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Abstract— This paper studies high-order sliding mode control
laws to deal with some spacecraft attitude tracking problems.
Second and third order quasi-continuous sliding control are
applied to quaternion-based spacecraft attitude tracking ma-
noeuvres. A class of linear sliding manifolds is selected as a
function of angular velocities and quaternion errors. The second
method of Lyapunov theory is used to show that tracking is
achieved globally. An example of multiaxial attitude tracking
manoeuvres is presented and simulation results are included to
verify and compare the usefulness of the various controllers.

I. INTRODUCTION

In general spacecraft motion is governed by the so-called

kinematics equations and dynamics equations [1]. These

mathematical descriptions are highly nonlinear and thus

linear feedback control techniques are not suitable for the

global controller design.

First-order sliding mode control has been considered as

a useful scheme for spacecraft attitude control. Vadeli [2]

designed a variable structure attitude control law based on

quaternion kinematics. A similar approach was later pro-

posed in [3] where sliding mode controller was designed

for spacecraft tracking problems. This was illustrated by

an example of multiaxis attitude tracking manoeuvres. An

adaptation of the sliding mode control technique was de-

rived and applied to a quaternion-based spacecraft attitude

tracking manoeuvres. This modified version presented in

[4] is the smoothing model-reference sliding mode control

(SMRSMC). This technique improves the transient response

and reduces the chatter phenomenon. In [5] the (additive)

quaternion-based tracking of spacecraft manoeuvres used

sliding mode control in the sense of optimal control. Mc-

Duffie and Shtessel [6] designed a de-coupled sliding mode

controller and observer for spacecraft attitude control.

From the previous literature we conclude that sliding mode

control can be used for quaternion-based spacecraft attitude

tracking manoeuvres. Floquet [7] presented the stabilization

of the angular velocity of rigid body via first-order and

second-order sliding mode controllers but it has not been

applied to spacecraft tracking problems. Higher-order sliding

mode control has desired properties, such as robustness,

similar to sliding mode control. It also may reduce chattering

and provides better accuracy than first order sliding. Hence

we will study spacecraft attitude tracking manoeuvres using

higher-order sliding mode control.

This paper is organized as follows. Section II presents

the kinematics and dynamic equations of a rigid spacecraft.

In Section III the sliding manifold and first-order sliding

mode control are presented for attitude tracking manoeuvres.

In Section IV the sliding manifold and the second-order

quasi-continuous controller [8] are presented. A first-order

differentiator [9] is applied to estimate the time derivative

of the sliding vector. Section V presents the design of third-

order quasi-continuous controller. We add a precompensator

(first-order lag) to the spacecraft model description to smooth

the control signal, and use a second-order differentiator [7]

to estimate the first and second time derivatives of the

sliding vector. A numerical example of the multiaxial attitude

tracking problem [4] is illustrated in Section VI to verify

the usefulness the third-order quasi continuous controller.

Section VII is the conclusion.

II. SPACECRAFT MODEL DESCRIPTION

We consider the general case of a rigid spacecraft ro-

tating under the influence of body-fixed torquing devices.

According to [10], the kinematics equation and the dynamics

equation are given by

q̇ =
1

2
T (Q)ω

q̇4 = −
1

2
qTω (1)

and

Jω̇ = −[ω×]Jω + u+ d (2)

where Q = [qT q4]
T is the quaternion with q =

[q1 q2 q3]
T , ω = [ω1 ω2 ω3]

T is the angular velocity

vector, and

T (Q) = (q4I3 + [q×]) (3)

where I3 is a 3 × 3 identity matrix and [q×] is a skew-

symmetric matrix expressed by

[q×] =





0 −q3 q2
q3 0 −q1
−q2 q1 0



 (4)

In (2) u = [u1 u2 u3]
T is the control vector, d =

[d1 d2 d3]
T represents bounded disturbances, and J is the

inertia matrix. The kinematic equation (1) can be rewritten
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in a more compact form as [11]

Q̇ =
1

2
E(Q)ω (5)

where

E(Q) =

[

T (Q)
−qT

]

(6)

Note that the elements of Q are restricted by

‖Q‖ = 1 or q2
1

+ q2
2

+ q2
3

+ q2
4

= 1 (7)

III. ATTITUDE TRACKING BY FIRST-ORDER SLIDING

CONTROLLER

We mention briefly the first order sliding approach [4]

so that we can compare our improved results later. The

development of their controller is not presented here (for

lack of space). The sliding vector is

s = ωe +Kqe (8)

and the sliding controller is

u = [ω×]J0ω + J0υ̇d − J0K[
1

2
T (Q)ω − q̇d] + τ (9)

where τ = [τ1 τ2 τ3]
T and τi = −gisign(si). They also

proposed an improved more complicated SMRSMC con-

troller that improves the reaching phase transient dynamics

and avoids chattering.

IV. ATTITUDE TRACKING BY SECOND-ORDER

QUASI-CONTINUOUS CONTROLLER

The quasi-continuous controller presented in [8] is a class

of higher-order sliding mode controller. Here the second-

order quasi-continuous controller (QC2S) is developed to

achieve robust attitude tracking.

To avoid the singularity of T (Q) that will occur at q4 = 0,

let the attitude of the spacecraft be restricted in the workspace

W [4] defined by

W = {Q|Q = [qT q4]
T , ‖q‖ ≤ β < 1, q4 ≥

√

1 − β2 > 0}
(10)

A. Sliding manifold

A class of linear sliding vectors is chosen as follows:

s = ωe +Kqe (11)

where K is a 3 × 3 symmetric positive-definition constant

matrix, ωe = ω− υd, qe = q− qd, and υd = 2T−1(Q)q̇d. In

[4] a similar sliding manifold was introduced to apply to the

sliding mode controller for the spacecraft attitude tracking

manoeuvres. It was proved that, by choosing Lyapunov

function V = 1

2
qT
e Kqe with positive definite K, the tracking

error qe converges to zero.

B. Control law

In this section we study QC2S and the first-order real-time

differentiator for spacecraft attitude tracking manoeuvres. In

order to use the second-order quasi-continuous controller

we need to know the time derivative of the sliding vector

(ṡ). Because it is very complicated to find ṡ theoretically

for this nonlinear system, we use the first-order Levant

differentiator [9] for the estimation of ṡ. A first-order real-

time differentiator has the form

ż0 = −λ1|z0 − s|1/2sign(z0 − s) + z1

ż1 = −λ2sign(z0 − s) (12)

where z0, z1 are real-time estimations of s and ṡ respectively.

The second-order quasi-continuous SM controller [8] is

designed as

u = −α
z1 + |z0|

1/2signz0
|ż1| + |z0|1/2

. (13)

Now we design the second-order quasi-continuous controller

such that the reaching and sliding conditions are satisfied.

We show that tracking is achieved globally (by using the

Lyapunov second method) following the approach of [4].

Since J is symmetric and positive definite, the candidate

Lyapunov function is chosen as

Vs =
1

2
sTJs ≥ 0 (14)

and Vs = 0 only when s = 0. Taking the first derivative of

Vs and using (1), (2) and (11), we have

V̇s = sT {−[ω×]Jω + u+ d− Jυ̇d

+JK(q̇ − q̇d) + J̇s}. (15)

Let J = J0 + ∆J where J0 and ∆J denote the nominal

and uncertain part of the inertia matrix. Using (1) then (15)

becomes

V̇s = sT {−[ω×]∆Jω − ∆Jυ̇d + ∆JK[
1

2
T (Q)ω

−q̇d] + u+ d+ J̇s− [ω×]J0ω − J0v̇d

+J0K[
1

2
T (Q)ω − q̇d]}. (16)

Suppose that the external disturbances d and uncertain pa-

rameters ∆J and J̇ are all bounded and that these bounds are

known. Let δ = {−[ω×]∆Jω − ∆Jυ̇d + ∆JK[ 1
2
T (Q)ω −

q̇d]+d+J̇s} and γ = {−[ω×]J0ω−J0υ̇d+J0K[ 1
2
T (Q)ω−

q̇d]}. Then (16) becomes

V̇s = sT [δ + u+ γ]

=
3

∑

i=1

si(δi + ui + γi). (17)

By setting the controller as

u = −k
ṡ+ |s|1/2signs

|ṡ| + |s|1/2
(18)
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and letting Ψi = δi + γi, we have

V̇s =
3

∑

i=1

si

[

Ψi − ki

(

ṡi + |si|
1/2sgn(si)

|ṡi| + |si|1/2

)]

=
3

∑

i=1

siΨi −
3

∑

i=1

kisisgn(si)

(

ṡisgn(si) + |si|
1/2

|ṡi| + |si|1/2

)

=
3

∑

i=1

|si|ki

[

Ψisgn(si)

ki
−
ṡisgn(si) + |si|

1/2

|ṡi| + |si|1/2

]

(19)

To guarantee the reaching and sliding on the manifold, we

require
ṡisgn(si) + |si|

1/2

|ṡi| + |si|1/2
≥

Ψisgn(si)

ki
(20)

Since
ṡisgn(si) + |si|

1/2

|ṡi| + |si|1/2
≤ 1, (20) can be written as

ki ≥ Ψisgn(si). (21)

The upper bound of |Ψi| can be found and denoted as

|Ψi| < Ψmax
i (Q,ω, qd, q̇d, q̈d). (22)

Obviously, if we choose the gain ki as ki ≥
Ψmax

i (Q,ω, qd, q̇d, q̈d) then V̇s < 0. This guarantees the

reaching and sliding on the manifold. Note that the bounds

(22) are functions of the states so simulation studies are

needed to assess their magnitudes and Lyapunov function

Vs exists when condition (21) is satisfied.

V. THIRD-ORDER QUASI-CONTINUOUS CONTROLLER

We next consider the third order quasi-continuous (QC3S)

controller to achieve to the spacecraft attitude tracking ma-

noeuvres. Because it is a third-order sliding mode controller

which normally provides very accurate outputs, we expect

higher accuracy of the tracking results. Moreover, we add a

first-order lag to the spacecraft model description to smooth

the control signals.

Because it is very complicated to find ṡ and s̈ from this

system, we use the second order Levant differentiator [9] for

the estimations of ṡ and s̈.
A second-order real-time differentiator [9] is

ż0 = v0

v0 = −λ1|z0 − s|2/3sign(z0 − s) + z1

ż1 = v1

v1 = −λ2|z1 − v0|
1/2sign(z1 − v0) + z2

ż2 = −λ3sign(z2 − v1) (23)

where z0, z1 and z2 are real-time estimations of s, ṡ and s̈
respectively.

The third-order quasi continuous SM controller is

u = −α

[

z2 + 2(|z1| + |z0|
2/3)−1/2(z1 + |z0|

2/3sign(z0))

|z2| + 2(|z1| + |z0|2/3)1/2

]

(24)

To guarantee the reaching and sliding on the manifold we

select the Lyapunov function Vs = 1

2
sTJs and follow the

same process as for the proof of QC2S. We select the control

law as

u = −k

[

s̈+ 2(|ṡ| + |s|2/3)−1/2(ṡ+ |s|2/3sign(s))

|s̈| + 2(|ṡ| + |s|2/3)1/2

]

(25)

Substitute this controller into (17) and letting ψi = δi + γi,

we have

V̇s = −
3

∑

i=1

siki[s̈i + 2(|ṡi| + |s|
2/3

i )−1/2(ṡi +

|s|
2/3

i sign(si))]/[|s̈i| + 2(|ṡi| +

|si|
2/3)1/2] +

3
∑

i=1

siψi (26)

For the first term of (26) we take sgn(si) outside the bracket

and

V̇s =
3

∑

i=1

siψi −
3

∑

i=1

kisisgn(si)[s̈isgn(si) +

2(ṡisgn(si) + |si|
2/3)−1/2(ṡisgn(si) +

|si|
2/3)]/[|s̈i| + 2(|ṡi| + |si|

2/3)1/2]

=
3

∑

i=1

ki|si|{
ψisgn(si)

ki
−

s̈isgn(si) + 2
ṡisgn(si) + |si|

2/3

(|ṡi| + |si|2/3)1/2

|s̈i| + 2(|ṡi| + |si|2/3)1/2
} (27)

To guarantee the reaching and sliding on the manifold, we

require

s̈isgn(si) + 2
ṡisgn(si) + |si|

2/3

(|ṡi| + |si|2/3)1/2

|s̈i| + 2(|ṡi| + |si|2/3)1/2
≥
ψisgn(si)

ki
. (28)

Since

ṡisgn(si) + |si|
2/3

(|ṡi| + |si|2/3)1/2
≤ (|ṡi| + |si|

2/3)1/2

and

s̈isgn(si) ≤ |s̈i|

consequently we have

s̈isgn(si) + 2(ṡisgn(si) + |si|
2/3)−1/2(ṡisgn(si) + |si|

2/3)

|s̈i| + 2(|ṡi| + |si|2/3)1/2
≤ 1

(29)

Also the condition (28) can be written as

ki ≥ ψisgn(si). (30)

The upper bound of |ψi| can be found and denoted as

|ψi| < ψmax
i (Q,ω, qd, q̇d, q̈d). (31)

Obviously, if we choose the gain ki as ki ≥
ψmax

i (Q,ω, qd, q̇d, q̈d) then V̇s < 0. This guarantees the

reaching and sliding on the manifold.
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VI. MULTIAXIAL ATTITUDE TRACKING MANOEUVRES

Here an example is presented with numerical simulation

to validate and compare the various controllers; SMRSMC

[4], QC2S and QC3S. The nominal part J0 and the uncertain

part ∆J of the inertia matrix are

J0 =





1200 0 0
0 2200 0
0 0 3100





and

∆J =





0 100 −200
100 0 300
−200 300 0





The initial conditions are Q(0) = [0 0.5 0.5 0.7071]T ,

and ω(0) = [−0.0005 0.0008 0.001]T . Suppose that the

external disturbance di = 0 and the workspace W is defined

by β2 = 0.75. The desired multiaxial attitude tracking

manoeuvres are

qd(t) =





0.5 cos[(π/50)t]
0.5 sin[(π/50)t]
−0.5 sin[(π/50)t]





and the magnitude constraints on the controllers are |ui| ≤
60(N ·m) for i = 1, 2, 3. For QC2S the positive scalar λ is

selected as λ = 1.2 while for QC3S λ = 0.19. The sliding

manifold is chosen as (11) with K = λI3 and the gains in

the control laws are selected as gi = 60 for i = 1, 2, 3.

Simulation results for the attitude tracking are shown

in Figs. 1- 13. Figs. 1 and 3 show that the SMRSMC

scheme gives good tracking output and the settling time is

approximately 60 s. The sliding vector remains on the sliding

manifold after 5 s. The actual control torques in Fig. 4 are

very smooth. Regarding accuracy the bound on |s| is 0.00047

(at steady state) with O(h) = 0.005 for h = 0.005.

As shown in Figs. 5 and 7, QC2S provides good tracking

results. The settling time is approximately 35 s. In Fig. 6

the sliding vectors are driven to the sliding manifold and

remain on the sliding manifold after 35 s. The actual control

torques presented in Fig. 8 are limited by 60 N-m and but

chattering appears in this system. Regarding accuracy the

bound on |s| is 0.00092 (at steady state) with O(h) = 0.005
for h = 0.005.

QC3S gives good tracking output(Figs. 9 and 11). The

setting time is approximately 60 s. The sliding vector remains

on the sliding manifold after 10 s. The calculated control

torques shown in Fig. 13 are limited to 60 N-m. For the actual

control torques applied to the spacecraft, Fig. 12 shows that

the applied control torques are limited to 60 N-m for the

first 15 s and then limited by 20 N-m, and are relatively

smooth.Regarding accuracy the bound on |s| is 0.000012 (at

steady state) with O(h2) = 0.000025 for h = 0.005.

Although QC2S gives a small settling time, it has severe

chatter which is impractical for application to spacecraft

attitude tracking. A smoothing scheme could reduce the

chattering. Both SMRSMC scheme and and QC3S provides

relatively smooth control torque signals. For accuracy QC3S

obviously provides much more accurate tracking output. It

Fig. 1. Attitude tracking response (quaternions) - SMRSMC

Fig. 2. Sliding functions - SMRSMC

Fig. 3. Two norm of attitude tracking errors - SMRSMC

gives outstanding accuracy (better than O(h2)) while the

accuracy of SMRSMC satisfies O(h). In view of these

simulation results, QC3S seem to be the most useful control

design for practical spacecraft tracking, although its imple-

mentation is more complicated..
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Fig. 4. Control torques - SMRSMC

Fig. 5. Attitude tracking response(quaternions) - QC2S

Fig. 6. Sliding functions - QC2S

VII. CONCLUSIONS

QC3S has been successfully applied to spacecraft attitude

tracking manoeuvres. An example of spacecraft multiaxial

attitude tracking manoeuvres has been presented. Moreover,

it reduces the undesirable chattering effect induced in the

conventional sliding mode control and QC2S, and provides

very good accuracy of the tracking results. A class of linear

Fig. 7. Two norm of attitude tracking errors - QC2S

Fig. 8. Actual control torques - QC2S

Fig. 9. Attitude tracking response (quaternions) - QC3S

sliding manifold is chosen as a function of angular velocities

and quaternion errors. The second method of Lyapunov

theory introduced to prove sliding system stability for all

the controller designs.
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