5 research outputs found

    Band-pass filter-like antenna validation in an ultra-wideband in-car wireless channel

    Get PDF
    Ultra-wide band (UWB) is a very attractive technology for innovative in-car wireless communications requiring high data rates. A designated antenna, which presents a reflection coefficient (S11) matched band comparable to the Band Pass Filters (BPF) normally required at the transducers, plays a positive contribution in this in-car application and was validated for the scenario. The inherited BPF-like response of the antenna relaxes the specification of the front-end BPF components of the transceivers. The in-car propagation channel was modelled and used to validate the BPF-like antenna. For the modelling, a comprehensive set of well-defined measurements (using a standard antenna) were used to set-up the in-car channel simulator and simulated results were used to validate the BPF-like antenna. Additionally, the performance of the UWB radio system is studied and the probability of errors over the communication channel compared using the standard and the BPF-like antenna by predictions

    Channel-based antenna synthesis for improved in-vehicle UWB MB-OFDM communications

    Get PDF
    Ultra-wide band (UWB) is an attractive technology for innovative in-vehicle wireless communications requiring high data rates and multiband orthogonal frequency division multiplexing (MB-OFDM) a suitable scheme for the accomplishment due to its high performance, low-power and low-cost characteristics. To contribute toward improved UWB MB-OFDM communications inside vehicles, a channel-based antenna synthesis technique to customise in-vehicle UWB antennas that reduce ‘blind spots’ in the communication channel is proposed and presented. For the realisation, a comprehensive analysis was utilised and comprised an in-car channel evaluation including bit-error-rate (BER) estimations and radiation pattern-and-source syntheses. The channel was measured using a standard antenna to set up the base of the experiments and the distribution of the impulse responses and signal-to-noise ratios in the vehicle's passenger plane shown. The currently available IEEE 802.15.3a channel models were perceived unrealistic for the in-vehicle application and the reason for measuring the channel practically. Using these specific channel measurements, the synthesised pattern is unveiled and consequently the channel-based antenna synthesis technique used to predict the antenna source. The antenna with optimised pattern-and-source showed an improved BER performance compared with the standard antenna in this application; that is, a figure of merit of 37.73% minimised ‘blind spots’

    IVAN: Intelligent van for the distribution of pharmaceutical drugs

    Get PDF
    This paper describes a telematic system based on an intelligent van which is capable of tracing pharmaceutical drugs over delivery routes from a warehouse to pharmacies, without altering carriers' daily conventional tasks. The intelligent van understands its environment, taking into account its location, the assets and the predefined delivery route; with the capability of reporting incidences to carriers in case of failure according to the established distribution plan. It is a non-intrusive solution which represents a successful experience of using smart environments and an optimized Radio Frequency Identification (RFID) embedded system in a viable way to resolve a real industrial need in the pharmaceutical industry. The combination of deterministic modeling of the indoor vehicle, the implementation of an ad-hoc radiating element and an agile software platform within an overall system architecture leads to a competitive, flexible and scalable solution.This work has been funded by the Ministry of Science and Innovation of Spain under INNPACTO funding program (RailTrace project, IPT-370000-2010-036)

    High-Speed Ultra-Wide Band In-Car Wireless Channel Measurements

    Get PDF
    Among the different wiereless wolutions, ultra-wide band (UWB) is a promising technology for in-car communications because of its high data rates. To optimise the UWB radio system design, knowledge of the propagation channel within the car is required. The performance of a high-speed 480 Mbps UWB radio system is studies within a real in-car environment measured under mobility. A comprehensive set of measurements is presented, including several possible non-line of sight scenarios while the vehicle is stationary and mobile, for open- and closed-window environments and with/without occupants. These measurements are used to characterise the in-car channel and evaluate the performance of a typica UWB radio system in this setting
    corecore