1,268 research outputs found

    Adaptive continuous higher order sliding mode control

    Get PDF
    Author's Preprint, submitted to AutomaticaAn early version of this paper was presented at ACC’14.This paper is concerned with the development of an adaptation structure which can be applied to conventional, super-twisting and higher-order sliding mode schemes. The objective is to alter the modulation gains associated with these schemes in such a way that they are as small as possible to mitigate chattering effects, but large enough to ensure that sliding can be maintained in the presence of bounded and derivative bounded uncertainties. In all the proposed schemes, the equivalent control is used to drive the adaptive mechanism. The approach is based on a novel dual layer nested adaptive methodology which is quite different to the existing schemes proposed in the sliding mode literature. The new adaptive schemes do not require knowledge of the minimum and maximum allowed values of the ad

    Quasi-continuous higher-order sliding-mode controllers for spacecraft-attitude-tracking manoeuvres

    Get PDF
    This paper studies higher order sliding-modecontrol laws to deal with some spacecraft-attitude-tracking problems. Quasi-continuous second- and third-order sliding controllers and differentiators are applied to quaternion-based spacecraftattitude- tracking maneuvers. A class of linear sliding manifolds is selected as a function of angular velocities and quaternion errors. The second method of Lyapunov is used to show that tracking is achieved globally. An example of multiaxial attitude-tracking maneuvers is presented, and simulation results are included to verify and compare the practical usefulness of the various controllers

    Quasi-continuous higher-order sliding mode controller designs for spacecraft attitude tracking manoeuvres

    Get PDF
    This paper studies high-order sliding mode control laws to deal with some spacecraft attitude tracking problems. Second and third order quasi-continuous sliding control are applied to quaternion-based spacecraft attitude tracking manoeuvres. A class of linear sliding manifolds is selected as a function of angular velocities and quaternion errors. The second method of Lyapunov theory is used to show that tracking is achieved globally. An example of multiaxial attitude tracking manoeuvres is presented and simulation results are included to verify and compare the usefulness of the various controllers

    Enhanced Continuous Higher Order Sliding Mode Control with Adaptation

    Get PDF
    This is the author accepted manuscript. The final version is availabel from Elsevier via the DOI in this recordThis paper proposes a new Continuous Adaptive HOSM control algorithm. The key advantage of the adaption scheme is that it does not require knowledge of the bounds on the matched uncertainty, and the gains themselves are not conservatively overestimated by the adaption scheme – which helps mitigate the problem of chattering. Compared with earlier work, two variable parameters are allowed to adapt and this facilitates much better self-tuning capabilities and improved closed-loop performance

    Design of robust Higher Order Sliding Mode control for microgrids

    Get PDF
    This paper deals with the design of advanced control strategies of sliding mode type for microgrids. Each distributed generation unit (DGu), constituting the considered microgrid, can work in both grid-connected operation mode (GCOM) and islanded operation mode (IOM). The DGu is affected by load variations, nonlinearities and unavoidable modelling uncertainties. This makes sliding mode control particularly suitable as a solution methodology for the considered problem. In particular, a second order sliding mode (SOSM) control algorithm, belonging to the class of Suboptimal SOSM control, is proposed for both GCOM and IOM, while a third-order sliding mode (3-SM) algorithm is designed only for IOM, in order to achieve, also in this case, satisfactory chattering alleviation. The microgrid system controlled via the proposed sliding mode control laws exhibits appreciable stability properties, which are formally analyzed in the paper. Simulation results also confirm that the obtained closed-loop performances comply with the IEEE recommendations for power systems

    Adaptive Higher Order Sliding Modes for Two-Dimensional Derivative Estimation

    Get PDF
    International audienceIn this paper, some recent technical of the derivatives noisy transient signals estimation is extended to the two-dimensional case. This technique, which called higher order sliding modes is mostly used in the synthesis of robust controllers and is also shown a good results in the synthesis of the rth order robust dierentiators. In this work, such dierentiators are used as an edge detection method into image application. The proposed algorithm use an adaptive mechanism for tuning up its parameters in real time, in order to increase the efficiency of basic scheme. Some comparative study with a conventional methods of edge detection is performed

    A Lyapunov approach to Robust and Adaptive Higher Order Sliding Mode

    No full text
    In this paper, we present Lyapunov-based robust and adaptive Higher Order Sliding Mode (HOSM) controllers for nonlinear SISO systems with bounded uncertainty. The proposed controllers can be designed for any arbitrary sliding mode order. The uncertainty bounds are known in the robust control problem whereas they are partially known in the adaptive control problem. Both these problems are formulated as the finite time stabilization of a chain of integrators with bounded uncertainty. The controllers are developed from a class of nonlinear controllers which guarantee finite time stabilization of pure integrator chains. The robust controller establishes ideal HOSM i.e. the sliding variable and its r−1 time derivatives converge exactly to the origin in finite time. The adaptive controller establishes real HOSM, which means that the sliding variable and its r - 1 time derivatives converge to a neighborhood of the origin. Saturation functions are used for gain adaptation, which do not let the states exit the neighborhood after convergence. The effectiveness of these controllers is illustrated through simulations
    • …
    corecore