128-bit) as a standard feature; includes RC4, 

SHA-1, and signature verification using RSA-verify. 

 Provides a set of APIs and drivers that support 802.11b solutions at the system 

level. 

 Supports Bluetooth, GSM, CDMA, and 2.5G/3G networks. 

 Offers 128-bit Secure Sockets Layer encryption services (SSL 3.0/TLS 1.0) for 

secure end-to-end connections. 

The first implementation of Palm OS® only supported a 16 MHz Motorola®
 

68000 type processor with a minimum of 128K of nonvolatile storage memory and 512 
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KB of ROM. ARM®-compliant processors are supported with Palm OS® 5. Palm OS® 

has a preemptive multitasking kernel that provides basic task management [30]. Only 

system software can launch a separate task. The multi-tasking API is not available to 

developer applications. 

Palm OS® provides network services with its net library for TCP and UDP via a 

socket API. The Internet library builds on the net library to provide a socket-like API to 

high-level Internet protocols such as HTTP [31]. 

The Palm OS® features two database types: resource and record databases [32]. 

Each database consists of a header block, followed by an arbitrary data block. The 

header block contains the name, creator ID, type, number of records and last 

synchronization date. A creator ID is a four-character piece of code that can be 

registered with Palm™ to ensure uniqueness. Each record in the data block contains a 

record ID, record category index, record attributes and record data. 

Palm OS® do not have native Java support. However, it is possible to run MIDP 

applications on Palm OS® after installing a J2ME™ VM for Palm OS® (see Section 

3.1.3, “Mobile Device JVM Layer”). Palm™ JVM implementations directly access Palm 

OS® APIs for network connection, record store management and UI creation. 

3.1.2.2.   Symbian OS 

Symbian OS is an operating system developed specifically for small, embedded 

environments. The operating system is especially specialized in data-enabled 2G, 2.5G, 

3G mobile phones [33]. Some of the devices that use Symbian OS as the operating 

system are Ericsson R380, Sony-Ericsson P800, the Nokia 9200 Communicator series, 

Nokia 6600, Nokia 7650, Nokia 3650, Nokia N-Gage, NTT DoCoMo F2051, Siemens 

SX1, BenQ P30 and Samsung SGH-D700. The latest version of Symbian OS is v7.0s. 

The key features of Symbian OS are [33]: 

 Application engines: Includes engines for contacts, schedule, messaging, 

browsing, utility and system control 

 Browsing: WAP stack provided with support for WAP 1.2.1 for mobile 

browsing  

 Messaging: Multimedia messaging (MMS), enhanced messaging (EMS) and 

SMS; internet mail using POP3, IMAP4, SMTP and MHTML 
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 Multimedia: Audio and video support for recording, playback and streaming; 

image conversion  

 Graphics: Direct access to screen and keyboard for high performance; graphics 

accelerator API 

 Communications protocols: Wide-area networking stacks including TCP/IP 

(dual mode IPv4/v6) and WAP, personal area networking support include 

infrared (IrDA), Bluetooth and USB. 

 Mobile telephony: Supports GSM circuit switched voice and data (CSD and 

EDGE ECSD) and packet-based data (GPRS and EDGE EGPRS); CDMA 

circuit switched voice, data and packet-based data (IS-95, cdma2000 1x, and 

WCDMA); SIM, RUIM and UICC Toolkit 

 International support: Conforms to the Unicode Standard version 3.0 

 Data synchronization: Supports PC-based synchronization over serial, 

Bluetooth, Infrared and USB 

 Java Support: v6.0 has no built-in Java support, but the device manufacturer 

may add MIDP support, v7.0 has integrated MIDP 1.0 support, v7.0s has 

integrated MIDP 2.0 support 

 User Inputs: Generic input mechanism supporting full keyboard, voice, 

handwriting recognition 

The Symbian OS kernel is a compact pre-emptive multitasking operating system 

with very little dependence on peripherals [34]. The Symbian OS kernel runs in 

privileged mode, owns device drivers, implements the scheduling policy, does power 

management and allocates memory to itself and user-mode (that is, unprivileged) 

processes. The kernel implements a message-passing framework for the benefit of user-

side servers (such as the networking and telephony stacks and the file system). The 

client-server architecture supports both thread-relative and process-relative client 

resource ownership. The latter is to ease porting of code written for other platforms to 

Symbian OS, and delivers considerably enhanced Java performance [33]. 

Symbian OS has a broad networking support. It supports TCP, UDP, ICMP, 

PPP, DNS, Telnet and FTP protocols and IPv4/v6 stack. It also provides a HTTP 

transport framework that presents a unified, high level API. MIDP applications may 

have network support by using TCP/IP stack and HTTP transport framework. Thus all 

devices having Symbian OS have HTTP network support. Java MIDP implementations 
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may use IPv4 or IPv6 addressing on the operating system. 

The Symbian OS v7.0s implementation supports MIDP 2.0, CLDC 1.0 with 

Sun's CLDC HI Java VM, Bluetooth 1.0, and Wireless Messaging 1.0. It also includes 

PersonalJava with the JavaPhone APIs. Symbian’s JVM implementation lets the MIDP 

applications, specifically developed for the Symbian OS to benefit from many of the 

features of Symbian OS. 

3.1.3.   Mobile Device JVM Layer 

As in desktop, Java applications on mobile devices run on top of a virtual 

machine called Java Virtual Machine (JVM). The virtual machine is implemented in 

native code and may directly use operating system services.  The VM of mobile devices 

are different from J2SE JVM because of the limited resources and device architectures 

of mobile devices. 

3.1.3.1.   KVM 

The K Virtual Machine (KVM) is a highly portable Java virtual machine 

designed from the ground up for small memory, limited-resource and network-

connected devices such as cellular phones, pagers, and personal organizers [28]. KVM 

is the result of a research called Spotless at Sun Microsystems Laboratories in 1998 

[35]. As it is the first VM for constrained devices, the term “KVM” is sometimes used 

for all J2ME™ VMs although it is only the name of the Sun Inc.’s J2ME™ VM 

implementation. 

The “K” in KVM stands for “kilo”. It was named like that because KVM is 

suitable for 16/32-bit RISC/CISC microprocessors with a total memory budget of no 

more than a few hundred kilobytes (potentially less than 128 kilobytes) [28]. A more 

typical implementation requires a total memory budget of 256 kB, of which half is used 

as heap space for applications, 40 to 80 kB is needed for the virtual machine itself, and 

the rest is reserved for configuration and profile class libraries. This applies to digital 

cellular phones, pagers, personal organizers, and small retail payment terminals. 

The actual role of a KVM technology in target devices can vary significantly. In 

some implementations, the KVM technology is used on top of an existing native 

software stack to give the device the ability to download and run dynamic, interactive, 

secure Java content on the device. In other implementations, the KVM technology is 
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used at a lower level to also implement the lower-level system software and applications 

of the device in the Java programming language. Several alternative usage models are 

possible.  

Historically, KVM is the VM of CLDC configuration. For a long time, CLDC 

technology ran on top of KVM, but now other J2ME™ virtual machines may also 

support CLDC (see Section 3.1.3.2, “CLDC HI”).  

The KVM is implemented in the C programming language, so it can easily be 

ported onto various platforms for which a C compiler is available. Solaris, Windows or 

Palm OS® are some of these platforms.  

KVM implementations on desktop operating systems (Windows or Solaris) are 

executed from command line like normal J2SE applications. If the mobile device has a 

user interface to launch native applications, KVM can be configured to run like that (for 

example: KVM for Palm OS®). If the mobile device does not have such a user interface, 

KVM provides a facility called Java Application Manager™ (JAM™), which reads the 

contents of a jar file launches the KVM with the main class in that jar file as a 

parameter. 

The KVM technology does not support the Java Native Interface™ (JNI™). 

Instead, native code called from the VM must be linked to the virtual machine at 

compile time. There are four ways in which notification and handling of events can be 

done in the KVM [28]: 

 Synchronous notification (blocking) 

 Polling in Java code 

 Polling in the byte code interpreter 

 Asynchronous notification 

KVM makes use of the new “stack map” method attribute in order to quickly 

and efficiently verify class files. A pre-verification tool written in C is supplied with the 

KVM reference implementation. The KVM supports a utility called JavaCodeCompact 

(JCC) (also known as the class prelinker, preloader or ROMizer) which allows Java 

classes to be linked directly in the virtual machine, reducing VM startup time 

considerably. 

“MIDP for PALM” uses a version KVM specific to Palm OS® (see Section 

3.1.2.1, “Palm OS®”). Most mobile phones have KVM technology below the CLDC 

configuration. 
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3.1.3.2.   CLDC HI 

CLDC HI (CLDC Hotspot Implementation) is the new generation VM for 

J2ME™ devices. KVM technology was designed for small resource constraint devices. 

The limits of the KVM technology caused performance problems as the MIDP 

applications running on top of KVM extended to enterprise uses. The Hotspot™ 

performance engine was developed to address the perception that Java virtual machine 

performance was insufficient for many mainstream applications especially on big 

servers [36]. CLDC HI is the combination of KVM technology with the Hotspot™ 

architecture.  

CLDC HI is a 32-bit virtual machine that complies with the CLDC 1.0 

Specification [22]. Different from KVM implementations, CLDC HotSpot 

Implementation has no restrictions on the number of loaded classes or the size of the 

object heap. The total memory requirement for CLDC HI VM and the software is less 

than 1 MB; including CLDC HotSpot Implementation virtual machine, the CLDC class 

libraries, the MIDP class libraries, and Java applications. 

CLDC HI supports a compact object layout to reduce general memory 

consumption. It uses only one word for the object header10 while most other virtual 

machines use at least two words. 

CLDC HI allocates all data (Java level objects; reflective objects such as 

methods and classes), compiler generated code and virtual machine internal data 

structures) inside the object heap, called unified resource management. An important 

advantage of this unification is that the same garbage collector takes care of cleaning up 

all allocated resources.  

CLDC HI uses an accurate, two generational, mark-sweep-compact garbage 

collector, which results fast object allocation and small garbage collection pauses. An 

accurate garbage collector knows where all pointers are when garbage collection takes 

place. The object heap is segmented into old generation, new generation and as-yet-

unused portions of memory. Short-lived objects are allocated in new generation area 

and compacted to the old generation area when all memory in the object heap is 

consumed.  

                                                 
10 The part of the Java object that provides reflective information and contains hash code and locking 
status. 
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CLDC HI includes a dynamic compiler to provide fast byte code execution. The 

compiler is a simple one-pass compiler that utilizes the following basic optimizations: 

constant folding, constant propagation, loop peeling. 

Symbian OS (see Section 3.1.2.2, “Symbian OS”) uses CLDC HI as the Java 

VM. Symbian OS’s Java VM has the following features [33]: 

 Supports the OTA recommended practice document for MIDlet installation  

 Heap size, code size, and persistent storage are unconstrained, allowing larger, 

more compelling MIDlets to be run  

 MIDlets look and behave very much as native applications: they use the native 

application installer and launcher, and native UI components 

 Supports native color depth (4096 colors) 

 Generic Connection Framework implementation including sockets, server 

sockets, datagram sockets, secure sockets, HTTP and HTTPS 

 Implements Bluetooth (excluding push and OBEX) 

 Implements wireless messaging 

3.1.3.3.   IBM J9 VM 

J9 is the virtual machine from IBM that may work on a wide range of mobile 

and non-mobile operating systems (Palm OS®, PocketPC, QNX, MontaVista Linux, 

OSE, ITRON, etc.) [37]. J9 VM is a very portable VM that may work with both CLDC 

and CDC profiles.  

The J9 virtual machine is configurable over a wide range of settings, including 

the following: 

 Supported function (like dynamic class loading) 

 Memory usage and stack size 

 Incremental allocation sizes of memory, ROM and RAM sizes for class loading 

J9 VM is the JVM of IBM’s Websphere Micro Environment (WME). WME has 

limits far beyond the traditional Palm™ implementations for MIDP. For example, WME 

has access to the entire dynamic and storage heap currently available on a Palm 

handheld while “MIDP for Palm” from Sun Inc. has the dynamic heap size limit of 64 

K. WME also has the support of CLDC 1.1 and MIDP 2.0 which is not available in 

“MIDP for Palm”. 
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3.1.4.   Mobile Device Configuration Layer 

Configuration Layer defines the minimum set of Java virtual machine features 

and Java class libraries available on a particular “category” of devices. 

Connected, Limited Configuration Layer (CLDC) is the configuration specified 

for small, resource constraint mobile devices (see Chapter 2, Section 2.2.2, “CLDC / 

MIDP”). CLDC specification defines Java™ language and virtual machine features, 

core libraries, input/output, networking, security and internationalization.  

CLDC configuration does not address application life-cycle management 

(installation, launching, deletion), user interface, event handling and high level 

application model. These features are addressed by profiles implemented on top of the 

CLDC. 

KVM and CLDC are closely related, as KVM has been the only VM under 

CLDC configuration for a long time. Now, there are other VMs that are compliant with 

the CLDC, CLDC HI e.g. (see Section 3.1.3.2, “CLDC / HI”). 

CLDC has a general goal of full Java™ programming language and Virtual 

Machine Specification compatibility. Connected Limited Device Configuration 1.0a 

Specification [22] defines the main differences as follows: 

 No floating point support: CLDC 1.0 has no floating-point support. The new 

CLDC 1.1 specification has the floating-point support. 

 No Java™ Native Interface (JNI): Eliminated because of sandbox security model 

and memory constraints of CLDC target devices. 

 No reflection: The lack of reflection causes CLDC not to support RMI, object 

serialization, JVMDI (Debugging Interface), JVMPI (Profiler Interface) or any 

other advanced features of J2SE that depend on the presence of reflective 

capabilities. 

 No user defined class loaders: Eliminated because of sandbox security model. 

 No thread groups and daemon threads. 

 No weak references. The new CLDC 1.1 specification has the weak reference 

support. 

 No finalization. 

As the standard J2SE class file verification approach is too memory consuming 

for small devices, CLDC uses an alternative mechanism for class file verification. In 

this alternative, each method in a downloaded Java class file contains a “stackmap” 
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attribute, which is newly-defined in CLDC specification. This attribute is added to 

standard class files by a pre-verification tool that analyzes each method in the class file. 

The presence of this attribute enables a CLDC-compliant Java VM to verify Java class 

files much more quickly and with substantially less VM code and dynamic RAM 

consumption than the standard Java VM verification step, but with the same level of 

security.  

CLDC defines two types of class libraries:  

 Classes inherited from J2SE 

 Classes specific to CLDC 

Classes inherited from J2SE are subsets of the corresponding class in J2SE.  

Only those methods and fields those are appropriate for “connected, limited devices” 

are specified by CLDC. 

Classes specific to CLDC are required, as the classes with similar functionality 

do not fit to the limits of small devices. Networking and I/O classes are examples of 

CLDC specific classes. 

CLDC specifies a Generic Connection framework, which enables consistent way 

of supporting various protocols. General form of GCF is,  

Connector.open("<prot>://<addr>:<params>").  

For example: 

 Files: Connector.open("file://readme.txt"); 

 HTTP: Connector.open("http://www.iyte.edu.tr"); 

 Sockets: Connector.open("socket://155.223.64.1:80"); 

 Communication ports: Connector.open("comm://4800:18N"); 

3.1.5.   Mobile Device Profile Layer 

Profile Layer defines the minimum set of Application Programming Interfaces 

(APIs) available on a particular family of devices. Profiles are implemented on top of 

configurations. A device can support multiple profiles. 

Mobile Information Device Profile (MIDP) is the most common profile 

implemented in all J2ME™ profiles (see Chapter 2, Section 2.2.2, “CLDC / MIDP”).  

MIDP applications, or "MIDlets", move from state to state in their lifecycle 

according to a state diagram. MIDlet states include: 

 Paused - initialized and quiescent (waiting) 
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 Active - has resources and is executing 

 Destroyed - has released all resources, destroyed threads, and ended all activity 

MIDlets use the "Record Management System", or RMS, to access and store 

data on the device. Network connectivity in MIDlets is supported with the Generic 

Connection framework (GCF) of the CLDC configuration.  

MIDP defines a very limited API because of size and performance reasons. 

However, it can be extended with various optional packages. Bluetooth (JSR 82), Web 

services (JSR 172), wireless messaging (JSR 120), multimedia (JSR 135), and database 

connectivity are some of the optional packages developed for CLDC / MIDP 

environments. Device manufacturers may or may not include optional packages in their 

device implementations. 

3.2.   Mobile Application Architecture 

3.2.1. Client/Server Architecture 

Client/server architecture is the main architecture for mobile network 

applications. In this architecture, a network-aware application residing on a wireless 

device, client, connects with back-end applications and servers behind a firewall or 

proxy gateway over a wireless network and Internet and corresponding communication 

protocols. Figure 3.2 [38] shows the client/server architecture of a mobile application.  

 

Figure 3.2 Environment Of A Typical Networked Wireless Application [39] 

In figure 3.2, the wireless devices can be mobile phones, PDAs or two-way 

pagers. They have the mobile applications on top of MIDP and communicate with an 
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antenna over a wireless communication protocol. These protocols can be 802.11b on a 

small area (see Section 3.3.1, “Wireless LAN”), or GPRS on a wide area (see Section 

3.3.3, “GPRS”). The antenna is directly connected to a wired network like Internet, 

which connects the mobile device to the back-end server systems. 

Mobile applications typically use HTTP as the application-level communication 

protocol as it is common and can pass firewalls. HTTP is the mandatory protocol in 

MIDP 1.0 [24] and MIDP 2.0 specifications [25]. With MIDP 2.0, low-level socket 

APIs can also be used to directly communicate with the server application below the 

application level. 

TLS may provide an application-level end-to-end security on top of sockets in 

this architecture. The TLS implementation developed in this thesis runs on top of pure 

sockets and provides an application level security between a MIDP application and 

server back-end application. The MIDP version of the developed TLS protocol 

communicates with the J2SE version of the protocol and sends object data over the 

secure connection. The mobile device always runs the client version of TLS protocol 

and back-end server always runs the server version of the TLS protocol. 

3.2.2. Peer To Peer Architecture 

Peer To Peer Architecture is an alternative and new architecture for wireless 

devices. In this architecture, the two devices communicate directly with each other. This 

communication may be the direct communication of the devices over a communication 

medium like Bluetooth (see Section 3.3.2,”Bluetooth”); or it may be an application level 

communication with the two mobile applications communicating over a central server. 

The client side of the application is same with Client/Server Architecture. It uses 

either HTTP or low-level socket APIs, either stream-based or datagram-based, for 

network communication. The difference is in server side. In this architecture, the server 

is also a mobile device. MIDP 2.0 has an API for server socket that may be used for this 

purpose. 

The TLS implementation to work in this architecture needs both client and 

server versions of TLS to work in the mobile device. This may be impractical for two 

reasons. 

 Resource constraints of mobile devices may cause performance problems for 

server side implementation of the TLS protocol 
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 Server sockets are not commonly implemented in MIDP devices. 

In spite of these deficiencies, the TLS implementation developed in this thesis 

can be used in peer-to-peer architectures for test purposes.  

3.3.   Mobile Device Connection Architecture 

A networked mobile application connects to the server or another mobile 

application by a network infrastructure. This network infrastructure can be a Wireless 

LAN, a personal area network technology like Bluetooth, or a packet-switch network 

technology like GPRS. J2ME™ network connection APIs are independent of the 

connection architecture and can work with all these connection methods. 

3.3.1. Wireless LAN 

A Wireless Local Area Network is a flexible data communications system that 

can either replace or extend a wired LAN to provide added functionality [39]. WLANs 

use Radio Frequency (RF) to transmit and receive data over the air without cables. Data 

is superimposed onto a radio wave through a process called modulation, and this carrier 

wave then acts as the transmission medium, taking the place of a wire. WLANs use the 

2.4 Gigahertz (GHz) frequency band. 

WLANs offer all the features of traditional Ethernet or Token Ring networks 

with the addition of increased network infrastructure flexibility. This flexibility makes 

wireless networks an important alternative to wired-networks in small areas. WLANs 

provide a communication medium for wireless mobile devices (PALM™, e.g.) in small 

areas like a building. 

A WLAN can be configured in two ways: 

 Peer-to-peer (ad hoc mode): In this mode, mobile devices or desktop PCs can 

talk to each other over the air by the help of wireless adapter cars. 

 Client/server (infrastructure networking): This mode consists of multiple PCs 

or mobile devices connected to a central hub (gateway or access point) that is 

connected to a wired network. Each node communicates only with the central 

hub; the hub separates signals by using different frequencies for each node. The 

mobile devices are usually connected to these kinds of WLANs. 

WLANs are formed of three main equipments: 

 LAN adapters: These provide the interface between the network operating 
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system and an antenna, to create a transparent connection to the network. 

 Access Points: It is the wireless equivalent of a LAN hub. It is connected to the 

wired network through an Ethernet cable and has an antenna to communicate 

with the wireless devices. It has a range of 20-500 meters. 

 Outdoor LAN bridges: Used to connect LANs in different buildings. With 

FHSS11, the signal hops from one frequency to another at a predetermined rate 

known only to the transmitter and receiver. With DSSS12, a redundant “chipping 

code” is sent with each signal burst, and only the transmitter and receiver know 

the chipping sequence [39]. Of importance for today’s wireless uses, DSSS has 

much greater range characteristics and higher throughput potential. 

IEEE13 published IEEE 802.11 standard for wireless networks. 802.11 standard 

focuses on the physical layer and data link layer of the ISO model. Thus, any 

application or protocol running on traditional networks will also work on 802.11 

WLAN. The 802.11 standard support two types of transmissions: Frequency Hopping 

Spread Spectrum (FHSS) and Direct Sequence Spread Spectrum (DSSS). 802.11b 

standard provides data rate of 11Mbps over DSSS, which is equal to Ethernet data rate. 

The 802.11b standard specifies optional encryption using a shared-key RC4 algorithm. 

Mobile devices can connect to the 802.11b (also called WiFi) WLANs by the 

help of a third party wireless LAN module or with their built-in WiFi antennas. 

PALM™ or PocketPC™ devices are common clients of WLANs. As 802.11b operates 

below ISO transport layer, a PALM™ client e.g. may use of any transport, network or 

application layer protocol including TCP, IP, HTTP and SMTP. Recently, by the use of 

multiple access points, public areas like airports, restaurants and some streets have 

begun to support WiFi communication. New PALM™ devices automatically detect the 

connection and ready to transmit data over WLAN. 

                                                 
11 Frequency Hopping Spread Spectrum, a transmission technology used in LAWN transmissions where 
the data signal is modulated with a narrowband carrier signal that hops in a random but predictable 
sequence from frequency to frequency as a function of time over a wide band of frequencies 
12 Direct Sequence Spread Spectrum, a transmission technology used in LAWN transmissions where a 
data signal at the sending station is combined with a higher data rate bit sequence, or chipping code, that 
divides the user data according to a spreading ratio 
13 Institute of Electrical and Electronics Engineers, a non-profit, technical professional association 
working in technical areas ranging from computer engineering, biomedical technology and 
telecommunications 
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3.3.2. Bluetooth 

An alternatively new technology in mobile device communication is Bluetooth. 

Bluetooth provides short-range wireless connectivity over radio-frequency technology 

that uses the 2.4 GHz Industrial-Scientific-Medical (ISM) band [40]. Bluetooth lets 

mobile devices to communicate with each other up to 10 meters range and 1 Mbit/sec 

speed. The IEEE has designated its version of Bluetooth with 20Mbit/sec speed, as the 

IEEE 802.15 standard. 

Some important features of Bluetooth are as follows:  

 Bluetooth is wireless and automatic. 

 The ISM band that Bluetooth uses is regulated, but unlicensed. 

 Bluetooth handles both data and voice. 

 Signals are omni-directional and can pass through walls and briefcases. 

 Bluetooth uses frequency hopping. 

Bluetooth-enabled devices are organized in groups called piconets. A piconet 

consists of a master and up to seven active slaves. A master unit is the device that 

initiates the communication. A device in one piconet can communicate to another 

device in another piconet, forming a scatternet. Bluetooth has a the following layers in 

its protocol stack: 

 The Radio Layer: Provides the physical connection. 2.4 GHz frequency band is 

divided into 79 channels 1 MHz apart (from 2.402 to 2.480 GHz). 

 The Baseband Layer: Controls and sends data packets over the radio layer. 

Provides transmission channels for both data and voice. The baseband layer 

maintains Synchronous Connection-Oriented (SCO) links for voice and 

Asynchronous Connectionless (ACL) links for data. 

 The Link Manager Protocol (LMP): Responsible from establishing 

connections, manage piconets, authentication, security services and monitoring 

of service quality. 

 The Host Controller Interface (HCI): Divides software and hardware. The 

HCI is the driver interface for the physical bus that connects these two 

components. 

 The Logical Link Control and Adaptation Protocol (L2CAP): Receives 

application data and converts it to the Bluetooth format.  

Figure 3.3 shows the Bluetooth Protocol Stack [40]. 
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Figure 3.3 Bluetooth Protocol Stack [40] 

Bluetooth specification defines profiles that define the roles and capabilities for 

specific types of applications. Only the devices conforming to a particular profile can 

communicate to each other. The following profiles are specified: 

 The Generic Access Profile, defines connection procedures, device discovery, 

and link management. 

 The Service Discovery Application and Profile, defines the features and 

procedures for an application in a Bluetooth device to discover services 

registered in other Bluetooth devices. 

 The Serial Port Profile, defines the requirements for Bluetooth devices that need 

to set up connections that emulate serial cables and use the RFCOMM protocol.  

 The LAN Access Profile, defines how Bluetooth devices can access the services 

of a LAN using PPP. 

 The Synchronization Profile, defines the application requirements for Bluetooth 

devices that need to synchronize data on two or more devices.  

Security in Bluetooth is provided in three ways: pseudo-random frequency 

hopping, authentication, and encryption. All Bluetooth-enabled devices must implement 

the Generic Access Profile, which contains all the Bluetooth protocols and possible 

devices. This profile defines a security model that includes three security modes: 

 Mode 1, is an insecure mode of operation. No security procedures are initiated.  

 Mode 2, is known as service-level enforced security. When devices operate in 

this mode, no security procedures are initiated before the channel is established. 

 Mode 3, is known as link-level enforced security. In this mode, security 
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procedures are initiated before link setup is complete. 

Many mobile devices including mobile phones and personal digital assistants 

(PDA) have built-in Bluetooth support. These devices use Bluetooth communication to 

connect to other Bluetooth enabled devices. 

3.3.3. GPRS 

GPRS (General Packet Radio Service) is an enhancement of core GSM (Global 

System for Mobile Communications) networks that allows the rapid transfer of data 

bundled into packets, separate from voice or data call circuits [41]. 

GPRS is a 2.5 Generation (2.5G) technology that is the last stone before the 

coming 3G networks that will give high speed access allowing live video. 

GPRS data is transmitted in packets, up to the 20 or 30 Kbps speed though the 

theoretical maximum speed is 171.2 Kbps. GPRS set-up time is short and connection is 

always on. 

The Network Operation Mode, or NOM, is responsible for the capabilities of a 

GPRS network, while the class indicates the mobile phone capabilities. On NOM 1 

networks, mobile phones with the right capabilities can have simultaneous circuit- and 

packet-switched connections. On NOM 2 networks, mobile phones can remain attached 

to the GPRS networks when in a voice call but they can't transmit data at the same time. 

On NOM 3 networks, mobile phones can either establish a packet-switched data 

connection or a circuit-switched voice one but they need to disconnect from one to 

establish another. 

Class A phones can make full use of NOM 1 networks: they can use circuit-

switched voice and GPRS data services at the same time. Class B phones can register 

circuit-switched voice and packet-switched data services at the same time but may only 

use one at a time. Class C phones can only register for packet-switched data or for 

circuit-switched voice services. 
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CHAPTER 4 
 

MOBILE SECURITY PROTOCOL ARCHITECTURE 

In the application part of this thesis, a mobile end-to-end security protocol is 

developed and implemented. The protocol resembles TLS protocol, but has differences 

from it in architecture. This chapter explains the architecture of the developed security 

protocol. The architecture involves both the architectural analysis and design of the 

protocol, object models of the implementation and the classes that will be used in 

implementation. The XML serializer library developed to transmit objects as an 

alternative to standard Java object serialization is also explained in this chapter. 

4.1.   Mobile End-To-End Security Protocol Design Issues 

The security protocol implemented in this thesis is an end-to-end security 

protocol based on TLS 1.0 specifications and adopted to work on J2ME™ mobile 

devices as well as standard Java™ VMs. The protocol implementation itself is also an 

application although high-level applications may use it through its APIs to transmit data 

and objects securely. 

The security protocol architecture developed covers both TLS protocol 

architecture and the necessary APIs architecture. TLS protocol architecture is based on 

TLS 1.0 specification and has some additions and subtractions. The necessary APIs 

architecture involves cryptography model classes that abstract the real implementations 

of cryptography packages; socket classes that abstract TCP or UDP based socket 

implementations and the serialization of object data; XML Serializer architecture that is 

a standalone API incorporated into the protocol implementation. 

The main design issues taken into consideration during the definition of the 

architecture of protocol implementation are J2ME™ compatibility, mobile adaptation, 

secure object transmission, full abstraction and complete solution. 

4.1.1. J2ME™ Compatibility 

The protocol implementation is designed to be compatible with J2ME™ CLDC / 

MIDP environments as well as standard Java Virtual Machines. The target platform for 



 
 56

 
        

 
 

the security protocol is MIDP supporting devices. To achieve this aim, the design and 

implementation both respect to MIDP APIs. The version of MIDP based on is MIDP 

1.0 as it has a broad industry support. MIDP 2.0 is only supported by a limited number 

of mobile devices.  

Although the target platform for the protocol is J2ME™ MIDP, it is also aimed to 

work on standard J2SE environment. It is needed, as the server side of the protocol will 

probably work on desktop machines. The protocol architecture implemented involves 

socket implementations that send secure data to the other side. However, socket APIs in 

J2ME™ and J2SE™ are different. This need results two versions of the protocol 

implementation although it does not differ the main architecture. The only change is 

done in socket classes explained in Section 4.2, “Main Architecture”. The rest of the 

code is identical in two versions. 

4.1.2. Mobile Adaptation 

Although the mobile security protocol is based on TLS 1.0 specification, it is not 

a full implementation of the protocol. It is adopted for mobile devices. The main 

differences are as follows:  

 Client Authentication: TLS 1.0 requires client authentication optionally. Client 

authentication is a resource intensive operation and is not included in this mobile 

security protocol implementation.  

 Compression: TLS 1.0 needs compression of data records optionally. It is not 

added to the developed protocol to improve performance. But the architecture of 

Record Layer is designed to add the compression feature later without great 

change. 

 Session Resumption: TLS 1.0 requires resumption of sessions established with 

the same security parameters. Session resumption needs the storage of security 

parameters in a secure environment. The limited resources of mobile devices 

may not let this storage. Thus, this feature was not added to the developed 

protocol implementation.  

 Socket Type: TLS 1.0 requires a TLS implementation to work over a reliable 

protocol, like TCP. TCP is implemented as stream-based sockets in Java 

programming language and is included into the protocol implementation as the 

main communication method. However, some mobile networks may not have 
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TCP support. Although they have, TCP is a heavy protocol requiring long 

connection establishment times. These facts resulted the addition of datagram-

based socket to the protocol implementation. The use of UDP for 

communication is not a secure way, but it is added for test purposes. 

 Elliptic Curve Cipher Suites: Elliptic Curve Cryptography is an emerging 

public key cryptography method that matches the needs of resource constraint 

environments. This matching is resulted from the smaller key sizes with same 

security level when compared with older public key methods, like RSA. The use 

of ECC in TLS implementations will bring better performance results, especially 

in resource constraint mobile environments. The TLS 1.0 specification does not 

mention ECC, but there is an Internet Draft telling the use of ECC in TLS 

implementations. The developed protocol supports ECC based cipher suites as 

key exchange algorithms and is implemented according to [16]. 

4.1.3. Secure Object Transmission 

TLS 1.0 is a security protocol for the secure transmission of data. It is not related 

to the content of this application-level data. Mobile security protocol developed 

enhances this feature and lets the objects to transmitted in a secure way. These objects 

are data classes having private attributes and getter and setter methods, in a bean style. 

The objects are serialized into XML as told in Section 4.7, “Object To XML Serializer” 

and the result XML data is securely sent to the other peer. The other peer decodes XML 

data and deserializes into objects. This method is an important enhancement for J2ME™ 

CLDC / MIDP environment that does not have Java Serialization and RMI facilities. 

The object transmission APIs may also be used independent from the security protocol 

by high-level applications. 

4.1.4. Full Abstraction 

The mobile security protocol uses some cryptography APIs from Bouncy Castle 

cryptography package. However, these APIs are not directly used in the protocol 

implementation classes. There is always a layer of classes that include these APIs and 

provide methods for the use of these functions. For example, there are symmetric 

encryption model classes, mentioned in Section 4.4.1, “Encryption” that includes 

encryption APIs from Bouncy Castle Cryptography package. This design issue abstracts 
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the cryptography APIs from the rest of the code and eases the change of the 

cryptography package used. 

4.1.5. Complete Solution 

The security protocol developed is a complete end-to-end solution. This 

completeness comes from existence of TLS specifications, socket implementations and 

application level APIs. It can be readily used by other mobile applications to transmit 

secure data. There are also other SSL and TLS implementations for mobile 

environments and most of them support only client version of TLS. The developed 

protocol may operate in both client and server modes in both J2ME™ and J2SE™ 

environments. 

4.2. Main Architecture 

The main architecture of the mobile end-to-end security protocol is based on the 

TLS 1.0 protocol specification (see Chapter 2, Section 2.1.3, “TLS Protocol Details”). 

In the main model, the Record Layer behavior is implemented in the class 

RecordLayerImpl and the Handshake Layer behavior is implemented in the class 

HandshakeLayerImpl. HandshakeLayerImpl class has two instances of class 

RecordLayerImpl; one for current state and one for pending state (see Chapter 2, 

Section 2.1.3.1.3, “Connection States”). Both HandshakeLayerImpl and 

RecordLayerImpl classes are transparent of the underlying socket implementations and 

talk to the peer classes in both side of the communication.  

The classes TLSClientSocket and TLSServerSocketListener are the only classes 

needed to be known by the applications that will use this implementation of the 

protocol. An application that needs to be the client in the secure communication must 

use the class TLSClientSocket; and an application that needs to be the server in the 

secure communication must use the class TLSServerSocketListener. The class 

TLSServerSocket is used to handle a secure connection session in the server-side as a 

separate thread. An application may use the class TLSSocketFactory to obtain either a 

TLSClientSocket class instance or a TLSServerSocketListener class instance. 

The mobile secure application is designed as the protocol implementation 

separate from the underlying communication model. This is achieved by the interface 

TLSSocketImpl. This interface defines the operations needed for sending and receiving 
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of secure data and implemented by the client and server socket classes that abstract the 

communication details from the protocol details. Thus, the communication of data can 

be changed without changing any protocol dependent code. The class 

TLSTCPSocketImpl is the client-side implementation of the interface TLSSocketImpl as 

TCP based stream socket and the class TLSTCPServerSocketImpl is the server-side 

implementation of the interface TLSSocketImpl as TCP based stream server socket. The 

class TLSUDPSocketImpl is the client-side implementation of the interface 

TLSSocketImpl as UDP based datagram socket and the class TLSUDPServerSocketImpl 

is the server-side implementation of the interface TLSSocketImpl as UDP based 

datagram socket. Figure 4.1 shows the main object model of the mobile end-to-end 

security protocol. 

 
Figure 4.1 Main Object Model Of The Mobile End-To-End Security Protocol 

 
HandshakeLayerImpl 

The class HandshakeLayerImpl is a controller class of MVC architecture. It 

defines operations and attributes needed to perform Handshake Layer behavior (see 

Chapter 2, Section 2.1.3.2, “TLS Handshake Protocol”) and to send and receive 
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application-level data after the establishment of a secure session. Each secure session 

has one instance of class HandshakeLayerImpl and the class instances at both side of 

the communication talk to each other. 

As the Handshake Layer in TLS Protocol communicates with the Record Layer 

to send and receive data, the HandshakeLayerImpl class uses RecordLayerImpl class to 

send and receive data. The class has two instances of the class RecordLayerImpl; one 

for the current state and one for the pending state. The instance of RecordLayerImpl for 

pending state is used for pending state of TLS Record Layer and the instance of 

RecordLayerImpl for current state is used for current state of TLS Record Layer. The 

pending state instance stores the security parameters exchanged during handshake steps. 

These security parameters are copied to the current state instance after the successful 

completion of the handshake steps. The sending and receiving of data is achieved with 

the current layer instance of class RecordLayerImpl with the active security parameters.  

HandshakeLayerImpl class defines two methods for the realization of handshake 

steps. The method makeHandshake is used by client-side of the protocol 

implementation to start the handshake procedure. The handshake procedure starts with 

the ClientHello request sent by the client and continues with the steps mentioned in 

Chapter 2, Section 2.1.3.2.1, “Full Handshake”. The method negotiateHandshake is 

used by server-side of the protocol implementation to receive ClientHello request and to 

perform server-side steps of the handshake procedure. Both methods do not include the 

protocol implementation details, but calls to Handshake Protocol message objects (see 

Section 4.3, “Handshake Layer Architecture”). The sending and receiving of handshake 

message objects is performed by the current state instance of RecordLayerImpl.  

HandshakeLayerImpl class defines the method sendData(java.io.InputStream i) 

to send application data in a secure session and sendData(TLSHandshakeMessage m) to 

send handshake messages during handshake procedure. Similarly the method 

receiveObject() is used to receive data in a secure session and the method receiveData() 

is used to receive handshake messages. 

RecordLayerImpl 

The class RecordLayerImpl is a controller class in MVC architecture. It defines 

operations and attributes needed to perform Record Layer behavior (see Chapter 2, 

Section 2.1.3.1, “TLS Record Layer”). The responsibilities of RecordLayerImpl class 

are to send and receive application and Handshake Layer data after encoding and 
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decoding; generate new TLS keys according to the exchanged security parameters; copy 

security parameters from pending state to current state and activate new TLS keys for 

read side and write side. Major attributes of this class are as follows: 

 public TLSRecordLayerSpecs writeSideSpecs : Defines the properties of 

Record Layer for the writing side. These properties are encryption algorithm, 

MAC algorithm, protocol version, client random number, server random 

number, cipher suite and master secret. 

 public TLSRecordLayerSpecs readSideSpecs : Defines the properties of 

Record Layer for the reading side. These properties are encryption algorithm, 

MAC algorithm, protocol version, client random number, server random 

number, cipher suite and master secret. 

 public SecurityParameters parameters : Defines the security parameters 

exchanged during handshake procedure. These parameters are cipher suite, 

client random, server random, pre-master secret and connection end.  

 public Vector hanshakeMessagesVector : This attribute stores the handshake 

messages exchanged during handshake steps which are used to verify if a man-

in-the-middle attack occurred during handshake. 

 private RecordGenerator generator : This instance of class RecordGenerator 

is used to fragment and defragment data to send and receive in secure session. 

 private TLSSocketImpl socketImpl : This instance attribute is used to read 

and write data from the underlying socket implementation. The use of the 

interface as the variable abstracts the implementation class from 

RecordLayerImpl class. 

Major methods of this class are as follows: 

 public void sendData(InputStream instream) throws Exception : Used to 

send data after encoding. This encoding involves fragmenting the data to 

maximum of 2^14 bytes, creating a record header, forming a record by 

combining the record header and the data, forming a MAC of this record and 

adding the MAC value to the record, encrypting the record using the symmetric 

cipher exchanged during handshake and adding a sequence number to the record 

header. 

 public Object receiveObject() throws Exception : Used receive data after 

decoding. The decoding involves the reverse of the operations told in the 
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encoding. Each TLS Record is received independently; decrypted according to 

the symmetric cipher exchanged during handshake and MAC is verified. 

 public void generateNewTLSKeys() throws Exception : Used to generate the 

master secret from the security parameters exchanged according to the master 

secret derivation formula given in Chapter 2, Section 2.1.3.2.1, “Full 

Handshake”. This method also generates the cryptographic keys used as 

encryption key, MAC key and initialization vector (IV). 

 public void activateNewTLSKeysForReadSide(RecordLayerImpl 

currentImpl) throws Exception : Used to activate security parameters of 

pending state for read side. 

 public void activateNewTLSKeysForWriteSide(RecordLayerImpl 

currentImpl) throws Exception : Used to activate security parameters of 

pending state for write side. Thus the pending state becomes the current state. 

TLSSocketImpl 

The interface TLSSocketImpl defines the common operations for the TLS socket 

implementations. The term TLS socket here means the underlying communication of 

data below the secure protocol. This communication can be stream-based, datagram-

based or an alternative way. This is achieved with the use of polymorphic variables of 

type TLSSocketImpl in the related classes. Major methods of this interface are as 

follows: 

 public void openConnection() throws Exception : Used to open a real 

connection. This connection can be a stream socket or a datagram socket in the 

implementing classes. 

 public void closeConnection() throws Exception : Used to close the real 

connection. 

 public void sendTLSData(TLSRecord obj) throws Exception : Used to send 

TLSRecord object to the other side of the communication. The record header 

data and the encoded data are written to a stream or datagram based socket.  

 public Object getTLSData() throws Exception : Used to receive data from the 

underlying socket. This data is the TLSRecord object data sent with the method 

sendTLSData(). This method reforms the TLSRecord object after receiving its 

data and return this object for high-level clients. 
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4.3. Handshake Layer Architecture 

Handshake Layer of the mobile end-to-end security protocol is modeled 

according to the TLS 1.0 specification [2]. This specification defines handshake 

messages each containing meaningful data for the receiving part. Each message in the 

specification is modeled with a class in the architecture. These message classes have the 

attributes containing the meaningful data for the receiving part, getter and setter 

methods for these private attributes and methods to generate this object data and what to 

do when this message is received. Thus, all the handshake steps are modeled as 

behavior of these message classes. The methods makeHandshake() and 

negotiateHandshake() in the class HandshakeLayerImpl mentioned in the previous 

section control these message classes and define the order they will act. According to 

the MVC architecture, these handshake classes are the model classes that implement the 

real behavior. 

4.3.1. Handshake Message Classes 

These classes model the handshake messages in TLS specification (see Chapter 

2, Section 2.1.3.2.1, “Full Handshake”). Figure 4.2 shows the object model of 

handshake message classes. According to this model, all handshake message classes 

extend TLSHandshakeType class that implements TLSHandshakeMessage interface. 

This interface defines the common behavior for all handshake message classes. The 

interface defines generate() and receivedMessage() methods. Method generate() is used 

to generate the content of this handshake message. This content is stored in the 

attributes of the class. The method receivedMessage() is used when this message is 

received from the other peer. The operations to do when it is received are implemented 

in this message. The method getMessage() is used to compute a hash of the message 

and implemented according to the message type. The result value is used in the 

verification of handshake messages after the handshake procedure. 
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Figure 4.2 Object Model Of Handshake Message Classes 

Figure 4.2 illustrates handshake message classes as follows:  

 TLSClientHello: This class models ClientHello message. This message is the 

first message generated by the client and sent to the server. It contains client 

protocol version, client random value, session identifier, list of cipher suites 

supported and compression methods. This version of the implementation does 

not use session identifier and compression methods. The protocol version and 

list of cipher suites supported are received from the utility class TLSUtils. Client 

random value is generated by the class TLSRandom according to the TLS 1.0 

specification [2]. 
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 TLSServerHello: This class models ServerHello message. This message is the 

response of the server to the ClientHello message. It contains server protocol 

version, server random value, session identifier, cipher suites selected and 

compression method selected. This version of the implementation does not use 

session identifier and compression method selected. The protocol version is 

received from the utility class TLSUtils. The server random value is generated 

by the class TLSRandom according to TLS 1.0 specification [2]. The cipher suite 

is selected as the first cipher suite in the ClientHello cipher suite list supported 

by the server.  

 TLSServerHelloDone: This class models ServerHelloDone message. This 

message is sent from client to server to notify that server hello message was 

received. When this message class is received, a client key exchange message 

class is generated with its attributes set, sent to server, client change cipher spec 

message is generated and sent to server, new TLS keys are generated and 

activated for write-side, handshake messages sent during handshake procedure 

are calculated by using the message classes’ getMessage() methods and the 

result value is sent to server with the ClientFinished message.  

 TLSServerCertificate: This class models ServerCertificate message. The 

message is sent from server to client to convey server’s public key certificate. 

The certificate may be either RSA or DSS signed. The class either contains RSA 

public key or DSS public key as an attribute. The class also contains X.509 

certificate info like country, organization, location, street, email, start-date, end-

date, serial number and signature as private attributes. The certificate signature 

is verified when it is received and a VerificationException is thrown if 

unsuccessful.  

 TLSServerKeyExchange: This class models ServerKeyExchange message. 

This message is sent from server to client to convey server public key 

parameters. The content of this depends on the key exchange and authentication 

method negotiated during cipher suite selection. If it is RSA, this class contains 

an attribute to contain RSA public key generated at run-time. If it is Diffie-

Hellman, it contains an attribute to contain DH domain parameters and public 

key. If it is Elliptic Curve Diffie-Hellman, it contains an attribute to contain 

ECDH public key. One of these key values is sent to the client with the class. 
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This class also signs the server’s certificate either with RSA or DSS digital 

signature algorithms. The signature values are conveyed to the client as 

attributes of this class. 

 TLSClientKeyExchange: This class models ClientKeyExchange message. This 

message is sent from client to server to convey generated pre-master secret or 

public key parameters. The content of this class depends on the key exchange 

and authentication method negotiated during cipher suite selection. If this is 

RSA, it generates a pre-master secret according to TLS 1.0 specification and 

stores and encrypts this pre-master secret with a RSA public key sent either with 

the server certificate or standalone in the ephemeral way. The encoded pre-

master secret is stored in a byte array private attribute. If the key exchange 

method was chosen as Diffie-Hellman, a new Diffie-Hellman key pair is 

generated at run-time according to the Diffie-Hellman key exchange parameters 

sent from the server and the premaster secret is generated according to the DH 

premaster secret generation specified in TLS 1.0 specification [2]. The Elliptic 

Curve Diffie-Hellman key exchange method operates similar to Diffie-Hellman 

except it uses Elliptic Curve parameters, generates EC key pair and generates 

ECDH pre-master secret. The ECDH is not specified in the original TLS 1.0 

specifications [2], but added to the mobile security protocol from the “ECC 

Cipher Suites for TLS Internet Draft” [16]. This class also verifies server public 

key digital signatures. If the digital signature algorithm used is RSA, it verifies 

both SHA and MD5 digital signatures; if the algorithm is DSS, it verifies only 

SHA digital signature. The class also includes the operations when this class is 

received as a handshake message. When it is received, if the key exchange and 

authentication algorithm is RSA the pre-master secret is decrypted with server’s 

private key and used as the negotiated pre-master secret. If the key exchange and 

authentication method is Diffie-Hellman or Elliptic Curve Diffie-Hellman, the 

same domain parameters are reformed and the pre-master secret is generated. 

This pre-master secret is same as the one generated at client. The pre-master 

secret generation for Diffie-Hellman is taken from TLS 1.0 specification [2] and 

the pre-master secret generation for Elliptic Curve Diffie-Hellman is done 

according to [16].  

 TLSClientFinished: This class models ClientFinished message. This message 
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is sent from client to server to notify that client side of the handshake procedure 

completed and includes the sum of handshake messages negotiated during 

handshake. This class contains an attribute to contain the hash of the handshake 

messages. This hash is calculated with the pseudo-random function taking the 

master secret, “client finished” label and the concatenation of MD5 and SHA-1 

digests of handshake messages as its parameters. The pseudo-random function is 

the same as the one to generate master secret and mentioned in Chapter 2, 

Section 2.1.3.1.1, “Key Generation And Pseudo-Random Function”. When this 

class is received as a message, the same hash value is recalculated and compared 

with the hash value, which is the attribute of the class. If they are not the same, 

handshake messages were corrupted, so a HandshakeMessagesCorrupted 

exception is thrown. If it is successful, a server change cipher spec message 

class is generated and sent to server, new security parameters are activated for 

write side, a ServerFinished message is generated and sent to the server. 

 TLSServerFinished: This class models ServerFinished message. This message 

is sent from server to client to notify that server side of the handshake procedure 

completed and includes the sum of handshake messages negotiated during 

handshake. This class contains an attribute to contain the hash of the handshake 

messages. This hash is calculated with the pseudo-random function taking the 

master secret, “server finished” label and the concatenation of MD5 and SHA-1 

digests of handshake messages as its parameters. The pseudo-random function is 

the same as the one to generate master secret and mentioned in Chapter 2, 

Section 2.1.3.1.1, “Key Generation And Pseudo-Random Function”. When this 

class is received as a message, the same hash value is recalculated and compared 

with the hash value, which is the attribute of the class. If they are not the same, 

handshake messages were corrupted, so a HandshakeMessagesCorrupted 

exception is thrown. 

 TLSClientChangeCipherSpec: This class models ChangeCipherSpec message 

sent from client to server. When this message is received, new TLS security 

parameters are generated and activated for write side. This class does not contain 

any private attributes to convey message data. 

 TLSServerChangeCipherSpec: This class models ChangeCipherSpec message 

sent from server to client. When this message is received, new security 
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parameters are activated for write side. This class does not contain any private 

attributes to convey message data. 

The classes TLSCertificateRequest, TLSCertificateVerify in Figure 4.2 are 

related to client authentication and are not used in the protocol implementation. They 

were added to the model to support extension needs. 

Handshake message classes are transmitted between the peers by using the 

Object To XML Serializer library, mentioned in Section 4.7, “Object To XML 

Serializer”. The class objects are serialized to XML; XML data is received by the 

Record Layer; sent to the other peer by using the underlying socket implementation. 

The other peer makes the reverse operations and reforms the same object when it 

receives the XML data. By this way, handshake message data is conveyed at object 

level between the peers. 

4.3.2. Key Exchange And Authentication Classes 

Mobile end-to-end security protocol supports RSA (see Chapter 2, Section 

2.1.2.2.1, “RSA”), Diffie-Hellman (see Chapter 2, Section 2.1.2.6, “Key Agreement 

Protocol”) and Elliptic Curve Diffie-Hellman (see Chapter 2, Section 2.1.2.2.2, “ECC”) 

methods for key exchange and authentication. It can use RSA and DSA digital signature 

algorithms (see Chapter 2, Section 2.1.2.5, “Digital Signature”) when cipher suites need 

them. 

Figure 4.3 shows the object model of classes modeling public key encryption, 

key exchange and digital signature algorithms. These classes are the model classes in 

MVC architecture and used to encapsulate the real implementations of these public key 

algorithms. This is based on the full abstraction design issue mentioned in Section 4.1, 

“Mobile End-To-End Security Protocol Design Issues”. 

Key classes abstract public or private keys. All key classes implement interface 

Key. DHKey is the key class for Diffie-Hellman keys, RSAKey is the key class for RSA 

keys and DSAKey is the key class for DSA keys. All these key classes have attributes to 

store key parameters. 

RSAEncryption is the class that provides public key encryption and decryption 

functions. This class is used by handshake message classes to encrypt and decrypt pre-

master secret. The class RSASigner provides methods for RSA signature generation and 

verification. The class DSSSigner provides methods for DSA signature generation and 
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verification. Both these classes implement the interface Signer. Elliptic Curve 

parameters are stored and conveyed in the class ServerECDHParams. This class has 

attributes to contain elliptic curve’s domain parameters and public key derived. The 

domain parameters are represented by the class ECParameters and the public key class 

is ECPoint. 

All these classes use Bouncy Castle Cryptography Package APIs to perform the 

necessary operations. With this architecture, the change of the real cryptography 

implementation will not affect the rest of the architecture. 

 
Figure 4.3 Object Model Of Public Key Model Classes 
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4.4. Record Layer Architecture 

Record Layer of mobile end-to-end security protocol is based on TLS 1.0 

specifications (see Chapter 2, Section 2.1.3.1, “TLS Record Layer”). According to the 

architecture, there is the class RecordLayerImpl, mentioned at section 4.2, “Main 

Architecture”, at the backbone of the Record Layer. This class is a controller class that 

provides the functionality of record layer to handshake layer. Figure 4.4 shows the 

object model of Record Layer classes. 
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Figure 4.4 Object Model Of Record Layer Classes 

In TLS 1.0 specification [2], each TLS record contains its version number, 

content type, length as well as its data. This is modeled as the TLSRecord data class. 

TLSRecord contains a byte array of encoded data and an instance of TLSRecordHeader 

class as its attributes. 

In TLS 1.0, the Record Layer performs encryption, MAC and compression 

functions according to the algorithms exchanged during handshake procedure. The 

Record Layer architecture of the mobile protocol is modeled to support this need in an 

extensible way. This achieved with the use of the interfaces TLSEncryption, TLSMac 

and TLSCompression. These interfaces define the base methods to perform encryption, 

decryption, adding MAC, verifying MAC, compression and decompression.  
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Algorithms are implemented in the classes implementing these interfaces. This method 

eases the addition of a new algorithm to the protocol implementation. 

4.4.1. Encryption 

Mobile end-to-end security protocol performs symmetric encryption and 

decryption operations in its Record Layer. A record is encrypted before sent to the other 

peer and decrypted as soon as received from the communication channel. The same 

symmetric algorithm and cryptographic keys are used at both sides. 

During the handshake procedure, the cipher suite name is negotiated between 

the peers. This cipher suite contains the name of the symmetric cipher algorithm. The 

class BulkCipherAlgorithm matches the right algorithm model class for this symmetric 

cipher algorithm, if it is supported; and returns an instance of this class. All algorithm 

model classes implement an interface. This interface is called TLSEncrption. Record 

Layer controller class RecordLayerImpl knows only this interface and uses its methods 

to perform encryption and decryption. The actual implementation of algorithms is 

provided in the classes that implement this interface. There is one class for each 

symmetric algorithm in the real implementation. The implemented architecture supports 

DES, 3DES, AES, RC2 and IDEA symmetric algorithms, but other symmetric 

algorithms may also be added to the implementation source code easily. If the 

encryption algorithm in cipher suite name is NULL, no encryption and decryption is 

applied, which is controlled by the RecordLayerImpl class. Table 4.1 shows the 

algorithm model classes and the matching algorithms. 

Table 4.1 Symmetric Algorithms And Model Classes 

Symmetric Algorithm Algorithm Model Class 
DES DESEncryption 
3DES ThreeDESEncryption 
AES AESEncryption 
RC2 RC2Encryption 
IDEA IDEAEncryption 

This layered architecture provides a layer between the main architecture and real 

algorithm implementations. For example, in the implementation, Bouncy Castle 

cryptography package was used to provide encryption and decryption operations with 

the mentioned symmetric algorithms. As the Bouncy Castle APIs are only used in the 

encryption model classes (classes implementing interface TLSEncryption), it will be 
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possible to change the Bouncy Castle APIs with others easily. 

4.4.2. Message Authentication Code 

Applying Message Authentication Code (MAC) and verifying MAC is an 

important feature of TLS 1.0 specification [2]. MAC application verifies man-in-the-

middle attacks. Mobile end-to-end security protocol supports MAC as with TLS. 

Similar to encryption and compression models, the Record Layer architecture 

defines MAC model classes. MAC model classes implement the interface TLSMac that 

includes methods for applying and verifying MAC. The Record Layer controller class 

RecordLayerImpl knows only the interface TLSMac and uses its operations. The real 

implementation includes two model classes for MACs: MD5Mac for MD5 and SHAMac 

for SHA algorithms. The cipher suite name negotiated during handshake procedure 

defines the actual MAC algorithm. As with class BulkCipherAlgorithm, the class 

MacAlgorithm matches the right model class with the MAC algorithm and returns an 

instance of it. If the MAC algorithm in cipher suite name is NULL, no MAC is applied 

and verified, which is controlled by the RecordLayerImpl class. 

The implementation of MAC operations is provided with the APIs from Bouncy 

Castle cryptography package. As most of the operation of MAC functions are same, 

MAC model classes does not directly implement TLSMac interface, but extend a class 

called GeneralMac that implements TLSMac. GeneralMac class provides the general 

operations of MAC model classes. This class uses TLSUtils class to perform the real 

HMAC operation. 

4.4.3. Compression 

TLS 1.0 specification [2] defines compression as an optional operation. Mobile 

end-to-end security protocol defines an interface TLSCompression for compression 

model classes, but does not provide any model classes in the implementation. The 

current implementation does not support compression of records, but it may be added 

later with the use of the interface without changing the architecture.  

4.5. Utility Classes Architecture 

Mobile end-to-end security protocol architecture uses some utility classes to 

perform their functionality. These utility classes are stateless objects that provide 
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methods for common behavior. Figure 4.5 shows the object model of utility classes. 

 
Figure 4.5 Object Model Of Utility Classes 

TLSUtils is the main utility class used in the implementation. TLSUtils involves 

methods for mathematical operations, byte array concatenation, HMAC and digest 

calculation, public key derivation and reading certificates. Other classes use an instance 

of this class by using its getInstance() method that provides the use of singleton design 

pattern. This pattern reduces the use of object heap especially for mobile environment. 

TLSUtils class uses BigInteger class from Bouncy Castle cryptography package. 

BigInteger class is the J2ME™ compatible version of the original java.math.BigInteger 

class to perform big integer math operations. 

Logger is another utility class used in the implementation. The class Logger 

extends the functionality of standard print out operation and can show byte arrays as 

hexadecimal or binary numbers. It may also optionally write the results to files in J2SE 

implementation. This class is used in all of the code instead of the standard 

“System.out.println” operation. 

There are also some utility classes used for test purposes: 

 TLSServer 
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 TLSClientRSAWithDES 

 TLSClientRSAWith3DES 

 TLSClientRSAWithAES 

 TLSClientRSAWithIDEA 

 TestClientDHERSAWithDES 

 TestClientECDHEECDSAWithAES 

All these classes implement the interface TLSClientSuite. The class TLSServer is 

used to test the protocol implementation as the server. It listens for an incoming 

connection request and operates in the server mode of the protocol. 

TLSClientRSAWithDES is a test case client with the public key algorithm RSA and 

symmetric key algorithm DES. TLSClientRSAWith3DES is a test case client with the 

public key algorithm RSA and symmetric key algorithm 3DES. TLSClientRSAWithAES 

is a test case client with the public key algorithm RSA and symmetric key algorithm 

AES. TestClientDHERSAWithDES is a test case client with the public key algorithm 

DHE RSA and symmetric key algorithm DES. TestClientECDHEECDSAWithAES is a 

test case client with the public key algorithm ECDHE ECDSA and symmetric key 

algorithm AES. 

4.6. Exception Classes Architecture 

The protocol implementation defines some exception classes used for special 

purposes. These exception classes match to different alert types in TLS protocol and 

sent to the other peer as a warning or fatal error when occurs. Figure 4.6 shows the 

object model of exception classes. 

 
Figure 4.6 Object Model Of Exception Classes 
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Figure 4.6 shows the exception classes in the architecture. All exception classes 

extend from java.lang.Exception class. The exception CipherSuiteNotFoundException 

is thrown when none of the cipher suites sent by the client are supported by the server.  

The exception EncDecException is thrown when an error occurs during encryption or 

decryption of records with symmetric algorithms. The exception 

HandshakeMessagesCorrupted is thrown when the handshake messages are found to be 

corrupted by a man-in-the-middle attack during the verification after ClientFinished 

handshake message. VerificationException is thrown when the MAC appended to the 

record is not verified. UnsupportedOperationException is thrown is many different 

cases especially when one method signature is written but not implemented in this 

version. 

4.7. Object To XML Serializer 

Object To XML Serializer is a library written in Java programming language 

and can work in J2SE and J2ME™ CLDC / MIDP environments. The library API is used 

to serialize Java data objects into XML format, and deserialize XML into data objects. 

This functionality can be used as an alternative to standart object serialization; and is 

critical for J2ME™ platforms that have no reflection and serialization. Another use may 

be to persist data objects by first converting into XML format and save as text stream.  

XML Serializer is a loosely-coupled tool. Class fields at both side of 

communication do not have to be same. A converter mechanism provides this 

functionality. This brings a great advantage to this mechanism over RMI object 

serialization. The general diagram of XML serializer usage is shown in Figure 4.7.  

 
Figure 4.7 General XML Serializer Diagram 
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4.7.1.  XML Serializer Design Issues 

XML serializer is a library that is designed to work on J2ME™ environment as 

well as  J2SE™ environment and let field types to be loosely-coupled. To match these 

needs, the library should work on minimal subset. The library was written to fulfill this 

need. The main design issues of this need are as belows:  

 XML Parser: The library needs an XML parser to deserialize XML. This 

should have to work on CLDC environment as well. There are a few third party 

XML parsers for this environment like KXML, Tiny XML,  Nano XML. In the 

implementation, KXML’s DOM parser was used.  

 Reflection: Reflection is a standart API is J2SE that is used to gather 

information about the class, its fields and methods. In XML serializer, 

Reflection property is necessary while generating XML and while deserializing 

XML into objects. Unfortunately, there is no Reflection in J2ME™ CLDC / 

MIDP. To fulfill reflection need, a preprocessing step was added to serialization 

steps. Before using a used-defined data class with this tool, you must generate a 

java source code that includes needed reflection properties of this class. This 

source code is generated by another library written for this aim. For example, if 

you have a class X to be used in serialization, your must add this class name to 

an XML file and run source code generator. This process will create a file 

named XReflection.java in the same package with X class. Then you must put 

both these source files’ compiled .class files into both environments where 

serialization and deserialization will be done. Reflection source code generation 

process must be done in J2SE environment and the classes must be put into 

J2ME™ environment if necessary. In fact, this pre-processing was not needed for 

J2SE™ environment but for compatibility, it was added as well. Figure 4.8 shows 

the pre-processing step before serialization. 
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 Figure 4.8 Pre-processing Step Before Serialization 

 Field Conversion: Field conversion means private field type in serialized class 

can be different from deserialized class field type. The main need for field 

conversion came from an absence in J2ME™. J2ME™ CLDC / MIDP does not 

have double, float, Double and Float types. However a data class in J2SE™ 

environment can have these types in private fields. What will happen when this 

class is serialized in J2SE™ environment and XML sent to J2ME™ environment. 

The data class in J2ME™ environment will not have double or float type. To 

fulfill this need, user defined classes was written instead for double and float in 

J2ME™ environment. To map double type to this class, conversion rules are 

defined. There are xml to object conversion rules and object to xml conversion 

rules. Object to XML conversion rules are applied while serializing object to 

XML and XML to object conversion rules are applied while deserializing XML 

to object. Conversion rules are applied in the working environment only. For 

example, O2XML conversion rules are applied in J2ME™ environment while 

objects are serialized in this environment. XML conversion rules are read from 

converter defining XML files. Conversion rules are general and applied to all 

classes in the environment. Figure 4.9 shows the conversion of fields between 

J2SE™ and J2ME™ environments. 
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        Figure 4.9 Applying Field Conversion Rules In J2ME™ Environment 

4.7.2.  XML Serializer Architecture 

XML Serializer is formed of 3 tags in XML structure: 

 Elements: Written as ‘c’ in the xml. Has no attributes. Represents  Vector, 

Collection(LinkedList, ArrayList, etc..) or array types in Java. Elements object 

encapsulates elements tag. Includes element or field objects. 

 Element: Written as ‘e’ in the xml. Has ‘c’ attribute that holds the class name of 

the element. Represents any used-defined object that is serialized into XML. 

Element object encapsulates element tag. Includes field objects. These fields are 

private attributes in the object that have getter and setter methods.    

 Field: Written as ‘f’ in the xml. Has ‘n’ attribute that holds the name of the 

field; has ‘t’ attribute that holds the class type of the field; has ‘v’ attribute that 

holds the value of attribute; has ‘a’ attribute that shows if the field is an array 

type. Represents a private field in a user defined object that have getter and 

setter methods, or wrapper types(like Integer, Long, String) in a collection or 

array type.  

As described, every tag in XML structure is represented by an object. The object  

representing the tag is responsible of generating the part of XML text while serializing 

and generating the corresponding object while deserializing. For example, object Field 

is responsible for generating XML for the field mapping while serializing, and 

generating field object while deserializing. Object model of tag representing objects is 

shown in Figure 4.10. 
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Figure 4.10 Object Model Of XML Serializer 

Object model in Figure 4.10 illustrates an interface AbstractTag and three 

classes that implement this interface; Elements, Element and Field. The interface 

AbstractTag defines the common methods for the three tag representing classes. 

1. public void parseNode(Node node) : This method parses an XML node and 

fills the associated object’s fields with the XML node’s property values.  

2. public Object getObject() : This method is used to return the list (Vector, 

ArrayList, LinkedList) of used-defined data classes after deserializing the XML. 

3. public String getXML(Object object) throws Exception : This method 

returns the XML equivalent of a given object. The object can be a list (Vector, 

ArrayList, LinkedList), a user-defined object or a wrapper type object. 
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CHAPTER 5 
 

MOBILE SECURITY PROTOCOL IMPLEMENTATION 

The mobile end-to-end security protocol is implemented in Java to be compliant 

to both J2ME and J2SE platforms. This chapter mentions the implementation details of 

the protocol; the development environment, implementation issues and some specific 

implementation examples. The chapter includes some coding examples and explains 

them. The mobile reservation system developed to test the developed protocol is also 

introduced and explained in this chapter. 

5.1.   Development Environment 

The development environment for mobile end-to-end security protocol is 

JBuilder 8.0 Enterprise MobileSet 3 Integrated Development Environment. The 

development environment was chosen because it has an integrated MIDP application 

development support. A project may be compiled with MIDP libraries by changing the 

project JDK to J2MEWTK from project properties window. JBuilder IDE was also 

chosen for its high performance, code completion feature and user-friendly interface.   

JBuilder IDE uses Sun Microsystem’s J2ME Wireless Toolkit for MIDP 

development. J2ME Wireless Toolkit (J2MEWTK) is a toolkit that can be used separate 

or plugged into a development IDE. It provides development tools and emulators for 

MIDP application development. The latest version of J2MEWTK is version 2.1 and this 

version is used in the development and test of the developed protocol for mobile 

environments. J2MEWTK 2.1 supports MIDP 2.0, CLDC 1.1, optional Wireless 

Messaging API (JSR 120), Mobile Media API (JSR 135) and Web Services Access for 

J2ME API (JSR 172).  

J2ME Wireless Toolkit has the tool Ktoolbar that manages MIDP application 

development. Ktoolbar has menu options for creating a new MIDP application, opening 

an existing one, compiling and running the application with the set up MIDP version, 

changing the J2MEWTK and application preferences. A project created with the 

Ktoolbar consists of the following directories:  

 bin: Includes MIDP application JAD and JAR files. 
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 classes: Includes the compiled and pre-verified class files of the application. 

 lib: Includes the library files used in the application. 

 res: Includes the resource files used in the applications. These resource files may 

be image files that are displayed on the screen and usually accessed with the 

following code 

Class.getResourceAsStream(“/[resourceName]”) 

 src: Includes source files of the application 

J2MEWTK uses device emulators to run MIDP applications. Device emulators 

are software implementations of mobile devices to run and test applications before the 

real deployment. Device emulators provide a faster and easier development for mobile 

applications. Most mobile phones and PALM™ devices have their emulator software. 

Mobile phone emulators are distributed by phone vendors freely. They have the same 

operating system and visual interface with the original phone. PALM emulators emulate 

PALM OS®. A ROM file is taken from a real PALM™ device with Hotsync connection 

and loaded into the emulator software. This gives all the features of the PALM™ device 

to the emulator software including program installation and uninstallation. 

5.2. Implementation Issues 

5.2.1. Programming Language 

The programming language used in the implementation of protocol is Java™ 

programming language. Java™ language was chosen, as it is a widespread and powerful 

language. Also as the target platform for the developed protocol application is mobile 

devices and the de facto standard for mobile devices has been J2ME affected the choice 

of Java programming language. 

The advantages of using Java language in the implementation are as follows: 

 Object-oriented language enables easy architecture development and 

implementation. 

 Java language has a broad support of industry from high-end server 

implementations to small wireless device applications. 

 Java language runs on top of a VM on all platforms that abstracts the language 

from the device specific APIs and makes the Java applications portable.  

The disadvantages of using Java language in the implementation are as follows:  
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 Java language has less performance than native languages like C, in spite of new 

performance enhancements with Hotspot™ technology (CLDC HI, e.g.). This is 

especially an obstacle for protocol implementations that need high performance.  

 Java language has a limited API. It can not operate on hardware directly. The 

used CLDC / MIDP has the smallest set of API in all Java platforms that 

constraints the programmer. The API has been reduced because of size and 

performance reasons. 

Java has been divided into three platforms: J2EE for server side development, 

J2SE for standard desktop applications and J2ME for small, embedded devices. J2ME 

has its own configurations and profiles (see Chapter 3, Section 3.1.4, “Mobile Device 

Configuration Layer”). Each configuration and profile has its own library APIs. The 

main target Java platform for the mobile security protocol is J2ME platform. The 

configuration is CLDC and the profile is MIDP. This fact caused CLDC / MIDP APIs 

to be used in the implementation of the protocol. 

Most CLDC / MIDP language APIs are also valid in J2SE platform, that makes 

the developed protocol also compliant to this platform. However, because of the limits 

of mobile devices, network connection library has been changed. J2ME uses Generic 

Connection Framework (GCF) for all kinds of connections including network and file 

connections. This brings a lighter connection API when compared with the heavy 

network API of J2SE platform. J2ME version of the protocol uses GCF and the J2SE 

version uses java.net package for network connections. 

5.2.2. Coding Standards 

Coding standards are the base rules that an application code must obey. Coding 

standards are necessary for a readable and maintainable code. The mobile end-to-end 

security protocol implementation code obeys the following coding standards: naming 

conventions and package hierarchy. 

5.2.2.1. Naming Conventions 

Naming of the files and variables is very important for the readability of the 

code. Names must be meaningful and must give info about its owner. The protocol 

application has its own naming conventions. Package names give information about the 

aim of its class files. Most Java class file names start with “TLS” that gives a 
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standardization to file names. Handshake message classes take the name of the 

matching message name after the “TLS” extension. For example, the message 

ClientFinished has the class file TLSClientFinished. Implementation classes have the 

extension “Impl” at the end of the class names. These classes have the code segments 

that have business logic and that mainly behaves as the controller. Class 

HandshakeLayerImpl, RecordLayerImpl, TLSTCPSocketImpl are examples of these 

classes. Variable and method names in classes have mostly meaningful English names. 

5.2.2.2. Package Hierarchy 

Classes in protocol implementation are organized as packages. Packages have 

meaningful names and reflect the content of its classes. The protocol application has 

two main groups of packages: Packages starting with “edu” and packages starting with 

“org”. Packages starting with “edu” have been developed for the protocol application. 

They have two main sub-packages:  

 edu.iyte.crypto 

 edu.iyte.xmlserializer 

The package “edu.iyte.crypto“ includes class files for security protocol and 

cryptography abstraction classes. It has the following sub-packages in hierarchy:  

 edu.iyte.crypto.micro 

 edu.iyte.crypto.micro.tls 

 edu.iyte.crypto.micro.tls.exception: Includes protocol layer exception classes 

(see Chapter 4, Section 4.6, “Exception Classes Architecture”).  

 edu.iyte.crypto.micro.tls.handshakelayer: Includes handshake layer message 

classes (see Chapter 4, Section 4.3.1, “Handshake Message Classes”). 

 edu.iyte.crypto.micro.tls.handshakelayer.encryption: Includes handshake layer 

public key encrption classes (see Chapter 4, Section 4.3.2, “Key Exchange And 

Authentication Classes”).  

 edu.iyte.crypto.micro.tls.handshakelayer.keyagreement: Includes handshake 

layer key agreement classes (see Chapter 4, Section 4.3.2., “Key Exchange And 

Authentication Classes”). 

 edu.iyte.crypto.micro.tls.handshakelayer.signer: Includes handshake layer digital 

signature classes (see Chapter 4, Section 4.3.2., “Key Exchange And 

Authentication Classes”). 
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 edu.iyte.crypto.micro.tls.implementation: Includes main controller classes for 

the protocol application (see Chapter 4, Section 4.2., “Main Architecture”).  

 edu.iyte.crypto.micro.tls.recordlayer: Includes record layer classes (see Chapter 

4, Section 4.4., “Record Layer Architecture”). 

 edu.iyte.crypto.micro.tls.recordlayer.encryption: Includes record layer private 

key encryption classes (see Chapter 4, Section 4.4.1., “Encryption”). 

 edu.iyte.crypto.micro.tls.recordlayer.mac: Includes record layer MAC classes 

(see Chapter 4, Section 4.4.2., ”Message Authentication Code”). 

 edu.iyte.crypto.micro.tls.recordlayer.parameters: Includes record layer parameter 

classes.  

 edu.iyte.crypto.micro.tls.utils: Includes utility classes for security protocol (see 

Chapter 4, Section 4.5, “Utility Classes Architecture”). 

 edu.iyte.crypto.micro.utils: Includes utility classes for test cases and other uses.  

The package “edu.iyte.xmlserializer” includes class files for object to xml 

serialization and deserialization. It has the following sub-packages in hierarchy:  

 edu.iyte.xmlserializer.parser: Includes main API class XMLParser. 

 edu.iyte.xmlserializer.tags: Includes xml serializer tag representing classes.  

 edu.iyte.xmlserializer.util: Includes utility classes for field conversion. 

Packages starting with “org” are libraries developed by third parties and used by 

the implementation. The package “org.bouncycastle” is the main package for Bouncy 

Castle Cryptography Library class files and the package org.kxml is the main package 

for KXML library class files. 

5.2.3. Implementation Versions 

The mobile end-to-end security protocol implementation has two versions: one 

for J2ME platform and one for J2SE platform. The two versions have the same 

architecture and very similar implementations. The core of the protocol implementation 

is based on J2ME CLDC / MIDP Java language rules and libraries that are also 

compliant to J2SE platform. The following issues were regarded in implementation to 

provide the compliant versions:  

 Vector class type was used instead of List or Collection interfaces implementing 

classes that are missing in J2SE environment. 

 No double or float data types were used, as they are missing in CLDC profile. 
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 Both third-party libraries used (KXML and Bouncy Castle) were chosen as they 

can work on both J2SE and J2ME platforms. 

 No class type java.io.File was used in the code to write logs. This class type is 

not present in MIDP. 

 No serialization or reflection feature was used in the implementation. To avoid 

these, a new method that was used instead of reflection was developed in the 

XML Serializer library design and implementation.  

The main difference between two versions is network connection application 

programming interfaces.  

5.3. Implementation Of The Security Protocol 

5.3.1. Network Connections 

The security protocol implementation needs secure network connections to send 

and receive data between peers. Network connection implementations are abstracted 

from business logic classes and appear in socket classes that are used by other classes 

(see Chapter 4, Section 4.2, “Main Architecture”).  

J2ME uses Generic Connection Framework (GCF) and J2SE uses java.net 

package network connection classes to provide network connections. The protocol 

implementation may use TCP and UDP sockets and server sockets for network 

connections between client and server. The socket connection type is determined by the 

following constants in class TLSSocket: 

 SOCKET_IMPL_CLASS 

 SERVERSOCKET_IMPL_CLASS 

These constants define the socket implementation classes for socket and server 

socket. The default value of SOCKET_IMPL_CLASS constant is 

“edu.iyte.crypto.micro.tls.implementation.TLSTCPSocketImpl” and the default value of 

SERVERSOCKET_IMPL_CLASS is “edu.iyte.crypto.micro.tls.implementation. 

TLSTCPServerSocketImpl”. The socket implementation classes may be changed to 

other socket connections by only changing these constant values. For example, 

connection may be UDP based by changing the value of  SOCKET_IMPL_CLASS to 

“edu.iyte.crypto.micro.tls.implementation.TLSUDPSocketImpl”. Other socket 

implementation classes may also be added later. 
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In J2SE version, the following code is used to provide a stream-based (for TCP 

connection) connection: 

Socket socket = new Socket(url, port); 

DataInputStream in = new DataInputStream(socket.getInputStream()); 

DataOutputStream out = new DataOutputStream(socket.getOutputStream()); 

This code segment opens a socket connection with the specified host at a 

requested port and takes input and output streams for reading and writing data. This 

code is used to provide a connection from client side of the protocol to the server side. 

The same operation is done with the following code in J2ME MIDP version of the 

protocol implementation: 

StreamConnection socket = (StreamConnection)Connector.open(url + port); 

DataInputStream in = new DataInputStream(socket.openInputStream()); 

DataOutputStream out = new DataOutputStream(socket.openOutputStream()); 

As it can be seen from the code segments, the only difference between two 

versions is in the first line of the code. J2ME version uses the class Connector and gives 

the parameters url and port to it to provide a parametric connection. The syntax of the 

url is “socket://[remote adress]:” and the port can be 5000 for an application using the 

protocol implementation. The class StreamConnection was used instead of the class 

Socket for socket type as class StreamConnection is present in MIDP 1.0 while class 

Socket has been added since MIDP 2.0. 

Server sockets are used in server side of the protocol to receive connection 

requests and to establish a connection with the client. The following code segment is 

used to provide a server socket and to receive connections in J2SE version of the 

implementation: 

  ServerSocket serverSocket = new ServerSocket(this.getPort()); 

  while (true) 

  { 

    Socket socket    = serverSocket.accept(); 

    this.in = new DataInputStream(socket.getInputStream()); 

    this.out = new DataOutputStream(socket.getOutputStream()); 

 } 

The code segment above listens for connection requests at a specified port, 

opens a socket connection for the connections and receives the input and output streams 

for of the connection. The same operation is performed with the following code in 



 
 87

 
        

 
 

J2ME version: 

StreamConnectionNotifier serverSocket = 

(StreamConnectionNotifier)Connector.open(this.getUrl() + this.getPort() ); 

while (true) 

{ 

  StreamConnection socket = serverSocket.acceptAndOpen(); 

  this.in = new DataInputStream(socket.openInputStream()); 

  this.out = new DataOutputStream(socket.openOutputStream()); 

} 

The code segment above uses Generic Connection Framework for listening to 

socket. It uses the class StreamConnectionNotifier instead of the class ServerSocket as 

the class StreamConnectionNotifier is present in both MIDP 1.0 and MIDP 2.0 while 

class ServerSocket has been added since MIDP 2.0. The syntax of the url is “socket://:”.  

An alternative way of network connections in mobile security protocol 

implementation is datagram-based UDP sockets. UDP is not reliable protocol and the 

implementation does not guarantee its reliability. The following code segment was used 

to provide a datagram connection from client to server in J2SE environment: 

DatagramSocket socket = new DatagramSocket(localPort); 

DatagramPacket sendPacket = new DatagramPacket(b, b.length); 

sendPacket.setAddress(InetAddress.getByName(url)); 

sendPacket.setPort(port); 

The code above opens a datagram socket connection at a specified port and 

creates a datagram packet to send from that port to the requested url. The same 

operation is performed with the following code in J2ME MIDP version: 

DatagramConnection socket = (DatagramConnection)Connector.open(url + port); 

Datagram sendPacket = socket.newDatagram(b, b.length); 

This code also uses GCF to provide a datagram-based connection. The syntax of 

the url is “datagram://[remote adress]:”.  

5.3.2. Multithreading 

Multithreading is the concurrent execution of threads. The mobile end-to-end 

security protocol has a multithreaded implementation for its server socket classes. 

Server socket classes need to listen for a connection request and open a socket for each 

connection. A single-threaded implementation would be able to handle only one secure 
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connection. This problem is solved by server socket classes running in separate threads.  

Classes TLSTCPServerSocketImpl and TLSUDPServerSocketImpl listen for 

connections. When they receive a connection, they create an instance of the class 

TLSServerSocket and run it in a separate thread.  This is achieved as the class 

TLSServerSocket implements the interface java.lang.Runnable. TLSServerSocket 

manages the handshake and data transmission of one client at server side. There is the 

number of TLSServerSocket thread instances as much as the number of active clients.   

The classes TLSTCPServerSocketImpl and TLSUDPServerSocketImpl also run 

in separate thread from the main thread as they block the execution. However, they have 

only one instance of thread at a time.  

5.3.3. Message Transmission 

Message transmission involves the transmission of messages at application 

level. These messages are handshake messages and user data messages sent over secure 

protocol. 

Handshake messages are designed as classes in the architecture (see Chapter 4, 

Section 4.3.1, “Handshake Message Classes”). The data of the messages was put as 

private attributes of these classes. The class objects are sent from one side of the 

communication to the other side by using the XML serializer library, mentioned in 

Chapter 4, Section 4.7, “Object To XML Serializer”. 

XML Serializer needs the class metadata at runtime. The lack of reflection API 

in J2ME platform caused a new method to be developed instead of reflection. This 

method involves the source code generation for class metadata. There is a class called 

SourceGenerator that generates a class file having the metadata info of the class, in 

J2SE version of the implementation. SourceGenerator generates a Java file with the 

class file’s name having the extension “Reflection” at the end. The reflection class is put 

at the same directory with the original class. While the original class is serialized or 

deserialized, the reflection file is looked up and the referencing class file metadata info 

is taken. 

XML Serialization is used to serialize handshake message classes in the protocol 

implementation. The reflection class files for all handshake message classes are 

generated by the SourceGenerator code generator tool. The following steps were done 

to provide the serialization of message classes: 
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 Put the names of the handshake message classes in reflection.xml file, between 

convert tags. 

 Run SourceGenerator class file. This produces class files with the end of names 

as “Reflection” in the same packages. 

 Put XML serialization and deserialization codes in socket implementation 

classes. These codes serialize objects into XML byte streams and the reverse. 

The following code segment serializes a given object into XML: 

XMLParser parser = XMLParser.getInstance(); 

String xml = parser.generateXML(object); 

ByteArrayInputStream stream = new ByteArrayInputStream(xml.getBytes()); 

The following code segment deserializes XML data into objects: 

XMLParser parser = XMLParser.getInstance(); 

is.reset(); //is is a variable of type InputStream 

Vector vector = (Vector) parser.consumeXML(is); 

5.4. Use Of The Security Protocol Library 

Mobile end-to-end security protocol was implemented to be used in high-level 

applications for secure transmission of object data. In this section, a sample application 

will be introduced that uses the developed security protocol implementation. The 

application is a web-based hospital reservation system that was designed and developed 

by the author of this thesis [42]. The hospital reservation system was chosen as the 

sample application as it has a working and extensible architecture. The application was 

developed to be reached over web browsers, but in this work it is extended to support 

mobile client as well. The integration to support this extensibility for both client and 

server-side will also be explained in the proceeding subsections. 

5.4.1. Hospital Reservation System 

Hospital Reservation System is a web-based J2EE (Java 2 Enterprise Edition) 

application. This application has three related parties: 

 Patient: Hospital reservation system lets patients to take reservation from the 

doctors over a web browser. The user registers and logs into a web site where he 

has access only to his information. In this web site, the user (patient) may take 

reservation from any of the listed doctors he wants, at the requested date and 

time; browse his reservation requests and the current states of them; the 
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available units and doctors for reservation system and his personal information. 

After the patient requests a reservation by using this web application, he may 

learn the result of the reservation request in three ways:  

o By looking at the same web site 

o By the e-mail reaching to him 

o By phoning the phone number given to him at the end of the reservation 

request process 

Figure 5.1 shows the reservation request screen of the patient web site of the 

application. 

 
Figure 5.1 Reservation Request Screen Of The Hospital Reservation System 

 Unit Secretary: Each unit has its own web site that they can see the reservation 

requests filled for the doctors of the unit. Unit secretary side may be a real 

secretary or the doctor himself; this fact does not affect the application. Unit 

secretary may either accept or deny the reservation requests. He may also query 

the patients, learn and change the reservation system related information of the 

physicians (like examination costs) and unit. Figure 5.2 shows the reservation 

request evaluation screen of the unit secretary web site of the application. 
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Figure 5.2 Reservation Evaluation Screen Of The Hospital Reservation System 

 Administrator: The whole application may be administered over a web 

interface. Administrator is the hospital administrator(s) that controls the 

reservation system. Administrator may add units and physicians to the system, 

change the reservation system related info of physicians and units, manage 

system users, query patients and change general system configurations. A user 

that has administrator privilege may also login to the system as a unit secretary. 

Figure 5.3 shows the reservation system related doctor information system of the 

administrator web site of the application. 
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Figure 5.3 Doctor Info Screen Of The Reservation System 

5.4.1.1. The Architecture Of The Hospital Reservation System 

Hospital reservation system is a J2EE application running on an application 

server. Figure 5.4 shows the main architecture of the hospital reservation system. 

 
Figure 5.4 Architecture Of The Hospital Reservation Application 

  The architecture of the system consists of three layers: 

 Web Layer: Web Layer of the application consists of Servlet classes, JSP and 

HTML pages and Java Scripts. The web layer forms graphical user interface of 

the application. There are three servlets that act as controllers: loginServlet for 
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the patient side, yetkiliServlet for the unit secretary side and adminServlet for the 

administrator side. Each servlet directs the requests to the requested JSP pages 

which are the view part of the MVC (Model-View-Controller) architecture. 

 EJB Layer: EJB Layer of the application consists of EJB (Enterprise Java 

Beans) components. There are 7 of them: 2 of them as stateful session bean, 3 of 

them as stateless session bean and 2 of them as entity beans. These EJB 

components access the database and perform the business related tasks. EJB 

components are lightweight versions of its predecessor CORBA components and 

run in the server-side. EJB components are multithreaded, have their security 

model and usable by both web applications (Servlets) and desktop applications. 

Hospital Reservation System accesses these enterprise beans from web 

applications. 

 Database Layer: Database Layer of the application consists of database tables 

and data. The application uses Oracle Database, but is not dependent on database 

vendor. The data in the database tables is accesses and updated by SQL scripts 

in EJB components. 

5.4.2. Mobile Hospital Reservation System 

Although the hospital reservation system application was web-based, it was 

designed to be scalable and support other access media as well. Mobile devices are 

among these access media. These mobile devices are mainly mobile phones that will 

access the main system over GPRS. 

Mobile hospital reservation system is an extension to the hospital reservation 

system to support the mobile devices to access the main system. The extension was 

designed to match the following issues:  

 The mobile hospital reservation system must use the same architecture and 

components as the web-base hospital reservation system. The existing EJB 

components must be used for business operations and database transactions. No 

new business code must be added. 

 The mobile application must be a part of the main hospital reservation system. 

Users must be able to access the system via mobile phones as well as web 

browsers. Two media must have similar user interfaces, as much as possible. 

 The mobile application must be a separate layer in the whole hospital 
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reservation system in the server side. It must be plugable and must not interfere 

with the already existing application components.  

 The mobile clients must have thick-client user interfaces; that would be ideally 

developed with J2ME MIDP.  

 The mobile client application must communicate with the server-side mobile 

application layer with the proposed and developed mobile security protocol. The 

mobile client must request an action and the server must perform the action by 

using the EJB components of the hospital reservation system. Results must be 

sent to the client at object level by using the established secure connection. 

 The establishment of the secure connection must be performed before login 

operation and closing of the secure connection must be performed after logout 

operation. 

Mobile version of the hospital reservation system was aimed to support the 

patients’ reservation requests from the doctors. The patients will login to the system as 

in the web application, choose the unit, doctor and time duration they want to have 

examination and will request for a reservation. The selected attributes will be sent to the 

main system over the secure connection protocol implemented; the desired operations 

will be performed by the EJB component and the result will be sent to the mobile device 

over the secure connection. As the secure connection will be at application level, it can 

be over GPRS connection that provides the real communication. The mobile application 

scenario is small as it is used to provide a scalable architecture and to test the developed 

mobile end-to-end security protocol. 

The architecture of the mobile hospital reservation system does not change the 

hospital reservation system architecture, shown in Figure 5.4, but has some additions to 

it. The architecture consists of two parts: 

 Server-Side Of The Mobile Application 

 Client-Side Of The Mobile Application 

5.4.2.1. Server-Side Architecture Of The Mobile Hospital Reservation System 

The server-side architecture of the mobile application is shown in Figure 5.5. 
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Figure 5.5 Architecture Of The Server Side Of Mobile Hospital Reservation System 

The server side of the mobile hospital reservation system is included in the 

hospital reservation system web application. The integration is provided by the servlet 

MobileServlet. This servlet is initialized when the hospital reservation system 

application is invoked. The MobileServlet runs the MobileAdapter in a separate thread. 

The class MobileAdapter is the class where the server socket listener is set. By this way, 

the server listens for secure connection requests at the specified port. This done by the 

following code segment in the run method of MobileAdapter class. 

TLSSocketFactory factory = TLSSocketFactory.getInstance(); 

TLSServerSocketListener listener = (TLSServerSocketListener) factory. 

createSocket(TLSSocketFactory.SERVER_SOCKET); 

listener.setURL("localhost"); 

listener.setPort(5002); 

listener.setLocalPort(5001); 

TLSSocketImpl impl = listener.accept(this); 

impl.addConnectionNotifier(this); 
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The code segment above creates a server socket by using the mobile security 

protocol library at port 5001. The last line of code adds this class as the connection 

notifier for mobile security application. The connection notifier is the application of the 

observer pattern in mobile security application. The security protocol application calls 

the following method when the secure connection is established between a client and a 

server. 

  public void connectionStarted(TLSSocket socket) 

  { 

    System.out.println("connection started"); 

    MobileUser user = new MobileUser(socket); 

  } 

In the code segment above, a mobile user instance is created when a secure 

connection starts, and a TLSServerSocket class instance is given as a parameter. The 

class MobileUser is the server-side representative of a mobile client. Each mobile client 

has an instance of class MobileUser in the server-side. This class also implements the 

ConnectionNotifier interface and listens to secure connection events. The used event in 

this class is receiving of objects in the secure session, as shown in the code segment 

below: 

 public void objectReceived(Object object) 

 { 

   if (object instanceof Action) 

   { 

     long actionNo = ( (Action) object).getActionNo(); 

     HandlerManager manager = new HandlerManager(); 

     manager.process((int)actionNo, socket); 

   } 

 } 

The code segment above receives the action from the client and sends this action 

and the user’s active socket to the HandlerManager classes’s process method. The 

model between a mobile client and a server is a request-response oriented model. This 

model is achieved by the actions and the associated action handler classes defined. The 

class HandlerManager is a controller class that directs the actions to the associated 

action handler classes. The actions defined for the developed mobile application are as 

follows: 
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public static final int PATIENT_LOGIN_VERIFY = 1; 

public static final int GET_ALL_UNITS = 2; 

public static final int GET_PHYSICIANS = 3; 

public static final int GET_ PHYSICIANS_FREE_HOURS = 4; 

public static final int MAKE_RESERVATION = 5; 

Each action has an associated action handler class.  As shown in Figure 5.5, all 

action handler classes implement the interface RequestHandler. This interface has a 

method  

public Object processRequest(TLSSocket socket) throws Exception 

that is called by the HandlerManager class to process the action requests. 

Action handler classes receive the object data sent from mobile clients over the 

secure connection established. They use the TLSServerSocket classe’s receiveObject() 

method for this target. Each action handler class has an instance of class MobileUtils 

that is used as a proxy between the hospital reservation system EJB layer and the mobile 

application layer. The class MobileUtils accesses the ReservationEJB, 

SystemTransactionsEJB and UserEJB enterprise beans to add the reservation request, to 

query physicians and units and to verify login info. The result data is sent to mobile 

clients over the secure connection by using the TLSServerSocket classe’s sendObject() 

method. The data sent can be either a user-defined object type, or a wrapper type like 

java.lang.Boolean. 

5.4.2.2. Client-Side Architecture Of The Mobile Hospital Reservation System 

The client side of the mobile hospital reservation system is a J2ME MIDP 

application that is aimed to work on mobile phones supporting MIDP 1.0. The user 

interfaces of the application are implemented with the MIDP’s lcdui API. The 

connection with the server is established with the mobile end-to-end security protocol 

implementation proposed in this thesis. The client-side architecture of the mobile 

application is shown in Figure 5.6.  
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Figure 5.6 Architecture Of Client Side Of Mobile Hospital Reservation System 

The class MainMidlet is the MIDlet class of the mobile application. It initiates 

the LoginMidlet when the application is executed. The LoginMidlet displays patient 

number, patient name, patient surname and patient’s father name text boxes and expects 

the user to enter these data. The login screen and the reservation request screen of the 

application is shown in Figure 5.7. 
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Figure 5.7 User Interface Screens Of Mobile Hospital Reservation System 

The screens above were taken by running the program on an MIDP device 

emulator. 

As the user requests to log in to the system, the user information entered is 

received and stored in the LoginInfo class object. A secure connection is established by 

using the secure connection protocol library developed. The code segment below does 
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the connection establishment work: 

TLSSocketFactory factory = TLSSocketFactory.getInstance(); 

TLSClientSocket clientSocket = (TLSClientSocket) 

factory.createSocket(TLSSocketFactory.CLIENT_SOCKET); 

clientSocket.setPort(5002); 

clientSocket.setLocalPort(5001); 

clientSocket.setUrl("socket://localhost:"); 

clientSocket.performHandshake(); 

The code segment above creates a client socket for secure connection and 

performs handshake procedure with the server side secure connection listener. If the 

handshake steps are successful, a TLSClientSocket instance is returned to the mobile 

application. This TLSClientSocket instance is used to send and receive object data. 

These object data can be user-defined objects or wrapper types (like java.lang.Boolean).  

As mentioned in Section 5.4.2.1, “Server Side Architecture Of Mobile Hospital 

Reservation System”, the communication between client and server has a request-

response oriented model. This is achieved by sending the object Action with the 

requested action parameter over the TLSClientSocket class instance’s sendObject() 

method. The second object sent is application-screen defined. In the login scenario, it is 

the LoginInfo object. The mobile security protocol implementation receives the 

LoginInfo object, serializes it into XML by using the XML serializer library and sends 

the XML data to the server by encoding it with the security parameters generated during 

handshake. All these steps are transparent to the application and occur at mobile 

security application level. The class LoginInfoReflection, shown in Figure 5.6, is a 

generated class to give the reflection properties of LoginInfo class used during XML 

serialization (see Section 5.3.3, “Message Transmission”). 

The user sees the reservation request screen as he logs in to the system. At this 

screen, the list of units available for reservation is queried from the server reservation 

system and displayed. As the user selects a unit, the physicians of this unit are displayed 

and as the user selects a physician, the free hours of this physician are shown in the 

screen. All the data transfer between the client and the server is performed with the 

secure connection established. After selection operation is completed, the user may 

request a reservation. At this time, the reservation request action is sent before the 

selected reservation request parameters. The server performs the reservation process by 
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using the EJB components of hospital reservation system and returns the result state to 

the mobile client. The user may close the secure connection by logging out the 

application. 
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CHAPTER 6 
 

MOBILE END-TO-END SECURITY PROTOCOL TEST RESULTS 

Mobile end-to-end security protocol was designed and implemented to have a 

reliable and maintainable protocol implementation that would have acceptable 

performance results. This chapter mentions about the tests made to the protocol 

implementation to measure the performance averages. The chapter presents the scope of 

tests, the platform tests were performed, different test cases prepared and the evaluation 

of the test results. The result values of those test cases are given in Appendix. 

6.1.   Scope Of The Test Cases 

The mobile end-to-end security protocol tests involve the running performance 

tests of both the client and server modes of the protocol with different cipher suites and 

in different Java VMs. Tests will be made in both J2SE and J2ME platforms. The secure 

connection will be established with different cipher suites and both TCP and UDP will 

be used as the underlying network connection protocol. 

The tests of the protocol is divided into two main sections: 

 Test of the handshake procedure 

 Test of the application level object transmission and receiving 

As the handshake procedure has many steps, it is divided into different time 

spans. By this way, it is aimed to measure the real performance of the steps and to 

define bottlenecks in the protocol implementation. Some time spans will only be 

available in specific cipher suites. Table 6.1 shows the time spans in both server and 

client modes of the protocol. 

Table 6.1 Mobile Security Protocol Time Spans Used In Tests 

Operation Server Client 
Public key signing √  
Public key verification  √ 
Key pair generation √ √ 
Pre-master secret generation √ √ 
Master secret generation √ √ 
TLS keys generation √ √ 
All handshake √ √ 
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Tests will be performed by using different cipher suites. The naming convention 

of the cipher suites was explained in chapter 2, section 2.1.2.3, “TLS Cipher Suites”. 

Server side of the test program supports all cipher suites available to the mobile security 

protocol implementation. Each test client supports only one cipher suite and requests the 

handshake to be performed with this cipher suite when it sends ClientHello message to 

to the server. Thus, the connection will be established with this cipher suite. Table 6.2 

shows cipher suites used in the protocol tests. The first cipher suite in table 6.2 is non-

ephemeral that means asymmetric keys are not generated at run-time. The other cipher 

suites in table 6.2 are ephemeral that means asymmetric keys are generated at run-time. 

Test results given in Appendix are organized to compare ephemeral cipher suite results 

with each other. The other comparison given in tables in Appendix is between non-

ephemeral RSA and ephemeral RSA. 

Table 6.2 Cipher Suites Used In Protocol Tests 

Cipher Suite Authentication & 
Key Exchange 
Algorithm 

Symmetric 
Algorithm  

Hash 
Algorithm 

TLS_RSA_WITH_AES_CBC_SHA RSA AES SHA 
TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5 RSA_EXPORT RC2 MD5 
TLS_DHE_RSA_WITH_DES_CBC_SHA DHE_RSA DES SHA 
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA ECDHE_ECDSA AES SHA 

The same test cases will be repeated with both TCP and UDP network protocols 

behind the secure protocol. TCP (Transmission Control Protocol) is the recommended 

network protocol to be used with TLS in TLS 1.0 Specification [2]. It establishes a 

secure connection between the peers and guarantees data packet delivery. UDP (User 

Datagram Protocol) does not establish connections and is an unreliable protocol. TLS 

1.0 Specification does not mention the use of UDP with TLS, but it was added to the 

protocol implementation for test purposes. As the UDP protocol does not establish a 

connection, it is expected that UDP tests will have better performance results. 

Mobile end-to-end security protocol was designed and implemented to be run on 

J2ME CLDC / MIDP platforms including cellular phones and PALM PDAs. But by its 

extensible architecture, it may also run on J2SE VMs that allows the protocol 

implementation to be used in desktop server machines. By taking care of these issues, 

the following architectures are defined for protocol tests: 

 J2SE–J2SE: Both server and client applications of the protocol implementation 

run on J2SE platform. 
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 J2SE–J2ME: Server side of the protocol implementation run on J2SE platform 

and client side of the protocol implementation run on J2ME platform. 

 J2ME–J2ME: Both server and client applications of the protocol implementation 

run on J2ME platform. 

The tests will be performed according to the following test scenario:  

 A server listening to secure connection requests 

 A client requesting a connection with the server 

 Performance of the handshake procedure 

 Sending of a test object from client to server over the secure connection 

established. The test object is called Person that has the private attributes id, 

name and surname. 

6.2.  Desktop Tests 

Desktop tests are performed on a standalone personal computer. Both the client 

and server test programs run on this computer, whether on J2SE VMs or on the device 

emulator environment. There is no network between client and server programs, so no 

network overhead is measured. The measured values are the exact running times of the 

mobile security protocol implementation. 

6.2.1. Desktop Test Platform Configuration 

The test programs on the desktop computer are run on a Pentium-III with 256 

MB RAM and 20 GB HD space. Different test platforms are established for different 

architectures mentioned in Section 6.1, “Scope Of The Tests”.  

J2SE-J2SE architecture will be tested by running client and server test programs 

on J2SE VMs on the desktop tests. The version of Java VM used is “Java Hotspot™ 

Client VM (build 1.4.0-rc-b91, mixed mode)”. Test programs were written to run the 

protocol implementation in both server and client modes. These programs are run from 

batch files (.bat) prepared. Both server and client programs will be run on the same 

computer to prevent network overheads and to be able to measure the real performance 

of the protocol implementation. Some logging code was added to the protocol 

implementation code to be able to measure the performance times of time spans defined 

and show them in standard output. The test scenario given in Section 6.1 will be 
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repeated 100 times one after each other and the highest (max), lowest (min) and average 

(total / 100) values will be measured. 

J2SE-J2ME architecture will be tested by using the server program used in 

J2SE-J2SE architecture for server-side and a J2MEWTK (Wireless Toolkit) device 

emulator for client side on the desktop tests. The server program will be run from the 

batch file and the client will be run from the device emulator environment. The same 

test scenario will be used with J2SE-J2SE architecture and the results will be measured 

as the average, highest and lowest values of 100 times running of the test scenario in a 

loop. 

J2ME-J2ME architecture will be tested by running both server and client test 

programs on device emulators on desktop tests. At this case, one device emulator will 

run the server test program and the other device emulator will run the client test 

program. The same test scenario will be used with J2SE-J2SE architecture and the 

results will be measured as the average, highest and lowest values of 100 times running 

of the test scenario in a loop. 

6.2.2. Desktop Test Cases With TCP 

Tests were performed in the scope and configuration told in Section 6.1 and 

6.2.1. This section mentions about the test case results measured when the tests are 

performed on a single desktop PC and the underlying transport protocol between is 

TCP. Thus, the constant parameter in tests is TCP transport protocol; the other 

parameters are variable. The test case results will be explained in tables according to the 

architectures they were made and the cipher suites agreed upon. Same tests were 

repeated for 100 times. The average, max and min values of time spans defined are 

given in Appendix and the related charts will be given to compare the results. All the 

values in tables and charts are milliseconds (ms). “0” value in tables mean that the time 

duration is below milliseconds. N/A value in tables means that the time span is not 

applicable in the cipher suite. 

Table A.1 and table A.2 in Appendix chapter show the secure communication 

time span durations when both client and server side of the implementation run on J2SE 

platform and transport protocol between is TCP. Table A.1 compares ephemeral cipher 

suites. This comparison is made as all ephemeral cipher suites generate asymmetric 

keys at run-time. Table A.2 compares ephemeral RSA (RSA export) and non-ephemeral 
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RSA cipher suites. There is no asymmetric key generation in non-ephemeral RSA, thus 

the connection duration is shorter.   

In table A.2, the lowest client handshake time times are of 

TLS_RSA_AES_WITH_AES_CBC_SHA cipher suite with 132 milliseconds average 

in the client. This is the expected case as the cipher suite is non-ephemeral and does not 

require key pair generation at run-time. Public key is stored at the used certificate, and 

sent to the client with ServerCertificate message. It is seen that, the highest average 

value in table A.1 is of TLS_DHE_RSA_WITH_DES_CBC_SHA cipher suite with 

2108 millisecond average in the client. This cipher suite is ephemeral, that means keys 

are generated at run-time. The longest public key verification time in table A.1 is of 

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA cipher suite. That means 

ECDSA takes longer time to verify keys than DSA. In tables A.1 and A.2, it is observed 

that the average, max and min server handshake times take shorter than client 

handshake times. The reason is that operations applied in server side of TLS 

implementation take less time than client side operations. 

Figure 6.1 shows the comparison chart of average client total handshake times of 

the ephemeral test case cipher suites when both the client and the server run on J2SE 

platform and the transport protocol between is TCP. 
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Figure 6.1 Ephemeral Client Average Handshake Between J2SE-J2SE Platforms 

Figure 6.2 shows the comparison chart of ephemeral average server total 

handshake times of the ephemeral test case cipher suites when both the client and the 
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server run on J2SE platform and the transport protocol between is TCP. 
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Figure 6.2 Ephemeral Server Average Handshake Between J2SE-J2SE Platforms 

Figure 6.3 shows the comparison chart of average client total handshake times of 

the non-ephemeral test case cipher suites when both the client and the server run on 

J2SE platform and the transport protocol between is TCP. As can be seen from Figure 

6.1 and 6.3, RSA_EXPORT is the only cipher suite to take place in both comparisons. 

The reason is that it is both ephemeral and RSA cipher suite. 
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Figure 6.3 Non-Ephemeral Server Average Handshake Between J2SE-J2SE 
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Table A.3 and table A.4 in Appendix show the secure communication time span 

durations when the client runs on J2ME MIDP Platform of the device emulator and the 

server side of the implementation runs on J2SE platform. Both processes run on the 

same desktop personal computer. Transport protocol between is TCP. Table A.3 

compares ephemeral cipher suites. This comparison is made as all ephemeral cipher 

suites generate asymmetric keys at run-time. Table A.4 compares ephemeral RSA (RSA 

export) and non-ephemeral RSA cipher suites. All the result values are milliseconds. 

The average, max and min values were found at the end of 100 times of handshake 

procedure between the client and the server. 

The values in tables A.3 and A.4 are by far higher than the values in tables A.1 

and A.2, especially in client side. The results show that the device emulator 

environment processes very slowly. The slowest cipher suite in table A.3 is 

TLS_ECDHE_ECDSA_WITH_AES_ 128_CBC_SHA. The reason for this slowness is 

ECDSA public key verification and elliptic curve key pair generation operations. 

Another attention point in table A.3 is high handshake times in server side results. In 

fact, the server side test program in this configuration runs on J2SE environment and 

expected to give similar results to server side results in table A.4. The unexpected 

results are because of the latencies in the client side operations as the protocol 

operations are processed in sequence. 

Tables A.5 and A.6 in Appendix show the secure communication time span 

durations when both the client and server side implementation of the protocol run on 

J2ME MIDP Platform of the device emulator. Both processes run on the same desktop 

personal computer. The transport protocol between is TCP. Table A.5 compares 

ephemeral cipher suites. This comparison is made as all ephemeral cipher suites 

generate asymmetric keys at run-time. Table A.6 compares ephemeral RSA (RSA 

export) and non-ephemeral RSA cipher suites. All the result values are milliseconds. 

The average, max and min values were found at the end of 100 times of handshake 

procedure between the client and the server. 

In tables A.5 and A.6, the measured values in both client and server side are 

lower than the values in tables A.3 and A.4. The reason is that both client and server test 

programs are run on device emulator environment which has slow processing speed. 

Besides cryptographic operations, big number operations like “TLS Keys Generation” is 

also very slow in this table. This result gives the idea that big number operations require 
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high system memory and processing speed and are not ideal for J2ME environment. 

Figure 6.4 shows the comparison chart of average client total handshake times 

when the connection is between J2SE-J2SE, J2SE-J2ME and J2ME-J2ME platforms. 

The cipher suite used in the tests is TLS_ECDHE_ECDSA_WITH_AES_SHA that is 

an ephemeral cipher suite. 
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        Figure 6.4 Handshake Times Of TLS_ECDHE_ECDSA_WITH_AES_SHA Suite 

Figure 6.5 shows the comparison chart of average object send times when the 

connection is between J2SE-J2SE, J2SE-J2ME and J2ME-J2ME platforms respectively. 

The cipher suite used in the tests is TLS_ECDHE_ECDSA_WITH_AES_SHA. 
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  Figure 6.5 Average Object Send Times With TLS_ECDHE_WITH_AES_SHA Suite 
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6.2.3. Desktop Test Cases With UDP 

All tests in section 6.2.2 were performed when the transport protocol between 

was TCP. End-to-end security protocol implementation also supports UDP as the 

transport protocol. A group of tests were performed to measure the performance of the 

implementation with UDP connection and to compare it with TCP connection. This 

group of tests was also performed on a single PC running both the client and server test 

programs. All the result values are milliseconds. The average, max and min values were 

found at the end of 100 times of handshake procedure between the client and the server. 

N/A value in tables means that the time span is not applicable in the cipher suite. 

Tables A.7 and A.8 in Appendix show the results of the tests with UDP 

connection when the cipher suite is TLS_RSA_WITH_AES_SHA and application 

architecture is J2SE-J2SE. Table A.7 compares ephemeral cipher suites. This 

comparison is made as all ephemeral cipher suites generate asymmetric keys at run-

time. Table A.8 compares ephemeral RSA (RSA export) and non-ephemeral RSA 

cipher suites. 

The results in table A.7 show that the time durations with UDP connection are 

very close to time durations with TCP connection although it was expected to be far. 

UDP has a slight better performance. All the comments done under table A.1 are also 

valid for this table. 

Figure 6.6 shows the comparison chart of average total handshake times of the 

ephemeral test case cipher suites when both the client and the server run on J2SE 

platform and the network connection between is provided with UDP connection. 
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Client Handshake Averages With UDP Connection
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Figure 6.6 Ephemeral Cipher Suite Handshake Between J2SE-J2SE With UDP 

Figure 6.7 shows the comparison chart of average total handshake times of the 

RSA test case cipher suites when both the client and the server run on J2SE platform 

and the network connection between is provided with UDP connection. 
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Figure 6.7 Ephemeral Cipher Suite Handshake Between J2SE-J2SE With UDP 

Figure 6.8 shows the comparison chart between TCP and UDP network 

connections by comparing total maximum, minimum and average handshake times 

when both client and server run on J2SE platforms. 
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Figure 6.8 Handshake Times With TLS_RSA_WITH_AES_SHA Cipher Suite 

6.3.   Mobile Device Tests 

The mobile end-to-end security protocol was implemented mainly to be used in 

mobile devices, PDAs and mobile phones e.g. The implemented protocol library is 

tested on a real mobile phone to show that it can run on a resource-constraint 

environment and establish network connection on a real wireless network. 

6.3.1. Mobile Device Test Platform Configuration 

The tests with a real mobile device are performed by running the client test 

program on a mobile phone and server test program on a desktop PC. The mobile phone 

is a Nokia™ 6600 smart phone with ARM9 104 Mhz CPU, 6 MB of storage memory, 

GPRS (see Chapter 3, Section 3.3.3, “GPRS”) and Bluetooth connectivity and 

Symbian™ Os 7.0s operating system (see Chapter 3, Section 3.1.2.2, “Symbian OS”) 

with MIDP 2.0 support. The network connection between the mobile phone and the 

desktop PC is provided with the GPRS connection provided by Turkcell mobile service 

carrier. The application architecture used in this test platform is explained in Chapter 3, 

Section 3.2.1, “Client/Server Architecture”. The transport protocol used in the tests is 

TCP. 

Mobile device tests are performed only on J2SE-J2ME architecture mentioned 

in Section 6.1, “Scope Of The Test Cases”. The test programs used in Section 6.2 are 

also used in this group of tests. Test programs are run 10 times and the highest (max), 
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lowest (min) and average time durations are measured. 

6.3.2. Mobile Device Test Results 

Mobile device tests were performed according to the configuration told in 

Section 6.3.1. There was no problem in establishing communication with GPRS and all 

tests succeeded. 

Tables A.9 and A.10 in Appendix show the secure communication time span 

durations when the client test program runs on a Nokia 6600 mobile phone and the 

server test program runs on J2SE platform and transport protocol between is TCP. Table 

A.9 compares ephemeral cipher suites. This comparison is made as all ephemeral cipher 

suites generate asymmetric keys at run-time. Table A.10 compares ephemeral RSA 

(RSA export) and non-ephemeral RSA cipher suites. All the values in tables are 

milliseconds (ms). “0” value in tables means that the time duration is below 

milliseconds. N/A value in tables means that the time span is not applicable in the cipher 

suite. 

The comparison of results in table A.9 and table A.3 show that the real device 

operates slower than the emulator environment. The difference comes from both the 

processing speed of the device and the network connection overheads. However 

unexpectedly, TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA cipher suite has a 

better performance in real device environment. 

Figure 6.9 shows the comparison chart of average client total handshake times of 

the ephemeral test case cipher suites when the client runs on a Nokia 6600 mobile 

phone and the server runs on J2SE platform and the transport protocol between is TCP. 

Client Handshake Averages On Nokia 6600 Mobile Phone
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      Figure 6.9 Client Average Handshake Times On Nokia 6600 Mobile Phone 
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6.4.   Test Results Evaluation 

The performance results of the tests performed were shown in tables in 

Appendix and compared in charts in Section 6.3 and Section 6.4. The performance 

results were measured by dividing the handshake procedure into time spans. Each time 

span is an important step in handshake that was expected to take a measurable time. The 

tests were repeated for a definite number for each test case and the result average, max 

and min values were noted. 

Test results will be evaluated according to the following criteria: 

 Defined Time Spans 

 Running Platform  

 Network Protocol 

 Cipher Suite 

As can be seen from tables A.2 and A.8, the average total handshake time 

between two J2SE peers when TLS_RSA_WITH_AES_SHA cipher suite is used, is 

132 milliseconds with TCP connection and 114 milliseconds with UDP connection. 

These values are the lowest values in all test cases and both results are of non-

ephemeral RSA cipher suite. This shows the relative performance of non-ephemeral 

cipher suites over ephemeral cipher suites. In all time spans, there are great differences 

between average and max values. It is observed that these max values are generally 

results of the first connections. The handshake times decrease with the repetitive 

connections. The reason behind these two facts is supposed to be because of the caching 

systems of computers. The average values are between max and min values and close to 

the min values. The reason behind this fact is that repetitions of the tests estimate the 

average values to min values. 

The highest average total handshake time is result of the test with 

TLS_DHE_RSA_WITH_DES_CBC_SHA cipher suite. The reason of this is the Diffie-

Hellman key pair generation time, which exceeds other time span values by far. 

TLS_ECDHE_ECDSA_WITH_AES_SHA cipher suite average, min and max total 

handshake times are between RSA and DHE_RSA handshake times. The time 

consuming time spans are key pair generation and public key verification. As the cipher 

suite is ephemeral, a key pair is generated at run-time, which takes a long time. 

However, in standard RSA, key pair is not generated at run-time; generated and stored 

at the certificate before which reduces the total handshake time by far. 
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All the average, min and max values increase in the J2SE-J2ME test results 

shown in tables A.3 and A.4. This architecture includes a client in J2ME platform and a 

server in J2SE platform and expected to be widely used in real life. No network 

transmission times are included in the results as the tests were made with the MIDP 

device emulator. The lowest average total handshake value in this architecture is 4748 

milliseconds of TLS_RSA_WITH_AES_SHA cipher suite between RSA cipher suites. 

The highest average total handshake value between ephemeral cipher suites is 263385 

milliseconds of TLS_ECDHE_ECDSA_WITH_AES_SHA cipher suite. This shows 

that Elliptic Curve Diffie-Hellman operations have a poor performance on J2ME 

platform. This result is shown in the chart in Figure 6.5. 

The results in tables A.5 and A.6 were measured when both client and server run 

on J2ME platform. This is the most unexpected case in real use, but can be applied in 

the future with higher capacity mobile phones. The tests were performed in device 

emulator environment. As expected, the results in this architecture are the lowest values 

between all architectures. The average total handshake time becomes 13166 

milliseconds with TLS_RSA_WITH_AES_SHA cipher suite, which is approximately 

100 times of the 132 milliseconds average total handshake time of J2SE-J2SE 

architecture. The average total handshake time with 

TLS_ECDHE_ECDSA_WITH_AES_SHA cipher suite is 410786 milliseconds, which 

is the highest average value in all tests. The greatest time span in this cipher suite is 

public key verification. 

A test case was prepared to measure the performance of the protocol with UDP 

connection. The target for this test was to understand the difference between TCP and 

UDP. Test results on table A.1 and A.7 show that UDP connections make better 

performance results when compared with TCP connections. However, the differences 

are not so high. This result shows that using the unreliable UDP connection just for 

performance results is not realistic. 

The test cases evaluated up to now were performed according to configuration 

told on Section 6.2.1. Another configuration was also prepared to fulfill the requirement 

that the security solution could run on a real mobile device. As told on Section 6.3.1, in 

this configuration, a mobile phone was used as the client device. The test results in 

tables A.9 and A.10 show that the real device environment operates slower than the 

emulator environment when the architecture is J2SE-J2ME in both cases. 
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CHAPTER 7 
 

CONCLUSION 

End-to-end security is an emerging need for mobile devices. Banking, military 

and other enterprise applications need more and more security to run on mobile devices. 

This master thesis aimed at developing an extensible end-to-end security protocol 

implementation that could be used by both mobile and desktop applications. TLS 

protocol that is commonly used in Internet was chosen as the base of the developed 

protocol implementation. 

The proposed protocol was designed and implemented. The implementation was 

tested with different test cases and the result values were measured. The protocol 

implementation was also run on a real Nokia 6600 mobile phone and established a 

secure connection with a server computer connected to the Internet over GPRS. All the 

tests were successfully completed that showed the protocol was properly designed and 

implemented with respect to specifications. However, no attacks have been carried out 

on the cipher text transmitted in these test cases. The implementation guarantees the 

security of transmission at most as much as TLS. The security weaknesses of TLS still 

exist in this implementation.  

7.1.   Review Of Thesis Results 

Thesis project may be sub-divided into two sections to review the results: 

• Mobile security protocol 

• Object to XML serializer 

7.1.1. Mobile Security Protocol 

Mobile security protocol is the core of the thesis project. The architecture of the 

mobile security protocol is designed to be extensible, to support different cipher suites, 

run on different platforms and operate transparent to the user applications. One of the 

motivation reasons of the thesis is to show that TLS like protocols could be adapted to 

resource-constraint mobile devices. Results in Chapter 6 show that the protocol 

implementation has an acceptable level of performance when running on J2SE platform. 

The performance results depend on the cipher suite chosen. The lowest values were 
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taken from the test with cipher suites of RSA authentication and key exchange method. 

Two kinds of RSA are used. Non-ephemeral RSA stores public keys in certificates, thus 

no key pair generation is needed at run-time. This reduces total handshake times. The 

highest values were taken from the test with cipher suite of Diffie-Hellman key 

exchange and authentication method. Elliptic Curve Cryptography was also used as a 

key exchange and authentication method and was expected to give better performance 

results than the other methods. However, the results showed that ECC based cipher 

suites did not give better performance than RSA export cipher suites in implementation. 

The reason behind this fact is that ECC key pair generation takes longer than RSA key 

pair generation. The results show that the performance of the protocol directly depends 

on the cipher suite chosen. 

The real target platform for the proposed protocol was J2ME MIDP 

environment. The developed protocol was tested on both emulator and real device 

platforms. The results given in Chapter 6 show that the performance results are not as 

optimistic as the results taken on J2SE platform. There are 10-20 times differences 

between two platforms when all the other conditions are same. These results showed 

that TLS protocol could be adapted to mobile platforms, but the performance was really 

an important problem, especially in time-critical applications. ECC cipher suites that 

were given a special interest did not yield the performance enhancements as expected. 

The measurement of critical time periods in the protocol internals showed that 

the longest time periods were taken by cryptographic operations like RSA decryption or 

DHE key pair generation. These cryptographic operations are performed by Bouncy-

Castle cryptography library. Bouncy-Castle library was chosen, as it is free and widely 

used in MIDP applications. But some comments on the library say that Bouncy-Castle 

cryptography library has a poor performance. The unexpected slow performance of the 

developed protocol may be caused because of Bouncy-Castle library. 

The TLS 1.0 specification requires the protocol to operate on TCP protocol, as it 

is connection-oriented and reliable. The new protocol also supported UDP as an 

alternative method. UDP protocol was preferred as some mobile networks do not have 

TCP support, but has the support of UDP communication. Datagram sizes were 

designed as small by limiting the handshake message sizes. Test results of UDP 

communication succeeded. However, protocol with UDP communication was not tested 

with large amount of data and may not be accepted as reliable enough. 
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Another motivation behind the mobile security protocol was to develop both the 

client and server version TLS for mobile devices. The goal has been achieved. The 

server version was tested on J2SE platform and J2ME emulators and completed 

successfully with all cipher suites. The initial target was to run the server version on a 

real device, but this aim could not be performed because of technical reasons. The 

device must have a known IP address to access. The phones of 2.5G do not have this 

facility. It is expected that every node on the networks will have IP address with the 

general use of IPv6 protocol instead of IPv4. 

The design of the security protocol is based on MVC architecture. The internal 

details of the protocol and cryptographic calls are implemented on model classes. 

Controller classes locate which model class to use. This architecture provides an 

extensible and transparent structure. Each handshake message class is encapsulated with 

a message class. Each symmetric encryption, asymmetric encryption and hash 

algorithms are encapsulated in model classes. This structure makes the management of 

the code possible and makes the change of underlying cryptography library easier.  

7.1.2. Object To XML Serializer 

Object To XML Serializer is a library developed to provide object transmission 

on network. The serializer was needed because of the lack of standard Java object 

serialization on J2ME MIDP. Data communication problem in MIDP applications is 

commonly solved by implementer specific solutions. The motivation behind the object 

serializer has been to develop a standard, high performance, general use architecture for 

data transmission. Data in Java programs are generally stored in bean style Java objects. 

These objects have private attributes and getter/setter methods. The XML serializer 

developed serializes bean style Java objects into XML and vice versa. XML was chosen 

because of its structure and easy customizability. A third party library, KXML, is used 

to parse XML data. 

Object To XML Serializer was successfully designed and implemented. Because 

of the lack of reflection API in MIDP, a pre-processing step was added to 

implementation. This pre-processing is source generating of the reflection properties of 

the class requested to be used. A tool was also developed to generate this source code. 

The generation of source code has both advantages and disadvantages. The advantage is 

that it results better performance than standard object serialization. The disadvantage is 
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that the extra step in object transmission causes latency although it is performed only 

once. However, when the source object class is changed, the source generator must be 

rerun. This causes a problem in practical use. The other disadvantage is that extra 

source code’s class files take extra space in device memory and increase the total size of 

the application. This is especially a concern in low memory mobile phones and PDA 

devices. 

In spite of its deficiencies, it is believed that object to XML serializer is a useful 

work in creating a standard communication between the mobile device and the server. 

7.2.   Future Work 

The mobile end-to-end security protocol is aimed at providing an architecture 

for end-to-end security in mobile devices. The project can be extended by further work. 

Some suggestions for future projects or additions are as follows: 

• The Bouncy-Castle cryptography library may be changed. The performance 

problem of the application is caused because of the poor performance of this 

library. Bouncy-Castle library may be replaced with other J2ME cryptography 

libraries mentioned in Chapter 2. 

• The certificates used in the protocol implementation have the format of X.509 

certificates. However, the protocol implementation can not directly use these 

certificates; instead a certificate object is generated and serialized into XML 

text. This certificate XML is stored in the mobile device within the .jar file and 

used as the certificate. This mechanism is useful is development and test; but is 

not proper in real applications. The protocol must be able to use real X.509 

certificates directly. 

• The implemented protocol supports only ephemeral types of Elliptic Curve and 

Diffie-Hellman cipher suites. Ephemeral cipher suites were chosen as they do 

not require ECC or DH certificates. Key pair is generated at run-time. This 

increases security but decreases performance. Non-ephemeral ECC and DH 

cipher suites may also be added to the protocol implementation. 

• Object To XML Serializer only supports the serialization of bean style Java data 

objects. It may be extended to support other Java objects as well. 
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APPENDIX 
 

The results of performance tests mentioned in Chapter 6 are given in tables in 

this section. These results are measured time values for different architectures and 

cipher suites. Tables are organized to compare values of ephemeral cipher suites and 

RSA cipher suites in different tables. N/A values in tables mean that time span is not 

applicable in the cipher suite. Result values of 0 are time durations below milliseconds. 
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Table A.1 Cryptographic Operations Between J2SE-J2SE With TCP For Ephemeral  
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Table A.2 Cryptographic Operations Between J2SE-J2SE With TCP For RSA 
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Table A.3 Cryptographic Operations Between J2SE-J2ME With TCP For Ephemeral  
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Table A.4 Cryptographic Operations Between J2SE-J2ME With TCP For RSA 
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Table A.5 Cryptographic Operations Between J2ME-J2ME With TCP For Ephemeral 
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Table A.6 Cryptographic Operations Between J2ME-J2ME With TCP For RSA 
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Table A.7 Cryptographic Operations Between J2SE-J2SE With UDP For Ephemeral  
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Table A.8 Cryptographic Operations Between J2SE-J2SE With UDP For RSA 
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Table A.9 Cryptographic Operations In The Mobile Device Tests For Ephemeral 
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Table A.10 Cryptographic Operations In The Mobile Device Tests For RSA 

 
 
 
 
 
 


