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ABSTRACT

Ahigher ordermesh curvingmethod is developedwhich uses information from the geometry

to determine the appropriate curvature of edges in the interior of the mesh. Edges are represented

using four point Bézier curves to determine the positions of higher order edge points. Higher order

face and volume points are positioned using the basis functions for serendipity face and volume

elements. Parameters are defined which allow user specified control over element quality and the

propagation of curvature in the mesh. Curved higher order meshes are shown for test cases in both

two and three dimensions.
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CHAPTER 1

INTRODUCTION

High-order finite element methods have been shown to provide many advantages in terms

of accuracy and efficiency. However, a piece-wise linear approximation of curved geometries

can introduce artificial numerical errors into the solution [1–3]. Thus it is necessary to resolve

the geometry using curved elements in order to attain the high levels of accuracy promised by

high-order finite element methods [4, 5].

In the case of inviscid meshes, where the wall spacing is large compared to the boundary

deformation, it is possible to curve the boundary without inverting the element or causing severe

degradation to element quality. However, for viscous meshes, where the wall spacing is much

smaller compared to the boundary deformation, simply deforming the boundary edge can result in

the edge inverting the boundary element and crossing over several layers of interior elements, as

shown in figure 1.1a. In this situation, curvature must be applied to at least the layers that were

crossed, but possibly to additional layers in order to increase element quality throughout the mesh.

Figure 1.1b shows the minimal amount of curving required to produce elements with positive areas,

however the third layer still contains nearly inverted elements. Propagating the curvature further

into the interior, as shown in figure 1.1c, produces much better quality elements throughout the

entire mesh. The challenge for high-order curvilinear meshing, therefore, is to adequately represent
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increasingly complex geometries while also maintaining element validity and maximizing element

quality.

(a) Invalid (b) Nearly Invalid

(c) Valid

Figure 1.1 Visualization of boundary conforming anisotropic elements

1.1 Review of Finite Element Method

The finite element method belongs to a family of methods called weighted-residual methods

which operate on the weak form of a differential equation. Consider the following differential

equation in one dimension:

−
d
dx

(
a

du
dx

)
+ cu − f (x) = 0 (1.1)
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Multiplying equation 1.1 by a weight function w and integrating over the domain gives

∫
Ω

w

[
−

d
dx

(
a

du
dx

)
+ cu − f

]
dx = 0 (1.2)

where Ω is the computational domain. Then integration by parts can be used to transfer the

derivatives off of a du
dx and onto w producing the following equation

∫
Ω

[
a
∂w

∂x
du
dx
+ cwu − w f

]
dx −

∮
Γ

wa
du
dx

ds = 0 (1.3)

where Γ is the boundary of Ω. This is the weak form of equation 1.1.

In the finite element method, the computational domain is then subdivided into simpler,

smaller elements. This allows simple interpolation functions to be used to approximate the variable

u over an element as

u(x) =
n∑

i=1
φi (x)ui (1.4)

where φi (x) are the interpolation (basis) functions for the element and ui are the values of u at the

n nodes in the element. Substituting equation 1.4 into 1.3 and evaluating for an element in the

domain gives

∫ xb

xa


a

dw
dx

*.
,

n∑
j=1

u jφ j (x)+/
-
+ cw *.

,

n∑
j=1

u jφ j (x)+/
-
− w f


dx −

[
wa

du
dx

] xb

xa

i = 0 (1.5)
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In the Galerkin formulation, w is taken to be φ and so the final form is

n∑
j=1

Ki ju j − fi −Qi = 0 (1.6)

where

Ki j =

∫ xb

xa

(
a

dφi

dx
dφ j

dx
+ cφiφ j

)
dx (1.7)

fi =

∫ xb

xa
f φidx (1.8)

Qi = a
du
dx

�����xi
(1.9)

and i = 1, 2, · · · , n. The primary and secondary variables are u and Q, respectively. This forms an

n × n system of equations for each element which are then combined to form a global system of

equations.

Since u is approximated over the elements, the accuracy of that approximation, and thus the

accuracy of the computational model, is determined by the order of the approximation polynomial,

usually denoted as p. The key point is to select the number and location of the nodes in the element

so that the geometry of the element is uniquely defined and continuity between elements is easily

imposed [6]. For instance, a linear polynomial in two dimensions has the form

u(x, y) = c0 + c1x + c2 y (1.10)
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which has 3 undetermined coefficients. Therefore, if we desire a linear approximation of u over

an element, we need at least 3 unique points to determine the 3 coefficients. Similarly, a quadratic

polynomial has the form

u(x, y) = c0 + c1x + c2 y + c3x2 + c4x y + c5 y
2 (1.11)

which has 6 coefficients, so a quadratic approximation over an element requires 6 unique points.

Finite elements are typically referred to by the order of the approximation polynomial. For example

a 3 point triangle and a 4 point quadrilateral are considered p1 elements because they can uniquely

determine a polynomial of at most degree 1. A 6 point triangle and a 9 point quadrilateral can

uniquely determine a polynomial of degree 2 and so are p2 elements. Figure 1.2 shows the point

locations and ordering of the standard p2 triangle and quadrilateral reference elements.

(a) (b)

Figure 1.2 Visualization of 2D p2 elements
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Since the interior points of the higher order finite elements do not contribute to the connec-

tivity between elements, it is sometimes desirable to derive elements without interior points. These

types of elements are called serendipity elements. For example, the p2 quadrilateral contains 9

points but only requires 6 to determine the polynomial coefficients. The interior point is therefore

not needed for polynomial completeness and so can be removed. Figure 1.3 shows the resulting

serendipity quadrilateral.

Figure 1.3 Visualization of a p2 serendipity quadrilateral

Generally, the integrals in equations 1.7 and 1.8 are evaluated using a Gauss-Legendre

quadrature rule which allows an integral to be expressed as

∫ b

a
F (x)dx =

∫ 1

−1
F̂ (ξ)dξ ≈

r∑
I=1

F (ξI )wI (1.12)

where wI are the Gauss weights, ξI are the Gauss points, F̂ = F (x(ξ))J (ξ) is the transformed

integrand, and J is the Jacobian of the transformation between x and ξ. Due to this required change
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of variable, it is customary to define the basis functions for elements in terms of a reference element

that uses the natural coordinate ξ ∈ [−1, 1].

In one dimension the transformation between physical coordinate x and natural coordinate

ξ is dx = Jdξ. In two and three dimensions the transformation takes the form of a matrix [J],

called the Jacobian matrix of transformation. This matrix in 2D is given by

[J] =



∂x
∂ξ

∂ y
∂ξ

∂x
∂η

∂ y
∂η



(1.13)

and the transformation is defined as

*....
,

∂φi
∂x

∂φi
∂ y

+////
-

= [J]−1
*....
,

∂φi
∂ξ

∂φi
∂η

+////
-

(1.14)

In order to compute derivatives of the basis functions φi with respect to physical coordinates, it is

necessary and sufficient that [J] be nonsingular. In other words the determinant of the Jacobian

matrix must be J = det(J ) > 0 at every point (ξ, η) in the element’s domain. This measure J is

referred to as the Jacobian.

1.2 Current Curvilinear Meshing Techniques

The classification of curvilinear meshing techniques has traditionally been separated into

direct and indirect methods [4]. The direct approach seeks to build a curvilinear high-order mesh

directly from the CAD boundary representation whereas the indirect approach seeks to elevate

and untangle a linear mesh generated using pre-existing meshing and smoothing technologies.
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In general, creating valid elements of arbitrary order directly from CAD is very computationally

intensive, so even the direct methods often generate and elevate linear elements. Regardless

of which approach is used, every curvilinear meshing technique requires a way of identifying and

correcting invalid elements. The current curvilinear meshing techniques can be loosely categorized

into two main groups based on the method of correcting invalid elements: local mesh modification

and energy models.

1.2.1 Local Mesh Modification

Dey, O’Bara, and Shephard propose a technique for use in solid model applications in [4]

which uses localmeshmodification tools such as edge/face swapping, splitting, collapsing, and node

relocation to correct invalid elements. If these operations fail to fix the invalidity, they attempt to use

an analytically defined deformation to curve interior edges/faces before resorting to remeshing the

localized region. Although this method proved useful, the prescribed deformation was defined for

quadratic elements only, making extension to arbitrary orders difficult. Additionally, this method is

not very efficient in regions of high curvature where the curvature must be propagated further into

the interior of the mesh.

Luo et al. extended this method in two main ways: first, layers of anisotropic elements are

extruded off of the geometry in regions that are likely to contain solution singularities; second, mesh

elements are defined geometrically using Bézier functions [7, 8]. The first point allows for better

resolution of the solution and thus more complex geometries. The second point allows for elevation

to arbitrary orders and for better geometry approximation. The Bézier definition of elements also

provides a useful means of propagating curvature in the anisotropic regions: the control points
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of all elements in a stack of anisotropic elements are moved based on the movement of the base

element’s control points. Invalidities elsewhere in the mesh are corrected as before using mesh

modification tools. Sahni, Luo, Jansen and Shephard extended this idea for a full boundary layer

of anisotropic elements for use in viscous flow simulations [9].

Sherwin and Peiró developed an automatic mesh generation routine which extrudes large

prismatic elements off the boundary that encapsulate the boundary layer and uses tetrahedra in the

remainder of the mesh [10]. These large prisms are then subdivided into either smaller prisms or

tetrahedra to form a valid curved boundary layer. Moxey, Green, Sherwin, and Peiró describe in

detail their procedure of subdividing the large prisms by using modal basis functions in [11]. "The

main challenge of this technique is that the prismatic layer be subdivided without affecting the rest

of the mesh" [11]. This limitation was alleviated in [12] by using a linear elasticity smoothing

technique to smooth the transition between the boundary layer and the isotropic tetrahedra region.

1.2.2 Energy Models

This group of methods can loosely be thought of as minimizing some measure of mesh

energy or distortion. Winslow smoothing seeks to impose characteristics of a smooth computa-

tional space onto physical space through a transformation between the two spaces. Optimization

smoothing techniques operate by minimizing a function based on elemental quality. The spring and

solid mechanics analogies compare the mesh to a physical analog and use the appropriate physical

equations to apply deformation.
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1.2.2.1 Winslow

The Winslow equations are second-order nonlinear elliptic partial differential equations

which are derived by applying the Laplacian operator on physical space and recasting in compu-

tational space, creating a mapping between computational and physical space which imposes the

smoothness of the computational mesh on the physical mesh [13]. Fortunato and Persson developed

a formulation of the Winslow equations for use with high-order curvilinear elements where a copy

of the undeformed higher order mesh is used as the computational mesh [3]. After projecting

the higher order surface nodes onto the geometry, the Winslow equations are solved to determine

locations for interior points. Since the undeformed higher order mesh is used as the computational

mesh, the original spacing and element quality are preserved and only elements near regions of

curvature are changed. The discrete form of the Winslow equations are not guaranteed to produce

a valid mapping between compuational and physical spaces, however, it does produce good quality

meshes when the mesh resolution is sufficient [3].

1.2.2.2 Optimization Smoothing

Toulorge, Geuzaine, Remacle, and Lambrechts use an optimization method in [14] that

has an objective function that minimizes the distance between the straight-sided mesh and curved

mesh and also uses moving log barriers to ensure that the Jacobians remain in an optimal range.

Geuzaine et al. in [15] propose a method which couples this optimization method with a curvature

propagation technique to fix invalidities in the boundary layer.

Gargallo-Peiró, Roca, Peraire, and Sarrate propose an optimization method based on a

regularized measure of the mesh distortion relative to the linear mesh [2, 16, 17]. Ruiz-Gironés,
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Sarrate, and Roca combine this distortion measure with a geometric L2 disparity measure in [18].

Although the resulting technique is non-interpolative, the high-order mesh does converge to the

actual geometry in the L2 disparity sense and the technique can be applied to real geometries that

contain gaps.

Karman et al. in [19] apply weighted condition number (WCN) optimization smoothing,

which was originally developed for smoothing linear meshes, to the problem of higher order

meshing. Their technique uses the unperturbed higher order mesh to compute the weight matrices

for elements and accomplishes the smoothing by breaking the higher order elements into linear

sub-elements and enforcing the shapes of the linear sub-elements.

1.2.2.3 Spring Analogy

Liu proposes an automatic meshing technique that first generates a valid linear mesh by

using a spring analogy to smooth out discontinuities at each extruding layer, then uses a vector-

adding deformation method to propagate curvature from the base surface elements up through the

pipe-like structure of the mesh [20, 21]. It is important to note that Liu’s method does not consist

of a smoothing step after the elevation to higher order and although the method is very likely to

produce valid curved elements, it is not guaranteed.

1.2.2.4 Solid Mechanics Analogy

The solid mechanics analogy methods consider the mesh to be an elastic solid where the

boundary deformations are prescribed displacements. The elasticity equations are then solved

for the displacements of interior points in the mesh. Although linear elasticity performs well for
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small boundary deformations, it does not produce valid meshes for sufficiently large boundary

deformations.

Persson and Peraire employ a nonlinear elasticity model with an adaptive Newton-Krylov

solver, which breaks up larger deformations into incremental steps if necessary [22]. Xie, Sevilla,

Hassan, and Morgan take advantage of the inherent structure of viscous meshes by employing

linear elasticity in a layer-by-layer approach within the boundary layer, significantly reducing the

problem to only those areas that need curvature [5]. Moxey et al. add thermal stress terms to the

linear elasticity model to allow for larger deformations and better control of cell quality than classic

linear elasticity [23]. Although this approach can handle larger deformations than the classic linear

elasticity approach, sufficiently large deformationsmust still be broken up and applied incrementally

to ensure mesh validity.

Poya, Sevilla, and Gil developed an approach in [24] which unifies all of the solid mechanics

approaches. They then propose a new technique, called the Consistent Incrementally Linearised

(CIL) technique, which updates both the stresses and the geometry at each increment level unlike

other incremental approaches (denoted ILE) which only update the geometry. Poya et al. then

performed a comparison of the classic linear elastic, ILE, CIL, and nonlinear approaches. They

concluded that the linearized approaches (ILE and CIL) produce meshes of similar quality and are

more robust and less computationally intensive than the nonlinear approach, which produces poor

quality meshes for higher orders of approximation.

Turner et al. propose a variational framework in [25] which optimizes curvilinear meshes by

minimizing an energy functional and show that many of these energy models can be reformulated to

serve as the energy functional in this framework. They then proceed to compare the performance and
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quality of optimization using linear elasticity, Lagrangian nonlinear elasticity, Winslow smoothing,

and distortion functionals in both two and three-dimensional cases with fixed boundary nodes.

In all cases, the elasticity methods produced the best quality meshes, with respect to the scaled

Jacobian measure, whereas the distortion and Winslow methods had faster convergence rates.

1.2.3 Summary

The local mesh modification techniques are quick and apply changes to a very localized

portion of the mesh, however there are situations in which these techniques alone fail to correct

the invalidities. The various curvature propagation techniques are very efficient and can correct

invalidities within the boundary layer, however they must be coupled with some other technique

to correct invalidities at the interface of the boundary layer and the isotropic region. Additionally,

the curvature propagation techniques require knowledge of the structure of the boundary layer

in order to be implemented efficiently, and thus are best suited to an automatic mesh generation

framework but not well suited to a posteriori framework, which starts from a valid linear mesh.

The energy model techniques are more robust, can be used in either a mesh generation framework

or an a posteriori framework, and can be applied to the entire mesh or to a subregion of the mesh.

However, many of the energy model techniques require a solution to a system of equations, which

can be computationally expensive when applied to large domains.
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CHAPTER 2

METHODOLOGY

The method of curvature extrapolation presented here is a mesh curving method based on

extending the idea presented by Luo et al. in [7]. In their work, elements in the mesh are defined

geometrically by Bézier functions and curvature is propagated through the anisotropic layers based

on the movement of the base element’s control points. Rather than propagating curvature through

the mesh, the curvature extrapolation method proposed here uses information from the geometry

to explicitly determine the ideal position for the Bézier control points and can be applied to an

element anywhere in the mesh. Additionally, this technique seeks to combine the steps of elevation

and curving into one using the following procedure:

1. For every edge in the mesh:

(a) Project the endpoints onto the nearest geometry.

(b) Evaluate the curvature, tangent and normal at the projection locations.

(c) Extrapolate the curvature, tangent and normal information out to the endpoints.

(d) Represent the edge using a curve which interpolates the curvature and tangent.

(e) Use the interpolating curve to place higher order points along the edge.

2. For all faces in the mesh, use bounding edges to place interior higher order face points.
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3. For all volumes in the mesh, use bounding faces to place interior higher order volume points.

This chapter will proceed by first discussing the particulars of the geometry representation and the

evaluation of curvature. Then edge, face, and volume elevation will be described in more detail.

This chapter will conclude with a presentation of a curving scheme which produces a user-specified

amount of curving throughout the mesh.

2.1 Geometry

As outlined above, the requirements of the geometry representation for this method are to

have the ability to:

1. Find the nearest point on the geometry to a point in space.

2. Evaluate the curvature, tangent, and normal at a given point on the geometry.

Any geometry representation that meets these two requirements can be used in this method of

mesh curving. For this study, analytic definitions of geometry were used in both two- and three-

dimensions. Additionally, Geode, a geometry API being developed by Pointwise, Inc. [26], was

used in two dimensions to allow for more complicated geometries being tested. The section

will continue with a brief summary of properties of parametric space curves and surfaces, taken

from [27], followed by a discussion about applying these geometric properties to points on the

interior of the mesh.

2.1.1 Evaluation of Tangent, Normal, and Curvature

Consider the geometry as a space curve in two dimensions with parametric representation

p(u). Then intrinsic properties of a curve (unit tangent vector, unit normal vector and Gaussian
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curvature) can be defined in terms of the first and second derivatives of p with respect to u, denoted

as pu and puu, respectively. The the unit tangent vector t̂i is defined as:

t̂i =
pu

i

|pu
i |

(2.1)

where i denotes a specific value of u. The unit normal vector n̂i is defined as:

n̂i =
ki

|ki |
(2.2)

ki = puu
i −

puu
i · p

u
i

|pu
i |

2 pu
i (2.3)

Finally, the Gaussian curvature at a point i along the space curve is defined as

κi =
1
ρi

(2.4)

=
|pu

i × puu
i |

|pu
i |

3 (2.5)

where ρi is the radius of curvature.

Now consider the geometry as a surface in three dimensions with parametric representation

p(u, w). Again, intrinsic properties of a surface can be defined in terms of the derivatives of p with

respect to u and w. The unit normal vector evaluated at a location i on the surface is defined as:

n̂i =
pu

i × pwi
|pu

i × pwi |
(2.6)
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In three dimensions, curvature is a vector rather than a scalar and Gaussian curvature is defined

as κ = κ1κ2 where κ1 and κ2 are the principal normal curvatures. Recall in the procedure outline

at the beginning of this chapter that curvature is applied to the edges of the mesh, regardless of

dimension. Thus it is more beneficial to define the tangent vector and curvature using the geodesic

curve formed by projecting the edge onto the surface p(u, w). This will result in values for the

tangent vector and curvature that are analogous to the 2D definitions and can be accomplished

without actually forming the geodesic curve. The tangent vector, t̂i, is defined as the projection of

the linear edge onto the tangent plane as follows:

ti = e − (e · n̂i) n̂i (2.7)

t̂i =
ti
| | ti | |

(2.8)

where e = p1 − p0 and p0,p1 are the endpoints of the edge. The Gaussian curvature of the

geodesic curve is the normal component of the curvature vector, which can be defined in terms of

the coefficients of the first and second fundamental forms as:

κi =
L

(
du
dt

)2
+ 2M

(
du
dt

dw
dt

)
+ N

(
dw
dt

)2

E
(

du
dt

)2
+ 2F

(
du
dt

dw
dt

)
+ G

(
dw
dt

)2 (2.9)
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where the coefficients of the first fundamental form are

E = pu
i · p

u
i (2.10)

F = pu
i · p

w
i (2.11)

G = pwi · p
w
i (2.12)

and the coefficients of the second fundamental form are

L = puu
i · n̂i (2.13)

M = puw
i · n̂i (2.14)

N = pwwi · n̂i (2.15)

Multiplying both the numerator and denominator of equation 2.9 by dt2

du2 gives

κi =
L + 2M

(
dw
du

)
+ N

(
dw
du

)2

E + 2F
(

dw
du

)
+ G

(
dw
du

)2 (2.16)

Finally, du and dw are the components of t̂i with respect to pu
i and pwi and can be found using

du = t̂i · p
u
i (2.17)

dw = t̂i · p
w
i (2.18)
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2.1.2 Extrapolation of Curvature Information

At this point, the curvature, normal, and tangent have been evaluated at the geometry.

However, the goal is to define the shape of an edge to imitate the behaviour of the section of

geometry it projects to, regardless of the position of the edge. Consider figure 2.1 which shows a

point pi that exists at a distance of d from a circular geometry. Projecting pi onto the geometry

and evaluating the tangent, normal, and curvature gives

Figure 2.1 Diagram showing adjustment of curvature from geometry surface to point in space
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t̂g =

[
1 0 0

]ᵀ
(2.19)

n̂g =

[
0 1 0

]ᵀ
(2.20)

κg =
1
ρg

(2.21)

where ρg is the radius of the circle. Now scale up the geometry such that pi now lies on the

geometry. Evaluating the tangent and normal vectors on the scaled up geometry returns t̂i = t̂g and

n̂i = n̂g. However, the curvature has changed to

κi =
1
ρi
=

1
ρg + d

(2.22)

Thus extrapolation of curvature information into the interior of the mesh can be achieved by setting

the tangent and normal vectors equal to that evaluated at the geometry and adjusting the curvature

based on the distance the point lies from the geometry as shown in equation 2.22.

An additional problem arises when the geometry is represented piecewise by a collection

of curves, as shown in figure 2.2 which depicts a NACA 0012 airfoil broken into 2 pieces, the

top airfoil gt and the bottom airfoil gb which intersect at the leading edge and the trailing edge.

Considering the point at the trailing edge, evaluation of the tangent and normal vectors using gt and

gb gives t̂ t, n̂t and t̂b, n̂b, respectively. Similarly, evaluation of curvature will yield two different

values κt and κb based on which geometry is used. Furthermore, as shown in the figure, extending

the normal vectors out forms a region of discontinuity within which all points will project onto the

intersection of gt and gb. Let pi be a point in this discontinuous region. Then the normal is defined
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as

Figure 2.2 Depiction of piecewise geometry

n̂i =
pi − pg

| |pi − pg | |
(2.23)

where pg is the intersection of gt and gb. Defining n̂i this way produces a smooth transition between

n̂t and n̂b throughout the region. A similar transition can be obtained for the tangent t̂i by taking

n̂i and rotating by π
2 .

Let θ be the angle between n̂t and n̂b and let θt , θb be the angles of n̂i with n̂t and n̂b,

respectively. Then the curvature κi can be found using a weighted average as

κi = wt κt + wbκb (2.24)
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where wt = 1 − θt
θ and wb = 1 − θb

θ . This weighting will return κt if n̂i = n̂t and κb if n̂i = n̂b.

In two dimensions, intersections of geometry curves always occur between only two curves.

However, in three dimensions intersections can occur between any number of curves and surfaces,

meaning that discontinuity exists at both individual points and along curves on the geometry. Due

to this additional difficulty, extension to using 3D piecewise geometries is left to future work.

2.2 Edge Elevation

Recall from the beginning of this chapter that each edge in the mesh is represented by an

interpolating curve whose shape is defined by the nearest geometry entity. This interpolating curve

is then used to place higher order points along the curved edge. The remainder of this section

presents and compares different choices for interpolating curves and then discusses the elevation

procedure for different types of edges in more detail.

2.2.1 Interpolating Curves

Following the conventional notation used in [27], the geometric form of a generic interpo-

lating curve be written as

p(u) =
∑

i

Fi (u)pi (2.25)

where u is the parametric coordinate of the blending functions Fi (u) and pi are geometric coef-

ficients. The geometric form is preferable to other forms because it allows a curve to be defined

in terms of conditions at the endpoints (such as locations, tangents, curvature, torsion, etc.) and

provides a more intuitive means of controlling the shape of the curve.
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The information obtained from the geometry regarding shape are the normal, tangent, and

binormal vectors (usually of unit length) and Gaussian curvature. These will be the conditions

considered for interpolation. Throughout this section, visualizations will be provided for the

different interpolating curves using the example edge endpoints shown in Figure 2.3. Although

many different types of interpolating curves exist, we will consider the three most common:

Lagrange interpolating polynomials, Hermite interpolating polynomials, and Bézier curves.

Figure 2.3 Visualization of interpolation information for an example edge

2.2.1.1 Lagrange Interpolating Polynomials

Given a set a set of n + 1 distinct points x0, x1, . . . , xn and a corresponding set of values

y0, y1, . . . , yn there is a unique polynomial of degree at most n such that p(xi) = yi for 0 ≤ i ≤ n
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[28]. This is the Lagrange polynomial which has the form

pn(x) =
n∑

i=0
Li (x) yi (2.26)

where Li (x) has the property Li (x j ) = δi j and the form

Li (x) =
n∏

j,i, j=0

x − x j

xi − x j
(2.27)

Lagrange polynomials only interpolate the points themselves and since the initial edge has no

interior points, this produces a polynomial of at most degree 1, which gives us back the linear edge,

as shown in Figure 2.4. We will instead consider other interpolating polynomials.

Figure 2.4 Visualization of the Lagrange interpolating polynomial for the example edge, interpo-
lated value are shown in red
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2.2.1.2 Hermite Interpolating Polynomials

Hermite polynomials interpolate both the coordinates and the derivatives at the control

points. Given an edge with two endpoints p0 and p1 and corresponding tangents t0 and t1, the

Hermite interpolation is defined by [27]

p(u) = (2u3 − 3u2 + 1)p0 + (−2u3 + 3u2)p1 + (u3 − 2u2 + u) t0 + (u3 − u2) t1 (2.28)

It is important to note that the general form of the Hermite interpolating polynomial does not require

the tangent vectors be normalized. Therefore it is possible to determine the appropriate lengths

which would also interpolate the Gaussian curvature at the end points, however this technique was

not pursued for this study. Figure 2.5 shows the visualization of the resulting Hermite interpolating

curve for the example edge.

Figure 2.5 Visualization of the Hermite interpolating polynomial for the example edge, interpo-
lated values are shown in red
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2.2.1.3 Bézier Curves

Whereas the Lagrange and Hermite interpolating polynomials interpolate a given set of

points and conditions, an alternative approach is to define a curve that can be easily manipulated

which approximates a given set of points [27, 28]. Bézier started with the principle that any point

on a curve segment must be given by a parametric function of the form

p(u) =
n∑

i=0
pi fi (u) (2.29)

where u is the parametric coordinate with the restriction u ∈ [0, 1] and pi represent the n + 1

vertices of a characteristic polygon (also called control points) [27]. He also set forth the following

properties for the blending functions fi (u):

1. The functions must interpolate the first and last vertex points.

2. The tangent at p0 must be given by p1 − p0 and the tangent at pn must be given by pn − pn−1.

This allows for direct control of the tangent.

3. The previous requirementwas also generalized for higher orders, namely that the r th derivative

at an endpoint must be determined by its r neighboring vertices. This allows for control of

the continuity at joints between segments of a composite Bézier curve.

4. The functions fi (u) must be symmetric with respect to u and (1−u). This allows for reversing

the sequence of vertex points without altering the shape of the curve.
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Bézier chose a family of functions known as the Bernstein polynomials to fulfill these properties

[27]. The Bernstein polynomials are given by

Bi,n(u) = C(n, i)ui (1 − u)n−i (2.30)

where C(n, i) = n!
i!(n−i)! . The final form of the Bézier curve is given by

p(u) =
n∑

i=0
pi Bi,n(u) (2.31)

which produces a polynomial of degree n.

Evaluating equations 2.31 for n = 2 produces the following three point curve

p(u) = (1 − u)2p0 + 2u(1 − u)p1 + u2p2 (2.32)

Recall that the normalized tangents are known at the endpoints p0, p2. Therefore, using Bézier’s

second property we have:

t̂0 =
p1 − p0
| |p1 − p0 | |

(2.33)

t̂2 =
p2 − p1
| |p2 − p1 | |

(2.34)

The only choice for p1 which satisfies both conditions is the intersection of the lines defined by

p0 + c0 t̂0 and p2 + c2 t̂2. It is important to note that although the tangents have been interpolated
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at the endpoints, in general this placement of p1 will not interpolate the curvature at the endpoints.

The visualization of this curve for the example edge is shown in Figure 2.6.

Figure 2.6 Visualization of the three point Bézier curve for the example edge, interpolated values
are shown in red

Now consider the four point Bézier curve produced using n = 3 in equation 2.31:

p(u) = (1 − u)3p0 + 3u(1 − u)2p1 + 3u2(1 − u)p2 + u3p3 (2.35)

Using similar logic as before we get the following definitions of the tangents at the endpoints p0, p3:

t̂0 =
p1 − p0
| |p1 − p0 | |

(2.36)

t̂3 =
p3 − p2
| |p3 − p2 | |

(2.37)
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which means that p1, p2 must lie along the lines formed by:

l1 = p0 + c1 t̂0 (2.38)

l2 = p3 + c2 t̂3 (2.39)

Let pT be the intersection of l1 and l2. Then equations 2.38 and 2.39 can be rescaled as:

l1 = p0 + α1V 1 (2.40)

l2 = p3 + α2V 2 (2.41)

where V 1 = pT − p0 and V 2 = pT − p3. Now p1,p2 can be rewritten as

p1 = p0 + α1V 1 (2.42)

p2 = p3 + α2V 2 (2.43)

The variables α1, α2 control the distances along the tangent lines, with a value of 0 returning p0, p3,

respectively, and a value of 1 returning pT .
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(a) α1 = −0.5 (b) α1 = 0.0

(c) α1 = 0.5 (d) α1 = 1.0

(e) α1 = 1.5

Figure 2.7 Four point Bézier curves formed using various values for α1 and α2
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Figure 2.7 shows plots of four point Bézier curves produced using different values of α1

and α2 in equations 2.40 and 2.41 for the following conditions:

p0 =

[
1 0 0

]ᵀ
(2.44)

p3 =

[
0 1 0

]ᵀ
(2.45)

t̂0 =

[
0 1 0

]ᵀ
(2.46)

t̂3 =

[
1 0 0

]ᵀ
(2.47)

pT =

[
1 1 0

]ᵀ
(2.48)

Notice that α1, α2 < 0 produces inverted curves and α1, α2 > 1 produces curves with inflection

points. Thus, it is reasonable to restrict α1, α2 ∈ [0, 1] to produce well-behaved edges for finite

elements.

For a curve parametrized by coordinate u, the curvature at a point pi is given by:

κi =
|pu

i × puu
i |

|pu
i |

3 (2.49)

where pu
i , p

uu
i are the first and second derivatives of pi with respect to u. Taking the derivatives of

equation 2.35 gives:

pu = −3(1 − u)2p0 + 3(1 − u)(1 − 3u)p1 + 3u(2 − 3u)p2 + 3u2p3 (2.50)

puu = 6(1 − u)p0 + 3(6u − 4)p1 + 3(2 − 6u)p2 + 6up3 (2.51)
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Evaluating equations 2.50 and 2.51 at u = 0 gives:

pu
0 = pu(0) = 3(p1 − p0) (2.52)

puu
0 = puu(0) = 6(p0 − 2p1 + p2) (2.53)

Substituting equations 2.52 and 2.53 into equation 2.49 gives the following definition for κ0:

κ0 =
|pu

0 × puu
0 |

|pu
0 |

3 (2.54)

=
|3

(
p1 − p0

)
× 6

(
p0 − 2p1 + p2

)
|

|3
(
p1 − p0

)
|3

(2.55)

=
18|

(
p1 − p0

)
×

(
p0 − p1 + p2 − p1

)
|

27|p1 − p0 |
3 (2.56)

=
2|

(
p1 − p0

)
×

(
p0 − p1

)
+

(
p1 − p0

)
×

(
p2 − p1

)
|

3|p1 − p0 |
3 (2.57)

=
2|

(
p1 − p0

)
×

(
p2 − p1

)
|

3|p1 − p0 |
3 (2.58)

Using similar logic gives the following expression for κ3:

κ3 =
2|

(
p2 − p1

)
×

(
p3 − p2

)
|

3|p3 − p2 |
3 (2.59)

32



Substituting the equations 2.40 and 2.41 in for p1 and p2 gives:

κ0 =
2|

(
p1 − p0

)
×

(
p2 − p1

)
|

3|p1 − p0 |
3 (2.60)

=
2|

(
p0 + α1V 1 − p0

)
×

(
p3 + α2V 2 − p0 − α1V 1

)
|

3|p0 + α1V 1 − p0 |
3 (2.61)

=
2|α1 | |V 1 ×

(
p3 − p0 + α2V 2 − α1V 1

)
|

3|α1 |3 |V 1 |3
(2.62)

=
2α1 |V 1 ×

(
p3 − p0

)
+ V 1 × (α2V 2) − V 1 × (α1V 1) |
3α3

1 |V 1 |3
(2.63)

=
2|V 1 ×

(
p3 − p0

)
+ α2 (V 1 × V 2) |

3α2
1 |V 1 |3

(2.64)

κ3 =
2|

(
p2 − p1

)
×

(
p3 − p2

)
|

3|p3 − p2 |
3 (2.65)

=
2|

(
p3 + α2V 2 − p0 − α1V 1

)
×

(
p3 − p3 − α2V 2

)
|

3|p3 − p3 − α2V 2 |3
(2.66)

=
2| − α2 | |

(
p3 − p0 + α2V 2 − α1V 1

)
× V 2 |

3| − α2 |3 |V 2 |3
(2.67)

=
2α2 |

(
p3 − p0

)
× V 2 + (α2V 2) × V 2 − (α1V 1) × V 2 |

3α3
2 |V 2 |3

(2.68)

=
2|

(
p3 − p0

)
× V 2 − α1 (V 1 × V 2) |
3α2

2 |V 2 |3
(2.69)

Noticing that

V 1 − V 2 =
(
pT − p0

)
−

(
pT − p3

)
= p3 − p0 (2.70)
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and substituting into equations 2.64 and 2.69 we can isolate the vector terms as follows:

κ0 =
2|V 1 × (V 1 − V 2) + α2 (V 1 × V 2) |

3α2
1 |V 1 |3

(2.71)

=
2|V 1 × V 1 − V 1 × V 2 + α2 (V 1 × V 2) |

3α2
1 |V 1 |3

(2.72)

=
2| (α2 − 1) (V 1 × V 2) |

3α2
1 |V 1 |3

(2.73)

=
2|α2 − 1| |V 1 × V 2 |

3α2
1 |V 1 |3

(2.74)

κ3 =
2| (V 1 − V 2) × V 2 − α1 (V 1 × V 2) |

3α2
2 |V 2 |3

(2.75)

=
2|V 1 × V 2 − V 2 × V 2 − α1 (V 1 × V 2) |

3α2
2 |V 2 |3

(2.76)

=
2| (1 − α1) (V 1 × V 2) |

3α2
2 |V 2 |3

(2.77)

=
2|1 − α1 | |V 1 × V 2 |

3α2
2 |V 2 |3

(2.78)

Since α1, α2 ∈ [0, 1] we get 0 ≤ 1 − α1 ≤ 1 and 0 ≤ 1 − α2 ≤ 1, which gives:

κ0 =
2 (1 − α2) |V 1 × V 2 |

3α2
1 |V 1 |3

(2.79)

κ3 =
2 (1 − α1) |V 1 × V 2 |

3α2
2 |V 2 |3

(2.80)
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Finally, rearranging terms, we get the following:

C1α
2
1 + α2 − 1 = 0 (2.81)

C2α
2
2 + α1 − 1 = 0 (2.82)

where C1, C2 are constants defined as

C1 =
3k0 |V 1 |

3

2|V 1 × V 2 |
(2.83)

C2 =
3k3 |V 2 |

3

2|V 1 × V 2 |
(2.84)

Equations 2.81 and 2.82 form a system of nonlinear equations which can be solved iteratively for

α1 and α2 using Newton’s method, making sure to enforce the conditions α1,α2 ∈ [0, 1]. Once

α1,α2 are found, the ideal positions for p1,p2 can be determined using equations 2.42 and 2.43.

Figure 2.8 shows the visualization of the four point Bézier curve as derived here.

Figure 2.9 shows the plots of the Hermite interpolating curve as well as the three and four

point Bézier curves for a circular and elliptical geometry. In both cases, the four point Bézier curve

most closely matches the true shape of the geometry. This can be attributed to the fact that this

curve is the only one of the three that interpolates curvature as well as tangents. Therefore, the four

point Bézier curve was chosen as the interpolating curve to represent edges in this study.
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Figure 2.8 Visualization of the four point Bézier curve for the example edge, interpolated values
are shown in red
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(a) Circular geometry

(b) Elliptic geometry

Figure 2.9 Comparison of Hermite and Bézier curves
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2.2.2 Edge Classification

Gaussian curvature is defined as κ = 1
ρ where ρ is the radius of curvature. We are interested

in approximating curvature out in space, not just at the geometry. We can achieve this by first

projecting the points out in space onto the geometry, evaluating the curvature at the projection sites,

and then adjusting the curvature to account for the distance as discussed in section 2.1.2.

However, for an edge in space, this raises a problem. Recall in equation 2.49 that κ can

be defined using the first and second derivatives. Although the directions of these derivatives are

constant along the radius of curvature, the magnitudes are not constant. Therefore, the interpolating

curve defined for an edge in space using adjusted values of curvature adequately represents the

geometry only if both points lie along a line of constant distance from the geometry. In general, this

is not the case. Let us consider the different classifications that exist for edges: constant distance,

radial, generic, multi-body, and concave.

2.2.2.1 Constant Distance Edges

Edges where both endpoints are the same distance from a geometric body are considered

to lie along a line of constant distance, as shown in figure 2.10. Elevation of these edges requires

setting the interior two points of the four point Bézier curve as discussed in the previous section

and evaluating equation 2.35 at the desired locations along the curve. Consider, for instance, a p4
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Figure 2.10 Visualization of a constant distance edge

edge. Then the higher order points can be evaluated at u = 0.25, 0.5, 0.75 as follows:

p(0.25) =
27
64

p0 +
27
64

p1 +
9
64

p2 +
1
64

p3 (2.85)

p(0.5) =
1
8
p0 +

3
8
p1 +

3
8
p2 +

1
8
p3 (2.86)

p(0.75) =
1
64

p0 +
9
64

p1 +
27
64

p1 +
27
64

p3 (2.87)

Equations 2.85-2.87 show that the parameter of the blending function coefficients u in equation

2.35 produces a spacing that reflects the influence of the different control points on the shape of

the curve. This can produce undesired clustering, as shown in figure 2.11 which depicts an edge

along an ellipse with semi-major axis of ra = 4 and semi-minor axis of rb =
1
4 . In this case,

the distance between the endpoints and the first interior point is shorter than the distance between

the first interior points and the midpoint. Simply put, evenly spaced Bézier coordinates u do not

produce evenly spaced physical coordinates p.
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Figure 2.11 Comparison of Bézier parametrization coordinate to arclength based parametrization
coordinate

In order to acheive more equally spaced points, the locations of the higher order points

need to be chosen based on arclength s ∈ [0, 1] instead of u. This can be done in an approximate

sense by evaluating a number of points pi for i = 0, 1, . . . , n which are equally spaced in u and then

summing the Euclidean distance between the points to approximate the total arclength st as shown

in equation 2.88.

st =

n∑
i=1
‖ pi − pi−1‖ (2.88)

Once st is computed, the higher order points are evaluated by finding the value of u that gives an

arclength of s ∗ st . Figure 2.11 also shows this reparametrization for higher order points located at

s = 0.25, 0.5, 0.75.
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2.2.2.2 Radial Edges

Radial edges are edges which are orthogonal to the geometry and are identified by detecting

that the tangents are parallel (|t̂0 · t̂3 | = 1). Since these edges are orthogonal to the geometry,

no curving is necessary and the higher order points are spaced equally along the straight edge, as

shown in figure 2.12.

Figure 2.12 Visualization of a radial edge

2.2.2.3 Generic Edges

Edges that are neither radial nor constant distance but exist somewhere in between are

considered generic edges. Since the endpoints exist at different distances from the geometry,

curvature cannot be applied directly to these edges. However, as figure 2.13 shows, we can create

a point p′0 at a distance of d0 along the normal of p3. Similarly, we can create p′3 at a distance of

d3 along the normal of p0. This allows us to create 2 radial edges (p′0 − p3 and p′3 − p0) and 2
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Figure 2.13 Visualization of a generic edge

constant distance edges (p3 − p′3 and p0 − p′0). These 4 edges form a serendipity quadrilateral and

the locations of the higher order points of the generic edge can be computed using

p(ξ) =
∑

Ni (ξ, ξ)pi (2.89)

where ξ is the desired parametric location of the point along the edge, pi are the points of the

serendipity quadrilateral, and Ni are the basis functions of the serendipity quadrilateral. The

specific ordering of points of serendipity quadrilaterals and their respective basis functions can be

found in appendix A.

2.2.2.4 Concave Edges

So far the methods of curving edges that have been discussed address only edges that

project onto a convex region of the geometry. However, most real geometries will have both convex
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and concave regions. Consider the projections of an edge’s end points onto a geometry and the

corresponding normal vectors defined to be pointing toward the mesh. If the normal vectors are

not parallel, they can be extended from the projections on the geometry until an intersection, pN , is

found, as shown in figure 2.14. If the intersection of the normal vectors lies on the same side of the

geometry as the mesh, then that region of the geometry is concave and the edge is defined to be in

a region of concavity, as shown in figure 2.14a. Otherwise, the region of the geometry is convex,

as shown in figure 2.14b.

(a) Concave (b) Convex

Figure 2.14 Determination of concavity using the intersection of normal vectors

Concave regions are problematic for two main reasons. First,the center of curvature creates

a singularity in terms of the geometric properties. As a point approaches the center of curvature,

κ = 1
ρ → ∞. Also, by definition, the center of curvature has inifinitely many closest points on the

geometry, thus there are infinitely many definitions for tangent and normal vectors. This makes it
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difficult to determine the ideal geometric conditions for points very close to the center of curvature

and could potentially produce edges on the interior of the mesh that do not conform to the geometry.

The second problem arises in the formation of serendipity quadrilaterals for elevating

generic edges in concave regions, as shown in figure 2.15. Consider the positions of p0 and p3

shown in figure 2.15a. If we follow the procedure for placing p′0 and p′3, we are able to create a valid

serendipity quadrilateral that conforms to the shape of the geometry, as shown. Now consider the

positions for p0 and p3 shifted closer to the center of curvature as shown in figure 2.15b. Following

the same procedure as before creates a serendipity quadrilateral that is very poorly formed and

does not conform to the geometry. This is due to the fact that although p′3 is located along the

normal vector of p0, it actually projects to a different part of the geometry than p0. Since the

center of curvature has infinitely many closest points, the only points along any normal vector

extending from the geometry that share a projection are those that lie between the geometry and the

center of curvature. As long as p0 shares a projection with p′3 and p3 with p′0, a valid serendipity

quadrilateral can be formed. If we consider the intersecton of the two normal vectors, pN , to be a

rough approximation of the center of curvature, then we can define the following amendments to

the procedure for elevating edges that are identified in concave regions:

• Constant distant edges: If both points lie between the geometry and pN , proceed as in convex

regions, otherwise leave the edge straight.

• Generic edges: If all four vertices of the serendipity quadrilateral lie between the geometry

and pN , proceed as in convex regions, otherwise leave the edge straight.
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(a) Valid serendipity quadrilateral

(b) Inverted serendipity quadrilateral

Figure 2.15 Visualization of curving generic edges in concave regions
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2.2.2.5 Multi-Body Edges

If the geometry is composed of multiple closed bodies, then there will be edges which cross

the medial axis. Let p0, p1 be the end points of one such edge and g0, g1 be the geometrical

bodies. Assume that the closest point projection of p0 lies on g0. Then we have the following

possibilities: the closest point projection of p1 either lies on g1 or p1 is situated equidistant from g0

and g1. If the latter is true, then elevation can proceed as before using information obtained from

g0. Otherwise we can compute the curved elevated edges with respect to both g0 and g1 and take

the average position for each higher order point. Figure 2.16 shows an example of such an edge

where the endpoints p0 and p1 project to separate bodies. The green edge is the result of curving

with respect to g0, the blue edge is the result of curving with respect to g1, and the red edge is the

average of the blue and green edges. This averaging has the effect that if both geometries have

opposing curvature, the resulting edge is straight, as in figure 2.16, but if they curve in the same

direction the resulting edge will have the averaged curvature. For any edges that cross multiple

medial axes it is possible to determine a preferred curving, however that is beyond the scope of this

work and so these edges default to straight.
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Figure 2.16 Visualization of curving an edge which crosses the medial axis

2.3 Face and Volume Elevation

After all the edges have been elevated, the higher-order edges can be used to form serendipity

face elements. Just as with the generic edges, the basis functions of serendipity faces can be used

to position higher order face points for the standard face elements. This process comes down to

identifying the appropriate parametric coordinates (ξ, η) for the higher order face points using the

reference element and then evaluating

p(ξ, η) =
∑

Ni (ξ, η)pi (2.90)

using the edge points and the serendipity basis functions Ni. For example, consider the p2

quadrilateral shown in figure 2.17a, the points shown in red are the edge points that form the

serendipity quadrilateral. This quadrilateral requires one interior face point p9, shown in blue.

Figure 2.17b shows that the parametric coordinates of p9 are (ξ = 0, η = 0) in the standard p2
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reference quadrilateral, so the physical location of p9 is given by

p9 = p(0, 0) =
8∑

i=1
Ni (0, 0)pi (2.91)

where pi are the 8 edge points in figure 2.17a and Ni are the 8 basis functions of the p2 serendipity

quadrilateral. Figure 2.18 shows this same process for a p4 triangle, which has 12 edge points and

requires 3 interior face points.

(a) (b)

Figure 2.17 Elevation of a p2 quadrilateral face

Similarly, once faces have been elevated, the elevated faces form serendipity volumes which

are used to evaluate interior higher order volume points. The serendipity shape functions used for

quadrilaterals and hexahedrals are the generalized complete Lagrange family presented by Rathod

and Kilari in [29] and [30]. The serendipity shape functions used for triangular elements are the

Lagrangian boundary described shape functions derived by El-Zafrany and Cookson in [31]. For
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(a) (b)

Figure 2.18 Elevation of a p4 triangular face

simplicity, cases in 3D were restricted to quadratic elements, which does not require serendipity

shape functions for tetrahedra. The basis functions for up to p4 quadrilaterals and triangles are

reproduced in appendices A and B.

2.4 Scaled Jacobian Quality Metric

The most commonly used metric throughout the literature is the scaled Jacobian, which is

defined here as

Js =
Jmin

Jmax
(2.92)

where Jmin and Jmax are the minimum and maximum Jacobians evaluated at the gauss points.

Since the Jacobian matrix is a mapping between the reference element and the physical element,

the scaled Jacobian is a relative measure of the distortion of this mapping across the element.

The scaled Jacobian, however, is not a good measure of element quality since even poorly shaped
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straight sided elements will have optimal Js = 1. This is due to the fact that J is often constant

over straight sided elements. Even with its flaws, however, the scaled Jacobian is useful for curved

meshing since it can be used to detect invalid elements (Js < 0) and, if we assume the initial linear

mesh has good quality elements, then maximizing Js corresponds to minimizing the variation of J

over the element, which suggests a well-formed curved element.

2.5 Elevation Schemes

Thus far a method has been presented which can create curved elements throughout the

mesh. However, curving the entire mesh can be costly and is generally not desirable. Non-curved

elements are more beneficial to higher order methods since they have a linear mapping between

the reference element and the physical element. This linear mapping reduces the degrees of the

integrals that have to be evaluated over the element and simplifies the assembly of the global mass

matrix since the mass matrix of the local element becomes a scalar mutliple of the mass matrix of

the reference element for straight sided elements [22]. Thus we seek to minimize the total number

of curved elements within a mesh while maximizing the element quality.

With this goal in mind, there are two user defined parameters for controlling quality. The

first parameter is the target Jacobian, Jt ∈ (0, 1], which specifies the target minimum quality for

curved elements. The second parameter is the curving distance dc, which is defined as dc = f d∗

where d∗ is the longest distance from the geometry in the mesh and f ∈ [0, 1] is a user defined

multiplier controlling the total amount of curvature. The procedure for curving now becomes an

iterative process as follows:

1. Elevate the mesh, curving edges with d < dc and leaving all other edges straight.
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2. Evaluate Js for each element. If Js < Jt , add the element to a list of failed elements.

3. Iterate over the failed list, performing these steps until the list is empty:

(a) If Js > Jt , remove element from list.

(b) Otherwise,

i. Curve all remaining edges in the element and add affected neighboring elements

to the failed list.

ii. If Js > 0, remove element from list.

This process is shown in figure 2.19 for a simple mesh around a circular geometry. The target

Jacobian was set to Jt = 0.6 and f = 0 specifies that the minimal amount of curving is desired.

Initially only the boundary edges were curved, forming inverted elements in the first layer, as shown

in figure 2.19a. Correcting the elements of the first layer inverts the elements of the second layer as

shown in figure 2.19b, so the second layer is added to the list for curving. This process continues

until the last layer of elements is reached. This layer already has J > Jt and so these elements

require no additional curving and the process is completed.

51



(a) (b) (c)

(d) (e)

Figure 2.19 Visualization of the curving process for minimal curving
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CHAPTER 3

RESULTS

All images of meshes were obtained using GMSH, which is a free 3D finite element mesh

generator and post-processor [32]. GMSH was chosen for its ability to display curved meshes for

arbitrary high ordered elements. For all cases Jt = 0.6 and three different values were chosen for

f : f = 0.0 (minimal curving), f = 0.1 (partial curving), f = 1.0 (full curving). Even though fully

curving a mesh is not typically desired, this was performed so as to fully test the capabilities of the

curvature extrapolation method. Higher order meshes were generated for all 2D cases for orders

p = 2, 3, 4, although only p4 meshes are shown. The tables for the minimum and maximum scaled

Jacobians include all orders of elevation.

3.1 Two Dimensional Cases

3.1.1 Circle

The first example is designed to show how the proposed method handles meshes created

with different meshing strategies. Figure 3.1a shows a linear mixed element mesh created around

a circular geometry using the following strategies: structured (upper left), diagonalized structured

(upper right), quad-dominant TREX (lower right), and triangular TREX (lower left). The mesh

contains 476 edges and 284 faces. Figures 3.1b-3.1d show the results of applying the three curving

schemes. The only difference between the minimal and partial curving schemes for this mesh
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occur in the quadrilateral regions of the mesh. The first layer of quadrilateral elements maintained

a quality above the threshhold and so the minimal curving scheme did not need to propagate

curvature further into the interior.

Table 3.1 shows the extreme values obtained for Js for all orders and curving schemes.

Figure 3.2 shows histograms of Js for the quartic curved meshes. All cases were able to maintain

elemental quality above the target threshhold.

(a) Linear Mesh (b) Minimal Curving

(c) Partial Curving (d) Full Curving

Figure 3.1 Mixed element mesh around a circle
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(a) Minimal Curving

(b) Partial Curving

(c) Full Curving

Figure 3.2 Histograms of scaled Jacobian for mixed element circle cases
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Table 3.1 Comparison of minimum and maximum scaled Jacobian values for mixed element
circle cases

P Curving Jmin Jmax
1 0.830064 1.0
2 Minimal 0.630112 1.0

Partial 0.630112 1.0
Full 0.76738 0.984489

3 Minimal 0.608873 1.0
Partial 0.608873 1.0
Full 0.717091 0.971073

4 Minimal 0.600055 1.0
Partial 0.600055 1.0
Full 0.6090536 0.967453

3.1.2 Four Circles

The next example is a mixed element mesh around four equally spaced circles. The mesh

contains 4772 edges and 2452 faces. Figure 3.3 shows the initial linear mesh as well as the 3 p4

meshes obtained from the curving schemes. The minimal and partial curving schemes achieve

optimal quality within the quadrilateral region, and so do not encounter any edges that cross the

medial axis between geometry bodies. However, the fully curved example contains two types of

multi-body edges. Edges that cross the medial axis are found in the layer of triangular elements

between two circles. Edges that are aligned with the medial axis are found in the region between

all four circles. Table 3.2 shows that all cases were able to maintain valid elements, even though

the fully curved p2 and p4 meshes contain a minimal Js slightly below the threshhold.

Figure 3.4 shows a gradation of the scaled Jacobian metric for the fully curved mesh where

dark color corresponds to poor quality. The worst quality elements are the triangular elements

containing an edge that crosses the medial axis. The edges in question remain straight due to the
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opposing curvatures of the geometric bodies. Since these elements are alignedwith the quadrilateral

regions surrounding both geometric bodies, it may be better to use quadrilateral elements in this

region instead of triangular elements. The histogram in figure 3.5 shows that very few elements

actually fall below the target threshhold.

(a) Linear Mesh (b) Minimal Curving

(c) Partial Curving (d) Full Curving

Figure 3.3 Mixed element mesh around four circles
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Table 3.2 Comparison of minimum and maximum scaled Jacobian values for mixed element four
circle cases

P Curving Jmin Jmax
1 0.921386 1.0
2 Minimal 0.640501 1.0

Partial 0.807472 1.0
Full 0.77281 0.992513

3 Minimal 0.655836 1.0
Partial 0.83189 1.0
Full 0.59041 0.999807

4 Minimal 0.657429 1.0
Partial 0.793702 1.0
Full 0.542847 0.999814

Figure 3.4 Closer look at scaled Jacobian for the fully curved four circle case
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(a) Minimal Curving

(b) Partial Curving

(c) Full Curving

Figure 3.5 Histograms of scaled Jacobian for the mixed element four circle cases
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3.1.3 NACA0012

The next case is NACA 0012 airfoil with a viscous boundary layer. This case was chosen

for two reasons: first, the NACA 0012 airfoil is a very common test case for two dimensional flow

solvers, and second, the geometry is defined as two B-splines with intersection points at the leading

and trailing edges. Since the angle between the two definitions for the normal vector is very large at

the trailing edge, this case is a good choice for testing the smoothness of the handling of curvature

and tangent vectors throughout the discontinuous region. The mesh has 8100 edges and 5354

faces. Figure 3.6 shows the p4 mesh and figure 3.7 shows the histogram of the scaled Jacobian for

partial curving. Table 3.3 shows the minimum and maximum values of the scaled Jacobian for all

elevation order and curving schemes. This example shows that the method can generate meshes

with a smooth transition in curvature even in the presence of a very large discontinuous region

emanating from an intersection point of the geometry. Since it is not generally desired to have

curved elements around the trailing edge, there is a built in option to turn off the edge curving in

regions where the curvature of the geometry is essentially zero.
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(a) Full view

(b) Closer look at the trailing edge

Figure 3.6 Results of applying partial curving to NACA0012 airfoil mesh
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Figure 3.7 Histogram of the scaled Jacobian for the NACA 0012 case

Table 3.3 Comparison of minimum and maximum scaled Jacobian values for the NACA 0012
cases

P Curving Jmin Jmax
1 1.0 1.0
2 Minimal 0.602597 1.0

Partial 0.707991 1.0
Full 0.717991 1.0

3 Minimal 0.602729 1.0
Partial 0.524281 1.0
Full 0.524281 1.0

4 Minimal 0.60444 1.0
Partial 0.357641 1.0
Full 0.357641 1.0
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3.1.4 30P30N

The 30P30N airfoil was chosen because it is a multi-body airfoil that has concave and

convex regions as well as sharp angles. Just as with the NACA 0012 case, curvature was allowed

around the sharp corners to fully test the capabilities of the method. This mesh contains 19935

edges and 11990 faces, both quadrilateral and triangular. Figure 3.8 shows a full view of the the

mixed element partially curved mesh. Figure 3.9 shows the cell quality near the main body of the

airfoil. Figures 3.10a and 3.10b show a comparison of minimal and partial curving schemes around

the front slat, which contains the regions of greatest concave and convex curvature. The partial

curving scheme produces a boundary layer that better conforms to the shape of the geometry and

provides a smoother change in element quality.

The poor quality elements away from the geometry in figures 3.9 and 3.10b contain an edge

which has a point that projects onto the intersection of a convex geometry segment and a concave

geometry segment. The bad quality elements in figure 3.9 could be fixed by either choosing a

smaller value of f or by detecting that one of the geometry segments has no curvature. The

problem element of figure 3.10b however, requires additional logic for handling the curving of

edges that are within both a concave region and the discontinuous region formed by a concave and

convex geometry segment. It is possible that the edge could be properly handled by ignoring the

information from the convex geometry segment, however this was not tested.
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Figure 3.8 Full view of the p4 30P30N airfoil mesh created with partial curving

(a)

Figure 3.9 View of the scaled Jacobian near the main body of the 30P30N airfoil for partial
curving
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(a) Minimal Curving: Front Slat

(b) Partial Curving: Front Slat

Figure 3.10 Comparison of the minimal and partial curving for the 30P30N airfoil
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3.2 Three Dimensional Cases

The three dimensional cases were restricted to an elevation order of p = 2, as discussed

previously, and were further restricted to meshes containing all tetrahedra or all hexahedra. The

remaining parameters are the same as for the two dimensional cases, namely, f = 0.0 for minimal

curving, f = 0.1 for partial curving, and f = 1.0 for full curving with Jt = 0.6.

3.2.1 Ellipsoid

The first three dimensional case is an inviscid hexahedral mesh around an ellipsoid centered

at (0.0, 0.0, 0.0) with radii of 3 in the x-direction, 2 in the y-direction, and 1 in the z-direction.

The mesh contains 74048 edges, 73000 faces, and 24000 hexahedra. Table 3.4 shows the extreme

values of the scaled Jacobian for all curving schemes. Figure 3.11 shows an x-plane cut of the

initial linear mesh as well as the minimal, partial, and fully curved meshes. Figure 3.12 shows a

y-plane cut of the scaled Jacobian for the minimally curved mesh. Figure 3.13 shows histograms

of element quality for each of the curving schemes. Although the minimal quality falls below the

target threshhold, all elements are valid and all curving schemes produce a similar distribution of

quailty. As figure 3.12 shows, the poor quality of these elements is inherited from the linear mesh,

which also contained elements below the target threshhold.

Table 3.4 Comparison of minimum and maximum scaled Jacobian values for ellipsoid cases

P Curving Jmin Jmax
1 0.51302 0.962559
2 Minimal 0.36534 0.902765

Partial 0.36534 0.942781
Full 0.36534 0.942781
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(a) Linear Mesh (b) Minimal Curving

(c) Partial Curving (d) Full Curving

Figure 3.11 Inviscid hexahedral mesh of an ellipsoid

Figure 3.12 View of the scaled Jacobian for the minimally curved p2 Ellipsoid mesh
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(a) Minimal curving

(b) Partial curving

(c) Full curving

Figure 3.13 Histograms of the scaled Jacobian for ellipsoid cases
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3.2.2 Sphere

The next case is a viscous tetrahedral mesh around a sphere. This mesh contains 4176

edges, 4000 faces, and 1280 tetrahedra. Figure 3.14 shows an x-plane cut of the initial linear mesh

and the minimal, partial, and fully curved higher order meshes. As shown in figure 3.15 and table

3.5, the great majority of elements have Js > 0.8 for all curving schemes and only the fully curved

mesh contained any elements below the quality threshhold.

(a) Linear Mesh (b) Minimal Curving

(c) Partial Curving (d) Full Curving

Figure 3.14 Viscous tetrahedral mesh of a sphere
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Table 3.5 Comparison of minimum and maximum scaled Jacobian values for sphere cases

P Curving Jmin Jmax
1 1.0 1.0
2 Minimal 0.600114 1.0

Partial 0.833532 1.0
Full 0.570848 1.0

(a) Minimal curving (b) Partial curving

(c) Full curving

Figure 3.15 Histograms of the scaled Jacobian for sphere cases
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3.2.3 Two Spheres

The final three dimensional case is a tetrahedral viscous mesh around two spheres. This

mesh contains 108000 edges, 182060 faces, and 90030 tetrahedra. Figure 3.16 shows a y-plane cut

of the initial linear mesh and minimal, partial, and fully curved higher order meshes. As shown in

table 3.6 and figure 3.17, all curving schemes produced meshes that achieved the target quality.

(a) Linear Mesh (b) Minimal Curving

(c) Partial Curving (d) Full Curving

Figure 3.16 Viscous tetrahedral mesh around two spheres
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Table 3.6 Comparison of minimum and maximum scaled Jacobian values for viscous two spheres
cases

P Curving Jmin Jmax
1 1.0 1.0
2 Minimal 0.600114 1.0

Partial 0.833532 1.0
Full 0.711468 1.0

(a) Minimal curving (b) Partial curving

(c) Full curving

Figure 3.17 Histograms of the scaled Jacobian for the two sphere cases
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CHAPTER 4

CONCLUSION

4.1 Summary

The goal of this work was to determine a method of creating valid higher order curvilinear

meshes that does not require a global system of equations to be solved. Given a valid initial

linear mesh and a definition of the geometry, the proposed method of curvature extrapolation starts

by defining an underlying four point Bézier curve for each edge which is defined to imitate the

behavior of the geometry. After higher order edge points are placed along these Bézier curves, the

serendipity basis functions are used to place higher order face and volume points. A procedure

was defined which untangles the mesh and allows the user to specify cell quality and a distance for

the propagation of curvature. The examples provided in 2D show that this method is capable of

producing valid higher ordermeshes for real geometries containing concave regions, convex regions,

sharp corners, and multiple geometric bodies. This method was also shown to be extensible to 3D,

although more work is needed to handle real CAD geometries in 3D.

4.2 Recommendations for Future Work

GEODE proved very useful for projecting points and evaluating the tangent, normal, and

curvature in both 2D and 3D. However, differences in tolerances between GEODE and the curvature

extrapolation code proved difficult to overcome. Additionally, it was very difficult to consistently
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determine whether a surface intersected with a curve or another surface, which would enable the

geometry to be split into contiguous bodies. Although not entirely necessary, this step is useful for

determining whether an edge projects to two separate bodies or just two regions of the same body.

It was for these reasons that the 3D examples were limited to analytically defined geometries.

Full extension to 3D would also require the following improvements. First, additional

logic is required to handle the discontinuous regions around intersection points and curves in 3D.

Secondly, real cases in 3D will be much more computationally intensive than any examples shown

in this research and will benefit from parallelization. Finally, the most time intensive parts of this

method are the projection of points onto the geometry and the evaluation of cell quality, both of

which could be made much more efficient.

The Lagrange serendipity basis functions proved to be a poor choice for determining

placement of higher order face and volume points for the following reasons. First, the Lagrange

serendipity basis functions for quadrilaterals and hexahedra for p4 and higher cannot be defined

using the edge points alone. Second, definitions of complete Lagrange serendipity basis functions

for tetrahedra were not found. Finally, it was observed that the complete serendipity basis functions

for p4 triangles with high aspect ratios placed interior points outside of the bounding edges. Bézier

face and volume elements, on the other hand, have the nice property that they are bound by other

Bézier elements and have been used elsewhere in the literature. Since the edges are already being

represented with Bézier curves, this would be a more natural choice for determining the higher

order face and volume points.

Finally, the curvature extrapolation method presented here is purely a mesh curving method

and can therefore do little to improve element quality when a poor quality linear mesh is provided.
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Coupling this method with an optimization smoothing technique could further improve the quality

of meshes generated with this method. Additionally, optimization smoothing can be time intensive

when the initial mesh configuration is far from the optimal mesh configuration. The curvature

extrapolation method could be used to quickly generate a mesh which is much closer to the optimal

mesh, thus reducing the work for an optimization smoothing technique.
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QUADRILATERAL SERENDIPITY BASIS FUNCTIONS
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Presented below are the serendipity quadrilateral basis functions corresponding to the

elements in figure A.1. For quadratic and cubic quadrilaterals, the standard definition for the

serendipity basis functions form a complete polynomial, however the standard definition forms an

incomplete polynomial for higher order elements. The definition of the quartic element and basis

functions was derived by Rathod and Kilari [29]. In this work, the centroid location required to

complete the polynomial for quartic elements is computed using the quadratic serendipity basis

functions with nodes 1, 2, 3, 4, 6, 9, 12, and 15. To achieve even higher orders, additional interior

points need to be added to complete the polynomial.

Quadratic quadrilateral [6]:

N1(ξ, η) = −
1
4

(
1 − ξ

) (
1 − η

) (
1 + ξ + η

)
(A.1)

N2(ξ, η) = −
1
4

(
1 + ξ

) (
1 − η

) (
1 − ξ + η

)
(A.2)

N3(ξ, η) = −
1
4

(
1 + ξ

) (
1 + η

) (
1 − ξ − η

)
(A.3)

N4(ξ, η) = −
1
4

(
1 − ξ

) (
1 + η

) (
1 + ξ − η

)
(A.4)

N5(ξ, η) =
1
2

(
1 − ξ2

) (
1 − η

)
(A.5)

N6(ξ, η) =
1
2

(
1 + ξ

) (
1 − η2

)
(A.6)

N7(ξ, η) =
1
2

(
1 − ξ2

) (
1 + η

)
(A.7)

N8(ξ, η) =
1
2

(
1 − ξ

) (
1 − η2

)
(A.8)
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(a) Quadratic quadrilateral (b) Cubic quadrilateral

(c) Quartic quadrilateral

Figure A.1 Ideal serendipity quadrilaterals
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Cubic quadrilateral [6]:

N1(ξ, η) =
1
32

(
1 − ξ

) (
1 − η

) [
−10 + 9

(
ξ2 + η2

)]
(A.9)

N2(ξ, η) =
1
32

(
1 + ξ

) (
1 − η

) [
−10 + 9

(
ξ2 + η2

)]
(A.10)

N3(ξ, η) =
1
32

(
1 + ξ

) (
1 + η

) [
−10 + 9

(
ξ2 + η2

)]
(A.11)

N4(ξ, η) =
1
32

(
1 − ξ

) (
1 + η

) [
−10 + 9

(
ξ2 + η2

)]
(A.12)

N5(ξ, η) =
9
32

(
1 − η

) (
1 − ξ2

) (
1 − 3ξ

)
(A.13)

N6(ξ, η) =
9
32

(
1 − η

) (
1 − ξ2

) (
1 + 3ξ

)
(A.14)

N7(ξ, η) =
9
32

(
1 + ξ

) (
1 − η2

) (
1 − 3η

)
(A.15)

N8(ξ, η) =
9
32

(
1 + ξ

) (
1 − η2

) (
1 + 3η

)
(A.16)

N9(ξ, η) =
9
32

(
1 + η

) (
1 − ξ2

) (
1 + 3ξ

)
(A.17)

N10(ξ, η) =
9
32

(
1 + η

) (
1 − ξ2

) (
1 − 3ξ

)
(A.18)

N11(ξ, η) =
9
32

(
1 − ξ

) (
1 − η2

) (
1 + 3η

)
(A.19)

N12(ξ, η) =
9
32

(
1 − ξ

) (
1 − η2

) (
1 − 3η

)
(A.20)

82



Quartic quadrilateral [29]:

N1(ξ, η) =
1
12

(
1 − ξ

) (
1 − η

) [
−4

(
ξ3 + η3

)
+ 4

(
ξ + η

)
+ 3ξη

]
(A.21)

N2(ξ, η) =
1
12

(
1 + ξ

) (
1 − η

) [
4
(
ξ3 − η3

)
− 4

(
ξ − η

)
− 3ξη

]
(A.22)

N3(ξ, η) =
1
12

(
1 + ξ

) (
1 + η

) [
4
(
ξ3 + η3

)
− 4

(
ξ + η

)
+ 3ξη

]
(A.23)

N4(ξ, η) =
1
12

(
1 − ξ

) (
1 + η

) [
−4

(
ξ3 − η3

)
+ 4

(
ξ − η

)
− 3ξη

]
(A.24)

N5(ξ, η) =
2
3

(
1 − ξ2

) (
1 − η

)
ξ
(
2ξ − 1

)
(A.25)

N6(ξ, η) = −
1
2

(
1 − ξ2

) (
1 − η

) (
4ξ2 + η

)
(A.26)

N7(ξ, η) =
2
3

(
1 − ξ2

) (
1 − η

)
ξ
(
2ξ + 1

)
(A.27)

N8(ξ, η) =
2
3

(
1 + ξ

) (
1 − η2

)
η

(
2η − 1

)
(A.28)

N9(ξ, η) = −
1
2

(
1 + ξ

) (
1 − η2

) (
4η2 − ξ

)
(A.29)

N10(ξ, η) =
2
3

(
1 + ξ

) (
1 − η2

)
η

(
2η + 1

)
(A.30)

N11(ξ, η) =
2
3

(
1 − ξ2

) (
1 + η

)
ξ
(
2ξ + 1

)
(A.31)

N12(ξ, η) = −
1
2

(
1 − ξ2

) (
1 + η

) (
4ξ2 − η

)
(A.32)

N13(ξ, η) =
2
3

(
1 − ξ2

) (
1 + η

)
ξ
(
2ξ − 1

)
(A.33)

N14(ξ, η) =
2
3

(
1 − ξ

) (
1 − η2

)
η

(
2η + 1

)
(A.34)

N15(ξ, η) = −
1
2

(
1 − ξ

) (
1 − η2

) (
4η2 + ξ

)
(A.35)

N16(ξ, η) =
2
3

(
1 − ξ

) (
1 − η2

)
η

(
2η − 1

)
(A.36)

N17(ξ, η) =
(
1 − ξ2

) (
1 − η2

)
(A.37)
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Presented below are the serendipity triangle basis functions corresponding to the cubic and

quartic elements in figure B.1. El-Zafrany and Cookson derived a general form for deriving basis

functions for boundary-described triangles as follows [31]:

Let abc be a general boundary-described triangular element with sides ab, bc, and

ca of mth, nth, and lth degree, respectively. Then the shape functions for points along

the edges ab, bc, and ca can be expressed as

Nab,i =
L1

2(L3 + L1)
λm

m−i (L3 + L1)λm
i (L2) +

L2
2(L2 + L3)

λm
m−i (L1)λm

i (L2 + L3)

(B.1)

Nbc, j =
L2

2(L1 + L2)
λn

n− j (L1 + L2)λn
j (L3) +

L3
2(L3 + L1)

λn
n− j (L2)λn

j (L3 + L1) (B.2)

Nca,k =
L3

2(L2 + L3)
λl

l−k (L2 + L3)λl
k (L1) +

L1
2(L1 + L2)

λl
l−k (L3)λl

k (L1 + L2) (B.3)

where

1 ≤ i ≤ m − 1 (B.4)

1 ≤ j ≤ n − 1 (B.5)

1 ≤ k ≤ l − 1 (B.6)
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and

λ
q
0 (Lr ) = 1 (B.7)

λ
q
s (Lr ) =

s−1∏
t=0

(
qLr − t

s − t

)
, s = 1, 2, · · · , q (B.8)

The shape functions at the corner nodes can bewritten in terms of the above expressions

as follows:

Na = Nca,l + Nab,0 −
L1
2

(B.9)

Nb = Nab,m + Nbc,0 −
L2
2

(B.10)

Nc = Nbc,n + Nca,0 −
L3
2

(B.11)

(a) Cubic triangle (b) Quartic triangle

Figure B.1 Ideal serendipity triangles
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Evaluating the general form for the cubic triangle gives the following basis functions which

are complete:

N1(L1, L2, L3) =
1
2

L1 [(3L1 − 1) (3L1 − 2) − 9L2L3] (B.12)

N2(L1, L2, L3) =
1
2

L2 [(3L2 − 1) (3L2 − 2) − 9L1L3] (B.13)

N3(L1, L2, L3) =
1
2

L3 [(3L3 − 1) (3L3 − 2) − 9L1L2] (B.14)

N4(L1, L2, L3) =
9
4

L1L2 [1 + 3 (L1 − L2)] (B.15)

N5(L1, L2, L3) =
9
4

L1L2 [1 + 3 (L2 − L1)] (B.16)

N6(L1, L2, L3) =
9
4

L2L3 [1 + 3 (L2 − L3)] (B.17)

N7(L1, L2, L3) =
9
4

L2L3 [1 + 3 (L3 − L2)] (B.18)

N8(L1, L2, L3) =
9
4

L1L3 [1 + 3 (L3 − L1)] (B.19)

N9(L1, L2, L3) =
9
4

L1L3 [1 + 3 (L1 − L3)] (B.20)

Similarly, evaluating the general form for the quartic triangle gives the following basis functions

which are complete:

N1(L1, L2, L3) =
1
12

L1 [(4L1 − 1) (4L1 − 2) (4L1 − 3)

+ (4L1 + 4L2 − 1) (4L1 + 4L2 − 2) (4L1 + 4L2 − 3)

+ (4L3 + 4L1 − 1) (4L3 + 4L1 − 2) (4L3 + 4L1 − 3)] −
1
2

L1 (B.21)
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N2(L1, L2, L3) =
1
12

L2 [(4L2 − 1) (4L2 − 2) (4L2 − 3)

+ (4L2 + 4L3 − 1) (4L2 + 4L3 − 2) (4L2 + 4L3 − 3)

+ (4L1 + 4L2 − 1) (4L1 + 4L2 − 2) (4L1 + 4L2 − 3)] −
1
2

L2 (B.22)

N3(L1, L2, L3) =
1
12

L3 [(4L3 − 1) (4L3 − 2) (4L3 − 3)

+ (4L3 + 4L1 − 1) (4L3 + 4L1 − 2) (4L3 + 4L1 − 3)

+ (4L2 + 4L3 − 1) (4L2 + 4L3 − 2) (4L2 + 4L3 − 3)] −
1
2

L3 (B.23)

N4(L1, L2, L3) =
4
3

L1L2 [(4L3 + 4L1 − 1) (4L3 + 4L1 − 2) + (4L1 − 1) (4L1 − 2)] (B.24)

N5(L1, L2, L3) = 2L1L2 [(4L2 − 1) (4L3 + 4L1 − 1) + (4L1 − 1) (4L2 + 4L3 − 1)] (B.25)

N6(L1, L2, L3) =
4
3

L1L2 [(4L2 − 1) (4L2 − 2) + (4L2 + 4L3 − 1) (4L2 + 4L3 − 2)] (B.26)

N7(L1, L2, L3) =
4
3

L2L3 [(4L1 + 4L2 − 1) (4L1 + 4L2 − 2) + (4L3 − 1) (4L3 − 2)] (B.27)

N8(L1, L2, L3) = 2L2L3 [(4L3 − 1) (4L1 + 4L2 − 1) + (4L2 − 1) (4L3 + 4L1 − 1)] (B.28)

N9(L1, L2, L3) =
4
3

L2L3 [(4L3 − 1) (4L3 − 2) + (4L3 + 4L1 − 1) (4L3 + 4L1 − 2)] (B.29)

N10(L1, L2, L3) =
4
3

L1L3 [(4L2 + 4L3 − 1) (4L2 + 4L3 − 2) + (4L3 − 1) (4L3 − 2)] (B.30)

N11(L1, L2, L3) = 2L1L3 [(4L1 − 1) (4L2 + 4L3 − 1) + (4L3 − 1) (4L1 + 4L2 − 1)] (B.31)

N12(L1, L2, L3) =
4
3

L1L3 [(4L1 − 1) (4L1 − 2) + (4L1 + 4L2 − 1) (4L1 + 4L2 − 2)] (B.32)
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