148 research outputs found

    Generation of curved high-order meshes with optimal quality and geometric accuracy

    Get PDF
    We present a novel methodology to generate curved high-order meshes featuring optimal mesh quality and geometric accuracy. The proposed technique combines a distortion measure and a geometric L2-disparity measure into a single objective function. While the element distortion term takes into account the mesh quality, the L2-disparity term takes into account the geometric error introduced by the mesh approximation to the target geometry. The proposed technique has several advantages. First, we are not restricted to interpolative meshes and therefore, the resulting mesh approximates the target domain in a non-interpolative way, further increasing the geometric accuracy. Second, we are able to generate a series of meshes that converge to the actual geometry with expected rate while obtaining high-quality elements. Third, we show that the proposed technique is robust enough to handle real-case geometries that contain gaps between adjacent entities.Peer ReviewedPostprint (published version

    Generation of Curved High-order Meshes with Optimal Quality and Geometric Accuracy

    Get PDF
    We present a novel methodology to generate curved high-order meshes featuring optimal mesh quality and geometric accuracy. The proposed technique combines a distortion measure and a geometric Full-size image (<1 K)-disparity measure into a single objective function. While the element distortion term takes into account the mesh quality, the Full-size image (<1 K)-disparity term takes into account the geometric error introduced by the mesh approximation to the target geometry. The proposed technique has several advantages. First, we are not restricted to interpolative meshes and therefore, the resulting mesh approximates the target domain in a non-interpolative way, further increasing the geometric accuracy. Second, we are able to generate a series of meshes that converge to the actual geometry with expected rate while obtaining high-quality elements. Third, we show that the proposed technique is robust enough to handle real-case geometries that contain gaps between adjacent entities.This research was partially supported by the Spanish Ministerio de Economía y Competitividad under grand contract CTM2014-55014-C3-3-R, and by the Government of Catalonia under grand contract 2014-SGR-1471. The work of the last author was supported by the European Commission through the Marie Sklodowska-Curie Actions (HiPerMeGaFlows project).Peer ReviewedPostprint (published version

    A Thermo-elastic Analogy for High-order Curvilinear Meshing with Control of Mesh Validity and Quality

    Get PDF
    This is the final version of the article. Available from Elsevier via the DOI in this record.In recent years, techniques for the generation of high-order curvilinear mesh have frequently adopted mesh deformation procedures to project the curvature of the surface onto the mesh, thereby introducing curvature into the interior of the domain and lessening the occurrence of self-intersecting elements. In this article, we propose an extension of this approach whereby thermal stress terms are incorporated into the state equation to provide control on the validity and quality of the mesh, thereby adding an extra degree of robustness which is lacking in current approaches

    Automatic generation of 3D unstructured high-order curvilinear meshes

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.The generation of suitable, good quality high-order meshes is a significant obstacle in the academic and industrial uptake of high-order CFD methods. These methods have a number of favourable characteristics such as low dispersion and dissipation and higher levels of numerical accuracy than their low-order counterparts, however the methods are highly susceptible to inaccuracies caused by low quality meshes. These meshes require significant curvature to accuratly describe the geometric surfaces, which presents a number of difficult challenges in their generation. As yet, research into the field has produced a number of interesting technologies that go some way towards achieving this goal, but are yet to provide a complete system that can systematically produce curved high-order meshes for arbitrary geometries for CFD analysis. This paper presents our efforts in that direction and introduces an open-source high-order mesh generator, NekMesh, which has been created to bring high-order meshing technologies into one coherent pipeline which aims to produce 3D high-order curvilinear meshes from CAD geometries in a robust and systematic way

    A Thermo-elastic Analogy for High-order Curvilinear Meshing with Control of Mesh Validity and Quality

    Get PDF
    AbstractIn recent years, techniques for the generation of high-order curvilinear mesh have frequently adopted mesh deformation procedures to project the curvature of the surface onto the mesh, thereby introducing curvature into the interior of the domain and lessening the occurrence of self-intersecting elements. In this article, we propose an extension of this approach whereby thermal stress terms are incorporated into the state equation to provide control on the validity and quality of the mesh, thereby adding an extra degree of robustness which is lacking in current approaches

    Grid generation for the solution of partial differential equations

    Get PDF
    A general survey of grid generators is presented with a concern for understanding why grids are necessary, how they are applied, and how they are generated. After an examination of the need for meshes, the overall applications setting is established with a categorization of the various connectivity patterns. This is split between structured grids and unstructured meshes. Altogether, the categorization establishes the foundation upon which grid generation techniques are developed. The two primary categories are algebraic techniques and partial differential equation techniques. These are each split into basic parts, and accordingly are individually examined in some detail. In the process, the interrelations between the various parts are accented. From the established background in the primary techniques, consideration is shifted to the topic of interactive grid generation and then to adaptive meshes. The setting for adaptivity is established with a suitable means to monitor severe solution behavior. Adaptive grids are considered first and are followed by adaptive triangular meshes. Then the consideration shifts to the temporal coupling between grid generators and PDE-solvers. To conclude, a reflection upon the discussion, herein, is given

    Higher order mesh curving using geometry curvature extrapolation

    Get PDF
    A higher order mesh curving method is developed which uses information from the geometry to determine the appropriate curvature of edges in the interior of the mesh. Edges are represented using four point Bézier curves to determine the positions of higher order edge points. Higher order face and volume points are positioned using the basis functions for serendipity face and volume elements. Parameters are defined which allow user specified control over element quality and the propagation of curvature in the mesh. Curved higher order meshes are shown for test cases in both two and three dimensions

    A framework for the generation of high-order curvilinear hybrid meshes for CFD simulations

    Get PDF
    We present a pipeline of state-of-the-art techniques for the generation of high-order meshes that contain highly stretched elements in viscous boundary layers, and are suitable for flow simulations at high Reynolds numbers. The pipeline uses CADfix to generate a medial object based decomposition of the domain, which wraps the wall boundaries with prismatic partitions. The use of medial object allows the prism height to be larger than is generally possible with advancing layer techniques. CADfix subsequently generates a hybrid straight-sided (or linear) mesh. A high-order mesh is then generated a posteriori using NekMesh, a high-order mesh generator within the Nektar++ framework. During the high-order mesh generation process, the CAD definition of the domain is interrogated; we describe the process for integrating the CADfix API as an alternative backend geometry engine for NekMesh, and discuss some of the implementation issues encountered. Finally, we illustrate the methodology using three geometries of increasing complexity: a wing tip, a simplified landing gear and an aircraft in cruise configuration

    A variational framework for high-order mesh generation

    Get PDF
    The generation of sufficiently high quality unstructured high-order meshes remains a significant obstacle in the adoption of high-order methods. However, there is little consensus on which approach is the most robust, fastest and produces the ‘best’ meshes. We aim to provide a route to investigate this question, by examining popular high-order mesh generation methods in the context of an efficient variational framework for the generation of curvilinear meshes. By considering previous works in a variational form, we are able to compare their characteristics and study their robustness. Alongside a description of the theory and practical implementation details, including an efficient multi-threading parallelisation strategy, we demonstrate the effectiveness of the framework, showing how it can be used for both mesh quality optimisation and untangling of invalid meshes
    corecore