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ABSTRACT

More than 2 million cancer cases around the world each year are caused by viruses.
In addition, there are epidemiological indications that other cancer-associated
viruses may also exist. However, the identification of highly divergent and yet
unknown viruses in human biospecimens is one of the biggest challenges in bio-
informatics. Modern-day Next Generation Sequencing (NGS) technologies can be
used to directly sequence biospecimens from clinical cohorts with unprecedented
speed and depth. These technologies are able to generate billions of bases with
rapidly decreasing cost but current bioinformatics tools are inefficient to effectively
process these massive datasets. Thus, the objective of this thesis was to facilitate
both the detection of highly divergent viruses among generated sequences as well
as large-scale analysis of human metagenomic datasets.

To re-analyze human sample-derived sequences that were classified as being of
“unknown” origin by conventional alignment-based methods, we used a meth-
odology based on profile Hidden Markov Models (HMM) which can capture
evolutionary changes by using multiple sequence alignments. We thus identified
510 sequences that were classified as distantly related to viruses. Many of these
sequences were homologs to large viruses such as Herpesviridae and Mimiviridae
but some of them were also related to small circular viruses such as Circoviridae.
We found that bioinformatics analysis using viral profile HMM is capable of
extending the classification of previously unknown sequences and consequently
the detection of viruses in biospecimens from humans.

Different organisms use synonymous codons differently to encode the same amino
acids. To investigate whether codon usage bias could predict the presence of virus
in metagenomic sequencing data originating from human samples, we trained
Random Forest and Artificial Neural Networks based on Relative Synonymous
Codon Usage (RSCU) frequency. Our analysis showed that machine learning tech-
niques based on RSCU could identify putative viral sequences with area under the
ROC curve of 0.79 and provide important information for taxonomic classification.

For identification of viral genomes among raw metagenomic sequences, we devel-
oped the tool ViraMiner, a deep learning-based method which uses Convolutional
Neural Networks with two convolutional branches. Using 300 base-pair length
sequences, ViraMiner achieved 0.923 area under the ROC curve which is con-
siderably improved performance in comparison with previous machine learning
methods for virus sequence classification. The proposed architecture, to the best
of our knowledge, is the first deep learning tool which can detect viral genomes
on raw metagenomic sequences originating from a variety of human samples.



To enable large-scale analysis of massive metagenomic sequencing data we used
Apache Hadoop and Apache Spark to develop ViraPipe, a scalable parallel bio-
informatics pipeline for viral metagenomics. Comparing ViraPipe (executed on
23 nodes) with the sequential pipeline (executed on a single node) was 11 times
faster in the metagenome analysis. The new distributed workflow contains several
standard bioinformatics tools and can scale to terabytes of data by accessing more
computer power from the nodes.

To analyze terabytes of RNA-seq data originating from head and neck squamous
cell carcinoma samples, we used our parallel bioinformatics pipeline ViraPipe and
the most recent version of the HPV sequence database. We detected transcription
of HPV viral oncogenes in 92/500 cancers. HPV 16 was the most important HPV
type, followed by HPV 33 as the second most common infection. If these cancers
are indeed caused by HPV, we estimated that vaccination might prevent about
36 000 head and neck cancer cases in the United States every year.

In conclusion, the work in this thesis improves the prospects for biomedical
researchers to classify the sequence contents of ultra-deep datasets, conduct large-
scale analysis of metagenome studies, and detect presence of viral genomes in
human biospecimens. Hopefully, this work will contribute to our understanding
of biodiversity of viruses in humans which in turn can help exploring infectious
causes of human disease.
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1 BACKGROUND

1.1 Tumor viruses

Viruses are abundant and ubiquitous microscopic organisms that lack the ability to
replicate ex vivo and are therefore inactive outside of host cells. Once they infect
the cells, they can employ the cellular machinery in order to reproduce more virus
particles. Their genetic material is composed of a subset of genes in the form of
DNA or RNA enclosed in a protective protein coat. Both DNA and RNA viruses
have shown abilities to disrupt and engage host cells important regulatory mecha-
nisms which may transform the host cells into cancer [1].

In humans, several viruses, such as human papillomavirus (HPV), Epstein-Barr virus
(EBV), hepatitis C (HCV) and hepatitis B (HBV), Kaposi’s sarcoma herpesvirus
(KSHV), human T-cell lymphotropic virus (HTLV-1), human immunodeficiency
virus type-1 (HIV-1) has been linked to human carcinogenesis [1, 2]. While HPV,
EBYV, HTLV-1, and KSHYV are directly associated with cancer development, HCV
and HBYV are indirectly involved in the cellular transformation through chronic
inflammation. HIV-1, on the other hand, increases the chance of cancer by immuno-
suppression [3]. Even though it might be convenient to think that these viruses
belong to one particular group of cancer-associated viruses, they are in fact very
different from each other. They represent diverse virus families, have different
genomes and life cycles and display different strategies to contribute to tumor
development [4]. Having said that, they also share some common characteristics
such as their strategy to infect the host cell and persist, instead of killing it as well
as their ability to somehow avoid the host immune system, which would otherwise
overcome the virus [4].

The International Agency for Research on Cancer has estimated that approximately
2.2 million (15.4%) of 14 million cancers in humans around the world are caused
by viral infections [5]. In addition to that, recent epidemiological studies also
provided some epidemiological indications that other cancer-related viruses may
exist. For instance, increased use of organ transplantation over the last decades
has led to the conclusion that not only the virus-associated cancers are increased
among immunosuppressed individuals but also some cancers without known viral
etiology [6-8]. There is also some evidence that pathogens might be involved in
the development of childhood leukemias [9] as well as in autoimmune diseases
such as diabetes [10] and multiple sclerosis [11].

To study possible connections between viruses and diseases is therefore very
important. The progress, however, has been very slow so far as most studies usually
focus only on one infectious agent or one cancer type at a time. In recent years,
access to recent Next Generation Sequencing (NGS) technologies has provided



a powerful tool to conduct complex genetic studies in human specimens. With
complete sequencing of all microbiological sequences, we can detect and analyze
all known and unknown viruses that might be present in human biospecimens. The
challenge, however, is that NGS machines generate huge amounts of sequencing
datasets that require powerful computational algorithms and resources for process-
ing and detecting the target sequences. If these algorithms are about to improve
it is likely that more oncogenic viruses will be revealed, which in turn ultimately
could facilitate potential prevention of the diseases.

1.2 Viruses in cancers among immunosuppressed
patients

During the last 30 years, studies of immunosuppressed individuals after organ
transplantation and patients living with HIV have shown that these patients have
a much higher risk of cancer compared to the general population [6, 7, 12]. There
are some cancer types such as prostate, breast, corpus uteri, and brain cancer with
no clear evidence of increase after immunosuppression, but the majority of cancers
are significantly increased in immunosuppressed patients, including cancers with
no established viral etiology [7, 12, 13]. This gives rise to a hypothesis that many
novel human carcinogenic viruses may yet be discovered in these patients.

One example of a high incidence rate is non-melanoma skin cancers (NMSC),
where subsequent tumors among transplant recipients have been documented
[14, 15]. Basal cell skin (BCC) cancers include approximately 80% of all NMSC
while squamous cell skin (SCC) cancers comprise up to 20% [16]. Although BCC
is approximately 5 times more common than SCC in the general population, the
incidence ratio is reversed among immunosuppressed individuals with reported
18- to 250 times increase [17, 18]. Viral metagenomic sequencing analysis showed
that HPV comprises approximately 95% of total viral reads but there is no agree-
ment which HPV types are the most common [19]. This contrasts the situation
of cervical cancers where mostly HPV-16 and HPV-18 are detected [20]. Most
of these studies, however, have been conducted using polymerase chain reaction
(PCR) systems that are biased to detecting only viral sequences that share high
similarity with the used PCR primers. Viral genomes that are different from the a
priori defined primers might thus have been entirely missed by these studies [21].

Among the cancers with no known viral etiology, cancer of the lip also shows one
of the highest incidence rates after immunosuppression [22]. The oncogenic pro-
cess of this cancer is casually linked to smoking, exposure to solar UV radiation
[23] as well as HPV infection[24] but the evidence is still insufficient and further
research is required to confirm the associations.



Interestingly, investigation based on Swedish immunosuppressed cohorts showed
that the standardized incidence ratio (SIR) of overall cancer was 3.5 (95% con-
fidence interval: 3,4—-3.7) among transplant recipients compared to the general
population. More specifically, the increase was particularly significant in cancer
of the kidney (SIR=5.8), thyroid (SIR=4.9), NMSC (44.7), lip (SIR=41.5), and
larynx (SIR=3) [13]. Investigation of these cancers and their infectious etiology
is thus a high priority.

1.3 Human Papillomavirus

Human papillomaviruses have a double-stranded circular DNA genome originating
from the Papillomaviridae family. Papillomaviruses are a diverse group of viruses
and can infect most mammals and birds. Their isolates were usually described as
“types”. As the number of identified types increased over time it became neces-
sary to have a taxonomic classification within the family [25]. HPVs are classified
based on the nucleotide sequence of the L1 open reading frame which codes the
major capsid protein in the genome. If two HPV genomes share less than 60%
similarity between their L1 region of the genome they subsequently belong to two
different genera. Sharing 60%—70% genome homology means that those viruses
are in the same genus. Novel HPV types, however, share less than 90% similarity
to other types [25].

To this date, there are 223 officially established HPV types that have been cloned,
sequenced and have an approved identifier number at the International HPV
Reference Center (https://www.hpvcenter.se/). HPV types such as HPV-16, 18,
31, 33, 35, 39, 45, 52, 58, 59 are established as oncogenic out of which HPV16
and 18 are responsible for the majority of HPV-related cancers [2].

HPYV genome is divided into 8 regions (L1, L2, E1, E2, E4, E5, E6, and E7) from
which E6 and E7 are viral oncogenes accounting for malignant transformation
(Figure 1). These two genes are capable to bind and inactivate the tumor suppres-
sor proteins p53 and pRb which ultimately leads to malignant transformation of
the host cells [26, 27].

Besides cervical cancer, HPVs can cause other genital tumors such as anal (over
90%), penile (over 60%), vaginal (75%) and vulvar cancers (70%)[28]. Oncogenic
HPVs are also detected in some portions of head and neck squamous cell carci-
nomas (HNSCCs). Systematic review of 148 studies that used PCR for detecting
HPV DNA showed 29.5% (95% confidence interval: 25.5-33.6) HPV positivity
in HNSCCs [29]. However, methodologies and results differed from country to
country. In comparison, in study V included in this thesis that was conducted
based on RNA sequencing data, we identified viral HPV oncogenic transcriptions
in 92/500 samples from HNSCCs.



Figure 1. Circular genome of HPV'16 with its eight coding genes. Adapted with permission
of Dr: Davit Bzhalava

14 Prophylactic cancer vaccines

One of the most important functions of the immune system is to constantly moni-
tor the body for the intrusions of pathogens, the balance of flora or transformed
and abnormal cells. This process is called immunosurveillance [30] which could
be strengthened through vaccination to avoid the initial infection that otherwise
could lead to the development of an oncogenic process. After vaccination, the
body can produce antibodies that can bind with the infectious agents and prevent
them from infecting other cells [31].



Currently, there are highly effective vaccines available against oncoviruses such as
hepatitis B virus (HBV) and human papillomavirus (HPV). These vaccines can pro-
vide protection against persistent infection and related invasive cancers. Long-term
evaluation of hepatitis B immunization programs in different countries revealed that
adults who were offered vaccination had 76% decrease of HBV infection compared
to the cohorts for whom vaccine programs were not available[32]. In the case of
HPV vaccination programs, a systematic review showed 83% lower prevalence of
HPV16 and HPV18 infections among 15-19 old girls and 66% lower prevalence
among 20-24 old women compared to the pre-vaccination period [33].

In order to develop and implement similar vaccination programs against a novel
oncovirus, several criteria have to be met: there has to be a direct association between
a virus and cancer and there has to be sufficient demand from the public [34]. While
the implementation of vaccines against HBV and HPV has been successful and are
commercially available at this moment, vaccine developments against HCV and
EBV have had limited success so far as none of the vaccine candidates have been
effective enough to be approved and licensed for public [34].

Meanwhile, research for the identification of more cancer-associated viruses con-
tinues in order to enable the prevention of infections and the related oncogenic
process. Perhaps, some of the human viruses that are yet be discovered can also
become target of vaccination which would help us to eliminate some specific forms
of cancer from the general public.

1.5 Viral metagenomics

The term metagenomics is defined as direct analysis of all genetic material pre-
sent in a sample [35]. Viral fraction of the human microbiome is referred to as the
human virome or viral metagenomics [36]. Even though the human virome is able
to seriously impact human health, it usually includes less than 1% of all genomes
contained in biospecimens [37]. Research on viral metagenomics therefore requires
complete and unbiased sequencing of all genome material from human biospecimens
to recover viral-related genomes.

NGS technologies have shown the ability to sequence biospecimens at unprecedented
speed allowing great scientific discoveries and new biological applications. The term
“next-generation” refers to the new sequencing methods and technologies which
emerged after Sanger sequencing methods that dominated the field for several dec-
ades since the late 1970s. [38, 39]. These newer technologies offer deep, extremely
high-throughput and massively parallel analysis from multiple samples with much
lower cost [38]. Compared to Sanger sequencing, NGS technologies generated
much shorter reads (number of continuous sequenced nucleotides). The shorter read



lengths are produced by breaking DNA or cDNA samples into smaller pieces and
attaching adapters to the ends of the fragments during library preparation [40, 41].
Currently, there are several NGS instruments available such as SOLiD (ABI), Ion
Torrent (Life Technologies) and Genome Analyzer System (Illumina). The ability
of these instruments to generate vast amounts of sequencing data provides pos-
sibilities to conduct large-scale studies on human samples including studies on
viruses that are present in cancer samples. NGS technologies are already having
a striking impact on the field as they are routinely used for virus detection and
discovery in metagenomic samples [10, 42, 43]. However, data storage and analy-
ses of the massive amounts of produced datasets is a significant challenge. It is
thus essential to develop advanced bioinformatics tools and algorithms in order
to create successful applications for viral diagnostics and research.

1.6 Bioinformatics for viral metagenomics

Even though NGS technologies revolutionized the field because of their high
speed and low-cost sequencing abilities, processing of generated short reads by
the technology remains one of the biggest challenges in bioinformatics for several
reasons. First and foremost, the machines can produce a vast amount of data per
sample varying from hundreds of GBs to TBs of sequencing reads and without
proper bioinformatics pipelines, just the processing of the data can create a major
bottleneck in biomedical studies. Secondly, raw read datasets usually include low-
quality bases, possible artifacts produced during library preparation and sequencing
bias where particular regions of genomes are better covered or represented by the
fragments than others. Coverage is particularly important for genome assembly
algorithms in order to reconstruct the original genomes from samples. If some parts
are over- or underrepresented, incorrect results and conclusions might be inevi-
table without proper processing of the dataset. After raw reads are preprocessed
and assembled into contiguous sequences (contigs), then arises a challenge of
taxonomy classification especially when it comes to identifying distant homologs
or yet unknown viruses. As conventional taxonomy classification algorithms just
align new sequences against public databases, it is almost impossible to detect a
novel virus if a similar genome does not exist in the database.

To overview available tools and challenges in the viral metagenomics, the bio-
informatics pipeline is divided into two parts: processing which includes every
step from processing raw reads to assembly algorithms and taxonomy classifica-
tion which deals with annotating assembled contigs (Figure 2).



1.6.1  Processing of NGS dataset

Processing of NGS datasets usually starts with demultiplexing, adaptor removal and
quality check of raw reads based on their Phred quality scores, which are widely
used quality values of the sequenced nucleobases [44]. Phred score is defined as
a value that is logarithmically related to the estimated probabilities of base-calling
errors. This implies that if, for instance, a base quality score is 10, one base in
one hundred is anticipated to be inaccurate (90% accuracy); a quality score of 40
would imply one inaccurate base in 10 thousand (99.99% accuracy)[44].

A Raw NGS sequence data
Check Read Quality

|

v
| Filter out human genomes |
— il
Sequence Data normalization
— il
| Assembly |
B
Taxonomy Classification Taxonomy Classification
Similarity based methods Non-Similarity based methods
v
| Genotype abundances, community estimation and structure estimation ‘
v
| Results ‘

Figure 2. Bioinformatics pipeline to analyze NGS dataset for viral metagenomics. Part A
represents steps in processing of NGS data to make sequences ready for Part B— Taxonomy
classification.

NGS dataset sequenced from human samples usually contain more 70% human-
related genomes while viruses are less than 1% [37, 45]. To obtain the dataset that
includes virus-related sequences, reads that are not a target of investigation should
be filtered out in order to speed up analysis and decrease the chance of assembling
erroneous “chimeric” sequences [46].



Table 1. Taxonomy classification of NGS reads (%) from different sample types.
Adapted from Bzhalava et al., Unbiased approach for virus detection in skin lesions,
in PloS One, 2013; 8:65953, with permission from the Creative Commons Attribution
License

FFPE Biopsies Biopsies Skin swabs Serum Water
Human 37.3 99.8 69.1 75 2.8
Bacteria 213 0.1 24.2 1 52.2
Virus 0.2 0 0.3 0.1 0
Other 10.2 0 22 0.5 15.5
Uknown 30.9 0 4.2 244 29.5

The next step in the bioinformatics pipeline is to normalize sequencing data. As
mentioned above, NGS can produce sequencing bias which can result from both
sample preparation and randomly sampled DNA molecules for sequencing [47].
Obtaining lower abundant DNA/RNA molecules from a sample requires deep
sequencing which might as well increase the coverage of higher abundant mole-
cules. For example, sequencing from human samples produces greater coverage
of human reads than we usually need for assembly. This is especially true in the
case of viral metagenomics where the main purpose is to detect viral genomes. To
reduce sample variation and remove highly redundant data, a digital sequence nor-
malization [47] algorithm can be applied to normalize the sequence datasets. The
algorithm estimates the distribution of k-mer abundance. k-mer is a certain length
(k) of DNA word and more times a specific part of genome is sequenced, higher
the k-mer abundance is observed from that part [47]. Reads whose estimated cover-
age is above the threshold can be discarded which would decrease and normalize
the average coverage of NGS dataset. Afterwards, normalized datasets are much
easier to process for assembly algorithms as they require less computational power
because of their significantly reduced size.

The process of merging millions of reads into longer contiguous sequences (con-
tigs) without a reference genome is called de novo assembly. Mainly, there are
two types of de novo assembly algorithms: de Bruijn graphs (DBG) and overlap
layout consensus (OLC) assemblers. Algorithms based on de Bruijn split short
reads even shorter fragments using k-mer approach where nodes are formed with
k-mers whereas edges are made with overlapping (k-1)-mers [48, 49]. With the OLC
approach, however, nodes are formed with the reads themselves and edges are the
sequences that overlap between these reads [49]. Both approaches have their own
advantages and disadvantages but in general, OLC algorithms are more suitable
for longer reads while DBG algorithms are more suitable for shorter reads [50].



For all these steps mentioned above, there are highly effective, open source algo-
rithms available. For example, to subtract low quality reads Trimmomatic can be
useful for Illumina single-ended or pair-end datasets [51]. To remove redundant,
high-coverage reads from NGS dataset, a digital normalization algorithm can
be used [47]. To assemble short reads into longer sequences, there are several
options available including Trinity [52], SOAPdenovo [53], IDBA-UD[54] and
MEGAHIT [55]. However, all these bioinformatics tools belong to traditional
sequential algorithms that are computationally inefficient and inflexible to perform
large-scale analysis on NGS datasets. These algorithms usually are a mixture of
several command line tools that can only be executed on a single computer and
the whole process can be extremely time-consuming which can create a major
bottleneck in viral metagenomics.

1.6.2 Data-parallel processing

Nowadays, distributed computing frameworks have the potential to accelerate
computing speed of metagenomic analyses and meet the requirements of fast-
developing metagenomic research. These frameworks are designed to distribute
large datasets across multiple cluster nodes and enable several processors to execute
the same tasks simultaneously. This empowers reliable, scalable and efficient way
of computing in server clusters which brings huge performance advantages com-
pared to executing algorithms on standalone machines.

Apache Hadoop

Apache Hadoop (https://hadoop.apache.org/) is an open source distributed com-
puting framework that can be installed on a commodity Linux cluster to process
vast amount of data. Core components of Hadoop include the Hadoop Distributed
File System (HDFS) [56], a fault-tolerant distributed file system that allows high
throughput of data access and MapReduce, an execution engine that allows pro-
grammers to process large datasets in parallel [57]. HDFS stores data by splitting
it into smaller blocks and distributes them over the entire cluster. These data blocks
are written onto the local disks of each node which enables MapReduce to effec-
tively move the computation where the data is located. MapReduce, in general,
divides a big computational program into various independent tasks across many
machines where it executes a combination of Map and Reduce functions. The job
of Map function is to filter and sort input files whereas Reduce performs aggrega-
tion or summary operations at the end. This strategy reduces the network traffic
and significantly accelerates the performance of processing large data [58]. Apache
Hadoop is recognized as one of the leading technologies for big data solutions and
several bioinformatics applications have already been developed on top of Hadoop
to deal with massive biological datasets including metagenomic sequencing data.
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Cloudbrush [59] is a distributed genome assembler that relies on Hadoop MapReduce
programming model and de-Bruijn string graphs. This de-novo assembler also pro-
vides an edge-adjustment algorithm to identify and fix structural defects in string
graphs.

Halvade [60] was also implemented based on the MapReduce framework to execute
tasks simultaneously for parallel variant discovery workflow. It supports both whole
genome and whole exome sequencing data and is developed based on GAKT’s[61]
variant calling pipeline.

For sequence file management, the Hadoop-BAM Java library [62] was developed.
The library provides a convenient API for scalable manipulation of BAM (Binary
Alignment/Map) files and operates as an integration layer between an application
and HDFS where files are stored.

Apache Spark

Apache Spark [63] is an open-source software framework offering high-level
Application Programming Interfaces (API) for data processing in parallel. Spark is
based on Resilient Distributed Datasets (RDDs) which are collection of objects par-
titioned across many nodes in a computing cluster. RDDs can be cashed in-memory
and reused in parallel operations.

The key difference between Apache Spark and Hadoop MapReduce is that while
Spark keeps and process large data in-memory by utilizing RDD abstraction, the
MapReduce performs disk-based computations. Comparing the two approaches in
terms of speed, Spark achieves approximately 100 times faster performance [64, 65].
Spark supports advanced APIs in several programming languages including Python,
JAVA, SCALA and R. It also provides many advanced modules such as GraphX for
constructing and computing graphs, Spark SQL for structured data processing and
MLIib for machine learning. These frameworks are now widely used for processing
of NGS datasets [64].

ADAM is Apache Spark based distributed processing pipeline for exploring genomic
data [66]. It supports a command line interface as well as an application programming
interface for processing sequencing datasets on a Spark cluster. ADAM provides
various algorithms for genome sequencing including for variant calling, genome
file transformation, kA-mer counting.

The Genome Analysis Toolkit (GAKT) [61] is developed by Broad Institute for
variant discovery in high-throughput sequencing data. Some tools from the GATK4
version are developed on Spark enabling large-scale genomic studies by reducing
execution time.



There are also Sparkhit [67] and MetaSpark [68] available which can be launched
on a Spark cluster and can offer several tools for short read processing. Additionally,
some studies have directly integrated existing bioinformatics algorithms into Spark
framework instead of re-implementing the same tool in Spark [69, 70].

For assembling NGS reads, Spaler [71] was proposed. It utilizes Spark and Graphx
APIs for de Bruijn graph construction. When compared previous assemblers based
on message passing interface (MPI), the results showed that the algorithm based
on Graphx had better performance regarding scalability and was able to produce
similar or better contig quality [64]. However, Spaler source code has not been
made publicly available so far.

In general, Spark and Hadoop can offer great means and capabilities to process
NGS data with more scalable and flexible way. These computing frameworks
could prevent bottlenecks in biomedical studies that are created by huge amount
of generated data.

1.6.3 Taxonomy classification

Another great challenge in the bioinformatics workflow is taxonomic classifi-
cation of NGS data. Usually, the identification of potential viral sequences is
accomplished by NCBI BLAST, which compares sequences to reference genomes
in its database and estimates how much similarity they share. BLASTn conducts
searches on nucleotide level whereas BLASTx and tBLASTx queries against a
protein database to detect similarities between sequences.

However, a large portion of the sequences from NGS projects is still labeled as
unknown [37, 45]. One of the reasons might be that public databases are incom-
plete which is especially true for viral sequences.

Identifying novel viruses is particularly a challenging task because of the lack
of “marker gene”. For example, 16S rRNA and 18S rRNA can be used to detect
bacteria or eukaryotic genomes in metagenomic sequences but such an approach is
not possible for viral organisms. In addition, it is also very difficult to find similari-
ties among viral species. This was further demonstrated by Soueidan et al. when
the authors compared archaea, bacteria, plants, and viral genomes by counting
k-Disagreeing Neighbors (KDN) among each species. KDN counts a number of
neighbors (k) in a genome that does not share its label. According to the study,
highest number of KDNs were found in viruses compared to the other species [72].

Alignment-free taxonomic classification methods can be used to explore and
compare genome sequence compositions based on codon or k-mer usage. These
algorithms can help classifying sequences that are highly divergent or have no
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homologs in public databases. In addition, they are computationally less expen-
sive and faster compared to alignment-based methods. Although, they usually
classify sequences with lower accuracy and heavily depend on sequence length.
Developing alignment-free methods for taxonomic classification is a new area of
research and up to this time, there have been a very few such algorithms designed
for viral genome classification in metagenomic sequencing datasets [73]. Since
current genomic reference databases are incomplete, especially for viral sequences,
accurate evaluation of viral genomes in metagenomics is a major challenge. It is,
therefore essential to develop sophisticated bioinformatics tools and methods to
analyze viral metagenomic datasets and explore the biodiversity of viruses.

1.6.4 Machine learning

Machine learning is a branch of Artificial Intelligence that enables algorithms to
learn and build models from previous observations in order to make predictions
about new independent data. As machine learning can learn from very complex
and noisy datasets, it is increasingly applied in natural sciences including bio-
informatics for metagenomic sequencing data [74-79]. Machine learning field
represents a wide range of algorithms but for this thesis, we only used supervised
learning algorithms which involve teaching the model with a collection of data
containing correct input-output pairs. Supervised learning can be further divided
into classification and regression tasks [80]. In this thesis, Random Forest, Feed-
Forward Neural Networks and Convolutional Neural Networks were used to build
binary classifiers (virus/non-virus). In one study, we also employed an algorithm
based on Hidden Markov Models to identify and classify highly divergent viral
sequences into different viral families.

Random Forest

Random Forest (RF) [81] is a collection of many decision trees. Each decision
tree starts with the root node which branches into leaf nodes — the point where
the tree is not split anymore. The path between the root and leaf node is called a
classification rule. Every decision tree in RF is constructed by randomly selected
observations and variables which makes each tree a biased classifier as they cap-
ture different trends of data. In the final decision of RF, however, the majority of
votes from these decision trees determines a classification label [81].

RF is one of the most widely-used algorithms in the machine learning field. It has
also become very popular in biomedical sciences mainly because it can achieve
high prediction accuracy with a large number of features and relatively few
observations. Another reason for its popularity is that it can output information
about feature importance for classification with easy interpretability [82, 83]. To
put it simply, it is straightforward to interpret which features are most decisive
in the classification model. This interpretability and feature importance can be



used to identify important biomarkers [84], risk-associated SNPs in genome-wide
association study [85] or to just remove features that are not very informative[86].

Artificial Neural Networks

Artificial Neural Networks (ANN) are computational models initially inspired by
biological neural structures in the brain. ANN include different kinds of networks
and the simplest among them is Feed-Forward neural networks. It consists of lay-
ers of “neurons” also called nodes. Multi-layered neural networks are also referred
as Deep Learning. While there are no connections between nodes from the same
layer, nodes in neighboring layers have all-to-all connections (edges) with each
other. All these edges have weights associated with them [87]. In the beginning,
all the weights are randomly assigned but later updated to reduce the error at the
output layer. This process is called training. After the network is trained, it takes
data points as input, processes it with a mathematical function and outputs result
values (Figure 3).

Hidden Layers

Figure 3. Example of a feed-forward neural network. It receives data with the input layer,
performs computations with the hidden layers and outputs a result value at the output layer.

Convolutional neural networks (CNN) are another type of ANN that is similar
to FFNN [88]. In addition to fully connected layers, CNNs also include convo-
lutional layers as the name suggests. These convolutional layers have an ability
to process data as multidimensional arrays which enables the architecture to be
very effective in image recognition and classification [88, 89]. CNNs have also
proved to be successful in different fields [90, 91] including biological sequence
analysis [92, 93]. Considering the algorithm’s powerful potential for uncovering
highly complex patterns from input raw datasets, these capabilities can also be
beneficial in viral metagenomics.
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Hidden Markov Models

Hidden Markov Models (HMM) are a probabilistic model that can predict a sequence
of unknown variables by capturing hidden information of observable events. HMMs
have two stochastic processes: a visible process of observable symbols and an
invisible process of hidden states [94]. Because of these properties, HMMs were
successfully used for speech recognition before the Deep Learning era [94, 95].
In speech recognition, as the goal is to predict pronounced word from recorded
signal, an HMM model would try to discover a sequence of phonemes (sounds of
language) which made the actual pronounced sound. Given the example, phonemes
are states whereas the uttered word is the observation. According to the model,
states can never be directly observed but rather deduced from the observation. This
approach can also be useful to model protein or DNA sequences which usually
contain smaller substructures often displaying different functions and different
statistical properties. HMM can thus offer effective capabilities of prediction and
patter recognition for modelling biological sequences including gene modelling
[96], base-calling. [97] as well as for modelling for DNA sequencing errors. [97].



2 PRESENT INVESTIGATIONS

21 General aim

The primary aim of this thesis was to develop powerful distributed computing
and machine learning methodologies and apply them to viral metagenomics, in
order to enable large-scale analysis and identification of highly divergent viruses
in human metagenomic sequencing data.

2.2 Specific aims

Paper I: To re-analyze all the assembled contiguous sequences (contigs) previ-
ously classified as “unknown” by NCBI BLAST, using an algorithm based on
Hidden Markov models.

Paper II: To investigate whether training machine learning algorithms such as
Random Forest and Artificial Neural Networks based on Relative Synonymous
Codon Usage (RSCU) could improve discovery of viral sequences in human
metagenomic sequences.

Paper I1I: To develop a deep learning tool that can identify viral genomes in raw
metagenomic sequences from different human samples.

Paper IV: To develop a scalable pipeline on top of Hadoop and Spark which
could integrate standard bioinformatics algorithms and would be able to process
hundreds of NGS samples in a reasonable time.

Paper V: To estimate what proportion of head and neck cancers may be prevent-
able by HPV vaccination, using all RNA sequencing dataset from head and neck
squamous cell carcinomas (HNSCC) from The Cancer Genome Atlas (TCGA)
and our scalable pipeline ViraPipe.
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3 MATERIALS AND METHODS

31 Patient samples and Sequence data

In Paper L, 11, III, IV we used datasets from metagenomic sequencing projects
previously designed to investigate viral sequences in human samples from differ-
ent patient groups. Total nucleic acids were extracted for the most samples except
of formalin-fixed paraffin-embedded (FFPE) biopsies in which case only DNA
was extracted. Sample types contained serum, fresh frozen biopsies, FFPE from
skin samples and from condyloma and swabs. [llumina machines such as MiSeq,

NextSeq, and HiSeq were used to sequence these samples (Table 2).

Table 2. Metadata of human metagenomic projects used in this thesis.

Project ID Total number of  Average length Sample type Sequencing
raw reads of reads Platform
2011_G5 585,521,156 250 Serum MiSeq
2011_2 765,078,022 101 Skin (both fresh frozen MiSeq
and FFPE)
2014 _B 463,686,630 150 Prostate secretion NextSeq
2014_F1 31,784,562 250 Paraffin blank block MiSeq
2014_G1 46,601,934 250 Serum MiSeq
2014_G5 1,034,289,514 101 Serum NextSeq
2014_G6 481,759,557 150 Serum NextSeq
2014_G7 451,344,599 150 Serum NextSeq
2014_7 51,719,623 150 Skin (FFPE) NextSeq
2014_E1 236,299,783 150 Cervical tissue (FFPE) NextSeq
2015 1 494,183,607 150 Biopsy NextSeq
2015_F 207,891,764 150 Cervix tissue (FFPE) NextSeq
2015_F2 336,156,550 150 Cervix tissue (FFPE) NextSeq
2015 4 415,626,171 150 Serum NextSeq
2014_A1 22,061,444 250 Cervix tissue (FFPE) MiSeq
2015_5_LH 37,378,706 180 Saliva MiSeq
2014 9 1,034,289,514 100 Serum HiSeq
2014_14 376,961,716 150 Skin swabs NextSeq
2014_15_SR 29,693,475 150 Serum MiSeq
2013_1 48,243,885 150 Skin (fresh frozen tissue) MiSeq
2013_2 34,034,998 250 Skin (fresh frozen tissue) MiSeq
2014_10 78,080,812 250 Skin (FFPE) MiSeq
2014 _D3 56,224,598 250 Spleen and pancreas MiSeq
tissue
2014_Q1 502,617,745 150 Laryngeal, tonsillar NextSeq

& cervical tissues




In Paper 11, we also used dataset from the Codon Usage Database (https://www.
kazusa.or.jp/codon/) containing complete genes from the NCBI GenBank.

In Paper V, we used the dataset obtained from The Cancer Genome Atlas (TCGA)
portal where more than 2.5 petabytes of genomic, transcriptomic, epigenomic and
proteomic data are publicly available (http://cancergenome.nih.gov/). We obtained
all RNA sequencing (RNA-seq) datasets from all primary tumor samples from
patients belonging to the Head and Neck Squamous Cell Carcinoma project (TCGA-
HNSC). The total amount of downloaded patient files included 500 bam files
(each bam file corresponding to each patient) where the number of male patients
were 367, while females were 133. In total, files consisted of 3.7 terabytes of data.

3.2 Methodology

321 Study|l

In this study, we used HMMERS3 [98] to re-analyze sequences that were labeled
as unknown by NCBI-BLAST. The algorithm implements profile Hidden Markov
Models to detect distant relatives in sequence databases. As for the reference data-
base, we obtained profile viral HMMs constructed from all the virally annotated
proteins in RefSeq [99]. Profile HMMSs capture the evolutionary changes that
might have happened in a set of homologs sequences using multiple sequence
alignment. HMM uses a position-specific scoring system to determine how con-
served each amino acid is, and which deletions and insertions might have occurred
in the genomes.

Sequences were evaluated and ordered based on E-value. In this study, sequences
were classified as viral if the calculated E-value for one of their genes was less
than le-5. In case a sequence had hit with multiple virus families, then the hit with
the lowest E-value was selected.

Before assigning the assembled contigs into different taxonomic groups, the reads
were quality filtered based on Phred quality scores. Quality checked reads were
then mapped against human, bacterial, plant and phage genomes and highly simi-
lar reads were removed from the analysis. Then, the reads were normalized and
assembled by using de novo assembly algorithms.

In order to evaluate how accurately HMM-based pipeline can classify sequences,
we obtained sSimNGS and simLibrary (http://www.ebi.ac.uk/goldman-srv/simNGS/)
software to generate simulated NGS reads. The tools were used with default param-
eters. In the simulation we included human, bacterial, plant and viral genomes.
The simulated reads were then subject to the same viral pipeline as the main NGS
dataset.
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3.2.2 Studyll

In this work, we used Random Forest and Feed-Forward neural networks to
build binary virus/non-virus classifiers. We built two machine learning models
during this study: GenBank model based on genes extracted from GenBank and
metagenomic model based on sequences obtained from different metagenomic
experiments. For the metagenomic model, sequences were labeled by two algo-
rithms: firstly, we used PCJ-BLAST[100] with the most recent nt database and
secondly, we applied HMMER3 for the sequences that were classified as being
unknown origin by PCJ-BLAST. Results from both algorithms were combined
for machine learning purposes.

3.2.2.1 Relative Synonymous Codon Usage

To extract features for the machine learning algorithms we counted Relative
Synonymous Codon Usage frequency (RSCU) from the dataset [101]. Synonymous
codons encoding the same amino acids are identical at the protein level but they are
not used randomly. Different organisms choose synonymous codons selectively.
Therefore, we expected that extracting RSCU values from different genomes for
machine learning purposes would output effective classification results. For a
given assembled contig, RSCU value for each codon was calculated as indicated
in the following formula:

_ Y
fl] - 1 n; N
nl j=1 Y

Where x; represents the number of occurrences of the jth codon coding for ith
amino acid, which is encoded by total number of n; synonymous codons. In other
words, this formula divides the observed number of occurrences by the expected
if the usage of the codons was uniformly distributed [101].

3.2.2.2 Training the models

To train the model based on the metagenomic sequences and to provide as accurate
estimation of the performance as possible we applied leave-one-experiment-out
cross-validation (LOEQ) approach. With this methodology, the machine learning
algorithms were trained on 18 metagenomic projects and tested on the remaining
19. This process was repeated 19 times so that each time a different metagenomic
project was used as the test set. Using this approach, the algorithms were tested
on strictly unseen dataset.

In metagenomic data where viral sequences usually contain less than 1%, a clas-
sification model which always predicts a sequence as non-virus will get 99%
accuracy but such a classifier would, of course, be useless. With the huge class
imbalance between virus and non-virus data points within the datasets, we needed



to measure precision (fraction of predicted positives which was actually correct)
and recall (fraction of actual positives which was predicted correctly) for virus
class separately as the main goal of the study was to separate and identify viral
genomes from other sequences. When calculating precision and recall, however,
the classification threshold is typically set at 0.5 which means that if p(virus) > 0.5,
the model would label a sequence as a virus. If the purpose of the classification
was to obtain as few false positives as possible, we could increase the classification
threshold in which case we would get higher precision but lower recall. Conversely,
lowering the threshold would result in lower precision but higher recall.

The area under ROC (AUROC) curve is constructed by visualizing true positive
rate against false positive rate at different thresholds. Considering that the AUROC
curve can summarize the model’s performance at all possible thresholds, we used
the curve as the main metric to evaluate the machine learning models designed in
this study as well as in Study III.

Afterwards, we used micro and macro-average evaluation measures [102] to
combine the results from different testing sets. In micro-averaged measure, a test-
ing set that provides more validation samples has a bigger impact on the results
whereas in macro-averaged measure, the number of samples is ignored, and the
results are simply averaged.

3.23 Study il

Here, we used Convolutional Neural Networks to build a deep learning tool,
ViraMiner for detecting viral genomes among raw metagenomic sequences from
human samples. The architecture of ViraMiner has two convolutional branches in
order to capture different types of information from sequences (Figure 4).

To design the input training dataset for CNN, each contig was split into equal 300
bp fragments which were labeled as the initial contig. After the split, the remaining
nucleotides at the end of the contigs were removed and not included in the train-
ing set. For instance, 920 bp contig would be divided into three 300 bp sequences
and the remaining 20 nucleotides would be removed from the analysis. Moreover,
sequences that included at least one N letter (unknown) were not included in the
training set. We also designed an input dataset with longer, 500bp sequences with
the same approach but the initial analysis indicated that the 300bp dataset could
achieve considerably better accuracy. Consequently, we decided to continue the
study with only 300 bp sequences.

The model receives raw sequences in a one-hot encoded form and processes them
with two different convolutional branches. The frequency branch is followed by a
global average pooling that outputs average values after each convolutional filter.
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ViraMiner model
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Figure 4. The architecture of the ViraMiner model. The model has two convolutional
branches that receive raw sequences with 300 bp length in a one-hot encoded form. Both
of these branches output 1D vector which are then concatenated and all-to-one connected

to the output node.

The pattern branch is followed by a global max pooling that yields max values.
The latter was designed based on DeepVirFinder architecture [78]. The model then
concatenates outputs of these branches (1D vectors) and connects all-to-one to
the output node which gives final value in the range of [0,1] through the sigmoid
activation function. The pre-trained model is available here: https://github.com/

NIASC/ViraMiner




To train the model, dataset from the metagenomic sequencing projects were shuf-
fled and split into training, validation and testing sets. The hyperparameter scan
was performed for the following parameters:

 Filter size
* Learning rate

* Layer size (implies number of filters in convolutional layer as well as number
of nodes in the fully connected layer)

* Dropout probability

This hyperparameter search was performed for the Pattern and Frequency branch
separately. The performance of these models was then evaluated with area under
ROC curve.

For comparison, k-mer values were also extracted from the raw metagenomic
sequences to train Random Forest. As k increases, however, counting k-mers
becomes more and more computationally expensive. To overcome this obstacle,
we designed an algorithm based on Spark, which could conduct counting much
faster and much more flexible way.

3.24 Study IV

To speed up the analysis of NGS data, we developed a scalable parallel pipeline,
ViraPipe, implemented on Hadoop and Apache Spark.

However, implementing a parallel workflow for viral metagenomics implies several
significant challenges. Firstly, many existing bioinformatics tools and algorithms
such as BWA, BLAST, HMMER3, and de novo assemblies, do not support parallel
computations. Secondly, the existing genomic file formats are not compatible
with distributed file systems, especially the binary formats such as BAM, which
are not distributable without using external tools. In addition, when distributing
executions over the entire cluster; the pipeline needs to have repeated access to
reference databases, which are essential for alignment-based algorithms.

To conduct experiments and run algorithms we used a Hadoop cluster admin-
istered by the department of Laboratory Medicine at Karolinska Institutet. The
infrastructure included 24 computing machines with 256 GB of RAM and 56 cores
in each. In total, it provides approximately 6 TB of RAM and 1288 CPU cores.
One machine was dedicated to the cluster management while 23 machines were
deployed as Spark workers.
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As metagenomic sequencing datasets can be processed in partitions (short read
partitions), many current bioinformatics tools could be directly integrated into the
Spark framework without re-implementing Spark versions of them. Data local-
ity over the nodes enabled us to run these algorithms in each node at the same
time. Reference databases, however, needed to be replicated in every node in the
computing cluster. As for the genomic file formats, the Hadoop-BAM library[62]
provided the functionality to distribute BAM files in HDFS and process them in-
memory with Spark.

Currently, the ViraPipe workflow includes several essential bioinformatics tools
that were implemented or integrated into the Spark framework and can be deployed
in the cluster environment. It starts with decompressing input files and distributing
interleaved FASTq files into HDFS to make them ready for the BWA alignment.
BWA-MEM is implemented with jbwa library (https://github.com/lindenb/jbwa)
which executes the library through Java Native Interface (JNI). Read normalization
is performed in-memory with Spark, according to digital normalization [47] which
filters out highly redundant reads based on k-mer abundance. Normalized reads
are then assembled with Megahit, which is run in parallel Spark tasks. Reads are
assembled per sample and assembled contigs are saved into HDFS. For the BLAST
searches, the reference database is replicated in every node across the cluster and
contigs, produced by Megahit are repartitioned with Spark RDD. Similarly, to
execute HMMER3 [98] on Spark, ViraPipe uses the same data-parallel computa-
tion strategy as for the BLAST searches. The pipeline also provides SparkSQL
based interface to query generated files such as BAM and Apache parquet formats
in parallel. The entire workflow of ViraPipe is shown in Figure 5. The code of the
pipeline is available here: https://github.com/NIASC/ViraPipeV2

3.25 StudyV

In this study, we used the ViraPipe algorithms to analyze 3.7 terabytes of sequencing
dataset originating from head and neck squamous cell carcinoma project in TCGA
portal, which included 500 patient samples. The main purpose of the study was to
investigate what fraction of these tumors can be preventable by HPV vaccination.
Hence, we calculated what percentage of these samples contained HPV oncogenic
E6/E7 transcripts. According to the analysis, a patient was classified as HPV posi-
tive if the corresponding sample contained at least two reads from both E6 and E7
transcription.

The sequencing dataset was initially processed by TCGA portal where the reads were
aligned against human and 10 types of human viral genomes including HPV. After
downloading and storing the BAM files into HDFS, we processed the files with the
Hadoop-BAM library for the parallel read filtering. More specifically, the BAM
files were converted into SparkSQL tables from which human reads were filtered
out using simple SQL querying. The result FASTQ files were stored back to HDFS.



The code for quality checking of the reads was adopted from the source code of
Trimmomatic [51] and integrated into ViraPipe to filter out low quality reads from
partitioned FASTQ files. Afterwards, the reads were subject to data normalization
and the normalized reads were then aligned against the most recent HPV database.

As the tumor samples in TCGA originate from USA, we compared our findings to
the incidence rate of HNSCCs in the USA according to Cancer incidence in Five
Continents (CI5). CI5 databases provide detailed statistics about the incidence of
cancer around the world recorded by cancer registries.

ViraPipe
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Figure 5. Workflow of ViraPipe.
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4 RESULTS AND DISCUSSIONS

4.1 Putative novel viruses

In Paper I, by using HMMER3 algorithm with the profile vFams database, we
identified 510 potential viral sequences that were missed by BLAST. Among
these contigs, some were related to small single-stranded DNA viruses such as
Anelloviridae and Circoviridae whereas many of them were identified to have
similarities with larger double-stranded DNA viral families such as Mimiviridae,
Phycodnaviridae, and Herpesviridae.

These contigs were then compared to the Pfam database to detect conserved proteins.
The contigs that were identified as distant relatives of small circular viral families
contained sequences that are similar to genes that encode the viral hallmark genes
such as Rolling-circle replication initiation endonuclease, helicases and SpollIE/
FtsK motifs. The contigs that were related to large viral families included genes
that are present in both viruses and eukaryotes.

The length of these viral-related contigs varied from 500 to 100 000 bp (mean =
3362). For comparison, sequences that remained “unknown” after applying both
BLAST and HMM-based pipeline had a much lower average length (mean = 365).
This suggested that viral the HMM pipeline is particularly effective in classifying
contigs whose length is relatively long.

The evaluation of the HMM pipeline with the simulation tools of NGS data showed
that the algorithm had particularly high accuracy (~99%) when identifying viral
genomes belonging to ssDNA viral families such as Anelloviridae, Circoviridae
and Parvoviridae as well as sequences from several dsDNA viral families includ-
ing Papillomaviridae and Polyomaviridae. However, the pipeline had very poor
performance when classifying Mimiviridae (~3%) in which case this viral family
was confused mostly with plant genomes. This suggested that before applying
HMM-based pipeline, it is essential to discard all cellular genomes in the initial
step of the analysis.

In general, the analysis showed that BLAST should not be replaced by HMM-
based pipeline but rather be used as the second stage algorithm after BLAST.
Considering that the vFams database is constructed based on all viral proteins
from GenBank, the methodology is likely to become even more effective as the
database grows with novel viruses.



4.2 Machine learning models
421 Random Forest

In paper I, we designed two models. The first model was trained based on sequences
originating from GenBank whereas the second model was trained on sequences
coming from metagenomic experiments. In both cases, we extracted relative syn-
onymous codon usage (RSCU) values to design training datasets.

While the GenBank model achieved a superb performance when testing it on
sequences coming from the same source (area under ROC = 0.99), it failed to
generalize on assembled contigs originating from metagenomic sequences and
performed very close to a random classifier (area under ROC = 0.51). As the
main purpose of the study was to create a model that could classify metagenomic
sequences, we trained the second model based on 19 metagenomic projects.

Combining the results from the model performances on different testing sets
(leave-one-experiment-out cross validation) showed area under the micro- and
micro-averaged ROC curve 0.789 and 0.785 respectively (Figure 6). This demon-
strated that the model performed far better than the GenBank model or a random
classifier. The model could also obtain 75% precision at 8% recall or 95% preci-
sion with 3.7% recall.

To confirm the results or possibly improve the accuracy, we also trained a Feed-
Forward Neural Networks on the same RSCU dataset. FFNN model gave almost
the same performance with area under the micro-averaged ROC curve 0.790.

To extract codons that contributed most to the RF classification model, we applied
the RF feature important analysis. RSCU values for six codons (TCG, CGC,
CGA, GCG, GTA, and CCQG) appeared to have the most decisive roles in the RF
model, out of which TCG and CGC were the top two (Figure 7). In the training
dataset, these six codons had very low RSCU values among non-viral contigs
whereas they had higher values in viral contigs. By comparison, these codons are
not commonly found in the human genome either[103]. This suggested that the
algorithm chose codons for its classification model that are not frequently found
in non-viral contigs.

Overall, we found that designing machine learning algorithms based on RSCU
values can deliver important information in addition to alignment-based tools for
taxonomy classification of metagenomic sequencing data. In fact, the proposed
machine learning methods can be used to further search and sort unknown sequences
where potential viral genomes might be hidden.
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Figure 6. Performance of the metagenomic model for each LOEO fold. The red line
represents macro-averaged ROC curve and the blue line shows the micro-averaged ROC
curve across the experiments. The grey lines depict the model's performance for each
leave-out experiment.
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4.2.2 ViraMiner

In Paper 111, we applied Convolutional Neural Networks on raw metagenomic
datasets from human samples to improve the accuracy shown in Paper II. The
training dataset included 300 bp length contigs and was divided into training,
validation and testing sets. The proposed architecture with two convolutional
branches called ViraMiner achieved the area under the ROC curve of 0.923
(Figure 8). With ViraMiner, we could obtain 90% precision with 32% recall or
95% precision with 24% recall.
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Figure 8. Performance of ViraMiner model on the test set. The blue line represents the
ROC curve of ViraMiner (0.923) whereas the green line shows how a random classifier
would perform on the same dataset.

For comparison, we also extracted k-mers (3- 4- 5- 6- and 7-mers) from the same
partitioned dataset as above and trained Random Forest. While the best RF per-
formance was reached on 6-mers with AUROC value 0.875, RF produced lower
but very similar accuracy on 3- 4- 5- and 7-mers with AUROC scores as follows
respectively: 0.867, 0.872, 0.873, and 0.869

Considering that ViraMiner includes two convolutional branches in its architec-
ture and each branch was trained separately for the study, we also tested how they
performed independently on the same dataset. The results showed that the Pattern
branch with the max pooling operator yielded a test AUROC of 0.905 whereas
the Frequency branch with the average pooling operator achieved AUROC of
0.917. Even though each branch produced very high accuracies on the test set,
ViraMiner achieved even higher AUROC value (0.923) with the combination of
the two (Figure 9).
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Figure 9. Comparison of different models trained on human metagenomic sequencing
data. Red bars represent performances of RF on extracted k-mer values whereas blue bars
show CNN models trained on raw sequences. Frequency and Pattern branches produced
AUROC values above 0.9 but the combination of the two achieves the best performance
(AUROC of 0.923) out of all models.

Although ViraMiner achieved impressive classification performance on the test
set, the main goal of the study was to design a deep learning model that could
generalize its classification capabilities on totally new and unseen metagenomic
projects from which no data point was included in the training set. For that purpose,
we tested the proposed architecture on specific metagenomic projects originating
from one specific sample type. In the dataset, we had five, the largest number of
metagenomic projects sequenced from serum samples and we investigated how
ViraMiner would perform on thesse five metagenomic datasets if they were not
included in the training set. The architecture was retrained five times but each time,
sequences from each dataset were left out to use them as the test set. ViraMiner
performed somewhat differently for each dataset but combining the results with
the micro-average measure showed AUROC of 0.94 (Table 3).

Table 3. ViraMiner accuracy on unseen metagenomic experiments originating from
serum samples.

Left-out experiment 2011_G5 2014_G1 2014_G5 2016_G6 2014_G7 Micro-
average

Test AUROC 0.95 0.89 0.96 0.92 0.86 0.94

Considering the results described above, using ViraMiner as a recommendation
system can be useful to further investigate unknown sequences. Even though it
is obvious that ViraMiner cannot replace the alignment-based methods at this
moment because of the limited training data, it can provide important prediction



capabilities. Unlike BLAST and HMMER3, ViraMiner does not use a reference
database for sequence classification which implies that the architecture extracts
different kinds of features of genome composition compared to the conventional
methods. We thus recommend the model for exploring and inspecting unknown
sequences for highly-divergent viruses which in turn may help us understand more
about the biodiversity of viral species in human samples.

4.3 Data-parallel processing of NGS data
4.3.1 \ViraPipe

In Paper IV, we developed a data-parallel computing workflow called ViraPipe to
speed up the analysis of metagenomic sequencing data. The workflow is imple-
mented on top of Hadoop and Spark and includes several standard bioinformat-
ics algorithms for processing raw NGS reads. As the main goal of the study was
to create a scalable pipeline, we compared the performance of ViraPipe with the
performance of the existing sequential pipeline and we also tested how ViraPipe
performed with different sizes of input datasets.

Sequential = ViraPipe
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Figure 10. Performance comparison between ViraPipe and sequential pipeline in terms
of processing time. The input dataset contained 105.5 GB sequencing data originating
from 13 human samples.

Figure 10 shows that ViraPipe managed to process the input dataset (105.5 GB)
approximately 11 times faster than the sequential pipeline. The analysis of scal-
ability regarding larger input datasets revealed that the overall runtime of ViraPipe
increased linearly in proportion to dataset size and thus, showed good scalable
performance (Figure 11).
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Figure 11. Scalability of ViraPipe.

Overall, the experiments showed that ViraPipe was able to process hundreds of
gigabytes of sequencing data in a reasonable time. Dividing data into smaller
partitions enabled algorithms to harness all necessary computer power from the
cluster. In general, this study demonstrated that Apache Hadoop and Spark brings
great improvements and flexibilities to bioinformatic pipelines.

43.2 HPV oncogenic transcriptions in head and neck squamous
cell carcinoma patients

In Paper V, we analyzed 500 patient samples belonging to Head and Neck Squamous
Cell Carcinoma project in the TCGA portal. The primary aim of the study was to
estimate what proportion of the cancers are caused by HPV infection and can be
preventable by vaccination.

Therefore, we investigated what percentage of samples included HPV E6 and E7
oncogenic transcripts.

As the dataset contained 3.7 TB sequencing reads, for the analysis we used ViraPipe
which was developed for data-parallel processing of massive NGS data.



According to the results, HPV reads were identified in 114/500 individuals. Only
92 had transcriptions of E6 and E7 regions. Separating the numbers according
to gender showed that the HPV transcriptions were found in 11/133 females and
81/367 males. HPV types (16/18/33) that are targeted by vaccination were detected
in 87/500 patients. Transcripts of other HPV types such as 31/45/52/58 that are
also targeted by vaccination were not found in these specimens.

These numbers were then compared to the incidence rate of HNSCCs in the USA
as reported in Cancer Incidence in five Continents (CI5). Given the fact that the
number of tumor samples that were sequenced in TCGA portal did not precisely
reflect how common these cancers are in the USA, we estimated the proportion
of tumors containing transcription of HPV viral oncogenes for each tumor form
separately (Table 4).

The comparison indicated that vaccine-preventable HPV viral oncogene transcrip-
tional activity might be found in about 2.4% female and 21.1% male HNSCC
patients in the United States. This suggested that if these cancers are truly caused by
HPV, vaccination might prevent 36 000 head and neck cancers in the United States.
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L.

II.

CONCLUDING REMARKS

Viruses in human samples seem to be more diverse compared to what is
suggested by using conventional alignment-based methods for taxonomy
classification. By using an algorithm based on HMM we identified several
hundreds of potential viral sequences that were missed by BLAST. As the
reference database is constructed by multiple sequence alignment from all
viral proteins from Genbank, it is highly likely that this method will become
even more effective when the database contains more novel viruses.

Machine learning methods based on codon usage bias can provide supplemen-
tary information for the identification of highly-divergent viruses. This method
can sort and prioritize unknown sequences for further examination.

III. Convolutional Neural Networks based on raw metagenomic sequences showed

considerably improved accuracy for the detection of viral sequences compared
to other machine learning models. ViraMiner is the first deep learning tool
which can detect the presence of viral genomes among raw assembled contigs
originating from various human biospecimens.

IV. The popular distributed computing frameworks Apache Hadoop and Apache

Spark were used to create a scalable parallel bioinformatics pipeline for large-
scale analyses of metagenomic studies. The results showed that ViraPipe, the
new distributed workflow is able to process sequencing data from thousands
of human samples in a reasonable time.

By using ViraPipe, we analyzed metagenomic sequencing data originating
from hundreds of tumor samples of head and neck squamous cell carcinoma.
Our findings revealed that vaccine-preventable HPV16/18/33 oncogenic
transcripts were present in 17% of such patients. Comparing the results to the
cancer incidence rate in the United States implied that roughly 36 000 annual
head and neck cancer might be preventable in the USA.
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6 FUTURE PERSPECTIVES

Identification of highly-divergent viruses from human samples remains a major
challenge in the field. Studies included in this thesis provided further evidence that
machine learning is a very powerful tool to uncover complex features of genome
compositions that can be helpful for detecting viral sequences. We have successfully
applied several machine learning concepts on the human metagenomic sequencing
datasets, but it should be noted that the supervised learning algorithms which we
employed to design these models usually work best when the number of data points
in each class is approximately equal. Because of the fact that in viral metagenomics,
viral data points typically include less than 1% of the training data, it is a signifi-
cant challenge to train a model to separate the minority class with high accuracy.
Resampling techniques such as oversample minority class or undersample majority
class are not very effective either because of the massive scale of data imbalance.

To further improve the achieved accuracy of the models, a semi-supervised approach
based on Generative Adversarial Networks (GANs) can be useful [104]. GANs have
two neural networks: generator and discriminator which are trained simultaneously.
Generator generates synthetic new data points from random noise that look real
whereas discriminator estimates them for authenticity whether they came from
the actual training dataset or not. Both generator and discriminator improve their
ability through the adversarial training framework. This algorithmic architecture
shows very promising results for anomaly detection tasks where the primary goal
is to identify very rare and unusual objects compared to what is considered to be
normal [105, 106]. Given the fact that viruses contain a very small portion of all
genomes in human samples, viral sequences can also be considered as anomalies.
During the training phase, discriminator can learn the distribution of anomaly-free
data containing non-viral genomes including human, bacteria and plant genomes
whereas generator can learn how to mimic the available dataset. If the training of
these two adversarial networks is successful, discriminator will be able to detect
a sequence that does not belong to the anomaly-free dataset by using an anomaly
score. Consequently, we could save this model and apply it to future NGS projects
to identify and distinguish viral genomes from the other organisms.

Another way to increase the accuracy of machine learning algorithms for viral
metagenomics is to improve de-novo assemblers to produce better quality contigs.
Nowadays, as these algorithms are in their infancy, they are susceptible to several
errors such as substitutions, insertions or deletions while reconstructing full genomes.
These errors are likely to have a big impact on the quality of contigs and conse-
quently, their taxonomy assignment. Moreover, these algorithms are required to
assemble millions of short reads into longer contigs, which is one of the most com-
putationally expensive steps in the sequence analysis workflow. To design scalable,



efficient and more accurate assemblers Spark framework and Graphx API can be
used. The Graphx library offers parallel construction and computing graphs that
can be employed to parallelize de-Bruijn graph based de novo assemblers and
improve their abilities to generate better quality contigs. However, there are several
significant challenges that need to be tackled while constructing the distributed
de-Bruijn graphs including erroneous reads, chimerical connections between the
nodes as well as redundancy in graphs. Addressing these challenges and further
improvements of de-novo assemblers will most probably result in a better under-
standing of the human virome and its impact on human health.
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