570 research outputs found

    Nonlinear Parabolic Equations arising in Mathematical Finance

    Full text link
    This survey paper is focused on qualitative and numerical analyses of fully nonlinear partial differential equations of parabolic type arising in financial mathematics. The main purpose is to review various non-linear extensions of the classical Black-Scholes theory for pricing financial instruments, as well as models of stochastic dynamic portfolio optimization leading to the Hamilton-Jacobi-Bellman (HJB) equation. After suitable transformations, both problems can be represented by solutions to nonlinear parabolic equations. Qualitative analysis will be focused on issues concerning the existence and uniqueness of solutions. In the numerical part we discuss a stable finite-volume and finite difference schemes for solving fully nonlinear parabolic equations.Comment: arXiv admin note: substantial text overlap with arXiv:1603.0387

    High order compact finite difference schemes for a nonlinear Black-Scholes equation

    Get PDF
    A nonlinear Black-Scholes equation which models transaction costs arising in the hedging of portfolios is discretized semi-implicitly using high order compact finite difference schemes. In particular, the compact schemes of Rigal are generalized. The numerical results are compared to standard finite difference schemes. It turns out that the compact schemes have very satisfying stability and non-oscillatory properties and are generally more e±cient than the considered classical schemes.Option pricing, transaction costs, parabolic equations, compact finite difference discretizations

    Convergence of a high-order compact finite difference scheme for a nonlinear Black-Scholes equation

    Get PDF
    A high-order compact finite difference scheme for a fully nonlinear parabolic differential equation is analyzed. The equation arises in the modeling of option prices in financial markets with transaction costs. It is shown that the finite difference solution converges locally uniformly to the unique viscosity solution of the continuous equation. The proof is based on a careful study of the discretization matrices and on an abstract convergence result due to Barles and Souganides.High-order compact finite differences, numerical convergence, viscosity solution, financial derivatives

    Avrupa Tipi Satış Opsiyonu Modeli için Nümerik bir Değerlendirme

    Get PDF
    The Black-Scholes equations have been increasingly popular over the last three decades since they provide more practical information for optional behaviours. Therefore, effective methods have been needed to analyse these models. This study will mainly focus on investigating the behaviour of the Black-Scholes equation for the European put option pricing model. To achieve this, numerical solutions of the Black-Scholes European option pricing model are produced by three combined methods. Spatial discretization of the Black-Scholes model is performed using a fourth-order finite difference (FD4) scheme that allows a highly accurate approximation of the solutions. For the time discretization, three numerical techniques are proposed: a strong-stability preserving Runge Kutta (SSPRK3), a fourth-order Runge Kutta (RK4) and a one-step method. The results produced by the combined methods have been compared with available literature and the exact solution. It has seen that the results with minimal computational effort are sufficiently accurate.Black-Scholes denklemleri opsiyon davranışlarında pratik bilgiler sağladığından son otuz yılda daha popüler hale gelmiştir. Bu nedenle, bu modelleri analiz etmek için etkili yöntemlere ihtiyaç duyulmaktadır. Bu çalışma temel olarak Avrupa tipi satış opsiyonu fiyatlama modeli için Black-Scholes denkleminin davranışını araştırmaya odaklanmıştır. Bunun için, Black-Scholes Avrupa tipi opsiyon fiyatlama modelinin sayısal çözümleri üç birleştirilmiş yöntem ile üretilmiştir. Black-Scholes modelinin uzaysal ayrıklaştırması, çözümlerin yüksek hassasiyetli yaklaşımlarına izin veren dördüncü mertebeden bir sonlu fark (FD4) şeması kullanılarak yapılmıştır. Zaman ayrıklaştırması için üç sayısal teknik kullanılmıştır: Kuvvetli kararlılık koruyan RungeKutta (SSPRK3), dördüncü mertebe Runge Kutta (RK4) ve tek adımlı bir yöntem. Birleştirilmiş yöntemlerle üretilen sonuçlar literatürde mevcut olan çözüm ve tam çözüm ile karşılaştırılmıştır. Sonuçların minimum hesaplama çabasıyla yeterince hassas olduğu görülmüştür

    A new approach for the black-scholes model with linear and nonlinear volatilities

    Get PDF
    Since financial engineering problems are of great importance in the academic community, effective methods are still needed to analyze these models. Therefore, this article focuses mainly on capturing the discrete behavior of linear and nonlinear Black-Scholes European option pricing models. To achieve this, this article presents a combined method; a sixth order finite difference (FD6) scheme in space and a third-order strong stability preserving Runge-Kutta (SSPRK3) over time. The computed results are compared with available literature and the exact solution. The computed results revealed that the current method seems to be quite strong both quantitatively and qualitatively with minimal computational effort. Therefore, this method appears to be a very reliable alternative and flexible to implement in solving the problem while preserving the physical properties of such realistic processes. © 2019 by the authors

    Método dos elementos finitos baseado em polinómios de Hermite cúbicos, para resolução da equação de Black-Scholes não linear com opções europeias

    Get PDF
    Foi desenvolvido um algoritmo numérico para resolver uma equação diferencial parcial generalizada de Black-Scholes, que surge na precificação de opções europeias, considerando os custos de transação. O método Crank-Nicolson é usado para discretizar no tempo e o método de interpolação cúbica de Hermite para discretizar no espaço. A eficiência e precisão do método proposto são testadas numericamente e, os resultados confirmam o comportamento teórico das soluções, que também se encontra em boa concordância com a solução exata.A numerical algorithm for solving a generalized Black-Scholes partial differential equation, which arises in European option pricing considering transaction costs is developed. The Crank-Nicolson method is used to discretize in the temporal direction and the Hermite cubic interpolation method to discretize in the spatial direction. The efficiency and accuracy of the proposed method are tested numerically, and the results confirm the theoretical behaviour of the solutions, which is also found to be in good agreement with the exact solution

    High-order compact finite difference schemes for option pricing in stochastic volatility models on non-uniform grids

    Get PDF
    We derive high-order compact finite difference schemes for option pricing in stochastic volatility models on non-uniform grids. The schemes are fourth-order accurate in space and second-order accurate in time for vanishing correlation. In our numerical study we obtain high-order numerical convergence also for non-zero correlation and non-smooth payoffs which are typical in option pricing. In all numerical experiments a comparative standard second-order discretisation is significantly outperformed. We conduct a numerical stability study which indicates unconditional stability of the scheme
    corecore