200 research outputs found

    Machine learning and data-parallel processing for viral metagenomics

    Get PDF
    More than 2 million cancer cases around the world each year are caused by viruses. In addition, there are epidemiological indications that other cancer-associated viruses may also exist. However, the identification of highly divergent and yet unknown viruses in human biospecimens is one of the biggest challenges in bio- informatics. Modern-day Next Generation Sequencing (NGS) technologies can be used to directly sequence biospecimens from clinical cohorts with unprecedented speed and depth. These technologies are able to generate billions of bases with rapidly decreasing cost but current bioinformatics tools are inefficient to effectively process these massive datasets. Thus, the objective of this thesis was to facilitate both the detection of highly divergent viruses among generated sequences as well as large-scale analysis of human metagenomic datasets. To re-analyze human sample-derived sequences that were classified as being of “unknown” origin by conventional alignment-based methods, we used a meth- odology based on profile Hidden Markov Models (HMM) which can capture evolutionary changes by using multiple sequence alignments. We thus identified 510 sequences that were classified as distantly related to viruses. Many of these sequences were homologs to large viruses such as Herpesviridae and Mimiviridae but some of them were also related to small circular viruses such as Circoviridae. We found that bioinformatics analysis using viral profile HMM is capable of extending the classification of previously unknown sequences and consequently the detection of viruses in biospecimens from humans. Different organisms use synonymous codons differently to encode the same amino acids. To investigate whether codon usage bias could predict the presence of virus in metagenomic sequencing data originating from human samples, we trained Random Forest and Artificial Neural Networks based on Relative Synonymous Codon Usage (RSCU) frequency. Our analysis showed that machine learning tech- niques based on RSCU could identify putative viral sequences with area under the ROC curve of 0.79 and provide important information for taxonomic classification. For identification of viral genomes among raw metagenomic sequences, we devel- oped the tool ViraMiner, a deep learning-based method which uses Convolutional Neural Networks with two convolutional branches. Using 300 base-pair length sequences, ViraMiner achieved 0.923 area under the ROC curve which is con- siderably improved performance in comparison with previous machine learning methods for virus sequence classification. The proposed architecture, to the best of our knowledge, is the first deep learning tool which can detect viral genomes on raw metagenomic sequences originating from a variety of human samples. To enable large-scale analysis of massive metagenomic sequencing data we used Apache Hadoop and Apache Spark to develop ViraPipe, a scalable parallel bio- informatics pipeline for viral metagenomics. Comparing ViraPipe (executed on 23 nodes) with the sequential pipeline (executed on a single node) was 11 times faster in the metagenome analysis. The new distributed workflow contains several standard bioinformatics tools and can scale to terabytes of data by accessing more computer power from the nodes. To analyze terabytes of RNA-seq data originating from head and neck squamous cell carcinoma samples, we used our parallel bioinformatics pipeline ViraPipe and the most recent version of the HPV sequence database. We detected transcription of HPV viral oncogenes in 92/500 cancers. HPV 16 was the most important HPV type, followed by HPV 33 as the second most common infection. If these cancers are indeed caused by HPV, we estimated that vaccination might prevent about 36 000 head and neck cancer cases in the United States every year. In conclusion, the work in this thesis improves the prospects for biomedical researchers to classify the sequence contents of ultra-deep datasets, conduct large- scale analysis of metagenome studies, and detect presence of viral genomes in human biospecimens. Hopefully, this work will contribute to our understanding of biodiversity of viruses in humans which in turn can help exploring infectious causes of human disease

    Knowledge management overview of feature selection problem in high-dimensional financial data: Cooperative co-evolution and Map Reduce perspectives

    Get PDF
    The term big data characterizes the massive amounts of data generation by the advanced technologies in different domains using 4Vs volume, velocity, variety, and veracity-to indicate the amount of data that can only be processed via computationally intensive analysis, the speed of their creation, the different types of data, and their accuracy. High-dimensional financial data, such as time-series and space-Time data, contain a large number of features (variables) while having a small number of samples, which are used to measure various real-Time business situations for financial organizations. Such datasets are normally noisy, and complex correlations may exist between their features, and many domains, including financial, lack the al analytic tools to mine the data for knowledge discovery because of the high-dimensionality. Feature selection is an optimization problem to find a minimal subset of relevant features that maximizes the classification accuracy and reduces the computations. Traditional statistical-based feature selection approaches are not adequate to deal with the curse of dimensionality associated with big data. Cooperative co-evolution, a meta-heuristic algorithm and a divide-And-conquer approach, decomposes high-dimensional problems into smaller sub-problems. Further, MapReduce, a programming model, offers a ready-To-use distributed, scalable, and fault-Tolerant infrastructure for parallelizing the developed algorithm. This article presents a knowledge management overview of evolutionary feature selection approaches, state-of-The-Art cooperative co-evolution and MapReduce-based feature selection techniques, and future research directions

    Big Data meets High Performance Computing: Genomics and Natural Language Processing as case studies

    Get PDF
    The main objective of this thesis is to clarify a way to the convergence between the Big Data and the High Performance Computing world. In order to do this, a study of the application of this kind of technologies to two real world scientific problems is performed. These two problems are the sequence alignment in genomics and the natural language processing. These problems have a very big input and output size, and are computationally intensive, requiring a very high execution time. By facing these problems, also new tools that can be used by professionals in the areas are developed. Conclusions about convergence between these two worlds are presented, taking into account results from this study

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues

    High Performance Computing for DNA Sequence Alignment and Assembly

    Get PDF
    Recent advances in DNA sequencing technology have dramatically increased the scale and scope of DNA sequencing. These data are used for a wide variety of important biological analyzes, including genome sequencing, comparative genomics, transcriptome analysis, and personalized medicine but are complicated by the volume and complexity of the data involved. Given the massive size of these datasets, computational biology must draw on the advances of high performance computing. Two fundamental computations in computational biology are read alignment and genome assembly. Read alignment maps short DNA sequences to a reference genome to discover conserved and polymorphic regions of the genome. Genome assembly computes the sequence of a genome from many short DNA sequences. Both computations benefit from recent advances in high performance computing to efficiently process the huge datasets involved, including using highly parallel graphics processing units (GPUs) as high performance desktop processors, and using the MapReduce framework coupled with cloud computing to parallelize computation to large compute grids. This dissertation demonstrates how these technologies can be used to accelerate these computations by orders of magnitude, and have the potential to make otherwise infeasible computations practical
    • …
    corecore