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A general survey of grid generation is presented with a concern for understanding 
why grids are necessary, how they are applied, and how they are generated. After an 
examination of the need for such meshes, the overall applications setting is established 
with a categorization of the various connectivity patterns. This is split LvetWee~; structured 
grids and unstructured meshes. Altogether, the categorization establishes the foundation 
upon which grid generation techniques are developed. The two primary categories are 
algebraic techniques and partial differential equation techniques. These are each split into 
basic parts, and accordingly are individually examined in some detail. In the process, the 
interrelations between the various parts are accented. From the established background in 
the primary techniques, consideration is shifted to the topic of interactive grid generation 
and then to adaptive meshes. The setting for adaptivity is established with a suitable 
means to monitor severe solution behavior. Adaptive grids are considered first and are 
followed by adaptive triangular meshes. Then the consideration shifts to the temporal 
coupling between grid generators and PDE-solvers. To conclude, a reflection upon the 
discussion, herein, is given. 
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tract No. NAS1-18107 while the first author was in residence at the Institute for Computer Applications 
in Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665. Also, 
research was supported under NASA Grant NAG3-715 and Air Force Grant AFOSR-86-0307. 
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INTRODUCTION 

The numerical solutions to partial differential equations are approximations that usu- 
ally depend upon some finite collection of points that cover the field on which the solution 
is sought. If the collection is arbitrarily given and no connections between the points 
are specified, then the solution depends only upon the points and is thereby free of any 
mesh: a mesh requires both the points and the connections between them. In the context 
of hydrodynamical simulations, the mesh-free objective has been pursued by a number 
of investigators. There, the points in the field ride along with the fluid in a Lagrangian 
sense. This permits long time non diffusive simulations at the expense of having to deal 
with a somewhat random array of points. Various approaches for dealing with such arrays 
are given in the conference proceedings entitled: The Free-Lagrange Method (89).  The 
same type of construction has also spread to general problems with aerodynamic configu- 
rations (126). 

in the most basic form, every point in the array of points has a unique cell about it 
defined by the points which are closer to it than to any other point in the array. This 
cellular decomposition is known as the Voronoi mesh and its dual is called the Delaunay 
mesh. While Voronoi cells do not provide a connectivity graph between the original array 
of points, the associated Delaunay mesh does. As  a consequence, there is then always 
a mesh that is uniquely defined by an arbitrary array of points. With this definition, 
the Delaunay mesh might lead to some undesired intersections of triangle edges with the 
given boundaries of objects in the field. However, there is no real obligation to construct 
Delaunay meshes based on the Voronoi construction. The connectivity pattern between 
the points are typically adjusted either to adapt more closely to the geometry and the 
solution, or to accommodate a particular solution algorithm or method of mesh generation. 
In conjunction with finite-element methods for example, there are many mesh generators 
that do not employ Voronoi concepts at all. From a general perspective, the construction 
and use of any arbitrary array of points presents the most flexible format for adjusting 
to complex configurations and solutions. It also bears the burden of having the most 
complicated management of data. This is caused by the lack of organization: the nearest 
neighbors to any given point are not simply given. As  a consequence, the nearest neighbors, 
the associated volumes, and the interfaces between such volumes must be explicitly defined 
by connectivity arrays that are not trivial. In addition, many of the best and most efficient 
numerical solution techniques are either greatly weakened or are unavailable with such 
uns t ruc t ured meshes. 

At  the other extreme, there are the coordinate grids for which most of the best and 
efficient numerical solution techniques are available. The most highly structured grid is 
the Cartesian grid where the connectivity for a regular block of points is provided by line 
segments of fixed length that are aligned with the Cartesian directions. At  a basic level, 
the structure is evident in terms of simply knowing the nearest neighbors to any given 
grid point. There is then clearly no need for the previous connectivity arrays. Aside from 
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the structure in the connectivity pattern, the structural quality in the relative pointwise 
positions is also high: the spacing is uniform in each direction and the intersections between 
the lines are orthogonal. Altogether, with both forms of structural quality, the Cartesian 
grids lead to the most efficient simulations. Unfortunately, they are not flexible enough to 
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deal with generally curved boundaries. I 

To bring the connectivity structure of Cartesian grids onto regions with curved bound- 
aries, coordinate transformations are employed. The Cartesian grid is then mapped onto 
a physical space grid so that the boundaries of the physical region are represented by 
discrete coordinate curves or surfaces. This removes the need to interpolate for bound- 
ary conditions. In the mapping process, the intrinsic quality of the Cartesian structure 
cannot be fully preserved. Instead, it can only be approximately achieved in terms of 
orthogonality and smooth variations in the spacing of cell volumes. The deviations from 
orthogonality should then not be too great, nor should the spacing between points or the 
growth of cell sizes be too large. All of these structural attributes are, of course, balanced 
against other requirements. These include the location of boundaries and the specification 
of pointwise distributions thereon or angles therefrom. They also include the clustering 
of points, curves, or surfaces whether they are prescribed by a priori judgements or by an 
automatic procedure. 

I 
, 
I 
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' 
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The balance between the desirable structural attributes and the desired constraining 
features is a t  the very heart of grid generation. It is here that the element of control must 
be developed so that there is some assurance that the desired objective can be obtained in 
terms of the stated constraints. The grid must not become so poorly structured as to render 
it ineffective for numerical solution algorithms. On the side of structural quality, conformal 
and orthogonal transformations are typically consideted to be the best. In analytical 
terms, this can be measured by the degree of simplicity assumed by the associated metric 
tensor, the coefficients of which form a matrix. With orthogonality, the metric is diagonal, 
and moreover, with conformality, the diagonal form also has equal entries. The price for 
these simple metric structures is that control over the boundary geometry or pointwise 
distributions is relinquished. 

In two-dimensions, the pointwise distributions are determined by conformal transfor- 
mations and are quite restrictive in the choice of orthogonal transformations. In three- 
dimensions, both transformation types are severely restrictive on the choice of geometry, 
not to mention the pointwise distribution on the geometry. The forced situation is then 
the inclusion of some nonorthogonality in order to consider even some of the most basic 
objectives. In the competition between the stated objectives and the metric structure, the 
controls in the grid generator represent explicit statements for the balance between them. 

The two primary categories for numerical grid generation are algebraic methods and 
partial differential equation methods. More specifically, algebraic methods are based on 
explicit algebraic formulas while partial differential equation methods involve the solution 
to sets of differential equations. Conformal mapping techniques lie a t  the root of both 
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methods, but such methods have since evolved into more general concepts to address the 
more arbitrary constraints arising from practical situations. To satisfy the constraints, 
the above element of control over the transformations has become the most important 
aspect. Control can be exercised in a fixed, programmed manner, in a dynamic interactive 
session, and in an adaptive context. In the general applications setting, the transformations 
are generated with varying degrees of automation and are assembled to form grids with 
topologies that conform best to the given physical problems. The topological issues are 
typically done in a multi-block format or equivalently by a multitude of cuts, patches and 
opened slits. They may also be considered with overlapping grids and with separated grids 
being connected by unstructured meshes. 

Discussions begin with the connectivity patterns for the structured curvilinear grids 
and for the general unstructured or partially structured meshes. Then the various grid 
generation techniques, the use of interactive graphics, some postprocessing procedures, 
and the development of adaptive grids are examined. The adaptive requirements arise 
when the solution experiences rapid variations on scales that are too small for fixed grids, 
largely because they cannot be sufficiently refined at the key locations without being 
refined everywhere. Under such fixed conditions, the grid contains an excessive number of 
points. The development of adaptivity concentrates on the use of structured grids through 
pointwise movement rather than on local changes in the number of points. The latter topic 
is addressed more thoroughly in other chapters of this volume. 

The general topic of grid generation has been the subject of a number of conferences. 
These occurred at NASA Langley (m in 1980, at Nashville (223) in 1982, at Houston (97) 
in 1983, and at Landshut, West Germany (u in 1986. The latter is the start of a two year 
international conference sequence. The topic also has appeared in a conference on adaptive 
methods in Maryland (11) in 1983 and has assumed a role of growing importance in the 
AIAA Computational Fluid Dynamics Conference sequence as well as in the international 
series on Numerical Methods in Fluid Dynamics, published in the numbered sequence of 
Lecture Notes in Physics by Springer-Verlag. A special conference on conformal methods 
has also occurred (a. 

In addition, there have been general surveys by Thompson, Warsi, and Mastin (221) in 
1982, by Thompson (a in 1984 and by Eiseman (69) in 1985. More specialized surveys 
have also appeared in conferences at NASA Langely and at Nashville. In the NASA Langley 
conference, Moretti (149) covered conformal transformations; Thompson and Mastin (219) , 
partial differential equation techniques; and Eiseman and Smith (a), algebraic techniques. 
In the Nashville conference, elliptic, conformal, algebraic, and orthogonal grid generation 
were respectively surveyed by Thompson (m), Ives (m), Smith (W), and Eiseman (65). 
Arising from the First World Congress on Computational Mechanics held in Austin, Texas 
in 1986, there were reviews on composite grid generation by Thompson (228) and by 
Steger and Benek (200), on algebraic grid generation by Smith and Eriksson (189) and on 
adaptive grid generation by Eiseman (57). Further reviews on adaptive grid generation 
are available by Anderson (3 in 1983 and by Thompson (226) in 1985. 
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A general text on grid generation has been given by Thompson, Warsi, and Mastin (225) 
in 1985 and monographs emphasizing various mathematical aspects of the topic have been 
presented by Eiseman (62) in 1980 and by Warsi (235) in 1981. Moreover, in the present 
review, a substantial number of references have been given to serve as an overall guide to 
the activities in grid generation. These references are simply meant to represent the spirit 
of the subject and to indicate where some further details can be found. They certainly are 
not meant to  be a complete and comprehensive listing. 

CONNECTIVITY PATTERNS 

The form of discrete coverage for the physical field are seen to vary in the degree to 
which the points are organized by their interconnections. This organization is a topological 
structure that appears as a connectivity pattern. In the unstructured case, the mesh can 
be readily made to conform to complex configurations, but this occurs at the expense of a 
lower level of algorithmic efficiency. In an opposite sense, the structured grids lead to highly 
efficient algorithms but require some effort to obtain conformity with the configurations. In 
between these two opposite polarities, there are partially structured cases and cases where 
the management of structured grids are required. Our discussion will be split broadly into 
structured and unstructured parts and will indicate the intermediate cases at appropriate 
spots. 

STRUCTURED CONNECTIVITY 

The structured connectivity patterns come from the application of one or more coor- 
dinate transformations. Each transformation is assumed to map a Cartesian grid to the 
physical region, and to thereby get a curvilinear grid with the same connectivity pattern. 

A Single Coordinate Transformation 

When one coordinate transformation is used, complex configurations are treated with 
various conditions enforced on the boundaries and at selected internal locations. The 
boundary conditions are applied to fix the points on a body, to move points along a 
body, t o  form branch cuts and patches, or to move boundary points according to some 
general rule. On the bodies, the points are usually fixed unless there is a desire for a 
reduction in grid distortion or for a stronger conformity with rapid solution variations. 
Off of the bodies, artificial boundaries are created in the form of cuts or patches for 
the treatment of regions with topological complexity. Within the physical field, these 
appear as internal transmissive coordinate curves or surfaces, or segments of curves or 
surfaces. When the physical boundary is either changing shape or is in rigid motion, the 
points are being driven by some general rule. Some examples, here, are the motion of 
water waves (217,216,114,113,7,247) and the flight of insects (112). In terms of differential 
equations, the above requirements are respectively translated into Dirichlet, Neumann, 
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reentrant (periodic or continuity) and mixed boundary conditions which are applied to 
the physical space position variables along the boundaries of the Cartesian domain. 

The internal conditions contain the same conditions that are applied at boundaries and 
add to them the action of opening slits. A slit is formed by continuously pulling apart a 
coordinate curve or surface segment to form a local area or volume that is not covered by 
the grid. The uncovered region either is considered as yet another solid body in the region, 
or is covered with another grid. In the latter case, the grid within the opened slit may 
be optimally aligned with an internal body. A further advantage with local coordinates 
for the internal body is that the coordinate singularity caused by the slit is pushed away 
from the body. To construct a slit, the coordinate curve or surface segment must be given 
double values so that it can be separated into a top and a bottom which are then moved 
apart from initial overlying segments. In terms of the premapped Cartesian domain, two 
distinct values of physical position appear over the same Cartesian segment. The same 
use of double values also applies to any solution of partial differential equations over that 
grid. T h e  reasons are the same. 

With one coordinate transformation, the various cuts or patches are readily employed 
to make the grid conform to many bodies as if they were just one large body (a. When 
applied together with slits, a great variety of configurations can be analyzed. In general, 
the internal conditions can be used to carve out any number of pointwise blocks to thereby 
create holes in the grid and to also change the effective boundary. The creation of holes is 
basically an extension of the process of slit opening: the main distinction is that the holes 
come from areas or volumes in the premapped Cartesian grid rather than from segments 
of coordinate curves or surfaces. Thus, the double values for slits are replaced by single 
values around the area or volume. The most general grid from a single transformation is 
then obtained from mapping a Cartesian block of grid points where the applied conditions 
effectively remove a number of subblocks, provide cuts or patches, and can open any 
number of slits. 

~ Multiple Coordinate Transformations 
, 

While considerable generality can be achieved by imposing various conditions on a 
single transformation, a more flexible format for the treatment of arbitrarily complex 
configurations is the use of more than one coordinate transformation. By this we do not 
mean the application of a sequence of transformations for the whole region. Instead, we 
consider separate transformations for the various parts of the region. That is, a number 
of distinct Cartesian grids are mapped into the physical region and are assembled to fully 
cover it with a mosaic of distinct curvilinear coordinate grids. The assembly can occur 
with varying levels of continuity. 

1 
1 

I 

1 

1 
I 

I 

I 
Completely discontinuous assembly. The lowest level is the completely discontinuous 

case where the grids can overlap each other as well as various bodies in the field. The 
general application with overlapping grids has been called a Chimera scheme and consists 

I 
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of forming separate grids for each body in the field. The strongest development has oc- 
curred with Steger, Dougherty, Benek and Buning (205,18,19) and could be viewed as an 
extension of the earlier work by Atta and Vadyak (8,9), Starius (196,197,198), Wedan and 
South (m), and Kreiss (133). Still earlier, the b a x  overlap idea was also discussed by 
Eiseman (58) but was not tested numerically. The fundamental management of overlaid 
grids depends upon a means to neutralize points that fall within solid bodies and to trans- 
fer data between the grids so that boundary conditions can be applied. In the work of 
Steger and his colleagues, this is accomplished respectively by blanking out points in solid 
bodies and by local multilinear interpolation. Their applications have been in two and 
three dimensions and have included motion. 

While the simple local interpolation is successful for most of the physical field and most 
of the practical simulations, improvements can still be made so that accuracy is increased. 
This comes from a consideration of characteristic directions and conservative properties. 
The characteristic boundary conditions for overset grids were studied by Eberhardt and 
Baganoff (55) and had led to an improved passage of shock waves through the grid overlap. 
More improvement can be expected from a correct accounting of conserved quantities and 
this was pursued by Berger (22,20). 

With the view of adapting the overlapping grids to the solution rather than to the 
geometric components of some complex configuration, a parallel development has been 
undertaken. The basic study was presented by Berger and Oliger (23) who considered 
solution refinement by a succession of solution oriented Cartesian grids. This was also em- 
ployed by Berger and Jameson ( 2 l )  with the orientation restricted to Cartesian directions 
that are mapped into coordinate directions about an airfoil. Further work in the general 
context has also been pursued by Oliger (m), Venkatapathy and Lombard (E), Lom- 
bard and Venkapathy (m), Henshaw and Chesshire (u), Reyna (m), Henshaw (m), 
Chesshire (a), Brown (a), Fuchs (92), Mastin (141), Thompson (a), Mastin and Mc- 
Connaughey (140) and Rai (169). 

In the absence of rigid geometric constraints, the individual grids of an overlapping 
collection are rather simply generated. The most demanding requirement here is just 
to generate grids about simple bodies or simple components of more complex bodies. 
Away from the bodies or components, the corresponding grid is relatively unconstrained 
and thereby leads to the simplicity in its generation. This, however, amounts to shifting 
the complexity from the grid generation to the boundary conditions. As a consequence, 
we get boundary condition strategies that involve interpolation, characteristic directions, 
and conservation principles. In addition, we must also worry about the relative cell sizes. 
Significant error can arise if the data transfer occurs between very fine and very coarse grids. 
In a sense, there is then a weak implicit constraint that cell sizes at the overlap locations 
cannot be too disparate. From a rough perspective, we may now suitably summarize the 
use of overlapping grids as being the most flexible format for grid generation and the least 
flexible format for boundary conditions. 
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Partially discontinuous assembly. In leaving the overlapping grids we go from the 
completely discontinuous assembly of grids to a partially discontinuous assembly. The 
main constraint on the 'grids is that distinct grids are joined together along an interface 
but are not required to match in a pointwise sense on the interface. In three-dimensions, 
an intermediate level of discontinuity can also occur when one of the two families of co- 
ordinate curves on the interface is aligned but the other is not. As can be expected, the 
interface constraint causes some shift in difficulty from the boundary conditions to the grid 
generation. The conservation of physical quantities is readily enforced on cells that are 
centered at  the interface. In two dimensions, these cells are constructed by forming half 
cells with respect to the grid on one side and then obtaining full cells by extrapolation 
to the median between the interface and the first coordinate curve on the other grid. By 
carefully balancing.fluxes across the edges of such cells, the quantities inside are conserved. 
Particular attention here is required at  the median curve. 

The method of conservatively treating the interface is due to Rai (169,170,171,168) and 
is quite effective in fluid mechanics problems. The studies have been in two-dimensions 
and should be extensible into three dimensions. Severe disturbances have successfully been 
passed through the interfaces even when one of the grids moves relative to the other along 
the interface. The use of motion in this context may be the best means of treatment 
when the simulation is for a device that has moving parts. Clear examples are helicopters, 
propeller driven aircraft and multistage turbine blade configurations. 

Continuous assembly. When grid point alignment is required along interfaces, the 
assembly of grids is accomplished in a continuous fashion but may have derivative discon- 
tinuities a t  the interface. At this stage, the boundary conditions are considerably simpler 
to apply while the grid generation is only slightly more difficult. Although no interpo- 
lation is required at  the interface, the transition across it must still be done carefully to 
account for discontinuous derivatives. Meanwhile, the main added difficulty for grid gen- 
eration is the requirement of alignment. This may cause excessive skewness if it is done 
poorly. However, it is usually the case that a relatively good alignment is easy to achieve 
because great precision is usually not required for this task. Some examples of this are 
given by Eiseman (59), Forsey, Edwards, and Carr (u), Kowalski (131), Ghia, Ghia and 
Studerus (3, Steger (m), and DiCarlo, Piva and Guj (47). 

Derivative continuous assembly. Further enhancement in the continuity of assembly 
comes with the enforcement of derivative continuity in increasing levels. In the discrete 
sense of grids, first and second derivative continuity are the only levels of practical interest. 
In many cases, only first derivatives are needed since a reasonably well-defined three-point 
stencil is produced through the interface. Derivative continuity beyond this level leads 
to a more modest change in the grids. The last trace of fairly visible continuity occurs 
with second derivatives in three dimensions where the observed variation is the deviation 
of a curve from being planar. As a consequence, derivative continuity that exceeds the 
first order can be assumed to be reasonably complete for grids. Moreover, it does not 
make any sense to consider levels of interface continuity greater than that of the grids 
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being assembled. However, it is often sensible to consider intermediate cases with partial 
continuity in a derivative. For example, angles may be matched at  interfaces while the grid 
spacing is not. The reason for this is that an improved cell structure can still be readily 
seen in the grid at the interface. 

With the various levels of continuity beyond the completely discontinuous overlapping 
case, an interface is always present between the distinct systems being assembled. In each 
instance, there are two options for establishing the interface: it may either be specified or be 
determined by the grid generator. When it is specified, it is usually called a patch boundary. 
This term is used to indicate that a lower underlying level of derivative continuity is present 
due to  a required explicit construction. As has been noted, the noticeable effects are 
ultimately taken from the grid rather than the analytical basis and are thus fairly decent 
with first or second derivative continuity. In most cases, only first derivative continuity 
has been employed. The first such developments were given by Eiseman (a), Smith and 
Weigel (m), and Sorenson and Steger (m. By contrast, when the interface is determined 
by the grid generator, it is treated like any internal coordinate curve or surface within the 
coordinate systems. As a consequence, it inherits the same continuity level as the given 
coordinate transformations. With the view of extending the terminology of conformal 
mappings, this interface is called a branch cut. In the more general context, grids that 
are generated from elliptic partial differential equations often approximate an analytical 
solution which is infinitely differentiable as originally discussed by Thompson, Thames 
and Mastin (215). The branch cut then typically comes from the use of a three point 
difference stencil in each coordinate direction. Although, an underlying infinite level of 
differentiability is often present, it is not of great importance for the grid since typically 
the derivatives are all computed numerically. The assurance, however, is that complete 
continuity in the sense of grids is achieved quite simply. Beyond this, the main advantage 
is that a detailed and perhaps tedious interface construction is not needed. 

Block structured grids. When some level of continuity is present across interfaces, 
the overall assembly of distinct grids is called a composite or block structured grid. The 
general pattern has been simultaneously developed by so many investigators that it is 
difficult to identify any one of them as being the first. This may be quite natural with 
such an obvious pattern and can certainly be detected in many of the works presented 
in the grid generation conference of 1980 (m), not to mention the previous works. In 
the evolution of the block structured approach, a basic classification of the developments 
has arisen and comes directly from the boundary conditions for the block edges or faces. 
Quite simply, the boundary conditions on each edge or face are either restricted to be 
of only one type or they are not. Under the restriction, the physical regions must be 
dissected into more coordinate zones than would have otherwise occurred had various 
distinct conditions been permitted. For example in twedimensions, when a branch cut 
leaves a solid body, the restriction would imply that the body and the cut must be treated 
by separate adjoining blocks. The corresponding conditions are the specified points on the 
body and the continuous transmissive interface for the cut. If the coordinates are to wrap 
around both the body and the cut, then the grid is called a C-type grid and three separate 
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blocks are required: one above the cut, one around the body and one under the cut. By 
contrast, had the body and both sides of the cut been permitted on a single block edge, 
then only one block would have been required. Beyond this modest case, the disparity in 
the number of required blocks is substantial in two dimensions and is even more dramatic 
in three dimensions. 

While the increased number of blocks may appear to be cumbersome, the restriction 
which caused the increase represents an organizational advantage. With a single boundary 
condition type on each edge or face, the connectivity pattern of the entire configuration is 
more simply stated. The corresponding integer arrays involve the block number and size, 
the connectivity between blocks (oriented faces of adjoining blocks), and the boundary 
condition index. Such arrays have been called topology files. Some prominent exam- 
ples of this topological organization are given by Coleman and Brabanski (=), Rubbert 
and Lee (175), Boerstoel (a), Shaw, Forsey, Weatherill and Rose (m), Sawada and 
Takanashi (m), Seibert (m), Roberts (1741, Fritz (90) and Fritz and Leicher (a). 

With the alternative category, the main advantage is a reduced number of blocks while 
the disadvantage is the expense of a more complicated arrangement of boundary condi- 
tions. The complications arise from the need to segment block edges or faces and then 
to label each such segment with indices for the connectivity and the boundary condition 
type. To provide full generality, there must be enough room for many segments on each 
edge or face. the number of segments must then be determined and is seen to multiplica- 
tively expand the number of required indices. The total number of indices for the entire 
block structure, however, will be less than that required of the previous category. This 
occurs since boundary segment indices would be repeated when larger blocks are subdi- 
vided into the smaller ones that conform with single boundary condition types on edges 
or faces. The inconvenient feature here is that the topology file must deal with the possi- 
bility of arbitrarily many segments. Prominent examples of this topological organization 
are given by Thompson (m), Berglind (24), Soni (m), Eisernan (E), Ghia, Ghia and 
Ramamurti (x), Eriksson (76) and Sorenson (193,194). 

In applications, it is convenient to form the blocks with an extra layer of points beyond 
the actual boundaries. Although more computer storage is consumed, each block contains 
its own current boundary condition data and can, thereby, be effectively separated from 
the others. The separation is particularly helpful in the organization of the simulation 
and/or the grid generations and provides a decent data structure for parallel computing 
environments. A more detailed account of extra layers can be found in Thompson, Warsi 
and Mastin (a), in Coleman (38), and in Miki and Takagi (144,145). 

Because of the additional storage and the consequent double fetching from the storage, 
Coleman and Brabanski (a) have replaced the extra layers with an equivalent indexing 
strategy to define difference stencils on block boundaries. The consideration arose in the 
three-dimensional context where the added cost appeared to be too much. As a result, they 
cut the cost at the expense of having a more complex algorithm. Although the demands 
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of an extra layer may appear to be too much in three-dimensions, it should also be noted 
that such demands should be compared to the overall sizes. When the blocks are small, 
the extra layer represents a large addition while the opposite is true for large blocks. When 
N points appear on each edge of a three-dimensional block, there are ( N  + 2)3 - N 3  points 
in the extra layer surrounding the basic block of N 3  points. A meaningful measure of the 
additional storage is given by the fractional increase in the number of points caused by the 
extra layer. This is just (1 + 2 /N)3  - 1. When the fraction is given by l / m ,  the necessary 
integer value of N is just 2 + 6m. Thus, the extra layer represents an equal amount of 
storage when N = 8, is half the storage when N = 14, and so on. As a consequence, 
when the minimum number of points on a block edge is 8, the extra layer has at  most the 
same number of points as in the original block and we have at  worst not quite doubled the 
storage. Similarly, when the minimum number is 14, we have at  worst a 50% increase in 
storage; and so forth. By the time we reach 50 points, the increase is at most only 12.5%. 
The main conclusion that can be drawn from these numbers is that the extra layers are 
more likely to be useful when distinct boundary conditions are permitted on faces since 
then, as we have noted, the blocks are larger. 

Singularities. As a final note, the general consideration of grid topologies gives rise 
to an assortment of coordinate singularities regardless of whether or not block structures 
are employed. A discussion for the various types of singularity together with strategies 
for their treatment are given by Eriksson (E), Mastin and McConnaughey (m), and 
Thompson, Warsi and Mastin (a). 
MORE GENERAL MESHES 

As computers evolve into ever more powerful machines, with increased storage and 
computational power, the problems people wish to solve become increasingly complex. 
This complexity is present both in the physical content of the governing equations and 
in the more realistic physical configurations that are of interest. When the geometrical 
complexity of the problem dramatically increases, the task of preserving a good mesh 
becomes correspondingly more difficult. The constraints imposed by near orthogonality 
of the grid both in the interior and on the boundary of the physical domain, greatly 
lengthen the amount of time required to produce the initial grid. Furthermore, as the 
solution evolves, it is quite likely that the salient features of the flow do not remain fixed 
in space. Therefore, mesh topologies that allow easy restructuring of the mesh become 
highly desirable. Although the use of a general connectivity mesh poses more difficulty, 
this is likely to be somewhat offset by advances in computer architecture and numerical 
solution strategies. 

There are a multitude of mesh topologies which are suitable for the space and time 
evolution of complicated configurations. These are now discussed in more detail. 

Triangular Meshes 

10 



i 

Any two-dimensional physical domain, including those with multiple bodies can be 
discretized with a finite collection of points. These points uniquely determine a set of 
non-overlapping cells, which are collectively known as a Voronoi mesh. More precisely, a 
Voronoi cell about a node c is the set of points closer to c than to any other node. The 
bissectors of the edges of the Voronoi cells form a triangular grid which is the dual of the 
Voronoi mesh. It is called a Delaunay triangulation and has some very interesting prop- 
erties. On such a mesh, internode connections generate triangles which are the nearest 
to equilateral in some average sense as witnessed by Dukowicz (49). This result is based 
on an important property of Delaunay meshes, namely that the circumcircle of each tri- 
angle does not contain any other mesh point. This eliminates the likelihood of long, thin 
triangles since the circumcircle radius then becomes very large. Algorithms based upon 
Voronoi meshes have been developed by Augenbaum (lo) and Biirgers and Peskin (28). 
Voronoi meshes are also defined in three dimensional spaces, and several studies have taken 
advantage of this. These include the works of Trease (229,230) and Jameson, Baker, and 
Weatherill (126). 

When the physical domain includes bodies with scale lengths smaller than the iocai 
mesh point interspacing, it is possible for the resulting Delaunay mesh to produce unde- 
sirable side effects. For instance, mesh edges might intersect the wing of an airplane. One 
must therefore locally restructure the grid in these areas, either manually or with some 
form of automated procedure. 

Several automated triangular mesh generators have been developed for general domains. 
An excellent list of references covering the period up to 1980 is provided in the review 
by Thacker (a). There is no restriction on the complexity of the domains since the 
triangle edges can conform to arbitrary curved boundaries. Furthermore, problems with 
dynamically changing topologies become easier to handle because the grid can always be 
locally restructured to insure that the triangle edges are parallel to the newly formed 
boundaries. Boundary conditions must only be derived on a general boundary cell. They 
are then applied to all boundary cells. For example, Neuman boundary conditions are 
expressed by a specialized formula relating the affected node to its nearest neighbors. 
These formulas allow an arbitrary number of edges to intersect at a node. Therefore, they 
can indiscriminately be applied to every boundary point where Neuman conditions are 
valid. Such formulas are reduced cases of the general expressions for differential operators 
considered in detail by Erlebacher (a). 

1 The advantages cited above are somewhat tempered by several weaknesses. Because 
mesh points are distributed and numbered in a random fashion, it is necessary to keep track , I 

of a number of geometric quantities. Edge, triangle and node information must be stored 
and kept current as the mesh evolves. For example, in a finite-volume code, the triangle 
numbers adjacent to each edge must be known. Similarly, in a node-centered scheme, it is 
the vertex numbers of each triangle which become important. Once the appropriate data 
structure is constructed and translated into a set library of computer modules, it becomes 
relatively easy to manipulate the grid elements. Similar data structure considerations are 

t 

1 
, 
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emerging in problems which call for block-structured grids. 

Another potential disadvantage is the difficulty in constructing high-order numerical 
finite-difference or finite-volume schemes on triangular grids. This difficulty is somewhat 
diminished by formal finite-element formulations which can, in a systematic fashion, gen- 
erate schemes of arbitrary order. General discussions are available in Strang and Fix (210) 
and in Oden and Reddy (m). 

There is no direct correspondence between a totally unstructured grid and a uniform 
distribution of points. Consequently, implicit schemes which typically require the inversion 
of large systems of linear equations, is not directly feasible. Nonetheless, multigrid tech- 
niques which do not depend on a nested structured grid have been developed by Lijhner 
and Morgan (135) and Mavriplis and Jameson (142). 

Vector algorithms specialized to unstructed meshes , long thought to be very difficult 
have made their appearance. The recent hardwired gather and scatter routines available 
on most supercomputers have made this possible. These routines allow a selected set of 
randomly distributed data to be organized into a linear vector array which can then be 
processed in the usual manner. 

Unstructured triangular grids are particularly well suited to local addition and sub- 
traction of nodes. New triangles are created by several methods. A new node inserted at 
the triangle centroid and joined to the three triangle vertices creates two more triangles 
and three more edges. Three additional nodes placed at  the edge midpoints of a triangle 
and joined to each other create three more triangles and three more edges. However the 
new nodes must now be joined to adjacent triangles to maintain the overall triangular 
structure. Deletion of nodes is accomplished by the reverse process. 

As a triangular grid dynamically evolves in time, distorted triangles make their ap- 
pearance. These are eliminated by a process called mesh restructuring. For example edge 
flipping consists of treating two adjacent triangles as a quadrilateral. The offending diag- 
onal is removed and replaced by the other when certain conditions are met. For example, 
the sum of the angles subtended by the new diagonal should be greater than the total 
angle subtended by the old one. Another criteria might be that the shorter of the two 
diagonals is always chosen. 

Structured triangular meshes have been considered for their similarity to their curvi- 
linear counterparts. It is possible to construct a triangular grid which can smoothly map 
onto a grid of equilateral triangles. This approach has successfully been implemented by 
Winslow (245). 

It is possible to construct triangular meshes which possess a moderate level of structure. 
Unfortunately, some of the flexibility achieved by unstructured meshes is lost. One of the 
earliest structured grids was used by Winslow (m) in his study of magnetic fields in 
a multi-component system with complex boundaries. Each node lies at  the intersection 
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of three coordinate lines. Therefore there is a one to one correspondence between his 
mesh and a uniform mesh of nearly equilateral triangles. This provided a good setting 
for the use of a Laplace solver to generate the grid. That generator set the stage for the 
development of the more general elliptic methods of grid generation. Local grid refinement 
and restructuring were of course forbidden for otherwise the structure would be lost. 

An alternate approach is to cover the physical domain with a coarse unstructured mesh. 
Coarse triangles are referred to as macro elements or macro triangles. Each macro ele- 
ment can then be subdivided into four smaller triangles, each congruent to the original 
element. This is done by joining the edge midpoints to each other. A second application 
of this process to  the four newly created elements generates 16 new triangles. This nest- 
ing procedure can be individually applied to every triangle independently. Interpolation 
algorithms become necessary to transfer information across macro element boundaries. 
Such a scheme reduces the computer storage requirements because the structure in each 
macro triangle is regular. Local refinement (or coarsening) is limited by the macro triangle 
level, and restructuring is Ior DiuueIi. If restiiictiiriiig xeie perrittcd, cae Y O U ! ~  be f ~ c e c !  
with transferring information between overlapping sets of triangles. When the problem 
under consideration is time-dependent, this could lead to unacceptable levels of numerical 
dissipation. Multiple levels of nested regular triangular grids are well-suited to multigrid 
schemes where the successive grid coarsenings consist of removing successive layers of the 
previously refined mesh. This partial structure has been suggested by Eiseman (70) for 
a global moving mesh and by Bank (E) for the local refinement of a static mesh. An 
alternative procedure was developed by Marshall, Eiseman and Kuo (137) wherein a full 
rectilinearly ordered grid is inserted in each macro element in such a way as to provide a 
uniform distribution of points within such macro elements. This was done for both two 
and three dimensions. 

- r 1 - 1 1  - -  

Mixed Elements 

Nakahashi (m) considered multiple body configurations. Well-structured (i.e. nearly 
orthogonal) curvilinear grids are generated around each body. But rather than try to match 
the individual grids at some common interface, buffer regions are created and are trian- 
gulated. Finite volume differencing is used on the curvilinear grids, while finite-element 
methods are applied to the triangulated areas. Convergence of the numerical scheme is 
achieved by iterating back and forth between solutions on the curvilinear grids and the tri- 
angulated buffer regions. Information is transferred through the region interface nodes. In 
a sense, this approach contains some of the aspects of the Chimera schemes (205,18,19). It 
provides a method to transfer data between structured grids through unstructured buffer 
regions instead of through a direct transfer on overlapping regions. If the physical bod- 
ies are close to one another, the construction of the buffer zones is not always clear cut. 
This approach may become impractical in situations where the bodies are moving relative 
to each other (as in the store separation problem). In comparison, the Chimera scheme 
is simpler to implement albeit the transfer of information across the interfaces is more 
complex. 
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On the other hand, Crowley (43) has developed a Free-Lagrange, two-dimensional code 
in which the vertices are convected with the fluid. Refinement and restructuring occur 
locally to preserve a non-distorted grid. Simulation generally begins with a curvilinear 
grid, which progressively acquires increased triangular cells as local regions are restruc- 
tured, coarsened or refined. The inclusion of triangular elements avoids the need for global 
rezoning. Special care must be taken to avoid concave quadrilaterals during the reconnec- 
tion process. Otherwise, an overlapping grid becomes highly probable. Crowley (43) and 
Cooper (4l) provide many details. A similar acquisition of triangular cells occurs with 
front tracking. The triangles are localized to the front region, leaving the remainder as 
well structured quadrilateral cells. A description is given by Glimm et al. (m) and Chern 
et al. (36). 

General Connectivity In Three Dimensions 

Three-dimensional general connectivity patterns have been considered by Fritts (@), 
Marshall, Eiseman and Kuo (137), Trease (229,230) and Jameson, Baker and Weath- 
erill (126). In the context of Free-Lagrange methods, Fritts (88) has generalized two- 
dimensional restructuring algorithms to handle arbitrary tetrahedral configurations. 

GRID GENERATION TECHNIQUES 

The two primary categories for numerical grid generation broadly correspond to explicit 
and implicit definitions in the sense that one is directly specified by equations while the 
other comes only from the solution of equations. The equations in the explicit case are just 
algebraic formulas and in correspondence, the category is called algebraic grid generation. 
The equations in the implicit case are partial differential equations and accordingly the 
methods are called PDE-methods. These are further split into the subcategories entitled 
elliptic, hyperbolic, and parabolic grid generation to reflect the type of PDE used to 
generate the grids. 

Having covered topological issues in our discussion of connectivity patterns, we shall 
restrict our attention here to a single transformation and concentrate upon the various 
aspects of control. The issue of control arises in the general applications setting when 
the desired problem parameters are set forth and result in a number of constraints to be 
placed upon each coordinate transformation. The capability to successfully satisfy such 
constraints is the ability to control the grid. Attention will be given to the construction of 
the controls and to how, when, and where they are applied. 

METRIC NOTATION 

In the discussion of the various grid generation methods as well as in the various 
adaptive strategies of the next section, the fundamental properties of each object can be 
more clearly and concisely stated with the use of metric notation than without it. As a 
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consequence, we shall describe just enough of it for our purposes. In two dimensions, we 
associate 1 with E and 2 with q .  The differential element of arc length ds is then given by 

ds2 = + 2gi2d€d~ + g22dv2 (1) 

where 

and 7' = (x, Y ) ~  is the position vector. This form of ds2 can be readily verified by a chain rule 
expansion of dx2 + dy2. The matrix of elements g;j is called the metric because it defines 
the distance measurements with respect to the coordinates (t, q ) .  In a straightforward 
manner, the determinant 

= det(gij) (3) 

(4) 

is also seen to be the square of the Jacobian 

J = X€Yq - XqYC. 

For grids, this gives the cell sizes in the physical (x,y)-space that correspond to the fixed 
uniformly sized cells in the computational or logical space ( E ,  q ) .  When the Jacobian is 
nonvanishing, the inverse of the metric matrix (gij) can be computed and has elements that 
are typically written in the superscripted format giJ.  In continuation, the metric notation 
is equally valid in higher dimensions. For three-dimensions, we merely associate 3 with 
a third variable and then repeat the above discussion where, of course, the expressions 
are slightly longer but the meaning remains the same. Further discussion can be found 
in virtually any text on differential geometry. A development specifically aimed at  grid 
generation can be found in either of the monographs by Eiseman (a) and Warsi (235). 

ALGEBRAIC TECHNIQUES 

Algebraic grid generation distinguishes itself from other grid generation methodologies 
by the ability to provide a direct functional description of the coordinate transformations 
between the computational and physical domains. The roots of algebraic grid generation 
are found in conformal mapping, defined by explicit analytic functions of a complex vari- 
able. Conformal maps have found many early applications in potential flow. Although the 
resulting grids preserved a basic cell shape, the amount of local control provided was not 
sufficient for many problems. One by one, the intrinsic properties of conformal mapping 
were dropped. Cell shape preservation was replaced by only orthogonality; thus allow- 
ing the grid to stretch in one or more of the coordinate curve directions. Extensions to 
three-dimensions were developed which combined two-dimensional conformal mappings 
with algebraic stretchings in the third dimension; thus, producing some nonorthogonality. 

Shearing transformations also remove some of the shortcomings of conformal mappings 
at the expense of orthogonality. The amount of control is increased but is still insufficient. 
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These mappings allow the specification of boundary node locations and depend only on such 
locations. Therefore the orthogonality of the coordinate curves normal to the boundaries 
cannot be assured. Hermite interpolation on the other hand is a function of the boundary 
node positions and the desired derivatives from the boundaries. In a classical sense, these 
mappings are global polynomial mappings between two opposing boundaries. More precise 
control of the coordinate curves in the interior regions is provided by the multisurface 
transformation which contains the aforementioned transformations as special cases. ! 

8 

i When two or more pairs of boundaries must lie on coordinate curves (or surfaces), one 
or more different unidirectional coordinate transformations can be combined using Boolean 
sums. The resulting mappings are often called transfinite. 

I 
Although not usually considered an integral part of algebraic methods, certain post- 

processing techniques can also be expressed in terms of explicit functional dependencies. 
Movement of coordinate lines according to specific clustering requirements and the blend- 
ing of independently generated grids are two examples. 

In a logical progression, the discussion starts with conformal mappings, and is followed 
by shearing and Hermite transformations. The establishment of arbitrary shape control 
over the coordinate curves that connect two opposing boundaries is considered next and 
is obtained with the more general unidirectional construction known as the multisurface 
transformation. Unidirectional transformations are then combined with Boolean sums to 
generate the most general multi-dimensional transformations whose coordinate lines in 
physical space conform to all boundaries. The section ends with a few examples of grid 
post processing. 

I 
l 
I 

1 

~ 

I 

Conformal Mappings 

Conformal mappings are among the first algebraic transformations used for grid gen- 
eration. To simplify matters they are often applied along with direct shearing. In its most 
simple form, a conformal mapping is simply an analytic function of a complex variable. 
This variable is denoted by z = x + iy, where i = and the real and imaginary parts 
of z are the two-dimensional Cartesian coordinates (x, y) in physical space. The general 
mapping 

relates the points (x, y) in physical space to the points ( e ,  q) in computational space, where 
similarly 2 = 

z = g(Z) ( 5 )  

+ iq. In a real-valued differential form, Eq. 5 becomes 

where use has been made of the Cauchy-Riemann conditions 

X€ = YS 

Yt  = -Xq. (7) 
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Further relations can be derived from Eqs. 7. The metric coefficient g12 is zero, and 
the metric elements 911 and 922 are equal and denoted by h2. To bring out the shape 
preserving properties of conformal mappings, it is instructive to rearrange the previous 
system of equations. To this effect, consider the angle 8 defined by 

dz XE d- =z case = 

With the Cauchy-Riemann conditions, the standard rules for the trigonometric functions 
are readily seen to satisfy the conformal metric relationships 

and 
h2 = xf + X: = Y! + Y,, 2 

After the relations defined by Eqs. 7 and 8 are substituted in Eqs. 6, the differential 
coordinate transformation can be written as 

( :; ) = ( case sine - s i n e )  case (; ;) (:i) (11) 

Equation 11 can be locally interpreted as a dilation and a rotation. The dilation comes 
from the scaling factor h while the rotation is given by the angle 8 between the curve in 
and the x-axis of the z-plane. The magnitude of the scaling gives the local cell sizes. In 
an explicit sense, the angle preservation between distinct intersecting coordinate curves is 
displayed. Moreover, if de and dv are equal in magnitude, so are the length elements dx 
and d y .  Thus a lattice composed of square cells in computational space, transforms, under 
an analytical complex mapping, into a grid of quasi-squares in the physical domain. 

Some examples of simple analytic functions applied to grid generation are given by the 
parabolic and the Joukowski transformations which are 

(12) 

(13) 

2 z = z  

and 
1 

z = z + -  z 
respectively. The parabolic map is typically employed to unwrap the positive x-axis by 
sending it onto the entire &axis. On the other hand, the Joukowski transformation maps 
certain circles in the 2 complex plane to Joukowski airfoils in the z complex plane (162). 
It also maps the unit circle about the origin to the slit from -2 to 2 along x. 

Conformal mappings are not limited to planar surfaces. Stereographic and Mercator 
maps are conformal mappings from the sphere to the plane. They preserve local angles, 
and the local scale factor is independent of orientation. A three-dimensional impeller was 
gridded by Senoo (184) using conformal mappings. 
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When confronted with a complicated geometry, one wishes to transform to a more sim- 
ple configuration where the problem can be more simply solved. The appropriate conformal 
map must then be found. A comprehensive list of mappings was compiled by Kober (130). 
If the desired map is not found in this list, a strategy must be found to construct the map- 
ping. A plethora of techniques are described by Moretti (149) and Ives (124). Briefly, these 
include composition of elementary maps, near circle transformations (a, and single-step 
mappings. Near circle transformations are useful when a geometric object can be trans- 
formed to a shape close to a circle. Techniques have been perfected to take this near circle 
and transform it into a circle. Single step transformations encompass Schwarz-Christoffel 
transformations, and various other specialized mappings. Davis (45) has considered a 
generalized Schwarz-Christoffel transformation to treat curved boundaries. 

Conformal mapping algorithms impose the distribution of the mesh points along the 
boundaries, as well as their distribution in the interior of the physical domain, once the 
mapping and the boundaries of the computational domain have been chosen. There is 
no flexibility in the distribution of nodes across the physical domain. This is particularly 
evident when the physical domain contains a long narrow finger: the conformal cells there 
tend to rapidly dilate upon approaching the finger tip, thereby rendering it unresolved. 
Such fingers occur, for example, in airfoil cascade grids. It is also impossible to cluster 
grid points along boundary surfaces to resolve salient features present in the initial con- 
ditions, or expected in the course of the flow field calculation. On the other hand, most 
differential equations transform trivially under a conformal mapping. For instance, the 
Laplace equation is invariant under such a transformation. This is one of the chief reasons 
why conformal grids are still quite popular. Potential flow theory is still of interest to fluid 
dynamicists. With the potential equation being invariant under conformal mapping, the 
equations in transformed space often have analytical solutions, and in turn they produce 
answers to the original problem posed in physical space. 

Without losing the advantages inherent in conformal transformations, it is common 
practice to apply separate constant scaling transformations along the two compuational 
coordinate curve directions. This can either be done as a postprocessing step, or within a 
direct generation of the grid by solving the modified Laplace equations 

b2x[t+ a2x,, = 0 

b2ytt + a2y,, = 0 (14) 

where a and b are respectively the proportionality constants for the E and rl coordinate 
curves. More general transformations are obtained by first transforming the computational 
space coordinates into a new set of coordinates ((1, VI) by 

E1 = h ( E )  
rll = f 4 2 ( r l )  

where all computational space coordinates lie in the range [0,1]. This is followed by a 
conformal mapping applied to (E1,vl). The result is an orthogonal mapping. With the 
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previous system 14, the scaling functions can be nonlinear. Of course, the resulting system 
of equations has to be solved numerically in most cases, thereby losing the advantage of 
analytically defining the coordinate transformations. There is a large body of literature 
on conformal mappings. Most notable are the reviews by Moretti (149) in 1980, and by 
Ives (124) in 1982. A conference on conformal mapping was also held by Trefethen (231). 

Recent contributions to conformal mapping algorithms have been made by Ives (m), 
Ives and Menor (m), Halsey (107,108) and Baker (14). Ives (125) considers a three- 
dimensional inlet/centerbody grid. Two directions are gridded with a conformal mapping, 
while the third direction is the result of independent algebraic stretchings along the two 
coordinate directions involved in the conformal map. The result is a three-dimensional 
grid orthogonal in two directions but not in the third. 

Baker (14) approaches the three-dimensional problem from a different perspective. At 
each stage, he applies a nearly conformal mapping for a pair of coordinate variables. By 
perform-ing a. seqiience of such mappings for distinct pairs, the final composed map attains 
some three-dimensional generality. This generality occurs in the same spirit as in the 
development of Euler angles in classical mechanics. In typical applications, Baker uses the 
parabolic (Eq. 12) and Joukowski (Eq. 13) transformations in combination with shearing 
transformations (cf. Eq. 16). While the conformal maps were employed for the gross 
movement of the bodies into general desired positions, the shearing was used for the final 
and more modest push into the actual desired positions. For the aircraft mappings, the 
sheared Joukowski map was used to send the fuselage into a plane. With the wings and 
tails carried along with this map, we arrive at the next stage. Noting that the basic 
character of the carried wing is preserved, a sheared parabolic mapping is then used to 
unwrap the wing that now comes out of the plane. Another stage is thus reached and this 
process continues until all elements are appropriately treated. The entire composition is 
then used to generate the grid. This involves a formal inversion. 

One cannot, with a conformal transformation, impose both the grid positions and the 
angle the transverse coordinate lines make with the boundaries. There are also situations 
where an imposed node distribution is required across the flow field. For example, there 
might be a need for the inclusion of a small region in which the grid is Cartesian, even 
though the grid might otherwise be polar. Local controls of this type, and others, cannot 
be incorporated within the theory of conformal mapping. Even though local controls could 
be applied to the grid in the computational plane, and the resultant grid subjected to an 
appropriate conformal mapping, one would not know a priori how the resultant grid in 
physical space would look. We therefore turn our attention to a class of algorithms which 
operate in physical space, and can be expressed analytically. 

Unidirectional InterDolation 

A large class of problems depend on a grid that spans two boundaries, typically a solid 
object and the far-field. These two geometries includes t w e  and three-dimensional pipes 
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and windtunnels. They, however, can have a singular curve which must be joined up with 
the walls. For axisymmetric configurations, this singular curve is a straight line, from 
which the grid lines should leave orthogonally. Inlets may contain shocks, which further 
require the grid points to be clustered in localized areas to insure that the flow field can 
be calculated accurately. Denote by ?I(?) and r'2(?) two vectors in physical space. As 
a function of the computational coordinates E [0,1], these vectors trace out a curve 
in 2-D space when < = ( and a surface in three-dimensional space when $ = (€1, €2). 

Unless otherwise specified, the discussion that follows is restricted to two-dimensional 
space. Although not always explicitly stated, most of the algebraic techniques that will 
be discussed are readily extended to higher dimensions. The cor,structive computational 
coordinate q ,  also in the range [0,1] follows the family of coordinate lines that intersect 
the two boundaries at  a non-zero angle. 

Shearing transformations. The simplest transformation that connects the boundaries 
r'1 (t) and 72 ( e )  is the shearing transformation 

r'(€, v )  = 71(€) + r l ( r ' 2 ( € )  - r'l(€)) (16) 

which describes the migration of the vector r'(e,q) from the inner boundary r'1 when 
q = 0 to the outer boundary 72 when q = 1. The coordinate specifies the location of 
the radius vector r' along the boundary. In other words, 6 is the boundary parametriza- 
tion. Equation 16 is the parametric equation of a family of straight lines joining the two 
boundaries between points of equal e. Gridding the physical domain consists of choosing 
a parametrization of both boundaries, and joining points of equal parameter value with 
straight lines. In this manner, it is possible to insure orthogonality a t  one of the bound- 
aries, but not both, unless they are parallel. For the case of symmetric nozzles, the wall 
is first parametrized. Projection of the wall nodes onto the nozzle axis usually determines 
the parametrization of the axis. Application of Eq. 16 generates the intermediate q = cst 
coordinate curves. In the shearing transformation defined by Eq. 16, the variable q can 
be replaced by any increasing strictly monotonic function I'(r]) which satisfies the two 
conditions 

A suitable choice of I' gives the user control of the radial clustering of nodes along the 
E = cst curves. Eiseman (59) has analyzed and applied the shearing transformation in two 
dimensions. The particular application was the gridding of a periodic cascade of airfoils. 

Although full control over node position along the boundaries in physical space has 
been achieved, it is at  the expense of angle specification. On the other hand, under re- 
stricted circumstances, the angle can be specified on one boundary and the positions on the 
other. If multiple coordinate systems are patched together into a larger assembly, shearing 
transformations can by themselves, produce an overall grid with derivative discontinuities 
Specifically, slope discontinuities are usually propagated inwards from the boundaries. Sev- 
eral alternatives are available to eliminate the problem. The most straightforward is to 
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smooth the composite grid in a postprocessing step. However, by doing so, one loses some 
of the fine control. Another solution is to increase the number of free parameters in the 
coordinate transformations, either by choosing one or more interior nodes or by making 
use of derivative information along the boundaries. The first approach leads to the mul- 
tisurface transformation which is the subject of a later section. If the node locations and 
the tangent vectors for the ( = cst curves are specified at both boundaries, the resulting 
mapping is a Hermite transformation. 

Hermite transformations. If in addition to boundary coordinates, derivative informa- 
tion is also provided at  the boundaries, the previous linear mapping in q must be replaced 
by a cubic mapping. This allows the specification of four boundary conditions. As a func- 
tion of the two tangent vectors LGi/r37, i = 1,2,  the global cubic Hermite transformation 
is given by 

The tangent vector L W I / i 3 7  is interpreted as the derivative of ?( (, q) with respect to q at 
q = 0. An identical statement is true regarding ?2 at q = 1. Hermite interpolation forms 
the backbone of the two-boundary technique developed by Smith (187). Unfortunately 
there are no guidelines for choosing the magnitudes of the first derivatives of the position 
vectors with respect to q at the boundaries. If r] were the arc length of the coordinate 
curve, then it is well known, that the tangent vectors would have a magnitude of unity. 
However, 7 has no relation to arc length. If the magnitudes of the tangent vector on either 
boundary is too large, the coordinate curve ?( (, q )  could backtrack upon itself and become 
double-valued. 

There are various generalizations of the Hermite polynomial. Higher derivatives can be 
introduced on the boundary, or as previously mentioned, interior nodes can be added to 
the interior of the domain. In the latter case, it would lead either to a global polynomial 
with a higher degree, or to local Hermite polynomials. The distinction between between 
local and global interpolation functions is explained further in the next section on the 
multisurface transformation which contains the shearing and Hermite transformations as 
special cases. 

The multi-surface transformation. Although the shearing and Hermite transforma- 
tions described in the two previous sections have greatly extended the amount of grid 
control made available to the user, this control is still restricted to the boundaries. In an 
attempt to  remove this last restriction, Eiseman developed the multisurface transformation 
(65,61,63,64) of which the Hermite and shearing transformations are two special cases. The 
multisurface transformation distinguishes itself from the previous interpolation formulae 
in two regards. First, intermediate surfaces are introduced between the inner and outer 
boundaries. For convenience, renumber the boundaries to vary in succession from 1 to N .  
Under this new reordering, the inner boundary is labeled ?I(() and the outer boundary 
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? ~ ( t ) .  The constructive coordinate, as before, is the radial coordinate q .  From now on, 
radial coordinate lines refer to the coordinate lines = est.  The second novel feature of 
the multisurface transformation is that the interpolating curve does not pass through pre- 
scribed node locations in physical space (as for the shearing and Hermite transformations). 
Rather, it is a vector field that is interpolated, in the sense that the interpolating curve is 
tangent to a prescribed set of tangent vectors at, as yet, undetermined locations. 

The N - 2 intermediate surfaces, each parametrized by 6, serve to guide the radial 
coordinate line from the inner to the outer boundary. The simplest generalization to the 
shearing transformation is to let the radial lines be a succession of line segments spanning 
successive surfaces at  a fixed value of the parameter t. However, this would generate a 
coordinate line discontinuous at  the inner surface boundaries. On the other hand, with this 
discontinuous curve firmly in mind, it is easy to visualize a smooth curve leaving 71 along 
the first tangent vector, tangent to each inner line segment. and arriving at ? p ~  along the 
( N  - l ) th tangent vector. This is exactly how the intermediate surfaces control the shape 
of the radial coordinate curve when the interpolation functions are piecewise linear (63). 

Let the N - 1 tangent vectors be defined from successive surfaces by 

where arbitrary lengths A ,  are assumed for the moment. As a function of the radial 
coordinate q ,  the general tangent vector field is 

To insure that the general tangent vector passes through the specified vector field v i ( ( ) ,  
the interpolation function $i must satisfy the normality conditions 

at  the N - 1 values of qj, which are only subject to the restriction that 0 = ql < q2 < - - - < 
q p ~ - ~  = 1.  This simply means that the tangent vector is equal to the individual vectors 

at monotonically increasing values of q along the radial coordinate curve. After an 
integration of Eq. 20 with respect to q and a normalization for Ai, the position of ?((, q )  
is given by 

The normalization is required to match the endpoint location ?p~(() with ?(t , l) ,  and is 
represented by the Gi(1) in the denominators. Two ingredients are therefore necessary to 
define the multisurface transformation once a set of multisurfaces have been chosen and 
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parametrized: the interpolants t,!~i and the intermediate values q = qi at which the tangent 
of the radial coordinate curve is equal to the vectors gi. It is this wealth of options which 
is the strength of algebraic methods. Not only is there a wide choice of parameters, but 
most of them can be interpreted geometrically. Unfortunately, with this wide choice comes 
the hardship of choosing. However, some simple choices can be made which work most 
of the time (60). Polynomials that satisfy Eq. 21 are simply the Lagrange polynomials. 
However other functional forms are possible, although some may be harder to manipulate 
than others. Note that integrals of qbn appear in the expression for ?. Therefore, the 
derivative order of the interpolant for the coordinate transformation ?((E) is one greater 
than that of $J~. Setting 

(24) 
Gn(q) r,(d = G , o Y  

Eq. 22 transforms into a format reminiscent of the shearing transformation: 

Interpolants. For two degrees of freedom ( N  = 2) and accordingly, + ( q )  = cst ,  the 
shearing transformation is retrieved exactly. If N = 3, there are two interpolation func- 
tions: qbl(q) = q and $ 2 ( q )  = 1 - q .  With three degrees of freedom, one can specify node 
locations on two boundaries, and coordinate curve angles on one of them, or alternatively, 
angles on both boundaries, but the node locations on a single one. The more interesting 
case is when N = 4 which corresponds to the 4-surface transformation. 

When N = 4, the simplest global polynomial interpolants (up to a constant multiple) 
are 

which leads to a cubic transformation in q. When q2 = 1/2, an identification can be made 
between the 4-surface transformation and the Hermite interpolation touched upon earlier. 
In this case, the tangent vectors W i ( [ ) / t 3 q , i  = 1,2  in Eq. 18 are related to the positions 
of the two intermediate surfaces by 

- -  - 6(?2((E) - ?I([)) 
av 

The principle advantage of this equivalence is the geometric interpretation afforded by 
the multisurface transformation. As long as the intermediate surfaces are disjoint from 
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each other, the radial curves are prevented from backtracking on themselves, unless the 
series of line segments joining points of equal parameter value 6 on the successive surfaces 
Fk overlap on themselves as well. In other words, Eq. 28 places an upper bound on the 
magnitude of the tangents in the Hermite formula if overlap is to be avoided. This bound 
is not absolute, however, it could serve as a guideline in codes using Hermite polynomials 
to reduce some of the arbitrariness in choosing the magnitude of the tangent vectors. 

If the number of degrees of freedom is increased, so is the available control over the 
grid. Once N 2 6, the curvature of the radial coordinate line at  the inner and outer body 
can be specified as well. This controls the distance the radial line extends away from the 
boundary before it curves away to eventually join up with the outer boundary. 

Up until now, the discussion has focussed on global polynomials that spanned the 
entire region from inner to outer boundary. It is therefore evident that if an intermediate 
surface, ?i is moved, the grid will be affected along the entire length of the radial curves 
for all values of 6 influenced by the movement of Si. Full control over the grid has already 
been achieved in the E direction, since the radial lines are independent of each other. 
The radial lines have not yet been subdivided into units independent of each other. This 
can however be done quite simply. If the interpolants are no longer defined over the 
entire range of r ] ,  but instead over a limited range, the shape of an intermediate surface 
could be modified without affecting entire radial lines. The simplest local interpolants 
are linear hat functions; t+!~k is one at  r]k and zero at  the two adjacent radial coordinates 
q k - 1  and q k + l .  At the boundaries, the interpolants are-one sided (a). These functions 
are only useful for two-dimensional grid generat ion which do not require second derivative 
calculations. In three-dimensions, the lack of second derivative continuity of the vector 7, 
along the coordinate curve spanning two surfaces, could generate coordinate curves with 
discontinuous curvature. This is is forbidden. Eiseman has developed the theory of local 
piecewise quadratic interpolants (64), which generate piecewise cubic radial coordinate 
lines that are second derivative continuous and can be safely employed in three-dimensions. 

Algebraic methods based on global interpolating functions propagate boundary discon- 
tinuities into the interior of the domain. With local interpolants, by contrast, this can 
be limited. More specifically, it can'be shown that if the distance from the corner to the 
?2(€) is about half the first grid point spacing, the discontinuity will not be propagated 
inward (@) if 72 (6) is smooth. In elliptic solvers, discontinuities arising on the boundaries 
will not propagate inward because of the inherent smoothing of the differential operator. 

Uniformity. The next step in achieving a maximum of degree of control over the grid is 
to specify an arbitrary distribution of nodes in the radial direction. Upon achievement of a 
uniform distribution, it can be composed with a suitable radial transformation to generate 
the desired placement of nodes. Therefore the question arises: under which conditions is it 
possible t o  generate a grid with the multisurface transformation, and yet retain a uniform 
radial distribution. The simplest approach is to postprocess an existing grid. Cutting the 
radial coordinate curves into equal pieces produces a nearly uniform radial distribution, 
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unless the radial curves deviate strongly from straight lines (69). Therefore, uniformity is 
defined relative to a straight line of direction F, upon which the radial nodes are projected. 
In particular, this line is often taken to pass through Fl and FN. The cumulative arc length 
along the line supported by 7' is 

Uniform distribution along 7' is equivalent to the requirement that s( e,  q) be a linear func- 
tion of q. This statement translates into projected increments for intermediate segments 
and imposes - 

+k(q) 
k=l G k  (qk) 
- = 1. 

which is a condition on the interpolants $k([). Altogether, the number of free parameters 
in the vectors is reduced by one. Both the global polynomial and the local piecewise linear 
interpolants automatically satisfy the uniformity condition expressed by Eq. 30. This is not 
so in general for the piecewise quadratic functions (64); they were explicitly constructed 
to satisfy it. 

Transfinite Interpolation. The various algorithms presented in the previous sections, 
with the culmination of the multisurface transformation, are all specialized to explicitly 
generating radial curves leaving an inner boundary Fl(E) and reaching an outer boundary 
FN( E )  However, in many cases, there are 4 boundaries in two-dimensional configurations, 
and 6 boundaries in 3-D which must be matched by the corresponding coordinate curves or 
surfaces. Projectors have long been the basis for multidirectional interpolation, and their 
understanding is greatly simplified with the introduction of Boolean operations. A shearing 
transformation is the simplest unidirectional form of interpolation, and forms the basis on 
which Boolean theory is introduced. More details are provided by Gordon (m),Gordon 
and Hall (m), and Gordon and Thiel (104) with practical implementations given by 
Smith (187) and Eriksson (77). Eriksson applied the transfinite interpolation concept to 
the gridding of fuselage/wing combinations on aircraft. He achieved considerable success 
by incorporating boundary derivative information into the formalism. 

Consider the shearing transformation 

between the two boundaries Tl and F2. Let F ( ( , q )  be a member of the collection of all 
transformations from the unit square 0 < < 1 and 0 < q < 1 to the physical domain 
bounded by any two boundary segments ? A ( € ) ,  ? B ( € ) .  Among all these mappings, the 
shearing transformation between T A ( [ )  and ?'B(() can be retrieved by applying a suitable 
operator QV to F.  The action of QV is simply to select the shearing transformation from all 
of the transformations between a given pair of boundaries. Viewing each transformation as 
if it were a distinct element of a vector space, the action is intuitively seen as a projection 
onto the shearing element. By rigorous definition, QV is a projection operator since a double 

+ 
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application of Q,, to the arbitrary transformation $ gives the same result. Symbolically, 
the shearing transformation is 

Q,[@] = (1 - v ) @ ( E , O )  + v @ ( E , ~ ) -  (32) 
-4 

where P( E, 0) and $ ( E ,  1) are respectively the boundaries ?(E, 0) and .’( E ,  l), or equiva- 
lently .‘l(E) and i?z(E). As a function of r ]  the transformation at  fixed values of E gener- 
ates straight line segments. Straight lateral boundary segments are often too restrictive. 
Information about the true lateral boundary shapes is included in the multidirectional 
coordinate transformation by considering the shearing transformation 

QE[@] = (1 - E ) $ ( O , V )  + €@(1,~),  (33) 

where g(0, r ] )  and $( 1, r ] )  represent the alternate lateral set of physical boundaries F(0, r ] )  

and .’( 1 , ~ ) .  Although this example is illustrated with shearing transformations and is two- 
dimensional, any of the transformations mentioned in the previous section are suitable, 
and different directions may have different interpolation formulae. Extensions to three- 
dimensions are straightforward. As explained in (@), the product of Qc and &, gives a 
tensor product interpolant which maps the four corners of the computational domain to 
the four corresponding corners of the physical domain. The remaining boundary points 
between the two domains have no correspondence under this mapping. This occurs because 
the boundaries map onto line segments between the corners. By contrast, the simple sum 
&e+&,, maps each boundary to the sum of a line segment and the actual physical boundary. 
By using the tensor product mapping to remove the boundary line segments, we arrive at  
the Boolean sum 

The action on $ then clearly transforms computational boundaries to their respective 
counterparts in the physical plane. In practice, the previous equation is broken up into 
several components. For example in three dimensions one would write: 

Qc @ Qq = Qc + Qq - QcQq. (34) 

where ( is the computational variable in the third direction. The previous transformation 
is symbolically represented by (Qc @ Q, @ Qs)[$]. Boolean maps also find applications 
in situations where only edges must be mapped in three dimensions, or when only corner 
correspondence is desired. Once again, it is emphasized that the interpolation functions 
may differ from one another in independent directions. Further control of the coordinate 
curve directions is discussed in Gordon and Thiel (104) where points interior to the physical 
domain become part of the interpolation process. Additional control is available in the 
form of a control net for the transfinite multisurface transformation given by Eiseman (73). 

An interesting vehicle for transfinite interpolation, are the homotopy methods devel- 
oped by Barger (E) while generating grids over aircraft wing-fuselages combinations. 
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by r’2. Barger further extended his formalism to multiple dimensions. Explicit functions 
can also be constructed between successive pairs of surfaces while maintaining a smooth 
junction at the interfaces. 

I 

Postprocessing. Once a grid or a series of grids have been generated about a physical 
configuration, it may be desirable to locally modify their structure, smooth them, or blend 
them together into an overall grid. Eiseman (71) has developed a postprocessing step that 
allows the user to concentrate nodes at a point, along a coordinate line, or in a region. The 
procedure is akin to local movement of the coordinate lines towards the area to resolve, at 
the expense of surrounding regions. Depletion of nodes occurs in local regions around the 
area to be resolved. Clustering occurs in a smooth manner, that is to say that a smooth 
coordinate mapping remains smooth. 

Another approach to postprocessing a grid is relevant to the partial differential equation 
approach. The idea is to generate an approximate grid by any one of a variety of methods, 
and then smooth it using an elliptic solver. When the known grid point locations are 

27 



substituted into the left-hand side of a Laplace equation as a function of the computational 
coordinates (t, q), a forcing function is obtained for the right-hand side. After smoothing 
out the high frequency waves from the forcing function, a new grid is computed as the 
solution to the resultant differential equation. This has been reported by Thompson (222). 
Kennon and Dulikravich (129,128) prefer to smooth the grid using a variational procedure 
where orthogonality can be enhanced. In the end, virtually any elliptic method can be 
employed as a filter. The amount of extra work involved will, of course, grow with the 
demands. In fact, algebraically generated grids are often the initial conditions for the 
elliptic methods discussed below. 

PARTIAL DIFFERENTIAL EQUATION METHODS 

When the grid is the numerical solution to a system of partial differential equations, 
the controls are determined by the system definitions. Of the various types of defining 
systems, those which are elliptic contain the strongest control properties; albeit, they are 
not as fast as the hyperbolic and parabolic methods that can generate grids in only one 
marching pass through a region. The hyperbolic methods are orthogonal and are deter- 
mined by specifications over the field that vary from an algebraic metric relationship, to a 
given family of curves, and finally to prescribed cell volumes from a reference grid. Transfi- 
nite interpolation with shearings is also noted to come from a hyperbolic system, although 
it is a non-orthogonal, non-marchable explicit algebraic transformation. Altogether, the 
hyperbolic method provides a quick means to get a decent grid from somewhat modest 
field specifications. The speed issue is somewhat tempered, however, by the availability 
of fast numerical algorithms and fast computers. As a consequence, the ability to con- 
trol the outcome is the primary concern; and thus we focus our attention upon elliptic 
partial differential equations which are more simply called elliptic methods. There, we 
start by considering the Laplace system of Winslow and then progress into the Poisson 
system of Thompson, Thames, and Mastin where controlling terms are first inserted. To 
understand the basic controls, we examine their construction, effect, and application. This 
includes basic clustering mechanisms, inward propagation of boundary node distributions, 
specification of angles at  boundaries, and the effect of boundary curvature on the inward 
distribution of points from that boundary. A natural framework for elliptic methods is 
provided by variational statements. In such statements, the controls are easily established 
for distinct purposes, but the actual execution is much more complex. 

HvDerbolic Methods 

When a grid must be generated about a single body, hyperbolic methods can be em- 
ployed. From a given grid on the body, the generation process proceeds by spatially 
evolving the grid in marching steps that progressively depart from the body. The extent 
of coverage for the surrounding field is determined by the number of steps, the size of 
each step, and the defining metric relationship of the hyperbolic system. While the choices 
concerning steps are a common element of any spatially marching scheme, the choice of 
defining system provides the primary separation of the various methods. 
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A Specified Relationship Between Metric Elements. The common part of each defin- 
ing system has been the assumption of some form of orthogonality. In two-dimensional 
Euclidean space, orthogonality is given by the metric equation 

xexr, + YeYq = 912 = 0. (40) 

This equation is split into two equations by Starius(l98) who considers the Cauchy- 
Riemann form 

that exactly satisfies it. By a direct substitution into Eq. 3, the function is easily found to 
be 

7 

F = \I". 
911 

While the general format of Eqs. 41 - 42 has often been used by others for orthogonal 
grid generation (E), the distinguishing feature from Starius (199) is the choice of P. 
This choice is accomplished in such a way as to assure that the system of equations 41 
is hyperbolic and therefore can be spatially marched. Altogether, his rigorous selection 
criteria seems to have directed him to a somewhat conservative choice. This is evident 
from the fact that the generation process must be stopped within a certain distance from 
concave portions of the body or else a grid overlap would occur because of a singularity 
in the mesh. The selected from of F ,  however, does have the advantage of simplicity. It is 
given as a low order constant coefficient rational function of 911. With the defined function, 
the generating system of Eqs. 41 is completely established over the entire field. 

While the algebraic construction of F provided Starius with a direct global definition, it 
also presented the rigidity that limited the domain of applicability to  small bands near the 
body surface. This lead to some developments with overlapping grids ( 1 .  
so that the small bands could be employed in a more practical context. By relaxing the 
above rigidity, it is natural to consider definitions that are distributed over the field with 
some degree of flexibility. 

Orthogonal Trajectories Through a Specified Family of Curves. The first and most ba- 
sic way to achieve an acceptable level of flexibility is to consider orthogonal trajectory 
methods. The specified properties over the entire field come in the form of one family of 
surfaces that can qualify as coordinate surfaces and that conform to the body on one side 
and to  a given outer (inner) boundary on the other. With the ready capability to generate 
nonorthogonal grids in a variety of ways, the specified family is most directly obtained by 
extracting one family of coordinate curves from a given transformation. To accomplish 
this task efficiently, and to provide for the possibility of arbitrarily fine resolution of the 
trajectory paths, the nonorthogonal transformation should be algebraic because of its ex- 
plicit and continuous definition. The simplest, and most commonly used transformation is 
the direct shearing (Eq. 16) between the two opposing boundaries. Should lateral bound- 
aries also be present and be preserved by the trajectories, then a Hermite transformation 
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must be employed as a transverse Boolean summand to supply orthogonality at those 
boundaries. To add a high degree of flexibility, the Boolean sum of shearing and Herrnite 
transformations should be replaced by multisurface transformations (Eq. 22) with local 
int erpolan t s. 

In two-dimensional Euclidean space, the given nonort hogonal transformations typically 
appear in the form 

where curvilinear coordinates (a, @) are directly sent into Cartesian positions r' = (z, y). 
To compute the metric coefficients gll, g12 and 922, we use a and p in place of and q 
in Eq. 3. Here, we note that because of the nonorthogonality, g12 does not vanish. The 
fact that one family of coordinate curves is to be preserved in the anticipated orthogonal 
system means that a second transformation for composition with the first must assume a 
special form. Such a form is given by 

which is the general expression of a transformation where coordinate curves with constant 
q become coordinate curves with constant p. The general dependence of p upon serves 
to indicate the possibility of redistributing the coordinate curves within the given family: 
without redistribution, the dependence would simply be p = q. Each coordinate curve 
with fixed q is then to get a new distribution of points along it. This translates into a 
redistribution for the coordinate a for each fixed q ;  that is, a distribution function with 
respect to the new curvilinear variables along each such curve. Altogether, we arrive at 
the desired transformation of Eq. 44 whose composition with the nonorthogonal system of 
Eq. 43 then preserves the curves of constant @. 

The next task is to choose the successive reparameterizations with respect to ( in such 
a way as to produce an orthogonal coordinate system in the physical space of (z, y). The 
basic orthogonality condition of Eq. 40 is employed for this purpose. Under the action of 
chain rule operations and with the assumption of nonsingularity, the condition becomes a 
hyperbolic partial differential equation for t and is given by 

where the metric coefficients are those that come from the nonorthogonal coordinates 
as discussed immediately after Eq. 43. The characteristic directions for this hyperbolic 
equation are given by 

1 
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Since a constant value of appears along each characteristic curve generated by Eq. 46 
and since such curves are mapped into (z,y) by Eq. 43, we get the remaining family 
of coordinate curves for the orthogonal transformation. When a distribution of points 
is prescribed along an initial coordinate curve with fixed P in the given nonorthogonal 
system of Eq. 43, a corresponding distribution appears in CY and in 6 in such a way that the 
forward composition reproduces the prescribed distribution. The process of solving for the 
characteristic curves from Eq. 46 is just the process of computing orthogonal trajectories 
from each prescribed point on the initial curve. As a consequence, the initial distribution 
of points is propagated across the field: the only possible means for redirection would then 
have to come from the choice for nonorthogonal transformation in Eq. 43. 

In a natural way, the orthogonal trajectories have been developed as the images of 
characteristic curves under the given nonorthogonal transformation. In the generalization 
to two-dimensional surfaces, this rigid adherence to the composition of mappings represents 
an advantage since the surface geometry would not be altered in the technical process of 
generating the trajectories. This general development is presented by Eiseman (65) .-# in his 
review or" orihogonai grid generation. 

While the advantage of adhering to the composition has been noted, a somewhat nat- 
ural inclination is to proceed with the construction directly, particularly when it is being 
done in two-dimensional Euclidean space. This is simply the framework which is most 
familiar to the typical scientist. To bring the governing hyperbolic system into this con- 
text, we consider the simple example of generating coordinates from the x-axis up to a 
prescribed positive function y = f(z). The immediate simple choice for the nonorthogonal 
transformation of Eq. 43 is to set 

x =  CY 

The characteristic directions (Eq. 46) then become 

-= dCY Pf(CYIf'(4 
dP 1 + [Pf'(4I2 

and upon using the chain rule to get dcr and do in terms of dx and dy we arrive at the 
familiar constructive form 

(49) 
dY 1 

dz Pf'(4 
-=  -- 

of negative reciprocal slope. 

Regardless of the numerical methods employed, the essential ingredients of oithogonal 
trajectory strategies are the selection of a nonorthogonal transformation and the initial 
conditions for the trajectories. The numerical methods then serve only to gain an accurate 
approximation of the analytical formulation which is fully expressed by the hyperbolic 
equation 45. 
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With the selection of a shearing transformation from a body to a surrounding far field 
boundary, the orthogonal trajectories are seen to leave concave body sections with a fair 
amount of compression. The consequence, is that trajectory clusters are propagated into 
the far field from each concave body section even if the pointwise distribution along the 
entire body is uniform. The intensity of the propagated clusters depends mostly upon the 
severity of the concavity. 

I 

\ 

ther the nonorthogonal transformation or the hyperbolic equation must be changed. With 1 

where V ( [ ,  7 )  is the specified Jacobian which in finite terms comes from the cell areas of the 
reference grid. The system of Eq. 50 was shown by Steger to be hyperbolic, and therefore, 
to permit a solution by spatially marching away from the body. By using the polar 
reference grids, the previous compression problem inherent in the orthogonal trajectory 
methods was overcome as the orthogonal grid progressively adjusted to the cell volumes 
from the reference grid. In fact, upon approaching the far field, the grid so generated 
converged towards a polar system. The actual outer boundary, however is unspecified. 
In a graphical intuitive sense, the cells would stretch in a sufficiently rapid manner from 
concave boundary segments to permit a safe escape from the concavity problem which 
otherwise would have caused unretrievable compression as in the orthogonal trajectory 
case or a coordinate singularity as in the case of Starius. 

The numerical solution of the hyperbolic system of Eq. 50 is obtained from a direct 
linearization about the previous coordinate curve. The resultant 2 x 2 block tridiagonal 
system for the current coordinate curve also contains an artificial viscosity contribution to 
provide numerical stability and to smear out possible shock-like behavior in the grid. Such 
behavior could occur directly within the system or propagate into the grid from the body. 
The typical concern, here, is the propagation of slope discontinuities from the body. 
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In the extension to three-dimensions, the coordinate curves proceed as before to leave 
the body orthogonally under the condition of specified cell volumes. Since the orthoge 
nality is with respect to surfaces, there are two orthogonality equations. Altogether, the 
hyperbolic system is expressed in metric form as 

where J 2  = g and the third direction ( is the marching direction away from the body. 

Because of the flexible arrangement of data specification for a reasonably well-structured 
grid about a single body, these hyperbolic methods are somewhat ideally suited for ap- 
plications in the context of overlapping grids whereby each body gets an independently 
generated grid. While the particular attribute for not rigidly requiring the specification 
of an outer boundary is an acivan'cage in the chimer=. scheze (2n5,18j19): the inability to 
readily specify it is often disadvantageous. This is the case where, for example, the grid 
must conform to  two opposing boundaries that represent solid bodies. 

Transfinite Interpolation Revisited. With more than one solid boundary there are still 
A further hyperbolic systems, although the previous marching element is then gone. 

particular example (25) is given by the system 

with boundary conditions 

The solution is just the transfinite interpolation arising from a Boolean sum of shearing 
transformations (Eq. 34). Upon reflection, the propagation of boundary slope discontinu- 
ities into the field is readily apparent with this transfinite interpolation and can then be 
interpreted as a hyperbolic effect. 

The elliptic methods have stronger control properties than the hyperbolic methods. 
These properties first appear on a fundamental basis where boundary conditions occur 
over the entire boundary rather than on only one isolated object. In addition, the basic 
solution is smooth in the sense of derivative continuity. The smoothness actually occurs 
in an even stronger sense because the basic frame of reference for most elliptic methods is 
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provided by a Laplacian. In two dimensions, the Laplace equations with Cauchy-Riemann 
type boundary conditions can be used to determine conformal mappings. See, for exam- 
ple, Chakravarthy and Anderson (35) and Seidl and Klose (183). This arises when the 
Laplace system is formulated for either physical or curvilinear variables, provided that 
the resulting transformation is nonsingular. Because of the nonsingular requirement, the 
latter formulation is preferred. When more general boundary conditions are applied, the 
conformality is usually lost in a progressive sense: the coordinates are nonorthogonal at  
the boundaries and become more and more conformal as we leave the boundaries. In terms 
of a grid mapping, a conformal transformation is explicitly observed as a mapping which 
sends a uniform distribution of square cells in (E,q) into nearly square cells in (z, y) that 
can have varying sizes. This was analytically stated in Eq. 11. The progression of cells 
from the boundary are then seen to become closer to a square shape as the region center 
is approached in the general situation. 

Relative to this conformal basis, various controls have been developed to provide for 
desired distributions and for desired metric structures. The basic control of distributions is 
the process of clustering points, curves, or surfaces. The basic control of metric structures 
is typically the enforcement of grid orthogonality to retrieve some of the lost conformality 
at  or near the boundaries. In two dimensions, orthogonality is given only by the metric 
condition g12 = 0 while for conformality, the further metric condition gll = 922 is also 
required. The same sort of controls and relative frame of reference also hold in three 
dimensions and on surfaces. In a fairly general spirit, the fundamental properties of many 
elliptic methods can be readily seen in a variational setting. This will also be examined. 

The Laplace system. With a view towards the competition between differential equa- 
tions that pull towards conformality and boundary conditions that pull away from confor- 
mality, we consider the Laplace system 

with prescribed pointwise distributions on part or all of the boundary. Although confor- 
mality could also have been represented by Laplace equations in the opposite direction, 
the choice of direction and hence dependent variables (t, q )  is important. While maximum 
principles are available for either direction, the maximum principle for the choice in Eq. 54 
provides a basis for the separation of distinct coordinate curves within a given family of 
coordinate curves. By contrast, the maximum principle for the Laplace equations for the 

and y can only separate the values in the z and y directions of the physical space in 
which the region of interest is prescribed. Since the z and y directions are not attached 
to the coordinate curves, the associated maximum principle does not provide the correct 
force to effectively prevent the curves from overlapping. 

Given the more natural inclination to separate entire coordinate curves, we shall ex- 
amine this mechanism in an intuitive spirit. Since the separation arises in a decoupled 
fashion, it is sufficient to consider only the curves of constant and the Laplace equation 
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for ( in Eq. 54. As such, attention is focussed upon a thin strip between two closely spaced 
coordinate curves in the variable q .  In the space of curvilinear variables ( c , ~ ) ,  the cor- 
responding strip is clearly a thin rectangle bounded by the two verticals established from 
two successive values of (. These values are respectively denoted by (- and (+. Assuming 
the full range for v ,  the top and bottom boundaries of the rectangle are horizontal lines 
defined by the minimum and maximum values for v .  To simplify matters, we suppose that 
the two given coordinate curves do not overlap. The thin strip between them then always 
has some thickness. By continuity the thickness can be shrunk slightly to provide for a 
slight expansion later. Now we consider a coordinate curve that corresponds to a fixed 
value of ( which is greater than (+. Because of the maximum principle, it cannot overlap 
the strip or else there would be an internal maximum: the largest strip boundary value (+ 

would be exceeded; If it just touches the strip boundary, then we use the provided slight 
expansion to move the boundary. The same argument then means that it cannot intersect 
the strip. Likewise, no coordinate curve with a k e d  value of ( that is less than 6- can 
intersect the strip. Having seen that coordinate curves on either side of the strip cannot 
intersect it, we then imagine the situation where 6- and e+ gradually approsch each &PI. 

and the strip then converges towards a single coordinate curve with a fixed value of .$. The 
limiting case is just the general condition for a nonoverlapping system of ( coordinates. 
The corresponding case for the constant q coordinate curves comes from the Laplacian for 
7 and the associated maximum principle and follows the same arguments. A more rigorous 
discussion involves winding numbers or degree theory and is given by Mastin and Thomp- 
son (138) and by Sritharan and Smith (195). By extending the Laplace system of Eq. 54 
into three-dimensions with additional second derivative terms in z and with an additional 
Laplace equation to cover the third curvilinear variable, the same intuitive discussion can 
be repeated. A rigorous development is given as before by Mastin and Thompson (139). 

In a unified manner, the competition between the field equations and the boundary 
conditions can be stated as a variational problem. In two-dimensions, our objective is 
simply to minimize the amount by which the Cauchy-Riemann equations fail to be satisfied. 
At  a point in the field, each of the Cauchy-Riemann equations has a residual that in the 
general circumstance deviates from zero. A measure of nonsatisfaction is clearly given by 
the sum of squared residuals. The smallest loss over the whole field is then obtained when 
the integral 

I C  = I [ (€ ,  - v J 2  + R* + Tz)21dzdY (55)  

is minimized. In terms of the metric, an equivalent form is obtained when the integrand is 
replaced by g" + g22. If the Cauchy-Riemann conditions are satisfied both in the field and 
on its boundary, then the integral in Eq. 55 vanishes and the coordinate transformation 
is conformal. However, if different boundary conditions are applied, then the integral of 
Eq. 55 contains positive contributions at  the boundaries that cannot be removed. The 
more arbitrarily chosen boundary conditions simply cause the system to be overdeter- 
mined. Our only hope for attracting to conformal conditions is then to minimize the 
integral. When this is done, the unremovable positive contributions at the boundaries will 
propagate inward from the boundaries because of continuity but will also decay as the 
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field is progressively entered. The corresponding coordinate transformation will then be 
generally nonorthogonal a t  the boundaries and will gradually become closer to conformal 
as the boundaries become more distant. The Euler equations which arise from this min- 
imization problem simply comprise the Laplace system of Eq. 54. Using the metric form 
of the integrand, the extension into three-dimensions is obvious. The variational problem 
is the minimization of 

I ,  = (gl1 + g22 + g3S)dxdydz 

and the Euler equations are just the direct extension of the Laplace system of Eq. 54 
into three-dimensions. As in 2-D, conformality in 3-D is given by vanishing cross metrics 
(912 = g13 = 923  = 0) and equal diagonal entries (911 = 922 = 933). 

To solve the Laplace system of Eq. 54 or its three-dimensional extension, the indepen- 
dent and dependent variables must be interchanged or else the procedure would become 
encumbered by additional complexity. Since the grid points in the curvilinear variables 
( c ,  q )  are already known and are simply prescribed to be in a uniform Cartesian format, 
the most efficient route is to directly solve for the unknown locations in physical space 
variables (x, y) that correspond to the respective points on the known Cartesian grid. The 
only known points in physical space are on the prescribed boundaries that typically are 
directly inserted in the form of Dirichlet boundary conditions. The interchange of variables 
is just an application of the inverse coordinate transformation which is formally available 
for derivative operators. With only curvilinear derivatives in the coefficients, the chain 
rule is used to get the operator relationships 

(57) 

To transform the given Laplace system, the x and y operators are needed and are given 
by the formal matrix inverse which yields 

l a  a - a 
- ax - $ Y v g  - Y€-l av 

1 a a a 
d Y  a t  arl 

- J[-xq- + "6-1 - _  

where 
J = "EYq - XqY€ (59) 

is the Jacobian. The sum of the double application of each yields the Laplace operator 
and hence the equations with the desired interchange of variables. 

While the same development can also be done for the three-dimensional system and 
for systems on a surface, the algebraic complexity required for each specific derivation is 
somewhat excessive. A more unified and algebraically succinct approach is to employ the 
methods of tensor analysis (225,235). The derivation produces the previous results for each 
case and yields expressions where the coefficients have a natural geometric interpretation. 
If the curvilinear variables E and rl are represented by ti for i = 1 and 2 and if the physical 
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space variables z and y are represented by Zj for j = 1 and 2, then the indices and the 
metric forms of Eq. 3 are assumed. The three-dimensional case is then obtained with 
only another index and a corresponding form for Eq. 3 derived from a three-dimensional 
arc length computation. With the convention that the same lower and upper indices in a 
product are to be summed over the pertinent index range, the inverted Laplace system is 
given by 

DF=O (60) 
where 

and ? is the position vector in physical space. For the two-dimensional case of Eq. 54, the 
vector is 7 = (z,y)=. For three-dimensions a third component z is added to ? while for 
surfaces the positions become the original surface coordinates. In the case with surfaces, 
the surface normal vectors also change from point to point, and therefore, their rate of 
change must be measured. This enters when derivatives are taken and results in 

D?= K f i  

where & is a unit normal to the surface and K is the mean curvature which gives the 
rate of change. When the surface is a plane, the curvature term vanishes and the equation 
specializes to that of Eq. 60. 

In the developments with Laplace systems, the fist widely disseminated reporting was 
that of Winslow (245), although there were earlier studies. The earlier works leading up 
to Winslow's contribution are well documented in the review by Thompson, Warsi, and 
Mastin (215). The next major step was taken by Thompson, Thames and Mastin (218) 
who recognized the importance of the method and who extended it to multiconnected 
regions in two-dimensions. Unlike Winslow who relegated the method to an appendix, 
they emphasized its application as a general tool. The variational form was first reported 
in the Cauchy-Riemann form of Eq. 55 by Yanenko et. al. (246) and then several years later 
in the equivalent metric form by Brackbill and Saltzman (a). In both variational studies, 
the main emphasis was on solution adaptivity and the conformal part of the integral 
served primarily as a smooth basis relative to  which clustering was to  be performed. The 
general development with surfaces was initiated by Thomas (m), continued by Garon and 
Camarero (94), and was subsequently developed more thoroughly by Warsi (236,238) who 
employed the Gauss equations for second derivatives. In both surface studies, the more 
general Poisson form was considered. A variational approach for surfaces was presented 
by Saltzman (177). 

The Poisson System. While the Laplace system produces a closeness to  conformal con- 
ditions, and thereby, a desirable degree of smoothness, it also has some drawbacks. The 
most graphically visible problem is the lack of control over the distribution of points and 
over the angles of coordinate intersection. In regions near body convexity, the somewhat 
parallel family of coordinate curves or surfaces is automatically clustered towards the body. 
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The opposite is true near body concavity. Although this conformal effect may be desired 
in some circumstances, it is often undesirable. A clear example arises when high resolution 
is required in a region near fairly high body concavity: the coordinate spacing leaving the 
body is too rapid because of the conformal repulsive effect. The same repulsive effect also 
occurs when branch cuts or patch interfaces leave a blunt body or when a singular type of 
point or curve appears from the choice of cuts or patches. In each of these circumstances, a 
highly concave region is artificially inserted and thereby inherits the same problem. More- 
over, there is often a need to accurately prescribe the spacing as above and to also give 
the angle from the pertinent boundary. This arises when close spacing and orthogonality 
are demanded at a body or when a smooth transition is required through a prescribed 
interface between grids. 

To overcome the limitations inherent in the Laplace system and yet at  the same time to 
adhere to the desired conformal smoothness, the next natural step is to consider a Poisson 
system. In two-dimensions, it appears in the form 

where P and Q are prescribed functions that are employed to control the grid. In a 
formal sense, these functions force the coordinate curves to move relative to the uniform 
conditions established by the earlier Laplace system of Eq. 54. As in the earlier discussion 
where the maximum principle indicated a separation of the coordinate curves for each 
family, the forces are also applied in a decoupled manner to control that separation. Thus, 
a discussion of only one of the Poisson equations is all that is needed in order to witness 
the basic effect of a forcing term. For the curves of constant 1, the term P in the first 
equation can be used to move the curves to either side of what otherwise would have 
been a curve from the harmonic condition of satisfying Laplace equations. In the order of 
increasing 1, negative P values cause 1 to fall below the otherwise harmonic 1, and thus, 
the associated curve to fall below the otherwise harmonically determined curve. Negative 
P values then force the function to be subharmonic with an intensity that increases with 
its magnitude. Similarly, positive P values push curves to the other side in the same 
manner and represent a superharmonic force. Likewise, Q provides the same control for 
the constant rl curves. General facts on the nature of sub- and super- harmonic functions 
can be found in Kellogg (m), Epstein (75), and Weinberger and Protter (a). 

With the controls decoupled in the sense that the respective actions are applied to 
corresponding families of coordinate curves, it is reasonable to examine the basic structure 
of a control for clustering in the context of a simpler one-dimensional Poisson system. 
This was done in the review by Eiseman (69) where the clustering controls of Thompson, 
Thames, and Mastin (218) were simply seen to arise quite naturally as controls on the 
concavity of the coordinate transformation as seen graphically. The basic action there is 
relative to an equally spaced grid of points. 

With a direct extrapolation into two-dimensions, the controls that are simply witnessed 
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in one dimension 
constant € about 

become controls for curves rather than just points. To cluster curves of 
a curve for ( = €0,  a term of the form 

is inserted as a summand within P of Eq. 63. The constants a and b are positive. They 
respectively represent the clustering intensity and its rate of decay as values of depart 
from (0. It is important to emphasize here that this attraction is relative only to the curve 
( = €0. The intensity decay of the attraction serves to localize the action on both sides of 
€0. 

While only a uniform attraction has been considered, a slight modification will lead 
to the nonuniform attraction of curves for a cluster about a point on a curve. With the 
constant [ curves about ( = €0,  the clustering about a point for 77 = 770 is accomplished by 
decaying the intensity also as we leave r] = r]o along the curve. The inclusion of the term 

in P is readily seen to meet this objective. For the constant r ]  curves, the same type 
of terms are employed. In continuation, these clustering terms are readily extended into 
three-dimensions where now the application is about points, curves, and surfaces. 

With the above exponential controls of Thompson, Thames and Mastin (218), Ste- 
ger and Sorenson (202) considered the iterative determination of the various constants to 
provide for specified boundary orthogonality and spacing from the boundary. Both the 
orthogonality and the spacing were constant requirements over an entire boundary with 
specified pointwise distributions. Accordingly, the two constants in the associated exponen- 
tial term were found so that the above two constants were matched. For the orthogonality 
control, the parallel forces to a boundary with fixed points geometrically appear as local 
rotational forces. A generalization that will allow for a distributed specification of spacings 
has also been developed and is reported by Thompson, Warsi, and Mastin (225). The orig- 
inal approach of Steger and Sorenson has also been cast into a computer program called 
GRAPE by Sorenson (192). Yet another strategy is presented by Visbal and Knight (233). 

Returning to our earlier observation that harmonic coordinates were attracted to body 
convexity and repelled by body concavity, the above capability represents a viable strategy 
to overcome the problem, at least for Dirichlet boundary conditions. A further strategy 
that is noniterative is to propagate the known boundary distributions into the field. For a 
body that intersects transverse boundaries, the specified transverse boundary distribution 
is then continued over the body. More generally, clusters that occur anywhere on a bound- 
ary can be sent inward. The first formal reporting of the method was due to Middlecoff 
and Thomas (143) although some earlier consideration was given by Warsi and Thomp- 
son (234). The basic procedure is to derive forcing functions on the boundary from data 
thereon and to then interpolate into the field to get globally defined forcing functions. In 
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the interpolation care must be taken to include the curvature effects and to perform the 
process for the entire forcing term rather than treating the curvature part separately. This 1 

1 process is quite detailed and is well documented by Thompson, Warsi, and Mastin (225). 

On a more fundamental basis, we can view the controls in the Poisson system as being 
the maximum allowable under the constraints imposed by the space in which the grid 
is being generated. In the planar case of Eq. 63, the Gaussian curvature vanishes and 
provides a relationship between the three metric coefficients that yield general arc length 
measurements relative to  the grid. A knowledge of the three metric coefficients is actually 
equivalent to  knowing the grid. This means that we may specify two of them, solve for 
the third, and get the grid. Moreover, we may specify two combinations of them and 
also be completely determined. In a further progression, we may specify up to two metric 
controlling relationships and still be completely determined. Such relationships can be 
defined by prescribing the P and Q in Eq. 63. In summary, in two dimensions, there are 
at most two degrees of freedom available for specification and the Poisson system under 
consideration consumes both of them. Stated in another way, any grid can be generated 
by the Poisson system, at least in theory. That is, given a grid, we may directly solve for 

retrieve it from the P and Q. In a similar spirit, we see that the three-dimensional Poisson 
system consumes all three possible degrees of freedom. As a consequence, the Poisson 
system provides a general format or template in which to work. Its general distinction 
over other equivalent formulations appears in the location where control is inserted. As 
such, the controls should be viewed as being relative to the harmonic case or else there 
is no real rationale for this format. Thus, care should be taken when large deviations are 
considered for the locational advantage might otherwise be lost. In addition, because of 
the number of available degrees of freedom, the general forcing term expansion proposed 
by Warsi (236_) seems to be of only modest utility: there are more pieces than degrees of 
freedom. 

I 

1 

1 

i 
I 

1 
1 

1 
1 

I P and Q to get the appropriate Poisson system. Forgetting the given grid, we can then 

In the application of the Poisson system, the interchange of dependent and independent 
variables must be accomplished for the same reasons as in the harmonic case. Using the 
same index notation associated with the earlier Laplace system, we shall extend it to label 
the forcing terms P and Q by PI and P2. A third forcing term will be denoted by P3 for 
a third Poisson equation in three dimensions. With an implied summation of repeated 
indices over their respective ranges, the Poisson system becomes 

where 

and r‘ is the position vector in the physical space. In comparison to the earlier resultant 
from the Laplace system in Eq. 60, the forcing terms appear as the second summed com- 
ponent in the operator of Eq. 66. That is the only change. The form for two-dimensional 
surfaces is given by Eq. 62 with the operator from Eq. 67. 
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Parabolic Systems 

Parabolic systems primarily have arisen as approximations of elliptic systems. While 
attempting to retain the basic attributes of elliptically generated grids, these methods offer 
computational speed. As in the earlier hyperbolic methods, parabolic methods are exe- 
cuted by spatially marching away from a body to  generate a grid in one sweep. The single 
sweep provides the basic speed of the hyperbolic methods which in turn is substantially 
greater than that of elliptic methods. In distinction from hyperbolic methods, the outer 
boundary can be specified. In comparison with elliptic methods, the controls are generally 
weaker. 

Parabolic methods have been developed by Nakamura (155,156), Edwards (E) and by 
Hodge, Leone, and McCarty (120). 

INTERACTIVE GRID GENERATION 

Although a large and diverse number of grid generation algorithms have been developed 
to generate curvilinear and unstructured grids in two and three dimensions, the time 
required to produce the desired node distribution over physical space can range from 
several man minutes to several man months. Traditionally, existing grid generators are 
applied on a case by case basis. The whole process can be divided into several steps, 
which are iterated upon. After study of the geometrical configuration to be gridded, a 
suitable numerical algorithm is chosen. For example, a standard two-dimensional airfoil is 
easily gridded with a conformal mapping, perhaps followed by a shearing transformation to 
adjust the nodes along one direction. On the other hand, a standard approach to gridding 
the space surrounding a fighter aircraft described by a very large number of nodes is to 
use a multi-block algorithm. Among the questions the user must answer are: whether grid 
lines should be continuous across the blocks, how many blocks are necessary, how many 
nodes to place inside each block, how to parametrize the surface boundaries, and what 
node distribution to use normal to the surface. 

Most methods require a subdivision of computational space into regular cells. The 
desired distribution of nodes on the body surface is achieved either with source functions 
which become the right hand side of partial differential equations, or with positive weight 
functions which in one dimension typically satisfy the relation 

de  = w(s)ds 

along the curve on which nodes are being redistributed. The weight function w ( s )  is a 
function of the arclength along the curve. More details are provided in the section on 
adaptive methods and monitor surfaces. The important point is that without the help of 
a procedure that automatically chooses the right parameters, the user is burdened with 
this task. His only recourse is to make decisions based on experience, enter them into the 
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appropriate grid generator package, and submit the program to a mainframe, typically 
in batch mode. Precious time is lost while the program is recompiled and executed. 
Eventually, graphic output depicting one or several sections of the grid, with perhaps 
statistical diagnostics such as average Jacobian deviation from zero and a measure of 
smoothness is received and analyzed. Based on the results, the input parameters are 
slightly modified, and the process is repeated. 

Two types of codes have emerged to speed up the grid generation process. The first 
is the integrated package requiring a few selected parameter choices, sometimes with a 
prescribed density distribution over the physical domain. For example, GRAPE (m), 
allows the specification of both the node distribution and the spacing along the outward 
grid line with the surface boundary to be specified in each subdomain. After the first 
subdomain is gridded, the grid line directions at  the outer boundary of the subdomain are 
imposed on the adjacent domains as initial conditions. This procedure insures continuity 
of the grid lines across the boundaries of the subdomains. The whole procedure is executed 
in batch mode. Other examples of automated but batch oriented codes are INMESH for 
2-D and EAGLE and NUMESH for the generation of 3-D grids. Further examples can be 
found, for example in the Landshut Conference (a. 

In contrast to batch oriented programs, the proliferation of high-powered graphic work- 
stations with local intelligence strongly suggests an interactive approach to grid generation. 
Each step of the grid generation is under direct control of the user. The result of parameter 
changes can be viewed instantaneously on the screen, allowing the user to take immediate 
action if necessary. Parametric studies can be accomplished at  very little expense, and 
with little risk of error. Special graphic hardware to translate and rotate screen objects in 
real time is often an integral part of the system. Together with color, the user can examine 
the grid from all vantage points and quickly detect anomalies. In the span of several hours, 
grids can be generated that would otherwise have taken days or weeks. Moreover the re- 
sulting grids are often of higher quality. Frequent changes to the geometry also make the 
interactive approach desirable because of the reduced amount of human time since much 
of the time wasted with batch oriented programs is avoided. To summarize, interactive 
grid generation allows the user to concentrate on the geometry of the problem rather than 
on the mechanics of processing programs. Engineers, normally shy of computers, find it 
easier to interact with a menu driven system, particularly one which provides online help 
and semi-automat ic error detect ion and correction. 

The basic ideas behind four interactive grid generator programs( 187,182,66,93) are 
briefly discussed, and the methods are compared. The first two-dimensional interactive 
grid generator is that of Smi th (m) ,  called the two-boundary grid generation technique. 
The heart of the algorithm is a transfinite interpolation procedure that combines cubic 
Hermite interpolation in one direction with a shearing transformation in the other to obtain 
an exact mapping of the computational domain onto the physical region. Generation of 
the grid is divided into four steps. First the physical boundaries are read in from a data 
file, and the number of points on each boundary is specified. The second step involves the 
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parametrization of the physical boundaries. Several specified functions are available to the 
user, who must supply parameters such as stretching of the coordinate transformation. 
Should more flexibility be required, the option is available to generate a new mapping. To 
this end, a graphical representation of the physical domain is drawn along with a graph 
of ( versus arclength, s. The user then picks several points on the physical boundary 
with a cursor (from which s can be determined), with corresponding points along the 
computational coordinate axis, t. A least squares spline is fit to this data and defines the 
sought after boundary parametrization. Points can be added or deleted in random order. 
In this way, an optimal boundary node distribution is achieved on all four boundaries. The 
third step establishes the boundary distribution of derivative quantities required by the 
Hermite interpolator. As mentioned previously, if the magnitude of these derivatives is 
too large, the possibility of coordinate curve overlap exists. Only an interactive approach 
can immediately bring this effect to the user’s attention. At  this stage the only missing 
component is the distribution of nodes along the Hermite polynomial. This is done similarly 
to step 2. Intermediate results can be saved and later restored, letting the grid generation 
span several sessions. ine  major ciisadvariiage is the lack of control p i o 6 d d  by the 
Hermi te polynomials. 

W T  

Based on a set of routines suited to the automatic generation of two-dimensional alge- 
braic grids(@), an interactive grid generator, IMAGE was developed at NASA Langley by 
Erlebacher. The acronym IMAGE stands for Interactive Multisurface Transformation for 
Arbitrary Grids in Engineering. The added flexibility provided by the intermediate sur- 
faces more than offsets the extra effort the user must undergo to generate the grid when 
compared to a similar task with the two boundary technique. IMAGE is best suited for 
complicated 0-type meshes, although simple C-mesh structures are also possible. Its great 
strength lies in the control the user has in the construction of the intermediate surfaces. 
Superellipses of arbitrary degree, 4 digit NACA airfoils, and polygons entered with a cur- 
sor are all available at  the touch of a couple of keystrokes. Intermediate surfaces can be 
created a fixed distance D away from an existing surface S along its inner or outer normal 
vectors. Not only the boundaries, but all the constructive surfaces must be parametrized. 
The user has control over the intensity of the curvature pull the nodes will respond to. The 
higher the intensity, the more nodes get pulled into regions of high curvature (71). Fur- 
thermore, intervals along the surface are picked with a cursor, and when used along with 
the percentage of nodes in the interval, a local clustering capability is provided. Based on 
the parametrization of the physical surfaces, several routines simplify the parametrization 
of the intermediate surfaces. Among them, the most useful are the projection operators 
which generate the distribution of the computational coordinate of one surface based on 
that of another. Typically, projection methods are only useful between two surfaces close 
to one another. Otherwise there is a possibility of grid line overlap in the final mesh. 
The projection operator is often used between the physical body and the first intermediate 
surface outward to guaranty orthogonality of the coordinate curve with the boundary. 

The large number of options available to the user are apt to confuse a novice. Therefore, 
an online help is available during the grid generation session. Moreover, user errors are 
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reported along with the section of documentation which is pertinent. 

Two interactive grid generators, both based on the block structured approach, have 
been written to treat three-dimensional geometries. Gaitonde (93) has written an inter- 
active program based on the multisurface transformation. It is specialized to a three- 
dimensional configuration which can be represented as a series of two-dimensional cross- 
sections. Many aircraft satisfy this constraint. The grid generation problem has therefore 
been reduced to two dimensions plus the constraint that the coordinate curves normal to 
the cross sections must not be too skewed. Cross sections with complicated topologies are 
decomposed into subdomains. The program is menu driven, and provides the user with 
extensive control over intermediate surface representation and node distribution along all 
direct ions. 

Finally, a three-dimensional interactive block-structured approach was recently imple- 
mented by Seibert (182). Geometry definition, the first task of any interactive program, is 
accomplished with several available Computer-Aided-Design programs. Libraries of ready 
made geometrical shapes can be bypassed with the help of digitizers and drawing boards. 
An added complexity relative to the previous three algorithms is the need to keep track of 
the relative spatial position of the blocks. Grids are generated either by redistribution of 
nodes along spline curves, or with a Poisson solver. With this approach, a grid about two 
intersecting pipes was generated. It is nearly orthogonal almost everywhere. A further 
application was to grid a fuselage with inlets (m). Again, Seibert managed to generate a 
nearly orthogonal grid. 

For two dimension grids, a little mentioned problem is the interactive construction 
of boundary curves. Smith (187) developed an elegant approach involving global splines 
with tension. The tension parameter is user controlled, while the spline is calculated as 
a best fit to a set of user entered coordinate information. The entire procedure occurs 
interactively at a terminal, providing the user with instantaneous feedback on the effects 
of his last modification. Unless the tension parameter is chosen with care, oscillation can 
occur. While this is not much of a problem for the two-boundary technique, the interactive 
implementation of the multisurface transformation algorithm involves many more curves 
to be parametrized. Therefore, a more robust procedure is required. An alternative to 
standard splines is the local Hermite splines which require a specification of node positions 
and tangent vectors at these nodes. However, if the tangent vectors are not chosen with 
care, the interpolated curve can backtrack upon itself and become multi-valued, e.g. 

?(€I) = r ' ( € 2 )  €1 # €2 (69) 
This phenomenon is observed by Smith (187) in the two-boundary technique. 

A major hurdle that all interactive grid generators must overcome is the automatic 
generation of oscillation-free interpolating boundary surfaces. Various methods have been 
proposed. A simple technique, not proven to be oscillation-free, but observed to be so 
in practice, uses the property that along the interpolated curve, the magnitude of the 
derivative of the vector r'with respect to arclength s is always unity. Therefore, if & is the 
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cumulative linear arclength between F'o and Fn, a natural definition of the tangent vector 
between in and ?n+l is 

-+ .',+I - rn 

I n + l -  I n  

-+ 

(70) rn = 

of unit magnitude. In terms of ?n, the tangent vector Zn at the node 7n is defined by 

whose direction coincides with one of the bissectors of the angle 8 formed by the vectors 
r ,  - rn-l and rn+l - qn. The magnitude of rn is cos(Ol2). Being less than unity (which is 
the analytical value), it is highly unlikely that oscillations will occur. When 8 is very close 
to T ,  the tangent vector magnitude approaches zero which is a highly desirable feature. 
Standard splines will produce severe oscillations about such a sharp corner. With local 
Hermite polynomials, setting the tangent vector to zero at  sharp corners heavily dampens 
the oscillations that would otherwise occur. Many tests of this approach were performed 
on szvere bou~daries, inc!ncl,izg filselagc! cross-sections of advanced aircraft configurations. 
They all produced boundary fits with no detectable oscillations. 

- + - +  -+ 

ADAPTIVE MESHES 

In a variety of important physical phenomena, there is some distinctive or critical at- 
tribute which is changing rapidly at some unpredictable location in space and also possibly 
in time as well. With fixed meshes, such phenomena are often not adequately captured in 
numerical simulations, at least without an inordinate number of mesh points. Even a large 
number of points may still not be satisfactory since the severity of the rapid variations 
may unpredictably become excessive. To rationally consider accurate solutions in these 
circumstances, adaptive mesh techniques have evolved. In broad terms, the techniques 
consist of either adjusting the number of points or moving them. On some occasions, 
there is some mix of techniques such as movement with either local or global changes in 
the number of points. With structured grids, the most reasonable blend is the global one 
whereby the total number of points in a coordinate direction can be adaptively altered. 
With unstructured meshes, by contrast, the local one is preferred. 

The essential ingredients in adaptive mesh methods are a means to adequately monitor 
the severe solution behavior and a means to appropriately utilize that data. The monitoring 
aspect is formally consolidated into a single simply defined object: to be descriptive it is 
called a monitor surface. The utilization of that surface data consists of a mesh generation 
part, a PDE-solver part, and a coupling part. While the various parts can be assembled 
in a variety of ways and at distinctive times or sequences, we shall concentrate on the 
mesh generation part and give indications of how the other parts relate to it. The mesh 
generation part is further split into structured and unstructured formats. 
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For a more thorough and in depth discussion of adaptive grid generation, the reader 
is referred to the review by Eiseman (57) .  Earlier reviews are also available and are 
given by Thompson (a and Anderson (4). Moreover, adaptive grids have been consid- 
ered in a number of conferences (223,97,111,11], general review papers (221,224,69) and a 
text (a). 
MONITOR SURFACE 

In a formal sense, at any point in time, the best numerical grid minimizes the truncation 
error of the discretized differential operator to be inverted. However, even when feasible, 
the determination of truncation error formulae sufficiently accurate to be of use is unwieldy 
at  best. The formulas obtained are very much dependent on the numerical scheme adopted 
and the upper bounds on the errors might not be tight enough. Furthermore, when systems 
of equations are involved, one is left with a collection of truncation error estimates, and 
the problem of which combination to minimize must still be tackled. 

An alternative view is to pinpoint one or several variables which drive the physics of the 
system of interest, and resolve them instead of the error. The reasoning is very simple. If 
the physical variable is resolved properly, the truncation error of the differential equation 
must be low, otherwise, the physical variable would be inaccurate. The strategy is therefore 
to insure that at  the initial time, the grid is sufficiently fine to accurately represent those 
variables. As time evolves, the grid is adapted to the smooth, time-dependent changes 
in the variables, and therefore accuracy is maintained. For example, in shock dominated 
flows, pressure is a representative variable because it is very sensitive to shock locations, 
which are the bane of many numerical methods. If the initial flow is shock-free, it is 
relatively simple to track the spatial variations in the pressure field, and to add grid 
points, or cluster grid lines in areas where the gradient or curvature of pressure are above 
specified thresholds. This approach is independent of the numerical algorithm adopted to 
solve the problem since the grid movement is typically decoupled from the solution step of 
the physical equations. 

In general, there may be more than one variable one wishes to resolve. A typical 
example is the multiple species in a combustion process (50) where a number of variables 
must be tracked if their effect on the flow is to be determined accurately. Let the number 
of salient quantities the grid must adapt to be denoted by N .  These variables form an N 
dimensional vector, whose components are in turn functions of the n physical coordinates 
of the grid points. Geometrically, this vector represents a surface in an imbedding space 
of dimension N + n. One possible approach to constructing a suitably adapted grid, is 
to somehow generate a grid on this surface and project down onto the physical space. 
The standard approaches to node attraction, namely gradient and curvature pull, are hard 
to apply in spaces where N is greater than one. This is because variations in the surface 
normal direction, typically used in curvature evaluation, is not a uniquely defined quantity. 
For example, when N = 2 and n = 1, the two salient variables can be written as 

= v;.(z) (i = 1,2),  (72) 
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which can be interpreted as a curve imbedded in the three-dimensional space (2, VI, V2). 
As is well known, curvature is not sufficient to describe this curve. The added required 
parameter is the curve torsion. However, instead of independently tracking the variations 
of VI and V2 as a function of x, it is often useful to linearly combine them into the single 
function 

v = ap1+ a2V2 (73) 
where a1 and a2 are user defined parameters. As long as the variations in the two vari- 
ables V1,V. do not cancel each other out, it is possible to resolve both variables by at- 
tracting nodes according to the geometry of (z,V). This entity is simply a curve in a 
twedimensional embedding space, geometrically characterized by its curvature (69). It is 
clear that it is far simpler to attract nodes based on the geometry of x,V than that of 
x, Vl, V2 because of the reduced amount of computation required. 

The process of combining the N quantities into a single scalar combination becomes 
increasingly at tractive for large numbers of quantities. Whereas the analytical formulas 
irrvnlved in tshe grid generation also become more tedious as the dimension of the physical 
space increases, there is no corresponding simplifying mechanism. The resulting scalar 
quantity, which the grid points must adequately resolve is called a monitor surface. 

For one-dimensional problems, the monitor surface becomes a curve. Two points of 
view prevail. The monitor surface can either be gridded directly, and the grid projected 
onto the coordinate axis, or geometrical information from the surface can be used to 
generate a grid on the coordinate axis. The first approach has the advantage of not 
requiring derivative information since it is built into the surface. In the absence of high 
curvature, a uniform surface grid projected onto the coordinate axis naturally clusters 
points in regions of high gradients. When the grid is generated on the coordinate axis, 
however, the clustering formulas must explicitly include surface gradient magnitudes to 
accomplish a similar clustering. Curvature and additional clustering parameters can added 
to the surface grid generation algorithm to redistribute surface points in accordance with 
the adaptivity requirements of the physics. 

When the monitor surface exhibits severe bends, surface curvature must be taken into 
account. For one dimensional problems, the curvature is given by the simple formula 

However, a common approximation made for curvature is to set it equal to a second 
derivative. This approximation is only valid when the norm of the gradient vector is much 
less than one. If the gradient norm and the absolute value of the second derivative are high, 
the curvature decreases because of the gradient norm in the denominator. Accordingly, 
the exact formula given by Eq. 74 must then be employed. 

In two and higher dimensions, the situation becomes more complex. It is no longer 
obvious what constitutes a good grid in the monitor surface (or volume) since there are 
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more than one coordinate direction. Equidistribution of cell volumes, aspect ratio or 
conformality are all valid criteria for constructing the surface grid. A more thorough 
discussion of monitor surfaces can be found in Eiseman (69). An application of monitor 
surfaces in plasma physics on unstructured meshes using two salient quantities has been 
reported in Erlebacher (79,80). 

ADAPTIVE GRIDS 

Adaptive grids are necessary when the significant solution variations are to be resolved 
in a structured manner. The structure comes from coordinate transformations and is re- 
flected in the connectivity pattern as discussed earlier. The consequent regular ordering of 
points is important because the numerical algorithms for solving partial differential equa- 
tions are generality more efficient and can often be optimized. With the maintenance of 
the connectivity structure, the primary adaptive action is grid point motion. The inherent 
coordinate transformations are then evolutionary in character and provide a distribution 
of points that conform very closely to the significant solution variations. When the distri- 
bution is appropriately determined, further adjustments then come from altering the total 
numb.er of points in the various coordinate directions. This keeps the same transforma- 
tions, but adjusts the number of points to optimize between under and over resolution from 
a global perspective. In our discussion, the central aspect of determining the distribution 
will be explored. Accordingly, various grid point movement schemes will be described from 
the viewpoint of using only a fixed number of points. 

With the assumption of a monitor surface, we may proceed to consider grid generation 
methods that are sufficiently reliable and automatic to provide the desired motion while 
retaining a decent grid structure. These methods can be developed in either of two natural 
ways: either the basic grid generation is performed on the surface or it is done in physical 
space. If the generation occurs directly on the surface, then the physical space grid is just 
the downward projection of the surface grid. The advantage of the surface grid generation 
is that a uniform surface grid automatically resolves the gradients in physical space. As 
a consequence, the demands upon weight functions are light. In contrast, the basic grid 
generation in physical space is simpler but the demands upon weight functions are heavier. 

One Dimension 

Regardless of the location where the grid generation is performed, the basic constructive 
principles remain the same. Moreover, virtually all of the basic methods have roots in the 
one-dimensional setting. In that context, we can then understand the basic elements 
without undue mathematical detail. As a consequence, we are drawn to consider the 
process in which a weight function is to be equally distributed between the successive 
points of a grid on a curve. If two successive points are denoted by their arc length 
positions S i  and s;+1, and if the averaged weight function between them is denoted by 
w;+1/2, then the equal distribution is obtained when 

Wi+l/2(Si+l - Si) = cst (75) 
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is satisfied for all i. The desired effect, here, is that large values of wi+1/2 cause the spacing 
between si and si+l to shrink. That is, points are attracted to regions of larger weight. In 
terms of coordinate transformations, this can be restated in the differential form 

urds = c d t  (76) 

where c is a constant and t is the curvilinear variable that is given constant increments. 
The constant c can be removed by differentiation-to yield the differential equation 

W€ 
S[E + -s[ = 0. 

W (77) 

In effect, the constant is shifted from the global statement into an additional boundary 
condition. The transformation can be explicitly stated from a direct integration of Eq. 76 
or implicitly stated in tridiagonal form from Eqs. 75 and 77. Two successive values of i are 
used for Eq. 75 while an immediate discrete approximation is employed for Eq. 77. With 
the tridiagonal forms, point relaxation in a mean value sense is readily seen. Moreover, 
~zriaticna! f c r ~ s  thzt Ezve Eq. ?? as the Ti)ij!er en,r?at.ion can alsn he established. Each of 
the mentioned forms extends into the multidimensional context. 

An important aspect of each form is the dependency of the weight function: it can 
be a function of either the physical position s or the grid point counter e. Since the 
adaptive data appears with respect to only physical position, the use of a weight function 
dependency upon t requires iteration while a dependency upon s does not. This distinction 
occurs regardless of whether the basic method is already iterative or not. However, if it is, 
the requirement appears more modestly by including the weight function in the existing 
updating process. In contrast, for example, a global integration of I / w ( t )  in Eq. 76 
directly yields an entire transformation that must be iterated. At each stage, the weights 
are computed from the current grid point locations si and are considered as functions of i 
which is effectively (. The integral transformation then determines new positions s i  and 
the process is repeated. 

Curve BY Curve Methods 

With a basic understanding established, we next proceed to consider higher dimen- 
sions. The most direct extension into higher dimensions is to apply adaptivity on a curve 
by curve basis and to cycle through one or more coordinate directions. The methods of 
this description are called “alternating direction adaptive methods.” From a geometric 
viewpoint, these methods operate by specifying the diagonal part of the metric tensor 
since each such diagonal entry is inversely proportional to a specified weight. This fun- 
damental geometric framework provides a unified setting for all such methods and was 
presented by Eiseman (67). The unity, here, derives from the fact that no matter how 
the metric specification is accomplished, the result must be the same up to the distinctive 
errors of approximation. The completeness in the specification comes from the curvature 
of space. This is most readily seen in two dimensions where Gaussian curvature provides 
a single relationship between all three metric coefficients gll, g22, and g12. That means 
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that the coordinates are analytically determined when 911  and g 2 2  are specified as positive 
functions that may even involve 9 1 2 .  In other words, the two available degrees of freedom 
are employed. Likewise, in three-dimensions, the three available degrees of freedom are 
consumed. The typical specifications include gradient magnitudes, various forms for cur- 
vature (normal, geodesic, mean, second derivatives), cell properties (eccentricity, aspect 
ratio, lengths, area or volume), and the attraction to prescribed distributions (uniform, 
arbitrary, orthogonal alignment, or previous locations). 

While the specifications can be accomplished with a wide variety of weight function 
formulations, the simplest and most commonly employed form is linear. Each of the 
specified quantities are represented by non-negative functions that are viewed as mass 
distributions Mk along the current curve. Assuming an application relative to uniform 
conditions, we set the first mass Mo equal to 1 and get the linear form 

w = 1 + ClMi+ ... + cmMm (78) 

where the nonnegative coefficients c k  give the relative importance of the kth quantity 
represented by Mk. This weight function can be employed with any of the forms for 
equidistribution that come directly from Eqs. 75-77. 

In the higher dimensional context, Eq. 76 becomes the basic metric statement 

where the subscript j for the coordinate direction is also attached to both the constant 
and the weight. For each given curve c j  is a constant as earlier. However, as we go from 
curve to curve within the family for a given direction, that constant becomes a function of 
the transverse variables which govern this progression. As a consequence, differentiation of 
gjjwz in Eq. 79 will dispose of the constant and will yield the partial differential equation 

that corresponds to the earlier ordinary differential equation of Eq. 77. As in the case 
of Eq. 77, the data from the constant has been effectively transferred into boundary con- 
ditions. Upon substitution for g j j  in Eq. 80, the partial differential equation is readily 
observed to be second order. To be explicit on this matter, we consider the case of the 
first equation in two-dimensional Euclidean space. There, the metric from Eq. 3 is just 
911  = xi + yz and results in 

The equation for the q direction has the same form and is obtained similarly. This special- 
ized case was presented by Anderson (&). Other forms cover curves on surfaces and higher 
spatial dimension. All of these come from Eq. 80. In comparison with the earlier case of 
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an isolated curve, the equations, here, are for coordinate curves, and as a consequence, 
reflect their embedding within the coordinate system. 

To examine the historical roots of alternating direction adaptivity, we return to one 
dimension and then expand to higher dimension and to multiple directions. Some of the 
earlier studies in one dimension were developed by Winkler (242), Ablow and Schecter (l), 
and White (240,241). Winkler (242) considered grid point movement directly in physical 
space in response to gradients in the monitor surface. All attributes for clustering and grid 
structure were given in the form of a linear weight. By contrast, White (240) developed 
his grid directly on the solution curve and thereby effectively used a weight of unity. 
When the arc length was expressed as an explicit function of physical space, he obtained 
the appropriate weight function for arc length. In extrapolating from here, he called the 
weights monitor functions. Although, the term may be appropriately descriptive when 
everything is combined under a single integral, it is otherwise deficient. A more basic 
consolidation of the data and one that applies regardless of dimensionality is the concept 

considered a linear weight with curvature that was applied relative to the arc length of the 
solution curve. 
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In the next stage of development, Dwyer et al. (50,51,53,54,52) considered the process 
of adapting the points along each coordinate curve in a fixed direction. In contrast to 
Winkler, White and Ablow and Schecter, he considered weight functions that depended 
upon positions in physical space. This was executed in a noniterative fashion by a direct 
integration of Eq. 76 along each coordinate curve in the physical region. Again, linear 
weights were employed. In terms of Eq. 78, he considered up to two masses consisting 
of magnitudes for first and second derivatives of the monitor surface. These, however, 
provided only approximate gradient and curvature data: the variations along transverse 
coordinate curves were ignored. An advantage that evolved from the choice of linear 
spatially dependent weights was the capability to more rationally define the coefficients in 
the linear weights. With the transformation established by the global integrals, Dwyer (53) 
noted that the fractional contribution of each mass was merely a ratio of that mass integral 
to the total mass integral. Each integral, of course, was taken over the entire curve. Since 
each mass integral contains the associated coefficients, he was able to specify the fractions 
and solve for the coefficients. This was done for up to two masses. As a consequence, each 
specified fraction resulted in a weight coefficient that dynamically adjusted from curve to 
curve. 

In progressing from a single direction to multiple directions both Ablow (a and Gnoffo (lol) 
performed bidirectional studies. Ablow considered the arc length along the curves on a 
monitor surface and proceeded to solve the equations 

which come from Eq. 80 with constant weights and with z = z(x, y). He employed an AD1 
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procedure for the solution. As a consequence, he automatically clustered to high gradients. 
In contrast, Gnoffo viewed the monitor surface only from physical space, and thus had to 
explicitly use gradient information. Like Dwyer (a), he neglected transverse variations 
and considered derivative magnitudes along the given coordinate curve in physical space. 
He did not, however, consider derivatives beyond first order. In the execution phase, the 
weight was viewed as a function of the grid point index (equivalently ( or q )  and formed a 
global integral that required iteration as discussed earlier. In the trapezoidal quadrature 
rule for the integral, each increment in ( and 7 was unity and the result was a simple sum of 
reciprocal weights. This is in contrast to the noniterative statement where the quadrature 
is a sum of products between midpoint weight values and the corresponding interval arc 
lengths. As a matter of terminology, he called this approach a spring analogy. Because 
of the iterative nature, however, the spring constants are not really constants since they 
must also change. At  best, they may be viewed then as nonlinear springs. 

In a more general study, Eiseman (a consolidated and extended the previous works 
and presented a mathematical foundation for all such curve by curve methods. To be 
descriptive, these methods were then called alternating direction adaptive methods. The 
mathematical foundation was mentioned earlier. In brief terms, the known curvature of 
a region implies that metric specifications along each coordinate direction are enough to 
completely determine the metric which in turn can be employed to generate the grid by line 
integration. In the context of orthogonal grid generation, details on the line integration 
for coordinate positions can be found in Warsi and Thompson (237) and in Eiseman (65). 

With the previous works separated between surface grids without weights and planar 
grids with weights, the more unified approach is to simultaneously consider surfaces and 
weights. In the consolidated form, a stated preference was given for generating grids on 
monitor surfaces while using weights for the resolution of surface properties; albeit, the 
form applies equally well to viewing the surface from the physical region below it. The 
stated preference quite naturally derives from the fact that the accurate representation of 
a surface is more readily apparent in the surface grid than in the corresponding projected 
grid in the physical region. The reason is that the viewpoint is the location of arc length 
measurement which is more naturally taken and accurately controlled on the surface. In 
simple terms, it is reasonable to generate the grid directly upon the very object that must 
be given a good representation. 

With the objective of providing a good representation for the monitor surface, the 
geometric parameters for the surface must be used along with the parameters which govern 
the grid quality in the sense of good structure. The basic surface properties are the bends or 
folds in the surface and are the surface boundaries which may also be bent in some manner. 
The basic measurement for surface bending in a given direction is the normal curvature. 
The measurement for the boundaries is the geodesic curvature. Each curvature detects 
only the desired property. Using the normal curvature in the direction of the current 
coordinate curve, the desired clustering effect for surface folds was observed. In addition, 
the use of normal curvature was seen to provide some alignment of coordinate curves with 
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folds in the surface. Moreover, the formulation used the general linear weight of Eq. 78 
where normal and geodesic curvatures are balanced with the unity for uniformity and a 
mass for orthogonality attraction. The coefficient for geodesic curvature was presented in 
a form that decayed upon leaving boundaries so that bent interior curves appearing from 
the iteration would not unnaturally cause clustering. 

The use of fractional specifications initiated by Dwyer (53) were also extended. In 
a basic sense, it was noted that the resolution of a property which appears over a fixed 
length could be depreciated by merely increasing the total length (or other masses). Thus 
a mechanism was required to appropriately adjust the clustering intensity to treat the 
local property in the same manner, regardless of length. For normal curvatures we must 
somehow detect the likely presence of local clustering regions and the possible excessive 
consumption of surface arc length. This was done by first forming the ratio R of the 
actual arc length of a coordinate curve on the surface to the minimum possible length. 
The latter is computed in the form of a Euclidean distance using the arc length of the 
projecwu cu lv t :  aid t he  change i~ i!tit.cde het,ween endpoints. Upon application, a factor 
of the form tanh[D(R - l)] was applied to a constant fraction determined in the original 
manner. The fraction is now seen as a maximum possible fraction that would be employed 
in the most severe case within the family of all coordinate curves in a given direction. The 
constant D then gives the rapidity for which the specified maximum fraction is approached. 
More details are provided in Eiseman (67). Another extension of fractional specifications 
is to include any number of masses in Eq. 78 and to consider what happens when distinct 
masses appear on the same interval. This is discussed in the reviews by Eiseman (69,57) 
and is not repeated here. 

- 1 1 _ _ _ _ _ ^  

In three subsequent studies, Nakahashi and Deiwert (151,154,152) added a few more 
items of interest to the development of alternating direction adaptivity, and in addition, 
presented some rather good examples of adaptive simulation in aeronautics. The main 
contributed item is their incorporation of an orthogonality control outside of the weights. 
Given the arc length locations ri corresponding to an orthogonal alignment with the previ- 
ous curve, they added a term of the form D(si -r i )  to the right-hand side of the tridiagonal 
system derived from Eq. 75. Altogether, the new tridiagonal form is given by 

As D increases, the diagonal dominance grows and forces si to approach ri. A variant is to 
make D change with i (Di) .  In the applications, Di actually varied inversely with respect 
to the distance from the previous curve at each i. This strengthened the attraction for 
closely spaced curves. 

In three dimensions, there is another similar arc length location ti and another term 
Ei(Si - t i) .  There, Di + Ei is added to the diagonal and Djri + Eiti forms the right hand 
side. In continuing the analogy with springs, they attributed the orthogonality control to 
torsion springs rather than to diagonal dominance. Although this control might a t  first 
appear to make the method distinctive, the fundamental fact still remains that a metric 
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ri = aisi+l/2 + (1 - ai)si-1/2 (84) I 

relationship is being specified along curves. In fact, if the location t i  in Eq. 83 is given by I 
the relative location I 

through ai, then we get new adjusted weights 

where the second term can be interpreted as a mass for orthogonality attraction as dis- 
cussed in regard to the general linear weight of Eq. 78. If ri lies between si-112 and s;+1/2, 

then ai is between 0 and 1. 

Rather than a consistent use of linear weights, Nakahashi and Deiwert (152) considered 
weights where some of the specified constants appeared nonlinearly. This arose mainly 
because the minimum and maximum spacing could be specified by means of a single 
algebraic formula over the curve. One constant was an exponent and had to be determined 
by iteration. By contrast, Winkler (244) gave upper and lower bounds upon the spacing 
within the context of the general linear weight of Eq. 78 and did not require an iterative 
determination of constants. This was possible because the spacing was only required to 
become close to minimum and maximum spacing along the curve rather than matching it 
precisely. 

It should be noted that the objective in setting bounds upon the spacing as represented 
by Winkler (244,243) and by Nakahashi and Deiwert (152) is essentially the same objec- 
tive as specifying the fractional amount of quantities as represented by Dwyer (53) and 
Eiseman (67). Both prescriptions merely attempt to set limits upon the finite distribution 
of points. In comparison, the spacing bounds are attractive because of their direct attach- 
ment to the actual spacing while the specification of the fractions are attractive because of 
their flexibility. With the fractions, the constraints upon spacing can be more effectively 
balanced against the other attributes which quite naturally enter into the same linear for- 
mat. Moreover, those other attributes can also be precisely separated at the same time 
as the spacing requirements. This extensibility is not readily apparent in the format of 
spacing bounds. To consider it, the form presented by Winkler (244) would be preferred. 

In the studies of Nakahashi and Deiwert (151,154,152) no defect was noted in the 
application of the method. The only indication appears indirectly when they state that 
some corrective action is required when the orthogonally aligned arc length locations ri or 
ti fail to be monotone. Although the action was simply executed, the real problem was 
covered up. The real problem comes from the errors incurred in the numerous piecewise 
linear approximations to curves and their parameterizations. Various forms of the problem 
were illustrated by Eiseman (67) along with certain explicit corrective actions. In cases 
with rapid but not excessive variations, such actions, however, are usually not required. 

In summary, while the straight curve by curve adaptation yields good results in many 
circumstances, there is a significant underlying limitation on the weights. Namely, the 
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weights cannot be too severe or else the procedure will collapse. This has been observed 
and while corrective action can be inserted directly into the process, such action is rather 
detailed and technical. 

In a further study, Eiseman (72) found that a better course of action is to redefine 
the directional sweeps by splitting them into two phases: the active phase and the passive 
phase. In the active phase we just have the original curve by curve strategy in the current 
direction. This contains the fundamental adaptive forces. In the passive phase, a low 
pass filter is applied to remove any wiggles or abrupt changes in spacing caused by the 
active phase but to  leave intact the basic results of the intended action. This produces a 
smooth grid in the sense of derivative continuity. As a consequence, continuous numerical 
derivatives are available for numerical solution algorithms and for the application of con- 
trols in successive sweeps. Such controls include the use of orthogonality and curvature in 
the weights. As a practical matter, it has been observed that the splitting of sweeps into 
this predictor-corrector format of active and passive phases has resulted in considerably 
enhanced stability and a much larger range of severity in the choice of weights. 

The simplest form for the passive phase is given by the direct action of a Laplace 
filter upon the grid point locations. While such action by itself may not be appropriate 
for the generation of a nonsingular grid, it is certainly suitable for the stated purpose of 
establishing derivative continuity. The distinction is that the filter is applied at most a 
few times in each directional sweep rather than being driven towards convergence as is the 
case when the solution to a system of grid generation equations is sought. The Laplace 
filter is given by the simple Gauss-Seidel relaxation of 

+ 
. 

At the boundaries, this formula was restricted to provide filtering in only tangential di- 
rections. In the application, a three-dimensional monitor surface was defined in four- 
dimensional Euclidean space by means of the vector (z, y, z, u) where u is considered to 
be a function of (z, y, z). To obtain the physical space projection, we merely replace u 
with a constant which is usually 0. In a test of the basic movement, u was taken to have 
a severe variation across two intersecting ellipsoids that also intersected the boundaries of 
a Cartesian box. From an initial surface grid with a Cartesian grid projection, an equal 
arc length grid was rapidly generated on the surface, and accordingly, a smooth gradient 
clustered grid resulted in the (z, y, z)-projection (z, y, z, 0). 

While the passive phase of each sweep provided smoothness in the sense of derivative 
continuity, another measure of smoothness is provided by an attraction to conformal con- 
ditions. This latter measure is more demanding and is thus clearly stronger. Recognizing 
the basic need for smoothness, Anderson and Steinbrenner (5,6) brought the process of 
equidistributing weights along coordinate curves into the format of the Poisson system 
of Eq. 63. Their development was motivated by the previous work of Middlecoff and 
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Thomas (143) who employed the formulation 

with 

9 2 2  P = -d 
Q22 

9 
Q = -Q 

for the purpose of converting boundary distributions into forcing functions thereon. While 
Middlecoff and Thomas interpolated the forcing functions into the field so that boundary 
distributions could be propagated into the interior of the field, Anderson and Steinbrenner 
viewed each curve as if it were such a boundary curve. In the boundary application, the 
assumption of orthogonality and vanishing transverse curvature was employed to get the 
differential equation for an equidistributed weight. In particular, with g12 = Frt - rrq = 0 
and ?rss = 0, the equidistribution statement of Eq. 77 is obtained from Eq. 87 as 

-.+ 

where s is the curve arc length and 

(90) 
q $ = -  we 

W 

is the relationship between the forcing function r$ and the weight function w .  In the more 
general interior application, the same sort of equidistribution statement was established 
without the previous assumptions. The main distinction is the addition to q5 of a term 
for orthogonality and a term for curvature. These orthogonality and curvature terms 
represent the attraction to the conformal measure of smoothness. Without forces, they 
yield the desired smoothness. With forces, a deviation is obtained. 

In the adaptive context, when the local force is sufficiently strong, the equidistribution 
force overpowers the smoothness conditions to become dominant and, thereby, to provide 
the desired equidistribution of the weight along each curve. The equidistribution is more 
localized than the previous derivative continuous measure of smoothness. This occurs 
because the equidistribution is essentially cut off unless it is sufficiently strong. The value 
of such a cutoff is that intense local clusters can be formed primarily from curves that are 
not too far from the given locality. In contrast, the actual equidistribution of weights along 
curves adjusts all points along curves, and thus, tends to globally propagate adjustments 
to intense local requirements. This tendency can of course be limited with the explicit 
use of orthogonality and curvature attraction. A similar development without an explicit 
injection of equidistribution was also given by HSuser, Papp, Eppel, and Sengupta (m). 
Finite Volume Methods 

Finite volume methods are methods where the grid point motion is based upon the vol- 
ume elements between grid points. In the context of the finite equidistribution statement 
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of Eq. 75, the direct higher dimensional extension is given by a center of mass formula. 
For simplicity, only two-dimensions will be considered since the fundamental pattern is 
established therein. A two-dimensional stencil centered about a grid point ?ij is assumed 
to contain only the nearest neighboring grid points. Altogether, four quadrants are deter- 
mined about Ti,. In standard succession, the first quadrant is subtended by the i + 1 and 
j + 1 direction; the second, the i - 1 and j - 1 directions; the third, the i - 1 and j + 1 
directions; and the fourth, the i+ 1 and j+ 1 directions. For each quadrant, the associated 
volume is taken to be the triangle attached to ?ij .  For example, the first quadrant volume 
is delineated by ?i j ,  r i + l , j ,  and T i , j + 1 .  The local motion of Fij comes from the weighted 
volume elements which are defined by the triangles containing ?ij.  In each quadrant k ,  
a barycenter b k  and a weighting quantity, qk is obtained as the average of positions and 
values respectively over the triangle vertices. With the quantity q k  uniformly distributed 
over the triangle area v k ,  the weight w k  at the barycenter b'k is just q k v k .  The most com- 
mon form for q k  is simply the general linear form given by Eq. 78. From the triangles with 
weights w k  centered at &, the center of mass of all four quadrants is given by 

+ 

+ 

-.new - k = l  rij - 2 w k  
k=l 

to determine the new position for T i j .  The actual movement is given by the vector fference 
+W 

rij 
mean value relazation. 

- Ti, and is employed in a point iterative cycle. This cycle can be reasonably called 

Like the earlier Laplace system, the motion represents an attraction to conformal con- 
ditions when each w k  is the volume l]k itself. In terms of the h e a r  weight form of Eq. 78, 
the first term which is the number 1 is then the representative of the conformal attraction 
relative to which the other forces are applied. The analytical indicator for the conformal 
conditions comes from the converse of the mean value theorem which is simply presented 
by Epstein (75) on pages 146-148. While the analytical argument employs the area mean 
value of functions over circular disks, the finite parallel given by Eq. 91 with w k  = v k  is 
only an approximate form employed within an iterative cycle. 

The pointwise relaxation of the center of mass formula of Eq. 91 has been consid- 
ered by Diaz, Kikuchi and Taylor (a), Oden, Devloo, and Strouboulis (158), Schwartz 
and Connett (m), Connett, Agarwal, and Schwartz (a), Erlebacher and Eiseman (a), 
Eiseman (a), and Erlebacher (a. In the studies by Erlebacher and Eiseman, the more 
general application to unstructured meshes was developed. More discussion is given in the 
section on adaptive triangular meshes. 

In the center of mass formula of Eq. 91, the control over the grid comes from the 
specification of a single weighting quantity that is applied against the triangular elements 
of area. While this approach yields a control over the elemental area distribution, it does 
not exercise all of the available degrees of freedom for such control. Yet one more degree 
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of freedom is available. The full utilization of all degrees of freedom was evident in the 
transition from the Laplace system of Eq. 54 to the Poisson system of Eq. 63. A similar 
transition is a reasonable expectation for the process of mean value relaxation. 

The utilization of all degrees of freedom in mean value relaxation was developed by 
Eiseman (68). As in the Poisson system of Eq. 63 and in the alternating direction methods 
of adaptivity, control was established with a coordinate directional bias that provided the 
required separation into distinct degrees of freedom. In the local stencil of figure 1, the 
directional bias was obtained by a projection of the movement vector onto the coordinate 
curve through ?;j in the appropriate direction. If w is the weight for the i-direction, then 
the projection is onto the curve from ?;-1,j to ?;+1,j. In the implementation, the transverse 
coordinate curve from to ?;,j+l was used to divide the weights so that first and fourth 
quadrants would pull towards ?i+l,j from ?ij while second and third quadrants would pull 
towards i?i-l,j from ?;,. On each side of the transverse coordinate curve, a center of mass 
was computed and then projected onto the appropriate segment from ?;j. Denoting the 
projected distances by d+ and d-  for the positive and negative i-directions from ?;,, the 
new position along the curve is given by 

d =  ~ + d +  + w - ( - d - )  
w+ + w- 

where 

w+ = W l + W 4  

w- = w2+ws. 

Since the construction is centered at  ?;,, the sign of d gives the direction of movement: 
negative is towards ?;-l,j, while positive is towards ?i+l,j. In a similar manner, a second 
weight m is employed for the j-direction and a similar distance is determined along that 
direction. The signs of the two distances then determine the quadrant which contains the 
new position. That new position is determined by interpolation. 

In the original form, Eiseman (68) considered a bilinear interpolation that also included 
the diametrically opposite point to ?;j. In a further study, Schwartz and Connett (m) 
and Connett, Agarwal, and Schwartz (40) experimentally found that the method became 
unstable when the weights became sufficiently severe. While this led them to consider the 
earlier center of mass form of Eq. 91, it led Eiseman to consider barycentric interpolation 
in place of the original bilinear interpolation. The intuitive reason was that the asym- 
metric use of diametrically opposite points would be more restrictive on the stability. In 
subsequent tests, the intuition was confirmed: the use of barycentric interpolation led to 
stable results even when the weights had considerable severity. 

Rather than a direct construction of a finite difference formula as in mean-value re- 
laxation, the local volume elements can also be used to form a sum of squares that is 
minimized to produce a grid. Although this is a variational format, Kennon and Du- 
likravich (129,128), and Carcaillet, Kennon and Dulikravich (33,34) pursued this topic by 
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using an optimization technique in place of an Euler equation approach. The primary moti- 
vation for this minimization problem came from previous variational studies (30,29,31,176) 
along with the desire to place a larger constant at  the center location Fij than would have 
come from the traditional use of central differences that would have missed Fi,. 

The basic attractive forces come from distinct sums of squares that are balanced against 
each other. Of the forces, the first one pulls towards an equal volume distribution with 
terms of the form 

(v1 - u2)2 + (212 - us)2 + (us - UJ2 + (u4 - (93) 

for each point Fij. The second one pulls towards an orthogonal grid with terms of the form 

where 

are the successive coordinatewise vectors pointing away from the center point 7ij in the 
stencil of figure 1. Denoting the volume equalization and orthogonality sums by S,, and So 
respectively, Kennon and Dulikravich minimized the linear combination 

to generate or improve a grid. The parameter 0 5 CY 5 1 was chosen to  balance the two 
forces. The inclusion of adaptive forces comes with the inclusion of yet another sum. This 
corresponds with the basic pattern of most variational methods. 

Variational Methods 

The basic pattern of developments with variational methods is to gather the desired at- 
tributes, form a positive pointwise measure of each such attribute, integrate the measures 
over the field, form a positive linear combination of the integrals, and then minimize the 
resultant combination. The minimization process typically follows the standard manipu- 
lations from the calculus of variations (74). This leads to a system of partial differential 
equations known as Euler equations that are then to be solved by the available numerical 
methods for PDE’s. The main attribute in most methods is the attraction to conformality 
and is given by the integrals of Eqs. 55 and 56 in the section on elliptic methods. This 
means that other attributes are balanced against the Laplace system for curvilinear vari- 
ables that was employed by Winslow (B), Thompson, Thames and Mastin (215) and 
others. The main adaptive attribute typically comes in the form of a weighted Jacobian 
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so that the minimized integral by itself would produce an equidistribution of the weight 
over volume elements or powers of them. Along with the attributes of conformality and 
weighted Jacobians, Yanenko et a1 (246) included a Lagrangian attraction for fluid motion 
while Brackbill and Saltzman (30) included an orthogonality attraction for an improved 
grid structure. The orthogonality attraction came from integrals of squared cross metrics. 
In two-dimensions, these were either (g12)2 or (g'2)2. With the motivation from the use 
of orthogonality in Brackbill and Saltzman, Kennon and Dulikravich (129) pursued the 

splines, Kreis, Thames and Hassan (132) considered scaling problems, and Steinberg and 
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finite volume approach discussed earlier, Saunders (179) examined a tensor product of B- 

Roache (207) developed a variant with reference grids. 

Rather than employ the attraction to the preferred Laplace system for elliptic grid 
generation, Morice (m), Oskam and Huizing (m), and Steinberg and Roache (m) used 
attraction towards the Laplace system for locations in physical space. While this provides 
conformal smoothness, this is not as robust as the preferred system: it does however offer 
some simplicity. The main insurance against grid folding then falls upon the volume control 
or the permission of boundary point motion. Steinberg and Roache (m) favor volume 
contr.01 while Morice (150) and Oskam and Huizing (160) rely primarily upon boundary 
point motion. 

1 
i 
I 

I 
The idea of reference grids employed by Steinberg and Roache (207) is the same as 

that employed earlier by Steger and Chaussee (204) in their development of hyperbolic 
methods. The use, however, is more extensive in that various properties are extracted 
from the reference grids. They appear essentially in the form of multiplicative factors 
applied to the standard format of the other investigators. These factors are weights that 
give appropriate ratios between the current desired grid and the known reference grid. A 

might not be obtained when the number of available degrees of freedom is exceeded. 

~ 

1 

note of caution to be observed in the extraction of properties is that a desired attribute I 
1 

A somewhat general development of the variational methods is given in the text by 
Thompson, Warsi, and Mastin (z). This was subsequently implemented in a large pro- 
gram. In one-dimension, earlier studies were given by Gough, Spiegel, and Toomre (105) 
and by Pierson and Kutler (163). Also, a study of temporal smoothness was developed by 
Bell and Shubin (a). In the multidimensional context, a study for systematically deal- 
ing with the inherent complexity of variational methods was performed by Steinberg and 
Roache (173,206) who proposed appropriate symbolic manipulation methods. 

ADAPTIVE TRIANGULAR MESHES 

In contrast to adaptive mesh strategies on curvilinear grids, general connectivity meshes 
offer simplicity and uniformity at the expense of a more complicated data structure. Dy- 
namically resolving a flowfield is accomplished in one of two ways on both types of grids. 
Nodes can be added or deleted, or nodes can be displaced towards regions where resolu- 
tion is required. Some schemes incorporate both options. Both node movement and grid 
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enrichment (or depletion) become ill-suited to curvilinear grid structures as the degree 
of adaptivity increases. When moving nodes on a curvilinear grid, smoothness must be 
maintained for the coordinate transformation, and therefore, the node movement must be 
executed rather carefully. Furthermore, since the grid connectivity is fixed, some effort is 
required there to prevent the cells from distorting beyond the acceptable limit for a given 
numerical procedure. Rezoning procedures are a common remedy and permit a regridding 
of the domain, but are inherently dissipative. Modification of the total number of nodes 
on a structured grid presents one of two difficulties. If entire grid lines are simply added 
to the mesh, the increased resolution is extended into regions where it may not be needed, 
thereby unnecessarily increasing execution time and memory usage. A solution is to lo- 
cally imbbed submeshes in regions where resolution is desired. Dangling grid lines at the 
boundaries typically arise and require specialized algorithms to be developed to properly 
transfer information between the fine and the coarser meshes (20). Conceptually, these 
difficulties are partially removed when the grid is unstructured. Once a library of low level 
routines is established to add, delete and move nodes, and to appropriately restructure 
the grid, adapting a triangular grid to a specified flowfield is relatively straightforward. 
Restructuring a triangular grid is a dynamic process which only involves local changes to 
the connectivity of the mesh. For example, the common edge of two adjacent triangles, 
viewed as the diagonal of the quadrilateral they form, can be removed and replaced by the 
quadrilateral’s second diagonal according to some appropriate restructuring criteria. Sim- 
ple restructuring schemes may also be dissipative if interpolation procedures are involved. 
This typically occurs when variables are stored at  triangle centroids. However the grid 
is usually only affected in local regions. Restructuring occurs in regions where nodes are 
either added or subtracted. In the former case the resolution is sufficiently fine to remain 
unaffected by the dissipation, and in the latter, the structure of the flow is low enough to 
be unaffected. 

Adaptive strategies on unstructured meshes have been pursued in several directions, the 
first of which comes from Lagrangian hydrodynamic simulations that are as free as possible 
from a rigid mesh structure. Free-Lagrangian methods, pioneered by the work of Crow- 
ley (42) on incompressible flows, represent the fluid by Lagrangian fluid particles which are 
carried with the convective velocity. These methods are particularly well-suited for prob- 
lems with fluid interfaces, high shear regions, hydrodynamic instabilities, jet formation, 
and bubble collapse. The connectivity pattern between the particles is dynamically ad- 
justed every several time steps to preserve a well-structured grid. As explained by (79,81), 
the optimal triangle shape based on standard truncation analysis is equilateral. As is the 
case with structured grids, flow variables can be stored at nodal points, cell centers or on 
cell edges. 

A node-centered formulation permits grid restructuring without diffusion, since only 
triangle edges are reconnected while leaving the node positions fixed. Therefore the values 
of the flow variables remain unchanged. One disadvantage of this approach manifests itself 
when modeling material interfaces. In these cases it is not clear what interpretation to 
give interface nodes. This dilemma is removed in a zone-centered formulation. In this 
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case, the restructuring algorithms must insure that edges remain aligned with the material 
interfaces. Although restructuring in regions of high flow gradients can introduce diffusion, 
these effects are localized to the restructured areas. 

Among the restructuring algorithms proposed by Crowley are merging operations where 
two adjacent nodes are combined into a single node. While a complicated process in the 
context of pure triangular grids (since triangles are dynamically formed within a mesh 
containing quadrilaterals), it is suitable for Crowley’s mixed cell approach. Problems with 
mixed cells not present in pure triangular meshes is that of bowtie or boomerang effects. 
These occur when the mesh movement creates non-convex quadrilaterals. Removal of 
these effects is accomplished through more sophisticated reconnection algorithms. De- 
tails of Crowley’s reconnection algorithms are provided in (a). Fritts (88) has developed 
Free-Lagrangian algorithms on unstructured triangular grids, and has studied a wide va- 
riety of physical problems. Among others are the Kelvin-Helmoltz instability (a), the 
stability of free-surface waves (a), and combustion modeling (87). Three-dimensional 
Free-Lagrangian algorithms are still rather few. Trease (230) discusses detailed issues 
of Voronoi-cell based three-dimensional Free-Lagrangian met hods. His code is an out- 
growth of his 2-D Free-Lagrange code (229). A survey of two- and three- dimensional 
Free-Lagrangian algorithms is presented in (89). 

An intermediate approach is adopted in the work of Erlebacher (79). The numerical 
scheme is Eulerian in the sense that the movement of the mesh points is unrelated to the 
convection velocity. Rather, the concept of monitor surface discussed above is a fundamen- 
tal component of the algorithm. In its most basic form the strategy consists of assigning 
a positive mass density to each triangle. The mass density (also called weight) is a linear 
combination of operators acting on the monitor surface. For triangular grids, the weight 
function is defined by 

The term multiplied by p is an approximation to mean curvature. After multiplication of 
the mass density assigned to each individual triangle by its area, one obtains the equivalent 
of a sheet of variable mass. If a node c is surrounded by n nodes, old node positions 
are updated by the center of mass formula 

where w; labels the weight associated with the ith triangle adjacent to node c.  The area of 
triangle i is A;. In comparison with the structured developments, this is the extension of 
Eq. 91. In the absence of curvature and gradient effects, it is clear that the node c becomes 
the centroid of the polygon formed by its adjacent nodes. As the weight becomes unevenly 
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distributed, the movement is biased towards regions of greater pull. The algorithm is 
simple and readily vectorizable on today’s supercomputers. Nodes may be added, but not 
subtracted. As with the Free-Lagrange algorithms, it is necessary to monitor the distortion 
of the grid and locally restructure it if necessary. Methods similar to those used by Fritts 
and Boris (86) have been adopted. Further discussion can be found in Erlebacher and 
Eiseman (a and in Eiseman (70). 

Adaptive methods in the context of finite-elements are also gaining in popularity. Miller 
et al. (146) and Miller (147) have developed specialized methods based on a finite-element 
formulation to treat sharp gradients and shocks. Briefly, node positions as well as function 
values are solved for in a unified finite-element treatment. A two dimensional Stefan 
problem was solved with this approach. A water-ice interface was followed in time, but 
very long and thin triangles were generated a t  the interface between two regions of relative 
uniformity. The fundamental deficiency was a lack of appropriate buffer regions to slow 
down the transition from very large triangles to very small ones. 

Lijhner et. al. (134) have developed very efficient techniques to solve the steady state 
compressible Euler equations for high speed flows in two dimensions. Their strategy is to 
add and subtract nodes from the grid which is periodically refined. Mesh points remain 
fixed throughout the calculation. Specialized routines can distinguish between high gra- 
dients and shocks. This distinction is necessary to prevent unnecessary clustering along 
shock interfaces. If proper care is not taken, length scales decrease to zero in the presence 
of shock interfaces, and the standard resolution criteria is never satisfied. To increase the 
efficiency of their method, multigrid algorithms have been developed which are not based 
on a sequence of nested grids. Rather, the fine mesh is coarsened by regenerating the grid 
with a reduced number of nodes. Information is transferred from one grid to the next by 
a series of interpolation formulae (135). The algorithms are extremely robust and fully 
vectorized. With the use of hardware gather and scatter routines, solutions to complicated 
two-dimensional problems are obtained in 10-15 min. on a Cray-XMP. 

Holmes and Lamson (121) solve the two-dimensional steady state Euler equations on 
an adaptive mesh. Grid refinement is solely accomplished via node addition. The tran- 
sonic equations are solved adaptively by Palmerio and Dervieux (161). They use a spring 
analogy. Each edge of the grid is replaced by a spring whose stiffness is a function of the 
flow properties. Boundary nodes may be either moved or remain fixed. The resulting two- 
dimensional grids are well-structured, and can track shocks. However, special precautions 
must be taken to prevent the cell sizes from decreasing below a critical size due to strong 
flow structures. 

Adaptive algorithms on unstructured grids are not restricted to triangular and mixed- 
cell type grids. Starting from a regular two-dimensional Cartesian mesh, Dannenhoffer 
and Baron (44) track the salient variables and refine individual cells as required to satisfy 
specified tolerance levels. 

TEMPORAL FORMS FOR ADAPTIVITY 
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When the temporal accuracy of a simulation is to be enhanced, the evolving grid must 
closely follow the trajectories of the severe disturbances in the solution. This is in contrast 
to the situation where a steady state solution is sought and the grid there eventually 
settles down into a virtually final configuration. The primary concern in the development 
of an accurate temporal resolution is that the severe disturbances will not escape from 
their resolution during the course of any time step in the numerical simulation. With 
this concern in mind, a number of investigators have felt that the grid equations should 
be formulated directly for grid point velocities rather than positions. Then, a t  least, the 

full implicit level or the level halfway between explicit and fully implicit. Clearly, the 
use of such velocities should be an improvement over using backward differences in time 
to estimate the same velocities from a grid point movement scheme that only produces 
pointwise locations from currently available data. From the viewpoint of grid velocities, 
the schemes which produce only pointwise locations can be referred to as static rather than 
dynamic (eg. note Hyman and Naughton (122)). A typical difference is that static methods 
depend upon data at  only one instant of time while dynamic methods often depend upon 
data over an interval of time. With the advantage of directly obtaining grid velocities, the 
dynamic methods also possess the disadvantage of a more difficult control over coordinate 
nonsingularity. This is because grid point locations must ultimately be determined, and if 
some velocities are too large or change too quickly, then points could be either overrun or 
artificially encircled: correspondingly, there would be grid overlap or excessive skewness. 

I grid velocities would follow an analytical model for any chosen time level such as the 

Among the dynamic grid velocity methods, there are methods proposed by Winkler, 

Hindman and Spencer (m), Rai and Anderson (166,167,3), Greenberg (m), Piva, Di- 
Carlo, Favini, and Gui (m), Ghia, Ghia and Shin (99), and Harten and Hyman (109). 
Winkler, Mihalas, and Norman (244) develop a scheme based upon the equidistribution 
of weights over grid point indices. Nonsingularity in their one dimensional context is pro- 
vided primarily by creating singularity barriers which kept the points from interchanging 
positions. This comes from equidistributing the cell eccentricity. In addition, they con- 
sider asymmetric time filtering to preserve resolution for the rapid reappearance of salient 
phenomena such as in shock wave reflections. The chief mechanism is a diffusion coeffi- 
cient arising from a constructed factor on the time derivative. The factor contains enough 
residual memory to slow down the diffusion of the resolution just enough to allow for 
the rapid reappearance of small structures. 0 therwise, resolution would have to rapidly 
disappear and then reappear, thus causing unnecessary numerical errors because of the 
temporal jerkiness. In comparison, Bell and Shubin (17) remove temporal jerkiness by 
balancing the weight function equidistribution against the magnitudes of time derivatives 
in the variational format. Their balancing coefficient was, however, only a constant and 
thus did not contain the residual memory as in the case of Winkler, Mihalas and Norman. 

, Mihalas and Norman (u), Bell and Shubin (l7), Hindman, Kutler and Anderson (m), 

In another direction, Hindman and Spencer (118) converted the Poisson system of 
Eq. 63 into a grid velocity equation by formal temporal differentiation of the original 
equation. In addition, they also explored the use of equidistributed weight functions. 
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They found the same relationship to the forcing function in one-dimension that Anderson 
and S teinbrenner (5J) eventually discovered in two-dimensions. 

Identifications with alternate metaphors, such as the earlier spring analogy, have also 
provided the inspiration for several methods. In this spirit, Rai and Anderson (166,167) 
developed an analogy to a gravitational potential while Greenberg (106) related the grid 
movement to chemical reactions. The gravitational forces decayed according to an inverse 
power law for distances in the space of grid point indices. Force magnitudes and directions 
at each grid point came from the deviation of the error indicator from its average value. 
In a similar manner, the chemical reaction rates contained the adaptive data. 

An even more direct use of physically based motivation occurred in the somewhat 
parallel studies of Piva et al. (164) and Ghia, Ghia and Shin (99). There, idealized two- 
dimensional momentum equations for viscous flow were transformed into diffusion equa- 
tions. This was done because diffusion equations are easier to solve. The process basically 
amounts to a remuvd of the cer;-;zctivz t e r m  ~ h i c h  wc?:!d appear when the equations 
are expressed in terms of an arbitrary time dependent coordinate system. The two result- 
ing equations are the grid movement equations which assume the Poisson format. In a 
sense, this is similar to the pursuit of Hindman and Spencer (m), although there is no 
consideration of equidistribution. 

In addition to the static methods based upon the previous solution step and the dynamic 
grid velocity methods, there are methods which impose a grid distribution mechanism at 
some implicit level without the direct determination of a grid velocity. This includes the 
methods such as that employed by White (241) and that employed with the moving finite- 
element method investigated by Miller and Miller (=), Miller (=), Miller (-, Gelinas, 
DOSS, and Miller (95), Herbst, Mitchell, and Schoobie (m), Baines (s), and Baines and 
Wathen (13). In the case of White (241) and others like it, the grid equation appears 
as a time-dependent constraint which is applied in an implicit coupled manner with the 
evolutionary physical equation. In the moving finite-element method, the coupling and the 
grid evolution comes directly out of the formal finite-element process when it is directly 
extended to include grid point motion. 

In contrast to the dynamic or implicit temporal treatment of grid point motion, the 
static methods offer a great amount of simplicity, efficiency and spatial control at the 
expense of loosing the accurate tracking of severe disturbances. The corrective tracking 
measures taken are typically to either use a smaller time step or preferably to  require a 
broader band of resolution. With the broader band, the idea is that the disturbance will 
still appear in the high resolution region at the end of the time step. Methods which lead 
to such breadth typically come from grid smoothness forces and from curvature clustering 
on the monitor surface. 

The static methods also tend to offer more numerical stability for the class of problems 
where the broad banded resolution provides an adequate buffer for the containment of 
the disturbance. In the application, either the grid velocities are employed with backward 
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differences in time or the solution is simply interpolated onto the new grid point locations 
in what is known as a remapping step. While both are commonly used, the remapping 
approach is more prevalent, particularly in cases where the steady state convergence is a 
prime element. In the steady state cases, the movement may start with direct interlacing 
between the PDE-solver and the grid generator and then progress to fewer and fewer 
applications of grid movement until movement is stopped altogether. 

With trapezoidal finite-elements in one space dimension and time, Davis and Fla- 
herty (46) and Flaherty et al. (82) employed a static grid generation scheme for a PDE- 
solver that was well-adjusted for temporal evolution. The static grid was generated from 
data at  the explicit time level n for use at  the implicit time level n + 1. In a sense, this 
represents a zeroth order forward extrapolation of the grid in time. Because of the extrapo- 
lation, the tracking possibilities are absent. In contrast, Sanz-Serna and Christie (178) and 
Blom, Sanz-Serna and Verwer (a) consider a predictor step for the application of static 
grid generation. The essence of their idea is to apply the PDE-solver to get provisional 
solution values at  n+ 1 and from those values to generate the grid at the implicit level n+ 1. 
Then with the grid determined at n + 1, they get the actual solution at n + 1. Although 
their ,development was one-dimensional in space, the idea of first predicting the implicit 
level adaptive data is attractive for any application in any number of spatial dimensions. 
The extra cost only amounts to an extra application of the PDE-solver. The benefits 
are the capability to accurately track rapidly moving severe disturbances by using static 
adaptive grid generators which are known to produce higher quality and more versatile 
grids. 

CONCLUSION 

In the course of our discussion, we have attempted to gain some perspective on the topic 
of grid generation. Rather than merely list and describe a sequence of topics in a loosely 
related fashion, we have stressed the various unifying concepts and have thereby hoped 
to highlight the whole topic by explaining the motivating factors behind the individual 
contributions and how these contributions came about. 

The basic need for grid generation came from the geometric and topological compli- 
cations that are common with the physical processes which occur in the design of many 
useful objects. The complications can arise either in the spatial region or in the physical 
properties. With the desire to numerically simulate such useful processes, grid generation 
then became essential. 

To provide the general setting for grid generation, the fundamental topological issues 
were considered and were approached with various connectivity patterns for the points 
that discretely covered the field. In broad terms, these were split between structured and 
unstructured grids. Next, the principal grid generation techniques were discussed. These 
are split basically into algebraic methods and partial differential equation methods. In the 
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I interactive. 
application of the methods, the setting was seen to vary from completely automatic to 

t To address the problems with severe variations in a solution, the topic of adaptive 
~ 

~ 1 structured developments. 

grids was developed as a natural progression of the earlier methods. Although this was 
done for both structured and unstructured connectivity patterns, the emphasis was on the 
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